
Multi-Layer Perceptrons

Johanni Brea

Introduction to Machine Learning



Feature Engineering is great, but couldn’t it be automatized?

With smart features basically any problem can be solved by a linear method.

How should we find the smart features?

Idea: Let us take a more flexible function family and find “features” and “regression

coefficients” at the same time with gradient descent.

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
1



Table of Contents

1. Solving the XOR ProblemWithout Feature Engineering

2. Artificial Neurons

3. Multilayer Perceptrons

4. Regression with Multilayer Perceptrons

5. Classification with Multilayer Perceptrons

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
2



Recap: Vector-Features

XOR-Problem

Training Data

Logistic Regression fails:

There is no linear decision boundary.

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
3



Recap: Vector-Features

Project data to a higher dimensional space by computing the scalar products

between feature vectors w1, . . . , wq and input vectors xi and thresholding.

For example h21 = max(0, wT
1

x2).

Logistic Regression on the features

works.

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
4



Solving the XOR Problem without Feature Engineering

Logistic Regression: P(Y = 1|x ,β) = σ(β0 + β1x1 + · · ·βpxp)

Logistic Regression on features:

P(Y = 1|x ,β) = σ
(
β0 + β1 g(wT

1 x)︸ ︷︷ ︸
h1

+ · · ·βq g(wT
q x)︸ ︷︷ ︸

hq

)
with hand-picked feature vectors w1, . . . , wq and activation function

g(x) = relu(x) = max(0, x).

Idea

Why don’t we learn the features with gradient descent?

P(Y = 1|x ,β, w1, . . . , wq) = σ
(
β0 + β1g(wT

1
x) + · · ·βqg(wT

q x)
)

⇒ β̂, ŵ = arg min
β,w1,...,wq

–
n∑

i=1
log P(yi |xi ,β, w1, . . . , wq)

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
5



Solving the XOR Problem without Feature Engineering

It also works with learned features

I We just fitted our first neural network .

I The loss function has local minima;

gradient descent does not find for all

initial guesses a good solution.

I With more than 4 feature vectors,

gradient descent finds good solutions

for most initial guesses.

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
6



Table of Contents

1. Solving the XOR ProblemWithout Feature Engineering

2. Artificial Neurons

3. Multilayer Perceptrons

4. Regression with Multilayer Perceptrons

5. Classification with Multilayer Perceptrons

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
7



Artificial Neurons

Artificial neurons take a d-dimensional input x = (x1, . . . , xd)T and output a scalar

a = g(w0 + w1x1 + w2x2 + · · · + wdxd)
with parameters (or weights) w0, w1, . . . , wd and activation function g .

w0 is also called bias (instead of intercept).

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
8



Popular Activation Functions

rectified linear unit relu(x) = max(0, x) =
{

x x ≥ 0,
0 x < 0

sigmoid σ(x) = 1
1+e–x

tangent hyperbolic tanh(x)

softplus softplus(x) = log(exp(x) + 1)

heaviside

(perceptron)

H(x) =
{
1 x ≥ 0,
0 x < 0

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
9



Artificial relu-Neurons

a = relu(w0 + w1x) a = relu(w0 + w1x1 + w2x2)

x

a

–w0
w1

w1 > 0

–w0
w1

w1 < 0

2520

15

10

10

5

5

0

–4 –2 0 2 4
–5

0

x1

x 2

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
10



Table of Contents

1. Solving the XOR ProblemWithout Feature Engineering

2. Artificial Neurons

3. Multilayer Perceptrons

4. Regression with Multilayer Perceptrons

5. Classification with Multilayer Perceptrons

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
11



Multilayer Perceptrons

Multilayer Perceptrons (MLP) consist of multiple

neurons organized in layers 1,2, . . . , L.
Each layer has d(l) neurons and activation g(l).

output a(l)
k of k-th neuron in l-th layer

a(l)
k = g(l)

(
w(l)

k0 + w(l)
k1 a(l–1)

1
+ · · · + w(l)

kd(l–1)a
(l–1)
d(l–1)

)
input layer a(0)

k = xk . a(1) g(1)

a(2) g(2)

a(3) g(3)

g(4)

x

y

one input neuron x
one linear output neuron y

3 hidden layers with relu-neurons

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
12



Multilayer Perceptrons: Matrix Notation

a(l)
k = g(l)

(
w(l)

k0 + w(l)
k1 a(l–1)

1
+ · · · + w(l)

kd(l–1)a
(l–1)
d(l–1)

)
matrix notation a(l) = g(l)(b(l) + w(l)a(l–1))

with b(l)
k = w(l)

k0 .

For example the network on the previous slide can be written as

y = b(4) + w(4)relu
(

b(3) + w(3)relu
(

b(2) + w(2)relu(b(1) + w(1)x)
))

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
13



Multilayer Perceptrons

g(1) =relu, g(1) = tanh, g(2) = identity 2D input, g(1) = relu, g(2) = identity

x

y

–4 –2 0 2 4

–4

–2

0

2

4

–8

–6

–4

–4

–2

–2

0

0

2

2

4

4

6
8 10

12

14 16

18
20

22

x1

x 2
Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification

14



Depth versus Width

1 hidden layer with 5 neurons two hidden layers with 3 and 2 neurons

0 5

4

6

8

10

X

Y

0 5

2

4

X

Y

10+ 6 = 16 parameters 6+ 8+ 3 = 17 parameters

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
15



Quiz

I The number of input units in a neural network is equal to the number of training

samples.

I The activation of an artificial neuron with inputs x1 = 1, x2 = 3, x3 = 0, weights

w1 = 1, w2 = –1, w3 = 10, bias w0 = 1 and relu activation function is

A -1 B 0 C 1

I For a network with 3-dimensional input, 2 hidden layers of each 10 neurons and

one output neuron the number of free parameters (weights and biases) is

A 24 B 131 C 161

I The XOR problem could also be solved with g(1)(x) = x and g(2)(x) = σ(x)
(instead of g(1)(x) = relu(x) and g(2)(x) = σ(x)).

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
16



Table of Contents

1. Solving the XOR ProblemWithout Feature Engineering

2. Artificial Neurons

3. Multilayer Perceptrons

4. Regression with Multilayer Perceptrons

5. Classification with Multilayer Perceptrons

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
17



Regression with Multilayer Perceptrons

The output of the neural network is used to parametrize the conditional density.

The parameters are fitted with gradient descent

on the negative log-loglikelihood loss

– log `(θ) = –
n∑

i=1
log p(yi |xi , θ) .

For example: Assume the wind speed in Luzern is distributed normally around some mean

that correlates with the measurements done 5 hours earlier.

We take a neural network with as many input neurons as predictors, some hidden neurons

and one output neuron. Gradient descent finds the parameters such that the output activity

approaches the mean of the conditional density.

p(y |x) = 1√
2πσ

exp
(

– 1

2σ2

(
y – g(2)(b(2) + w(2)g(1)(b(1) + w(1)x))

)2)
Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification

18



Regression with Multilayer Perceptrons

A neural network with more outputs can be used to predict more complex densities.

Example: Assume the wind speed in Luzern is log-normally distributed with mean

and standard deviation correlating with the pressure in Luzern.

We take a neural network with one input neuron, some hidden neurons and two

output neurons. Gradient descent finds the parameters such that the output

neurons code for the mean and the variance1 of the log-normal density.

p(y |x) = 1√
2πf

(
a(2)
2

) exp

– 1

2f
(

a(2)
2

) (
log(y) – a(2)

1

)2
1The output of the second neuron is additionally transformed with function f to be positive.

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
19



Initialization and Data Preprocessing

The initialization of neural networks and the choice the hyper-parameters (number

of hidden neurons, non-linearities, learning rate, etc.) is an art.

Common choices are:

biases = 0

weights w (l)
ij sampled uniformly from [–x , x ] with x =

√
6

d(l–1)+d(l)

learning rate between 10–4 and 10–1.

These choices work typically well for input data between 0 and 1 or

standardized input with each predictor having mean 0 and variance 1.

For regression it is advisable to also scale or standardize the output.

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
20



Regularization

For the weights and biases in each layer one can apply L1 or L2 regularization.

Early stopping in gradient descent can be used.

Using fewer hidden neurons also reduces the flexibility of the neural network.

Another popular and effective regularization method is Dropout:

During training, for each training example a randomly selected fraction of p neurons
is dropped out (inactivated).

This prevents neurons from becoming over-specialized.

All neurons are active when testing, but their weights are scaled by 1 – p.

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
21



Flexibility of a Neural Network and Its Number of Parameters

More layers or more neurons⇒more parameters.

More parameters⇒more flexibility?

Not necessarily! Regularization has a strong effect on the flexibility.

Even without explicit regularization (L1, L2, Dropout) and without explicitly monitored

early stopping one does stop gradient descent usually after some number of

iterations and before perfect convergence; therefore one regularizes by implicit

early stopping.

Wisely regularized large neural networks often work better than small ones,

because they tend not to get stuck at sub-optimal losses.

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
22



Why Multilayer Perceptrons?

Flexibility by Composition of Simple Elements.

I Individual neurons should not be simpler: the composition of linear functions is

a linear function.

I Individual neurons do not need to be more complex: complexity is achieved by

using multiple neurons.

I With sufficiently many neurons one can approximate any function.

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
23



Table of Contents

1. Solving the XOR ProblemWithout Feature Engineering

2. Artificial Neurons

3. Multilayer Perceptrons

4. Regression with Multilayer Perceptrons

5. Classification with Multilayer Perceptrons

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
24



Classification with Multilayer Perceptrons

With K output neurons we can use neural networks to parametrize categorical

distributions suitable for classification problems.

Example: We take 28× 28 = 784 input neurons, some hidden neurons and 10

output neurons to classify MNIST images. The softmax of the 10 output neurons is

the predicted probability of the different class labels.

P(Ci |x) = s
(

g(2)(b(2) + w (2)g(1)(b(1) + w (1)x))
)

i

where s is the softmax function (see slides “Supervised Learning”).

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
25



Quiz

I With L1 or L2 regularization applied to the weights of a neural network, the final

weights at the end of gradient descent tend to be smaller than without

regularization.

I With early stopping gradient descent usually stops in a local minimum of the

training loss.

I A neural network with no hidden layers, sigmoid activation function and

negative log-likelihood loss is equivalent to logistic regression.

I Gradient descent in neural networks always finds the global minimum of the

loss function of the training set.

I Which activation function should be chosen in the output layer to predict the

mean in a regression setting?

A relu B tanh C identity

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
26



Suggested Reading

I 10.1. Single Layer Neural Networks

I 10.2. Multilayer Neural Networks

Solving XOR Artificial Neurons Multilayer Perceptrons Regression Classification
27


	Solving the XOR Problem Without Feature Engineering
	Artificial Neurons
	Multilayer Perceptrons
	Regression with Multilayer Perceptrons
	Classification with Multilayer Perceptrons

