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[1]: import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact
from scipy.integrate import odeint
from IPython.display import set_matplotlib_formats
set_matplotlib_formats('png', 'pdf')

/var/folders/vq/knfnd3fs6x19mn5xcw685flr0000gq/T/ipykernel_10015/1896525300.py:6
: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23,
directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`

set_matplotlib_formats('png', 'pdf')

1 Biochemical circuits based on reciprocal feedback
The goal is to study two different genetic network architectures that are related to the one described
in “Construction of a genetic toggle switch in E.Coli” (Gardner, Cantor and Collins et al. Nature,
2000). This paper discusses a model based on reciprocal negative feedback inhibition. Here, we
first ask you to consider positive feedbacks and then a combination of both positive and negative
feedbacks.

1.1 A genetic toggle switch based on reciprocal positive feedback
1) Read the paper “Construction of a genetic toggle switch in E. Coli” on moodle
(“Nature2000.pdf”).

2) Describe the meaning of each interaction, represented as arrows in Figure 1 in the
paper.

2) The arrows from the genes (Repressor 1 and 2) to the corresponding promoters
denote transcriptional repression. Inducers 1 and 2 inhibit the repression, thus
promote the expression of the repressors
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Now let’s look at the equations:

(𝑢̇
̇𝑣) = (

𝛼1
1+𝑣𝛽 − 𝑢

𝛼2
1+𝑢𝛾 − 𝑣) (𝑀𝑜𝑑𝑒𝑙 1)

3) What are the degradation rates for 𝑢 and 𝑣 ?

3) The relative degradation rates are 1 for both, since there are no constants in front
of the minus signs.

4) What is the meaning of the parameters 𝛽 and 𝛾?

4) These are the cooperativity coefficients. They are directly linked to the number of
binding sites for the proteins on the promoters.

5) Where do the terms 1
1+𝑣𝛽 and 1

1+𝑢𝛾 come from? What is the meaning of the “1+”
in the denominator?

5) The terms 1
1+𝑣𝛽 and 1

1+𝑢𝛾 indicate that the production rate is proportional to the
unoccupied fraction of the promoter, since an occupied promoter would mean
repression. The “1+” is related to the binding constant describing the association
between proteins and DNA. From notation of Chapter 2, 𝐾 = 𝑘−1

𝑘1
= 1 here.

6) Write a model (Model 2) representing a pair of reciprocal activators. Use the
variables 𝑢, 𝑣 and write down the production and degradation terms as in Model 1.
Suppose that the activating mechanism is similar to the autocatalytic switch. Namely,
the production rate is proportional to the 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 of the promoter, and sup-
pose that the promoter has two binding sites for proteins. Hint: Write a simple model
that is similar to Model 1. Do not introduce any additional parameters.

6) Considering that the production rate is proportional to the occupied fraction of
the promoter, the simplest model is the following:

(𝑢̇
̇𝑣) = (𝛼1

𝑣2
1+𝑣2 − 𝑢

𝛼2
𝑢2

1+𝑢2 − 𝑣
)

The occupied fraction of the promoter is 𝑃𝐵 = (1−𝑃𝐹 ), where 𝑃𝐹 is the unoccupied
fraction we saw at the previous questions. Thus, 𝑃𝐵 = 1 − 1

1+𝑣2 = 𝑣2
1+𝑣2 . The

exponent 2 reflects the two binding sites. This first part of the equation describes
the production rate. You can also find the production terms by considering the
simplified chemical reaction 2𝑣 + 𝑃𝐹 ↔ 𝑃𝐵 at equilibrium (assuming the reaction
is fast). At steady-state, we have 0 = 𝑘1𝑣2𝑃𝐹 − 𝑘−1𝑃𝐵. Setting 𝑘−1

𝑘1
= 1 as in

Model 1, this leads to 𝑃𝐵 = 𝑣2
1+𝑣2 . The second part describes the degradation rate.

As in Model 1, we suggest a typical simple first order decay reaction.

7) Calculate by hand the Jacobian (in terms of the model parameters) of Model 2 and
analyze the stability of the fixed point at (0, 0).

7) The Jacobian of the system is given by:

𝐽 = ( −1 𝛼1
2𝑣

(𝑣2+1)2

𝛼2
2𝑢

(𝑢2+1)2 −1 )
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The fixed point (0, 0) is stable. 𝜏 = −2, Δ = 1 and 𝜏2 − 4Δ =0 → Stable star
node.

8) Sketch the nullclines and discuss (in words) under which conditions the system has
3 fixed points, vary 𝛼1 and 𝛼2 but for now impose 𝛼1 = 𝛼2 = 𝛼

8) The two nullclines are given by 𝑢 = 𝛼1𝑣2

𝑣2+1 and 𝑣 = 𝛼2𝑢2

𝑢2+1 . In the simplest case,
(𝛼1 = 𝛼2), the two nullclines cross each other 3 times when 𝛼 > 2 as we can find
by imposing u = v and looking at the resulting cubic equation. In the asymmetric
case, (𝛼1 ≠ 𝛼2), it is much more difficult to find an analytical condition, therefore
we will limit ourselves to a qualitative condition. If 𝛼1 is small, 𝛼2 needs to be
large enough to have 3 fixed points.

[2]: # play with the alphas
def f(alpha1, alpha2):

v1=np.arange(0,5,0.01)
u1=alpha1*v1**2/(v1**2+1)
u2=np.arange(0,5,0.01)
v2=alpha2*u2**2/(u2**2+1)
plt.figure(figsize=(7,7))
plt.plot(u1,v1,'r', label='u nullcline')
plt.plot(u2,v2,'b', label='v nullcline')
plt.legend()
plt.axis('scaled')
plt.xlabel('u')
plt.ylabel('v')
plt.title('nullclines on the phase portrait')
plt.show()

interact(f, alpha1 = (0,5,0.01), alpha2 = (0,5,0.01))
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interactive(children=(FloatSlider(value=2.0, description='alpha1', max=5.0,␣
↪step=0.01), FloatSlider(value=2.0,…

[2]: <function __main__.f(alpha1, alpha2)>

We will now determine when the system is bistable (two stable fixed points). Combine
the two nullclines (elimination of 𝑣) to get a function 𝑓(𝑢) of a single variable such that
fixed points correspond to the zeros of this function: 𝑓(𝑢∗) = 0. First look at the
symmetric case when 𝛼1 = 𝛼2 (so 𝑢∗ = 𝑣∗).

9) How many fixed points does the system have for different 𝛼?

10) Do you think it is also possible to find the zeros analytically for the non-symmetric
case?
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9) In the symmetric case, you can find the limit value of 𝛼 so that the two nullclines
cross each other 3 times by setting 𝑢 = 𝑣, 𝛼1 = 𝛼2 = 𝛼: 𝑢 = 𝛼 ( 𝑢2

𝑢2+1) → 𝑢(𝑢2 −
𝛼𝑢 + 1) = 0.

10) In the asymmetric case, you can obtain a function 𝑓(𝑢) of a single variable by

substituting 𝑣 into 𝑢 and solving for 𝑢. 𝑢 = 𝛼1𝑣2

𝑣2+1 , 𝑣2 = ( 𝛼2𝑢2

𝑢2+1)
2

→ (𝛼2
2 + 1)𝑢5 −

(𝛼1𝛼2
2)𝑢4 + 2𝑢3 + 𝑢 = 0. It is however very impractical to solve a general 4th

degree order polynomial (there is one trivial solution in our fifth order polyno-
mial: 𝑢∗ = 0 so then we’d “only” need to solve the fourth order polynomyal), see
https://en.wikipedia.org/wiki/Quartic_function, section Solution.

[3]: # nullclines for alpha=1.5

alpha=1.5

alpha1=alpha
alpha2=alpha

v1=np.arange(0,5,0.01)
u1=alpha1*v1**2/(v1**2+1)

u2=np.arange(0,5,0.01)
v2=alpha2*u2**2/(u2**2+1)

plt.figure(figsize=(7,7))
plt.plot(u1,v1,'r', label='u nullcline')
plt.plot(u2,v2,'b', label='v nullcline')
plt.legend()
plt.axis('scaled')
plt.xlabel('u')
plt.ylabel('v')
plt.title('nullclines on the phase portrait in the symmetric case, alpha = 1.5')
plt.show()
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[4]: # nullclines for alpha=2.7

alpha=2.7 # plug here other values you may want to explore and see how the␣
↪qualitative behavior changes

alpha1=alpha
alpha2=alpha

v1=np.arange(0,5,0.01)
u1=alpha1*v1**2/(v1**2+1)

u2=np.arange(0,5,0.01)
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v2=alpha2*u2**2/(u2**2+1)

plt.figure(figsize=(7,7))
plt.plot(u1,v1,'r', label='u nullcline')
plt.plot(u2,v2,'b', label='v nullcline')
plt.legend()
plt.axis('scaled')
plt.xlabel('u')
plt.ylabel('v')
plt.title('nullclines on the phase portrait in the symmetric case, alpha = 1.5')
plt.show()
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11) Compute the stability of the fixed points for the symmetric case, for different
values of 𝛼, both 𝛼1 = 𝛼2 > 2 and 𝛼1 = 𝛼2 < 2

11) For example: When 𝛼1 = 𝛼2 = 1.5, there is only one stable fixed point at 𝑥∗
1 =

(0, 0). When 𝛼1 = 𝛼2 = 3, there are 3 fixed points: 𝑥∗
1 = (0, 0), 𝑥∗

2 = (0.38, 0.38)
and 𝑥∗

3 = (2.62, 2.62). In this case, the system is bistable since 𝑥∗
1 and 𝑥∗

3 are stable.
The 𝑥∗

2 is a saddle fixed point : 𝜏 = −2 < 0, Δ = −2.05 < 0 and 𝜏2 − 4Δ > 0. The
𝑥∗

3 fixed point is stable : 𝜏 = −2 < 0, Δ = 0.94 > 0 and 𝜏2 − 4Δ > 0.

12) Study the phase portrait for Model 2 in the two symmetric cases 𝛼1 = 𝛼2 > 2 and
𝛼1 = 𝛼2 < 2

[5]: # define our system of differential equations

def model2(s,t, alpha):
u,v=s
u_dot=alpha*v**2/(v**2+1)-u
v_dot=alpha*u**2/(u**2+1)-v
return u_dot, v_dot

[6]: # initial conditions and time step

l_X0 = []
for x in [0,5]:

for y in np.linspace(0,5,5,endpoint = True):
l_X0.append((x,y))

for y in [0,5]:
for x in np.linspace(0,5,5,endpoint = True):

l_X0.append((x,y))

t_init = 0
t_final = 10
n_steps = t_final*20
dt = t_final / n_steps
t = np.linspace(t_init, t_final, n_steps)

[7]: # case alpha=1.5
# nullclines

alpha=1.5
alpha1=alpha
alpha2=alpha
v1=np.arange(0,5,0.01)
u1=alpha1*v1**2/(v1**2+1)
u2=np.arange(0,5,0.01)
v2=alpha2*u2**2/(u2**2+1)

# vector field
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uq=np.arange(0.1,5.1,0.4)
up, vp=np.meshgrid(uq,uq)
du, dv= model2([up, vp],t,alpha)
du, dv=du/np.sqrt(du**2+dv**2), dv/np.sqrt(du**2+dv**2)

# trajectories
plt.figure(figsize=(7,7))
for X0 in l_X0:

sol = odeint(model2, X0, t, args=(alpha,))
plt.plot(sol[:,0],sol[:,1],'g')

plt.plot(sol[:,0],sol[:,1],'g',label='trajectories' )
plt.plot(u1,v1,'r', label='u nullcline')
plt.plot(u2,v2,'b', label='v nullcline')
plt.quiver(up,vp,du,dv)
plt.axis('scaled')
plt.xlim(0,5)
plt.ylim(0,5)
plt.xlabel('u')
plt.ylabel('v')
plt.title('alpha=1.5 phase portrait')
plt.legend()
plt.show()
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[9]: # case alpha=2.7
# nullclines

alpha=2.7
alpha1=alpha
alpha2=alpha
v1=np.arange(0,5,0.01)
u1=alpha1*v1**2/(v1**2+1)
u2=np.arange(0,5,0.01)
v2=alpha2*u2**2/(u2**2+1)
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# vector field
uq=np.arange(0.1,5.1,0.4)
up, vp=np.meshgrid(uq,uq)
du, dv= model2([up, vp],t,alpha)
du, dv=du/np.sqrt(du**2+dv**2+0.000001), dv/np.sqrt(du**2+dv**2+0.000001)

# trajectories
plt.figure(figsize=(7,7))
for X0 in l_X0:

sol = odeint(model2, X0, t, args=(alpha,))
plt.plot(sol[:,0],sol[:,1],'g')

plt.plot(sol[:,0],sol[:,1],'g',label='trajectories' )
plt.plot(u1,v1,'r', label='u nullcline')
plt.plot(u2,v2,'b', label='v nullcline')
plt.quiver(up,vp,du,dv)
plt.axis('scaled')
plt.xlim(0,5)
plt.ylim(0,5)
plt.xlabel('u')
plt.ylabel('v')
plt.title('alpha=2.7 phase portrait')
plt.legend()
plt.show()
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You could also try out the libraries ipywidgets or bokeh to interact with plots, eg, showing how the
plot changes as you change alpha. Maybe ask ChatGPT for help!

[ ]:
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