Multi-Layer Perceptrons

Johanni Brea

Introduction to Machine Learning

=PrL

Feature Engineering is great, but couldn’t it be automatized?

With smart features basically any problem can be solved by a linear method.
How should we find the smart features?

Idea: Let us take a more flexible function family and find “features” and “regression
coefficients” at the same time with gradient descent.

Table of Contents

1. Solving the XOR Problem Without Feature Engineering

EPFL s :

Recap: Vector-Features

XOR-Problem
Training Data

1.0F ° 2
L L [
s ° f: f ° ¢ ® °g
° o ® ® 94 '. e g
05F @ o o ee® |0 ° o .. L]
.o 2 o ®e Oop © o'. ot i i
‘ o oe © o0 o $ Logistic Regression fails:
r @ o . . -
X e et T o | § oo & Thereis no linear decision boundary.
® o ©° o0 @ *% o 0 P
—osf " o o |©F o .-"
e o u.
IR o
—1,0~.' ..,' ° . e ° *
-1.0 =0.5 0.0 0.5 1.0
X1

EPFL &g 3

Recap: Vector-Features

Project data to a higher dimensional space by computing the scalar products

between feature vectors wy, . . ., wq and input vectors x; and thresholding.
1.0} ®
> .f.‘ f. ‘: ;’l. LTS
. ® ® g ®q .. ® o
0.5F ..' ee® e ° . o © .
%o, 8 o %0 %P ° g° F le hyy = max(0, wy
° e A 8 or example hy; = max(0, wy" xg).
N @ 2 e
> 0.0 ® °® © L= - \ L] e ‘
e e® O 0% ©° ® @ L \
o® ° ®le ¢ °%e & Logistic Regression on the features
—05F . (] .' - .0 [] °
o o_°® ® e ® e e e e works.
e ° o s e y #e
10k o :Ot e @ ° ® ‘.]
=1.0 =05 0.0 0.5 1.0

cPrL 20F 4

Solving the XOR Problem without Feature Engineering

Logistic Regression: P(Y =1|x, 8) = a(Bg + Byx1 + - - - Bpxp)

Logistic Regression on features:

P(Y =1lx,8) = o (Bo + Br&(w x) ++ - g g(wg x))
T/ T/
q
with hand-picked feature vectors wy,, wg and activation function

g(x) = relu(x) = max(0O, x).

Idea
Why don't we learn the features with gradient descent?

P(Y =1x,8,wm, ..., Wq):J(BO+B‘]g(W1TX)+"'/6qg(WcZ—X))

.....

EPFL s '

Solving the XOR Problem without Feature Engineering

[t also works with learned features

» We just fitted our first neural network ©.

» The loss function has local minima;
gradient descent does not find for all
initial guesses a good solution.

» With more than 4 feature vectors,
gradient descent finds good solutions
for most initial guesses.

ePFL e 6

Table of Contents

2. Artificial Neurons

E PFL arct}igco\al Neurons .,

Artificial Neurons

Artificial neurons take a d-dimensional input x = (xq, .. ., x4) T and output a scalar
a=g(wp+ wixg + woxp + -+ + wgxyg)

with parameters (or weights) wg, wy, . . ., wy and activation function g.
wp is also called bias (instead of intercept).

E PFL ér:ig%\al Neurons .

Popular Activation Functions

x x>0,

rectified linear unit relu(x) = max(0, x) = { o o
x <

sigmoid o(x) = =

tangent hyperbolic tanh(x)
softplus softplus(x) = log(exp(x) + 1)

1 >0
heaviside H(x) = { ="
(perceptron) 0 x<0

E PFL ér;if.\%\al Neurons 0

Artificial relu-Neurons

=PrL

a = relu(wp + wyx)

Jwy <O w >0
L)
W w

Artificial Neurons
oooe

X2

a = relu(wp + wyx + woxy)
T T T T

B 15)
/ .
15) o
! © ! | [510) AN
-4 -2 0 2 4
x|

Table of Contents

3. Multilayer Perceptrons

= = Multilayer Perceptrons
= P [L ©00000 P 11

Multilayer Perceptrons

Multilayer Perceptrons (MLP) consist of multiple
neurons organized in layers 1,2, ..., L.
Each layer has d(!) neurons and activation g(/).

output ag) of k-th neuron in [-th layer

» .
A2 = 8O s)

input layer af(o) = X.

one input neuron x
one linear output neuron y
3 hidden layers with relu-neurons

E P F L l(\jﬂggi\éaggr Perceptrons 12

Multilayer Perceptrons: Matrix Notation

af{l) =g (ngg + W£1)31(I_1) 4ot ngg(,_w)a((jl(ﬂ%)

matrix notation a() = g() (b() + w(1 a(1)
wn (D ()
with b’ = Wi
For example the network on the previous slide can be written as

Y= b@ £ w@rely (b(3) + wOrelu(6®) 1 wrelu(s + me)))

E P F L l(\jﬁg\:\\oaggr Perceptrons B

Multilayer Perceptrons

g =relu, g() = tanh, g(2) = identity 2D input, g(1) = relu, g(2) = identity

- - Multilayer Perceptrons
P L oooogo P 14

Depth versus Width

1 hidden layer with 5 neurons two hidden layers with 3 and 2 neurons
10 [T T] T T
81 - 4+ -
> 6l | >
2 L |
4 L |
| | | |
0 5 0 5
X X
10 + 6 = 16 parameters 6 + 8 + 3 = 17 parameters

E PFL l\oﬂg\g\oaz%r Perceptrons 15

c=PrL

The number of input units in a neural network is equal to the number of training
samples.

The activation of an artificial neuron with inputs x; =1, xo = 3, x3 = O, weights
wy =1, wp = -1, wg =10, bias wy = 1and relu activation function is

A-l BO C1
For a network with 3-dimensional input, 2 hidden layers of each 10 neurons and
one output neuron the number of free parameters (weights and biases) is

A24 B 131 C 161

The XOR problem could also be solved with g()(x) = x and g(@(x) = o(x)
(instead of g(1)(x) = relu(x) and g(3)(x) = o(x)).

Multilayer Perceptrons
O0000e

Table of Contents

4. Regression with Multilayer Perceptrons

r = Regression
|=P|-L oogooooo 7

Regression with Multilayer Perceptrons

The output of the neural network is used to parametrize the conditional density.
The parameters are fitted with gradient descent
on the negative log-loglikelihood loss

n
~log £(6) == log p(yilx;,).
i=1

For example: Assume the wind speed in Luzern is distributed normally around some mean
that correlates with the measurements done 5 hours earlier.

We take a neural network with as many input neurons as predictors, some hidden neurons
and one output neuron. Gradient descent finds the parameters such that the output activity
approaches the mean of the conditional density.

1 1 2
P = e (515 (1= @6 + wg(B0 1+ w)))

EPFL segreser .

Regression with Multilayer Perceptrons

A neural network with more outputs can be used to predict more complex densities.

Example: Assume the wind speed in Luzern is log-normally distributed with mean
and standard deviation correlating with the pressure in Luzern.

We take a neural network with one input neuron, some hidden neurons and two
output neurons. Gradient descent finds the parameters such that the output
neurons code for the mean and the variance' of the log-normal density.

1 1 2
p(y‘x):%f(aéz))eXp —m (Iog()’)—a1(2)>

The output of the second neuron is additionally transformed with function f to be positive.

EPFL seeser o

Initialization and Data Preprocessing

The initialization of neural networks and the choice the hyper-parameters (number
of hidden neurons, non-linearities, learning rate, etc.) is an art.
Common choices are:
biases = 0

. / . . 6
weights WIS-) sampled uniformly from [-x, x] with x = PO

learning rate between 10~% and 107

These choices work typically well for input data between O and 1 or
standardized input with each predictor having mean O and variance 1.

For regression it is advisable to also scale or standardize the output.

=PrL e 20

Regularization

For the weights and biases in each layer one can apply L1 or L2 regularization.
Early stopping in gradient descent can be used.
Using fewer hidden neurons also reduces the flexibility of the neural network.

Another popular and effective regularization method is Dropout:

During training, for each training example a randomly selected fraction of p neurons
is dropped out (inactivated).

This prevents neurons from becoming over-specialized.
All neurons are active when testing, but their weights are scaled by 1- p.

=PrFL s 2

Flexibility of a Neural Network and Its Number of Parameters

More layers or more neurons = more parameters.
More parameters = more flexibility?

Not necessarily! Regularization has a strong effect on the flexibility.

Even without explicit regularization (L1, L2, Dropout) and without explicitly monitored
early stopping one does stop gradient descent usually after some number of
iterations and before perfect convergence, therefore one regularizes by implicit
early stopping.

Wisely regularized large neural networks often work better than small ones,
because they tend not to get stuck at sub-optimal losses.

=PrL Regression 2

Why Multilayer Perceptrons?

Flexibility by Composition of Simple Elements.

» Individual neurons should not be simpler: the composition of linear functions is
a linear function.

» Individual neurons do not need to be more complex: complexity is achieved by
using multiple neurons.

» With sufficiently many neurons one can approximate any function.

=PrL echrrd 2

Table of Contents

5. Classification with Multilayer Perceptrons

EPFL T

Classification with Multilayer Perceptrons

With K output neurons we can use neural networks to parametrize categorical
distributions suitable for classification problems.

Example: We take 28 x 28 = 784 input neurons, some hidden neurons and 10
output neurons to classify MNIST images. The softmax of the 10 output neurons is
the predicted probability of the different class labels.

P(CIx) = 5 (£2(6@ + w@gM (60 + wlhx)))

where s is the softmax function (see slides “Supervised Learning”).

E P F L g\gg%iﬁcanon

25

» With L1 or L2 regularization applied to the weights of a neural network, the final
weights at the end of gradient descent tend to be smaller than without
regularization.

» With early stopping gradient descent usually stops in a local minimum of the
training loss.

» A neural network with no hidden layers, sigmoid activation function and
negative log-likelihood loss is equivalent to logistic regression.

» Gradient descent in neural networks always finds the global minimum of the
loss function of the training set.

» Which activation function should be chosen in the output layer to predict the
mean in a regression setting?

Arelu B tanh C identity

E P F L g\giiiﬁcanon %

Suggested Reading

» 101. Single Layer Neural Networks
» 10.2. Multilayer Neural Networks

EPFL Gassionin

	Solving the XOR Problem Without Feature Engineering
	Artificial Neurons
	Multilayer Perceptrons
	Regression with Multilayer Perceptrons
	Classification with Multilayer Perceptrons

