Model Assessment and Hyperparameter Tuning
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Introduction to Machine Learning
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Which Model Is Best?

» Red and blue data points generated with

Y = f(X)+e with Var(e) = 0.062

and f(X) = sin(2X) + 2(X - 0.5)3 - 0.5X (black line)
» Red/blue lines: fits on red/blue training set

» The linear fits (dashed lines) are close to each other
(small variance) but far away from f (large bias).

» The polynomial fits (with d = 10) are far from each other
‘ ‘ ‘ ‘ ‘ (large variance) but close to f (small bias).
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Which Model Is Best?
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The best model has the smallest test MSET.

What if we do not know the data generating process?

T Here the test MSE is computed exactly, using the data generating process.
Some of the figures in this presentation are taken from “An Introduction to Statistical Learning, with applications
in R” (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
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What Would You Do?

kaggle Q senconetton » You are given training set
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The Validation Set Approach

shuffle the data points (each number indicates one row in a data frame)
and split into two parts.
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Validation Set Approach Applied to Artificial Data

data generator
Y =0.3+2X-0.8X2-0.4X3 1 ¢

Training, Validation and Test Set
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Training, Validation and Test Set

» Training Set: Subset of the full data used to find the parameters.

» Validation Set: Held-out subset of the full data used for model selection,
i.e. finding the hyper-parameters.

» Test Set: Held-out subset of the data to estimate the test error of the best model.
Machine Learning Competitions e.g. on kaggle.com
1. Start of the competition: Participants obtain a data set, but not the test set.

2. Participants split the data set into training and validation sets as they want to fit the
parameters and tune the hyper-parameters.

3. End of the competition: Organizers evaluate all submitted solutions on the test set.
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Recap of Terminology

Assume a simple data generator with Gaussian density p(y|x) = p(y) = N (y; u, o).
Assume we found with a machine learning method the predicted mean y = ji.
(o]
» Expected mean squared error: E[(y - §)?] = / (y-9)p(y)dy = 02 + p? = 2up + p?
—00
Can only be computed, if we know the generator.
» In practice, we have a dataset (v, ..., yn). We assume it is already shuffled.
» Training loss = approximation of expected mean squared error on training set =
. 1 Ntrain R
L(f1, Dtrain) = > " (vi—9)? where Derain = (V- - -+ Yigan)-
» Test/Validation loss =5pproximation of expected mean squared error on
n

Nirain P
> (yi-9)* where

i=Ntrain+1

Drest = (y”train-Hv <+, Yn) @nd Ntest = N—Nyrain. NOtE: n|i>moo L(f1, Drest) = E[(y_ﬂ)z]

o 1
test/validation set = £(/, Drest) =
n:

test
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Drawback of Validation Set Approach
i trainin
N D e

5 The validation estimate of the test error can be
5 o~ highly variable, depending on precisely which ob-
servations are included in the training set and
- = — which observations are included in the validation

o o set = high variance in model selection.

degree
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Which of the following statements are correct?

» After finding in a model comparison the best performing model on the validation set,
we compute the error on the validation set and the error on the test set.

1. The test error is usually larger than the validation error.
2. Test error and validation error are roughly equal.
3. The test error is usually smaller than the validation error.

» The error on unseen data tends to be lower for a model trained on all available data
compared to a model trained on a training set with 80% of all available data.

» Ina model comparison (e.g. to select hyper-parameters) it is acceptable to fit each

model on all available data and compare them on a validation set consisting of 50% of
the data.
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Leave-One-Out Cross-Validation (LOOCV)

[123 n]
123 n
123 n
123 n
123 n

1T .
CV(p) =~ D MSE; MSE; = (yi~ )
i=1
where y; is the prediction obtained by fitting without (x;, y;).
Disadvantage: computational cost of n fits
(except for linear regression, see section 5.1.2 of textbook).
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K-Fold Cross-Validation

[123 n |
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K
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V=Y #MSEk MSE, = o > (vi = 9)?
k=1 i€Cg

where y; are predictions obtained by fitting without the data in part Cy.
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Cross-Validation Applied to the Artificial Data

Leave-one-out Cross Validation 5-Fold Cross Validation
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True versus Estimated Test Error
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LOOCV (black dashed) and 10-fold CV (orange solid) find almost the same optimal flexibility
as the true test error (blue). Crosses indicate the minima of the MSE curves.
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Further Considerations

» The choice of the number of folds K is somewhat arbitrary.
Typical choicesare K = 5or K =10.

» LOOCV has higher computational costs, since n fits are made instead of K
(Except for least squares linear or polynomial regression.)

» To estimate the test error with the validation set approach: fit the winner of
model comparison to all data except the test set and evaluate it on the test set.

» To estimate the test error with cross-validation (nested cross-validation): repeat
the approach above for multiple folds.

» To have the best model for predictions of future data: fit the model on all data
you have.

» |f you do not care about an estimate of the test error, you run cross-validation
on the full data, without first splitting off a test set.
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Cross-Validation on Classification Problems

Degree=1 Degree=2

Instead of the log-likelihood, one can also use
e.g. the average misclassification rate on the
held-out sample for cross-validation in
classification problems.

Degree=4

1 X
iy = i #51)
p

Optimal decision boundary (purple)
Estimated decision boundary (black)
for polynomial degrees 1-4.

misclassification rates:
degree =1: 0.201, degree = 2 : 0.197
degree = 3 : 0.160, degree = 4 : 0.162

L=y = Ly Cross-Validation
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Cross-Validation on Classification Problems

Logistic Regression KNN Classification

Error Rate
012 014 0.16 0.18 0.20

Error Rate
0.12 0.14 0.16 0.18 0.20

2 4 6 8 10 0.01  0.02 005 0.10 020 0.50 1.00
Order of Polynomials Used 1/K
training error 10-fold CV

Note: the true test error is known, because the data generator is known in this case.

Side remark: How can it be that the training error goes up with increasing flexibility of the method (order of the
polynomial used)? Logistic regression maximizes the likelihood of the parameters 8; given the data = training
likelihood is monotonically increasing with order of polynomials, but the training error (misclassification rate) is not
necessarily decreasing, because the misclassification rate is a different measure than the log-likelihood.
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Nested Cross-Validation

| Original Dataset |
x| » Outer loop: for each group
Group 1 Train fold keep test set for final

|
evaluation.
crun 2 [ |
|
|

» Innerloop: find optimal

Group 3
| hyper-parameters with
Sraap “,l.__-_ standard cross-validation.
Group 5§| Note: for each group a
different hyper-parameter
=E setting may be optimal.
:—:ﬁ » Estimate the test error, by
H computing the average error
| -..: on the test sets of the outer

loop.
figure from https://doi.org/10.1016/j.patter.2021.100329
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Which of the following statements are correct?

» Estimates of the test error with the validation set approach have lower variance
than those with LOOCV.

» In a binary classification task we could use the AUC instead of the error rate to
perform cross-validation.
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Basic Idea: Split Available Data

Assumption: Hyperparameters fixed Assumption: Hyperparameters fixed
Goal: Find best parameters Goal: Estimate test error
Use all data to estimate the parameters. Split data into training and test set(s).

Estimate parameters on the training set(s).
Estimate test error on the test set(s).

Assumption: Hyperparameters unknown Assumption: Hyperparameters unknown

Goal: Find best hyperparameters Goal: Estimate test error

Split data into training and validation set(s). Split data into training, validation and test
Estimate parameters on the training set(s). set(s). Estimate parameters on the train-
Estimate test errors for all hyperparameter ing set(s). Select hyperparameters with low-
choices on the validation set(s). est test error estimated with the validations

Select hyperparameters with lowest test error.  set(s). Estimate test error on the test set(s).
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Tuning Models

Hyper-parameter tuning: finding the best model for the given data.

Common recipes:

» Grid Search: Perform cross-validation on a grid of hyper-parameter values.
E.g. pick 10 different values of K and pick the best one with cross-validation.

» We will see quite a few hyper-parameter tuning examples in upcoming lectures.

» Use more sophisticated sampling methods for the hyper-parameters to be
evaluated, see e.g. https://www.automl.org/ or
https://github.com/baggepinnen/Hyperopt.jl

EPFL Lu.mng Models 23
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A Recipe for Supervised Learning

1. Collect (a lot of) data.
2. Look at the raw data; clean it if necessary.

3. Select relevant features from the raw data,
i.e. choose a suitable representation of the raw data.

4. Select a machine learning method.

5. Fit the data and tune hyperparameters, e.g. with cross-validation.

6. » training loss: high, test loss: high (underfitting?): select a more flexible method.
» training loss: low, testloss: high (overfitting?):  select a less flexible method.

7. Repeat 4-6 until the lowest test loss is found.
8. If unhappy with the lowest test loss, repeat 2-7 or collect more data.
9. Fit the best model on all available data for best performance on unseen data.

E P F L é.Recipe for Supervised Learning 5
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The Bootstrap: a resampling strategy

“Pulling oneself up by one’s bootstraps”  Subsample data with replacement
19th century saying for impossible tasks Obs |X 1Y

3 [53 [28 o
43 |24
53 [28

Obs | X Y X Y

21 |11
53 |28 a’
43 |24 ]

1 43 |24
2 21 |11
3 53 |28

Original Data (Z)

2.1 |11
2 21 |11
1 43 |24

How can we get new data sets without Original data Z — B bootstrap data sets
having new data? VA4

Some of the figures in this presentation are taken from “An Introduction to Statistical Learning, with applications
in R” (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
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Applications of the bootstrap

» Isitagood idea to obtain a training and a test set with the bootstrap?
No, because some samples would appear both in the training and in the test
set and therefore the estimate of the test error may be biased (e.g. when
overfitting the training set).

» Can we use the bootstrap to estimate uncertainty?
Yes. For example, to estimate the variance we should expect, when fitting to
different training sets.
As a concrete example, say we want to know whether the response (e.g. the
wind peak in Luzern) co-varies strongly with a specific feature (e.g. the
sunshine duration in Luzern). We could run many linear fits on bootstrapped
training sets and look at the distribution of the fitted coefficient (see website).
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Suggested Reading

» 51. Cross-Validation
» 5.2. The Bootstrap
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