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Optimization in Machine Learning

I For linear regression there is an analytical solution that minimizes the RMSE.

I For logistic regression (and most other methods) there is no analytical solution.

I For many models there are specialized optimizers.

I There is a course at EPFL on Optimization for machine learning
https://edu.epfl.ch/coursebook/en/optimization-for-machine-learning-CS-439

I A simple optimizer that works usually well for parametric models is

gradient descent.
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Gradient Descent

1. Input: loss function L, initial guess β(0) =
(
β

(0)
0

, . . . ,β(0)
p

)
learning rate η, maximal number of steps T .

2. For t = 1, . . . , T
I δi = η

∂L
∂βi

(
β(t–1)

)
I β

(t)
i = β

(t–1)
i – δi

3. Return β(T )

Automatic Differentiation software uses the chain rule and symbolic derivatives for

primitive functions, to compute the derivative of almost any code we write.
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Practical Considerations

I Choosing a good learning rate can be tricky.

I Scaling the loss function has an impact on gradient descent.

It is e.g. advisable to have L independent of the size of the data set, e.g.

replace L =
∑n

i=1(yi – βxi)2 by L = 1
n
∑n

i=1(yi – βxi)2.
I Additive constants in the loss function L that do not depend on the parameters

have no impact on gradient descent; they are often removed from the loss

function.

I Preprocessing the input and output may have a strong effect on gradient

descent. There are domain-specific “best preprocessing practices” (e.g. for

images or audio). Standardizing inputs (and outputs in the case of regression)

is an option.
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Convex and Non-Convex Loss Functions

Globally Convex Loss Function

Loss function has a unique global minimum

From any initial condition there is a path

towards the global minimum along which the

loss is monotonically decreasing. The same

solution is found by gradient descent

independently of the initial condition.

The loss function of (multiple) (logistic) linear

regression (with L1 or L2 regularization) is

globally convex.

Non-Convex Loss Function

Loss function has multiple local minima

The solution of gradient descent depends

on the initial condition.
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Stochastic Gradient Descent (SGD)

Computing the loss over all samples 1, . . . , n can be computationally costly.

A subset of the training data may be sufficient to estimate the gradient direction.
1. Input: loss function L, initial guess

β(0) =
(
β

(0)
0

, . . . ,β(0)
p

)
learning rate η, maximal number of steps T ,

batch size B .

2. For t = 1, . . . , T
I Determine batch of training indices I
I δi = η

∂L
∂βi

(
β(t–1); I

)
I β

(t)
i = β

(t–1)
i – δi

3. Return β(T )

where L(β; I) is the loss function

evaluated on the training samples

with indices in I , e.g.

L (β; I) = 1

B
∑
i∈I

(
yi – xT

i β
)2

Example B = 5

batch 1 batch 2 batch 3 batch 4

I 1 8 3 13 93 9 14 2 26 31 · · · · · ·
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Terminology

I batchsize B (hyper-parameter): number of samples in each batch. Sometimes

this is also calledminibatch size.

I epoch: collection of update steps that go once through the entire dataset.

I number of epochs (hyper-parameter): number of times to go through the

entire dataset.

Example: If we choose for a dataset of size n = 1000 a batchsize of B = 20 and we

train for 30 epochs, there are in total T = n/B × 30 = 50× 30 = 1500 gradient

descent updated steps and each data point contributes 30 times to the

computation of partial derivatives.
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Example Learning Curve
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The training loss on batches of size 32 is very variable. But if we look at the moving average

over the training loss of 50 subsequent batches, we see that stochastic gradient descent

drops to a fairly low loss after processing far less training data than gradient descent.
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Early Stopping

Start with small weights and stop gradient descent when validation loss starts to increase.

I At the beginning of

gradient descent all

parameter values are

small.

I Typically, the norm of

the parameters

increases during

gradient descent.

I The parameter values

found at early stopping

have usually a smaller

norm than the

parameter values with

the lowest training error.
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Quiz

I With a constant learning rate and a non-zero gradient, the training loss in gradient

decent is decreasing in every step.

I In every step of gradient descent one can choose a learning rate larger than zero such

that the training loss is decreasing, unless the gradient is zero.

I In every step of stochastic gradient descent one can choose a learning rate larger than

zero such that the training loss is decreasing, unless the gradient is zero.

I For a training set of size n, computing the gradient in (standard) gradient descent takes

n/B times longer than computing the gradient in stochastic gradient descent with

batch size B .

I Models found with early stopping tend to have a lower bias but a higher variance (when

fitted on different training sets from the same data generator) than models found

without early stopping.
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Suggested Reading

I 10.7 Fitting a Neural Network (skip parts 10.7.1, 10.7.3 and 10.7.4)

I 10.7.2 Regularization and Stochastic Gradient Descent
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