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The Normal, Bernoulli and Categorical Distribution
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2

e

[0)

©

y
1 - (y—f(x2>)2
= 20

pylx) = e

f(x): a number
mean: f(x)
variance: o2
mode: f(x)

-

A B
P(Alx) = pa = o(f(x))
f(x): a number
sigmoid/logistic function

probability

o(x) = T+ e
P(B[x) =1-pa = o(-f(x))

mode: Aif pa > pg

Categorical

L L
G C v Ck

probability

p(cilx) = pe; = s(f(x))i

f(x): avectorof K
numbers

softmax function

°
Wi = s

mode: X with largest px.

Generalized Linear Regression

=PrL  S&



e You have probably already seen the normal (Gaussian), the Bernoulli and the Categorical
distribution. What is special here, is that the distribution depends on the input through some
function f(x), e.g. the mean of the normal can be different for different inputs or the probability of
class G can depend on the input.

¢ The function f(x) can be anything! In this lecture we assume it is linear, i.e. f(x) = 0 + 6;x.
Later in this course, f(x) could be a neural network or some other non-linear function.

o |f the response variable Y is real-valued, we can take the normal or some other distribution, like
the Laplacian. If the response is binary, it is natural to take the Bernoulli and if the response can
be in one of K > 2 classes, it is natural to take the Categorical distribution to model the
conditional data generating process of the response Y given the input X.



Blackboard: Maximum Likelihood Estimation
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o Data Generating Process: If the data is generated by a Bernoulli process with probability of class A equal to
p € [0,1] and probability of class B equal to 1- p, there is a simple way to sample data: sample a random
number e uniformly distributed in [O, 1]; if p > € take class A otherwise take class B. This works, because the
probability that e is smaller than p is exactly p (and 1- p for being larger than p). Here the probability of class A
depends on the input, so p = o(2x - 1).

e Test Log-Likelihood at xg: In short: we are measuring how (log-)likely it is to generate label Y given a fixed,
fitted model, weighted by how likely it is that the true generator samples Y.

- Wewant to compute the expected log- probablllty of giving the correct response at a given xg with the
fitted parameters 4, i.e. EY‘XO [log P(Y |x0, 8)].

- Weknow P(Y = A|xo, 9) =0(0.3x0 -1.3)and P(Y = A|xg) = o(2xp - 1)

- We can only compute this expectation here, because we know the true conditional data generating
process P(Y|X). In practice we never know the true conditional data generating process (and if we
would know, we would not need machine learning to approximate the generator 3)). In practice we
would rather estimate the test log-likelihood of the joint data generating process with a test set.



Nomenclature

For some models (families of probability distributions) with linear function f(x) we
see occasionally specific names for the likelihood maximizing machine.

» Gaussian (hormal distribution): Linear Regression
» Bernoulli: Logistic Regression or Linear (Binary) Classification

» Categorical: Multinomial Logistic Regression or Multiclass Linear Regression
(or Classification)

» Poisson: Poisson Regression

Later we will see that there are natural generalizations for all these models with
non-linear f(x), where f(x) is for example given by a neural network.
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Correct or wrong?

1. The only difference between linear regression and linear classification is in the
choice of the conditional distribution P(Y'|fy(x) = 0g + 61x).

2. The softmax function has the property Z,-K:1 s(x)j=1.

3. For any model where we know the likelihood we can formulate an equivalent
loss minimization perspective by defining the loss function as the negative
log-likelihood function, i.e. L(y, fy(x)) = —log P(y|fy(x)).
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spam

Subject: follow up
here ' s a question i ' ve been

wanting to ask you , are you
feeling down but too embar-
rassed to go to the doc to get
yourm/ed’s?

here ' s the answer , forget
about your local p harm . acy
and the long waits , visits and
embarassments . . do it all in
the privacy of your own home ,
right now . http : / / chopin .
manilamana . com / p / test /
duet it ' s simply the best and
most private way to obtain the
stuff you need without all the
red tape .
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Spam Classification

Feature Representation

There are many ways to extract useful features
from text. Here we use a very simple “bag of words”
approach: word counts for a lexicon of size p.

E.g.
Xi(your)  Xp (need) Xz (pay) Xp (red)

S 1 0 1

All n emails get such a representation.

Multiple Linear Classification
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Multiple Logistic Regression

0(0)=05 o(-00)=0 o(0) =1

Find 0o, 85, . . ., 0, that maximize the likelihood function.

Predictions (at decision threshold O.5):
A new email is classified as spam, if its feature representation x leads to
0(00 + 91X1 —+ -+ 9dXd) > 0.5,

The corresponding decision boundary is linear:
Og+6xq+ - +04xg=0
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Multiple Logistic Regression Example: p = 2

Pr(Y = A|X) as 3D plot Pr(Y = A|X) as contour plot samples and predictions
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Multiple Linear Classification
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Confusion Matrix
At decision threshold 0.5

true -

false

(LR AR
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(Y =true|X = x) = o(x)
(Y = true|X = x) = o(2x)

......... Pr(Y = true| X = x) = o(x/2)

true|x)

Pr(Y =

‘ true class label

false true Total

predicted | false 42 4 46
class label | true 7 A7 54
Total 49 51 100

At decision threshold (x) = 0.1
true class label

false true Total

predicted | false 25 1 26
classlabel | true 24 50 74
Total 49 51 100

Evaluating Binary Classification
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Confusion Matrix & Error Rates

true class label
Neg. Pos. Total
predicted Neg. True Neg. (TN) False Neg. (FN)  N*
classlabel | Pos. FalsePos. (FP) TruePos. (TP)  P*

Total N P
Name Definition Synonyms

False Pos. rate FP/N Type | error, 1-Specificity
True Pos. rate TP/P 1-Type Il error, Power, Sensitivity, Recall
False Neg. rate FN/P
Pos. Pred. value TP/P* Precision, 1-false discovery, Proportion

Error Rate (FP+ FN)/(P + N) Misclassification rate

Accuracy 1- Error Rate
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Decision Thresholds and Error Rates

false positive rate

—— false negative rate
true positive rate

error rate

error rate

0.0 02 04 06 08 1.0

0.0 0.2 0.4 0.6 0.8 1.0
decision threshold
Finding the right threshold value depends on domain knowledge:

which error do we most care about?
E.g. disease detection: do we want a small false negative rate?
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ROC curve and AUC

ROC Curve

o v » measure True Pos. rate and False

i Pos. rate for different thresholds on
test data to obtain the receiver
operating characteristics ROC curve.

» Random classification would be on
diagonal.

» Area under the ROC curve AUC
assesses the classifier.

» Random classifier has AUC = 0.5,
perfect classifier has AUC = 1.

0.6
1

True positive rate
0.4
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False positive rate
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1. Multiplying all parameters of logistic regression by a factor larger than 1 leaves the
decision boundary (at decision threshold 0.5) unchanged.

2. Ifitis possible to perfectly classify the data, there exists a classifier with AUC = 1.

3. If we classify according to the worst classifier (Class A if pa < 0.5 and class B
otherwise), the AUC is expected to be smaller than 0.5.

4. Typically we expect the AUC on the training set to be higher than on the test set.

5. No matter what classifier we use, the ROC curve always starts at (O, O) and ends at (1, 1).
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Poisson Regression

Poisson . . .
When the response is a non-negative count vari-

% Tee T able, eg. number of bicycles rgnteq, it can be prob-
EIREA lematic to use the normal distribution to model the
g h"“ﬁ; noise, because the support of the normal distribu-
() tion is not restricted to positive numbers and the
pklx) = = variance is independent of the mean.
f(x): @ number The Poisson distribution can be better suited in this
mean: f(x) case (see bike sharing example in the notebook).
variance: f(x)
e )] (e Take-home message
Always ask yourself: which distribution is best to
model the noise.
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Where Does Noise Come From?

For most data generating processes we cannot measure all factors
that determine the outcome.

= same values of the measured factors can cause different outcomes.

» MNIST Different persons may label the same handwritten digit differently.
» Spam What is spam for somebody, may not be spam for someone else.

» Weather Even when all considered weather stations measure exactly the

same values at time t; and ty, the full state of the weather at ¢; differs most
likely from the one at t,.

In machine learning we treat the effect of unmeasured factors as noise
with certain probability distributions.

E P F L Noise
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Suggested Reading

» 4.1 An Overview of Classification
» 4.2 Why Not Linear Regression?
» 4.3 Logistic Regression

» 4.3.4 Multiple Logistic Regression

» 4.4.2 Linear Discriminant Analysis
(mostly the part on confusion matrix, ROC, AUC).

» 46. Generalized Linear Models
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