Exercise session, week 12

Course: Systémes dynamiques en biologie (BIO-341)
Professor: Felix Naef , Julian Shillcock

SSV, BA5, 2024

import important libraries

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

from IPython.display import set_matplotlib_formats
from scipy.integrate import odeint

set_matplotlib_formats("png", "pdf")
matplotlib.rc("image", cmap="RdBu")
import matplotlib.animation as animation
from random import random

from time import time

A. Organization of the circadian oscillator network in
the brain

In mammals, circadian timing is regulated by the master clock, which is composed of
about 20000 neurons located in the suprachiasmatic nucleus (SCN) in the
hypothalamus. The neurons in the SCN are synchronized with each other, in part, by
neurotransmitters that are secreted by the neurons. Here, we are interested in how
different neuron connectivities affect collective synchronization and oscillatory behavior.
For simplicity, we will consider a theoretical model of the SCN in which coupled
oscillators are arranged in a 2-dimensional space (grid). We can construct a symmetric
adjacency matrix (coupling matrix) A where Aij = Aji specifies the coupling between
oscillator 7 and oscillator j. Here, we consider the simplest case where Aij is either 0 or
1. This coupling is modulated by a strength K.

For each neuron i, §; = fi + KZj.V:l Ajsin(6; — 0;).

We provide you with two functions:

e heatmap: plotan X n grid (N := n? being the number of neurons), which
represents the SCN. Each cell shows the value contained in the matrix datagrid. The
values are plotted from bottom left to top right, row by row.

e value_to_size: create the grid on which the oscillators are. This function is called by
heatmap.

https://moodle.epfl.ch/course/info.php?id=14291
https://moodle.epfl.ch/course/info.php?id=14291
https://moodle.epfl.ch/course/info.php?id=14291

In [2]: # create a grid on which the oscillators are

def value_to_size(val, size_min, size_max, size_scale):
val = abs(val) # to handle negative numbers
val_position = (val - size_min) % 0.99 / (
size_max - size_min
) + 0.01 # position of value in the input range, relative to the length
return val_position * size_scale

def heatmap(datagrid, marker, ax):
x = list(range(datagrid.shapel[1]))
y = list(range(datagrid.shape([0]))

size_min, size_max = 0, 1
size_scale = 500

dot the scatter + 2 extra invisible points to normalize colors
scat = ax.scatter(
x=x * len(y) + [-100, -100],
y=[v for v in y for p in x] + [-100, -100],
marker=marker,
s=[value_to_size(v, size_min, size_max, size_scale) for v in datagri

+ [1, 1],
c=[v for v in datagrid.flatten()] + [-1, 1],
cmap="RdBu",

ax.set_xticks(x)
ax.set_xticklabels(x)
ax.set_yticks(y)
ax.set_yticklabels(y)

ax.grid(False, "major")
ax.grid(True, "minor")

ax.set_xticks([t + 0.5 for t in ax.get_xticks()], minor=True)
ax.set_yticks([t + 0.5 for t in ax.get_yticks()], minor=True)

ax.set_x1im([-0.5, max(x) + 0.5])
ax.set_ylim([-0.5, max(y) + 0.5])
ax.set_facecolor("#F1F1F1")

Below is an example of how to use the functions to plot the phase of each neuron in
each cell of the grid:

create 100 cells (10%10 grid)
N = 100
n = int(N*x0.5)

create a vector of increasing phases to check the order of the oscillators

1_x0 = np.linspace(@, 2 * np.pi, N)

print(1_x@.shape)

reshape 1_x0 to match the grid

X = np.reshape(1_x0, (n, n))

print(X.shape)

plot the oscillators

datagrid = np.sin(X)

fig, ax = plt.subplots(figsize=(X.shape[0], X.shapel[1]))

heatmap(datagrid, marker=".", ax=ax)

plt.show()
(100,)
(10, 10)
9 Q O
81 @ o o o [® o o O o]
71 @ o @ o o o o o o o
61 @ [o o o o o o] &
5 - O O
4 - o O
31 @ o o @ o o o O (@] ®
21 @ o [] O [] o o o ® o
1{ @ -l o o o] ® o o ® &
0 o]

0 1 2 3 a4 5 6 7 8 9

Question 1:

Assume that every neuron is connected to its nearest neighbours in the grid: for
example, a neuron in position (, j) will be connected to the neurons at (i — 1,),
(t+1,5), (¢,7— 1) and (4,7 + 1). Assume also that the neuron is connected to its
second nearest neighbours: (¢ — 1,7 —1), (¢ — 1,5+ 1), ¢+ 1,7—1), (¢ + 1,5+ 1).

Visualize the circadian oscillations of neurons at different times using the provided
function heatmap and using subplots.

Hint : Initialize the parameters of a population of IN neurons (N~100--1000 cells) with
varying intrinsic periods of about 24 hours. For instance, you can modify the period of a
neuron ¢ by drawing f; from a normal distribution with © = 27/24 and o equal to 5% of
the mean (you may have to play with o to obtain synchronization). Assign coordinates to
each cell in a 2D grid, e.g. with x and y coordinates in a rectangle (the real SCN has an
‘egg’ shape). Choose K = 0.03.

def model(
1_theta, t, LTf, K, A

): # 1_theta: list of initial phase of the N neurons, t = time (needed for
l_f: intrinsic frequencies of the neurons, K: coupling strength, A: in

compute interaction matrix

In [1: # Defining some interaction matrices

create a matrix of random connections,
each neuron is connected to another with probability p
def A_alltoall(N, p=1):

write function

def A_NN(N):
Nearest Neighbours

A = np.zeros((N, N))

n = int(np.sqrt(N))

neuron_index = np.arange(N)

NI = np.reshape(neuron_index, (n, n))

for i in range(n): # row number
for j in range(n): # column number
if i < n - 1:

A[NI[i, jITINI[i + 1, jI] =1
if i > 0:

AINI[i, jITINI[L - 1, jI] =1
if j <n-1:

A[NI[i, jITINI[i, j + 1]] =1
if j > 0:

AINI[i, jITINI[i, j - 1]] =1

AINI[i, jITINI[i, jl1 =1

return A

def A_2NN(N):
First and second Nearest Neighbours

A A_NN(N)

n = int(np.sqrt(N))

neuron_index = np.arange(N)

NI = np.reshape(neuron_index, (n, n))

for i in range(n): # row number
for j in range(n): # column number
second nearest neightbours
ifi<n-1andj<n-1:

A[INI[i, jITINI[i + 1, j + 1]]1 =1
if i <n-1and j> 0:

AINI[i, FITINI[i + 1, j - 111 =1
if i>0and j <n - 1:

AINI[i, jITINI[i -1, j + 1]] =1

if i > 0 and i > 0:

AINI[i, jITINI[L -1, j - 111 = 1
AINI[i, jITINI[i, jI1 =1

return A

plot ieteraction matrices with plt.imshow() to see how they differ

In [1: # define a function for that takes the mean of exp(jxtheta) for all theta in
def order(1l_angles):
i

In [1: # create a vector of intrinsic frequencies
mu = 2 % np.pi / 24
sigma = 0.1 % mu
1_f = np.random.randn(N) * sigma + mu

define time domain
dt = 0.25 # fixed
nsteps = 1000

T = dt * nsteps

tspan = np.linspace(@, T, nsteps)

define coupling strength
K= 0.03

define interaction matrix
A = A_2NN(N)

simulate cells, crucial step!

X = odeint(model, 1_x@, tspan, args=(1_f, K, A))
print(X.shape)

reshape X to match the interaction grid

X = np.reshape(X, (X.shapel[@], n, n))

In

In

fig, axs = plt.subplots(4, 5, figsize=(20, 16))
axs = axs.flatten()

showing only some of the time steps
i_show = np.arange(@, nsteps, int(nsteps / 20))

looping over the time steps to plot the oscillators

for ax, i in zip(axs, i_show):
in order to visualize the oscillation on the grid, we need to take the
datagrid = np.sin(X[i, :1)
heatmap(datagrid, marker=".'", ax=ax)
here it 1is crucial the part with abs(order(X[i, :]))
it takes the avrage of the thetas around the circle and than takes the

ax.set_title("Time {0:.2f}, R = {1:.2f}".format(tspan[i], abs(order(XI[i,
plt.show()
Question 2

Do the same plots as for Question 1 but for an all-to-all interaction matrix: Az-j = 1 for all
1,7. Set K = 0.001.

How does the space-time synchronization dynamics change with respect to the
previous case?

create a vector of intrinsic frequencies
mu = 2 % np.pi / 24

sigma = 0.1 * mu

1_f = np.random.randn(N) *x sigma + mu

define time domain
dt = 0.25 # fixed
nsteps = 1000

T = dt * nsteps

tspan = np.linspace(0, T, nsteps)

define coupling strength
= 0.001 #

N

define interaction matrix
= A_alltoall(N)

>

simulate cells, these is the vector of phases
= odeint(model, 1_x@, tspan, args=(1_f, K, A))

X

reshape X to match the interaction grid
X = np.reshape(X, (X.shapel@], n, n))

fig, axs = plt.subplots(4, 5, figsize=(20, 16))
axs = axs.flatten()

i_show = np.arange(@, nsteps, int(nsteps / 20))

for ax, i in zip(axs, i_show):
X represents the phases therefore we need to take the sin of it to plc
datagrid = np.sin(X[i, :1)
heatmap(datagrid, marker=".", ax=ax)
ax.set_title("Time {0:.2f}, R = {1:.2f}".format(tspan[il, abs(order(XI[i,

plt.show()

Question 3:

Generate a random adjacency matrix where Aij = 1 with a probability p, where a
‘'success’ will generate A = 1 and A = 0 otherwise. Which probability is needed
(approximately, based on the final state) in order to retain synchronized oscillations
given your chosen 0?

Use again the function heatmap. You should plot only the final state for the different p
(both bigger and smaller than the critical probability).

start = time()

fig, axs = plt.subplots(4, 5, figsize=(20, 16))
axs = axs.flatten()

P = np.linspace(0, 1, 20)
R = np.zeros(shape=(len(P),))
M=5

for k, p in enumerate(P):

use function that creates matrix of random connections

A = A_alltoall(N, p)

K = 0.001

simulate neurons

X = odeint(model, 1_x@, tspan, args=(1_f, K, A))

X = np.reshape(X, (X.shapel0], int(N%x0.5), int(Nxx0.5)))

datagrid = np.sin(X[-1, :1)

heatmap(datagrid, marker=".", ax=axs[kl)

r=20

for 1 in np.arange(M):

r += abs(order(X[-(1 + 1), :1))

Rkl =r /M

axs[kl.set_title("p = {0:.2f}, R = {1:.2f}".format(p, RIk]))
end = time()

print("It took ", end - start, " s.")

Question 4:

With R defined as R = % > %, plot the function R(p) and find the critical

probability (the probability of the neuron connections when the system becomes
syncronized ~ R > 0.5). Use at least 10 different values of p for the plot.

Hint: to have a "reliable" estimate of R, you could average it on some time (at the end
of the simulation).

Which is the critical value of p?

R > 0.5 is attained for p ~ 0.5.

B. The Kuramoto branches (Optional)

In [14]: # import important libraries
from scipy.integrate import odeint, quad
from IPython.display import set_matplotlib_formats
from matplotlib.markers import MarkerStyle
set_matplotlib_formats("png", "pdf")

Take the self consistent equation:

r = (cos(0))s = TK IE{Z cos’(0)g(Krsin(6))do

And use it to plot the 2 branches stemming from the Kuramoto's model in the plane (K,r)
hint:
the curve is the made by the set of points in plane (K,r) such that:

0=rK f:{; cos?(0)g(Krsin(6))dd —r = K f:i?? cos?(0)g(Krsin(6))df — 1

Define function that finds F(K,r) = K f:{% cos?(0)g(Krsin(6))do — 1

than find F(K, r) for a mash grid of points, and finally select the curve such that F(K,r)=0

In I 1: sigma=1
Kc =2 / np.pi * np.sqrt(2 *x np.pi) * 1

write the function here , use quad to integrate
def F(K, r):

In [1: # once define the function F(K,r) we can plot it
we use the countour function have the F=0 slice

contr = np.arange(0, 1.1, 0.01)
contK = np.arange(0, 5, 0.1)

KK, rr = np.meshgrid(contK, contr)
V = np.array([0.0])

Z = np.zeros_Llike(KK)

for i in range(KK.shape[0]):
for j in range(KK.shape[1]):

Z[i, j1 = F(KK[i, jI1, rrli, j1)
plt.contour(KK, rr, Z, V, colors="purple")
plt.plot([@, 51, [0, 0], color="purple")
plt.scatter(Kc, 0)
plt.xlabel("K")
plt.ylabel("r")
plt.show()

