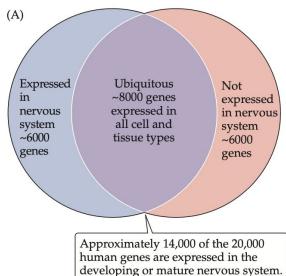

BIO-311 Neuroscience Overview

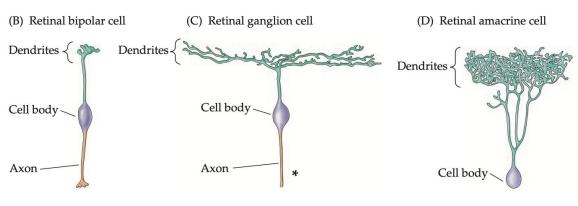
The neuron

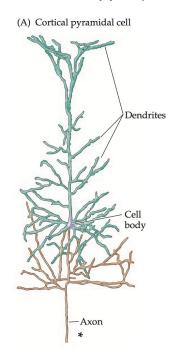

Unit 1 Recap Membrane potential and channels

Unit 1: Key points

- Course overview
- Phospholipid bilayer permeability
- Ion concentrations K⁺, Na⁺, Cl⁻ ATPase
- Equilibrium potential Nernst Equation
- Resting membrane potential
- Passive membrane properties RC circuit analogy

- Genetics and genomics
 - Size of human genome: ~20,000 genes.
 - ~14,000 are expressed in the nervous system, ~6,000 of which are uniquely expressed in the nervous system.

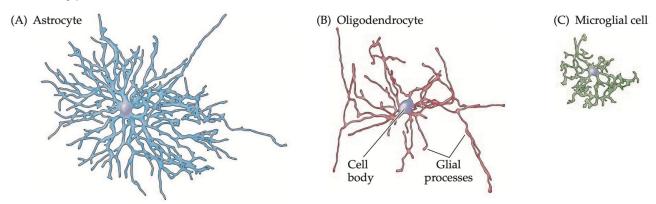



- Cellular components of the nervous system
 - Consists of neurons (signal processing) and glial cells (physical and metabolic support)

- Cellular components of the nervous system
 - Consists of neurons (signal processing) and glial cells (physical and metabolic support)

Neurons

- Neuronal processes: axons and dendrites.
- Chemical synapses and electrical synapses (gap junctions).



This will be seen in later units

- Cellular components of the nervous system
 - Consists of neurons (signal processing) and glial cells (physical and metabolic support)
- Neurons
 - Neuronal processes: axons and dendrites.
 - Chemical synapses and electrical synapses (gap junctions).

Glial cells

Three types:

Reading: Purves et al, Chapter 2

Electrical Signals of Nerve Cells

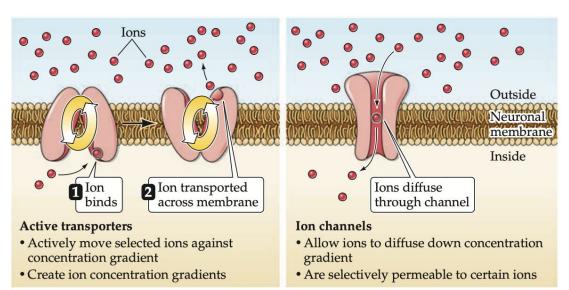
- Movement of ions across the membrane
 - Active transporters: actively move ions into/out of the cell

o lon channels: selective permeability, allowing certain ions to diffuse through the membrane (in

R = I/G

Conductance

Sum of all

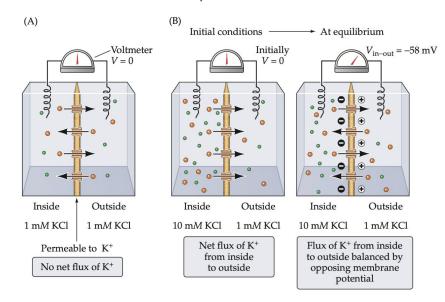

ion channels

Capacitance

Phospholipid

bilayer

the direction of the concentration gradient)

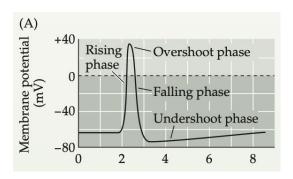

Reading: Purves et al, Chapter 2

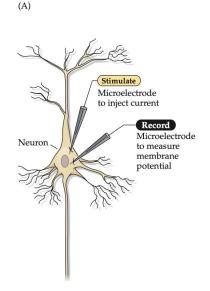
Electrical Signals of Nerve Cells

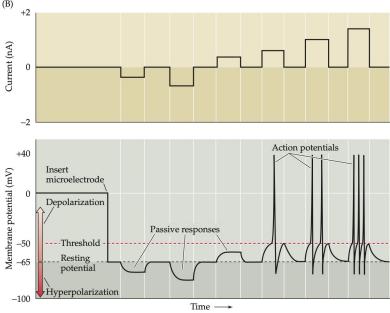
- Electrochemical equilibrium: resting membrane potentials
 - Balance between 2 opposing forces: (i) concentration gradient causing K⁺ to move outside,
 (ii) electrical gradient that stops K⁺ from leaving
 - One ion: **Nernst equation**; more than one ions: Goldman equation

[X]: concentration of X
$$E_{X} = \frac{RT}{zF} \ln \frac{[X]_{out}}{[X]_{in}}$$

$$V_{\rm m} = 58 \log \frac{P_{\rm K} [\rm K]_{out} + P_{\rm Na} [\rm Na]_{out} + P_{\rm Cl} [\rm Cl]_{in}}{P_{\rm K} [\rm K]_{in} + P_{\rm Na} [\rm Na]_{in} + P_{\rm Cl} [\rm Cl]_{out}}$$


Reading: Purves et al, Chapter 2


Electrical Signals of Nerve Cells


- Action potentials
 - Boosting the spatial spread of electrical signals
 - Depolarization (rising phase) → repolarization (falling phase) → hyperpolarization (undershoot

phase)

... More next week

