Exercise 1: Growth models in 1D

September 12, 2024

Course: BIO-341 Systèmes dynamiques en biologie

Professor: Julian Shillcock & Felix Naef

SSV, BA5, 2024

Note that this document is primarily aimed at being consulted as a Jupyter notebook, the PDF rendering being not optimal.

```
[1]: import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact
```

1 Growth models in 1D

1.1 Linear model for population growth

Consider a population of N birds with birth and death rates n and m. Arrival of new individuals through migrations occurs at rate a > 0. This can be translated into the simple model:

$$\frac{dN}{dt} = F(N) = (n-m)N + a \tag{1}$$

1) Write down what type of equation this is, e.g. first order, second order, linear, non-linear, etc.

The equation is a linear first order ODE.

2) Solve this equation analytically using the Ansatz: $N(t) = Ae^{\lambda t} + B$. Express A, B and λ in function of the rates and the population size $N_0 = N(t = 0)$; explicitly write the solution N(t).

Differentiating the Ansatz gives: $\frac{dN}{dt} = A\lambda e^{\lambda t}$

If the Ansatz is a solution of the differential equation, then $\frac{dN}{dt}$ is also equal to (n-m)N+a, so:

$$A\lambda e^{\lambda t} = k(Ae^{\lambda t} + B) + a$$
, with $k = (n - m)$

By separating terms which depends on time and terms which are time-independent, we can deduce that $kB + a = 0 \Rightarrow B = -\frac{a}{k}$. In addition, by comparison of the left-hand side and right-hand side it follows that $\lambda = k$.

To find A, use the initial conditions in the equation: $N(t=0) = N_0 = A - \frac{a}{k} \Rightarrow A = N_0 + \frac{a}{k}$. Finally, $N(t) = (N_0 + \frac{a}{k})e^{kt} - \frac{a}{k}$.

3) Solve the equation using an alternative method, such as the separation of variables.

Solving an equation like $\frac{dN}{dt} = kN$ is trivial, so we seek for a change of variable that could get rid of the +a term in the original equation. Taking $N = u - \frac{a}{k} \Rightarrow u = N + \frac{a}{k}$ we have:

dN = du, since a and k are two constants.

$$\frac{du}{dt} = ku \Rightarrow u = u_0 e^{kt}$$

Then, you can substitute back: $N(t) = (N_0 + \frac{a}{k})e^{kt} - \frac{a}{k}$ where $u_0 = N_0 + \frac{a}{k}$ is found with the initial conditions.

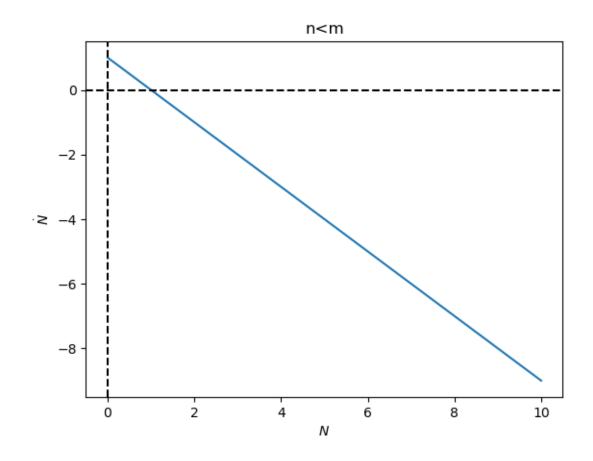
Another way to solve this equation is by a direct separation of variables.

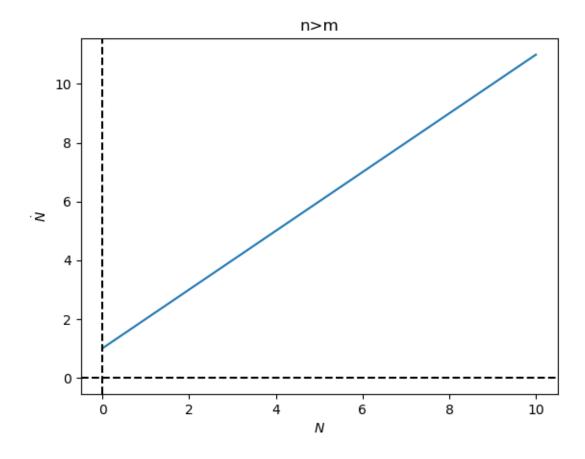
$$\int_{N_0}^{N} \frac{dM}{kM+a} = \int_{0}^{t} d\tau \Rightarrow \frac{1}{k} \ln(kM+a) \Big|_{N_0}^{N} = t \Rightarrow \ln(\frac{kN+a}{kN_0+a}) = kt \Rightarrow N(t) = (N_0 + \frac{a}{k})e^{kt} - \frac{a}{k}$$

4) Qualitative analysis

- 1) Draw F(N) in function of N for the two cases (i) n < m and (ii) n > m. Note: you are also expected to draw and solve such simple problems by hand.
 - F(N) is a linear function with intercept a and slope n-m

```
[2]: def Ndot(N,n,m,a):
         return (n-m)*N+a
     Ndomain = np.linspace(0,10,100)
     #plot
     plt.plot(Ndomain, Ndot(Ndomain,1,2,1))
     plt.xlabel('$N$')
     plt.ylabel('$\dot{N}$')
     plt.axhline(0, color = 'black', ls = '--')
     plt.axvline(0, color = 'black', ls = '--')
     plt.title('n<m')</pre>
     plt.show()
     plt.plot(Ndomain, Ndot(Ndomain,2,1,1))
     plt.axhline(0, color = 'black', ls = '--')
     plt.axvline(0, color = 'black', ls = '--')
     plt.xlabel('$N$')
     plt.ylabel('$\dot{N}$')
     plt.title('n>m')
     plt.show()
```



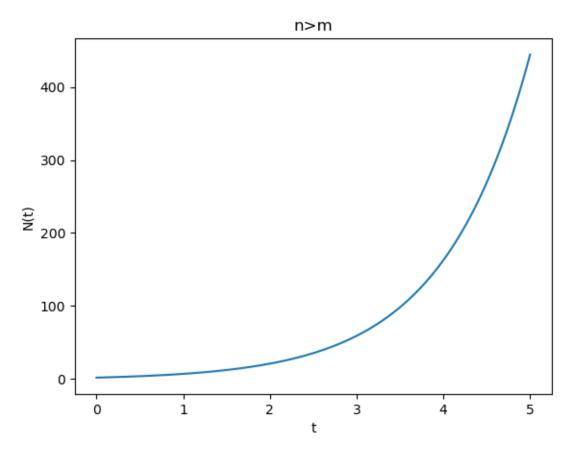


- 2) What is the main qualitative difference between the two cases and how does this affect the long time $t \to \infty$ behavior of the solution that you found above?
 - If the death rate m is bigger than the birth rate n (k < 0) the number of individuals "converges" to the constant $|\frac{a}{k}|$ at late times. On the contrary, if birth rate n is bigger than death rate m (k > 0), then the population grows to infinity.
- 3) Here you can verify what you answered under 2) numerically. Generate some representative plots for N(t) where you vary the parameters and initial conditions of the model.

```
[3]: #code the analytical function for N(t)
def N(NO, a, k, t):
    return (NO+a/k)*np.exp(k*t)-a/k
```

```
[4]: #simulate it with n>m
  tspan = np.linspace(0,5,1000)
  a = 1.
  n = 2.
  m = 1.
  NO = 2.
```

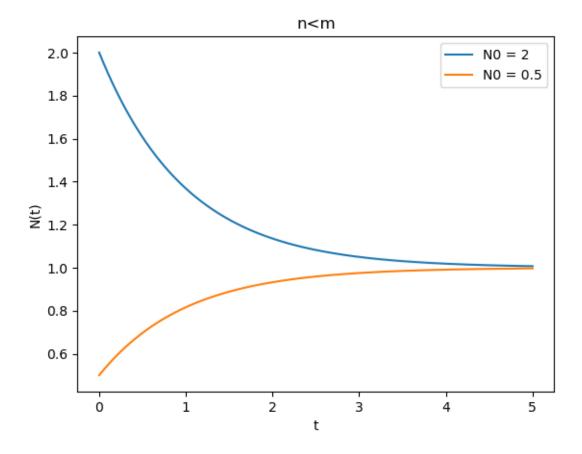
```
#plot
plt.plot(tspan, N(NO,a,k,tspan))
plt.xlabel('t')
plt.ylabel('N(t)')
plt.title('n>m')
plt.show()
```



```
[5]: #simulate it with n<m
m = 3.
k = n-m

#plot
plt.plot(tspan, N(2,a,k,tspan), label = 'N0 = 2')
plt.plot(tspan, N(0.5,a,k,tspan), label = 'N0 = 0.5')
plt.xlabel('t')
plt.xlabel('N(t)')
plt.ylabel('N(t)')
plt.title('n<m')
plt.legend()</pre>
```

plt.show()



interactive(children=(FloatSlider(value=1.0, description='k', max=3.0, min=-3.0, step=0.01), Output()), _dom_c...

- [6]: <function __main__.f(k=1.0)>
 - 5) Discuss why this equation is good or bad at describing real populations.

Limitations in resources are not taken into account in this equation, thus a population can grow to infinity in this model.

- Integration by separation of variables
- 1) Solve the following differential equations to obtain x(t) by the method of separation of variables. Use the initial condition $x(t) = x_0$ when t = 0.

 - 1. $\frac{dx}{dt} = xe^{-2t}$ 2. $\frac{dx}{dt} = 4x^2 1$

Reminder: The explicit solution of a differential equation $\frac{dx}{dt} = F(x)$ can be written as a function of t, x(t) = g(t), while the implicit form is written h(x(t)) = g(t), where the function h(x) might not be easily invertible.

1. Separating the variables gives:

$$\int_{x_0}^{x} \frac{1}{x} dx = \int_{0}^{t} e^{-2t} dt$$

 $\int_{x_0}^{x} \frac{1}{x} dx = \int_{0}^{t} e^{-2t} dt$ After integration you obtain the implicit form:

$$\ln(x(t)) = -\frac{1}{2}e^{-2t} + C$$

With
$$C = \frac{1}{2} + \ln(x_0)$$

With
$$C = \frac{1}{2} + \ln(x_0)$$

The explicit form is:
 $x(t) = e^{\frac{1}{2}}x_0e^{-\frac{1}{2}e^{-2t}}$

2. Separating the variables gives :

$$\int_{x_0}^x \frac{1}{4x^2 - 1} dx = \int_0^t dt$$

And from partial fractions: $\frac{1}{4x^2-1} = \frac{1}{2}(\frac{1}{2x-1} - \frac{1}{2x+1})$ So after integration you get: $x(t) = \frac{1}{2}(\frac{2x_0+1+(2x_0-1)e^{4t}}{2x_0+1-(2x_0-1)e^{4t}})$

$$x(t) = \frac{1}{2} \left(\frac{2x_0 + 1 + (2x_0 - 1)e^{4t}}{2x_0 + 1 - (2x_0 - 1)e^{4t}} \right)$$

The non-autonomous Gompertz model for tumor growth

A surprisingly accurate model for the growth of a tumor of volume N is given by the following differential equation

$$\frac{dN}{dt} = r(t)N(t) \tag{2}$$

with $r(t) = r_0 e^{-at}$ and initial size $N(0) = N_0$. In other words, the population grows with a time dependent rate r(t), which decreases exponentially in time with a rate a.

1) Give a plausible explanation for the proposed behavior of r(t). Why should the growth rate decrease with time?

This is due to the fact that resources (i.e. nutrients) become limiting: as the population grows, the surface of the tumor grows slower than its volume, so the nutrients intake per cell decreases in time. The lack of space also limits the growth.

7

2) What is the meaning of r_0 ?

 r_0 is the population relative growth rate at time zero (t=0)

3) Show that the solution for N(t) in function of the 3 parameters N_0, r_0, a can be written as $N(t) = N_0 e^{\frac{r_0}{a}(1 - e^{-at})}$.

Hint: Use the method of separation of variables.

$$\int_{N_0}^{N} \frac{1}{N} dN = r_0 \int_{0}^{t} e^{-at} dt$$

Integration gives the solution.

4) Study the solution:

- 1. Show that for very short times the population grows linearly like $N(t) = N_0(1 + r_0 t)$.
- 2. Show that for very long times $N(t) \cong N_{max}(1 \frac{r_0}{a}e^{-at})$.

Hint: Use the Taylor approximation $e^x \approx 1 + x$ (valid for small x) for the inner or the outer exponential when appropriate.

1. When t is close to zero, the condition for the Taylor approximation is valid for the inner exponential e^{-at} .

Using $e^{-at} \approx 1 - at$, we find that: $N(t) = N_0 e^{\frac{r_0}{a}(1 - 1 + at)} = N_0 e^{r_0 t}$

$$N(t) = N_0 e^{\frac{r_0}{a}(1-1+at)} = N_0 e^{r_0 t}$$

Then, we apply the Taylor approximation again, the growth is linear for small times:

$$N(t) \approx N_0 e^{r_0 t} \approx N_0 (1 + r_0 t)$$

2. Rewriting the solution like:

$$N(t) = N_0 e^{\frac{r_0}{a}} e^{-\frac{r_0 e^{-at}}{a}}$$

We see that $-\frac{r_0}{a}e^{-at}$ becomes small when t is large, so we can use the Taylor expansion to the first order:

$$N(t) = N_0 e^{\frac{r_0}{a}} (1 - \frac{r_0}{a} e^{-at})$$
 or $N(t) = N_{max} (1 - \frac{r_0}{a} e^{-at})$ with $N_{max} = N_0 e^{\frac{r_0}{a}}$.

5) Sketch the solution. Indicate N_{max} . How does the N approaches N_{max} ?

Here is the plot of the solution for arbitrary values of the constants N_0, r_0 and a. N_{max} is the asymptotic value of N(t) for long times. N approaches N_{max} exponentially fast.

```
[13]: #define analytical function for N
      def N2(N0, r0, a, t):
          return N0*np.exp((r0/a)*(1-np.exp(-a*t)))
      #define parameters
      NO = 2
      r0 = 3
      a = 0.7
      Nmax = N0*np.exp(r0/a)
      tspan = np.linspace(0,11,1000)
      #plot
      plt.plot(tspan, N2(N0,r0,a,tspan))
      plt.axhline(Nmax, color = 'red', ls = '--')
      plt.text(0.5, Nmax-5.5, 'Nmax', color = 'red')
      plt.xlabel('t')
```

```
plt.ylabel('N(t)')
plt.show()
```

