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Handwritten Digit Classification (MNIST)

HECIANENEINEEESE

our goal: assign the correct digit class to images
504192131435

input X: 28x28 = 784 pixels with values between O (black) and 1 (white)
output Y: digitclass O,1,...,9
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Spam Detection with the Enron Dataset

ham

spam

Subject: follow up

here ' s a question i ' ve been wanting to ask
you, are you feeling down but too embarrassed
togotothe doctogetyourm/ed’s?

here ' s the answer , forget about your local p
harm . acy and the long waits , visits and em-
barassments . . do it all in the privacy of your
own home , right now . http : // chopin . manil-
amana. com/ p /test / duetit’ s simply the
best and most private way to obtain the stuff you
need without all the red tape .

Subject: darrin presto

amy :

please follow up as soon as possible with dar-
rin presto regarding a real time interview . i for-
warded his resume to you last week . he can be
reached at 509 - 946 - 7879

thanks

greg

Our goal: classify new emails as spam or “ham” (not spam).
input X: sequences of characters (emails), output Y: label spam or ham
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Wind Speed Prediction

» SwissMeteo data: hourly measurements for 5 years
from different stations (Bern, Basel, Luzern, Lugano, etc.).

» Our goal: given measurements at different stations,
predict wind speed in Luzern 5 hours later.
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Wind Speed Prediction

time
xi = 2015010100

X = 2017123123

>
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BAS_pressure LUG_pressure ... LUZ_pressure LUZ_wind_peak_in5h
X9 = 9971 x3=998.6 ... Xip = 980.0 vy =155
Xoo = 9973 Xo3 = 9988 e sz = 9799 Yo = 130
Xpo = 972.7 x3 =9815 ... Xnp = 957.5 yn =19

p input variables X = (X;, Xp, ..., Xp)
e.g. X time, Xy BAS_pressure, Xg LUG_pressure
also called: predictors, independent variables, features

output variable Y e.g. LUZ_wind_peak_in5h
also called: response, dependent variable

n measurements or data points



Always Look at Raw Data!

1500)

» on diagonal: 1D histogram

BAS_pressure

» lower triangle: scatter plot & trend line

NN\

» upper triangle: 2D histogram

Observations

1. LUZ_wind_peak_in5h has a long tail.

2. Forlow pressures there are outliers of
strong wind.

3. Pressure in Basel and Luzern is highly

H

2 | d

= correlated.
BAS_pressure LUG_pressure LUZ_pressure LUZ_wind_peak
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Wind Speed Prediction

100

LUZ_wind_peak [km/h]

LUZ_pressure [hPa]

» The higher the pressure in Luzern, the less probable it is to have strong winds.
» No function LUZ_wind_peak_in5h = f(LUZ_pressure) can describe this data.

See also https://bio322.epfl.ch/notebooks/supervised_learning.html
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https://bio322.epfl.ch/notebooks/supervised_learning.html

Your Observations

What are the commonalities and the differences between these three datasets?
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Probabilities & Expectations

» random variable/vector

» probability

» probability density function
> joint probability

» conditional probability

» expectation

» conditional expectation

average

>
E P F L Ige:tg Generating Process o



Data Generating Processes

It is useful to think of our datasets as samples from data generating processes
for the input X and the conditional output Y[X.

P(X,Y)= P(Y|X) P(X)
—— —— N~

joint conditional input

» MNIST X: people write digits — people take standardized photos thereof.
Y|IX: different people label the same photo X.

» Spam X: people write emails.
Y|X: different people classify the same email X as spam or not.

» Weather X: the weather acts on sensors in weather stations.
YIX: the weather evolves from X and is measured again 5 hours later.

Using samples from these data generating processes, supervised learning aims at learning
something about the conditional processes, i.e how Y depends on X.

= - Data Generating Process
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How Does Supervised Learning Work?

Function Family
» We change the parameters.

» The machine computes y
given parameters 6 and x.

For example
y = fo(x) = b + b1x

1< When we change the
parameters 6y and 64, we
change the way y depends on x.

E P F L How Does Supervised Learning Work?
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How Does Supervised Learning Work?

Loss Minimizing Machine
» We specify
1. the training data
2. the function family
(model)
3. theloss function L(y, ¥)
4. the optimizer
» The machine changes the
parameters with the help of
the optimizer until the loss
is minimal.

frainig dedo D = ((2), (28, (e, 1),(09), (7,16}, (3,20)) , ,
For example: linear regression

[l = ] How Does Supervised Learning Work?
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Blackboard: Linear Regression as a Loss Minimizing Machine

Duta._Geserating Process Gppmizer. . Defautt

y=Ix-1+¢ , Fle]=0 Varle]=0"*

5 /\__ /\_ _ . 2
Soluton: b,=-1,6 =225, L(8)=20C

Training Data S
(re=0,y=0), b2 pot), (-2 1 -3) S ] = (2] + 7*
= 54 = "ro a
Funchior Famiby 4 % E[éx.,/;/f st/::.;l&.) (025%,) +
y=6+6x v Tt Dt
Tt Lafa.

LoSs Function =
LB)-Len8)= 3 2 (i -5)= A2 18-
2(-1-gf+ (4-4-20) +(3-6-29)7)

2] ((Xq =1, Vo 0), (xz :2/ Yz =3)r (’C‘ =3 yg‘S)/ (XI/.= ﬂ/}’;:‘ﬂ)
> (Epre Ten Las = F(015%+ 45 4036 0P)
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Training Loss and Test Loss

» Training Set D: Data used by the machine to tune the parameters.
» Training Loss of Function f: L(f, D) = % S Lyi, £(x7)
» Test Loss of Function 7 at x for a Conditional Data Generating Process:
Eyx [L(Y, f(x))] = expected loss under the conditional generating process.
» Test Loss of Function f for a Joint Data Generating Process:
Ex v [L(Y, f(X))] = expected loss under the joint generating process.
We would like to minimize this!
Usually we do not know P(X, Y'), so we want to approximate this with samples:
» Test Set Dist: Data from the same generating process as the training set,
not used for parameter fitting.
» Test Loss of Function f for a Test Set Diesi: L(f, Diest) = Same computation
as for the training loss but for a test set.
This is an approximation of the test loss for the joint process.

E P F L How Does Supervised Learning Work?
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Correct or wrong?

r
=1

1. Assume we split the MNIST dataset into 60’000 images for training and 10'000
images for testing. The test loss of a fitted function f for this test set is an
approximation of

A) The test loss of f at x for the conditional data generating process

B) The test loss of f for the joint data generating process

C) neither nor.

. For the weather dataset we do not know the data generating process. Therefore it is
impossible to compute the test loss of a function f for the joint data generating
process.

. The training loss of a function f is typically

A) larger than B) equal to C) smaller than
the test loss of the function f for a test set.

How Does Supervised Learning Work?
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Which Loss Functions Should We Use?

» |s the mean squared error always a good 10ss?
» What kind of loss would be good in a classification setting (e.g. MNIST)?

» How should we choose the loss when we know something about the noise
distribution?

All these questions have a straight-forward answer, if we use a family of probability
distributions (instead of a family of functions) and estimate the parameters with a
maximum likelihood approach (instead of minimizing a hand-picked loss).

E P F L How Does Supervised Learning Work?
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How Does Supervised Learning Work?

M{ Likelihood Maximizing Machine
X .
Pméaé,-&-ﬁ, » We specify

1. the training data
2. the family of probability
distributions (model)
3. the optimizer
» The machine changes the

parameters with the help of
the optimizer until the
likelihood of the parameters
is maximal.

trainig deo D = (2, (xS L), (50 )
For example: linear regression

E P F L How Does Supervised Learning Work?
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The Likelihood Function

For a family of conditional probability distributions P(y|x, #) and training data
D = ((x1, y1), (x20,¥2), - .., (xn, yn)) the likelihood function is defined as

n

«0) =11 Plyilxi.0).
i=1
This is the probability of all the responses y; given all the inputs x;

for a given value of the parameters 6.
Often it is more convenient to work with the mean log-likelihood function

1 1T
() =~ log £(0) = > " log P(yilx;., 0)
i=1

E P F L How Does Supervised Learning Work?
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The log-likelihood is more convenient, because (math argument:) some proofs are easier with the log,
as you can see in exercise 1 of this week, and (numerics argument:) products of small numbers (as in
£(9)) become quickly smaller than the smallest representable 64-bit floating point number, whereas
the sum of the log of small numbers remains a reasonable 64-bit floating point number.

Note that the likelihood function and the log-likelihood function have the maximum at the same argu-
ment value, i.e. arg maxg £(6) = arg maxg log(¢(6)), because the log is a monotonic function.



Linear Regression from the Maximum-Likelihood Perspective

» There are many possibilities how to parametrize the conditional distribution.
» If one chooses a linear function for the mean of a normal distribution,

- Bo—ﬁ1x )
252

P(yilxi, Bo, B, o) =

VZro

the maximum-likelihood solution for g and 61 is the same as the least squared

error solution of linear regression, i.e. 5 = )<<y 2 ,ﬁo = (y) = By(x).

. . . . 1T A
» The maximum likelihood estimate of o is 2 = — > (vi-Bo- Bix)?
n
i=1
> See example on the website and proof in exercise 1.

E P F L How Does Supervised Learning Work?
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Wind Speed Prediction

10 .: S m— » Training Set: Hourly data 2015-2018

E . » Training Loss (rmse): 10.0 km/h
é . » Test Set: Hourly data 2019-2020
5 » Test Loss (rmse): 11.5 km/h

root-mean-squared error:

920 940 960 980 1 n
LUZ_pressure [hPa] _ a2
mse =, | — = 9i)2.
§ =00 + Oix r n ;(YI i)
0o = 346 km/h, 6; = -0.344 (km/h)/hPa

E P F L Application of Linear Regression
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Application of Linear Regression

y=1Ff(x)=f(x.x0,...,xp) = Bo + Byxy + Boxo + - + Bpxp

Often the output correlates with
multiple factors.

7 T Xip So
9 Toxor - xop B . For example:
_ = _ _ _ x: pressure in Luzern
: Do : : : xo: temperature in Luzern
N 1 x X X3! pressure in Basel
Yn nl P/ Bp x4: pressure in Lugano
etc.

Application of Linear Regression
0000000 24
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Application of Linear Regression Example: p =2, n = 20

data & function loss

|2.5

—0‘:5 0.0 uls 1.0 ;0.5
Bo
Multiple Linear Regression finds the plane closest to the data.
Closeness is measured by the sum (or the mean) of the square of the red vertical distances
between the plane and the data.

E P F L Application of Linear Regression
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Multiple Linear Regression for Wind Speed Prediction

predictor name

Interpretation
An increase of one hPa of LUZ_pressure

fitted parameter correlates with a decrease of the expected

LUZ_pressure
PUY_pressure
BAS_precipitation

LUZ _temperature
GVE_pressure

c=PrL

wind speed by 2.79 km/h, if all other

-2.79 (km/hy/hPa measurements remain the same.
-2.39 (km/h)/hPa

-0.66 (km/(h)/mm Evaluation

: » Training Set: Hourly data 2015-2018
0.87 (km/h)/C » Training Loss (rmse): 81km/h

3.95 (km/h)/hPa » Test Set: Hourly data 2019-2020

» Test Loss (rmse). 8.9 km/h

Application of Linear Regression
0000e00
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Summary

We use a training set to find a conditional distribution that captures some regularities of the
conditional data generation process. The goal is to find a conditional distribution that minimizes the
test loss of the joint data generation process. With a test set we can assess how close we are at
reaching this goal.

Supervised Learning as Loss Minimization

Supervised Learning as Likelihood Maximization

We provide
1. training data
2. function family
3. loss function
4. optimizer

It is not (always) obvious what kind of loss function to
take for classification problems or regression problems
with a specific noise distributions

=PrFL

We provide
1. training data
2. probability distribution family
3. optimizer

The negative log-likelihood function of the parameters
implicitly defines a loss function.

We will see that we take the binomial for binary
classification problems and the categorical for other
classification problems. Regression with other noise

distribution is also possible.

Application of Linear Regression
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Suggested Reading

The following chapters from “An Introduction to Statistical Learning” (second
edition, https://www.statlearning.com)are complementary to the material

presented in this lecture. It is not mandatory to read them, but maybe it helps to
better understand the material of this lecture.

» 3.1Simple Linear Regression
» 3.2 Multiple Linear Regression

E P F L Application of Linear Regression
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