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Dimensionality Reduction

Sometimes we would like to plot some high-dimensional data in two dimensions,
e.g. to see if there are clusters in the data.

How should we represent the high-dimensional data in two dimensions?

Idea 1: Project the data to one of the planes spanned by the axes,
i.e. plot coordinate i versus coordinate j of the data points, e.g. in pair plots.

Idea 2: Project the data onto the plane spanned by the directions
along the largest variance of the data.
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First Principal Component
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2
column-wise zero mean x; = 15 >oimxij = 0.

First Principal Component 1 20@ g ¢1 a

Find the direction onto which the projection of / (;)21
the data has the highest variance. ol ( i i

i ; X ot K

(projection) scores z;; = (@1, xj) = ZJ’.’:1 Xij®j1 S oo =145
Find loadings ¢11, ¢4, . . ., ¢p1 that 4k D, @~ |

maximizel 27 22 X3
P11, Pt ) | | |
. p 2 _ !

under the constraint Zj:1 P = 1. -2 -1 0 1 2

EPFL e 3



Principal Component Analysis

Second Principal Component

Find the direction onto which the projection of 1}
the data has the highest variance under the

constraint that it is orthogonal to the first PC.

O - .
k-th Principal Component Find the direction
onto which the projection of the data has the 4l |
highest variance under the constraint that it is
orthogonal to the first kK —1 PCs.
) -‘1 0 i 2
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Biplots: Visualizing Scores and Loadings Simultaneously

Biplot
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First Principal Component Rewritten in Matrix Notation

7 = X

data X n x p matrix row i contains observation i
loadings ¢y p x 1columnvector first PC
scores  z nxT1columnvector first PC scores of all observation

- izl e ]
Find &7 that mﬂ)gm:l%esﬁzfa = me|1|>§1r|P:|%esﬁ¢1TX T X1

The solution of this optimization problem is the eigenvector of the
largest eigenvalue of the covariance matrix X T X.
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PCA in Matrix Notation and Relation to SVD

Z=Xo

data X nx pmatrix row i contains observation i
loadings ® p x pmatrix column j contains PC j
scores Z nx pmatrix column = scores of PC j for all observations

The columns of the loading matrix ¢ are eigenvectors of X T X i.e.
XTX¢i = \ipj or XTXd = dA with A = diag(Nq, .. ., Ap)-

PCA is closely linked to Singular Value Decomposition X = ULV T
where U and V are unitary matrices and X is a diagonal matrix. One
can show that (see exercises)

Z=UX and o=V
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PCA Provides Linear Subspaces Closest to the Data

Second principal component
0.0
I

T T T
-1.0 -0.5 0.0 0.5 1.0
First principal component

The data varies more within the plane than perpendicular to the plane.
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Connection Between the Two Interpretations of PCA

Maximize variance Minimize residuals
(squared distance) (squared distance)
of red dots in in this direction

this direction
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Reinterpretation of Loadings and Scores

Lossless transformation: change of basis

standard basis I p x p columns are standard basis vectors

data X nx p rows are coordinates of points in standard basis
loadings ¢ p X p columns are new basis vectors

scores Z=X® nxp rowsarecoordinates of points in new basis

reconstructon X =Z®T nxp rows are coordinates of points in standard basis

Lossy transformation: projection to lower-dimensional space
loadings o)} pxL L=1,..., pfirstcolumns of ® are new basis vectors
scores Z, =X®; nxL rowsarecoordinates of points in new basis
reconstruction X; = ZL<I>LT nx p reconstructed coordinates in standard basis

&, minimizes || X - X, o] |3.

cpe Linear Subspaces
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~ 4 X2 X1
Correct or wrong? 11 .
» The scores z; ~-1.1and z, ~ 0.1. o - e °
» The data has the highest variance in 8 L 1 2 }18 S
direction ¢y ~ (0.65,-0.55, 0.5). a JB7T o T
3

» The two-dimensional linear T 8 o
subspace that is closest to the data o -9

is parallel to the X1-X2-plane.. b
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Exploring the Wine Dataset
|

» 178 different wines from the same region in Italy were
chemically analyzed.

» 13 different measurements per wine: 1) Alcohol 2) Malic
acid 3) Ash 4) Alcalinity of ash 5) Magnesium 6) Total
phenols 7) Flavanoids 8) Nonflavanoid phenols 9)
Proanthocyanins 10) Color intensity 11) Hue 12)
0D280/0D315 of diluted wines 13) Proline

= = Wine Dataset
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Exploring the Wine Dataset
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Data: n =178, p =13
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Linear Subspaces in the Wine Data

First PC

The 3D plot is obtained by projecting the 13D data onto the linear 3D subspace that
is closest to the data. From there onwards we project onto the 2D and 1D
subspaces closest to the data to obtain the 2D and 1D plots.
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Clustering the Wine Dataset

K-means clustering

: &@ ) o . » The colors on in the image on the left
0f oL " s o e indicate the classes found by 3-means
| Ko o Xz o7 o cE R clustering.
§ ° o o o ) X
cux » The data actually came from wines of 3
e me T 27 X different cultivars. The red crosses
o ey indicate data points that actually came
I3 o °

from the red wine cultivar. All other
observations were “correctly” clustered
. (without having seen a single class

‘ ‘ ‘ ‘ ‘ label in the training set!)
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A Biplot of the Wine Data

-0.4 -0.2 0.0 0.2 0.4
L 1 1 1 1
Color intensity

Alconol PC1, PC2 scores of all observations in grey.

Loadings in red (axis and the top and right).

The first PC corresponds roughly to the total
level of phenols (with subtypes Flavanoids,
Non-Flavanoids and Proanthocyanins). The
[pe0IOD315 of diyipdyias LS Alcalinity of the ash is strongly correlated.

ranoid’phenols
© = Flavanoid: inity of-ash

Py
0.0

The second PC corresponds roughly to the
- e amount of ash, with e.g. the color intensity
7 strongly correlated.
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Scaling Matters

Scaled Unscaled
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The direction of highest variance may depend on the choice of units (meters versus
millimeters). It is common to preprocess each predictor to have mean O and variance 1.
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PCA Decorrelates

The covariance matrix of the scores is given by the diagonal matrix A
with the eigenvalues Ay, ..., Ap Of the covariance matrix X T X on the diagonal
(sorted from largest to smallest).

ZTZ=0"XTX0=dToA=A

n
O k#I
This means E Zjezj = 7
P e k=1
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How Many Principal Components Matter?

Proportion of Variance Explained (PVE) of PC m: PVEy, =
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How Many Principal Components Matter?

» The Proportion of Variance Explained is decreasing, i.e. PVE, > PVE,, ..

» Sometimes the first Kk components reach a cumulative proportion of variance
explained close to 1and all the other components do not add much anymore.

» The question of how many principal components matter is not well defined.

» In practice, we tend to look at the first few components in order to find
interesting patterns in the data.

» [f the signal is along the first few principal components and the noise
orthogonal to that, we can use this for compression and denoising.
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Denoising

raw data denoised reconstruction

voltage
voltage
o
~

-0.25

0 50 100 150
time time

This is an artificial dataset with noise. For the reconstruction we assume that the variance
along the first two principal components is the signal and the rest is noise, i.e. for the
reconstructionwe use L =2 and X; = Z,_d)LT.

Component Regression

Compression and Denoising ~ Lim
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Lossy Image Compression with PCA

‘ .vj ‘ghmh‘h‘qb ﬁgm J Idea: take each image as a 64 x 64 = 4096
SO EE e

dimensional vector, compute the first few
principal components ®; and scores Z; and

& muﬂm store the data in this format.
_ If L = 200 is sufficient, we store
= 4096 x 200 + 400 x 200 = 899200
=y values. This corresponds to a compression

- 1638/400
) o o factor of 899700 - If needed, we can
» N reconstruct the images X, = Z, ¢/

A dataset with n = 400 grayscale images of In general the compression ratio is
faces with p = 64 x 64 pixels. nxp
This corresponds to 400 x 642 = 1638'400 (p+n)xL
pixel values.

Compression and Denoising  Limitations of PCA

incipal Component Regression
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Lossy Image Compression with PCA

Original and Reconstruction with L = 200

orginal reconstruction

Loadings
PC1 PC 2 PC3 PC 4 PC5

z
4 -
THEE

PC 256 PC 257 PC 258 PC 259 PC 260

E PFL Largest Variance  Linear Subspaces ~ Wine Dataset ~ Compression and Denoising  Limitations of PCA  Principal Component Regression
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Limitations of PCA

Neighbourhood-relationships can get lost in PCA due to projections.

original 3D data projection onto X-Y PCA projection
15

@
®o o

i%gg x. s

. N0
&
[4] Fl I (] o
1 % g
7 h . ; h
=10
2 v, 5 °e
" -]
i) 17 s e
“lhag -‘%0'5% ° - °
‘g'mi-ﬂl.s ik -1.5-1.0-0.50.0 0.5 1.0 1.5 -3-2-10 1 2 3
X PC1

EPFL ptaton P .



Alternative 1: t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE)

» t-SNE tries to preserve local
neighbourhood-relationships,

_i*'.'& but the global structure disappears.
°l x 'g; » t-SNE is a gradient descent procedure to find
° low-dimensional coordinates with the
°r oolity, property that the probabilities of being
“"hﬁ neighbours in the low-dimensional space
ol L roughly match the probabilities of being
‘3 neighbours in the high-dimensional space.
20 » Details can be found here:

https://lvdmaaten.github.io/tsne and
https://distill.pub/2016/misread-tsne
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Alternative 2: UMAP

Uniform Manifold Approximation and Projection (UMAP)

,""* /;f‘ > UMAP also tries to preser\(e local
s ; neighbourhood-relationships,
5 vnv' - but the global structure disappears.
2 0l » It is usually faster than t-SNE.
- $ Jﬁ"" » Details can be found here:
» # Q.),'..m* https://github.com/lmcinnes/umap
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Limitations of PCA

Also in real data there may be clusters that cannot be seen in the first few PCs.

PCA on MNIST images
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t-SNE on MNIST images
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Limitations of PCA
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Species Delimitation with Unsupervised Machine Learning

Species Delimitation based on SNP data, dimensionality reduction and clustering:
if different methods find the same clusters, we can be somewhat confident
that the individual clusters are meaningful.

a) PCA + DAPC b) RF cMDS c) RF isoMDS
oy . B rD
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A demonstration of unsupervised machine learning in species delimitation, Derkarabetian et al. 2019
Limitations of PCA a0
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Principal Component Regression

Unsupervised Feature Learning

PCA can be used to reduce the dimensionality of the data
before supervised learning.

Instead of fitting y; = By + Byxj + + - + Bpxip fit
Yi =Bo + Bzi+ -+ Bmzim
with m < p.

In this case we can choose m with cross-validation.

E P F L Principal Component Regression
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Choosing the Number of PCs in PCR

Choosing a small number of PCs in PCR acts as a regularizer that reduces the variance but
may increase the bias

Lasso PCR
8 8 -
— bias"2
—— variance
3 4 — test S
L L
2 S 4 2 S
n — n —
o o -
T T T T T T T T T T T
5 -4 -3 -2 -1 0 0 10 20 30 40
log10(lambdas) ncomps
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PCR versus Ridge Regression and the Lasso

Typically the Lasso (L1) or Ridge Regression (L2) are at least as good as PCR.

Lasso PCR
0 . 0
— bias"2
< 4 — variance < -
— test
w w 7
7] ]
= o = o 4
— - - -
o — o —
T T T T T T T T T T T
-5 -4 -3 -2 -1 0 0 10 20 30 40
log10(lambdas) ncomps
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» Principal component analysis can be seen as
1. finding the directions of largest variance in the data,
2. finding linear subspaces that are closest to the data.
» The scores and loadings of PCA can be computed with Singular Value
Decomposition or by finding the eigenvectors of the covariance matrix.
» Data with different units should be rescaled before applying PCA.
» The covariance matrix of the scores is diagonal.
» The (cumulative) proportion of variance explained can be used to see roughly
how many PCs matter.
» PCA can fail to represent clusters faithfully; t-SNE may be more useful in this
case.
» PCA can be used to reduce the dimensionality of a supervised learning
problem, with the number of PCs acting as a regularization tuning parameter.

E P F L Principal Component Regression
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Suggested Reading

» 12.2 Principal Components Analysis
» 6.3.1 Principal Components Regression
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