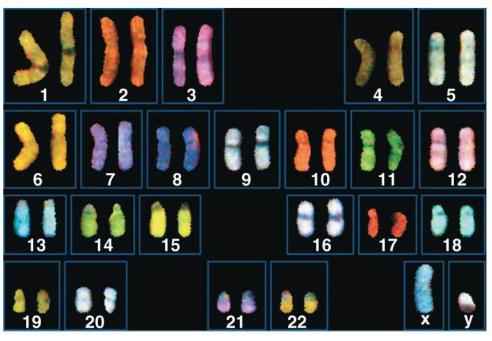
BIO-373 Genetics & Genomics

Cancer genetics

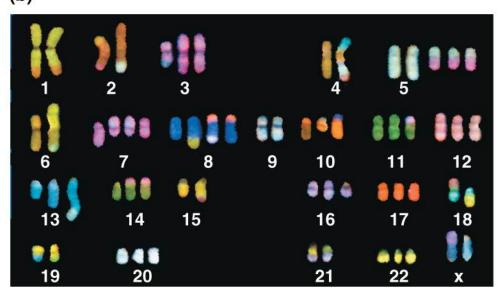
Jacques Fellay

School of Life Sciences, EPFL Precision medicine unit, CHUV


jacques.fellay@epfl.ch

Plan

- 1. Cancer is a genetic disease
- 2. Genetic and epigenetic changes in cancer cells
- 3. Control of cell cycle
- 4. Proto-oncogenes and tumor suppressor genes
- 5. Familial forms of cancer
- 6. Carcinogens


1. Cancer is a genetic disease

Caryotype of a normal cell

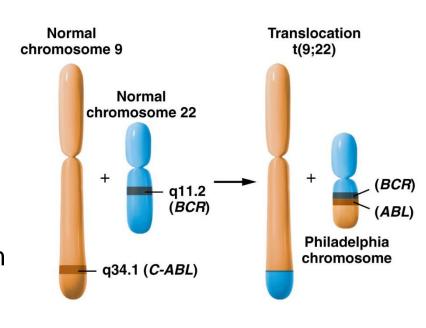
(b)

Caryotype of a cancerous cell, which shows a mix of aneuploidy, deletions and translocations

Cancers are genetic diseases

- Cancers are a group of diseases impacting fundamental cellular functions:
 - DNA repair
 - Cellular cycle
 - Apoptosis
 - Cellular differentiation
 - Cell-cell interactions
- All cancers are caused by mutations in somatic cells (i.e. genetic disease at the somatic level)
- Only 5-10% of cancers are also associated with germline variants

Fundamental properties of cancer


- Unregulated cell proliferation due to abnormal cell growth and division
- Metastatic spread

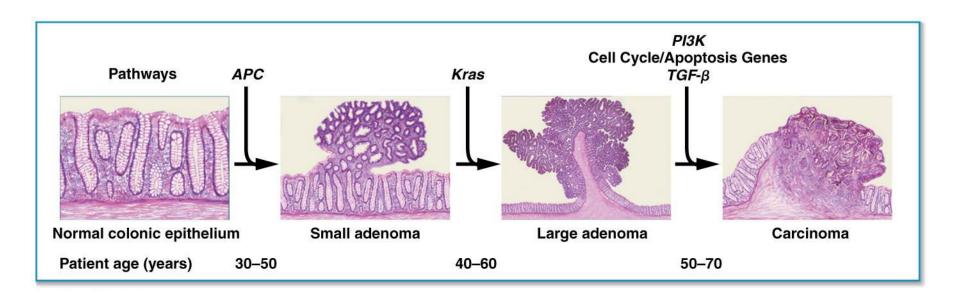
- All cancer cells in primary and secondary tumors are clonal
 - They all originate from a common ancestral cell that accumulated numerous mutations
 - Proof of clonality of cancer cells:
 - Reciprocal translocations
 - X-inactivation

Proof of cancer cell clonality

Reciprocal translocations

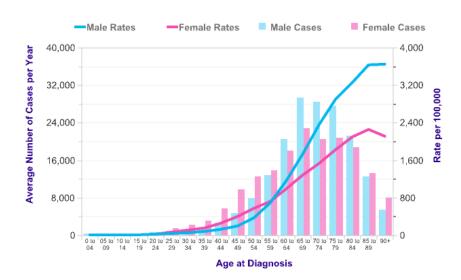
- Observed in many cancers, mostly leukemias / lymphomas
- Ex: Chronic myelocytic leukemia:
 - Translocation of C-ABL gene from chromosome 9 to 22, close to BCR gene
 - Creation of BCR-ABL fusion gene encoding an abnormal signal transduction protein, which continuously stimulates cell proliferation

Proof of cancer cell clonality


X-chromosome inactivation

- Random inactivation of one of the two X chromosomes in each female cell, occurring early in embryonic development
- All cells from the same cancer in a woman contain the same inactivated X chromosome (both primary and metastatic tumors)

Cancer development is a multistep process


 The steps of cancer development (carcinogenesis) are sometimes visible, as here for colon cancer

normal tissue → benign adenoma → carcinoma

Cancer development: age

- The incidence of most cancers increases with age
- Independent random mutations are necessary for the malignant transformation of a cell:
 - Mutation rate in humans: 10⁻⁶ per gene per cell division
 - Estimated number of cell divisions over 80 years: 10¹⁶
 - An individual can thus accumulate up to 10¹⁰ mutations per gene without developing cancer

2. Genetic and epigenetic changes in cancer cells

Types of mutations found in tumors

- Driver mutations give growth advantage to tumor cells
 - In genes important for genome stability and DNA repair
 - In genes controlling cellular cycle and apoptosis (protooncogenes and tumor suppressor genes)
- Passenger mutations have no direct contribution to cancer phenotype

Genomic instability

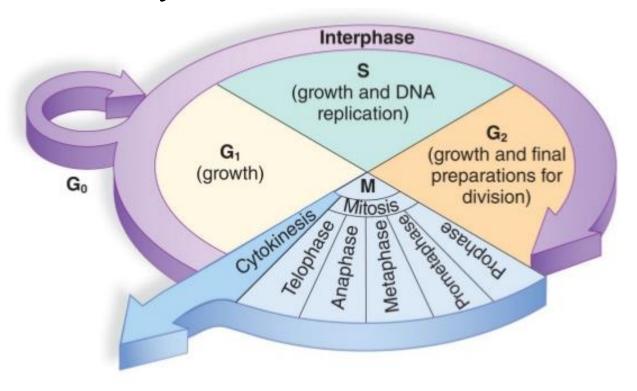
- Genomic instability in cancer cells, sometimes described as "mutator phenotype", manifests in multiple somatic DNA defects such as:
 - Translocations
 - Aneuploidy
 - DNA amplification
 - Deletions

Epigenetic modifications

 Epigenetics is the study of factors that affect gene expression but do not alter the DNA sequence

DNA methylation

- Important for gene silencing (including X inactivation, parental imprinting)
- Aberrantly demethylated genes will be overexpressed


Histone modifications

 Genes that encode histone acetylases, deacetylases, methyltransferases, and demethylases are often mutated or aberrantly expressed in cancer cells

3. Control of cell cycle

Cell cycle

- Cellular events, in sequence, from one division to another
- Phases of cell cycle:

Phases of the cell cycle

- Mitotic division (M phase)
- Interphase
 - Interval during which the cell grows and replicates its DNA (subdivided into G1, S and G2 phases)
 - Between mitotic divisions
- Quiescence (G0 phase)
 - Cell does not grow or divide but can be metabolically active

Cancer cells are unable to enter G0 and cycle continuously

Cell cycle control and checkpoints

- G1/S, G2/M, and M checkpoints
 - Three distinct checkpoints where the cell monitors external signals and internal equilibrium
 - At each checkpoint, the cell decides whether to proceed to the next stage of the cell cycle

Apoptosis

- Programmed cell death
- Occurs when DNA damage is too severe to repair
- Genetically controlled process, essential to avoid cancer
- Different from necrosis: apoptosis does not trigger any inflammatory response

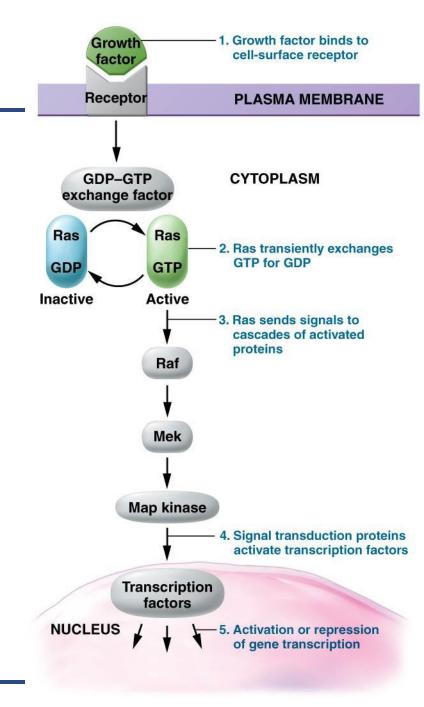
Steps of apoptosis

- Fragmentation of nuclear envelope
- Disruption of internal cellular structures
- Dissolution of cell into small apoptotic bodies
- Engulfing of apoptotic bodies by phagocytic cells

4. Proto-oncogenes and tumor-suppressor genes

Proto-oncogenes

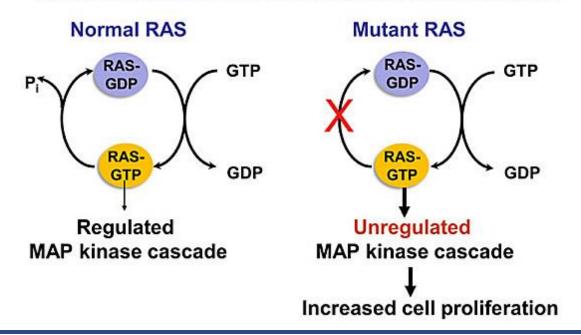
- Genes whose products promote cell growth and division:
 - Transcription factors that stimulate expression of other genes
 - Signal transduction molecules that stimulate cell division
 - Cell-cycle regulators that move cell through cell cycle


Oncogenes

- Mutated or aberrantly expressed proto-oncogenes
- Result from "gain-of-function" alteration
- Dominant phenotype = only one allele needs to be mutated or overexpressed to contribute to cancer

Proto-oncogene	Normal Function	Alteration in Cancer	Associated Cancers
с-тус	Transcription factor, regulates cell cycle, differentiation, apoptosis	Translocation, amplification, point mutations	Lymphomas, leukemias, lung cancer, many types
c-kit	Tyrosine kinase, signal transduction	Mutation	Sarcomas
RARα	Hormone-dependent transcription factor, differentiation	Chromosomal translocations with <i>PML</i> gene, fusion product	Acute promyelocytic leukemia
E6	Human papillomavirus encoded oncogene, inactivates p53	HPV infection	Cervical cancer
Cyclins	Bind to CDKs, regulate cell cycle	Gene amplification, overexpression	Lung, esophagus, many types

ras proto-oncogenes


- The ras genes (HRAS, NRAS and KRAS) are among the most frequently mutated genes in human tumors (about 40% of cancers)
- They encode signal transduction molecules associated with cell membrane
- Normal function = regulation of cell growth and division in response to external stimuli

ras proto-oncogenes

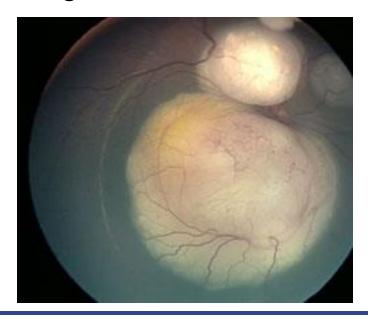
 Mutations transforming a proto-oncogenic ras into an oncogene make the Ras protein unable to hydrolyze GTP into GDP, blocking it in its active form → non-stop stimulation of cell proliferation

missense mutations in codons 12, 13 and 61 alter gene product activity

Tumor-suppressor genes

- Genes that normally regulate cell-cycle checkpoints and initiate process of apoptosis
- If they are mutated, they are unable to control cell proliferation and apoptosis, which leads to cancer
- Recessive phenotype = both alleles must be inactivated for the cell to become cancerous

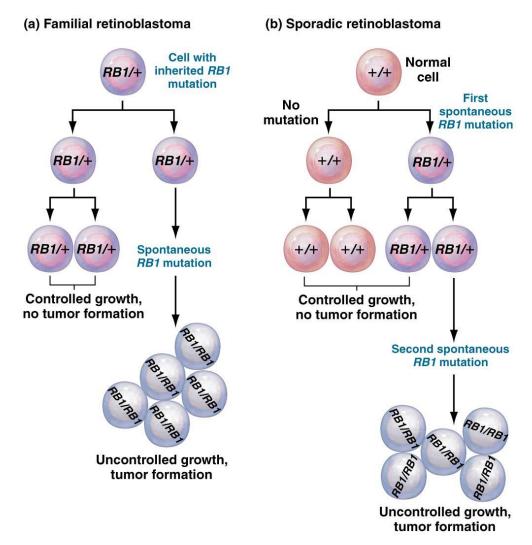
Tumor-Suppressor	Normal Function	Alteration in Cancer	Associated Cancers
RB1	Cell-cycle checkpoints, binds E2F	Mutation, deletion, inactivation by viral oncogene products	Retinoblastoma, osteosarcoma, many types
APC	Cell-cell interaction	Mutation	Colorectal cancers, brain, thyroid
p53	Transcription regulation	Mutation, deletion, viruses	Many types
BRCA1, BRCA2	DNA repair	Point mutations	Breast, ovarian, prostate cancers


p53 tumor-suppressor gene

- Most frequently mutated gene (50% of all cancers)
- p53 encodes a transcription factor that represses or stimulates transcription of >50 genes
- The p53 protein is continuously synthesized but rapidly degraded, so is present at low levels in normal cells
- DNA damage → rapid increase in p53 levels
 → cell cycle arrest and initiation of apoptosis
- Due to its central role in genomic integrity, p53 has been called the "guardian of the genome"

RB1 Tumor-suppressor gene

- RB1 encodes a protein that controls the G1/S checkpoint
- Loss or mutation of RB1 leads to development of multiple cancers due to unregulated progression through cell cycle
- Originally identified via studies on retinoblastoma, an inherited disorder that causes tumor development in eyes of young children



Retinoblastoma

Familial retinoblastoma

- Mutated RB1 allele is inherited → 85% risk of retinoblastoma
- Sporadic retinoblastoma
 - Requires two independent mutational events of RB1 within same cell

5. Familial forms of cancer

Hereditary cancers

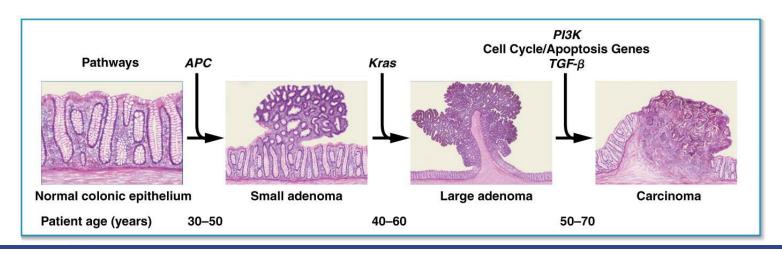
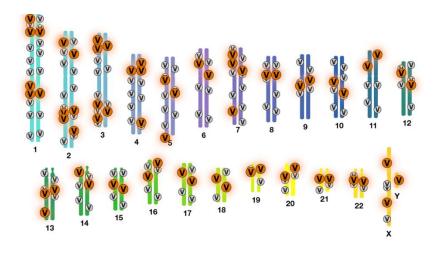

- All cancers result from somatic cell mutations
- However, some germline genetic factors confer a markedly increased risk of developing cancer
- About 50 forms of cancer are considered hereditary (5-10% of all cancers)

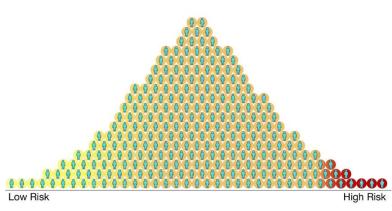
TABLE 19.2 Some Inherited Predispositions to Cancer

Tumor Predisposition Syndrome	Chromosome	Gene Affected
Early-onset familial	17q	BRCA1
breast cancer		
Familial adenomatous	5q	APC
polyposis		
Familial melanoma	9p	CDKN2
Gorlin syndrome	9q	PTCH1
Hereditary nonpolyposis	2p	MSH2, 6
colon cancer		
Li-Fraumeni syndrome	17p	p53
Multiple endocrine neoplasia,	11q	MEN1
type 1		
Multiple endocrine neoplasia,	10q	RET
type 2		
Neurofibromatosis, type 1	17q	NF1
Neurofibromatosis, type 2	22q	NF2
Retinoblastoma	13q	pRb
Von Hippel-Lindau syndrome	3р	VHL
Wilms tumor	11p	WT1

Familial adenomatous polyposis

- Genetic predisposition to cancer, responsible for 1% of colon cancers
- Due to the presence of germ-line heterozygous variants in APC
 - APC (adenomatous polyposis coli) is a tumor suppressor gene encoding a protein that controls the normal differentiation of intestinal cells
 - Several types of deleterious variants can be involved, including deletions, frameshift, and single nucleotide variants
- Formation of many polyps or adenomas in early life
- Other somatic APC mutations, followed by mutation in other genes (ras, DCC, p53, etc...) lead to the development of an adenocarcinoma

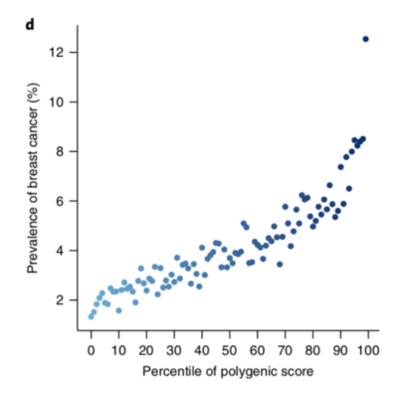

Breast and ovary cancer


- BRCA1 and BRCA2 encode proteins that play a role in DNA repair
- 2-3/1000 women carry a pathogenic variant
 - Risk of cancer before age 70:
 - Breast: 40-85% vs. 10% in general population
 - Ovary: 10-63% vs. 1% in general population
 - Risk depends on gene:
 - BRCA1 : breast 65%, ovary 45%
 - BRCA2 : breast 45%, ovary 11%

Polygenic risk of cancer

- Polygenic risk scores have recently been developed that allow the estimation of the individual risk of complex diseases, including cancer
- Combined effect of multiple common genetic variants

Polygenic risk of cancer


genetics

Letter | Published: 13 August 2018

Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations

Amit V. Khera, Mark Chaffin, Krishna G. Aragam, Mary E. Haas, Carolina Roselli, Seung Hoan Choi, Pradeep Natarajan, Eric S. Lander, Steven A. Lubitz, <u>Patrick T. Ellinor</u> & Sekar Kathiresan [™]

Nature Genetics 50, 1219–1224 (2018) | Download Citation ±

6. Carcinogens

Carcinogens

- Any substance or event that damages DNA and causes mutations to occur in proto-oncogenes or tumorsuppressor genes
 - Chemicals, radiation, some viruses, chronic inflammation, ...
- Delay between exposure to a carcinogen and appearance of cancer = reflects the slow accumulation of mutations
 - Radiation exposure in Hiroshima and Nagasaki caused leukemias 5 to 8 years later
 - X-ray treatment for tuberculosis in the 1930' led to a wave of breast cancers 15 years later

Infectious agents

- Responsible for 15-20% of cancers
- Several causal mechanisms:
 - Integration into host DNA
 - Retroviruses
 - Chronic inflammation
 - Helicobacter pylori → gastric cancer
 - Hepatitis B and C viruses --> liver cancer
 - Schistosomiasis → bladder cancer
 - Modulation of cellular mechanisms
 - Inhibition of p53 and pRB by papillomavirus
 - Immune suppression
 - HIV

TABLE 19.3 Human Viruses Associated with Cancers

Virus		Associated Cancers
DNA Viruses		
Epstein-Barr virus	EBV	Burkitt lymphoma, nasopharyngeal carcinoma, Hodgkin lymphoma
Hepatitis B virus	HBV	Hepatocellular carcinoma
Hepatitis C virus	HCV	Hepatocellular carcinoma, non- Hodgkin lymphoma
Human papilloma viruses 16, 18	HPV16, 18	Cervical cancer, anogenital cancers, oral cancers
Kaposi sarcoma- associated herpesvirus	KSHV	Kaposi sarcoma, primary effusion lymphoma
Retroviruses		
Human T-cell lymphotropic virus type 1	HTLV-1	Adult T-cell leukemia and lymphoma
Human immunodeficiency virus type-1	HIV-1	Immune suppression, leading to cancers caused by other viruses (KSHV, EBV, HPV)

Retroviruses and cancer

- Retroviruses can cause cancer in two different ways:
 - Integration of proviral DNA close to a host protooncogene, leading to its activation
 - 2. "Transforming" retroviruses
 - carry an oncogene in their own genomes
 - Transform the infected cell into a cancerous cell
 - Rous sarcoma virus (RSV)
 - 1st identified retrovirus in 1910
 - Found in transmissible sarcoma of the chicken
 - No known transforming retrovirus in humans

Environmental carcinogens

Tobacco smoke

- Most significant environmental carcinogen
- Contains >60 mutagenic chemicals
- smokers have a 20-fold increased risk of developing lung cancer

Red meat and animal fat

Associated with colon, prostate, and breast cancer

Alcohol

may cause liver steatosis (fat accumulation) → chronic liver inflammation → hepatocarcinoma

Environmental carcinogens

Aflatoxin

- Toxin produced by a mold (Aspergillus) on seeds kept in warn and humid conditions
- one of the most carcinogenic chemicals known

Nitrosamines

- organic compounds of the chemical structure
 R2N-N=O, where R is usually an alkyl group
- Converted by metabolic activation into alkylating agents that induce DNA mutations
- Used as meat preservative

$$R^1 N^2$$
 $N > 0$

- X-rays
- UV light