

Final Exam

Introduction to Machine Learning for Bioengineers BIO-322

1

Firstname Lastname 123456

February 2, 2023

- The exam lasts 180 minutes.
- Write all your answers in English in a legible way on the exam (no extra sheets).
- Use a dark (e.g. black or blue) pen or pencil.
- Use the last 4 pages of this exam as scratch space.
- 1 page handwritten notes is allowed (A4 one side).
- The handwritten notes must be yours; copies from other students are not allowed.
- No calculator or other electronic device is allowed.
- Put your bag including computer and cell phone to the indicated places.
- Have your student card displayed before you on your desk.
- Do not write your name or sciper number on any page.
- Check that your exam has 14 pages.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien						
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren				
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte						

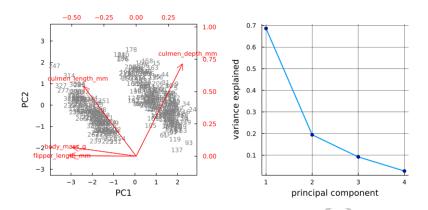
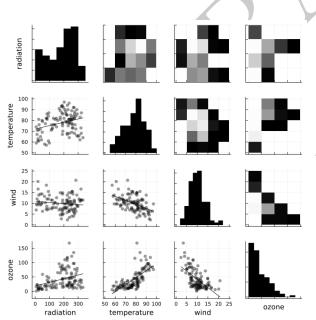



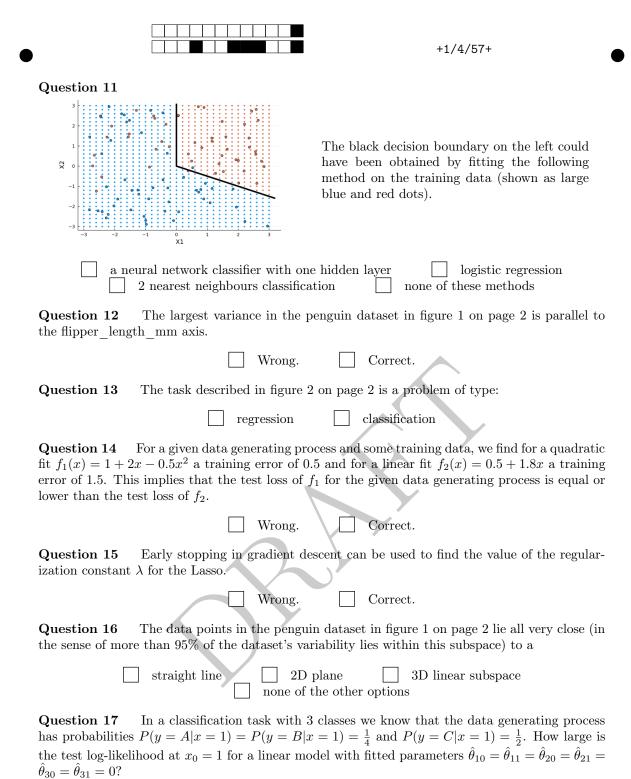

Figure 1: Principal Component Analysis of the Penguin Dataset.

The data contains measurements of solar radiation, temperature, wind speed, and cube root ozone concentration on 111 days at sites in the New York metropolitan region. Objective: predict ozone level.

- temperature in degree Fahrenheit.
- wind speed in miles per hour
- solar radiation in langleys
- cube root ozone level in ppb $\frac{1}{3}$.

Figure 2: The ozone data set.

Choice Questions (36 Points)


For each of the following questions there is one correct answer and you have **two possibilities: tick one of the boxes or none**. Every correct answer gives 2 positive point, every wrong answer 1 negative point, and no answer no point.

I negative point, and no answer no point.
Question 1 We want to predict the height of 10 weeks old corn seedlings, based on the average temperature (in °C), the soil condition (dry or humid) and the fertilizer condition (none, biological, chemical). After one-hot coding relative to a standard level, the number of parameters of a linear regression (with intercept) is
Question 2 Suppose you did logistic regression and you get a test set $((x_1 = 1, y_1 = A), (x_2 = -3, y_2 = A), (x_3 = 4, y_3 = B), (x_4 = -1, y_4 = B))$. The predictions of your fitted machine on this test set are $P(y_1 = A x_1) = 0.7, P(y_2 = A x_2) = 0.7, P(y_3 = A x_3) = 0.6, P(y_4 = A x_4) = 0.6$. The AUC on this test set is
Question 3 Neural networks with strong L2 regularization tend to have a lower bias but a higher variance than neural networks without regularization.
Wrong. Correct.
Question 4 Cross validation can be used to select the number of hidden layers in a neural network. Wrong. Correct.
Question 5 Consider the data generating process $y = A$ if $2x - 1 > 1$ and $y = B$ otherwise. The irreducible error of this generator is larger than 1.
Wrong. Correct.
Question 6 Given data points $((x_1 = 0, y_1 = 0), (x_2 = 2, y_2 = 2), (x_3 = 4, y_3 = 0))$, the leave-one-out cross-validation estimate of the mean squared error for linear regression is
\square 4 \square 12 \square another value
Question 7 With the Lasso with a large penalty λ , many parameters are exactly 0.
Wrong. Correct.
Question 8 Assume the data set $((x_1 = 1, y_1 = 10), (x_2 = 3, y_2 = 0), (x_3 = 4, y_3 = 0), (x_4 = 8, y_4 = 0))$ should be fitted with a regression tree. In the first step of recursive binary splitting, the split is introduced at
Question 9 The result of K-Means clustering applied to un-standardized data is the same as the result of K-Means clustering applied to standardized data.
Wrong. Correct.
Question 10 Assume all points of a dataset with three predictors lie on a line. In this case, the proportion of variance explained (PVE) is zero for the second and third principal component.

3

Correct.

Wrong.

supervised learning

unsupervised learning

The task described in figure 2 on page 2 is a problem of type:

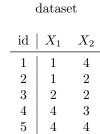
 $\frac{1}{4}\log(1)$

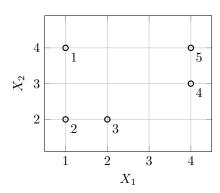
reinforcement learning

Question 18

Open Questions (56 Points)

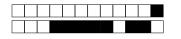
Please write your answers to the following questions in the designated boxes. Do not tick the checkboxes for grading.


Question 19 fit the data in fi		work with one hidden layer of 5 relu neurons yers as "input", "hidden" and "output" layer ε
	vation function of each layer.	
		<u> </u>
Question 20	How many parameters (including	g biases) does the neural network of the previous
question have?		$\boxed{}$ 0 $\boxed{}$ 1 $\boxed{}$ 2 $\boxed{}$ 3 $\boxed{}$ 4 (for grading
Question 21 expected training	Suppose you use L2 regularized and test error as a function of	ation in linear regression. Draw a sketch of the regularization constant. $ 0$
		training error test error
EFFOF		
	regularizat	ion constant λ

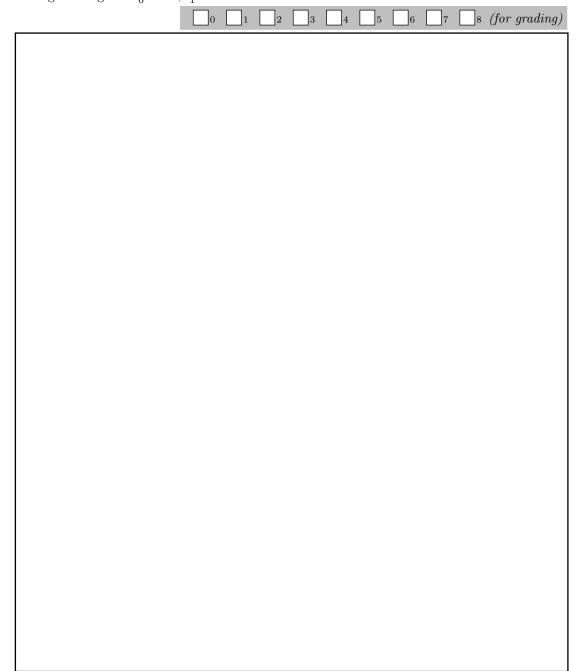

5

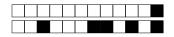
+1/6/55+

Question 22



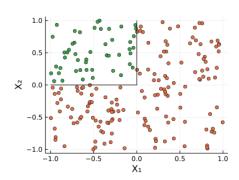
With hierarchical clustering we want to assign each data point in the above dataset to one of two clusters. In the figure the observation identity is given by the number next to the data point. We use the Euclidean distance and complete linkage.

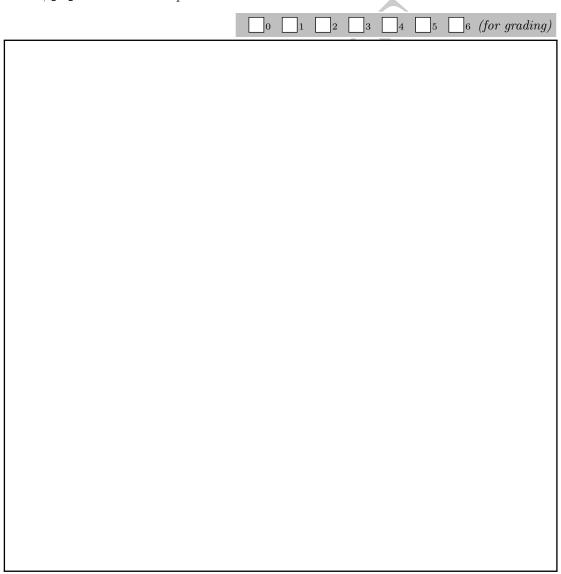

A) Determine the dendrogram and compute the heights at which branches merge.


B) Assign each point to one of two clusters.

0		3	4	6	(for grading)

Question 23 You are given the data set $((x_1 = 1, y_1 = 2), (x_2 = -1, y_2 = 4))$. Assume the data comes from a generator with normally distributed (Gaussian) noise and you would like to fit this data with the family of probability densities $p(y|x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\theta_0-\theta_1x)^2}{2}\right)$. Compute one update-step of gradient descent on the negative log-likelihood loss with learning rate $\eta = \frac{1}{4}$, assuming initial guess $\theta_0^{(0)} = 2, \theta_1^{(0)} = 1$.

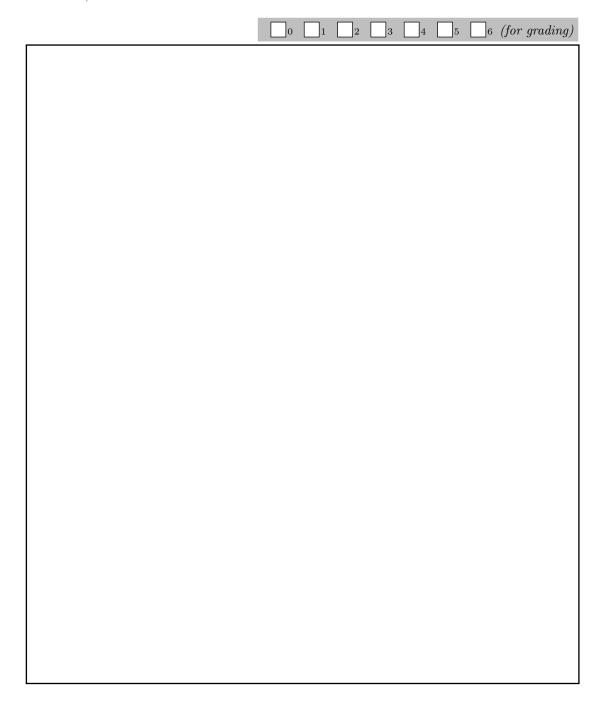




Question 24

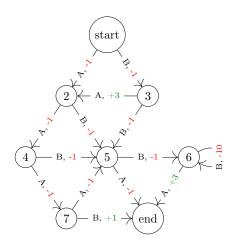
On the right you see a decision problem with non-linear decision boundary (black line).

- 1. Determine a feature representation with 2 features H_1 = heaviside($w_{11}X_1 + w_{12}X_2$), H_2 = heaviside($w_{21}X_1 + w_{22}X_2$) such that the decision boundary is linear in the feature representation. Give your answer in the form $w_{ij} = \dots$ for all i = 1, 2, j = 1, 2. The heaviside function is given by heaviside(x) = 1 if x > 0, heaviside(x) = 0 otherwise.
- 2. Show that the decision boundary is indeed linear, i.e. show that there are regression coefficients $\beta_0, \beta_1, \beta_2$ such that $\beta_0 + \beta_1 H_1 + \beta_2 H_2 > 0$ for all points with $X_1 < 0$ and $X_2 > 0$ and $\beta_0 + \beta_1 H_1 + \beta_2 H_2 < 0$ for all other points.



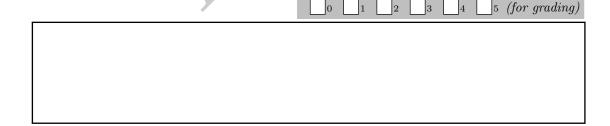
Question 25 Suppose you receive the following email from a colleague.

Dear Firstname,

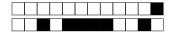

For my current project I work with a database of 71 patients with different severity of a certain disease and 112 measured variables from the analysis of the blood etc. I would like to use machine learning to determine which of the 112 measured variables are unlikely to be related with the severity of the disease. Can you suggest one machine learning method you would use for this task? Please explain, how and why you would use this method.

Cheers, B.

9

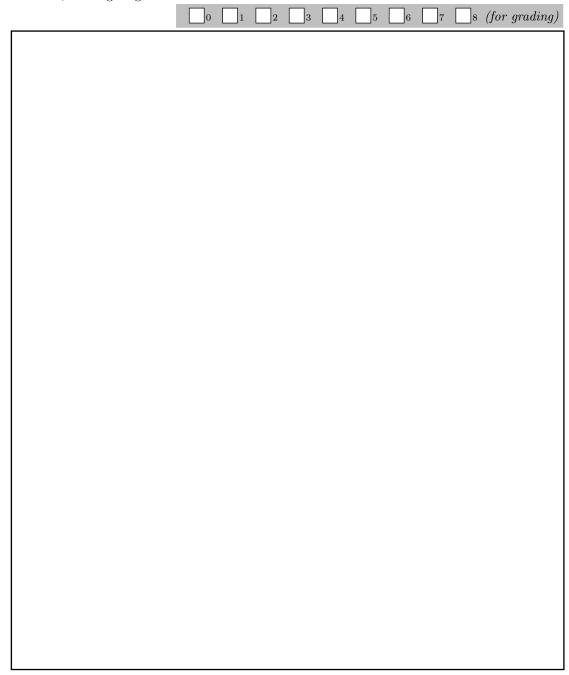


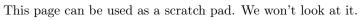
On the left there is a transition graph of a reinforcement learning task. The text on top of each arrow indicates the action (A or B) that has to be taken to transition from one state to the next and the reward (negative rewards in red, positive rewards in green) when doing this transition. For example, the arrow that starts at state 6 and ends at state 6 indicates that taking action B in state 6 costs -10 and leaves the agent in state 6. Each episode starts in state "start" and ends in state "end". The agent's goal is to find the actions that maximize the cumulative reward in each episode.


Question 26	Which action is optimal in	state 5? A or B	?	0 1	(for grading)
	Assume a reinforcement arge is $Q(\text{state } 3, \text{action B})$?	learning agents	learns for a	very long	time with C
			0	1 2	(for grading)

Question 28 Assume the agent does not know the transition graph. In the first episode it starts in the "start" state and performs the action sequence A, B, A. After this first episode, how large is Q(state 2, action B)

- 1. for a Monte Carlo learner.
- 2. for a Q learner, with learning rate 0.5 and all Q values initialized to -1.




Question 29 Design a concrete example where we see that the variance of a flexible method is larger than the variance of an inflexible method and that the opposite holds for the bias.

Here is what we mean by a "concrete example": we should see with numbers what you want to show. For example, if the task were to "Show with a concrete example that predictions under linear regression are invariant under scaling of the training input data but predictions with ridge regression are not" a valid answer would be:

Assume data set $((x_1=0,y_1=1),(x_2=1,y_1=2))$. For linear regression the solution would be $\theta_0=1$ and $\theta_1=(2-1)/(1-0)=1$. Therefore, predictions for $x_0=2$ would be $\theta_1x_0+\theta_0=3$. If we scale the input data by s=2, the solution would be $\tilde{\theta}_0=1$ and $\tilde{\theta}_1=(2-1)/(2-0)=\frac{1}{2}$. Therefore, predictions for $\tilde{x}_0=2\cdot 2=4$ would be $\tilde{\theta}_1\tilde{x}_0+\tilde{\theta}_0=3$, the same as before. On the other hand, for ridge regression with $\lambda=1$ the solution for the unscaled case would be... etc.

If you use this page for results that we should look at write this explicitly and clearly.

This page can be used as a scratch pad. We won't look at it. If you use this page for results that we should look at **write this explicitly and clearly**.

This page can be used as a scratch pad. We won't look at it. If you use this page for results that we should look at **write this explicitly and clearly**.

