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Ex 1
The sine map is defined by the iteration scheme:

For a constant parameter , and an initial value that satisfies .

Write a Python code that iterates the above map, given the parameters: , the number of

iterations , and an initial point . The code should either write the iterates to a file for

later plotting, or plot them directly. Use 2000 iterations and discard the first 1000 points

for plotting or calculations to remove the initial transients in the map.

In order to find the fixed point we want to find the point  such that:

One solution of the equation is obviously 0, for the other ones (if any), we need to use

numerical approaches

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact
from sklearn.linear_model import LinearRegression

Xn+1 = r sin(πXn) (1)

0 < r < 1 0 < x0 < 1

r

N x0

xFP

XFP = rsin(πXFP )

https://moodle.epfl.ch/course/info.php?id=14291
https://moodle.epfl.ch/course/info.php?id=14291
https://moodle.epfl.ch/course/info.php?id=14291


Ex 1.1

Wrap the iteration function in a loop over a user-defined range of r values, and plot all

the iterates for each r value in the same graph. It should start to look like the figure

below, i.e., for each value of r, all the iterates produced from the initial value x0 should

be plotted vertically. If you want, you can change the value of x0 for each value of r, but

because the map is “chaotic”, it doesn’t really matter. NB. Don’t use x0 = 0, or 1!

For this exercise we just need to run the trajectory function for different values of r.

Notice how we run the system for 100 iterations, but than we plot only the last 50: we

basically make sure that the system has time to evolve from x0 to the asymptotic

solution.

from scipy.optimize import fsolve
import numpy as np

def sin_map(x, r):
'''

    Sinusoidal map
    '''

return r * np.sin(np.pi * x)

def sin_map_prime(x, r):
'''

    Derivative of the sinusoidal map
    '''

return r * np.pi * np.cos(np.pi * x)

def equation(x, r):
return sin_map(x,r) - x

def find_fixed_point(r):
initial_guess = 0.7
return fsolve(equation, initial_guess, args=(r,))

def trajectory(r, N, x0):
'''

    Compute the trajectory of the sinusoidal map
    '''

x = np.zeros(N)
x[0] = x0
for i in range(1, N):

x[i] = sin_map(x[i-1], r)
return x



x0 = 0.5
n_last = 150
r_values = np.linspace(0.1, 1.0, 1500)

# Initialize arrays to store plot data
x_plot = []
y_plot = []

for r in r_values:
tr = trajectory(r, 200, x0)
y = tr[-n_last:]

x_plot.extend([r] * n_last)
y_plot.extend(y)

# Now plot all points at once
plt.figure(figsize=(10, 10))
plt.scatter(x_plot, y_plot, s=0.1, c='black')

# Vertical line at r = 1
plt.axvline(x=1, color='r', linestyle='--')

plt.title('$x_0 = $ ' + str(x0))
plt.xlabel('r')
plt.ylabel('x')
plt.show()



Zooming in to a more narrow range of r

plt.figure(figsize=(10, 10))
plt.scatter(x_plot, y_plot, s=0.1, c='black')

plt.title('$x_0 = $ ' + str(x0))
plt.xlabel('r')
plt.ylabel('x')

plt.xlim(0.7, 0.9)
plt.show()



Ex 1.2

1.2 For r = 0.6, iterate the map for at least 5 initial values randomly chosen between (0,

1). What do you observe? Then repeat for r = 0.72 and 0.75. What do you observe in

your plot of xn against increasing r values?

r = 0.6



<matplotlib.legend.Legend at 0x163f02950>

Let's study the stability of the FP

1.8849555921538759 [-0.47325162]

therefore zero is unstable (the abs value of the multiplier is larger than 1) while the other

FP is stable

x = np.linspace(0, 1, 100)
r = 0.6
solution = find_fixed_point(r)
plt.plot(x, x, label='y=x')
plt.plot(x, sin_map(x , r), label='y= r * sin(pi*x)')
plt.scatter(solution, solution, s=60 , label='fixed point')

plt.xlabel('$X_n$')
plt.ylabel('$X_{n+1}$')

plt.legend()

print(sin_map_prime(0.,r) ,sin_map_prime(solution, r))



Text(0, 0.5, '$X_{n}$')

All trajectories converge to value x_final

0.5806828076269304

r = 0.72

# randomly choose 5 values of x0 beween 0 and 1
x0 = np.random.random(5)
trajs = []

for s in x0:
trajs.append( trajectory(r, 10, s))

for traj in trajs:
plt.plot(traj, label = 'x0 = ' + str(traj[0]))

plt.legend()
plt.title('r = ' + str(r))
plt.xlabel('$n$')
plt.ylabel('$X_{n}$')

print(trajs[0][-1])



<matplotlib.legend.Legend at 0x164028790>

Both the fixed points are unstable!

2.261946710584651 [-1.00016274]

x = np.linspace(0, 1, 100)
r2 = 0.72
plt.plot(x, x, label='y=x')
plt.plot(x, sin_map(x , r2), label='y= r * sin(pi*x)')
solution2 = find_fixed_point(r2)
plt.scatter(solution2, solution2, s=60 , label='fixed point')

plt.xlabel('$X_n$')
plt.ylabel('$X_{n+1}$')

plt.legend()

print(sin_map_prime(0.,r2) ,sin_map_prime(solution2, r2))



Text(0, 0.5, '$X_{n}$')

r = 0.75

x0 = np.random.random(5)
trajs = []

for s in x0:
trajs.append( trajectory(r2, 10, s))

for traj in trajs:
plt.plot(traj, label = 'x0 = ' + str(traj[0]))

plt.legend()
plt.title('r = ' + str(r2))

plt.xlabel('$n$')
plt.ylabel('$X_{n}$')



<matplotlib.legend.Legend at 0x160ebfa10>

Both FP are unstable!

2.356194490192345 [-1.04183619]

x = np.linspace(0, 1, 100)
r3 = 0.75
plt.plot(x, x, label='y=x')
plt.plot(x, sin_map(x , r3), label='y= r * sin(pi*x)')
solution3 = find_fixed_point(r3)
plt.scatter(solution3, solution3, s=60 , label='fixed point')

plt.xlabel('$X_n$')
plt.ylabel('$X_{n+1}$')

plt.legend()

print(sin_map_prime(0.,r3) ,sin_map_prime(solution2, r3))



Text(0, 0.5, '$X_{n}$')

Understanding 2-periodic solutions with second-iterate maps

x0 = np.random.random(5)
trajs = []

for s in x0:
trajs.append( trajectory(r3, 20, s))

for traj in trajs:
plt.plot(traj[:], label = 'x0 = ' + str(traj[0]))

#plot orizontal line
plt.axhline(y=solution3, color='r', linestyle='-', label='fixed point')

plt.legend()
plt.title('r = ' + str(r3))

plt.xlabel('$n$')
plt.ylabel('$X_{n}$')

# taking the 2 asymptotic values
v1 = trajs[0][-1]
v2 = trajs[0][-2]



We can understand this period 2 solution looking at the second-iterate map: this is a

map that instead of sending to the future x_n by one time unit, it sends it by 2 time

units:

basically the original map  reads:

while if we re-applying the map we get the second-iterate map :

Studying this map, we have 3 fixed point, where the one we found earlier is unstable,

while the other two are stable (from the plot we can see that the derivative at the

intersection with y = x is close to zero)

<matplotlib.legend.Legend at 0x1629eca90>

f

xn+1 = f(xn)

g

xn+2 = f(xn+1) = f(f(xn)) = g(xn)

# plot second degree map

x = np.linspace(0, 1, 100)
r3 = 0.75
plt.plot(x, x, label='y=x')
plt.plot(x, sin_map(sin_map(x , r3), r3), label='f(f(x))')
solution3 = find_fixed_point(r3)
plt.scatter(solution3, solution3, s=60 , label='unstable FP in original map'
plt.scatter(v1, v1, s=60 , label='stable FP in second iterate map')
plt.scatter(v2, v2, s=60 , label='stable FP in second iterate map')

plt.title('SECOND-ITERATE MAP r = ' + str(r3))

plt.xlabel('$X_n$')
plt.ylabel('$X_{n+2}$')

plt.legend()



Ex. 1.3

Keep increasing r, and plot the iterates produced. At what r value does “chaos” set in for

the sine map? i.e., when does a (nearly) infinite number of fixed points appears (cp.

Logistic map shown in the figure below, for which lambda ~ 3.6 is the transition to

chaos. Note that lambda in the logistic map plays the role of r for the sine map.) Do you

observe any “stability windows” in which the number of fixed points is small? (cp.

Logistic map for lambda ~ 3.82, where only 3 fixed points appear.)

Chaos emerges aroud r = 0.86

theoretical values of 

If we allow r > 1, then we can see regions of stability near r = 1.1 and 1.6, but these are

outside the range of the current map

EXTRA: Interactive plots

rinf = r0 + Δ0Σn=0
1
δn



interactive(children=(FloatSlider(value=0.55, description='r', max=1.0, min=0
.1, step=0.01), Output()), _dom_c…
<function __main__.plot_map(r)>

Here we plot two trajectories, with very similar but not identical initial conditions: on the

onset of chaos this trajectories start to diverge from each other

# now plot the map for with a number of times

def plot_map(r):
x = np.linspace(-1, 1, 1000)

plt.figure(figsize=(15, 5))
plt.suptitle('maps')

plt.subplot(1, 2, 1)
plt.plot(x, x, label='y=x')
plt.plot(x, sin_map(x , r), label='f(x)')
plt.title('number of FP changes with r = ' + str(r))
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(x, x, label='y=x')
plt.plot(x, sin_map(sin_map(x , r),r), label='f(f(x))')
plt.title('SECOND-ITERATE MAP r = ' + str(r))
plt.legend()

interact(plot_map, r=(0.1, 1.0, 0.01))



interactive(children=(FloatSlider(value=1.05, description='r', max=2.0, min=0
.1, step=0.01), Output()), _dom_c…
<function __main__.plot_map(r)>

Ex 2

Ex 2.1

Extend your code to output the iterates from the sine map for a sequence of r values

between 0.1 and 1, taking at least 20 values, and randomly setting the initial point for

each one. Plot the fixed point(s) on the Y axis against the r value on the X axis, so you

get a plot similar to the one above. Then repeat this accurately enough that you can

estimate the successive r values at which the number of fixed points doubles (you may

need more than 20 values of r, and you may need to zoom in on small portions of the r-

axis to get sufficient accuracy. So you’ll need to examine many little graphs across the r

axis to locate the values of r where the period doubling occurs.

trajectory(r, 10, s)
x0 = 0.5
x02 = 0.51

def plot_map(r):

plt.figure(figsize=(15, 5))
plt.suptitle('maps')
tr = trajectory(r, 1000, x0)
tr2 = trajectory(r, 1000, x02)
# plt.subplot(1, 2, 1)

plt.plot(tr[-20:], label='x0 = ' + str(tr[0]))
plt.plot(tr[-20:], 'o')

plt.plot(tr2[-20:], label='x0 = ' + str(tr2[0]))
plt.plot(tr2[-20:], 'o')

plt.xlabel('n')
plt.ylabel('$X_n$')
plt.legend()

  

interact(plot_map, r=(0.1, 2.0, 0.01))



Estimating Feigenbaum numbers:

The true values, we want to find ratio values that are similar to the theoretical ones

 = 0.6692..

 = 2.503...

For the case of the  constant, we just need to fidn approximately when the branching

happens. b1 b2 and b3 have been found by a trial and error

δ

α

δ

plt.figure(figsize=(10, 10))
plt.scatter(x_plot, y_plot, s=0.1, c='black')

plt.title('$x_0 = $ ' + str(x0))
plt.xlabel('r')
plt.ylabel('x')

plt.xlim(0.7, 0.9)

# vertical lines
b1= 0.715
b2= 0.831
b3= 0.858

plt.axvline(x=b1, color='r', linestyle='-')
plt.axvline(x=b2, color='r', linestyle='-')
plt.axvline(x=b3, color='r', linestyle='-')

# horizontal line
# plt.axhline(y=0.82, color='r', linestyle='-', c = 'blue')
# plt.axhline(y=0.445, color='r', linestyle='-', c = 'blue')
# plt.axhline(y=0.445, color='r', linestyle='-', c = 'blue')
plt.show()



4.296296296296292

In order to find the  constant we use the rule depicted in the image below.

(this image actually represents the logistic map bifurcatio diagram, that's why the x

scale and the x axis label are different: ignore these differences)

δ ≈
b2 − b1
b3 − b2

delta = (b2 - b1) / (b3 - b2)
delta

α



Ex 2.2

How many successive splittings can you measure accurately enough to get values for

the Feigenbaum numbers?

Being a fractal with enough resolution and zooming in we could mesure infinite, due to

computational power and feasibility we are measuring only the first 2/3

Ex 2.3

Say how your estimates of the Feigenbaum numbers for the sine map compare with

those for the logistic map shown in the figure.

The Feigenbaum numbers are remarkably the same !

Ex 3: Fractal dimension of the sine map

α ≈
a1

a2



Ex 3.1

Find a value of r such that you get a lot of fixed points (i.e., you are in a region for the

sine map corresponding to the region r ~ 3.95 for the logistic map). Generate 10,000

points from a randomly-chosen initial point x0, and write them to a file. Discard the first

5,000. Duplicate the data into a second column shifting each value by one. So, for each

row in the file, column one contains xn, and column two contains xn+1. Plot xn+1 against

xn.

Text(0, 0.5, '$X_{n+1}$')

x0 = 0.5
r_chaos = 0.95
# r_chaos = 0.75

x0 = 0.5
x0_2 = 0.5001
tr = trajectory(r_chaos, 10000, x0)

# discard first half of the trajectory
tr = tr[5000:]
tr_shifted = np.roll(tr, -1)

plt.scatter(tr, tr_shifted, s= 0.1, c = 'black')
# plt.scatter(tr2, tr2_shifted, s= 0.1, c = 'red')

plt.xlabel('$X_n$')
plt.ylabel('$X_{n+1}$')
# plt.plot(tr, tr_shifted)



Ex 3.2

For the 50,000 points from section 3.1, and for a series of values of

, create a histogram of the number of points within a distance 

of  for a sequence of values of  ranging from 0 to 1. Then average the number of

points in all the bins for each  value, to get an average  for the number of

points that lie in bins of size  across the set of points. Repeat this for each .

Plot  against  and measure the slope to obtain the “fractal dimension”

of the fixed points of the sine map for a single  value.

What is the distribution of fixed points for this value of ?

ϵ = 1, 0.5, 0.25, …1
2n ϵ

xi xi

xi ⟨N(ϵ)⟩
ϵ ϵ

ln(⟨N(ϵ)⟩) ln(ϵ)
r

r



[3819.4172,
 2172.194,
 1336.2544,
 869.0756,
 548.44,
 321.2628,
 181.7256,
 101.6688,
 57.2212,
 31.7568,
 17.4712,
 9.7088,
 5.4796,
 3.2564]

slope =  0.790635501771883
Text(0.5, 1.0, 'r = 0.95 slope = 0.790635501771883')

# seq = np.linspace(0, r_chaos, 100)
seq = tr
eps = [1/2**n for n in range(1, 15)]

# now i want a function that counts the number of point of trajectory that are within eps rad

def count_points(tr, eps):
'''

    Count the number of points of tr that are within eps radius from each point of tr
    '''

# compute the distance between each point of tr, getting a matrix
dist = np.abs(tr[:, None] - tr[None, :])
# count how many points are within eps radius from each point of seq 
count = np.sum(dist < eps, axis=0)

return count.mean()

count_points(tr, eps[13])
N_eps = [count_points(tr, eps[i]) for i in range(len(eps))]
N_eps

# linear regression

reg = LinearRegression().fit(np.log(eps).reshape(-1, 1), np.log(N_eps).reshape
# plot slope and intercept
# reg.coef_, reg.intercept_
slope = reg.coef_[0][0]
print('slope = ', reg.coef_[0][0])

plt.plot(np.log(eps), np.log(N_eps), 'o')
plt.title('r = ' + str(r_chaos) + ' slope = ' + str(slope))



EXTRA: fractal dimension as function of 

WARNING: it could take minuts to run next cell

Text(0, 0.5, 'fractal dimension')

def fractal_dimension(tr, eps):
N_eps = [count_points(tr, eps[i]) for i in range(len(eps))]
reg = LinearRegression().fit(np.log(eps).reshape(-1, 1), np.log(N_eps).reshape
return reg.coef_[0][0]

r

fr_dim = []

rangee = np.linspace(0., 1., 25)
for r in rangee:

#print(r)
seq = np.linspace(0, r, 20)
tr = trajectory(r, 10000, x0)
tr = tr[5000:]
fd = fractal_dimension(tr, eps)
fr_dim.append(fd)

plt.plot(rangee, fr_dim, 'o')
plt.xlabel('r')
plt.ylabel('fractal dimension')



Ex 4: Universality in chaos
Add a new function to your code from Section 1.0, that iterates the logistic map:

where λ is in the range(0,4),and  is in the range(0,1).Note that I have used rand λ

because they have different allowed ranges.

ex 4.1

Choose values of  and  near the beginning of their range (but not zero), and plot the

first iterate obtained from both maps on the same graph, i.e., if  is the logistic map

and  is the sine map, plot  and  for many  between 0 and 1. What do

you observe? Can you find values of ,  so that the curves nearly overlap?

xn+1 = λxn(1– xn)

x0

r λ

f(x)
g(x) f(x0) g(x0) x0

r λ



In both the sin and logistic map, the maximum value occurs at x=1/2 (check yourself

taking the derivative with respect to X)

However the height of this values changes in the two maps:

• Log_map(x=1/2) = r/4

• Sin_map(x=1/2) = r

We will see that this factor 4 will come up in the bifurcation diagram, as the distance

between the first two bifurcation points is 4 times larger than the sin map case

<matplotlib.legend.Legend at 0x162f4aa10>

from scipy.optimize import fsolve
import numpy as np

def logistic_map(x, lamb):
'''

    Logistic map
    '''

return lamb * x * (1 - x)

def trajectory_log(lamb, N, x0):
'''

    Compute the trajectory of the logistic map
    '''

x = np.zeros(N)
x[0] = x0
for i in range(1, N):

x[i] = logistic_map(x[i-1], r)
return x

r = 0.01
lambdaa = 0.04

x0s = np.linspace(0, 1, 100)

x1s_sin =sin_map(x0s, r)
x1s_log = logistic_map(x0s, lambdaa)

plt.plot(x0s, x1s_sin, label='sinusoidal map')
plt.plot(x0s, x1s_log, label='logistic map')

plt.xlabel('$X_0$')
plt.ylabel('$X_1$')

plt.title('r = ' + str(r) + ' lambda = ' + str(lambdaa))

plt.legend()



What property of the map functions do you think is necessary for two discrete maps to

have similar long-time behaviour (referred to in the literature as being in the same

universality class)? \end{enumerate}

They both have bump between 0 and 1, and the height of teh bump doesnt exceed 1

(when lambda<4 and r<1)

Ex 4.2

Comment on how your bifurcation curve for the sine map compares to that obtained

from the logistic map shown above.



Text(0, 0.5, '$ \\lambda $ ')

x0 = 0.5
n_last = 50

plt.figure(figsize=(10, 10))
for r in np.linspace(0.1, 4.0, 1000):

x = np.ones(n_last)*r
tr = trajectory_log(r, 100, x0)
y = tr[-n_last:]

plt.scatter(x, y, s=0.1, c = 'black')

plt.title('logistic bifurcation diagram')
plt.xlabel('r')
plt.ylabel('$ \lambda $ ')



The bifurcation curve looks exactly the same, however the distance between the

bifurcation points is 4 times bigger. The Feigenbaum number is the same though.

Ex 4.3

What implications does this have for using simple maps like the logistic map for making

predictions about complex natural system such as turbulent flow of fluids?

They serve as toy models that exhibit the same qualitative features of chaos as found in

complex models within the same universality class as the 1D models.


