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When Linear Models Are Too Flexible

In the old days

Typically n > p (much more data than predictors)

For example: predict blood pressure based on age, gender and body mass index (BMI)
(e.g. n =200 patients, p = 3).

Nowadays: Big Data g

Vi) is
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For example: predict blood pressure based on
500 000 single nucleotide polymorphisms (SNP)

SNP -
(n =200, p = 500 000). ) N
= Linear Model perfectly fits the training data. J \
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Making Linear Models Less Flexible

Idea 1: Fix some parameters at zero

J=F(x) = F(x1, %0, .. xp) 60—1—6%/ %/6—1—63&34— +yﬂ4+5pxp

Problem: Many different models to fit; p“ combinations of m non-fixed parameters.

Idea 2: constrain the parameters
Minimize the original loss L(8) under the constraint [|3[13 = 3P, 82 < S.

This is equivalent to replacing the original loss L(8) by
Lio(8) = L(B) + AlIBI13

Note: idea 2 does not put the parameters to zero. Instead it decreases the flexibility by
restricting the space of possible parameter values.
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Ridge Regression (L2 Regularization)

Lio(8) = L(8) + A]|6]3

with regularization constant \ and (squared) L2 norm ||9||§ = Zf:1 0,.2.

1. The regularization constant X is a hyper-parameter.

Often the intercept g is not regularized.

If A = O: original loss (no penalty)

The larger A, the stronger the impact of the penalty on the result.
With increasing A the model becomes less flexible.

O

With increasing A all parameters tend to zero; it happens rarely that one is exactly zero.
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Lasso (L1 Regularization)

Ly1(0) = L(O) + All0]l;

with regularization constant A and L1 norm |0y = Zf’:1 0]

Points 1-5 from ridge regression are also valid for the Lasso. However:

6. With large A some parameters are exactly zero (in contrast to ridge regression).
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» The Lasso tends to have larger variance (when fitted on different training sets from the
same data generator) but smaller bias (relative to the true data generator) than linear
regression.

=PrL

Indicate which is correct: as we increase S from O to a large value in L2 regularized
linear regression the training error will be

A) inverted U shape. B) U shape.

C) steadily increasing. D) steadily decreasing. E) constant.

Indicate which is correct: as we increase S from O to a large value in L2 regularized
linear regression the test error will be

A) inverted U shape. B) U shape.
C) steadily increasing. D) steadily decreasing. E) constant.

Ridge Regression and the Lasso
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Analytical Solutions for Simple Linear Regression

Notation: (x) = 1 27, x;
Ridge Regression
L(8,)) = ((y -0 — 0x)?) + A6?

G‘ZM’ bo = (y) —61(x)

Lasso

L(8,2) = 3 ((y b0~ %) + N6

R e CLICRCTIEE
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An Alternative Formulation of Regularization

Thanks to a result from constraint optimization (see Karush-Kuhn-Tucker conditions, a
generalization of Lagrange multipliers) the above formulations of Ridge Regression and the
Lasso are equivalent to a constraint optimization problem:

Ridge Regression
minimize L(#) under the constraint that ||0||% <S.
The parameters are confined to a p-ball of radius S with center at the origin.

Lasso
minimize L(#) under the constraint that ||0])y < S.

The parameters are confined to a hypercube with edge length S,
center at the origin and corners on the axes.

S is a (complicated) function of A and the original loss L(8).
With increasing S the model becomes more flexible.

Comments on Regularization
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Standardized Inputs for Regularization

Problem
Assume we find in multiple linear regression on the weather data the following parameters
X LUZ_pressure [hPa] 6y =-1 [km/h/hPa]
Xy LUZ_temperature [°C] | 6, =0.5 [km/h/°C]
We could have measured the pressure in Pa and get the equivalent result
Xi LUZ_pressure [Pa] | #; =-1/100 [km/h/Pa]
Xy LUZ_temperature [°C] 6, =0.5 [km/h/°C]

With regularization )\(012 + 0%) we would get different results for measurements in hPa and
in Pa, because 6, contributes less to the penalty in the latter case.

Solution
Standardize all predictors, such that they have mean O and variance T:
X,' = (X, - X,')/\/V@I’(X,’)
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Scaling of the Regularization Constant with n

With total loss L(6) = Y7 £(y;, f(xi)) + A0]13
the effective regularization depends on the size of the data set.

This is not the case, with average loss
Zf(y, )+ Al6lI3 0
or (equivalently) scaled regularization term
Zf yi F(xi) + n - X015 @

Version Eq. 1or Eq. 2 is usually implemented in software packages like scikit-learn or
MLJLinearModels.jl. Check the documentation if unsure!
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Polynomial Ridge Regression

d=20,A=0 d=20,A2=10
1.00 - | @ training data ° 100 | | @ training data °
generator generator ®e o
— fit — fit
0.75 0.75
reducible error = 1.48
0.50 0.50
L
0.25 0.25
0.00 0.00 0o ©°
[]
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

With a little bit of L2 regularization (A = 1074
one can prevent overfitting of polynomials with high degrees.
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Multiple Logistic Ridge Regression on the Spam Data

n = 2000 emails, p = 801 features (size of the lexicon)

Without regularization

training misclassification rate: 0.0015
test misclassification rate: 0.048

With L2 regularization

training misclassification rate: 0.013
test misclassification rate: 0.041
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The Lasso Path for the Weather Data

— time

— BAS_wind_peak
— BAS_pressure

" — BAS_temperature
2k —— BAS_precipitation

— BAS_sunshine_duration The Lasso path |S
- BAS wind mean useful to identify the

— BAS_wind_direction

— GVE_wind_peak mOSt Important
T GVE pressure predictors.

—— GVE_temperature

~ GVE_precipitation There are specialized

1k —— GVE_sunshine_duration

p / — GVE_wind_mean effICIem me'[hOdS TO
L — GVE_W\-I'Id_diFECtiDn Compute the LaSSO
—— — GUT_wind_peak
——— GUT_pressure path.
_‘5 _I4 _12 (I, — GUT_temperature

log(A)
As we lower X (from right to left), BER_wind_peak is the first non-zero
factor, BAS_wind_peak the second and LUZ_wind_mean the third.
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» Regularization allows to lower the flexibility of a model by restricting the
parameters to certain areas of the parameter space.

» L1regularization leads to sparse models with some parameters exactly zero
= great for interpretability.
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Suggested Reading

» 6.2 Shrinkage Methods
» 6.4 Considerations in High Dimensions
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