
Exercise 1: Growth models in 1D

September 12, 2024

Course: BIO-341 Systèmes dynamiques en biologie

Professor: Julian Shillcock & Felix Naef

SSV, BA5, 2024

Note that this document is primarily aimed at being consulted as a Jupyter notebook, the PDF
rendering being not optimal.

[1]: import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact

1 Growth models in 1D

1.1 Linear model for population growth

Consider a population of N birds with birth and death rates n and m. Arrival of new individuals
through migrations occurs at rate a > 0. This can be translated into the simple model:

dN

dt
= F (N) = (n−m)N + a (1)

1) Write down what type of equation this is, e.g. first order, second order, linear,
non-linear, etc.

The equation is a linear first order ODE.

2) Solve this equation analytically using the Ansatz: N(t) = Aeλt +B. Express A,B and λ
in function of the rates and the population size N0 = N(t = 0); explicitly write the solution N(t).

Differentiating the Ansatz gives: dN
dt = Aλeλt

If the Ansatz is a solution of the differential equation, then dN
dt is also equal to (n −

m)N + a, so:
Aλeλt = k(Aeλt +B) + a, with k = (n−m)

By separating terms which depends on time and terms which are time-independent, we
can deduce that kB + a = 0 ⇒ B = −a

k . In addition, by comparison of the left-hand
side and right-hand side it follows that λ = k.
To find A, use the initial conditions in the equation: N(t = 0) = N0 = A − a

k ⇒ A =
N0 +

a
k . Finally, N(t) = (N0 +

a
k)e

kt − a
k .

1

https://moodle.epfl.ch/course/info.php?id=14291

3) Solve the equation using an alternative method, such as the separation of variables.

Solving an equation like dN
dt = kN is trivial, so we seek for a change of variable that

could get rid of the +a term in the original equation. Taking N = u− a
k ⇒ u = N + a

k
we have:
dN = du, since a and k are two constants.
du
dt = ku ⇒ u = u0e

kt

Then, you can substitute back: N(t) = (N0 +
a
k)e

kt − a
k where u0 = N0 +

a
k is found

with the initial conditions.

Another way to solve this equation is by a direct separation of variables.∫ N
N0

dM
kM+a =

∫ t
0 dτ ⇒ 1

k ln(kM + a)
∣∣∣N
N0

= t ⇒ ln(kN+a
kN0+a) = kt ⇒ N(t) = (N0 +

a
k)e

kt − a
k

4) Qualitative analysis

1) Draw F (N) in function of N for the two cases (i) n < m and (ii) n > m. Note: you are also
expected to draw and solve such simple problems by hand.

F (N) is a linear function with intercept a and slope n−m

[2]: def Ndot(N,n,m,a):
return (n-m)*N+a

Ndomain = np.linspace(0,10,100)

#plot
plt.plot(Ndomain, Ndot(Ndomain,1,2,1))
plt.xlabel('N')
plt.ylabel('\dot{N}')
plt.axhline(0, color = 'black', ls = '--')
plt.axvline(0, color = 'black', ls = '--')
plt.title('n<m')
plt.show()

plt.plot(Ndomain, Ndot(Ndomain,2,1,1))
plt.axhline(0, color = 'black', ls = '--')
plt.axvline(0, color = 'black', ls = '--')
plt.xlabel('N')
plt.ylabel('\dot{N}')
plt.title('n>m')
plt.show()

2

3

2) What is the main qualitative difference between the two cases and how does this affect the
long time t → ∞ behavior of the solution that you found above?

If the death rate m is bigger than the birth rate n (k < 0) the number of individuals
“converges” to the constant |ak | at late times. On the contrary, if birth rate n is bigger
than death rate m (k > 0), then the population grows to infinity.

3) Here you can verify what you answered under 2) numerically. Generate some representative
plots for N(t) where you vary the parameters and initial conditions of the model.

[3]: #code the analytical function for N(t)
def N(N0, a, k, t):

return (N0+a/k)*np.exp(k*t)-a/k

[4]: #simulate it with n>m
tspan = np.linspace(0,5,1000)
a = 1.
n = 2.
m = 1.
N0 = 2.

4

k = n-m

#plot
plt.plot(tspan, N(N0,a,k,tspan))
plt.xlabel('t')
plt.ylabel('N(t)')
plt.title('n>m')
plt.show()

[5]: #simulate it with n<m
m = 3.
k = n-m

#plot
plt.plot(tspan, N(2,a,k,tspan), label = 'N0 = 2')
plt.plot(tspan, N(0.5,a,k,tspan), label = 'N0 = 0.5')
plt.xlabel('t')
plt.ylabel('N(t)')
plt.title('n<m')
plt.legend()

5

plt.show()

[6]: # Create a widget to play with the parameters
The widget does not work if you are using Jupyter Lab, but it works if you are␣
↪→using Jupyter Notebooks.

def f(k=1.):
plt.plot(tspan, N(N0,a,k,tspan))
plt.xlabel('t')
plt.ylabel('N(t)')
plt.title('Interactive plot: n-m=' + str(n-m))
plt.show()

a = 1.
N0 = 10.

interact(f, k = (-3.,3.,0.01))

interactive(children=(FloatSlider(value=1.0, description='k', max=3.0, min=-3.0,␣
↪→step=0.01), Output()), _dom_c...

6

[6]: <function __main__.f(k=1.0)>

5) Discuss why this equation is good or bad at describing real populations.

Limitations in resources are not taken into account in this equation, thus a population
can grow to infinity in this model.

1.2 Integration by separation of variables

1) Solve the following differential equations to obtain x(t) by the method of separation
of variables. Use the initial condition x(t) = x0 when t = 0.

1. dx
dt = xe−2t

2. dx
dt = 4x2 − 1

Reminder : The explicit solution of a differential equation dx
dt = F (x) can be written as a function

of t, x(t) = g(t), while the implicit form is written h(x(t)) = g(t), where the function h(x) might
not be easily invertible.

1. Separating the variables gives :∫ x
x0

1
xdx =

∫ t
0 e

−2tdt
After integration you obtain the implicit form:
ln(x(t)) = −1

2e
−2t + C

With C = 1
2 + ln(x0)

The explicit form is:
x(t) = e

1
2x0e

− 1
2
e−2t

2. Separating the variables gives :∫ x
x0

1
4x2−1

dx =
∫ t
0 dt

And from partial fractions: 1
4x2−1

= 1
2(

1
2x−1 − 1

2x+1) So after integration you get:

x(t) = 1
2(

2x0+1 + (2x0−1)e4t)
2x0+1− (2x0−1)e4t

)

1.3 The non-autonomous Gompertz model for tumor growth

A surprisingly accurate model for the growth of a tumor of volume N is given by the following
differential equation

dN

dt
= r(t)N(t) (2)

with r(t) = r0e
−at and initial size N(0) = N0. In other words, the population grows with a time

dependent rate r(t), which decreases exponentially in time with a rate a.

1) Give a plausible explanation for the proposed behavior of r(t). Why should the
growth rate decrease with time?

This is due to the fact that resources (i.e. nutrients) become limiting : as the population
grows, the surface of the tumor grows slower than its volume, so the nutrients intake
per cell decreases in time. The lack of space also limits the growth.

2) What is the meaning of r0?

r0 is the population relative growth rate at time zero (t = 0)

7

3) Show that the solution for N(t) in function of the 3 parameters N0, r0, a can be
written as N(t) = N0e

r0
a
(1−e−at).

Hint : Use the method of separation of variables.∫ N
N0

1
N dN = r0

∫ t
0 e

−atdt

Integration gives the solution.

4) Study the solution:

1. Show that for very short times the population grows linearly like N(t) = N0(1 + r0t).
2. Show that for very long times N(t) ∼= Nmax(1− r0

a e
−at).

Hint : Use the Taylor approximation ex ≈ 1 + x (valid for small x) for the inner or the outer
exponential when appropriate.

1. When t is close to zero, the condition for the Taylor approximation is valid for the
inner exponential e−at.
Using e−at ≈ 1− at, we find that:
N(t) = N0e

r0
a
(1−1+at) = N0e

r0t

Then, we apply the Taylor approximation again, the growth is linear for small
times:

N(t) ≈ N0e
r0t ≈ N0(1 + r0t)

2. Rewriting the solution like:

N(t) = N0e
r0
a e−

r0e
−at

a

We see that − r0
a e

−at becomes small when t is large, so we can use the Taylor
expansion to the first order:
N(t) = N0e

r0
a (1− r0

a e
−at) or N(t) = Nmax(1− r0

a e
−at) with Nmax = N0e

r0
a .

5) Sketch the solution. Indicate Nmax. How does the N approaches Nmax?

Here is the plot of the solution for arbitrary values of the constants N0, r0 and a. Nmax is the
asymptotic value of N(t) for long times. N approaches Nmax exponentially fast.

[13]: #define analytical function for N
def N2(N0, r0, a, t):

return N0*np.exp((r0/a)*(1-np.exp(-a*t)))

#define parameters
N0 = 2
r0 = 3
a = 0.7
Nmax = N0*np.exp(r0/a)
tspan = np.linspace(0,11,1000)

#plot
plt.plot(tspan, N2(N0,r0,a,tspan))
plt.axhline(Nmax, color = 'red', ls = '--')
plt.text(0.5, Nmax-5.5, 'Nmax', color = 'red')
plt.xlabel('t')

8

plt.ylabel('N(t)')
plt.show()

9

