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Optimization in Machine Learning

» For linear regression there is an analytical solution that minimizes the RMSE.
» Forlogistic regression (and most other methods) there is no analytical solution.
» For many models there are specialized optimizers.

» There is a course at EPFL on Optimization for machine learning
https://edu.epfl.ch/coursebook/en/optimization-for-machine-1learning-CS-439

» A simple optimizer that works usually well for parametric models is
gradient descent.
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Gradient Descent

1. Input: loss function L, initial guess 5(0) = (B(()O) ..... Bf,o))
learning rate n, maximal number of steps T.
2. Fort=1,..., T

3. Return g(T)

Automatic Differentiation software uses the chain rule and symbolic derivatives for
primitive functions, to compute the derivative of almost any code we write.
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Practical Considerations

» Choosing a good learning rate can be tricky.

» Scaling the loss function has an impact on gradient descent.
It is e.g. advisable to have L independent of the size of the data set, e.g.
replace L = "7 4(vi— Bx)2 by L= 1 S71(yi - Bx;)>.

» Additive constants in the loss function L that do not depend on the parameters

have no impact on gradient descent; they are often removed from the loss
function.

» Preprocessing the input and output may have a strong effect on gradient
descent. There are domain-specific “best preprocessing practices” (e.g. for
images or audio). Standardizing inputs (and outputs in the case of regression)
is an option.
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Convex and Non-Convex Loss Functions

Globally Convex Loss Function Non-Convex Loss Function
Loss function has a unique global minimum Loss function has multiple local minima
From any initial condition there is a path The solution of gradient descent depends
towards the global minimum along which the on the initial condition.

loss is monotonically decreasing. The same
solution is found by gradient descent
independently of the initial condition.

The loss function of (multiple) (logistic) linear
regression (with L1 or L2 regularization) is
globally convex.
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Stochastic Gradient Descent (SGD)

Computing the loss over all samples T, .. ., n can be computationally costly.

A subset of the training data may be sufficient to estimate the gradient direction.
1. Input: loss func’uon L |n|tial guess

BO) = (5 ..... 5 where L(3;Z) is the loss function
learning rate n, maximal number of steps T, evaluated on the training samples
batch size B. with indices in Z, e.g.
2. Fort=1,..., T 2
B LB = 53 (w-xT5)
> Determme batch of training indices 7 "B 7
S — (t=1).
' 77 Bi (ﬁ ) Example B =5
> ﬁgt) _ /B(t—1) _6
i i I batch 1 batch 2 batch3 | b
3. Return (T 711831393 | 9142 26 31

E P F L %tgggastic Gradient Descent 5



Terminology

» batchsize B (hyper-parameter). number of samples in each batch. Sometimes
this is also called minibatch size.
» epoch: collection of update steps that go once through the entire dataset.
» number of epochs (hyper-parameter). number of times to go through the
entire dataset.
Example: If we choose for a dataset of size n = 1000 a batchsize of B = 20 and we
train for 30 epochs, there areintotal T = n/B x 30 = 50 x 30 = 1500 gradient
descent updated steps and each data point contributes 30 times to the
computation of partial derivatives.
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Example Learning Curve
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training data processed

The training loss on batches of size 32 is very variable. But if we look at the moving average
over the training loss of 50 subsequent batches, we see that stochastic gradient descent
drops to a fairly low loss after processing far less training data than gradient descent.
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Early Stopping

Start with small weights and stop gradient descent when validation loss starts to increase.

» At the beginning of

gradient descent all
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» The parameter values
found at early stopping
have usually a smaller
norm than the
000 o025 oso  oss 100 o O e parameter values with
input t the lowest training error.
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With a constant learning rate and a non-zero gradient, the training loss in gradient
decent is decreasing in every step.

In every step of gradient descent one can choose a learning rate larger than zero such
that the training loss is decreasing, unless the gradient is zero.

In every step of stochastic gradient descent one can choose a learning rate larger than
zero such that the training loss is decreasing, unless the gradient is zero.

For a training set of size n, computing the gradient in (standard) gradient descent takes
n/B times longer than computing the gradient in stochastic gradient descent with
batch size B.

Models found with early stopping tend to have a lower bias but a higher variance (when
fitted on different training sets from the same data generator) than models found
without early stopping.

Early Stopping
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Suggested Reading

» 10.7 Fitting a Neural Network (skip parts 10.71,10.7.3 and 10.7.4)
» 10.7.2 Regularization and Stochastic Gradient Descent
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