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Exercise 1: Growth models in 1D

September 12, 2024

Course: BIO-341 Systemes dynamiques en biologie
Professor: Julian Shillcock & Felix Naef
SSV, BAS5, 2024

Note that this document is primarily aimed at being consulted as a Jupyter notebook, the PDF
rendering being not optimal.

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact

1 Growth models in 1D

1.1 Linear model for population growth

Consider a population of N birds with birth and death rates n and m. Arrival of new individuals
through migrations occurs at rate a > 0. This can be translated into the simple model:

dN
E:F(N):(nfm)NJra (1)

1) Write down what type of equation this is, e.g. first order, second order, linear,
non-linear, etc.

The equation is a linear first order ODE.

2) Solve this equation analytically using the Ansatz: N(t) = Ae* + B. Express A, B and A
in function of the rates and the population size Ny = N (¢ = 0); explicitly write the solution N ().

Differentiating the Ansatz gives: % = AleM
If the Ansatz is a solution of the differential equation, then dd—];[ is also equal to (n —
m)N + a, so:

AreM = k(AeM + B) 4 a, with k = (n —m)

By separating terms which depends on time and terms which are time-independent, we
can deduce that kB +a = 0 = B = —7. In addition, by comparison of the left-hand
side and right-hand side it follows that A = k.

To find A, use the initial conditions in the equation: N(t =0) = Ngo=A—- ¢ = A=
No + ¢. Finally, N(t) = (No + %)eM — .


https://moodle.epfl.ch/course/info.php?id=14291

3) Solve the equation using an alternative method, such as the separation of variables.

Solving an equation like % = kN is trivial, so we seek for a change of variable that
could get rid of the +a term in the original equation. Taking N =u — ¢ =u= N+ ¢

we have:
dN = du, since a and k are two constants.
du kt

G = ku = u=upe
Then, you can substitute back: N(t) = (No + %)e* — ¢ where ug = Ny + ¢ is found
with the initial conditions.

Another way to solve this equation is by a direct separation of variables.
N
N dMm t kN
Nom :f0d7'2> %ln(kM‘i‘a) No :tjln( +a):kt:>N(t) = (NO"_%)th—%

kNo+a
4) Qualitative analysis

1) Draw F(N) in function of N for the two cases (i) n < m and (ii) n > m. Note: you are also
expected to draw and solve such simple problems by hand.

F(N) is a linear function with intercept a and slope n —m

[2]: def Ndot(N,n,m,a):
return (n-m)*N+a

Ndomain = np.linspace(0,10,100)

#plot

plt.plot(Ndomain, Ndot(Ndomain,1,2,1))
plt.xlabel('$N$"')
plt.ylabel('$\dot{N}$"')

plt.axhline(0, color = 'black', 1ls = '--')
plt.axvline(O, color = 'black', 1s = '--")
plt.title('n<m')

plt.show()

plt.plot(Ndomain, Ndot(Ndomain,2,1,1))
plt.axhline(0, color = 'black', 1ls = '--")
plt.axvline(0, color = 'black', 1ls = '--')

plt.xlabel('$N$')
plt.ylabel('$\dot{N}$')
plt.title('n>m')
plt.show()



n=m




n=m

2) What is the main qualitative difference between the two cases and how does this affect the
long time t — oo behavior of the solution that you found above?

If the death rate m is bigger than the birth rate n (k < 0) the number of individuals
“converges” to the constant |¢| at late times. On the contrary, if birth rate n is bigger
than death rate m (k > 0), then the population grows to infinity.

3) Here you can verify what you answered under 2) numerically. Generate some representative
plots for N(t) where you vary the parameters and initial conditions of the model.

[3]: | #code the analytical function for N(t)
def N(NO, a, k, t):
return (NO+a/k)*np.exp(k*t)-a/k

[4]:  #simulate it with n>m
tspan = np.linspace(0,5,1000)

a=1.
n=2.
m= 1.
NO = 2.



[5]:

#plot

plt.plot(tspan, N(NO,a,k,tspan))
plt.xlabel('t"')
plt.ylabel('N(t)"')
plt.title('n>m')

plt.show()
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#stmulate 1t with n<m

m = 3.
k = n-m
#plot

plt.plot(tspan, N(2,a,k,tspan), label = 'NO = 2')

plt.plot(tspan, N(0.5,a,k,tspan), label = 'NO =

plt.xlabel('t"')
plt.ylabel('N(t)"')
plt.title('n<m')
plt.legend()




plt.show()
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[6]: # Create a widget to play with the parameters

# The widget does mot work if you are using Jupyter Ladb, but it works i1f you are,

—using Jupyter Notebooks.

def f(k=1.):
plt.plot(tspan, N(NO,a,k,tspan))
plt.xlabel('t")
plt.ylabel('N(t)"')
plt.title('Interactive plot: n-m=' + str(n-m))
plt.show()

a=1.
NO = 10.

interact(f, k = (-3.,3.,0.01))

interactive(children=(FloatSlider(value=1.0, description='k', max=3.0, min=-3.0,
—step=0.01), Output()), _dom_c...
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<function __main__.f(k=1.0)>

5) Discuss why this equation is good or bad at describing real populations.

Limitations in resources are not taken into account in this equation, thus a population
can grow to infinity in this model.

1.2 Integration by separation of variables

1) Solve the following differential equations to obtain z(¢) by the method of separation
of variables. Use the initial condition z(t) = 2y when ¢ = 0.

1. % =ze 2
2. 9t =422 -1

Reminder: The explicit solution of a differential equation ‘é—f = F(x) can be written as a function

of t,x(t) = ¢(t), while the implicit form is written h(z(t)) = g(t), where the function h(z) might
not be easily invertible.

1. Separating the variables gives :
fx Ly = fg e 2tdt

Xfotexr integration you obtain the implicit form:
In(z(t)) = —3e 2 +C

With C' = 1 + In(z)

The explicit form is:

2(t) = ezmpe 2%

2. Separating the variables gives :

[2 Ada = [ dt

o 4z2—1 ) L
And from partial fractions: 37— = 5(

1 /2z0+1 4 (2z0—1)e*?)
2(t) = 3 (G = (2:)30071)64’5 )

1 1
2x—1 2z+1

) So after integration you get:

1.3 The non-autonomous Gompertz model for tumor growth

A surprisingly accurate model for the growth of a tumor of volume N is given by the following

differential equation
dN

dt
with r(t) = rge™® and initial size N(0) = Np. In other words, the population grows with a time
dependent rate r(t), which decreases exponentially in time with a rate a.

=r(t)N () (2)

1) Give a plausible explanation for the proposed behavior of r(t). Why should the
growth rate decrease with time?

This is due to the fact that resources (i.e. nutrients) become limiting : as the population
grows, the surface of the tumor grows slower than its volume, so the nutrients intake
per cell decreases in time. The lack of space also limits the growth.

2) What is the meaning of r?

7o is the population relative growth rate at time zero (¢ = 0)



3) Show that the solution for N(¢) in function of the 3 parameters Ny, rp,a can be
written as N(t) = Noea 17¢ "),
Hint: Use the method of separation of variables.

N 1 t
fNo ~vAN =1q [ye atdt
Integration gives the solution.
4) Study the solution:

1. Show that for very short times the population grows linearly like N(¢) = Ny(1 + rot).
2. Show that for very long times N (£) = Npqo(1 — 2e™%).

Hint: Use the Taylor approximation e* ~ 1+ z (valid for small x) for the inner or the outer
exponential when appropriate.

1. When t is close to zero, the condition for the Taylor approximation is valid for the
inner exponential e~%.
Using e~ =~ 1 — at, we find that:
N(t) = Noe%o(lflJrat) — Nye'ot
Then, we apply the Taylor approximation again, the growth is linear for small
times:
N (t) = Nge™" ~ No(1 + rot)

2. Rewriting the solution like:

Toefa,t

N(t) = Noeae " a
We see that —%Oe*“t becomes small when ¢ is large, so we can use the Taylor
expansion to the first order:

N(t) = Noe's (1 — e7%) or N(t) = Nypae (1 — e~ with Nypgp = Noe'a .

5) Sketch the solution. Indicate N,,,,. How does the N approaches N,,,,?

Here is the plot of the solution for arbitrary values of the constants Ng,79 and a. Ny, is the
asymptotic value of N(t) for long times. N approaches N,,q, exponentially fast.

[13]: | #define analytical function for N
def N2(NO, r0, a, t):
return NO*np.exp((r0/a)*(1l-np.exp(-a*t)))

#define parameters

NO = 2
r0 = 3
a=20.7

Nmax = NO#*np.exp(r0/a)
tspan = np.linspace(0,11,1000)

#plot
plt.plot(tspan, N2(NO,r0,a,tspan))
plt.axhline(Nmax, color = 'red', 1ls = '--')

plt.text(0.5, Nmax-5.5, 'Nmax', color = 'red')
plt.xlabel('t"')



plt.ylabel('N(t)"')
plt.show()
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