
Exercise session, week 12
Course: Systèmes dynamiques en biologie (BIO-341)

Professor: Felix Naef , Julian Shillcock

SSV, BA5, 2024

A. Organization of the circadian oscillator network in
the brain

In mammals, circadian timing is regulated by the master clock, which is composed of

about 20000 neurons located in the suprachiasmatic nucleus (SCN) in the

hypothalamus. The neurons in the SCN are synchronized with each other, in part, by

neurotransmitters that are secreted by the neurons. Here, we are interested in how

different neuron connectivities affect collective synchronization and oscillatory behavior.

For simplicity, we will consider a theoretical model of the SCN in which coupled

oscillators are arranged in a 2-dimensional space (grid). We can construct a symmetric

adjacency matrix (coupling matrix) where specifies the coupling between

oscillator and oscillator . Here, we consider the simplest case where is either 0 or

1. This coupling is modulated by a strength .

For each neuron , .

We provide you with two functions:

• heatmap: plot a grid (being the number of neurons), which

represents the SCN. Each cell shows the value contained in the matrix datagrid. The

values are plotted from bottom left to top right, row by row.

• value_to_size: create the grid on which the oscillators are. This function is called by

heatmap.

import important libraries
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from IPython.display import set_matplotlib_formats
from scipy.integrate import odeint

set_matplotlib_formats("png", "pdf")
matplotlib.rc("image", cmap="RdBu")
import matplotlib.animation as animation
from random import random
from time import time

A Aij = Aji

i j Aij

K

i θ̇ i = fi + K ∑N
j=1 Aij sin(θj − θi)

n × n N := n2

https://moodle.epfl.ch/course/info.php?id=14291
https://moodle.epfl.ch/course/info.php?id=14291
https://moodle.epfl.ch/course/info.php?id=14291

Below is an example of how to use the functions to plot the phase of each neuron in

each cell of the grid:

create a grid on which the oscillators are

def value_to_size(val, size_min, size_max, size_scale):
val = abs(val) # to handle negative numbers
val_position = (val - size_min) * 0.99 / (

size_max - size_min
) + 0.01 # position of value in the input range, relative to the length of the input ran
return val_position * size_scale

def heatmap(datagrid, marker, ax):
x = list(range(datagrid.shape[1]))
y = list(range(datagrid.shape[0]))

size_min, size_max = 0, 1
size_scale = 500

dot the scatter + 2 extra invisible points to normalize colors
scat = ax.scatter(

x=x * len(y) + [-100, -100],
y=[v for v in y for p in x] + [-100, -100],
marker=marker,
s=[value_to_size(v, size_min, size_max, size_scale) for v in datagrid
+ [1, 1],
c=[v for v in datagrid.flatten()] + [-1, 1],
cmap="RdBu",

)

ax.set_xticks(x)
ax.set_xticklabels(x)
ax.set_yticks(y)
ax.set_yticklabels(y)

ax.grid(False, "major")
ax.grid(True, "minor")

ax.set_xticks([t + 0.5 for t in ax.get_xticks()], minor=True)
ax.set_yticks([t + 0.5 for t in ax.get_yticks()], minor=True)

ax.set_xlim([-0.5, max(x) + 0.5])
ax.set_ylim([-0.5, max(y) + 0.5])
ax.set_facecolor("#F1F1F1")

(100,)
(10, 10)

create 100 cells (10*10 grid)
N = 100
n = int(N**0.5)

create a vector of increasing phases to check the order of the oscillators on the plotted g
l_x0 = np.linspace(0, 2 * np.pi, N)
print(l_x0.shape)
reshape l_x0 to match the grid
X = np.reshape(l_x0, (n, n))
print(X.shape)
plot the oscillators
datagrid = np.sin(X)
fig, ax = plt.subplots(figsize=(X.shape[0], X.shape[1]))
heatmap(datagrid, marker=".", ax=ax)
plt.show()

Question 1:

Assume that every neuron is connected to its nearest neighbours in the grid: for

example, a neuron in position will be connected to the neurons at ,

, and . Assume also that the neuron is connected to its

second nearest neighbours: , , , .

Visualize the circadian oscillations of neurons at different times using the provided

function heatmap and using subplots.

Hint : Initialize the parameters of a population of neurons (~100--1000 cells) with

varying intrinsic periods of about 24 hours. For instance, you can modify the period of a

neuron by drawing from a normal distribution with and equal to of

the mean (you may have to play with to obtain synchronization). Assign coordinates to

each cell in a 2D grid, e.g. with x and y coordinates in a rectangle (the real SCN has an

‘egg’ shape). Choose .

(i, j) (i − 1, j)
(i + 1, j) (i, j − 1) (i, j + 1)

(i − 1, j − 1) (i − 1, j + 1) (i + 1, j − 1) (i + 1, j + 1)

N N

i fi µ = 2π/24 σ 5%
σ

K = 0.03

def model(
l_theta, t, l_f, K, A

): # l_theta: list of initial phase of the N neurons, t = time (needed for odeint),
l_f: intrinsic frequencies of the neurons, K: coupling strength, A: interaction matrix

compute interaction matrix
INT = np.zeros((len(l_theta), len(l_theta)))
for i, theta_i in enumerate(l_theta):

for j, theta_j in enumerate(l_theta):
INT[i, j] = np.sin(theta_j - theta_i)

multiply by the interaction matrix
NINT = np.multiply(INT, A)

simulate the system with the new set of interaction
return np.array(

[f + K * np.sum(NINT[i, :]) for i, (theta, f) in enumerate(zip(l_theta
)

Defining some interaction matrices
def A_alltoall(N, p=1):

A = np.zeros((N, N))
for i in range(A.shape[0]):

for j in range(i, A.shape[1]):
A[i, j] = 1 if random() < p else 0
A[j, i] = A[i, j]

return A

def A_NN(N):
Nearest Neighbours

A = np.zeros((N, N))
n = int(np.sqrt(N))
neuron_index = np.arange(N)
NI = np.reshape(neuron_index, (n, n))

for i in range(n): # row number
for j in range(n): # column number

if i < n - 1:
A[NI[i, j]][NI[i + 1, j]] = 1

if i > 0:
A[NI[i, j]][NI[i - 1, j]] = 1

if j < n - 1:
A[NI[i, j]][NI[i, j + 1]] = 1

if j > 0:
A[NI[i, j]][NI[i, j - 1]] = 1

A[NI[i, j]][NI[i, j]] = 1

return A

def A_2NN(N):
First and second Nearest Neighbours

A = A_NN(N)
n = int(np.sqrt(N))
neuron_index = np.arange(N)
NI = np.reshape(neuron_index, (n, n))

for i in range(n): # row number
for j in range(n): # column number

second nearest neightbours
if i < n - 1 and j < n - 1:

A[NI[i, j]][NI[i + 1, j + 1]] = 1

if i < n - 1 and j > 0:
A[NI[i, j]][NI[i + 1, j - 1]] = 1

if i > 0 and j < n - 1:
A[NI[i, j]][NI[i - 1, j + 1]] = 1

<matplotlib.image.AxesImage at 0x10e8e3950>

if i > 0 and j > 0:
A[NI[i, j]][NI[i - 1, j - 1]] = 1

A[NI[i, j]][NI[i, j]] = 1

return A

A1 = A_NN(N)
A2 = A_2NN(N)

plt.imshow(A2, cmap="gray")

def order(l_angles):
return np.mean([np.exp(1j * theta) for theta in l_angles])

(1000, 100)

create a vector of intrinsic frequencies
mu = 2 * np.pi / 24
sigma = 0.1 * mu
l_f = np.random.randn(N) * sigma + mu

define time domain
dt = 0.25 # fixed
nsteps = 1000
T = dt * nsteps

tspan = np.linspace(0, T, nsteps)

define coupling strength
K = 0.03

define interaction matrix
A = A_2NN(N)

plot the interaction matrix
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(A, cmap="Greys")
ax.set_title("Interaction map")

simulate cells, crucial step!
X = odeint(model, l_x0, tspan, args=(l_f, K, A))
print(X.shape)
reshape X to match the interaction grid
X = np.reshape(X, (X.shape[0], n, n))

(1000, 10, 10)

X.shape

Question 2

Do the same plots as for Question 1 but for an all-to-all interaction matrix: for all

. Set .

How does the space-time synchronization dynamics change with respect to the

previous case?

fig, axs = plt.subplots(4, 5, figsize=(20, 16))
axs = axs.flatten()

i_show = np.arange(0, nsteps, int(nsteps / 20))

looping over the time steps to plot the oscillators
for ax, i in zip(axs, i_show):

X represents the phases therefore we need to take the sin of it to plot the oscillators
datagrid = np.sin(X[i, :])
heatmap(datagrid, marker=".", ax=ax)
here it is crucial the part with abs(order(X[i, :]))
it takes the avrage of the thetas around the circle and than takes the absolute value
ax.set_title("Time {0:.2f}, R = {1:.2f}".format(tspan[i], abs(order(X[i,

plt.show()

Aij = 1
i, j K = 0.001

create a vector of intrinsic frequencies
mu = 2 * np.pi / 24
sigma = 0.1 * mu
l_f = np.random.randn(N) * sigma + mu

define time domain
dt = 0.25 # fixed
nsteps = 1000
T = dt * nsteps

tspan = np.linspace(0, T, nsteps)

define coupling strength
K = 0.001 #

define interaction matrix
A = A_alltoall(N)

fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(A,cmap='Greys')
ax.set_title("Interaction map")

simulate cells
X = odeint(model, l_x0, tspan, args=(l_f, K, A))

reshape X to match the interaction grid
X = np.reshape(X, (X.shape[0], n, n))

fig, axs = plt.subplots(4, 5, figsize=(20, 16))
axs = axs.flatten()

i_show = np.arange(0, nsteps, int(nsteps / 20))

for ax, i in zip(axs, i_show):
datagrid = np.sin(X[i, :])
heatmap(datagrid, marker=".", ax=ax)
ax.set_title("Time {0:.2f}, R = {1:.2f}".format(tspan[i], abs(order(X[i,

plt.show()

In Question 1 the convergence happens in "patches" and we need a stronger interaction

coefficient to appreciate the synchronization on the time scale used in the simulation.

For the all-to-all interaction matrix the synchronization is "fast" even for a weak

interaction coefficient (), and happens "uniformly".

Question 3:

Generate a random adjacency matrix where with a probability , where a

‘success’ will generate and otherwise. Which probability is needed

(approximately, based on the final state) in order to retain synchronized oscillations

given your chosen ?

Use again the function heatmap. You should plot only the final state for the different p

(both bigger and smaller than the critical probability).

K

K = 0.001

Aij = 1 p

A = 1 A = 0

σ

It took 57.32160305976868 s.

start = time()

fig, axs = plt.subplots(4, 5, figsize=(20, 16))
axs = axs.flatten()

P = np.linspace(0, 1, 20)
R = np.zeros(shape=(len(P),))
M = 5

for k, p in enumerate(P):
A = A_alltoall(N, p)

K = 0.001

simulate neurons
X = odeint(model, l_x0, tspan, args=(l_f, K, A))
X = np.reshape(X, (X.shape[0], int(N**0.5), int(N**0.5)))
datagrid = np.sin(X[-1, :])
heatmap(datagrid, marker=".", ax=axs[k])

r = 0
for l in np.arange(M):

r += abs(order(X[-(l + 1), :]))
R[k] = r / M

axs[k].set_title("p = {0:.2f}, R = {1:.2f}".format(p, R[k]))

end = time()

print("It took ", end - start, " s.")

Question 4:

With defined as , plot the function and find the critical

probability (the probability of the neuron connections when the system becomes

syncronized). Use at least different values of for the plot.

Hint: to have a "reliable" estimate of , you could average it on some time (at the end

of the simulation).

Which is the critical value of ?

Text(0, 0.5, 'R(p)')

R R = ∑j eiθj1
N

R(p)

∼ R ≥ 0.5 10 p

R

p

plt.plot(P, R, "p")
plt.title('K coupling = ' + str(K))
plt.xlabel("p")
plt.ylabel("R(p)")

 is attained for .

B. The Kuramoto branches (Optional)

R ≥ 0.5 p ∼ 0.5

import important libraries
from scipy.integrate import odeint, quad
from IPython.display import set_matplotlib_formats
from matplotlib.markers import MarkerStyle
set_matplotlib_formats("png", "pdf")

Take the self consistent equation:

And use it to plot the 2 branches stemming from the Kuramoto's model in the plane (K,r)

hint:

the curve is the made by the set of points in plane (K,r) such that:

Define function that finds

than find F(K, r) for a mash grid of points, and finally select the curve such that F(K,r)=0

r = ⟨cos(θ)⟩s = rK ∫ π/2
−π/2 cos2(θ)g(Kr sin(θ))dθ

0 = rK ∫ π/2
−π/2 cos2(θ)g(Kr sin(θ))dθ − r = K ∫ π/2

−π/2 cos2(θ)g(Kr sin(θ))dθ − 1

F(K, r) = K ∫ π/2
−π/2 cos2(θ)g(Kr sin(θ))dθ − 1

si_w = 1
Kc = 2 / np.pi * np.sqrt(2 * np.pi) * si_w

'''
The self/consistent equation (6.14) gets rewritten such that
'''
def integrand(x, K, r, sigma):

return (
np.cos(x) ** 2
* np.exp(-((np.sin(x) * K * r) ** 2) / (2 * sigma**2))
/ (np.sqrt(2 * np.pi) * sigma)

)

def integral(K, r, sigma):
return quad(integrand, -np.pi / 2, np.pi / 2, args=(K, r, sigma))

def F(K, r):
return K * integral(K, r, si_w)[0] - 1

once defined the function F(K,r) we can plot it
we use the countour function to have the F=0 slice

contr = np.arange(0, 1.1, 0.01)
contK = np.arange(0, 5, 0.1)
KK, rr = np.meshgrid(contK, contr)
V = np.array([0.0])
Z = np.zeros_like(KK)

for i in range(KK.shape[0]):
for j in range(KK.shape[1]):

Z[i, j] = F(KK[i, j], rr[i, j])
plt.contour(KK, rr, Z, V, colors="purple")
plt.plot([0, 5], [0, 0], color="purple")
plt.scatter(Kc, 0)
plt.xlabel("K")
plt.ylabel("r")
plt.show()

