Exercise 5: Models for competitive exclusion: microbial ecology

October 7, 2024

1 Week 5: Graded Series

1.0.1 Course: BIO-341 Dynamical systems in biology

Professor: Julian Shillcock & Felix Naef SSV, BA5, 2024 (Graded exercise series)

```
[]: import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact
from scipy.integrate import odeint
```

All working by hand and calculations need to be shown

2 Linear phase portraits (10 pts)

Consider the following linear system:

$$\dot{x} = x + 2y$$

$$\dot{y} = 4x + 3y$$

- 1. Find the fixed point(s) and specify its/their stability. (by hand)
- 2. Find the eigenvalues and eigenvectors of the matrix associated with this system. (by hand)
- 3. Use 2. to write the general solution of the system. (by hand)
- 4. Plot the phase portrait in the (x,y)-plane.

Plot by hand:

- the fixed point(s)
- the nullclines
- the eigenvectors

Plot using python:

- the vector field
- Representative trajectories for different initial conditions listed in the array defined below (X_0s) .

Hint: To plot the vector field you can use: - np.meshgrid to define the positions at which you want to represent the arrows. - Use plt.quiver to plot the arrow field - You can also look at previous corrections to understand how to plot a phase portrait using Python.

Hint: To plot trajectories, use the explicit solution that you have found in 3.

Plot for values of x and y in the interval [-5,5]. For the trajectories, use the tspan vector defined below.

```
[2]: # Time domain
    tspan = np.linspace(0, 10, 1000)

# Initial conditions
XOs = [(0,-2), (-3,1),(3,-2),(3.1,-3.5),(-5,5.01)]
```

3 Competitive exclusion in microbial ecology (20 pts)

In this model, two populations of bacteria N, M (e.g., Escherichia coli and Lactobacillus acidophilus) compete for the same resources in the same environment (for example in the gut). A general model that describes this interaction takes the form :

$$\frac{dN}{dt} = N (1 - \alpha N - M/\alpha)$$

$$\frac{dM}{dt} = M (1 - N - M)$$

with $\alpha \geq 0$.

- 1. Calculate the nullclines, find the fixed points, and an expression of the Jacobin for the system depending on α . (by hand)
- 2. Calculate the Jacobian matrix for $\alpha = 1/4$ and $\alpha = 4$ at every fixed point. In both cases, plot the nullclines and state the stability of the fixed points (by hand)
- 3. Plot the phase portraits for the two cases $\alpha = 1/4$ and $\alpha = 4$.

Plot using Python:

- the nullclines
- the fixed points
- the vector field
- Some representative trajectories for the initial conditions listed in the array below (X_0s)

Hint: Since here you don't have the exact solution, you can use the odeint function of scipy. Look at previous corrections to understand how this works

Plot the phase portait for x and y in the interval: [-0.5, 5]. For trajectories, use the tspan defined below.

```
[3]: # Declare the initial conditions

XOs = [(5,1), (5,4), (1,5), (3,1),(2,0.1)]

#time domain

tspan = np.linspace(0, 10, 1000)
```