[2]:

Exercise 2: The Allee effect

September 25, 2023

Course: BIO-341 Systemes dynamiques en biologie
Professor: Julian Shillcock & Felix Naef
SSV, BA5, 2023

Note that this document is primarily aimed at being consulted as a Jupyter notebook, the PDF
rendering being not optimal.

In the solution code will be provided for all the plots required. This is only to have good looking
plots and to help you familiarize yourself with python and jupyter notebooks.

You are expected to solve everything using paper and pencil, unless clearly stated
otherwise, as the exam will be with paper and pencil.

#import important libraries

import numpy as np

import matplotlib.pyplot as plt

from ipywidgets import interact

from scipy.integrate import odeint

from IPython.display import set_matplotlib_formats
from matplotlib.markers import MarkerStyle
set_matplotlib_formats('png', 'pdf')

1 The Allee effect

The goal of this exercise is to understand the stability properties of 1-dimensional first order ODEs
and to study a model of population growth.

A fixed point z* of a 1-dimensional ODE & = F'(x) satisfies the condition F(z*) = 0.
e A fixed point z* is (linearly) stable if F'(z*) < 0.
e A fixed point z* is (linearly) unstable if F'(z*) > 0.
e A fixed point z* is (linearly) semi — stable if F'(z*) =0 and F"(z*) # 0.

1.1 Stability of fixed points in 1-dimensional systems (paper and pencil)
Analyze the 1-dimensional systems (a, b, ¢) below graphically:

o Sketch the derivative # = F'(z) in function of x.

https://moodle.epfl.ch/course/info.php?id=14291

[3]:

e Mark all fixed points and determine their stability. When possible, calculate the fixed points
explicitly.
e Sketch the solutions z(t) for two initial conditions leading to different qualitative behavior
(for example one solution that flows to a fixed point and one that goes to infinity).
(a) & =22 — 22
(b) & =cos(2z)+1—=x

(c) 2 =2%—-8x+16

Hint: In the second equation, F'(z) is written as the difference of two functions, i.e. F(z) =
g(z) — h(x). In order to find the fixed point(s), plot g(z) and h(z) individually and look for
intersections. You might want to use trigonometric identities.

(a) The fixed points satisfy 2z — 22 =0=2(2—-2)=0=2z=0o0r v = 2.
""'simulation of the system for (a)'''’
#define F(z)
def F(x, t = 0):

#t plays no role as the system ts autonomous but is needed for odeint
return 2*x-x**2

#show F(z)
x = np.linspace(-1,3,100)
y = F(x)

fig, (axl, ax2) = plt.subplots(l, 2, figsize = (15,7))

ax1.plot(x,y)

axl.axhline(y = 0, color = 'red', 1s = '--')

axl.scatter(x=0,y=0, marker='o', s = 100, color = 'black', facecolors='none')
axl.scatter(x=2,y=0, marker='o', s 100, color 'black')

axl.text(x = 0.3, y= -1, s = r'$x"*=0$' + ' and ' + r'$x"*=23%', size = 15)
axl.set_xlabel(r'x"')

axl.set_ylabel (r'$F (x)=\dot{x}$")

#simulate F(z) in time
tspan = np.linspace(0,2,1000)
1.x0 = [-0.02, 1., 3.1
for x0 in 1_xO0:
X = odeint(F, x0, tspan)

ax2.plot(tspan,X, label = 'x0 = ' + str(x0))
ax2.axhline(y = 0., color = 'black', 1s = '--')
ax2.axhline(y = 2., color = 'black', 1ls = '--')

ax2.set_xlabel (r'$x(t)$")
ax2.set_ylabel(r't")

ax2.legend()

[4] :

plt.show()

x"=0andx" =2

—— x0 =-0.02
—— x0=1.0
— x0=3.0

-1.0 -05 0.0 0.5 1.0 15 2.0 25 3.0

1.00 125 1.50 1.75 2.00

x(t)

0.00 0.25 0.50 0.75

(b) As suggested in the hint, g(z) = cos(2z) + 1 = 2cos’z and h(z) = z, which

intersect at z ~ 0.86.

"''simulation of the system for (b)'''

#define F(z)
def F(x, t = 0):

#t plays no role as the system ts autonomous but is needed for odeint

return np.cos(2*x)+1-x

fig, (ax1l, ax2, ax3) = plt.subplots(l, 3, figsize =

#show the intersection of cos(2z) with 1-z
np.linspace(-2,3,100)

np.cos (2*x)

-(1-x)

X =

yl =
y2 =

'cos(2x) ')
-(1-x)")

axl.plot(x,yl, label =
axl.plot(x,y2, label
axl.legend()

axl.set_xlabel(r'x"')

#show F(z)

y = F(x)

ax2.plot(x,y)

ax2.axhline(y = 0, color = 'red', 1ls =

|__|)

(15,7))

ax2.scatter(x=0.86,y=0, marker='o', s = 100, color = 'black')
ax2.text(x = -1., y= -1, s = r'$x"* \approx 0.86$', size = 15)
ax2.set_xlabel(r'x")

ax2.set_ylabel (r'$F (x)=\dot{x}$")

#simulate F(x) in time
tspan = np.linspace(0,2,1000)
1_x0 = [-2, 0., 1., 2.]
for x0 in 1_xO0:
X = odeint(F, x0, tspan)
ax3.plot(tspan,X, label = 'x0 = ' + str(x0))
ax3.axhline(y = 0.86, color = 'black', 1ls = '--')
ax3.legend ()
ax3.set_ylabel(r't")
ax3.set_xlabel(r'$x(t)$"')

plt.tight_layout()
plt.show()

— cos(2x) 25 — x0=-2

— -(1x) : —— x0=0.0
— x0=10
2.0 — x0=20

1.0

0.5

=x

F(x)

-2 10 x* =0.86

-2 -1 0 1 2 3 -2 -1 0 1 2 3 0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
x x x(t)

(¢) There is only one fixed point at x = 4 that is semi-stable.

[4]: ''"'simulation of the system for (c)''’

#define F(z)

def F(x, t = 0):
#t plays no role as the system is autonomous but is needed for odeint
return x**2-8*x+16

#show F(z)
x = np.linspace(1,7,100)

y = F(x)

fig, (axl, ax2) = plt.subplots(l, 2, figsize = (15,7))

ax1.plot(x,y)

axl.axhline(y = 0, color = 'red', 1s = '--"')

axl.scatter(x=4,y=0, marker= MarkerStyle('o', fillstyle = 'left'), s = 200,
<—color="'black')

axl.text(x = 3.5, y= 2.5, s = r'$x"*=4$', size = 15)
axl.set_xlabel(r'x"')
axl.set_ylabel (r'$F(x)=\dot{x}$")

#simulate F(z) in time
tspan = np.linspace(0,4,1000)
1.x0 = [3., 4.2]
for x0 in 1_xO0:
X = odeint(F, x0, tspan)
ax2.plot(tspan,X, label = 'x0 = ' + str(x0))
ax2.axhline(y = 4., color = 'black', 1s = '--')
ax2.set_ylabel(r't')
ax2.set_xlabel (r'$x(t)$"')

ax2.legend ()

plt.show()
5001 — x0=30
— x0=42
.75
J/
_
4.50 e
//////
-

a2s{
X
I 400 e |
< :
T

3.75

3.50

3.25

3.00

1 2 3 4 5 6 7 00 05 10 15 20 25 30 35 40
X x(t)

1.2 The Allee effect (paper and pencil)

The classical view of population dynamics states that due to competition for resources, a population
will experience a reduced growth rate when the number of individuals is large. But this is not

[15]:

necessarily sufficient to describe the dynamics of some populations. Indeed, for certain species, it
has been observed that the growth rate of the population can be null or even negative for a low
number of individuals. This is called the Allee effect and can be explained, for instance, by the fact
that it is hard to find mates when the population density is too low. The effect leads to distinct
dynamics for the population size.

Let us consider the model with a,b > 0, » > 0, and the number of individuals N(¢) > 0:

N:rN—%(N—b)Q (1)

As N can be factorized in this equation, it is convenient to study the relative growth rate N /N. In
order to get an Allee effect, 1) the relative growth rate needs to reach a maximum at an intermediate
population size and 2) it has to be negative at small population sizes.

1) Sketch the relative growth rate.

e Which kind of function is it?
e What is the maximum relative growth rate and for which number of individuals it is realised?
e For which values of the parameters a, b, r we have an Allee effect as described above?

Answer: - The model is given by & = g(N), where g(N) = r — (N — b)? is the relative growth
rate. g(IN) is a concave parabola, it has the maximum at b and it crosses the N-axis at b &+ /ar. -
The maximum growth rate per capita is realised for b number of individuals and it is equal to
r. - The Allee effect is present when the parabola crosses the N-axis at positive values of IV, which
is realised for b > \/ar.

2) Study the qualitative behavior of the solution using the procedure:

e Sketch % in function of NV and the one-dimensional vector field on the N-axis. Which are the
fixed points of this equation? Are they stable or unstable?

e Now, let’s go back to the full equation (1). Represent N in function of N for different
conditions satisfying or not the Allee effect.

e Discuss the existence and stability of the fixed points, and how it relates to the pres-
ence/absence of the Allee effect.

e Discuss how the number of fixed points changes as a function of a. Plot the fixed points as a
function of a. Which kind of trajectories do we have in the N — ¢ plane depending on whether
a is smaller or bigger than b%/r?

e Can you think of other causes that would lead to an Allee Effect ?

As said previously, g(N) is a concave parabola that intersects the x-axis in N* = b+./ar.
These are the two fixed points. The graph below shows an example for r = 10, a = 500
and b = 100.

#define g(N)
def g(r, a, N, b):
return r-(N-b)**x2/a

#define parameters
7 = 10
a = 500

[22]:

b = 100
#plot g (W)
N = np.linspace(0,200,100) #np. linspace(0,7,100)
#plot g(N)
plt.plot(N, g(r,a,N,b))
plt.axhline(y = 0, color = 'red', 1ls = '--')
plt.axvline(x = b+(a*r)**0.5, color = 'black', 1ls = '--')
plt.axvline(x = b-(a*r)#**0.5, color = 'black', 1ls = '--')
plt.axvline(x=0, c='gray')
plt.xlabel('N')
plt.ylabel('g(N)")
plt.show()
10.0 A
7.5
5.0 A
2.5 A
£ 0.0
o
—2.5 1
—5.0 -
—7.5 1
—10.0 A
0 25 50 75 100 125 150 175 200
N
N is a cubic function (see figure below) that has 2 or 3 fixed points for N > 0, depending
on the parameters a and b. The fixed points are either N* = 0 and N* = b+ +/ar, or
N*=0and N* =b+ +/ar.
In the case a > b?/r, N* = 0 is an unstable fixed point and N* = b+ /ar a stable one.
If a < b?/r, then N* = 0 is a stable fixed point, N* = b — \/ar an unstable one and
N* = b+ y/ar is stable.
def Ndot(r, N, a, b):

return r*N-N*(N-b)**2/a

#plot g(IN)
N = np.linspace(0,200,200)

#define parameters in an easy way
b = 100
r = 10

#plot g(N) for r>ab*#2 and r<ab*#*2

a = bx*2/r

N = np.linspace(0,200,200)

plt.plot(N, Ndot(r,N,a,b))

plt.scatter(x=b-np.sqrt(a*r),y=0, marker='o', s = 100, color = 'black',
—facecolors='none')

plt.scatter(x=b+np.sqrt(a*r),y=0, marker='o', s = 100, color = 'black')
#plt.text(z = 0.5, y = 4., s = r'$r>ab"2%, 2 fized points for $N \geq 0%')

a = 100

N = np.linspace(0,150,200)

plt.plot(N, Ndot(r,N,a,b))

plt.axhline(y = 0, color = 'red', 1ls = '--')

plt.scatter(x=b-np.sqrt(a*r),y=0, marker='o', s = 100, color = 'black',
—facecolors='none')

plt.scatter (x=b+np.sqrt(a*r),y=0, marker='o', s = 100, color = 'black')
#plt.scatter(z=b+(r/a)**0.5,y=0, marker='o', s = 100, color = 'black')
#plt.text(z = -0.25, y =-1.5, s = r'$r<ab2$, 3 fized points for $N \geq 08')

plt.scatter(x=0,y=0, marker='x', s = 100, color = 'black')
#plt.ylim([-2,8])

plt.xlabel('N")

plt.ylabel(r'\dot{N}')

plt.show()

[47]:

1000 ~

500 A

-= —500 A

—1000 A

—1500 A

—2000 A

0 25 50 75 100 125 150 175 200
N

For larger a, the unstable fixed point N* = b — y/ar approaches the stable fixed point
in 0 until it collapses into one single unstable fixed point, which occurs when a = b?/r.
Afterwards, only two fixed points remain: a stable one N* = b+ /ar and an unstable
one at 0. This case corresponds to the behavior of the population qualitatively similar
to the logistic growth. See figure below.

#define r domain
a = np.linspace(0,5000,5000)

#define parameters in an easy way
r = 10
b = 100

#plot N+ depending on T
plt.plot(a, [x if x>=0 else np.nan for x in b-np.sqrt(a*r)], color = 'red')
plt.text(x = 2000, y = 300, s = 'stable: ' + r'$b+\sqrt{ar}$', color= 'green')

plt.text(x = -200., y = 100, s = r'b', color= 'black')

plt.plot(a, b+np.sqrt(a*r), color = 'green')
plt.text(x = 500, y = 50, s = 'unstable ' + r'$b-\sqrt{ar}$', color= 'red')

plt.plot ([0, b*x2/r], [0,0], color = 'green')
plt.text(x = 10, y = 10, s = 'stable', color= 'green')

plt.plot([b**2/r, 5000], [0,0], color = 'red')
plt.text(x = 3000, y = 10, s = 'unstable', color= 'red')

plt.xlabel('a')
plt.ylabel(r'$N~{*}$"')
plt.show()

plt.close()

300 A stable: b + vVar

unstable b —var

stable unstable

0 1000 2000 3000 4000 5000

At low population densities for a small a, i.e. a < b?/r, we have an unstable fixed point
at N = b—+/ar. Initial populations below this unstable fixed point will reach the stable
fixed point at 0. This represents a critical population size below which the population
risks extinction. This situation is unlike the logistic growth (see Course Chap 1), where
the trajectories always grow or decay to the only stable fixed point at N = K.

The general idea of the Allee effect is that for small populations, the growth rate of
the population can be low and even negative. This can be due to a difficulty in finding
mates, which can lead to consanguinity, but also to less efficient hunting strategies in
small groups.

1.3 Formation of a dimer

The formation of a dimer C' from its subunits A and B can be described by the following reversible
chemical reaction :

10

The total concentrations of the proteins A and B are constant ; they are denoted by Ar and Br
and by Ar and Bp for the concentrations of the free (non-bound) forms.

e Express the conservation of Ay in function of Ap and C.

e Write the equation describing the temporal evolution of the concentration of the complex C
by using the total concentrations of Ar and Br and the kinetic constants k1 and k_q.

e Describe the type of this dynamical system (order, linearity, etc.).

e (Calculate the equilibrium concentration of the complex, in other words what is the value of
the stable fixed point for C'. Express the result in function of Ap and Byp.

The total concentration of Ay can be described as a sum of the free, non-bound form
and the complexed form C: Ap = Ap + C.

The equation for the temporal evolution of C' reads:

acC
o kiApBp —k_1C = k1(Ap — C)(Bpr — C) — k_1C
The equation in point 2 represents a 1st order, non-linear ODE, due to the quadratic

term in C.

Setting the time derivative to zero (steady state) and solving the quadratic equation
ki(Ar — C)(Br — C) — k_1C = 0 for C leads to:

o k1Br + k1Ar +k_1 &+ \/(_leT — k1A — k_1)2 — 4]{%ATBT

C
2k

Only the solution with the minus in front of the root is a stable fixed point. The latter
observation can be deduced by noticing that the quadratic form corresponds to a convex
parabola, therefore the first fixed point (the solution with minus) is stable.

1.4 Scatchard plots

Scatchard plots were historically used in molecular biology to estimate the affinity (equilibrium
constant) of DNA-binding proteins for DNA. Imagine that A is your protein of interest and B the
amount of DNA that you can vary over a broad range. Assume that you can measure the steady
state amount (the values at the fixed point) of DNA bound to the protein (which is equivalent to
the complex C' in the above reaction), and the amount of free (unbound) DNA.

Note: in practice this can be done using electrophoretic mobility shift assays (EMSA) but you do
not need to know such techniques to solve the problem here.

e Show that one can determine the dissociation constant Ky = k_1/k; by linear regression, i.e.
show that there is a linear relationship between the ratio C'/Bp and the bound fraction C.
e Set the necessary parameters and use Python to do a Scatchard plot
— Start by plottig the linear relation between C'/Bp and C.
— Add labels to your plot
— Add lines for the axis
— Write what you are plotting

11

[8]:

If you set dC'/dt to 0 and solve for C' you get C' = kk—le rBr, which can be rearranged

into B—CF = ‘4?7_0 with Ky = kk—‘ll This is the Scatchard equation, since by measuring

d
now C' (=bound DNA-protein-complex) and Bpr (=free DNA) and then plotting the
ratio C'/Br versus C you can determine the dissociation constant K, from the slope.

C = np.linspace(-2,6,100)
AT=4
K.d=3
#plot C/B_F
plt.plot(C, (A_T-C)/K_d)
plt.xlabel(r'C")
plt.ylabel(r'C/B_F')
plt.axvline(0, ¢ = 'black')
plt.axhline(0, ¢ = 'black')
plt.text(0.5, 1.5, r'$\frac{CHB_{F}t}=\frac{A_{T}-CHK_{d}}$', size = 15)
plt.text(2.5,0.6, 'slope = ' + r'$-1/K_d$', size = 12)
plt.show()

2.0 -

C _Ar—C
1.0 -
W
8 slope = —1/Ky4
0.5
0.0
—0.5 A
-2 -1 0 1 2 3 4 5 6
C

12

