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When Linear Models Are Too Flexible

In the old days

Typically n > p (much more data than predictors)

For example: predict blood pressure based on age, gender and body mass index (BMI)

(e.g. n = 200 patients, p = 3).

Nowadays: Big Data

Often n ≈ p or n < p
For example: predict blood pressure based on

500000 single nucleotide polymorphisms (SNP)

(n = 200, p = 500000).

⇒ Linear Model perfectly fits the training data.
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Making Linear Models Less Flexible

Idea 1: Fix some parameters at zero

ŷ = f (x) = f (x1, x2, . . . , xp) = β0 +
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Problem: Many different models to fit;
(p+1

m
)
combinations of m non-fixed parameters.

Idea 2: constrain the parameters

Minimize the original loss L(β) under the constraint ‖β‖2
2

=
∑p

i=1
β2i ≤ S .

This is equivalent to replacing the original loss L(β) by
LL2(β) = L(β) + λ‖β‖2

2

Note: idea 2 does not put the parameters to zero. Instead it decreases the flexibility by

restricting the space of possible parameter values.
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Ridge Regression (L2 Regularization)

LL2(θ) = L(θ) + λ‖θ‖22

with regularization constant λ and (squared) L2 norm ‖θ‖2
2

=
∑p

i=1
θ2i .

1. The regularization constant λ is a hyper-parameter.

2. Often the intercept θ0 is not regularized.

3. If λ = 0: original loss (no penalty)

4. The larger λ, the stronger the impact of the penalty on the result.

5. With increasing λ the model becomes less flexible.

6. With increasing λ all parameters tend to zero; it happens rarely that one is exactly zero.
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Lasso (L1 Regularization)

LL1(θ) = L(θ) + λ‖θ‖1

with regularization constant λ and L1 norm ‖θ‖1 =
∑p

i=1
|θi |.

Points 1-5 from ridge regression are also valid for the Lasso. However:

6. With large λ some parameters are exactly zero (in contrast to ridge regression).
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Quiz

I The Lasso tends to have larger variance (when fitted on different training sets from the

same data generator) but smaller bias (relative to the true data generator) than linear

regression.

I Indicate which is correct: as we increase S from 0 to a large value in L2 regularized

linear regression the training error will be

A) inverted U shape. B) U shape.

C) steadily increasing. D) steadily decreasing. E) constant.

I Indicate which is correct: as we increase S from 0 to a large value in L2 regularized

linear regression the test error will be

A) inverted U shape. B) U shape.

C) steadily increasing. D) steadily decreasing. E) constant.
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Analytical Solutions for Simple Linear Regression

Notation: 〈x〉 = 1
n
∑n

i=1 xi

Ridge Regression

L(θ,λ) = 〈(y – θ0 – θ1x)2〉 + λθ21

θ1 = 〈xy〉 – 〈x〉〈y〉
〈x2〉 – 〈x〉2 + λ

, θ0 = 〈y〉 – θ1〈x〉

Lasso

L(θ,λ) = 1

2
〈(y – θ0 – θ1x)2〉 + λ|θ1|

θ1 = 〈xy〉 – 〈x〉〈y〉 – sign(θ1)λ
〈x2〉 – 〈x〉2

or 0 if |〈xy〉 – 〈x〉〈y〉| < λ
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An Alternative Formulation of Regularization

Thanks to a result from constraint optimization (see Karush-Kuhn-Tucker conditions, a

generalization of Lagrange multipliers) the above formulations of Ridge Regression and the

Lasso are equivalent to a constraint optimization problem:

Ridge Regression

minimize L(θ) under the constraint that ‖θ‖2
2
≤ S .

The parameters are confined to a p-ball of radius S with center at the origin.

Lasso

minimize L(θ) under the constraint that ‖θ‖1 ≤ S .
The parameters are confined to a hypercube with edge length S ,

center at the origin and corners on the axes.

S is a (complicated) function of λ and the original loss L(θ).
With increasing S the model becomes more flexible.
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Standardized Inputs for Regularization

Problem

Assume we find in multiple linear regression on the weather data the following parameters

X1 LUZ_pressure [hPa] θ1 = –1 [km/h/hPa]

X2 LUZ_temperature [°C] θ2 = 0.5 [km/h/°C]

We could have measured the pressure in Pa and get the equivalent result

X1 LUZ_pressure [Pa] θ1 = –1/100 [km/h/Pa]

X2 LUZ_temperature [°C] θ2 = 0.5 [km/h/°C]

With regularization λ(θ2
1

+ θ2
2
) we would get different results for measurements in hPa and

in Pa, because θ1 contributes less to the penalty in the latter case.

Solution

Standardize all predictors, such that they have mean 0 and variance 1:

X̃i = (Xi – X̄i )/
√
Var(Xi )
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Scaling of the Regularization Constant with n

With total loss L(θ) =
∑n

i=1 `(yi , f (xi )) + λ‖θ‖2
2

the effective regularization depends on the size of the data set.

This is not the case, with average loss

L(θ) = 1

n

n∑
i=1

`(yi , f (xi )) + λ‖θ‖22 (1)

or (equivalently) scaled regularization term

L(θ) =
n∑

i=1

`(yi , f (xi )) + n · λ‖θ‖22 (2)

Version Eq. 1 or Eq. 2 is usually implemented in software packages like scikit-learn or

MLJLinearModels.jl. Check the documentation if unsure!
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Polynomial Ridge Regression

d = 20,λ = 0 d = 20,λ = 10–4

With a little bit of L2 regularization (λ = 10–4)
one can prevent overfitting of polynomials with high degrees.
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Multiple Logistic Ridge Regression on the Spam Data

n = 2000 emails, p = 801 features (size of the lexicon)

Without regularization

training misclassification rate: 0.0015

test misclassification rate: 0.048

With L2 regularization

training misclassification rate: 0.013

test misclassification rate: 0.041
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The Lasso Path for the Weather Data

As we lower λ (from right to left), BER_wind_peak is the first non-zero

factor, BAS_wind_peak the second and LUZ_wind_mean the third.

The Lasso path is

useful to identify the

most important

predictors.

There are specialized

efficient methods to

compute the Lasso

path.
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Summary

I Regularization allows to lower the flexibility of a model by restricting the

parameters to certain areas of the parameter space.

I L1 regularization leads to sparse models with some parameters exactly zero

⇒ great for interpretability.
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Suggested Reading

I 6.2 Shrinkage Methods

I 6.4 Considerations in High Dimensions
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