
## This course is about life, although it might not look like it at first — there's a lot of equations



The Roberto Stock group at IBt-UNAM

#### Entamoeba histolytica

- anaerobic protozoan,
- no mitochondria
- produces ATP by glycolysis

hyaline - clear cytosol vesicle-filled - granular cytosol leading edge - lobopod

Differential interference microscopy, 5x speedup

We're not looking at biology like this, as in a microscope ...

# Example of a model system Circadian oscillator

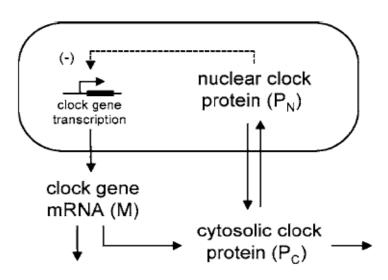
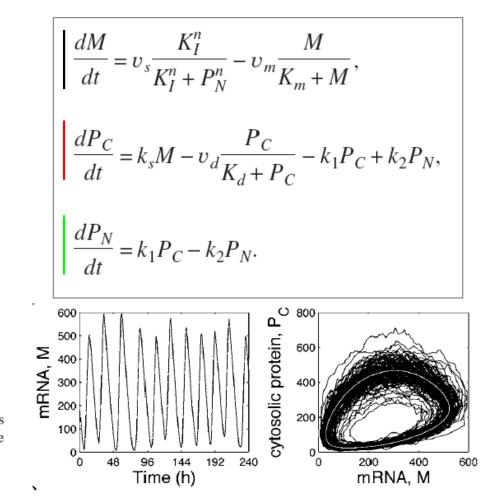
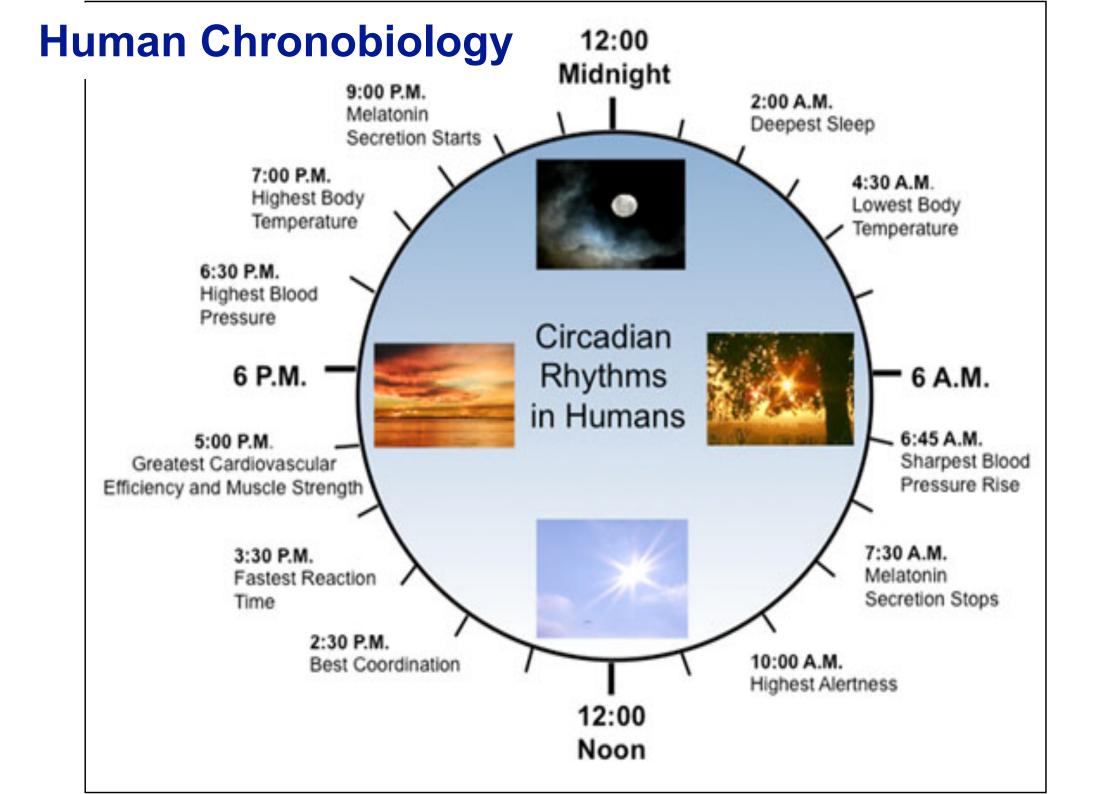





FIG. 1. Scheme of the core model for circadian oscillations. The model is based on the effect exerted by a clock protein  $(P_C)$  which can enter the nucleus  $(P_N)$  to repress the transcription of its gene into mRNA (M).



- How to mathematically describe biological properties that change with time?
   e.g., size of a population, biochemical reactions, gene expression ...
- New phenomena appear in 1D, 2D (oscillations), 3D (chaos)
- What equation represents oscillations? robustness? hysteresis?
- Non-linear equations are very sensitive to tiny changes in parameters and initial conditions (how is this compatible with robustness?)



There are two ways of seeing this course ...

a lot of equations to be memorised / solutions

or

look for patterns in the equations that are the mathematical equivalent of time-dependent processes in living organisms

or

What is the *shape* of an equation?

## BIO-341 Dynamical systems in biology 2024

Julian Shillcock, julian.shillcock@epfl.ch School of Life Sciences, LBM@EPFL

Felix Naef School of Life Sciences, IBI@EPFL

Computational biology, modelling, bioinformatics, gene regulation, biological oscillators, circadian rhythm, chronobiology

responsible assistant: eliane.duperrex@epfl.ch

14 lectures (2 hour lecture + 2 hours exercises per week, 4 credits)

## **Organisation Autumn 2024**

#### Lectures

- Tuesday 15.15-17h, Room **CM**<sup>1</sup>**4**
- Course notes (PDF, etc) on Moodle

#### Exercises

- Friday 10-12h CO 021, CO 023
- Ed (cf. Moodle Forum)
  - Asynchronous discussion channel
- Exercises/Jupyter notebook/python tutorials on moodle

## PDF notes (moodle)

http://moodle.epfl.ch (ModelBio, enrollment key: modelbio99, but you should already be added)

- exercises + solutions (PDFs, jupyter notebooks)
- course notes in PDF + supplementary material
- Ed discussion forum on moodle
- tricky concept(s) for each lecture (not the only important point, just the one(s) that seem difficult)

### **Books**

- A.W. Murray, Mathematical Biology (Springer)
- S. Strogatz, Nonlinear Dynamics and Chaos (Perseus)

  (Copies are available in the section use them! it has many good examples)

#### **Exercises**

- 12 sets
  - Theory (pencil and paper)
  - Programming (jupyter-notebooks)
  - Appear on moodle each week after lecture, solutions posted after Friday's exercise
- The exercises are crucial in order to pass the written exam (which is pencil and paper only!)

```
Assistants (2 PhD students + 4 SA):
Responsible person:
Eliane.duperrex@epfl.ch
```

| #            | Date                                  | Content                                                                                                                                                                                                                                                                                                                                | Exercise                                                                                                                             |
|--------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1            | Sep 10                                | Dynamical systems in 1D, fixed points; linear stability analysis; <b>Graphs 1 and 2, Recipe in 1D</b>                                                                                                                                                                                                                                  | Growth models in 1D,<br>Gompertz model                                                                                               |
| 2            | Sep 17                                | Population models; logistic equation; 2 alleles problem                                                                                                                                                                                                                                                                                | Allee effect, dimers                                                                                                                 |
| 3            | Sep 24                                | Autocat. 1D genetic switch; hysteresis; Newton's method for finding zeroes of a function                                                                                                                                                                                                                                               | Insect outbreaks                                                                                                                     |
| 4            | Oct 1                                 | Linear 2D systems; phase portraits; classification of fixed points; <b>Recipe for linear systems in 2D;</b>                                                                                                                                                                                                                            | Linear 2D systems, gene networks                                                                                                     |
| 5            | Oct 8                                 | Non-linear 2D systems; Jacobian at a fixed point; Euler and Runge-Kutta numerical integration schemes                                                                                                                                                                                                                                  | First graded exercise (1 week allowed)                                                                                               |
| 6            | Oct 15                                | Non-linear 2D systems; populations, spirals; <b>Recipe for non-linear systems in 2D</b>                                                                                                                                                                                                                                                | Population dynamics with a limit cycle                                                                                               |
|              |                                       |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |
|              | Oct 22                                | Semester break - no lecture / exercise                                                                                                                                                                                                                                                                                                 |                                                                                                                                      |
| 7            | Oct 22<br>Oct 29                      | Semester break - no lecture / exercise<br>Limit cycles in 2D; Poincaré-Bendixson theorem;<br>Biological oscillators (Selkow model)                                                                                                                                                                                                     | Biochemical circuit with feedback                                                                                                    |
| 7            |                                       | Limit cycles in 2D; Poincaré-Bendixson theorem;                                                                                                                                                                                                                                                                                        | Biochemical circuit with                                                                                                             |
| ·            | Oct 29                                | Limit cycles in 2D; Poincaré-Bendixson theorem;<br>Biological oscillators (Selkow model)<br>Bifurcations in 1D and 2D; saddlenode, transcritical,                                                                                                                                                                                      | Biochemical circuit with feedback                                                                                                    |
| 8            | Oct 29<br>Nov 5                       | Limit cycles in 2D; Poincaré-Bendixson theorem;<br>Biological oscillators (Selkow model)<br>Bifurcations in 1D and 2D; saddlenode, transcritical,<br>pitchfork; simple 2D model                                                                                                                                                        | Biochemical circuit with feedback Bifurcations                                                                                       |
| 8            | Oct 29  Nov 5  Nov 12  Nov 19         | Limit cycles in 2D; Poincaré-Bendixson theorem;<br>Biological oscillators (Selkow model)<br>Bifurcations in 1D and 2D; saddlenode, transcritical,<br>pitchfork; simple 2D model<br>Genetic control system in 2D                                                                                                                        | Biochemical circuit with feedback Bifurcations van der Pol oscillator Second graded exercise                                         |
| 8 9 10       | Oct 29  Nov 5  Nov 12  Nov 19         | Limit cycles in 2D; Poincaré-Bendixson theorem; Biological oscillators (Selkow model)  Bifurcations in 1D and 2D; saddlenode, transcritical, pitchfork; simple 2D model  Genetic control system in 2D  Forced oscillators, entrainment (Felix Naef)                                                                                    | Biochemical circuit with feedback Bifurcations  van der Pol oscillator Second graded exercise (1 week allowed)                       |
| 8<br>9<br>10 | Oct 29  Nov 5  Nov 12  Nov 19  Nov 26 | Limit cycles in 2D; Poincaré-Bendixson theorem; Biological oscillators (Selkow model)  Bifurcations in 1D and 2D; saddlenode, transcritical, pitchfork; simple 2D model  Genetic control system in 2D  Forced oscillators, entrainment (Felix Naef)  Kuramoto model (Felix Naef)  Hopf bifurcation in 2D; Super- and sub-critical Hopf | Biochemical circuit with feedback Bifurcations  van der Pol oscillator  Second graded exercise (1 week allowed)  Model exam question |

## Learning objectives

- Understand the basics of dynamical systems in 1D and 2D, in particular the qualitative analysis of ordinary differential equations (ODE): why? because different physical systems map to the same model
- Introduction to modelling in biology
   ⇒ systems biology:
   How do you apply mathematical, physical, and computational tools in biology?
- Interdisciplinarity, the course combines elements of mathematics, physics, biology, and numerical analysis (in the exercises)
- Learn how to construct dynamical models of simple biological processes, identify their dynamics and dependence on parameters;
- This course lays the foundation for learning quantitative biology, and synthetic biology (BIOENG-320, project iGEM)

## **Prerequisites**

- analysis, linear algebra
- biology, programming, physics

## Methods and techniques developed

- 1st order ordinary differential equations (ODE)
- qualitative (graphical) analysis of ODEs
- numerical simulations (cf. Numerical Analysis)
- programming in python, jupyter-notebooks

### **Evaluation**

- Final written exam in January 2025 (80% of grade)
- Graded exercises
  - 2 graded exercises (20% of the grade)
  - weeks 5-6 and 10-11, to be confirmed

Background quiz

Background quiz: go.epfl.ch/turningpoint

Session Id: julian23



All input is anonymous; data are stored outside CH

Break

## Difficulties? Silly mistakes? Tricky points?

These are NOT the only important points in the lecture, but experience has shown that some people forget them.

- Be able to relate Graph 1 to Graph 2, i.e., go from the vector field to trajectories
- Trajectories never cross (but do meet at nodes)
- Adjacent fixed points are always of opposite stability
- What about adjacent semi-stable fixed points?