# Regularization

Johanni Brea

Introduction to Machine Learning



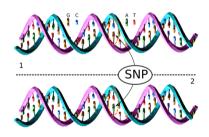
- 1. When Linear Models Are Too Flexible
- 2. Ridge Regression and the Lasso
- Comments on Regularization
- 4. Regularization Examples



### When Linear Models Are Too Flexible

#### In the old days

Typically n > p (much more data than predictors)


For example: predict blood pressure based on age, gender and body mass index (BMI) (e.g. n = 200 patients, p = 3).

#### Nowadays: Big Data

Often  $n \approx p$  or n < p

For example: predict blood pressure based on 500 000 single nucleotide polymorphisms (SNP) (n = 200, p = 500 000).

⇒ Linear Model perfectly fits the training data.



## Making Linear Models Less Flexible

### Idea 1: Fix some parameters at zero

$$\hat{y} = f(x) = f(x_1, x_2, \dots, x_p) = \beta_0 + \beta_1 + \beta_2 + \beta_3 x_3 + \dots + \beta_{p-1} x_{p-1} + \beta_p x_p$$

Problem: Many different models to fit;  $\binom{p+1}{m}$  combinations of m non-fixed parameters.

#### Idea 2: constrain the parameters

Minimize the original loss  $L(\beta)$  under the constraint  $\|\beta\|_2^2 = \sum_{i=1}^p \beta_i^2 \le S$ .

This is equivalent to replacing the original loss  $L(\beta)$  by

$$L_{L2}(\beta) = L(\beta) + \lambda \|\beta\|_2^2$$

Note: idea 2 does not put the parameters to zero. Instead it decreases the flexibility by restricting the space of possible parameter values.



- 1. When Linear Models Are Too Flexible
- 2. Ridge Regression and the Lasso
- Comments on Regularization
- 4. Regularization Examples



# Ridge Regression (L2 Regularization)

$$L_{L2}(\theta) = L(\theta) + \lambda \|\theta\|_2^2$$

with **regularization constant**  $\lambda$  and (squared) **L2 norm**  $\|\theta\|_2^2 = \sum_{i=1}^p \theta_i^2$ .

- 1. The regularization constant  $\lambda$  is a hyper-parameter.
- 2. Often the intercept  $\theta_{\rm O}$  is not regularized.
- 3. If  $\lambda = 0$ : original loss (no penalty)

When Linear Models Are Too Flexible

- 4. The larger  $\lambda$ , the stronger the impact of the penalty on the result.
- 5. With increasing  $\lambda$  the model becomes less flexible.
- 6. With increasing  $\lambda$  all parameters tend to zero; it happens rarely that one is exactly zero.

# Lasso (L1 Regularization)

$$L_{\mathsf{L}1}(\theta) = L(\theta) + \lambda \|\theta\|_1$$

with regularization constant  $\lambda$  and L1 norm  $\|\theta\|_1 = \sum_{i=1}^{p} |\theta_i|$ .

Points 1-5 from ridge regression are also valid for the Lasso. However:

6. With large  $\lambda$  some parameters are exactly zero (in contrast to ridge regression).



### Quiz

- ▶ The Lasso tends to have larger variance (when fitted on different training sets from the same data generator) but smaller bias (relative to the true data generator) than linear regression.
- Indicate which is correct: as we increase 5 from 0 to a large value in L2 regularized linear regression the training error will be
  - A) inverted U shape. B) U shape.
  - C) steadily increasing. D) steadily decreasing. E) constant.
- Indicate which is correct: as we increase 5 from 0 to a large value in L2 regularized linear regression the test error will be
  - A) inverted U shape. B) U shape.
  - C) steadily increasing. D) steadily decreasing. E) constant.



# Analytical Solutions for Simple Linear Regression

Notation: 
$$\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Ridge Regression and the Lasso

#### Ridge Regression

$$L(\theta, \lambda) = \langle (y - \theta_{O} - \theta_{1}x)^{2} \rangle + \lambda \theta_{1}^{2}$$

$$\theta_1 = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2 + \lambda}, \qquad \theta_0 = \langle y \rangle - \theta_1 \langle x \rangle$$

#### Lasso

$$L(\theta, \lambda) = \frac{1}{2} \langle (y - \theta_0 - \theta_1 x)^2 \rangle + \lambda |\theta_1|$$

$$\theta_1 = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle - \mathsf{sign}(\theta_1) \lambda}{\langle x^2 \rangle - \langle x \rangle^2}$$
 or 0 if  $|\langle xy \rangle - \langle x \rangle \langle y \rangle| < \lambda$ 



0000

- 1. When Linear Models Are Too Flexible
- 2. Ridge Regression and the Lasso
- 3. Comments on Regularization
- 4. Regularization Examples



## An Alternative Formulation of Regularization

Thanks to a result from constraint optimization (see Karush-Kuhn-Tucker conditions, a generalization of Lagrange multipliers) the above formulations of Ridge Regression and the Lasso are equivalent to a constraint optimization problem:

### Ridge Regression

minimize  $L(\theta)$  under the constraint that  $\|\theta\|_2^2 \le S$ . The parameters are confined to a p-ball of radius S with center at the origin.

#### Lasso

minimize  $L(\theta)$  under the constraint that  $\|\theta\|_1 \leq S$ .

The parameters are confined to a hypercube with edge length *S*, center at the origin and corners on the axes.

*S* is a (complicated) function of  $\lambda$  and the original loss  $L(\theta)$ . With increasing *S* the model becomes more flexible.



# Standardized Inputs for Regularization

#### **Problem**

Assume we find in multiple linear regression on the weather data the following parameters

$$X_1$$
 LUZ\_pressure [hPa]  $\theta_1 = -1$  [km/h/hPa]  $X_2$  LUZ\_temperature [°C]  $\theta_2 = 0.5$  [km/h/°C]

We could have measured the pressure in Pa and get the equivalent result

$$X_1$$
 LUZ\_pressure [Pa]  $\theta_1 = -1/100$  [km/h/Pa]  $X_2$  LUZ\_temperature [°C]  $\theta_2 = 0.5$  [km/h/°C]

With regularization  $\lambda(\theta_1^2+\theta_2^2)$  we would get different results for measurements in hPa and in Pa, because  $\bar{\theta}_1$  contributes less to the penalty in the latter case.

#### Solution

Standardize all predictors, such that they have mean 0 and variance 1:

$$\tilde{X}_i = (X_i - \bar{X}_i)/\sqrt{\operatorname{Var}(X_i)}$$



## Scaling of the Regularization Constant with n

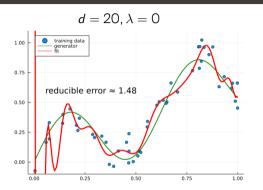
With total loss  $L(\theta) = \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \|\theta\|_2^2$ the effective regularization depends on the size of the data set.

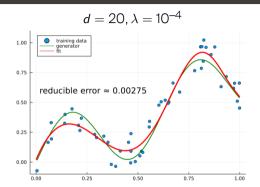
This is not the case, with average loss

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \|\theta\|_2^2$$
 (1)

or (equivalently) scaled regularization term

$$L(\theta) = \sum_{i=1}^{n} \ell(y_i, f(x_i)) + n \cdot \lambda \|\theta\|_2^2$$
 (2)


Version Eq. 1 or Eq. 2 is usually implemented in software packages like scikit-learn or MLJLinearModels.il. Check the documentation if unsure!




- 1. When Linear Models Are Too Flexible
- 2. Ridge Regression and the Lasso
- Comments on Regularization
- 4. Regularization Examples



# Polynomial Ridge Regression





With a little bit of L2 regularization ( $\lambda = 10^{-4}$ ) one can prevent overfitting of polynomials with high degrees.

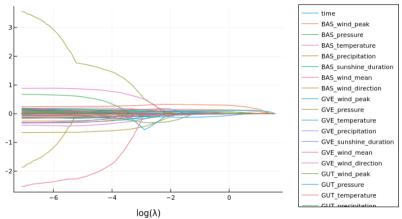
# Multiple Logistic Ridge Regression on the Spam Data

n = 2000 emails, p = 801 features (size of the lexicon)

#### Without regularization

training misclassification rate: 0.0015 test misclassification rate: 0.048

#### With L2 regularization


training misclassification rate: 0.013 test misclassification rate: 0.041



Regularization Examples

ററ്•റററ

### The Lasso Path for the Weather Data



The Lasso path is useful to identify the most important predictors.

There are specialized efficient methods to compute the Lasso path.

As we lower  $\lambda$  (from right to left), BER\_wind\_peak is the first non-zero factor, BAS wind peak the second and LUZ wind mean the third.

## Summary

- ▶ Regularization allows to lower the flexibility of a model by restricting the parameters to certain areas of the parameter space.
- L1 regularization leads to sparse models with some parameters exactly zero ⇒ great for interpretability.



Regularization Examples

ററ്ററ•റ

# **Suggested Reading**

- ▶ 6.2 Shrinkage Methods
- ▶ 6.4 Considerations in High Dimensions



Regularization Examples

00000