

Principes de base de la vaccination

Abbas, Basic Immunology, 4th edition, p. 207-223 and p.171-187 Robbins, Pathologic Basis of Disease, 9th edition

Adrian Duval

Adrian.duval@unil.ch

Basé sur un cours de la Pr. A. Ablasser

Histoire de la vaccination

1. Edward Jenner (1749 – 1823): découvre que les nourrices sont généralement protégées de la variole. Il postule que leur exposition à la vaccine (= variole de la vache), une maladie similaire à la variole mais moins dangereuse, les protège.

2. Louis Pasteur (1822 – 1895) : découvre qu'il peut protéger des poules contre le choléra en leur injectant une souche inactivée de cette maladie. Ce fut le début du développement des vaccins en laboratoire.

Principes de l'immunisation

L'immunité contre des organismes infectieux peut être obtenue de manière active ou passive

Immunisation passive

- Protection acquise par le biais d'un donneur ou d'un animal
- Protection temporaire

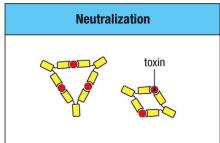
Exemples:

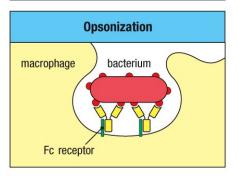
- Anticorps maternels
- Antitoxines
- Anticorps monoclonaux humanisés

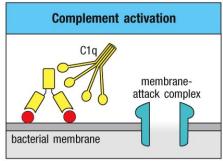
Immunisation active

- Inoculation de pathogènes ou composés induisant une réponse immunitaire propre à l'individu
- Protection de longue durée

Exemples:


- Infections naturelles
- Vaccins

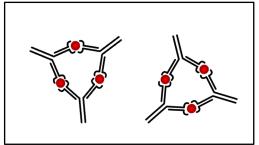

Immunisation passive (I)


L'immunité passive peut se faire via l'activation du système immunitaire inné ou par une neutralisation directe via des agents externes

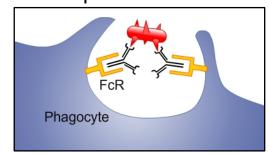
Exemples de mécanismes :

- Neutralisation directe de toxines ou virus
- Opsonisation de bactéries pour faciliter leur phagocytose et destruction par les macrophages et neutrophiles
- Activation du complément (C') pour la destruction immédiate du pathogène
- Anticorps dirigés contre le pathogène pouvant recruter des cellules NK pouvant détruire la cible via les mécanismes de cytotoxicité cellulaire dépendante des anticorps

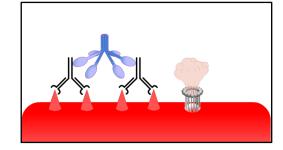
.4


Immunisation passive (I)

L'immunité passive peut se faire via l'activation du système immunitaire inné ou par une neutralisation directe via des agents externes


Exemples de mécanismes :

- Neutralisation directe de toxines ou virus
- Opsonisation de bactéries pour faciliter leur phagocytose et destruction par les macrophages et neutrophiles
- Activation du complément (C') pour la destruction immédiate du pathogène
- Anticorps dirigés contre le pathogène pouvant recruter des cellules NK pouvant détruire la cible via les mécanismes de cytotoxicité cellulaire dépendante des anticorps


Neutralisation

Opsonisation

Activation du C'

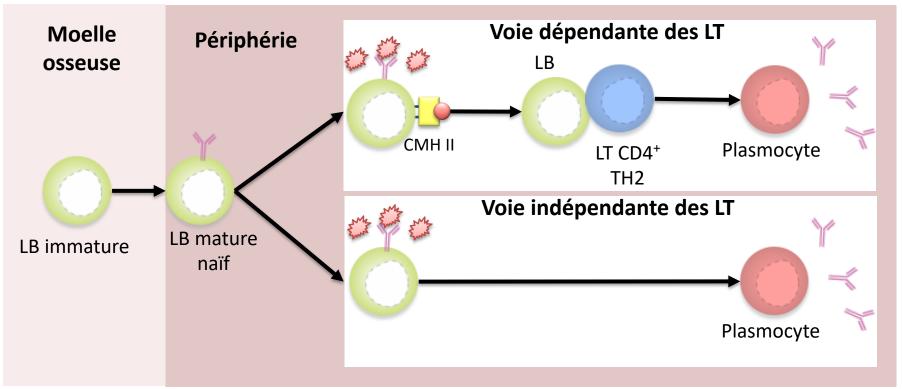
Immunisation passive (II)

CAVE : l'immunisation passive inactive les effets immédiats d'une affection, mais **n'active pas le système immunitaire adaptatif** et ne génère donc **pas de mémoire**. La protection est donc **temporaire**.

Effets secondaires possibles d'une immunisation passive :

- ➤ Réponse anti-isotype : si utilisation d'anticorps produits dans une espèce animale (p.ex.: cheval), risque de réponse immunitaire isotypique intense, engendrant une réaction d'hypersensibilité pouvant aller jusqu'à l'anaphylaxie.
- ➤ Réponse anti-allotype : si utilisation d'anticorps d'origine humaine, risque de réponse immunitaire allotypique engendrant une réaction d'hypersensibilité, généralement moins prononcée que la réponse anti-isotype.

Immunisation active – vaccins préventifs


Un vaccin préventif est une préparation (antigène) qui, administrée à un individu, tente d'induire :

- Une résistance immunitaire spécifique à une maladie infectieuse
- Une immunité et une mémoire immunologique (anticorps) similaire à l'infection naturelle, mais sans le risque de la maladie.

La production d'anticorps (immunité humorale) induite par le vaccin permet à ceux-ci de reconnaître la présence d'un pathogène de façon hautement spécifique et d'induire une réponse immunitaire efficace via le Complément (C') et l'immunité cellulaire.

Immunité humorale

- ➤ La production d'anticorps est induite lorsqu'un lymphocyte B (LB) mature naïf rencontre un antigène (vaccin, pathogène, toxine) pour lequel il est spécifique.
- Ce mécanisme peut être dépendant ou indépendant des lymphocytes T (LT CD4+ TH2)

Vaccins préventifs - classification

- Vaccins vivants atténués :
 - > Viraux:
 - Rougeole, oreillons, rubéole
 - Vaccinia, varicelle, fièvre jaune
 - Influenza (intranasal)
 - Bactériens: BCG (tuberculose), fièvre typhoïde, choléra
- Vaccins inactivés :
 - Germes entiers (morts) :
 - Viraux : poliomyélite, hépatite A, rage, influenza
 - Bactérien : fièvre typhoïde, choléra, pertussis, peste
 - Sous-unités purifiées (protéine, polysaccharide): tétanos, diphtérie, coqueluche, hépatite B

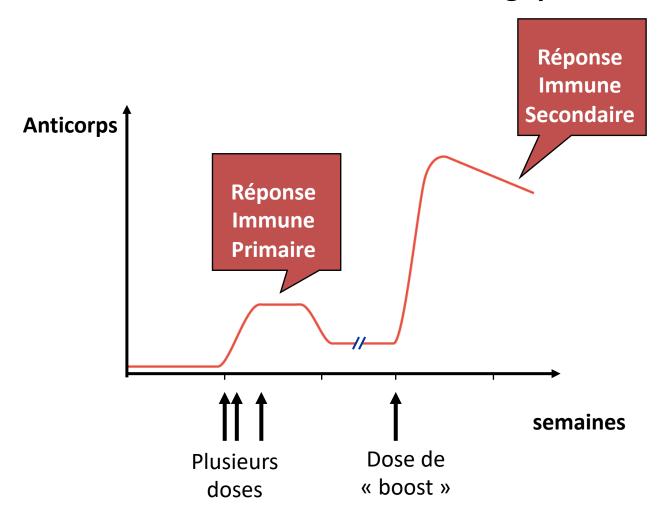
Vaccins vivants atténués (I) - description

Règle générale: plus un vaccin ressemble au pathogène créant la maladie, plus la réponse immune sera efficace

- ➤ Obtenu par la **modification génétique** d'un virus ou d'une bactérie « wild-type ».
- La modification empêche le pathogène de provoquer la maladie chez l'hôte mais conserve sa capacité de croître et de se multiplier.
- La capacité de multiplication permet d'injecter une petite quantité et provoque une immunité durable en une seule dose.
- Induit une réponse immunitaire forte *sans* provoquer les symptômes de la maladie.

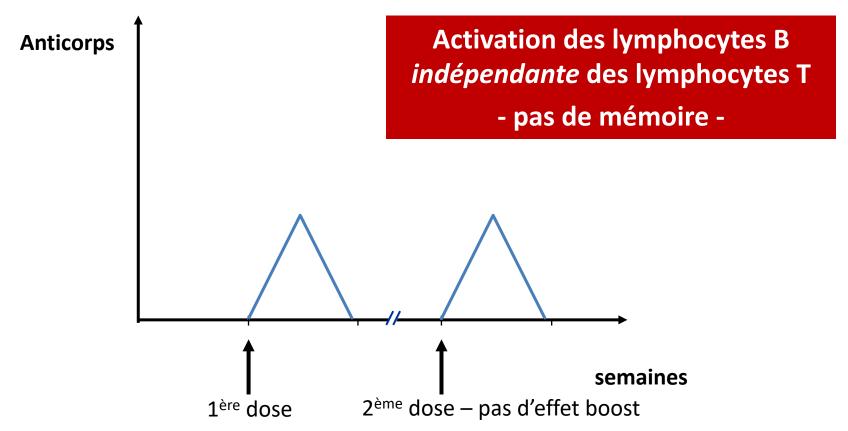
Vaccins vivants atténués (II) - limitations

- ➤ Produits **fragiles** (sensibles à la lumière, température etc.) donc inappropriés si les conditions de transport et stockage ne sont pas adéquats
- Leur efficacité peut être perturbée en présence d'anticorps (p.ex: transplacentaire, transfusion)
- ➤ Peut produire des symptômes de la maladie chez les immunosupprimés


Vaccins inactivés (I)

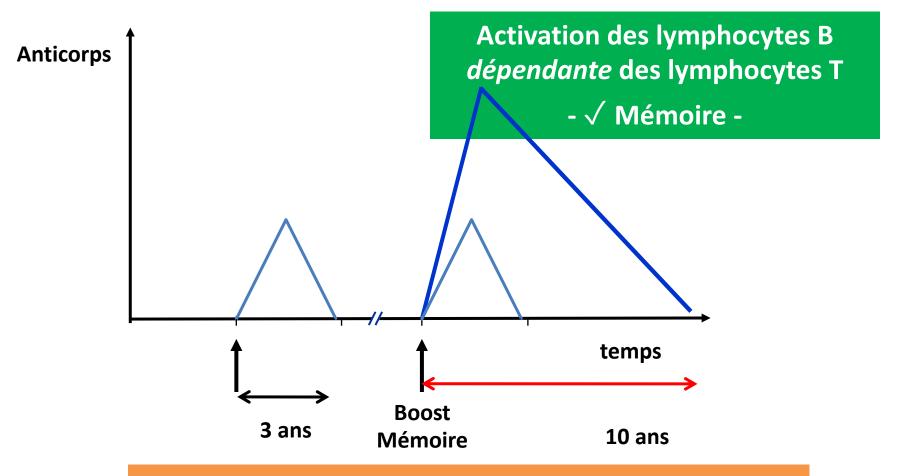
Peuvent être des **germes entiers** (morts) ou des **sous-unités purifiées** (protéines, polysaccharides)

- Incapables de croître ou de se multiplier
 - → Ne peuvent PAS causer la maladie
- > Le taux d'anticorps diminue avec le temps
 - → Nécessitent des « boost » (vaccins de rappel)
- Moins immunogènes que les vaccins vivants (ne se répliquent pas)
 - → Nécessitent **plusieurs doses**, besoin **d'adjuvants**, doivent être injectés dans des zones riches en cellules présentatrices d'antigènes (p.ex: intramusculaire)


Vaccins inactivés (II) - protéiques

Les vaccins inactivés à germes entiers et sous-unités protéiques induisent une **mémoire immunologique**

Vaccins inactivés (III) - polysaccharidiques


Les vaccins inactivés à sous-unités polysaccharidiques n'induisent **PAS** de mémoire immunologique (**pas d'effet boost**)

Effet limité dans le temps, pas efficace chez les < 2 ans (immaturité du système immunitaire)

Vaccins inactivés (IV) - conjugués

Conjugué = antigène polysaccharidique + vecteur protéique

Effets plus long, fonctionne chez les < 2 ans

Adjuvants (I)

- <u>Définition</u>: substances ou moyens qui renforcent la réponse immunitaire en :
 - Ralentissant la libération de l'antigène
 - Améliorant la prise en charge de l'antigène par les cellules présentant l'antigène
 - Stimulant le système immunitaire par des moyens non spécifiques (inflammation).
- Nécessaires pour stimuler l'immunogénicité des vaccins inactivés
- Inutiles pour les vaccins vivants

Adjuvants (II) – exemples

- CFA (Complete Freund's Adjuvant): émulsion huile + Mycobacterium bovis tués
- Alum: stimule réponse humorale
- Nouvelles classes :
 - Adjuvants bactériens (MPL), ou synthétiques, émulsions
 - Cytokines ou molécules co-stimulatrices (IL-12, CD40L,...)
 - DNA bactérien (CpG)

Stimulent le système immunitaire et induisent une réponse plus rapide, plus forte (plus d'anticorps) et de plus longue durée (stimulation de mémoire immunitaire)

Résumé

Caractéristiques	Vaccins vivants	Vaccins inactivés
Réponse immune	Humorale et cellulaire	Surtout humorale
Doses	Une seule	Plusieurs
Adjuvant	Non	Nécessaire
Durée de l'immunité	A vie	Rappels nécessaires
Voie	Oral, nasal, sous- cutané	Intramusculaire, sous- cutané
Utilisation chez patients immunocompromis	Déconseillé (peut provoquer la maladie)	OK (ne peut pas provoquer la maladie)