
Course: BIO-341 Dynamical systems in biology

Professor: Julian Shillcock & Felix Naef

SSV, BA5, 2023

Note that this document is primarily aimed at being consulted as a Jupyter notebook,

the PDF rendering being not optimal.

# import important libraries
import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact
from scipy.integrate import odeint
from IPython.display import set_matplotlib_formats
from matplotlib.markers import MarkerStyle

set_matplotlib_formats("png", "pdf")

/var/folders/8w/hhwzbx0d6zg_2q5hrl31_yn00000gq/T/ipykernel_2776/362094335
8.py:9: DeprecationWarning: `set_matplotlib_formats` is deprecated since I
Python 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib
_formats()`
 set_matplotlib_formats("png", "pdf")

Insect outbreak and bifurcations
The goal of this exercise is to study a model of insect outbreak in which the solutions

change qualitatively when the environment parameters are modified.

Bifurcations (Paper and pencil)

Consider the 1st-order systems

1. 

2. 

A. Discuss the fixed points and their stability in function of the parameters  or 

.

1.  and  are the fixed points.

For ,  is unstable,  is stable.

For  there is only one semi-stable fixed point in .

For ,  is stable,  is unstable.

2.  thus  are the fixed points for .

We get  stable and  unstable.

If , the fixed point  is semi-stable.

In [24]:

ẋ = (x− 2)(x− r)

ẋ = x2 + b

r b

x∗ = 2 x∗ = r

r > 2 x∗ = r x∗ = 2
r = 2 x∗ = 2
r < 2 x∗ = r x∗ = 2

ẋ = x2 + b x∗ = ±√−b b < 0
x∗ = −√−b x∗ = √−b

b = 0 x∗ = 0
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B. Linearize the equation for the dynamical system to obtain explicit solution

near the fixed points. Linearization refers to finding the linear approximation to

a function at a given point:  with  and the solution

To study the solution near the fixed points we use the linearization:

 with  (cf. chapter 1 for derivation). So

it is only necessary to compute the derivatives at the fixed points

.

1. As , we have  and

. As the solution of the linearization is

, we get 

⠀⠀

2. As , we have . As the solution

of the linearization is , we get .

C. Bifurcation diagrams: Plot the position of the fixed points in function of  or ,

using a solid line for the stable branch and a dashed line for unstable branch.

# plot for system 1
stable_r = np.linspace(-5, 2, 100)
unstable_r = np.linspace(2, 5, 100)
line = np.linspace(-5, 5, 100)

plt.plot(stable_r, stable_r, color="r", ls="-", label = '$x^*$ = r stable
plt.plot(unstable_r, unstable_r, color="r", ls="--", label = '$x^*$ = r u

plt.plot([-5, 2], [2, 2], color="b", ls="--", label="$x^*$ = 2 unstable")
plt.plot([2, 5], [2, 2], color="b", ls="-", label="$x^*$ = 2 stable")

plt.xlabel("r")
plt.ylabel(r"$x^*$")
plt.legend()
plt.show()

η̇ = η ⋅ F ′(x∗) η(t) = x(t) − x∗

η = η0e
tF ′(x∗)

η̇ = η ⋅ F ′(x∗) η(t) = x(t) − x∗

F ′(x∗)

F ′(x∗) = 2x− r− 2 F ′(2) = 2 − r

F ′(r) = −(2 − r)
η = η0e

tF ′(x∗) η(t) = η0e
±t(2−r)

F ′(x) = 2x F ′(±√−b) = ±2√−b
η = η0e

tF ′(x∗) η(t) = η0e
±t2√−b

r b

In [26]:
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# plot for system 2
domain_b = np.linspace(-10, 0, 1000)
stable = -np.sqrt(-domain_b)
unstable = np.sqrt(-domain_b)
plt.plot(domain_b, stable,  ls="-", label="stable")
plt.plot(domain_b, unstable,  ls="--", label="unstable")

plt.xlabel("b")
plt.ylabel(r"$x^*$")
plt.legend()
plt.show()

In [27]:
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Insect outbreak (epidemy) (paper and pencil &
code)

The spruce budworm (Choristoneura fumiferana), commonly known as T.B.E., is

without doubt the insect pest best known to foresters and the general public. Having

been very present in Quebec forests during the 60's and 70's, the T.B.E. did not win

the sympathy of the population. In fact, the damage caused by E.B.T. during the last

epidemic amounted to more than 235 million cubic metres of wood, the equivalent of

ten years' harvest for the forestry industry. Needless to say, the spruce budworm has

considerably altered the forest landscape in many parts of Quebec.

During an epidemy, the spruce budworm can defoliate and kill entire forests within

few years. In a simple model for the insect population , the available foliage allows

for a relative growth rate  and the environment has a maximal capacity  as in the

logistic growth model. At the same time, insects are eaten by birds at a certain rate,

which leads to the population model:

The death rate  is assumed to take the form:

N

rB K

Ṅ = = rBN(1 − ) − p(N)
dN

dt

N

K

p(N)

p(N) = B withA,B > 0
N 2

A2 +N 2
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This term is small when the budworms population is small and the birds seek for food

elsewhere, and then saturates for larger  when all birds eat as much worms as they

can.

A. Plot the function  and discuss the meaning of the parameters  and .

# Here is an example of plot where A=1 and B=5.
def p(N, A, B):
    return B * N**2 / (A**2 + N**2)

A = 1
B = 5
N_domain = np.linspace(0, 5, 100)
plt.plot(N_domain, p(N_domain, A, B), label="p(N)")
plt.axvline(x=A, ls="--", c='r',label="x=A")
plt.axhline(y=B, ls="--", label="y=B")
plt.ylim([0, 6])
plt.ylabel(r"$p(N)$")
plt.xlabel(r"$N$")
plt.legend()
plt.show()

 is the value of  when  is at half maximum.  is the saturation

value of  for large .

B. Discuss the fixed points and stability properties of this model in function of 

and  by the following steps:

N

p(N) A B

In [28]:

A N p(N) B

p(N) N

r

k
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1. For convenience, let's first change variables:

.

Verify that this leads to the dimensionless form with two dimensionless

parameters .

We have  and  so . If we

substitute all the other variables, we get:

 which we simplify by B to get the

dimensionless form.

2. Consider the following three qualitatively different situations and plot in each

case the two terms  and  in function of x.

Note that the intersections correspond to the fixed points (cf. the genetic switch

in Chapter 2).

intermediate , intermediate  (one fixed point, called the refuge)

small  , large  (3 fixed points, called the bistable region)

large  , large  (one fixed points, called the outbreak).

Hint: Here, small will be less than 1, intermediate will be around 1, and large will be

more than 2.

To calculate the fixed points, we use the condition

 (Note that only the left side is dependent on 

and ). We observe 1 to 3 fixed points  at the intersections of the

terms  and  depending on  and . ⠀⠀

x = np.linspace(0.0, 10, 100)

def f(r, k, x):
    return r * (1 - x / k)

def h(x):
    return x / (1 + x**2)

plt.plot(x, h(x), label="h(x)")

# medium r, medium k

x = , r = rB , k = , τ =
N

A

A

B

K

A

Bt

A

r, k

= rx(1 − ) − = x(f(x) − h(x))
dx

dτ

x

k

x2

1 + x2

dx =
dN

A
dτ =

Bdt

A
= =

dN

dt

Adx

dt

Bdx

dτ

B = Brx(1 − ) −B
dx

dτ

x

k

x2

1 + x2

f(x) = r(1 − )
x

k
h(x) =

x

1 + x2

r k

r k

r k

r(1 − ) =
x

k

x

1 + x2
r

k x∗

r(1 − )
x

k

x

1 + x2
r k
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r = 1.0
k = 1.0
plt.plot(x, f(r, k, x), label="f(x) with medium r, medium k")

# small r, large k
r = 0.5
k = 10.0
plt.plot(x, f(r, k, x), label="f(x) with small r, large k")

# large r, large k
r = 4.0
k = 4.0
plt.plot(x, f(r, k, x), label="f(x) with large r, large k")

plt.axhline(y=0, color="black", lw=1)
plt.legend()
plt.xlabel("x")
plt.ylim([-0.5, 1])
plt.show()

3. For each situation sketched previously (small, intermediate and large ), plot 

in function of  and characterize the stability of the fixed points.

In addition to 1-3 fixed points found in b., we have  which is an

unstable fixed point.

x = np.linspace(0.0, 10, 1000)

r
dx

dτ
x

x∗ = 0

In [30]:
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def F(r, k, x):
    return x * (f(r, k, x) - h(x))

# medium r, medium k
r = 1.0
k = 1.0
plt.plot(x, F(r, k, x), label="F(x) with medium r, medium k", color="gree
# look for intersection and stability (dirty way)
zeros = [y if abs(F(r, k, y)) < 10**-3 else np.nan for y in x]
stability = [
    "-" if F(r, k, y2) - F(r, k, y1) > 0 else "+" for y1, y2 in zip(x[:-1
]
for zero, stab in zip(zeros, stability):
    if stab == "+":
        plt.scatter(x=zero, y=0, marker="o", s=50, color="green")
    else:
        plt.scatter(x=zero, y=0, marker="o", s=50, color="green", facecol

# small r, large k
r = 0.5
k = 10.0
plt.plot(x, F(r, k, x), label="F(x) with small r, large k", color="orange
# look for intersection and stability (dirty way)
zeros = [y if abs(F(r, k, y)) < 10**-3 else np.nan for y in x]
stability = [
    "-" if F(r, k, y2) - F(r, k, y1) > 0 else "+" for y1, y2 in zip(x[:-1
]
for zero, stab in zip(zeros, stability):
    if stab == "+":
        plt.scatter(x=zero, y=0, marker="o", s=50, color="orange")
    else:
        plt.scatter(x=zero, y=0, marker="o", s=50, color="orange", faceco

# large r, large k
r = 4.0
k = 4.0
plt.plot(x, F(r, k, x), label="F(x) with large r, large k", color="blue")
# look for intersection and stability (dirty way)
zeros = [y if abs(F(r, k, y)) < 10**-2 else np.nan for y in x]
stability = [
    "-" if F(r, k, y2) - F(r, k, y1) > 0 else "+" for y1, y2 in zip(x[:-1
]
for zero, stab in zip(zeros, stability):
    if stab == "+":
        plt.scatter(x=zero, y=0, marker="o", s=50, color="blue")
    else:
        plt.scatter(x=zero, y=0, marker="o", s=50, color="blue", facecolo

plt.axhline(y=0, color="black", lw=1)
plt.legend()
plt.xlabel("x")
plt.ylabel(r"$F(x) = \frac{dx}{d\tau}$")
plt.ylim([-0.5, 2])
plt.xlim([-0.5, 8])
plt.show()
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C. Bifurcation diagram: Find the boundaries in the ( )-plane between the

single and triple fixed points regions. Proceed stepwise:

1. Express mathematically the requirement that the two curves 

and  are tangent. Use this requirement to express  at the

tangents in function of . (Control:  and  ).

Hint: To be tangent, the values of the curves and the derivatives must be equal at

the touching points .

r, k

f(x) = r(1 − )
x

k

h(x) =
x

1 + x2
r, k

x r(x) =
2x3

(1 + x2)2
k(x) =

−2x3

(1 − x2)

x
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1. 

2. 

For the functions  and  to be tangent, and therefore ensuring

the semistability condition, they have to fulfill the following two

conditions:

We start solving the derivatives, which gives 

By insertion into , we can express  and  in

parametric form where the parameter is .

Note that  is required for positive  and .

2. Plot the bifurcation diagram with Python, that means plot  pairs of

the tangent in the  plane for . Use axis-limits  and

.

Notice: since the capacity parameter  is positive,  is restricted to .

That means that there are no tangential contacts between the two curves for the

other values of .

We can distinguish the three different sections by recalling exercise

B.2. It may be confusing that there is no clear difference between

outbreak and refuge for small k. But keep in mind that at a small

capacity the line between both is actually irrelevant.

# x = np.linspace(1.01,10,1000)
x = np.linspace(1, 10, 1000)
r = 2 * x**3 / (1 + x**2) ** 2
k = -2 * x**3 / (1 - x**2)
plt.plot(r, k)
plt.xlim([0, 1])
plt.ylim([0, 20])
plt.xlabel("r")
plt.ylabel("k")
plt.text(x=0.05, y=15, s="Refuge")
plt.text(x=0.3, y=15, s="Bistability")
plt.text(x=0.7, y=15, s="Outbreak")
plt.show()

/var/folders/8w/hhwzbx0d6zg_2q5hrl31_yn00000gq/T/ipykernel_2776/251188950
5.py:4: RuntimeWarning: divide by zero encountered in divide
 k = -2 * x**3 / (1 - x**2)

f(x) = h(x)
f

′
(x) = h

′
(x)

f(x) h(x)

r = −
k(1 − x2)

(1 + x2)2

r(1 − ) =
x

k

x

1 + x2
r k

x

r(x), k(x) (1)

x ≥ 0 r k

(r(x∗), k(x∗))
(r, k) x∗ ∈ [1,∞] r ∈ [0, 1]

k ∈ [0, 10]

k x x∗ ∈ [1,∞]

x∗

In [31]:

27/09/2024, 10:41 Exercise 3: Insect outbreak and bifurcations

file:///Users/salati/Documents/CODE/github/BIO-341/html/Solution_3.html 10/13



3. A biological catastrophe: Bistability and hysteresis. Sketch what happens to a

budworm population that lives in an environment where the growth rate  is low,

then slowly increases to high values, and finally decreases again to its low value

(consider and compare the two cases  and ). Assume that the

budworm population equilibrates very fast when the environment changes (it is

always at a fixed point) and that it is initially in its low (refuge) state. Use the

representation of  and  similar as in B.2 to plot the results and to

explain the behavior through time of the population of budworms.

Hint: Vary  while keeping  constant in your results of B.2

The plots below show  and  vs. . The intersection(s)

is (are) . When , at the beginning for a low value of , the

population is at the stable fixed point (refuge). As  increases (the

slope of  increases), the two curves become tangential and there

are two fixed points (saddle node). Then, we enter the bistable region,

where there are three fixed points: a stable one at a low value, an

unstable one at an intermediate value and a stable one at a high value.

The population is still at the left-most stable fixed point. As  keeps

increasing, the two curves are again tangential. Then, only one fixed

point remains. The population grows and reaches that fixed point

(outbreak). Next,  is decreasing. The population remains at the right-

most stable fixed point when entering the bistable region again

(crossing the value of  for which the two curves are tangent again). As

r

k = 7 k = 3

f(x) h(x)

r k

r(1 − )
x

k

x

1 + x2
x

x∗ k = 7 r

r

f(x)

r

r

r
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 keeps decreasing, we leave the bistable region and the population

goes back to the only remaining fixed point, at a low value.

Note how the ) curve rotates around the  point. When

, there is only one fixed point, and we cannot reach the bistable

region.

x = np.linspace(0.0, 15, 100)

k = 7.0
plt.plot(x, h(x), label="h(x)")
plt.axhline(y=0, color="black", lw=1)
plt.text(7, 0.02, "k")
for r in [0.25, 0.41, 0.51, 0.56, 0.6, 1.0]:
    plt.plot(x, f(r, k, x), label="f(x) with r = " + str(r))
plt.legend()
plt.xlabel("x")
plt.ylim([-0.2, 0.8])
plt.show()

# play with this, maybe not crazy big values
k = 7.

#plot 2
xx = np.linspace(0.0, 6.0, 100)

#plot 3 , bifurcation diagram
xxx = np.linspace(1, 10, 1000)
r_ = 2 * xxx**3 / (1 + xxx**2) ** 2
k_ = -2 * xxx**3 / (1 - xxx**2)

r

r(1 −
x

k
x = k

k = 3
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def f_anim(r):
    # prapre double plot
    plt.figure(figsize=(15, 5))
    plt.suptitle("r=" + str(r))
    plt.subplot(131)
    plt.plot(x, h(x), label="h(x)")
    plt.plot(x, f(r, k, x), label="f(x)")
    plt.axhline(y=0, color="black", lw=1)
    plt.text(k, 0.02, "k")
    plt.xlabel("x")
    plt.title("r=" + str(r))
    plt.ylim([-0.2, 0.8])
    plt.legend()

    plt.subplot(132)
    plt.plot(xx, F(r, k, xx), label="F(x) = x( f(x)-h(x) )")
    plt.axhline(y=0, color="black", lw=1)
    plt.xlabel("x")
    plt.ylabel("F(x)")
    plt.title("r=" + str(r))
    plt.legend()

    plt.subplot(133)
    plt.plot(r_, k_)
    plt.xlim([0, 1])
    plt.ylim([0, 20])
    plt.xlabel("r")
    plt.ylabel("k")
    plt.text(x=0.05, y=15, s="Refuge")
    plt.text(x=0.3, y=15, s="Bistability")
    plt.text(x=0.7, y=15, s="Outbreak")
    plt.scatter(r , k , color="red", s=30, label="chosen point in paramet
    plt.axhline(y= k, color="black", lw=1)
    plt.legend()

interact(f_anim, r=(0.25, 1.0, 0.01))

/var/folders/8w/hhwzbx0d6zg_2q5hrl31_yn00000gq/T/ipykernel_2776/309346139
9.py:10: RuntimeWarning: divide by zero encountered in divide
 k_ = -2 * xxx**3 / (1 - xxx**2)
interactive(children=(FloatSlider(value=0.62, description='r', max=1.0, mi
n=0.25, step=0.01), Output()), _dom_…
<function __main__.f_anim(r)>Out[33]:
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