Graded exercise 2

Graded Exercise 2 will be available on moodle after this
lecture, and the solutions must be uploaded to moodle
before midnight Tuesday, 26th November

Submit early in case of glitches with the system
Each person must submit their own solution, no
photocopies, nor one person in a group submitting a

single solution for several

All questions must be done by hand (assigned points are
similar to final exam)

Submit your work as a pdf file with your name/surname:
julian.shillcock.pdf



. Y variable

Challenge: Can you find 2 limit cycles?

... starting from ...

Edible prize

dx/dt=-y+x(1-x2-y2)+ .
dy/dt= x+y (1-x2-y2) + ...

L X var(l)able

First 3 people/groups who send me
the phase portrait and the equations



| asked you to find an example of 2 limit cycles
because ...

https://en.wikipedia.org/wiki/Hilbert's sixteenth problem



The second part of Hilbert's 16th problem | edi) Unsolved

Here we are going to consider polynomial vector fields in the real plane, that is a system of differential equations of
the form:

dx dy

E — P(.’L‘,y), E — Q(x7y)

where both P and Q are real polynomials of degree n.

These polynomial vector fields were studied by Poincaré, who had the idea of abandoning the search for finding
exact solutions to the system, and instead attempted to study the qualitative features of the collection of all
possible solutions.

Among many important discoveries, he found that the limit sets of such solutions need not be a stationary point,
but could rather be a periodic solution. Such solutions are called limit cycles.

The second part of Hilbert's 16th problem is to decide an upper bound for the number of limit cycles in polynomial
vector fields of degree n and, similar to the first part, investigate their relative positions.

The question whether there exists a finite upper bound H(n) for the number of limit cycles of planar polynomial
vector fields of degree nremains unsolved for any n> 1. (H(1) = 0 since linear vector fields do not have limit
cycles.) Evgenii Landis and Ivan Petrovsky claimed a solution in the 1950s, but it was shown wrong in the early
1960s. Quadratic plane vector fields with four limit cycles are known.3] An example of numerical visualization of
four limit cycles in a quadratic plane vector field can be found in.l[*I®! In general, the difficulties in estimating the
number of limit cycles by numerical integration are due to the nested limit cycles with very narrow regions of
attraction, which are hidden attractors, and semi-stable limit cycles.




Equations of the 2 limit cycles:

z=—y+z(1—7%+0.1z(r* — 4)(r* — 16)
9=z +y(l—r%)+0.1y(r? — 4)(r? — 16)

{r2=w2+y2

Alice Trigon-Pacalet




Equations of the 3 limit cycles:

——
-

&= —y+z(1—7r?)+40.1z(r? - 1)(r2 — 4)(r2 — 16)
y=a+y(l—r?)+0.1y(r2 - 1)(r2 — 4)(r* — 16)
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STAALKE 14 L0
Difference between the unstable and stable manifolds of a saddlepoint:

Trajectories coming from initial points on opposite sides of the stable manifold
go to different fixed points because they become parallel to the unstable
manifold as time increases; hence the name “separatrix” because it separates
the phase plane into discrete regions. NB Nullclines here are not trajectories.

Trajectories starting on opposite sides of the unstable manifold can go to the
same fixed point (depending on other fixed points)



Recap of Lecture 9: drawing trajectories
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Background quiz: go.epfl.ch/turningpoint

Session Id: julian23

All input is anonymous; data are stored outside CH


http://go.epfl.ch/turningpoint

Break



Lecture 10 - Don't fly too fast ...

HOPF BIFURCATION
204851 & INSIGHTS

Hops buhble

https://www.youtube.com/watch?v=4vOC7zw2YME



https://www.youtube.com/watch?v=4vOC7zw2YME

Hopf bifurcation
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w =95, b=1 for all plots

Important point: the bifurcation occurs at a specific value
of u, other things may occur when p increases further.
The stable spiral (u < 0) becomes unstable (u > 0), but if
U increases further, the unstable spiral may change again
to be an unstable node or something else may happen:
but it's still a Hopf bifurcation at y = 0.



Supercrltlcal Hopf blfurcatlon trajectorles
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Subcritical Hopf bifurcation trajectories

w =5, b=1for all plots



pOw 5b-1 pOw 5b—1
N = 10,000 points N = 1000,000 points

Still a stable spiral at y = 0, the “"hole” is an artifact of the
number of integration steps.

dridt=pr-r3
do/dt = w + b r Strogatz, Ch. 8, page 253



“Tricky” points

A bifurcation occurs at a specific value of a parameter; if
something else happens as the parameter changes further,
this doesn’t affect the type of bifurcation

A Hopf bifurcation is a 2D analogue of the pitchfork
bifurcation with an angular term added: hence a fixed point
at non-zero x* becomes a limit cycle at non-zero r*

Radius of a supercritical (soft, continuous, safe) Hopf
bifurcation grows continuously from zero

Radius of a subcritical (hard, discontinuous, dangerous)
Hopf bifurcation starts at a large value

_inear stability analysis cannot distinguish a supercritical
from a subcritical Hopf bifurcation: it's the nonlinear terms
that do that



