

Fundamental understanding (of the human or animal brain)

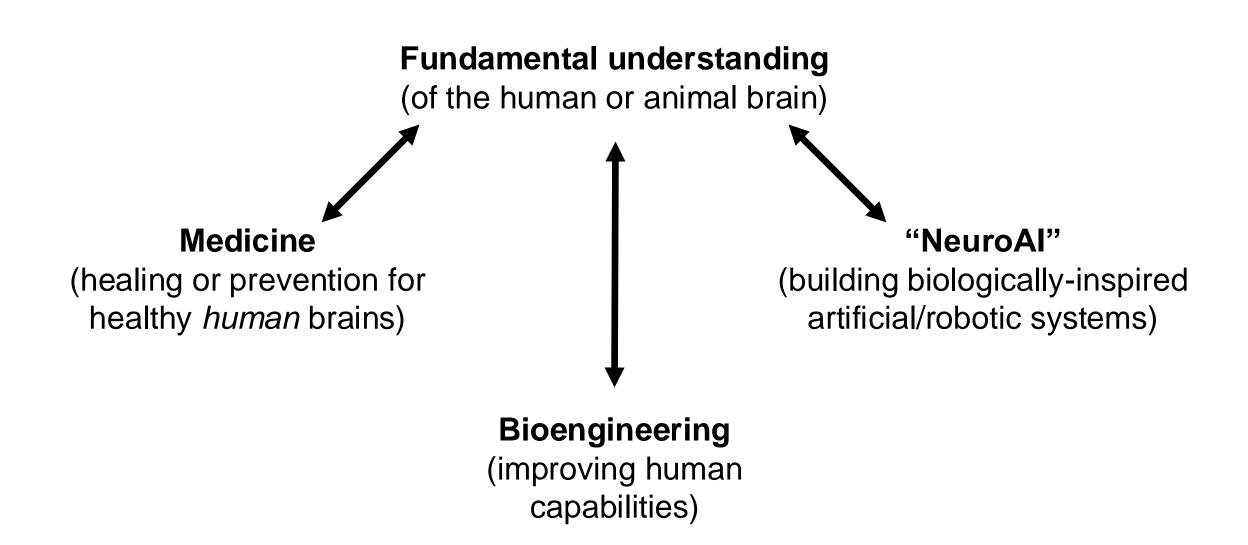
Fundamental understanding

(of the human or animal brain)

Medicine

(healing or prevention for healthy *human* brains)

Fundamental understanding


(of the human or animal brain)

Medicine

(healing or prevention for healthy *human* brains)

"NeuroAl"

(building biologically-inspired artificial/robotic systems)

What is a "model organism"?

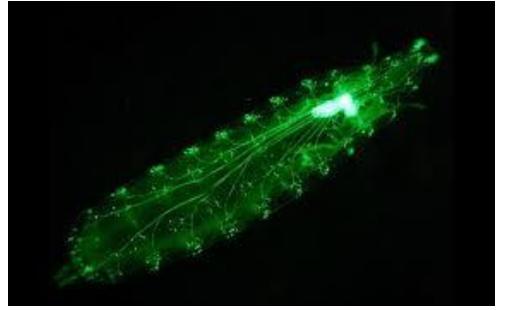
What is a "model organism"?

What typically makes model organisms advantageous for experiments?

What is a "model organism"?

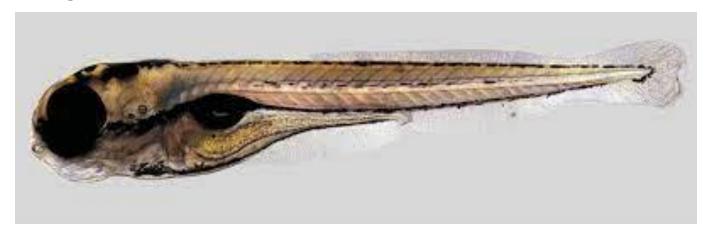
What typically makes model organisms advantageous for experiments?

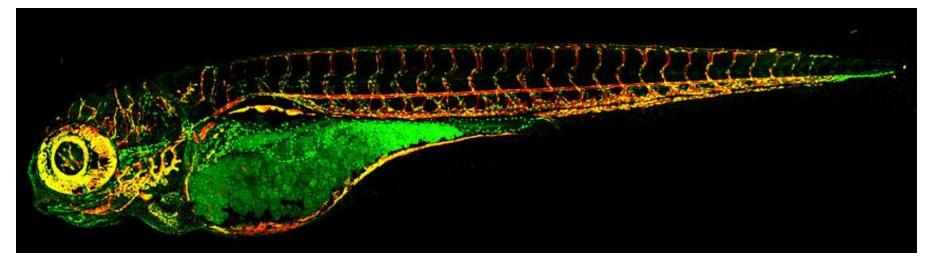
How can we decide which model organisms are worth using for a particular goal?


Worms (*C. elegans*)

302 neurons
Complete connectome
Transgenic animals

Worms
(*C. elegans*) **Fly larvae**(*D. melanogaster*)





~15,000 neurons Complete connectome Transgenic animals

Worms
(*C. elegans*)
Fly larvae
(*D. melanogaster*)

Zebrafish larvae (*D. rerio*)

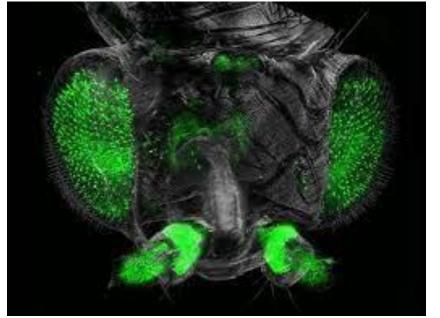
~100,000 neurons

Partial connectome

Some transgenic animals

Worms

(C. elegans)


Fly larvae

(D. melanogaster)

Zebrafish larvae (*D. rerio*)

Fly adults (*D. melanogaster*)

~150,000 neurons

Complete connectome

Many transgenic animals

Worms
(*C. elegans*)
Fly larvae
(*D. melanogaster*)

Zebrafish larvae (*D. rerio*)

Fly adults (*D. melanogaster*)

Mice (*M. musculus*)

~100,000,000 neurons Small regions have connectome Transgenic animals

Worms

(C. elegans)

Fly larvae

(D. melanogaster)

Zebrafish larvae

(D. rerio)

Fly adults

(D. melanogaster)

Mice

(M. musculus)

Nonhuman primates (macaque)

~1,500,000,000 neurons No connectome Rare transgenics

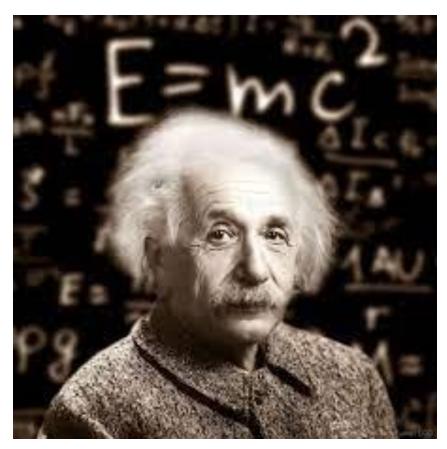
Worms

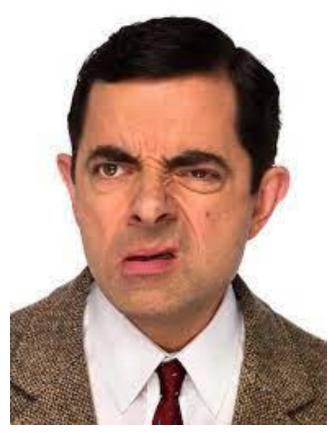
(C. elegans)

Fly larvae

(D. melanogaster)

Zebrafish larvae


(D. rerio)


Fly adults

(D. melanogaster)

Mice

(M. musculus)

Nonhuman primates (macaque)

Humans

~100,000,000,000 neurons No connectome No transgenics yet

Worms (<i>C. elegans</i>)		
Fly larvae (<i>D. melanogaster</i>)		
Zebrafish larvae (<i>D. rerio</i>)		
Fly adults (<i>D. melanogaster</i>)		
Mice (<i>M. musculus</i>)		
Macaque monkey		
Humans		

	Similarity to humans (vertebrates/mammals)	
Worms (<i>C. elegans</i>)	Some genes/cells	
Fly larvae (<i>D. melanogaster</i>)	More genes/cell types	
Zebrafish larvae (<i>D. rerio</i>)	Vertebrates	
Fly adults (<i>D. melanogaster</i>)	More genes/cell types some behaviors	
Mice (<i>M. musculus</i>)	Many genes/cell types many behaviors	
Macaque monkey	Most genes/cell types most behaviors	
Humans	Same	

	Similarity to humans (vertebrates/mammals)	Behavior complexity ('expressivity')	
Worms (<i>C. elegans</i>)	Some genes/cells	Simple - crawling	
Fly larvae (<i>D. melanogaster</i>)	More genes/cell types	Simple - crawling	
Zebrafish larvae (<i>D. rerio</i>)	Vertebrates	Simple - swimming	
Fly adults (<i>D. melanogaster</i>)	More genes/cell types some behaviors	Complex: walk, fly, fight, mate	
Mice (<i>M. musculus</i>)	Many genes/cell types many behaviors	Complex: walk, fight, mate, care for young	
Macaque monkey	Most genes/cell types most behaviors	Very complex: Include language	
Humans	Same	Very complex: include planning	

	Similarity to humans (vertebrates/mammals)	Behavior complexity ('expressivity')	Tractability (ease of understanding)
Worms (<i>C. elegans</i>)	Some genes/cells	Simple - crawling	Very high: transgenics, connectome
Fly larvae (<i>D. melanogaster</i>)	More genes/cell types	Simple - crawling	Very high: transgenics, connectome
Zebrafish larvae (<i>D. rerio</i>)	Vertebrates	Simple - swimming	High: transgenics, soon connectome
Fly adults (<i>D. melanogaster</i>)	More genes/cell types some behaviors	Complex: walk, fly, fight, mate	High: transgenics, connectome
Mice (<i>M. musculus</i>)	Many genes/cell types many behaviors	Complex: walk, fight, mate, care for young	Medium: transgenics, cells not ID across animals
Macaque monkey	Most genes/cell types most behaviors	Very complex: Include language	Low
Humans	Same	Very complex: include planning	Lowest

Which model(s) would you use for different applications (and why)?

Fundamental understanding

(of the human or animal brain)

Medicine

(healing or prevention for healthy *human* brains)

"NeuroAl"

(building biologically-inspired artificial/robotic systems)

Bioengineering

(improving human capabilities)

Ethics: which experiments concern you (and why)?

What are "ethical considerations"?

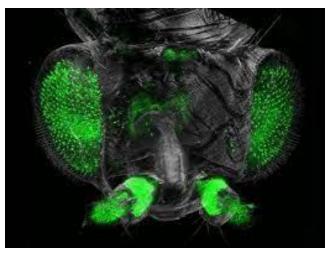
What is the compromise between ethics and science?

How can we decide which experiments are worth doing?

Sustainability: how can we make neuroscience sustainable?

What is "sustainability" in the context of neuroscience?

Why should we be more sustainable in neuroscience?


How can we become more sustainable in neuroscience?

My choice: use the adult fly to understand brains and develop NeuroAl

Fundamental understanding (of the human or animal brain)

Medicine
(healing or prevention for healthy *human* brains)

"NeuroAl"
(building biologically-inspired artificial/robotic systems)

Bioengineering (improving human capabilities)

Summary: Neuroscience approaches, ethics, sustainability: Important concepts and keywords

- What are the four most prominent goals of neuroscience?
- What is a model organism and what are examples of model organisms?
- Name the 6 model organisms (humans excluded) that are most commonly used in neuroscience
- How do these 6 model organisms compare with one another in terms of (i) 'modeling' human brains, (ii) generating interesting, complex behaviors, (iii) being easy to study?
- What are some ethical concerns in neuroscience and why do we still perform these experiments anyway?

In-depth feedback

The evaluations are accessible via the moodle. To access them, students have to:

- •Log onto moodle and stay on the moodle home page (dashboard, not the course page).
- •Click on the arrow to the top right of the screen which will reveal a block that contains the entitled "In-depth evaluation" tile (please note: all evaluations will be together in the evaluation tile on the moodle home page, and not separate in each course moodle page).
- •Students can then select your course and complete the feedback.

Students will also be able to access the course evaluations via the **EPFL Campus App**. We hope this will make the surveys more accessible and so help you to increase the response rate. Teachers can access evaluations in the same location on the moodle home page. You will be able to:

- •Access the response rate while the evaluation is open (Moodle nouveau plugin).
- •Access the report from 11 February 2025.