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The Normal, Bernoulli and Categorical Distribution
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2πσ

e– (y–f (x))2

2σ2

f (x): a number
mean: f (x)
variance: σ2

mode: f (x)
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p(A|x) = pA = σ(f (x))
f (x): a number

sigmoid/logistic function

σ(x) = 1

1+ e–x

p(B|x) = 1 – pA = σ(–f (x))

mode: A if pA > pB

Categorical

c1 c2 · · · cK
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p(ci |x) = pci = s(f (x))i

f (x): a vector of K
numbers

softmax function

s(x)i = exi∑K
j=1 exj

mode: X with largest pX.
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Notes
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• You have probably already seen the normal (Gaussian), the Bernoulli and the Categorical

distribution. What is special here, is that the distribution depends on the input through some

function f (x), e.g. the mean of the normal can be different for different inputs or the probability of
class C1 can depend on the input.

• The function f (x) can be anything! In this lecture we assume it is linear, i.e. f (x) = θ0 + θ1x .
Later in this course, f (x) could be a neural network or some other non-linear function.

• If the response variable Y is real-valued, we can take the normal or some other distribution, like

the Laplacian. If the response is binary, it is natural to take the Bernoulli and if the response can

be in one of K > 2 classes, it is natural to take the Categorical distribution to model the

conditional data generating process of the response Y given the input X .



Blackboard: Maximum Likelihood Estimation
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Notes

Blackboard: Maximum Likelihood Estimation

• Data Generating Process: If the data is generated by a Bernoulli process with probability of class A equal to

ρ ∈ [0, 1] and probability of class B equal to 1 – ρ, there is a simple way to sample data: sample a random
number ε uniformly distributed in [0, 1]; if ρ ≥ ε take class A otherwise take class B. This works, because the
probability that ε is smaller than ρ is exactly ρ (and 1 – ρ for being larger than ρ). Here the probability of class A
depends on the input, so ρ = σ(2x – 1).

• Test Log-Likelihood at x0: In short: we are measuring how (log-)likely it is to generate label Y given a fixed,

fitted model, weighted by how likely it is that the true generator samples Y .
– We want to compute the expected log-probability of giving the correct response at a given x0 with the
fitted parameters θ̂, i.e. EY |x0 [log P(Y |x0, θ̂)].

– We know P(Y = A|x0, θ̂) = σ(0.3x0 – 1.3) and P(Y = A|x0) = σ(2x0 – 1)
– We can only compute this expectation here, because we know the true conditional data generating

process P(Y |X). In practice we never know the true conditional data generating process (and if we
would know, we would not need machine learning to approximate the generator :)). In practice we

would rather estimate the test log-likelihood of the joint data generating process with a test set.



Nomenclature

For some models (families of probability distributions) with linear function f (x) we
see occasionally specific names for the likelihood maximizing machine.

I Gaussian (normal distribution): Linear Regression

I Bernoulli: Logistic Regression or Linear (Binary) Classification

I Categorical: Multinomial Logistic Regression or Multiclass Linear Regression

(or Classification)

I Poisson: Poisson Regression

Later we will see that there are natural generalizations for all these models with

non-linear f (x), where f (x) is for example given by a neural network.
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Quiz

Correct or wrong?

1. The only difference between linear regression and linear classification is in the

choice of the conditional distribution P(Y |fθ(x) = θ0 + θ1x).
2. The softmax function has the property

∑K
i=1 s(x)i = 1.

3. For any model where we know the likelihood we can formulate an equivalent

loss minimization perspective by defining the loss function as the negative

log-likelihood function, i.e. L(y , fθ(x)) = – log P(y |fθ(x)).
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Spam Classification

spam

Subject: follow up

here ’ s a question i ’ ve been

wanting to ask you , are you

feeling down but too embar-

rassed to go to the doc to get

your m / ed ’ s ?

here ’ s the answer , forget

about your local p harm . acy

and the long waits , visits and

embarassments . . do it all in

the privacy of your own home ,

right now . http : / / chopin .

manilamana . com / p / test /

duet it ’ s simply the best and

most private way to obtain the

stuff you need without all the

red tape .

Feature Representation

There are many ways to extract useful features

from text. Here we use a very simple “bag of words”

approach: word counts for a lexicon of size p.

E.g.

X1 (your) X2 (need) X3 (pay) · · · Xp (red)

3 1 0 · · · 1

All n emails get such a representation.
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Multiple Logistic Regression

Pr(Y = spam|X) = σ(θ0 + θ1X1 + · · · + θpXp)

σ(x) = 1

1+ e–x σ(0) = 0.5 σ(–∞) = 0 σ(∞) = 1

Find θ̂0, θ̂1, . . . , θ̂p that maximize the likelihood function.

Predictions (at decision threshold 0.5):

A new email is classified as spam, if its feature representation x leads to
σ(θ̂0 + θ̂1x1 + · · · + θ̂dxd) ≥ 0.5.

The corresponding decision boundary is linear:

θ̂0 + θ̂1x1 + · · · + θ̂dxd = 0
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Multiple Logistic Regression Example: p = 2

Pr(Y = A|X) as 3D plot Pr(Y = A|X) as contour plot samples and predictions
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Confusion Matrix
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Pr(Y = true|X = x) = σ(x)
Pr(Y = true|X = x) = σ(2x)
Pr(Y = true|X = x) = σ(x/2)

At decision threshold 0.5

true class label

false true Total

predicted

class label

false 42 4 46

true 7 47 54

Total 49 51 100

At decision threshold σ(x) = 0.1

true class label

false true Total

predicted

class label

false 25 1 26

true 24 50 74

Total 49 51 100
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Confusion Matrix & Error Rates

true class label

Neg. Pos. Total

predicted

class label

Neg. True Neg. (TN) False Neg. (FN) N∗

Pos. False Pos. (FP) True Pos. (TP) P∗

Total N P

Name Definition Synonyms

False Pos. rate FP/N Type I error, 1-Specificity

True Pos. rate TP/P 1-Type II error, Power, Sensitivity, Recall

False Neg. rate FN/P
Pos. Pred. value TP/P∗ Precision, 1-false discovery, Proportion

Error Rate (FP + FN)/(P + N) Misclassification rate

Accuracy 1 - Error Rate
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Decision Thresholds and Error Rates
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Finding the right threshold value depends on domain knowledge:

which error do we most care about?

E.g. disease detection: do we want a small false negative rate?
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ROC curve and AUC

ROC Curve

False positive rate
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1
.0 I measure True Pos. rate and False

Pos. rate for different thresholds on

test data to obtain the receiver

operating characteristics ROC curve.

I Random classification would be on

diagonal.

I Area under the ROC curve AUC

assesses the classifier.

I Random classifier has AUC = 0.5,

perfect classifier has AUC = 1.
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Quiz

1. Multiplying all parameters of logistic regression by a factor larger than 1 leaves the

decision boundary (at decision threshold 0.5) unchanged.

2. If it is possible to perfectly classify the data, there exists a classifier with AUC = 1.

3. If we classify according to the worst classifier (class A if pA < 0.5 and class B
otherwise), the AUC is expected to be smaller than 0.5.

4. Typically we expect the AUC on the training set to be higher than on the test set.

5. No matter what classifier we use, the ROC curve always starts at (0, 0) and ends at (1, 1).
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Poisson Regression

Poisson

0 5 10p
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p(k|x) = e–f (x)f (x)k

k!

f (x): a number
mean: f (x)
variance: f (x)

mode: bf (x)c (floor)

When the response is a non-negative count vari-

able, e.g. number of bicycles rented, it canbeprob-

lematic to use the normal distribution to model the

noise, because the support of the normal distribu-

tion is not restricted to positive numbers and the

variance is independent of the mean.

ThePoissondistribution canbebetter suited in this

case (see bike sharing example in the notebook).

Take-homemessage

Always ask yourself: which distribution is best to

model the noise.

Generalized Linear Regression Multiple Linear Classification Evaluating Binary Classification Poisson Regression Noise
19



Table of Contents

1. Generalized Linear Regression

2. Multiple Linear Classification

3. Evaluating Binary Classification

4. Poisson Regression

5. Noise

Generalized Linear Regression Multiple Linear Classification Evaluating Binary Classification Poisson Regression Noise
20



Where Does Noise Come From?

For most data generating processes we cannot measure all factors

that determine the outcome.

⇒ same values of the measured factors can cause different outcomes.

I MNIST Different persons may label the same handwritten digit differently.

I SpamWhat is spam for somebody, may not be spam for someone else.

I Weather Even when all considered weather stations measure exactly the

same values at time t1 and t2, the full state of the weather at t1 differs most
likely from the one at t2.

In machine learning we treat the effect of unmeasured factors as noise

with certain probability distributions.
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Suggested Reading

I 4.1 An Overview of Classification

I 4.2 Why Not Linear Regression?

I 4.3 Logistic Regression

I 4.3.4 Multiple Logistic Regression

I 4.4.2 Linear Discriminant Analysis

(mostly the part on confusion matrix, ROC, AUC).

I 4.6. Generalized Linear Models
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