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Dealing with Missing Data

We can either

I drop all data points that contain missing data.

Disadvantage: fewer data points.

I impute missing data with e.g. the mean or the median of that predictor.

Disadvantage: “wrong” data points.

I impute missing data with unsupervised learning tools, like matrix completion

(see later in the course).
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Removing Predictors

I Constant predictors should be removed.

I If multiple predictors are perfectly correlated, keep only one of them.

I One can also try to remove almost constant or almost perfectly correlated

predictors, but – WATCH OUT – this may introduce errors.

I If the response Y is known to be independent of a predictor X , i.e.
P(Y , X) = P(Y )P(X), it should be removed. In praxis, it is usually not known if
the response is really independent of a given predictor.
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Standardization

Standardization is a transformation that shifts the data such that its mean is 0 and

scales it such that its standard deviation is 1.

Formally: for data x1, . . . , xn with mean x̄ = 1
n
∑n

i=1 xi and

standard deviation σ =
√

1
n–1

∑n
i=1(xi – x̄)2 the standardized data is given by

x̃i = xi – x̄
σ
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Feature Representation

Idea: Instead of fitting linear regression on p predictors,
fit linear regression on q features of the original predicators.

Ŷ = θ0 + θ1H1 + θ2H2 + · · · + θqHq

with Hi = fi(X).
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Previous Examples: Polynomial Regression & Bag-of-Words

Make a method more flexible by adding features.

With one-dimensional input X (p = 1), Polynomial Regression can be written as

Ŷ = θ0 + θ1H1 + θ2H2 + · · · + θqHq

where Hi = fi(X) = X i

Bag-of-Words for the spam dataset can be seen as another example of feature

engineering, where Hi = normalized count of word i in email X .

Data Cleaning Feature Engineering Transformations of the Output
7



Categorical Predictors: Dummy Variables/One-Hot-Coding

Chicken weight as a function of time and diet.

Hi = 1 if diet X1 = i , otherwise Hi = 0.

For example, if x11 = 2

(h11, h12, h13, h14) = (0, 1,0,0)
Time Diet1 Diet2 Diet3 Diet4 Weight

0 1 0 0 0 134

2 1 0 0 0 145

4 1 0 0 0 160

0 0 1 0 0 124

2 0 1 0 0 139

Why not an integer code X1 ∈ {1,2,3,4} or
a binary code

X1 ∈ {(0,0), (1,0), (0, 1), (1, 1)} for diet?

I The pairwise Euclidean distances are

not the same (diet 1 is closer to diet 2

than to diet 4), which may be

nonsensical for the given data.

I Ŷ = f (X)may look more complicated
(non-linear) for the integer or binary

code than for the one-hot code.
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Categorical Predictors: Dummy Variables/One-Hot-Coding

When fitting a linear model with

intercept, one level (an arbitrarily

selected “standard” level) should be

dropped for each predictor; the

coefficients are interpreted as

change relative to the standard level.

E.g. gender (female or male),
treatment (1, 2 or 3)

Intercept Female Treat1 Treat2

1 1 0 0

1 1 0 1

1 1 0 0

1 0 1 0

1 0 0 0
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Splines
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A degree-d spline is a piecewise degree-d
polynomial, with continuity in derivatives up

to degree d – 1.

H1 = X , H2 = X2, . . . , Hd = Xd

H1+d = h(X , c1), . . . , HK+d = h(X , cK )

with knots c1, . . . , cK and

truncated power basis function:

h(x , c) =
{

(x – c)d x > c
0 otherwise

There are also other possibilities for the basis of a

degree-d spline. E.g. the B-spline basis (not
discussed here) has better numerical properties.

Data Cleaning Feature Engineering Transformations of the Output
10



Generalized Additive Model (GAM)

Ŷ = s1(X1) + s2(X2) + . . . + sp(Xp)

with splines si(Xi) =
∑

j βijHij .
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Respecting Neighbourhood Relationships

Suppose some predictor X1 is an angle between 0° and 360°.
If the values are taken as such, 2° looks more different from 359° than from 90° in

the sense that |2 - 359| > |2 - 90|.

Alternative: H1 = sin(X1), H2 = cos(X1)

In this representation 2° is much closer to 359° than to 90° in the sense that

‖(sin(2), cos(2)) – (sin(359), cos(359))‖ < ‖(sin(2), cos(2)) – (sin(90), cos(90))‖.
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Vector Features

XOR-Problem

Training Data

Logistic Regression fails:

There is no linear decision boundary.
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Vector Features

Project data to a higher dimensional space by computing the scalar products

between feature vectors w1, . . . , wq and input vectors xi and thresholding.

For example h21 = max(0, wT
1

x2).

Logistic Regression on the features

works.
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Quiz

1. For every classification problem with (non-linear) decision boundary and zero

irreducible noise there exists a feature representation such that logistic

regression on the features solves the classification problem without errors.

2. To fit a degree-d spline with K knots we use a feature representation and linear

regression with d + K + 1 parameters.

3. We want to predict the number of rented bicycles based on weather condition

(sunny, cloudy, foggy, rainy), wind speed, week day (Monday, Tuesday, etc.).

After one-hot coding relative to a standard level there are

A 3 B 10 C 12 D 13 predictors
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Gmail Priority Inbox in 2010
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Face Detection with Rectangle Features

The two most important features for face detection are shown. The first one is a

2-rectangles feature, the second one a 3-rectangles feature. The sum of the pixels which lie

within the white rectangles are subtracted from the sum of pixels in the black rectangles.

Rapid object detection using a boosted cascade of simple features

http://dx.doi.org/10.1109/CVPR.2001.990517
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Transformations of the Output: Changing the Noise Model

Applying linear regression to g-transformed outputs is equivalent to assuming a
“g-normal” distribution for the conditional data generator Y |X , i.e.

p(Y = y |X = x) = 1√
2πσ2

e– (g(y)–f (x))2

2σ2 (1)

For example: g(y) = log(y) = Y is log-normally distributed.

Instead of thinking about suitable transformations of the output,

it may be preferable to think about which distribution is most reasonable

for the conditional data generator Y |X /
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Suggested Reading

I 3.3.1 Qualitative Predictors
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