05/11/2024, 19:22 Exercise_08

Course: BIO-341 Dynamical systems in biology

Professor: Julian Shillcock & Felix Naef

SSV, BA5, 2024

```
import numpy as np
import matplotlib.pyplot as plt
import matplotlib_inline.backend_inline
from ipywidgets import interact
from scipy.integrate import odeint
from IPython.display import set_matplotlib_formats
matplotlib_inline.backend_inline.set_matplotlib_formats('png', 'pdf')
```

One-dimensional bifurcations (pencil and paper)

Question 1

For each of the 1D vector fields A - G:

A)
$$\frac{dx}{dt} = r - x^2$$

B)
$$rac{dx}{dt} = rx - x^2$$

C)
$$rac{dx}{dt}=rx-4x^3$$

D)
$$\frac{dx}{dt} = rx + 4x^3$$

E)
$$\frac{dx}{dt} = rx - sinh(x)$$

F)
$$rac{dx}{dt} = x + rac{rx}{1+x^2}$$

1.1 Sketch the vector field for the three cases r < 0, r = 0, r >(labelled by their value of r), mark the fixed point(s) and their stability, and indicate the direction of flow of the vector field on the diagram.

1.2 Sketch a few typical trajectories for the three cases, r < 0, r = 0, r > 0.

1.3 Draw the bifurcation diagram and label the branches as stable or unstable (use a solid line for stable branches and a dashed line for unstable branches).

1.4 Identify the type of bifurcation in the bifurcation diagram.

Question 2

05/11/2024, 19:22 Exercise_08

Construct a vector field that depends on a real parameter r, dx/dt = f(r, x), and that has no fixed points for r < 0, and four fixed points for r > 0. Sketch the vector field in the two cases, indicate the direction of flow, and label any fixed points with their stability.

Question 3

Draw the bifurcation diagram for the system in Question 2.