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Sequence Determines Structure 3

The Anfinsen experiment (1954)

- A Nobel prize (1972) experiment that 
by measuring enzymatic activity figured 
out the principles of protein folding  

-Ribonuclease refolded and oxidized 
recovers 100% activity  

-Ribonuclease oxidized and refolded in 
presence of urea recovers  1% activity  
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▪ Anfinsen discovered it in a key experiment already in 1954 
▪ This has become the central dogma of structural biology  

4Protein sequence determines structure 

folding funnel folded structure 

K. Dill
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▪  the goal is atomic resolution (~1-2 Å) 
▪  experimental methods are: 

▪  X-ray crystallography (any size) 
▪  nuclear magnetic resonance (< 50 kDa) 
▪  cryo-electron microscopy (> 100 kDa)

http://www.rcsb.org▪ The Protein DataBank — PDB 

>200K
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Biomolecular structure determination 6

atomic resolution (~1-2 Å, 0.1-0.2 nm - 10-10 m)

• X-ray crystallography (~1-2 Å; any size)
• nuclear magnetic resonance (~1-2 Å; < 50 kDa)
• cryo-electron microscopy (1-20 Å ; > 100 kDa)

in the structure and dynamics 
of any biomolecule in the cell is 
encoded its function
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7

Methods for determining biomolecular structures

- Versatile tool for studying protein structure and dynamics
- Computationally light
- Full structural analysis limited to smaller proteins (<50kDa)
- Requires isotopic labeling
- Results in model ensemble

- Gold-standard method for solving protein structures
- Not limited in size or achievable resolution
- Computationally light
- Requires highly homogenous, crystallizable sample
- Requires screening of crystallization conditions
- Phase problem
- Results in a single model

(per map)

- Versatile tool for studying protein assembly, structure, dynamics
- Limited to proteins >40kDa
- No requirement for protein labeling
- Does not require homogenous samples
- Grid preparation procedure requires screening
- Real space imaging – no phase problem
- Can be used to study protein dynamics
- Can be expanded to larger assemblies (e.g., viruses and cells)
- Results in 1 or more models per dataset
- Computationally heavy (TBs of data + requirement for GPU 

processing)73
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▪ progress in cryo-electron microscopy 
led to much improved resolution 

▪ cryo-EM is becoming the new gold 
standard in structural biology  

Krios G4 Cryo-TEM

resolution record 1.22 Å
size record ~50 kDa

Abriata, Dal Peraro, JCIM 2020  Luciano Abriata
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“Attention is all you need” 
Vaswani et al. arXiv 2017 

powerful hardware (GPU)

200 ZB (1023 bytes)

ChatGPT

transformer

data explosion 
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The Nobel Prize in Chemistry 2024 was divided, one half awarded to 
David Baker "for computational protein design", the other half jointly to 
Demis Hassabis and John M. Jumper "for protein structure prediction"

B
io

lo
gi

ca
l C

he
m

is
try

 1
 - 

B
IO

-2
12

, L
ec

tu
re

 6
 2

02
4



CASP: Critical Assessment of Techniques for 
Protein Structure Prediction (now CASP16)

12

http://predictioncenter.org
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CASP: Critical Assessment of Techniques for 
Protein Structure Prediction (now CASP16)

13

http://predictioncenter.org

Björn Wallner (bjorn@cbr.su.se)! 

CASP 
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CASP: Critical Assessment of Techniques for 
Protein Structure Prediction (now CASP16)

14

http://predictioncenter.org

T0990-D1 
RMSD 1.6 Å

T0992-D1
RMSD 1.6 Å

Root Mean Square Displacement :: RMSD defines a measure for similarity:

Root Mean Square Deviation

Find an alignment which minimizes the root mean square
deviation:

where is the distance between the two residues in the th
pair of the alignment.

Involves rigid body motions (translation and rotation) and
deciding which residues should be aligned.

gray = experiment 
rainbow = prediction
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▪ experimental-like accuracy 
▪ >200 M predicted models available in UniProt 

experimental structure
computational prediction

AlphaFold2

Abriata and Dal Peraro, Proteins 2019
Abriata, Tamo’ and Dal Peraro, Proteins 2018
 

CASP14CASP13

CASP12

above 90 a prediction is equivalent to an experimental structure

machine learning

evolutionary couplings

Critical Assessment of protein Structure Prediction — CASP

AlphaFold2 solved a 70yo problem 

Luciano Abriata
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Evolutionary couplings for protein prediction  16
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▪ correlations in the sequence 
space give structural information 

▪ if you have enough predicted 
contacts you can fold a protein 
(similar to NMR) 



Evolutionary couplings for protein prediction  17
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Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino,Debora S. Marks, Chris Sander, Riccardo Zecchina, José N. Onuchic, Terence Hwa, and Martin Weigt 
Direct-coupling analysis of residue coevolution captures native contacts across many protein families, PNAS 2011 

tially better than MI, both in terms of the TP rate and the
representation of the native contact map. To become more quan-
titative, we have binned the predicted pairs according to their
separation along the primary amino acid sequence (Fig. 7, Right).
We observe that DI captures in particular a higher number and
more accurately those contacts between residues, which are very
distant along the sequence. Also, the DI predictions are more
evenly distributed, whereas MI predictions tend to cluster to-
gether.

Discussion.
We have shown the ability of DCA to identify with high-accuracy
residue pairs in domain families that might have coevolved to-
gether and hence are representative of physical proximity in the
three-dimensional fold of the domain. We have done an extensive
evaluation of these capabilities for a large number of families and
individual PDB structures. We found that DCA is not only able to
identify intradomain contacts but also interdomain residue pairs
that are part of oligomerization interfaces. Although we focused
on bacterial proteins, this methodology can be applied to the
ever-increasing number of eukaryotic sequences. Our initial re-
sults suggest that mfDCA performance is conserved for non-
bacterial proteins. One potential application is the identification
of interaction interfaces for homodimers that could ultimately
help in complex structure prediction, e.g., the cases in Fig. 3 and
SI Appendix, Fig. S7. Our results might open unexplored avenues
of research for which full contact maps could be estimated and
used as input data for de novo protein structure identification,
which is particularly interesting in the case of interdomain con-
tacts in multidomain proteins. Ultimately, this methodology can
be utilized with pairs of proteins rather than single proteins to
identify potential protein–protein interactions. An example of
this approach was introduced in ref. 16, however, the current
mathematical formulation of the method as well as its computa-
tional implementation allows an analysis to a much larger scale.

Despite the accuracy of the extracted signal, mfDCA cannot
be expected to extract all biological information contained in
the pair correlations. This idea can be illustrated by comparing
the mfDCA results to those of statistical-coupling analysis
(SCA), developed by Lockless and Ranganathan (5) and used
to identify “coevolving protein sectors” (41). We have applied
mfDCA to the data of ref. 41 for the Trypsin protein family
(Serine protease), where SCA identified three sectors related to
different functionalities of the protein, which cover almost 30%
of all residues. The mfDCA leads to an 83.3% TP rate for the top
30 contact predictions (PDB ID 3TGI; ref. 42)—i.e., to a perfor-
mance which is comparable to the other protein families analyzed
here. Out of the resulting 25 true contact pairs, only eight are
found within the identified sectors. Among them, three are
disulfide bonds (C42∶C58, C136∶C201, C191∶C220) and another
two are inside a catalytic triad crucial for the catalytic activity of
the protein family (H57∶S195, D102∶S195). The other 17 true
contacts predicted by mfDCA are distributed over the protein
fold, without obvious relation to the sectors (see SI Appendix,
Table S4). The difference in prediction can be traced back to
differences in the algorithmic approaches: SCA uses clustering
to identify larger groups of coevolving sites (sectors), whereas
DCA uses maximum-entropy modeling to extract pairs of directly
coupled residues. Thus, the two algorithms extract different and,
in both cases, biologically important information. It remains a
future challenge to develop techniques unifying SCA and DCA,
and to extract even more coevolutionary information from
multiple-sequence alignments.

Methods
Data Extraction. Sequence datasets were extracted primarily from Pfam
families with more than 1,000 nonredundant sequences. We decided to focus
on families that are predominantly bacterial (i.e., more than 90% of the
family sequences belong to bacterial organisms). Another requirement in
this dataset is that such families must have at least two known X-ray crystal
structures with a resolution of 3 Å or better. The PDB (43) was accessed
to obtain crystal structures of proteins. An additional criterion to improve

Fig. 7. Two examples of contact map predictions using MI (A and D) and mfDCA (B and E). Gray symbols represent the native map with a cutoff of 8 Å, colored
symbols the computational contact predictions using MI or DI ranking (red squares for TP and green squares for spatially distant pairs). The number of pairs is
determined such that there are 2L pairs with minimum separation five along the sequence, where L is the domain length. The right-most panels (C and F) bin
the predictions of MI (blue) and mfDCA (red) according to their separation along the protein sequence. The overall bars count all predictions, the shaded part
the TPs. Note in particular that mfDCA leads to a higher number of more accurate predictions for large separations. (A–C) The promoter recognition helix
domain of the SigmaE factor (PDB ID 1OR7). (D–F) The eukaryotic signaling protein Ras (PDB ID 1P21). For better comparability of native vs. predicted contacts,
the predictions are displayed only above the diagonal.

E1298 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1111471108 Morcos et al.

Direct-coupling analysis (DCA)

Mutual information Direct information
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▪ a statistical physics 
method were used to 
crack the problem (ie 
Potts model)

http://www.pnas.org/content/108/49/E1293.abstract?sid=f5b6e3ae-0a8e-4c26-88b7-b3003924c4c5


EC for membrane protein prediction  18

Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing 
Thomas A. Hopf, Lucy J. Colwell, Robert Sheridan, Burkhard Rost, Chris Sander, Debora S. Marks, Cell 2012, DOI:https://doi.org/10.1016/j.cell.2012.04.012

B
io

lo
gi

ca
l C

he
m

is
try

 1
 - 

B
IO

-2
12

, L
ec

tu
re

 6
 2

02
4

▪ folding a transmembrane 
protein using EC is easier.  

▪ Why? 

https://doi.org/10.1016/j.cell.2012.04.012


EC for protein oligomerization prediction  19

Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing 
Thomas A. Hopf, Lucy J. Colwell, Robert Sheridan, Burkhard Rost, Chris Sander, Debora S. Marks, Cell 2012, DOI:https://doi.org/10.1016/j.cell.2012.04.012
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▪ ECs are found not only within the same 
protein but also among protein interfaces  

▪ this can happen for homo or hetero multimers

https://doi.org/10.1016/j.cell.2012.04.012
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▪ trained on sequence similarity and structural templates from databases 
(UniProt/metagenomics and PDB) 

▪ end-to-end model produces prediction in one shot using transformers 

Jumper et al. Nature 2021

▪ “AlphaFold greatly improves the accuracy of structure prediction by incorporating novel 
neural network architectures and training procedures based on the evolutionary, physical 
and geometric constraints of protein structures”. 
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First module: 
gather available information like 
sequence similarity (MSA) and 
structural templates from 
databases (UniProt/
metagenomics and PDB) to 
create a pair representation 
(which aa are likely in contact 
with each other)

Second module: 
Evoformer transformer which 
refine the MSA and pair 
interactions 

Third module: 
The structure module build the 
3D structure based on the MSA 
and pair interactions information 

- end-to-end model produces prediction in one shot  
- recycling (3X) to refine further prediction  
- huge engineering effort

1 2 3
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Suppl. Material for Jumper et al. (2021): Highly accurate protein structure prediction with AlphaFold 27
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Supplementary Figure 8 Invariant Point Attention Module. (top, blue arrays) modulation by the pair rep-
resentation. (middle, red arrays) standard attention on abstract features. (bottom, green arrays) Invariant
point attention. Dimensions: r: residues, c: channels, h: heads, p: points.
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Jumper et al. Nature 2021
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Jumper et al. Nature 2021

B
io

lo
gi

ca
l C

he
m

is
try

 1
 - 

B
IO

-2
12

, L
ec

tu
re

 6
 2

02
4



M
at

te
o 

D
al

 P
er

ar
o AlphaFold2 database 25

▪ > 200 million protein structure predictions 
▪ Almost all catalogued proteins (UniProt) 
▪ Over 1 million organisms 
▪ Freely and openly available 
▪ Collaboration DeepMind and EMBL-EBI 
▪ 35.2% predictions with mean pLDDT  > 90 
▪ 79.1% predictions with mean pLDDT  > 70 

▪ https://www.alphafold.ebi.ac.uk/ 
▪ https://uniprot.org/ 

25
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▪ pLDDT: predicted local distance difference test score 
▪ prediction of the local distances between pairs of 

residues in the predicted structure compared to a 
reference or ground truth structure. 

▪ low score (<50) indicates that the region is 
disordered or AF2 does not have enough information B
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PAE: predicted alignment error ▪ pLDDT is a good score 
only at short/local 
distances 

▪ it cannot give you good 
estimation of the quality 
of a prediction with 
different domains  

▪ their reciprocal orientation 
cannot be estimated by 
pLDDT 

▪ PAE is the solution for 
this scenario 

https://alphafold.ebi.ac.uk/entry/P35247
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ColabFold - Making protein prediction accessible to all 28

2

BFD +
Mgnify

UniRef30

A Multiple sequence alignment with MMseqs2
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>1
…HIECV
VCGDKS
SGKHYG
QFT…

UniRef30

BFD/Mgnify +

B Structure prediction 

M
odel 1
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M
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M
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C Result visualization
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tit
y

Predicted Alignment Error
model 1 model 2 model 3 model 4 model 5

Sorted by pLDDT

FIG. 1. (A) ColabFold sends a FASTA input sequence to a MMseqs2 server searching two databases (1) UniRef30 and the
(2) BFD/Mgnify clustered together at 30% sequence identity with three profile-search iterations each. The second database is
searched using a sequence-profile generated from the UniRef30 search as input. The server generates two A3M files containing
all detected sequences. (B) The A3M is provided as the MSA input feature for (by default) all five AlphaFold2 models. (C)
To help researchers judge the predicted structure quality we visualize MSA depth and diversity and show the AlphaFold2
confidence measures (pLDDT and PAE).

ing the profile generated by the last iterative search. We
use the UniRef30 sequence-profile to perform an iterative
against a clustered version of BFD [2, 7] and Mgnify [8].
Each cluster is expanded as before.
New MMseqs2 pre-computed index to support expanding
cluster members In [12] we previously implemented a
procedure to store all time-consuming-to-compute data
structures used for MMseqs2 searches to disk. If this file
is resident in the operating systems cache, calls the dif-
ferent MMseqs2 modules become near-overhead free. We
extended the index to store, in addition to the already
present cluster representative sequences, all member se-
quences and the pairwise alignments of the cluster repre-
sentatives to the cluster members. With these resident in
cache, we eliminate the overhead of the remaining mod-
ule calls.
Reducing size of environmental sequence database To
keep all required sequences and data structures in mem-
ory we needed to reduce the size of the environmental
databases BFD and Mgnify, as both databases together
would have required ∼517 GB RAM for headers and se-
quences alone.
BFD is a clustered protein database consisting of ∼2.2
billion proteins organized in 64 million clusters. Mgn-

fiy (2019_05) contains ∼300 million environmental pro-
teins. We merged both databases by searching the Mg-
nify sequences against the BFD cluster representative se-
quences. Each Mgnify sequence with a sequence iden-
tity of >30% and a local alignment that covers at least
90% of its length is assigned to the cluster. All remain-
ing sequences are clustered at 30% sequence identity and
90% coverage (--min-seq-id 0.3 -c 0.3 --cov-mode
1 -s 3) and merged with the BFD clusters, resulting
in 182 million clusters. In order to reduce the size of the
database we filtered each cluster keeping only the 10 most
diverse sequences using (mmseqs filterresult --diff
10). This reduced the total number of sequences from 2.5
billion to 513 million, thus requiring only 84 GB RAM
for headers and sequences.
Template information The full AlphaFold2 pipeline
searches with HHsearch through a clustered version of
the PDB (PDB70) to find the 20 top ranked templates.
In order to save time, we use MMseqs2 [16] to search
against the PDB70 cluster representatives as a prefilter-
ing step to find candidate templates. Only the top 20
target templates according to E-value are then aligned
by HHsearch. ColabFold fetches these templates and a
subset of the PDB70 containing only the required HMMs

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
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Jumper et al. Nature 2021

>200M (UniProt) 

~200K (PDB) 
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▪ Limitations 
▪ need for a deep MSA (>30 sequences) to create accurate models 
▪ not all the models are highly accurate as an experimental structure 
▪ it does not account for dynamics and multiple states 
▪ does not account for the post-translational modifications 

▪ Other potential benefits  
▪ AF triggered many other developments  
▪ can assist experimental structure determination 
▪ eg, in molecular replacement in X-ray crystallography 
▪ eg, in cryoEM fitting and model building  
▪ it is a means to look at protein-protein networks
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▪ Proteins can then arrange into 
supramolecular assemblies  

▪ Interacting with nucleic acid, metabolites, 
membranes, etc. 

▪ They create large network of interactions

31Proteins form assemblies and networks 

Expressome (PDB)B
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AlphaFold Multimer 32

Protein complex prediction with AlphaFold-Multimer
Richard Evans,…, John Jumper, Demis Hassabis

bioRxiv 2021.10.04.463034; doi: https://doi.org/10.1101/2021.10.04.463034

+ Support for multiple chains 
+ Multi-chain features 
+ Various architectural modifications 
+ Paired MSAs 
+ Training on complexes

Protein complex prediction with AlphaFold-Multimer
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Figure 1 | The performance of AlphaFold-Multimer against several published baselines is shown on the
Benchmark 2 dataset, consisting of 17 heterodimer targets with low training set homology. AlphaFold-
Linker is AlphaFold with a 21 residue linker of repeated Glycine-Glycine-Serine residues, similar to
previous AlphaFold modifications [4]. AlphaFold-Gap (ColabFold [5]), version from 2021-08-16, is a
published system that runs AlphaFold with a gap between residue indices between chains, uses MMSeqs2
for genetics, includes MSA pairing and does not include templates. ClusPro, AlphaFold refined ClusPro,
and AlphaFold refined ClusPro plus AlphaFold are all systems and results based on combining the docking
algorithm ClusPro with AlphaFold, results are as reported in [2]. Error bars represent a 95% confidence
interval around the mean.
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Towards a structurally resolved human 
protein interaction network

David F. Burke    1,9, Patrick Bryant    2,3,9, Inigo Barrio-Hernandez    1,9, 
Danish Memon    1,9, Gabriele Pozzati    2,3,9, Aditi Shenoy    2,3, Wensi Zhu2,3, 
Alistair S. Dunham    1, Pascal Albanese4,5, Andrew Keller6, 
Richard A. Scheltema    4,5, James E. Bruce    6, Alexander Leitner    7, 
Petras Kundrotas    2,3,8  , Pedro Beltrao    1,7   & Arne Elofsson    2,3 

Cellular functions are governed by molecular machines that assemble 
through protein-protein interactions. Their atomic details are critical to 
studying their molecular mechanisms. However, fewer than 5% of hundreds 
of thousands of human protein interactions have been structurally 
characterized. Here we test the potential and limitations of recent progress 
in deep-learning methods using AlphaFold2 to predict structures for 65,484 
human protein interactions. We show that experiments can orthogonally 
confirm higher-confidence models. We identify 3,137 high-confidence 
models, of which 1,371 have no homology to a known structure. We identify 
interface residues harboring disease mutations, suggesting potential 
mechanisms for pathogenic variants. Groups of interface phosphorylation 
sites show patterns of co-regulation across conditions, suggestive of 
coordinated tuning of multiple protein interactions as signaling responses. 
Finally, we provide examples of how the predicted binary complexes can 
be used to build larger assemblies helping to expand our understanding of 
human cell biology.

Proteins are key cellular effectors determining most cellular processes. 
These rarely act in isolation, but instead, the coordination of the diver-
sity of processes arises from the interaction among multiple proteins 
and other biomolecules. The characterization of protein-protein inter-
actions (PPIs) is crucial for understanding which groups of proteins 
form functional units and underlies the study of the biology of the cell. 
Diverse experimental and computational approaches have been devel-
oped to determine the PPI network of the cell (that is, the interactome), 
with hundreds of thousands of human protein interactions determined 

to date1–3. Protein interactions vary from transient interactions that 
regulate an enzyme to permanent interactions in molecular machines.

The structural characterization of the human interactome has 
lagged behind, with experimental and homology models currently 
covering an estimated 15 protein interactions4,5. The structural char-
acterization of protein complexes is a critical step in understand-
ing the mechanisms of protein function, and in studying the impact 
of mutations4,6–8 and the regulation of cellular processes via the 
post-translational tuning of binding affinities9–12.
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Crosslinking support for predicted complex 
structures
Chemical crosslinking followed by mass spectrometry is an approach 
which can be used to identify reactive residues (usually lysines) that 
are in proximity, as constrained by the geometry of the crosslink agent 
used. The identification of such residues across a pair of proteins can 
help define the likely protein interface. To determine if the predicted 
complex structures agree with such orthogonal spatial constraints, we 
obtained a compilation of crosslinks for pairs of residues across 528 
protein pairs with predicted models (Fig. 3a, Supplementary Table 1 
and Methods). In total, 51% of the models had one or more crosslinks 
at a distance below the expected maximal distance possible (Fig. 3a). 
Restricting the predicted models to higher confidence by the pDockQ 
score increased the fraction of complexes with acceptable crosslinks, 
reaching 75% for pDockQ scores greater than 0.5 (Fig. 3a). This result 
is in line with the benchmark results above.

In total, we have identified 479 crosslinks providing supporting 
evidence for 171 predicted complex structures with pDockQ > 0.5. 
Of these, 41 correspond to complex structures with no experimen-
tal structure or homology models, from which we selected some to 
illustrate (Fig. 3b–e). Figure 3b shows the AlphaFold2 (AF2) model 
for the full length of the ERLIN1/ERLIN2 complex, which mediates 
the endoplasmic reticulum-associated degradation (ERAD) of ino-
sitol 1,4,5-trisphosphate receptors (IP3Rs). AlphaFold2 predicts a 
globular domain (1–190) followed by an extended helical region with 
a kink around amino acid position 280. Unlike the model in Interac-
tome3D, the paralogous proteins are stacked side-by-side with the 
hydrophobic face of the helices buried and the hydrophilic face 
(mainly Lys) exposed to solvent. A crosslink between the C-terminal 
residues K275 (ERLIN1) and K287 is predicted to bridge a distance of 

18 Å, supporting the predicted model. In Fig. 3c we show the model 
for proteins IMMT and CHCHD3, components of the mitochondrial 
inner membrane MICOS complex. AlphaFold2 predicts a globular 
helical domain at the C-terminal end of IMMT (550–750) to interact 
with the C-terminal end of CHCHD3 (150–225). This is supported by 
data of three crosslinks: between K173 (CHCD3) and K565 (IMMT), and 
K203 (CHCD3) to both K714 and K726 of IMMT. Figure 3d shows the 
complex of transfer RNA-guanine-N(7)-methyltransferase (METTL) 
with its noncatalytic subunit (WDR4). The structure of WDR4 has not 
yet been solved experimentally but contains WD40 repeats, which 
are expected to form a β-propeller domain, as predicted here. The 
METTL domain is predicted to interact with the side of the WDR40, 
away from the ligand-binding pore. This orientation is supported by 
a crosslink between K122 (WDR4) and K143 (METTL) (18 Å). Finally, in 
Fig. 3e we show the predicted complex structure for the heterogene-
ous nuclear ribonucleoprotein C (HNRNPC) and the RNA-binding 
protein, RALY. Two regions in both proteins are predicted with high 
confidence (plDDT > 70), with the lower-confidence regions not shown. 
The N-terminal domain in HNRNPC (16–85) is predicted to interact 
with the N-terminal domain of RALY (1–100). A long helix in HNRNPC 
(185–233) is predicted to interact with a helix in RALY (169–228). This 
interhelix interface is supported by crosslinking data for three pairs of 
lysines at either end of the helices (189 → 222; 229 → 179; and 232 → 183).

Disease-associated missense mutations at 
interfaces
Missense mutations associated with human diseases can alter pro-
tein function via diverse mechanisms, including disrupting protein 
stability, allosterically modulating enzyme activity and altering PPIs. 
Structural models can allow the rationalization of possible mechanisms 
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Fig. 1 | Application of AlphaFold2 complex predictions to a large dataset of 
human PPIs. a, Distribution of model confidence score (pDockQ) for predicted 
structures from two large human protein interaction datasets (hu.MAP and 
HuRI), compared with confidence metrics from 2,000 random pairs of proteins. 
The hu.MAP dataset was further subsetted to those that have support from Y2H 
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experimental or homology modeling information (‘Structure’). b, Number of 
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consider being of high confidence (‘Predicted’), corresponding to those with 
pDockQ > 0.5. c, Examples of predicted models (orange and green) overlapped 
with the corresponding experimental models (gray) and the observed (DockQ) 
or predicted (pDockQ) quality of the models.
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Encouraged by the examples tested, we defined an automatic 
procedure to generate larger models by iterative alignment of pairs 
(Methods). We start building all possible dimers in a complex, then 
sort them by pDockQ, and start building from the first ranked dimers. 
Next, we add the highest-ranked dimer, which shares one subunit with 
the complex if it does not overlap; this is repeated for all dimers until 
the complex is complete or no additional proteins can be added. We 
tested this on the 20S proteasome, a particularly challenging example, 
with stoichiometries different from 1-to-1 and homologous subunits. 
This automatic procedure could build a model containing all 14 subu-
nits (half of the proteasome), which are mostly placed in agreement 
within the experimental model (Fig. 6). However, the exact order of 
the chains is incorrect, that is, at each location an incorrect protein is 
placed, highlighting that AF2 cannot distinguish which two proteins 
interact from a set of homologous proteins.

Two additional proteins where we could build a good model are 
Heterodisulfide reductase from Methanothermococcus thermolitho-
trophicus (PDB:5ODC) and the eukaryotic translation initiation factor 
2B from Schizosaccharomyces pombe (PDB:5B04) (Supplementary  
Fig. 4). For PDB:5ODC we could build a complete model of the protein 
with an r.m.s. deviation of 6.0 Å (TM-score 0.90)30 starting from dimers. 
However, for PDB:5B04 it was not possible as the chains started over-
lapping when we tried to build a larger model. However, if we build 
trimers and then use all three dimers from these trimers we can build a 
complete model with an r.m.s. deviation of 7.3 Å (TM-score 0.86), show-
ing that it is sometimes necessary to use larger subunits to assemble 
the complexes. Results from a follow-up study31 show that it is often 
possible to build the structures of complexes if the subunits are well 
predicted. In summary, we find that it is possible to iteratively align 

structures of pairs of interacting proteins to build larger assemblies, 
but we also identified issues that limit this procedure at the moment.

Concluding discussion
We have predicted complex structures for pairs of human proteins 
known to physically interact from two different datasets based on differ-
ent experimental approaches. We note that the source of data used for 
the protein interactions is important and impacts the fraction of models 
that can be confidently predicted. Our analysis suggests that protein 
interactions supported by a combination of affinity-, co-fraction- 
and complementation-based methods result in higher-confidence 
models. We believe these protein interactions tend to correspond to 
high-affinity interactions which are very likely to share a direct physical 
permanent interaction. We show that it is possible to use metrics from 
the models (for example, pDockQ score) to rank higher-confidence 
models, providing an additional accuracy level to large-scale PPI stud-
ies, and in the future to provide additional high-quality targets for 
detailed studies of stable complexes. Experimental data from crosslink 
mass spectrometry experiments provide an ideal resource for further 
validating these predictions via orthogonal means.

Based on comparisons with solved structures, we suggest that 
models with pDockQ > 0.5 are 80% likely to be correct. Additionally, 
models with lower scores (pDockQ > 0.23) are still 70% likely to contain 
many correct solutions and may highlight correct interfaces. Such 
lower-confidence models are likely to be useful for generating hypoth-
eses and large-scale analyses of global properties. Equally important 
is the caveat that high-confidence predictions will still contain errors, 
and, in particular, we note that in protein complexes containing paralo-
gous proteins (which is common in higher eukaryotes32), the current 
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Protein interactions in human pathogens 
revealed through deep learning

Ian R. Humphreys1,2,13, Jing Zhang    3,4,5,13, Minkyung Baek    6,13  , Yaxi Wang    7,13, 
Aditya Krishnakumar1,2, Jimin Pei3,4,5, Ivan Anishchenko1,2, Catherine A. Tower    7, 
Blake A. Jackson7, Thulasi Warrier8,9,10, Deborah T. Hung    8,9,10, 
S. Brook Peterson    7, Joseph D. Mougous    7,11,12, Qian Cong3,4,5   & 
David Baker    1,2,11 

Identification of bacterial protein–protein interactions and predicting 
the structures of these complexes could aid in the understanding of 
pathogenicity mechanisms and developing treatments for infectious 
diseases. Here we developed RoseTTAFold2-Lite, a rapid deep learning 
model that leverages residue–residue coevolution and protein structure 
prediction to systematically identify and structurally characterize  
protein–protein interactions at the proteome-wide scale. Using this 
pipeline, we searched through 78 million pairs of proteins across  
19 human bacterial pathogens and identified 1,923 confidently predicted 
complexes involving essential genes and 256 involving virulence factors. 
Many of these complexes were not previously known; we experimentally 
tested 12 such predictions, and half of them were validated. The predicted 
interactions span core metabolic and virulence pathways ranging from 
post-transcriptional modification to acid neutralization to outer-membrane 
machinery and should contribute to our understanding of the biology of 
these important pathogens and the design of drugs to combat them.

Understanding the biology of pathogenic bacteria is important for 
human health and therapeutics. Protein–protein interactions (PPIs) are 
central to biological processes, but many interactions remain unknown, 
especially for non-model organisms. High-throughput experiments 
such as the two-hybrid screen and affinity purification coupled with 
mass spectrometry have been used to identify PPIs in a variety of organ-
isms1–3. However, such methods can fail to reveal transient interac-
tions and be plagued by non-specific interactions in non-physiological 

conditions, which result in discrepancies between experiments along 
with high false-positive and false-negative rates4,5. Interacting proteins 
often co-evolve, and hence amino acid coevolution can be exploited 
to assess the likelihood that two proteins interact with each other. 
Coevolutionary information between proteins extracted from paired 
multiple sequence alignments (pMSAs) of orthologous proteins6–8 has 
been used to systematically identify PPIs in prokaryotes at an accu-
racy that rivals experimental screens7. Supplementing coevolution 
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which has been identified as the most prominent interactor of SecYEG 
by affinity purification coupled with mass spectrometry58 and Co-IP59. 
In our model of the SecYG-ppiD trimer, ppiD primarily interacts with 
SecY through the transmembrane helices while coming close to SecG 
via a small loop. We also predict interactions between Sec and CrgA, a 
transmembrane protein and a component of the divisome (Fig. 4c, bot-
tom). We find that the CrgA–SecY interface occurs near the lateral gate 
of SecY60 (Supplementary Fig. 25a), potentially occluding Sec transloca-
tion. We hypothesize that during bacterial division, CrgA binds Sec to 
regulate and recruit translocation machinery near the cell division site; 
this latter hypothesis is further supported by the predicted interaction 
between CrgA and SecE (Supplementary Fig. 25) and a less confident 
prediction of CrgA–SecG interaction that fell slightly below our cut-off.

Outer-membrane β-barrel assembly machinery of P. aeruginosa  
and Vibrio cholerae. In Gram-negative bacteria, the β-barrel assembly  
machinery (BAM) is essential for the folding and insertion of 
outer-membrane β-barrel proteins61,62. BAM consists of an outer- 
membrane-spanning β-barrel, BamA, that interacts with four  
periplasmic lipoproteins, BamB, BamC, BamD and BamE, to form 

a five-component complex (computed interactions and structures 
agree with known experimental data (Supplementary Fig. 26))61–65. 
This complex has recently garnered increased attention as a potential 
therapeutic target, especially since the discovery of darobactin, a novel 
antimicrobial compound that binds along the lateral gate of BamA to 
inhibit outer-membrane protein (OMP) biogenesis66,67.

The function of BAM is assisted by several other proteins,  
including the chaperone survival factor A (SurA) and periplasmic 
chaperone 17 kDa protein (Skp). SurA plays an important role in facili-
tating the recruitment of unfolded OMPs from the periplasm to the 
BAM complex68. Both our BAM–SurA model and a recently published  
study using an orthogonal approach to ours69 place SurA in the same 
position to simultaneously interact with BamA, BamB and BamE 
(Fig. 4d, left). In addition, we predict an interaction between Skp  
and SurA (Supplementary Fig. 27), which, in addition to their roles  
in maintaining the solubility of unfolded OMP proteins, may act in 
tandem to disassemble oligomeric OMPs that have aggregated70.

We also predict an interaction between BamA and PA1005  
(Uniprot: Q9I4W8) (Fig. 4d, middle), a possible orthologue of  
β-barrel assembly-enhancing protease (BepA) (Supplementary Fig. 28). 
E. coli BepA is a periplasmic zinc-metallopeptidase with an important 
role in outer-membrane homeostasis and is involved in the degra-
dation of BamA in the absence of SurA71. BepA has been shown to inter-
act with BAM72, and further cross-linking experiments suggest that  
BepA C-terminal tetratricopeptide repeat (TPR) domain is inserted into 
the periplasmic region of BamA, below the β-barrel71. Our computed 
model agrees with the proposed broad interface between BamA and 
BepA, provides structural details into the BamA-BepA interaction  
and also suggests that when BepA is in complex with BamA, BAM is 
unable to assemble into its active form due to steric clashes between 
BepA and periplasmic Bam lipoproteins.

TolC is an OMP that homo-trimerizes to form a large outer- 
membrane export tunnel that interacts with inner-membrane trans-
locases73,74. The catalytic β-barrel domain of BamA binds substrates 
along the β-barrel seam during OMP folding, and in this process, the 
N-terminal of the β-barrel likely swings outward75,76. The interaction 
between BamA and TolC has been recognized as an essential step in the 
assembly of TolC which occurs in a SurA-independent manner77,78. We 
predict an interaction between BamD and TolC (Fig. 4d, right), which, 
when superimposed onto the BAM complex (Supplementary Fig. 29), 
depicts how the β-sheets of TolC interact with the N-terminal strand of 
the BamA β-barrel seam. Our computed model shows how TolC could 
be folded by the BAM complex and suggests that BamD may potentially 
replace SurA to stabilize or recruit TolC to BAM.

Discussion
RF2-Lite is a new deep learning network for PPI prediction that is opti-
mized to balance the accuracy and speed necessary for large-scale 
applications. We integrated RF2-Lite into a pipeline for proteome-wide 
PPI detection and modelling. We applied this pipeline to an array of 
human bacterial pathogens, resulting in several thousand predicted 
PPIs and their 3D structure models. Over 1,000 of our predictions were 
previously unknown, and both our benchmark and experimental valida-
tion suggest that a large fraction of these new PPIs are likely correct and 
should provide novel biological insights. The 3D structure models of 
protein complexes generated in our study provide mechanistic details 
for numerous essential cellular pathways and virulence factors.

Our results show the potential of computational methods in elu-
cidating the 3D interactome and gaining functional insights for any 
organism. However, there is still considerable room for improvement in 
reducing the false-positive and false-negative rates. As a consequence 
of the false negatives, our predictions are not comprehensive: the 
absence of interactions should not be overinterpreted. Although we 
sought to be conservative and predict only highly confident PPIs, false 
positives unavoidably exist in our datasets. If each protein on average 
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Fig. 4 | Computed models for multi-component protein complexes. a, H. pylori 
tRNA 2-thiouridine synthesizing protein complex. Left: a model of the TusE(blue)–
TusB(gold)–TusC(green)–TusD(pink) complex overlaid with the TusBCD PDB 
structure (2D1P, shown in semi-transparent grey). Right: an alternative view of 
this complex. b, The UreAB–UreFGH complex (coloured in cyan, pink, blue, gold 
and green, respectively) in H. pylori assembled through multiple subcomplexes: 
UreFGH, UreAB and UreAH. c, Accessory components of the Sec translocon.  
Top: P. aeruginosa SecG(blue)–SecY(gold)–PpiD(green) complex. Bottom:  
M. tuberculosis SecY(blue)–SecG(gold)–SecE(green)–CrgA(pink) complex.  
d, Accessory components of the P. aeruginosa and S. typhimurium outer-
membrane β-barrel assembly machinery. Left: interaction between SurA (yellow) 
and Bam proteins (BamA, blue; BamB, gold; BamE, green). Middle: BamA (blue) 
and PA1005 (gold), a putative BepA orthologue. Right: interaction between TolC 
(blue) and BamD (gold). In all schematics, green, red, yellow and magenta bars 
connect representative residue–residue contacts at the interfaces predicted from 
the summed AF probability for distance bins below 12 Å.
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Outer membrane vesicles
(OMVs). Vesicles that are 
derived from the outer 
membrane of Gram-negative 
bacteria.
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Phase-separated lipid 
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outer membrane vesicles (OMVs) of E. coli 39. Pre-pore-
containing OMVs would be protected from pore forma-
tion as the conformational changes leading to membrane 
insertion require cholesterol, which is generally not pres-
ent in bacterial membranes. A similar OMV-mediated 
delivery mechanism of PFTs has recently been proposed 
for Vibrio cholerae cytolysin (VCC)40, which belongs to 
the Staphylococcus aureus haemolysin family (see below). 
However, if pre-pores are indeed encapsulated within 
OMVs, it is not known how these OMV-embedded 
pre-pores would be delivered to the target membrane.

The actinoporin family. Actinoporins are eukaryotic 
proteins that are produced by sea anemones41. They 
form part of the venom that these sedentary animals 
rely on to paralyse and digest their prey (which range 

from plankton to fish and crustaceans), as well as to 
defend themselves from predators. By forming pores in 
the plasma membrane of target cells, actinoporins are 
thought to cause cell lysis.

X-ray structures have been reported for the soluble 
form of the actinoporins equinatoxin II (EqtII; produced 
by Actinia equina)42,43, sticholysin II (StnII; produced by 
Stichodactyla helianthus)44 and fragaceatoxin C (FraC; 
produced by Actinia fragacea)45 (TABLE 1). All actino porins 
are composed of a β-sandwich flanked by two α-helices 
(FIG. 2a), in which the N-terminal amphipathic helix 
detaches from the core of the protein and inserts into 
the membrane41. This membrane insertion step is lipid- 
dependent, with a preference for target membranes that 
are enriched in sphingomyelin and/or have phase- separated 
lipid membranes41,46. Interestingly, membrane insertion of 

Box 2 | Integrative modelling of pore structures

X-ray crystallography has historically been the main source of 
high-resolution atomic structures of pore-forming toxins (PFTs). However, 
owing to the large size of the molecular assembly of each pore and the 
complexity of the pore formation process, alternative structural biology 
strategies are required to reveal the pore architecture and kinetics of 
oligomerization. To date, both the monomer and protomer conformation 
are known for only a handful of PFTs, but recent advances in cryo-electron 
microscopy (cryo-EM) promise to reveal the conformation of large 
toxin assemblies at higher resolution, as was recently exemplified 
by atomic-level resolution structures of the Tc toxin from 
Photorhabdus luminescens115,116 and the anthrax toxin protective 
antigen112. In parallel, progress in the sophistication of molecular 

modelling has enabled the integration of experimental inputs from 
different sources (with different resolution and completeness) in 
consistent models of macromolecular complexes. In this context, 
optimization and simulation schemes have been developed to integrate 
high-resolution structures of individual components, their native 
dynamics191–193 and low-resolution spatial data by a growing array of 
techniques (see the figure). This emerging approach is commonly known 
as integrative modelling192,194,195 and has already helped to reveal the 
functional architecture of several macromolecular complexes196,197, 
including the PFTs, suilysin109 and pleurotolysin (a fungal toxin)90, as well as 
aerolysin75 and monalysin198, which are both members of the aerolysin 
family and share the same pore architecture.

3C, chromatin 
conformation capture;  
4C, circularized 3C; 5C, carbon-copy 
3C; AFM, atomic force microscopy; ChIP–exo, 
ChIP–seq with an exonuclease sample preparation 
step; ChIP–seq, chromatin immunoprecipitation followed 
by sequencing; DEER EPR, double electron–electron 
resonance electron paramagnetic resonance; FRET, 
fluorescence resonance energy transfer; H/D exchange, 
hydrogen–deuterium exchange; NMR, nuclear magnetic 
resonance; Hi-C, genome-wide 3C; rmsd, root-mean-square 
deviation; SANS, small-angle neutron scattering; SAXS, 
small-angle X-ray scattering. 
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data integration and  
model building 

AI-based predictions 
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e.g., the Nuclear Pore Complex

Mosalaganti et al. Science 2022

▪ yeast: ~52 MDa, ~550 proteins 
▪ human: ~120 MDa, ~100 proteins 
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10.1126/science.abq4792 

https://alphafoldserver.com

Abramson, J et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature (2024)
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▪ Prediction of final structure and binding helps discovering new biology 
▪ Not all the questions are answered though by AF2 !!

37The folding paradigm  

structure function 

myoglobin

evolution (billion year)
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38The sequence space is enormous 

structure  
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▪ potential sequence space for proteins of 150 amino acids 20150 ~ 10195 

▪ atoms in the observed universe ~1080 

▪ the sequences explored by evolution are much less (~1010-20), structures lesser 
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▪ Application to study protein evolution and function 
▪ Protein engineering for therapeutics, synthetic biology and (bio)technology 

39The inverse folding problem — design

sequence 
space

functional   
space
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40The origins: the Paracelsus challenge (‘94)The Paracelsus challenge (1994)
•Rose and Creamer: convert a protein to another fold 

changing no more than 50% of its sequence 

Dalal et al., Protein alchemy: Changing β-sheet into α-helix, 
Nature Structural & Molecular Biology 1997
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41Multiple tasks for protein design

• Filled colored circles - flexible side chains	
o empty colored circles – flexible amino acid: design

▪ create de novo proteins 
▪ explore new folds 
▪ embed new functions

▪ create high affinity binders 
▪ therapeutic biologics 
▪ artificial sensors/probes

▪ tailor enzymatic function 
▪ improve thermostability  
▪ catalyse new reactions

▪ explore DNA interactions 
▪ new therapeutic solutions
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▪ Application to study protein evolution and function 
▪ Protein engineering for therapeutics, synthetic biology and biotechnology 

42Machine learning for protein design
Cite as: J. Dauparas et al., Science 

10.1126/science.add2187 (2022).  
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The protein sequence design problem is to find, given a pro-

tein backbone structure of interest, an amino acid sequence 

that will fold to this structure. Physically based approaches 

like Rosetta treat sequence design as an energy optimization 

problem, searching for the combination of amino acid iden-

tities and conformations that have the lowest energy for a 

given input structure. Recently deep learning approaches 

have shown promise in rapidly generating candidate amino 

acid sequences given monomeric protein backbones without 

need for compute intensive explicit consideration of 

sidechain rotameric states (1–7). However, the methods de-

scribed thus far do not apply to the full range of current pro-

tein design challenges, and have not been extensively 

validated experimentally. 

We sought to develop a deep learning–based protein se-

quence design method broadly applicable to design of mono-

mers, cyclic oligomers, protein nanoparticles, and protein-

protein interfaces. We began from a previously described 

message passing neural network (MPNN) with 3 encoder and 

3 decoder layers and 128 hidden dimensions which predicts 

protein sequences in an autoregressive manner from N to C 

terminus using protein backbone features – distances be-

tween Cα-Cα atoms, relative Cα-Cα-Cα frame orientations and 

rotations, and backbone dihedral angles–as input (1). W
e first 

sought to improve performance of the model on recovering 

the amino acid sequences of native single-chain proteins 

given their backbone structures. A set of 19,700 high 

resolution single-chain structures from the PDB were split 

into train, validation and test sets (80/10/10) based on the 

CATH (8) protein classification (see methods). We found that 

including distances between N, Cα, C, O and a virtual Cβ 

placed based on the other backbone atoms as additional in-

put features resulted in a sequence recovery increase from 

41.2% (baseline model) to 49.0% (experiment 1), see Table 1 

below; interatomic distances evidently provide a better in-

ductive bias to capture interactions between residues than di-

hedral angles or N-Cα-C frame orientations. We next 

introduced edge updates in addition to the node updates in 

the backbone encoder neural network (experiment 2). Com-

bining additional input features and edge updates leads to a 

sequence recovery of 50.5% (experiment 3). To determine the 

range over which backbone geometry influences amino acid 

identity, we tested 16, 24, 32, 48, and 64 nearest Cα neighbor 

neural networks (fig. S1A), and found that performance was 

saturated at 32-48 neighbors. Unlike the protein structure 

prediction problem, locally connected graph neural networks 

can accurately model the structure to sequence mapping 

problem because the optimality of an amino acid at a partic-

ular position is largely determined by the immediate protein 

environment. 

To enable application to a broad range of single and 

multi-chain design problems, we replaced the fixed N to C 

terminal decoding order with an order agnostic autoregres-

sive model in which the decoding order is randomly sampled 

Robust deep learning–based protein sequence design using 

ProteinMPNN 

J. Dauparas1,2, I. Anishchenko1,2, N. Bennett1,2,3, H. Bai1,2,4, R. J. Ragotte1,2, L. F. Milles1,2, B. I. M. Wicky1,2,  

A. Courbet1,2,4, R. J. de Haas5, N. Bethel1,2,4, P. J. Y. Leung1,2,3, T. F. Huddy1,2, S. Pellock1,2, D. Tischer1,2, F. Chan1,2, 

B. Koepnick1,2, H. Nguyen1,2, A. Kang1,2, B. Sankaran6, A. K. Bera1,2, N. P. King1,2, D. Baker1,2,4* 

1Department of Biochemistry, University of Washington, Seattle, WA, USA. 2Institute for Protein Design, University of Washington, Seattle, WA, USA. 3Molecular Engineering 

Graduate Program, University of Washington, Seattle, WA, USA. 4Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. 5Department of Physical 

Chemistry and Soft Matter, Wageningen University and Research, Wageningen, Netherlands. 6Berkeley Center for Structural Biology, Molecular Biophysics and Integrated 

Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA. 

*Corresponding author. Email: dabaker@uw.edu 

While deep learning has revolutionized protein structure prediction, almost all experimentally characterized 

de novo protein designs have been generated using physically based approaches such as Rosetta. Here we 

describe a deep learning–based protein sequence design method, ProteinMPNN, with outstanding 

performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a 

sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different 

positions can be coupled between single or multiple chains, enabling application to a wide range of current 

protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray 

crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta 

or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding 

proteins. 
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De novo design of protein structure and 

function with RFdiffusion

Joseph L. Watson1,2,15, David Juergens1,2,3,15, Nathaniel R. Bennett1,2,3,15, Brian L. Trippe2,4,5,15, 

Jason Yim2,6,15, Helen E. Eisenach1,2,15, Woody Ahern1,2,7,15, Andrew J. Borst1,2, Robert J. Ragotte1,2, 

Lukas F. Milles1,2, Basile I. M. Wicky1,2, Nikita Hanikel1,2, Samuel J. Pellock1,2, Alexis Courbet1,2,8, 

William Sheffler1,2, Jue Wang1,2, Preetham Venkatesh1,2,9, Isaac Sappington1,2,9, 

Susana Vázquez Torres1,2,9, Anna Lauko1,2,9, Valentin De Bortoli8, Emile Mathieu10, 

Sergey Ovchinnikov11,12, Regina Barzilay6, Tommi S. Jaakkola6, Frank DiMaio1,2, Minkyung Baek13 

& David Baker1,2,14 ✉

There has been considerable recent progress in designing new proteins using deep- 

learning methods1–9. Despite this progress, a general deep-learning framework for 

protein design that enables solution of a wide range of design challenges, including 

de novo binder design and design of higher-order symmetric architectures, has yet to 

be described. Diffusion models10,11 have had considerable success in image and 

language generative modelling but limited success when applied to protein modelling, 

probably due to the complexity of protein backbone geometry and sequence–structure 

relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction 

network on protein structure denoising tasks, we obtain a generative model of protein 

backbones that achieves outstanding performance on unconditional and topology- 

constrained protein monomer design, protein binder design, symmetric oligomer 

design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic 

and metal-binding protein design. We demonstrate the power and generality of the 

method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing 

the structures and functions of hundreds of designed symmetric assemblies, metal- 

binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the 

cryogenic electron microscopy structure of a designed binder in complex with influenza 

haemagglutinin that is nearly identical to the design model. In a manner analogous to 

networks that produce images from user-specified inputs, RFdiffusion enables the 

design of diverse functional proteins from simple molecular specifications.

De novo protein design seeks to generate proteins with specified 

structural and/or functional properties, for example, making a bind-

ing interaction with a given target12, folding into a particular topology13 

or containing a catalytic site4. Denoising diffusion probabilistic models 

(DDPMs), a powerful class of machine learning models recently dem-

onstrated to generate new photorealistic images in response to text 

prompts14,15, have several properties well suited to protein design. First, 

DDPMs generate highly diverse outputs, as they are trained to denoise 

data (for instance, images or text) that have been corrupted with Gauss-

ian noise. By learning to stochastically reverse this corruption, diverse 

outputs closely resembling the training data are generated. Second, 

DDPMs can be guided at each step of the iterative generation process 

towards specific design objectives through provision of conditioning 

information. Third, for almost all protein design applications it is neces-

sary to explicitly model three-dimensional (3D) structures; rotation-

ally equivariant DDPMs can do this in a global representation frame 

independent manner. Recent work has adapted DDPMs for protein 

monomer design by conditioning on small protein ‘motifs’5,9 or on sec-

ondary structure and block-adjacency (‘fold’) information8. Although 

promising, these attempts have shown limited success in generating 

sequences that fold to the intended structures in silico5,16, probably due 

to the limited ability of the denoising networks to generate realistic 

protein backbones, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design 

could be developed by taking advantage of the deep understanding of 

protein structure implicit in powerful structure prediction methods 
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▪ Application to study protein evolution and function 
▪ Protein engineering for therapeutics, synthetic biology and biotechnology 
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43… leading to molecular engineering 
Cite as: J. Dauparas et al., Science 

10.1126/science.add2187 (2022).  
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The protein sequence design problem is to find, given a pro-

tein backbone structure of interest, an amino acid sequence 

that will fold to this structure. Physically based approaches 

like Rosetta treat sequence design as an energy optimization 

problem, searching for the combination of amino acid iden-

tities and conformations that have the lowest energy for a 

given input structure. Recently deep learning approaches 

have shown promise in rapidly generating candidate amino 

acid sequences given monomeric protein backbones without 

need for compute intensive explicit consideration of 

sidechain rotameric states (1–7). However, the methods de-

scribed thus far do not apply to the full range of current pro-

tein design challenges, and have not been extensively 

validated experimentally. 

We sought to develop a deep learning–based protein se-

quence design method broadly applicable to design of mono-

mers, cyclic oligomers, protein nanoparticles, and protein-

protein interfaces. We began from a previously described 

message passing neural network (MPNN) with 3 encoder and 

3 decoder layers and 128 hidden dimensions which predicts 

protein sequences in an autoregressive manner from N to C 

terminus using protein backbone features – distances be-

tween Cα-Cα atoms, relative Cα-Cα-Cα frame orientations and 

rotations, and backbone dihedral angles–as input (1). W
e first 

sought to improve performance of the model on recovering 

the amino acid sequences of native single-chain proteins 

given their backbone structures. A set of 19,700 high 

resolution single-chain structures from the PDB were split 

into train, validation and test sets (80/10/10) based on the 

CATH (8) protein classification (see methods). We found that 

including distances between N, Cα, C, O and a virtual Cβ 

placed based on the other backbone atoms as additional in-

put features resulted in a sequence recovery increase from 

41.2% (baseline model) to 49.0% (experiment 1), see Table 1 

below; interatomic distances evidently provide a better in-

ductive bias to capture interactions between residues than di-

hedral angles or N-Cα-C frame orientations. We next 

introduced edge updates in addition to the node updates in 

the backbone encoder neural network (experiment 2). Com-

bining additional input features and edge updates leads to a 

sequence recovery of 50.5% (experiment 3). To determine the 

range over which backbone geometry influences amino acid 

identity, we tested 16, 24, 32, 48, and 64 nearest Cα neighbor 

neural networks (fig. S1A), and found that performance was 

saturated at 32-48 neighbors. Unlike the protein structure 

prediction problem, locally connected graph neural networks 

can accurately model the structure to sequence mapping 

problem because the optimality of an amino acid at a partic-

ular position is largely determined by the immediate protein 

environment. 

To enable application to a broad range of single and 

multi-chain design problems, we replaced the fixed N to C 

terminal decoding order with an order agnostic autoregres-

sive model in which the decoding order is randomly sampled 

Robust deep learning–based protein sequence design using 

ProteinMPNN 
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While deep learning has revolutionized protein structure prediction, almost all experimentally characterized 

de novo protein designs have been generated using physically based approaches such as Rosetta. Here we 

describe a deep learning–based protein sequence design method, ProteinMPNN, with outstanding 

performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a 

sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different 

positions can be coupled between single or multiple chains, enabling application to a wide range of current 

protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray 

crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta 

or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding 

proteins. 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of W

ashington on Septem
ber 16, 2022

Nature | Vol 620 | 31 August 2023 | 1089

Article

De novo design of protein structure and 

function with RFdiffusion

Joseph L. Watson1,2,15, David Juergens1,2,3,15, Nathaniel R. Bennett1,2,3,15, Brian L. Trippe2,4,5,15, 

Jason Yim2,6,15, Helen E. Eisenach1,2,15, Woody Ahern1,2,7,15, Andrew J. Borst1,2, Robert J. Ragotte1,2, 

Lukas F. Milles1,2, Basile I. M. Wicky1,2, Nikita Hanikel1,2, Samuel J. Pellock1,2, Alexis Courbet1,2,8, 

William Sheffler1,2, Jue Wang1,2, Preetham Venkatesh1,2,9, Isaac Sappington1,2,9, 

Susana Vázquez Torres1,2,9, Anna Lauko1,2,9, Valentin De Bortoli8, Emile Mathieu10, 

Sergey Ovchinnikov11,12, Regina Barzilay6, Tommi S. Jaakkola6, Frank DiMaio1,2, Minkyung Baek13 

& David Baker1,2,14 ✉

There has been considerable recent progress in designing new proteins using deep- 

learning methods1–9. Despite this progress, a general deep-learning framework for 

protein design that enables solution of a wide range of design challenges, including 

de novo binder design and design of higher-order symmetric architectures, has yet to 

be described. Diffusion models10,11 have had considerable success in image and 

language generative modelling but limited success when applied to protein modelling, 

probably due to the complexity of protein backbone geometry and sequence–structure 

relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction 

network on protein structure denoising tasks, we obtain a generative model of protein 

backbones that achieves outstanding performance on unconditional and topology- 

constrained protein monomer design, protein binder design, symmetric oligomer 

design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic 

and metal-binding protein design. We demonstrate the power and generality of the 

method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing 

the structures and functions of hundreds of designed symmetric assemblies, metal- 

binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the 

cryogenic electron microscopy structure of a designed binder in complex with influenza 

haemagglutinin that is nearly identical to the design model. In a manner analogous to 

networks that produce images from user-specified inputs, RFdiffusion enables the 

design of diverse functional proteins from simple molecular specifications.

De novo protein design seeks to generate proteins with specified 

structural and/or functional properties, for example, making a bind-

ing interaction with a given target12, folding into a particular topology13 

or containing a catalytic site4. Denoising diffusion probabilistic models 

(DDPMs), a powerful class of machine learning models recently dem-

onstrated to generate new photorealistic images in response to text 

prompts14,15, have several properties well suited to protein design. First, 

DDPMs generate highly diverse outputs, as they are trained to denoise 

data (for instance, images or text) that have been corrupted with Gauss-

ian noise. By learning to stochastically reverse this corruption, diverse 

outputs closely resembling the training data are generated. Second, 

DDPMs can be guided at each step of the iterative generation process 

towards specific design objectives through provision of conditioning 

information. Third, for almost all protein design applications it is neces-

sary to explicitly model three-dimensional (3D) structures; rotation-

ally equivariant DDPMs can do this in a global representation frame 

independent manner. Recent work has adapted DDPMs for protein 

monomer design by conditioning on small protein ‘motifs’5,9 or on sec-

ondary structure and block-adjacency (‘fold’) information8. Although 

promising, these attempts have shown limited success in generating 

sequences that fold to the intended structures in silico5,16, probably due 

to the limited ability of the denoising networks to generate realistic 

protein backbones, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design 

could be developed by taking advantage of the deep understanding of 

protein structure implicit in powerful structure prediction methods 
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▪ AF2 has been key to filter potentially good protein designs  
▪ Experimental testing is the ultimate validation of designs 
▪ AI methods enhanced the experimental rate of success  
▪ Protein engineering is now feasible for therapeutics, synthetic biology and biotechnology 

44Pipeline of today’s protein design

▪ RFdiffusion ▪ ProteinMPNN ▪ AF2 

credits to Baker Lab
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45Pipeline of today’s protein design

▪ AF2 has been key to filter potentially good protein designs  
▪ Experimental testing is the ultimate validation of designs 
▪ AI methods enhanced the experimental rate of success  
▪ Protein engineering is now feasible for therapeutics, synthetic biology and biotechnology 

validation using cryoEM credits to Baker Lab
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▪ Denoising Diffusion Models - as those used in DALL-E  
▪ Trained to denoise noisy images, they can generate images by iteratively 

denoising pure noise

46Machine learning for protein design

András Béres
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▪ the reverse process is learned using a neural network  
▪ its loss function encourages the reverse process to accurately estimate 

how the data transitions from one noisy step to the previous step.



https://www.bakerlab.org/2022/11/30/diffusion-model-for-protein-design/
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The protein sequence design problem is to find, given a pro-
tein backbone structure of interest, an amino acid sequence 
that will fold to this structure. Physically based approaches 
like Rosetta treat sequence design as an energy optimization 
problem, searching for the combination of amino acid iden-
tities and conformations that have the lowest energy for a 
given input structure. Recently deep learning approaches 
have shown promise in rapidly generating candidate amino 
acid sequences given monomeric protein backbones without 
need for compute intensive explicit consideration of 
sidechain rotameric states (1–7). However, the methods de-
scribed thus far do not apply to the full range of current pro-
tein design challenges, and have not been extensively 
validated experimentally. 

We sought to develop a deep learning–based protein se-
quence design method broadly applicable to design of mono-
mers, cyclic oligomers, protein nanoparticles, and protein-
protein interfaces. We began from a previously described 
message passing neural network (MPNN) with 3 encoder and 
3 decoder layers and 128 hidden dimensions which predicts 
protein sequences in an autoregressive manner from N to C 
terminus using protein backbone features – distances be-
tween Cα-Cα atoms, relative Cα-Cα-Cα frame orientations and 
rotations, and backbone dihedral angles–as input (1). We first 
sought to improve performance of the model on recovering 
the amino acid sequences of native single-chain proteins 
given their backbone structures. A set of 19,700 high 

resolution single-chain structures from the PDB were split 
into train, validation and test sets (80/10/10) based on the 
CATH (8) protein classification (see methods). We found that 
including distances between N, Cα, C, O and a virtual Cβ 
placed based on the other backbone atoms as additional in-
put features resulted in a sequence recovery increase from 
41.2% (baseline model) to 49.0% (experiment 1), see Table 1 
below; interatomic distances evidently provide a better in-
ductive bias to capture interactions between residues than di-
hedral angles or N-Cα-C frame orientations. We next 
introduced edge updates in addition to the node updates in 
the backbone encoder neural network (experiment 2). Com-
bining additional input features and edge updates leads to a 
sequence recovery of 50.5% (experiment 3). To determine the 
range over which backbone geometry influences amino acid 
identity, we tested 16, 24, 32, 48, and 64 nearest Cα neighbor 
neural networks (fig. S1A), and found that performance was 
saturated at 32-48 neighbors. Unlike the protein structure 
prediction problem, locally connected graph neural networks 
can accurately model the structure to sequence mapping 
problem because the optimality of an amino acid at a partic-
ular position is largely determined by the immediate protein 
environment. 

To enable application to a broad range of single and 
multi-chain design problems, we replaced the fixed N to C 
terminal decoding order with an order agnostic autoregres-
sive model in which the decoding order is randomly sampled 

Robust deep learning–based protein sequence design using 
ProteinMPNN 
J. Dauparas1,2, I. Anishchenko1,2, N. Bennett1,2,3, H. Bai1,2,4, R. J. Ragotte1,2, L. F. Milles1,2, B. I. M. Wicky1,2,  
A. Courbet1,2,4, R. J. de Haas5, N. Bethel1,2,4, P. J. Y. Leung1,2,3, T. F. Huddy1,2, S. Pellock1,2, D. Tischer1,2, F. Chan1,2, 
B. Koepnick1,2, H. Nguyen1,2, A. Kang1,2, B. Sankaran6, A. K. Bera1,2, N. P. King1,2, D. Baker1,2,4* 
1Department of Biochemistry, University of Washington, Seattle, WA, USA. 2Institute for Protein Design, University of Washington, Seattle, WA, USA. 3Molecular Engineering 
Graduate Program, University of Washington, Seattle, WA, USA. 4Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. 5Department of Physical 
Chemistry and Soft Matter, Wageningen University and Research, Wageningen, Netherlands. 6Berkeley Center for Structural Biology, Molecular Biophysics and Integrated 
Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA. 
*Corresponding author. Email: dabaker@uw.edu 

While deep learning has revolutionized protein structure prediction, almost all experimentally characterized 
de novo protein designs have been generated using physically based approaches such as Rosetta. Here we 
describe a deep learning–based protein sequence design method, ProteinMPNN, with outstanding 
performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a 
sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different 
positions can be coupled between single or multiple chains, enabling application to a wide range of current 
protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray 
crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta 
or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding 
proteins. 
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and B with sequence A1, A2,… and B1, B2,…,
the amino acids for chains A and B have to
be the same for corresponding indices; we
implement this by predicting unnormalized
probabilities for A1 and B1 first and then com-
bining these two predictions to construct a
normalized probability distribution from
which a joint amino acid is sampled (Fig. 1C).
For pseudosymmetric sequence design, res-
idues within or between chains can be sim-
ilarly constrained; for example, for repeat
protein design, the sequence in each repeat
unit can be kept fixed. Multistate design of
single sequences that encodes two or more
desired states can be achieved by predicting
unnormalized probabilities for each state
and then averaging; more generally, a linear
combination of predicted unnormalized prob-
abilities with some positive and negative co-
efficients canbeused toupweight ordownweight
specific backbone states to achieve explicit
positive or negative sequence design. The ar-
chitecture of this multichain and symmetry-
aware (positionally coupled) model, which we
call ProteinMPNN, is outlined schematically
in Fig. 1A.We trained ProteinMPNNonprotein

assemblies in the PDB (as of 2 August 2021)
determined by x-ray crystallography or cryo–
electronmicroscopy (cryo-EM) to better than
3.5-Å resolution and with fewer than 10,000
residues (see methods).
For a test set of 402 monomer backbones,

we redesigned sequences using Rosetta fixed
backbone combinatorial sequence design [one
round of the PackRotamersMover (11, 12) with
default options and the beta_nov16 score func-
tion] and ProteinMPNN. Although requiring
only a small fraction of the compute time
(1.2 versus 258.8 s on a single CPU for 100 res-
idues), ProteinMPNN had a much higher over-
all native sequence recovery (52.4 versus 32.9%),
with improvements across the full range of
residue burial from protein core to surface
(Fig. 2A). Differences between designed and
native amino acid biases for the core, bound-
ary, and surface regions for the two methods
are shown in fig. S2.
We further evaluated ProteinMPNN on a

test set of 690monomers, 732 homomers (with
fewer than 2000 residues), and 98 heteromers.
Themedian sequence recoveries over all residues
were 52% for monomers, 55% for homomers,

and 51% for heteromers, and the median se-
quence recoveries over interface residues were
53% for homomers and 51% for heteromers (Fig.
2B). In all three cases, sequence recovery corre-
lated closely with residue burial, ranging from
90 to 95% in the deep core to 35%on the surface
(fig. S1B); the amount of local geometric context
determines how well residues can be recovered
at specific positions.

Training with backbone noise improves model
performance for protein design

Although protein sequence design approaches
have often focused on maximizing sequence
recovery for protein backbones from high-
resolution crystal structures, this is not necessar-
ily optimal for actual proteindesignapplications.
We found that trainingmodels on backbones
to which Gaussian noise (SD = 0.02 Å) had
been added improved sequence recovery on
confident protein structure models generated
by AlphaFold [average predicted local-distance
difference test (IDDT) > 80.0] from UniRef50,
whereas the sequence recovery on unperturbed
PDB structures significantly decreased (Table
1); crystallographic refinement may impart

Dauparas et al., Science 378, 49–56 (2022) 7 October 2022 2 of 7
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Fig. 1. ProteinMPNN architecture. (A) Distances between N, Ca, C, O, and
virtual Cb are encoded and processed using a message-passing neural network
(Encoder) to obtain graph node and edge features. The encoded features,
together with a partial sequence, are used to generate amino acids iteratively
in a random decoding order. (B) A fixed left-to-right decoding cannot use
sequence context (green) for preceding positions (yellow), whereas a model
trained with random decoding orders can be used with an arbitrary decoding

order during the inference. The decoding order can be chosen such that
the fixed context is decoded first. (C) Residue positions within and between
chains can be tied together, enabling symmetric, repeat protein, and
multistate design. In this example, a homotrimer is designed with the coupling
of positions in different chains. Predicted unnormalized probabilities for
tied positions are averaged to get a single probability distribution from which
amino acids are sampled.
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▪ Backbone distances are encoded and 
processed using a message-passing neural 
network (Encoder) to obtain graph node and 
edge features.  

▪ The encoded features, together with a partial 
sequence, are used to generate amino acids 
iteratively in a random decoding order.
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Preclinical proof of principle for orally delivered
Th17 antagonist miniproteins

Graphical abstract

Highlights
d Computational design yielded low- and sub-pM minibinders

of IL-17A and IL-23R

d IL-23R minibinders are extremely resistant to heat, acid, and

proteolysis

d Oral IL-23R minibinder is as effective as a clinical mAb in

mouse colitis
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In brief
De novo proteins can be computationally

designed with sub-picomolar affinity and

extreme stability to enable oral

administration and were effective in a

model of colitis.

Berger et al., 2024, Cell 187, 4305–4317
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PeSTo: binding interfaces CARBonAra: molecular design 

Protein Structure Transformer @LBM

Krapp et al. Nat Comms 2024Krapp et al. Nat Comms 2023
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52Unique ability — context awareness

▪ large-scale benchmark

1000 structures sampled with maximum 30% sequence identity 
and separate C.A.T.H. classification from training setcolicin E7

▪ example with context
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53Can we re-engineer an enzyme?
▪TEM-1 serine β-lactamase

▪  sequences generation with substrate as constraint  
▪  selected 10 top-ranked predictions based on plDDT 
▪  4/10 designs are soluble and monomeric  
▪  they are folded and more thermostable than wild-type TEM-1 
▪  catalytically active at high T - not as the wild-type yet 
▪  represent a separate subclass of β-lactamases 

nitrocefin
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Figure 4 | β-lactamase enzyme engineering and experimental characterization. (a) Nitrocefin 
docked using AutoDock Vina20 at the active site of the serine β-lactamase TEM-1 (PDB: 1BT5). 
Relevant residues for substrate recognition and hydrolysis are shown in blue, nitrocefin in green, 
and the catalytic water molecule in red. (b) Prediction confidence with and without the substrate 
and the catalytic water for the relevant amino acids at the catalytic pocket. (c-d) Experimental 
characterization of the 4 soluble designs based on the TEM-1 backbone. (c) Thermal denaturation 
profiles presented as the circular dichroism signal at 222 nm against temperature (see also 
Supplementary Figures 7-9 for further structural characterization). (d) Catalytic activity as fraction 
of substrate converted to product upon hydrolysis of 200 μM nitrocefin by TEM-1 and the TEM-like 
lactamase designs, at different temperatures. Proteins were incubated at the indicated 
concentration. (e) Extract of the phylogenetic tree of class A β-lactamases focused on TEM β-
lactamases (see Supplementary Figure 10). (f) Correlation of the predictions with deep 
sequencing analysis of TEM-1. (g) Correlation variation by adding the context (nitrocefin and 
catalytic water) for the amino acids close (in Cβ distance) to the substrate. 

 

 In order to test designed TEM-like enzymes, we sampled CARBonAra’s 

predictions with docked nitrocefin using imprinting. Imprinting in CARBonAra allows to 

specify arbitrary sequence information to any position in the backbone scaffold as prior 

information for the prediction. By randomly imprinting a previously predicted amino 

acids, this protocol allows to generate diversity in sampled sequences while using the 

maximum confidence prediction ensuring high quality sequences (see Methods). 

Using this approach, we generated 900 sequences and ranked them using the 

predicted lDDT provided by AlphaFold (pLDDT) in single-sequence mode (see Deleted: p
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only 50% sequence identity

Krapp et al. Nat Comms 2024
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54The future is bright and exciting …
… biomolecular design will address many societal needs  

vaccines & antivirals 

smart medicines 

drug delivery

artificial photosynthesis 

CO2 sequestration 

plastic degradation 

▪ Medicine ▪ Biotechnology ▪ Sustainability 

SM proteomics with 
biological nanopores 
(Nat Chem 2021)

FAST-PETase     
(Nature 2022)

SARS-CoV-2 RBD 
nanoparticle immunogen (Cell 2020) 

protein-silicon devices 

bio-based computers 

nanoscale manufacturing 
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De novo optogenetic switches

De novo membrane protein design

De novo therapeutic protein ligands 

ActivatorInhibitor

Nanobody

AI design

Barth Lab



Laboratory of Protein and Cell Engineering
G-protein signal rewiring to boost CAR T-cells
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Redirecting cell migration 
with designed receptors 

Allosteric biosensors for engineered cell therapies

Barth Lab



Inverting AlphaFold for protein design 57

Goverde et al, Protein 
Science 2023

-Final sequences designed with proteinMPNN on AF2 generated backbones  

Bruno Correia, Laboratory of Protein Design and Immunoengineering 
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Pacesa & Nickel, et al., unpublished

Bruno Correia, Laboratory of Protein Design and Immunoengineering 
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https://www.designinglifewithai.com/

contact the MAKE team for 
ongoing projects offered by labs


