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=L Sequence Determines Structure
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The Anfinsen experiment (1954)

- A Nobel prize (1972) experiment that
by measuring enzymatic activity figured
out the principles of protein folding

-Ribonuclease refolded and oxidized
recovers 100% activity

-Ribonuclease oxidized and refolded in
presence of urea recovers 1% activity

oxidation with O,
under renaturing o
conditions

26-84
40-96
72-65
58-110

native folded protein structure

Cys 58
9

<
"~ Cys 84
d
Cys 72 | &
Cys 96

unfolded in urea

oxidation with O,
in the presence

of urea, followed by
folding

A

26-72
40-58
65-96
84-110

105 possible combinations

58 P\

26-72 26-84
40-65 40-96
58-96 72-65
84-110 58-110

~1% native folded
protein structure
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Protein sequence determines structure

folding funnel folded structure

= Anfinsen discovered it in a key experiment already in 1954
= This has become the central dogma of structural biology

E=y

Matteo Dal Peraro



=" Structure determination is key

Matteo Dal Peraro o

250000

= the goal is atomic resolution (~1-2 A) >200K

200000 = experimental methods are:
= X-ray crystallography (any size)
= nuclear magnetic resonance (< 50 kDa)
,_é = cryo-electron microscopy (> 100 kDa)

100000

50000 | [N Number of Structures Released Annually B Total Number of Entries Available
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= The Protein DataBank — PDB http://www.rcsb.org
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=PFL Bijomolecular structure determination
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atomic resolution (~1-2 A, 0.1-0.2 nm - 10-10 m)

* X-ray crystallography (~1-2 A; any size)
* nuclear magnetic resonance (~1-2 A; <50 kDa)
* cryo-electron microscopy (1-20 A ; > 100 kDa)

in the structure and dynamics
of any biomolecule in the cell is
encoded its function
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=PrL

spectra-derived

Distance info constraints
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EM density 1 atomic model

(per map)

Methods for determining biomolecular structures

Versatile tool for studying protein structure and dynamics
Computationally light

Full structural analysis limited to smaller proteins (<50kDa)
Requires isotopic labeling

Results in model ensemble

Gold-standard method for solving protein structures
Not limited in size or achievable resolution
Computationally light

Requires highly homogenous, crystallizable sample
Requires screening of crystallization conditions
Phase problem

Results in a single model

Versatile tool for studying protein assembly, structure, dynamics
Limited to proteins >40kDa

No requirement for protein labeling

Does not require homogenous samples

Grid preparation procedure requires screening

Real space imaging — no phase problem

Can be used to study protein dynamics

Can be expanded to larger assemblies (e.g., viruses and cells)
Results in 1 or more models per dataset

Computationally heavy (TBs of data + requirement for GPU
processing)
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="l Experimental revolution — cryoEM

N\
Matteo Dal Peraro

- = progress in cryo-electron microscopy
' led to much improved resolution

= cryo-EM is becoming the new gold
standard in structural biology

106

—X-ray (total)
——X-ray (yearly) ___’L_
Resolution Resolution 105 ——Cryo-EM (total) 4

before 2013 at present

Cryo-EM (yearly)
104

resolution record 1.22 A
size record ~50 kDa

103

102

10

Number of structures released by wwPDB

1
1980 1990 2000 2010 2020 2030

Luciano Abriata Year Abriata, Dal Peraro, JCIM 2020

\_—-—-——-
Krios G4 Cryo-TEM
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=" Data revolution — machine learning

200 ZB (1023 bytes

data explosion
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ChatGPT
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*P?- Machine learning in biology
Methoyy. %

‘The game has changed. Al triumphs at solving
protein structures

In milestone, software predictions finally match structures calculated from experimental data
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=PFL " The Nobel Prize in Chemistry 2024 was divided, one half awarded to

David Baker "for computational protein design", the other half jointly to
Demis Hassabis and John M. Jumper "for protein structure prediction"

11. Nik Nobel Prize [11. Niklas ElImehed © Nobel Prize [11. Niklas Elmehed © N

Outrea Ou

Da\)id‘ Baker Der'n'ig Hassabis Jo‘hn»N\. Jumper
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Prize share: 1/2 Prize share: 1/4 Prize share: 1

e
jury
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=PrL CASP: Critical Assessment of Techniques for
Protein Structure Prediction (how CASP16)
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Menu
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PC Registration
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CASP15 (2022)
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CASPY (2010)
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Protein Structure Prediction Center

Success Stories From Recent CASPs Message Board

CASP Special Interest
Group on Ensembles of
Alternative Conformations
e have oroanized a CASP
s; ecal Interest Group on
Ensembles of Allemative
Co"c ”|ulvnn5 10 provide

Models based on templates identified by sequence similanty remain the most acourate. Over the course of the CASP exr = there have been enormo 5 i this area. However, the overall accuracy

 improvements that we have seen in the first 10 yeers of CASP remained unmatched until CASP12 (2016), when a new burst of progress happensd K:v».hlak_.y( 1 et al, 2016]. In two years from 2014 to 2016, the backbone
accuracy of tha submittad models improved mera than in the preceecing 10 years. The next CASP continued the trend [Croll 2t 2], 2019), and the 2014-2018 medel acouracy imprevement doubled that of 2004-2014 (see left
plot). Saveral factors contributad to ths, Induding more accurate alignment of the target sequence to that of aval'able templates, combining mu tiple templatas, Improved accuracy of reglons not coverad by templates,
successful refinement of models, and better selection of madels from decaoy sets due to improved methods for estimation of model accuracy.

r«a;mm altemative
conformatians of prateins
and nucleic adids, and

Repasting: Postdoctoral

,' CASP14 marked an extragrginary Incraese in the accuracy of the computed th pratein witn te cf the advancec deep learning method AlphaFold2. Models bullt with this method provad to
~ be compentive with the expenmental accuracy (GDT_TS>90) for ~2/3 of the targets and of high accuracy (GDT_TS:B0) for almost 90% of the targets (middie plot). The accuracy of CASP14 models for T3M targets sign fically
superseeded accuracy of models that can be budt by simple transcription of information from templates, and reached the level of GDT_15=92 on average, which is significantly higher than the correspanding averages in

jous s (ric position at the Protein
\ ) previous two CASPs (right plot). Structure Prediction
g g ' _ _ R _— | Center, UC Davis
= N - o o - We are still looking for 3

Template-based modsiing tarpets

Nutal 1 e e TASTIA tprts |

postdac to help with CASP
related issues - see the
psting below),

B

template-

=

ale analysis of moded
¢ with respect to

13
o1TS

CASP Special Interest
groups

One outcome of the CAS?1S

\ conferance was a decision to

r CASP special inter

Motel bachsome accuracy

X conswcthy dvntifiwd rvalhws, GOT TS

)
Y

Tarpet CifMcuky
v comblned ranik by 560,44, 0nd covevase of the best template

related dew

Welcome to the Protein Structure Prediction Center! messag ...

Qur goal 15 to hedp advance the methods of identifying protein structure from sequence. The Center has been organized to pravide the means of abjective testing of these methads via the process of blind prediction. The Crnitical Assessment of protein
Structure Prediction (CASP) experiments sim at establishing the current state ef the art in protein structure prediction, identifying what aregress has been made, and highlighting whers future effort may be mest productively focused.

There have been fourteen previous CASF experiments, The fifteenth experiment Is planned to start in Spring 2022. Description of these experiments and the full data (targets, predictions, Interactive tables with numerical evaluation resuits, dynamic
graphs and prediction visualization tools} can be accessed following the links

CASP1 (1994) | CASP2 (1996) | CASP3 (1998) | CASP4 (2000) | CASPS (2002) | CASP6 (2004) | CASP7 (2006) | CASPS (2008) | CASPS (2010) | CASP10 (2012) | CASP11 (2014) | CASP12 (2016) | CASP13 (2018) |
CASP14 (2020) | CASP15 (2022)

Raw data for the experiments held so far are archived and stared in aur date archive.

Deteils of the experiments have been published in @ scientific journal Proteins: Structure, Function and Bioir na P include papers the structure and conduct of the experiments, the numerice| evaluation meesuares,
reports from the assessment teams highlighting state of the art in different prediction catagories, methods from some of the most successful prediction teams, and progress In various aspects of the mode. ing.

Prediction metheds are assessed on the besis of the analysis of a large number f biind dredictions of protein structure. Summary of numerical evaluation of the tertiary structure prediction methods testad in the latest CAS? experiment can b2 found
22. The main numerical measures used In evaluations, data handling procedures, and guidelines for navigating the data presented on this website are described In [1]..

Same of the best performing methads are implemented as fully sutamated servers and therefore can be used by public fer protei

structure modeling

To proceed to the latest CASP experiment click an the logo below:

http://predictioncenter.org


http://predictioncenter.org
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=PrL CASP: Critical Assessment of Techniques for
Protein Structure Prediction (now CASP16)

JAN-APR MAY JUN JUL AUG SEP OCT NOV DEC
—

s

5 Structure determination

o

S

o Give sequences to Organisers

(o]

.g Keep structures secret (if known)

3
< = Give structures to Organisers
1 L
N [7)
© =
o o 2
2 S - o
S 3 Predict Structure 2
- °
~ @ from Sequence =
o o
@) o
e — [ — >
- £
> @ Call for structures §
k7] ] £
g s Publish seqs on www )
5 2 3
w Q Collect predictions
o
D
o
e
m
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http://predictioncenter.org


http://predictioncenter.org
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=PrL CASP: Critical Assessment of Techniques for
Protein Structure Prediction (how CASP16)

T0992-D1
RMSD 1.6 A

T0990-D1
RMSD 1.6 A

gray = experiment
rainbow = prediction

Root Mean Square Displacement :: RMSD defines a measure for similarity:

1 N
RMSD = | — E d?
i=1 http://predictioncenter.org
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=L AlphaFold2 solved a 70yo problem

Critical Assessment of protein Structure Prediction — CASP

AlphaFold2

10 Lo caspi3 CASP14

L —,—,—,—Y|pbEeir i CASP12~{7~~{

B0 { .
machine learning

Global Distance Test (average GDT_TS)

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
CASP competion (year)

Abriata and Dal Peraro, Proteins 2019

Abriata, Tamo’ and Dal Peraro, Proteins 2018 Luciano Abriata

mmmm ©Xperimental structure

u eXperImentaHlke accuracy mmmm computational prediction

= >200 M predicted models available in UniProt
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=PFL  Evolutionary couplings for protein prediction ;

multiple sequence alignment (MSA)

%

residues

—P> S TR ARDOX

—»> i< EBHEHERFMDODU

correlated

constraint
NAJ/\@)Q;
/
)

inference

Marks, D. S.; Colwell, L. J.; Sheridan, R.; Hopf, T. A.; Pagnani, A.; Zecchina, R.;

Sander, C. PLoS One 2011, 6, e28766.

\

Vo

contact in 3D

c©

'

residues

contact map

= correlations in the sequence
space give structural information

= if you have enough predicted
contacts you can fold a protein

(similar to NMR)
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Evolutionary couplings for protein prediction
Direct-coupling analysis (DCA) | residues
S e =
g;Irc::a;:qc:::;ag:i&:t:? of:); ;ach CU(A‘B ) = LJ(A'B ) . f‘(A)P,(B) ‘ \t i::dr:u:acl correlations’ 3 O 1 O |
pairs of amino acids (A,B) C;'(A,B)=-¢,(A,B), = o " BN
’ ) j © o=t © =
| ! g s HE BN i
PP (AB) =~ exple,(A.B) + h(A) + i (B)] @ b EE N
Identify maximally informative pair d Z ¥ 4 Pl I [} ||
couplings using statistical model of P  C— » [m} O
entire protein to infer residue-residue DI 2’) o(A,B)1 P"(A,B) SIS . O -. oono
i i = v nf,(A)f,(B) ‘ 'direct information’ = DI [ =
O O
Mutual information Direct information
00 4[0 i . 8‘0 1?0 1?0 00 _ “4‘0 R B‘O - 1?0 - 160 ContaCt map
40 ¢ 4 40f i . . .
\ig i = a statistical physics
1w method were used to
g b o] crack the problem (ie

ol | ] Potts model)

600 o 1y e £ [0 S e IR R

Fgruck Morqos, Andrea Pagnqni, Bryan Lunt, Arianna Berto[ino,Debora S. Marks, Chris Sander, Riccardo Zecchina, José N. Onuchic, Terence Hwa, and Martin Weigt

Direct-coupling analysis of residue coevolution captures native contacts across many protein families, PNAS 2011


http://www.pnas.org/content/108/49/E1293.abstract?sid=f5b6e3ae-0a8e-4c26-88b7-b3003924c4c5

=PFL EC for membrane protein prediction

it ENORUOE COUPIND o = folding a transmembrane
protein using EC is easier.

= Why?

Human ADIPOR1
Adiponectin receptor 1 .
oul

Human MT-ND1

) Human GABA-B
Q. receptor 1

out

Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing
Thomas A. Hopf, Lucy J. Colwell, Robert Sheridan, Burkhard Rost, Chris Sander, Debora S. Marks, Cell 2012, DOl:https://doi.org/10.1016/j.cell.2012.04.012

m Biological Chemistry 1 - BIO-212, Lecture 6 2024


https://doi.org/10.1016/j.cell.2012.04.012

n n n n L] L] 19
=PrL EC for protein oligomerization prediction
= ECs are found not only within the same
— protein but also among protein interfaces
o MsbA (110 ECs) MsbA monomers MsbA dimer = this can happen for homo or hetero multimers

100 a
L™ A - ,(‘-
150 . b 2 ¢ ke Top ranked evolutionary
7 o . » ",.‘,'* e oot constraints (ECs)

2050 Pk y 9939 Jed«
200 p) D ¢ > Y - lo) Multimer ECs

'.\ o y 3 1".)(&,/

v

o) Crystal structure contacts
250
Missing data in crystal structure

g

B Predicted TM helix
B Experimental TM helix

50 100 150 200 250 300

Aquaporin-0 tetramer

-f_l-"'-'h

E. coli Metl (120 ECs)

40 80 120 160 200 40 80 120 160 200
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Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing
Thomas A. Hopf, Lucy J. Colwell, Robert Sheridan, Burkhard Rost, Chris Sander, Debora S. Marks, Cell 2012, DOl:https://doi.org/10.1016/j.cell.2012.04.012


https://doi.org/10.1016/j.cell.2012.04.012

=L AlphaFold2 architecture

“AlphaFold greatly improves the accuracy of structure prediction by incorporating novel
neural network architectures and training procedures based on the evolutionary, physical
and geometric constraints of protein structures”.

) 1rTete ) High
g (Bingle repr. (he)] —» confidence
_>$ Lov
ontiaer i

Structure
module
(8 blocks)

Evoformer

ﬁ : (48 blocks)

Input sequence

Pair
“"| | representation

3D structure

: 1 : n ] 'y
" repr i —
ZH s {r.r.c) ;l [rrc)
Strucrure .I ‘ \

—_—

\war h

Templates [
Y

Jumper et al. Nature 2021 ]

< Recycling (three times)

= trained on sequence similarity and structural templates from databases
(UniProt/metagenomics and PDB)

= end-to-end model produces prediction in one shot using transformers

m Biological Chemistry 1 - BIO-212, Lecture 6 2024
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=L AlphaFold2 architecture
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1 , Gttt 2 ) - NELIEER! — }:_ié;h 3
< - (Bingle repr. (rj]  H> confidence
- Drerert &I wsa £
b=l - 53031 s | i i e g
\_f{c’h @- T [ ] f n
MSA
Structure
TeTAT A Evoformer
o g 48 blocks) podlie
Input sequence (8 blocks)
TeTAT4 TeT414
Sl . Pai . Pai ‘ ‘
- ] @_» iJ reprvi:gi;auon — — {J repve;fr::l)atlon 3D structure
| s [— -l ‘ N N
pCCl
Templates
¥
&‘ <« Recycling (three times)
First module: Second module: Third module:

gather available information like
sequence similarity (MSA) and
structural templates from
databases (UniProt/
metagenomics and PDB) to
create a pair representation
(which aa are likely in contact
with each other)

Evoformer transformer which
refine the MSA and pair

interactions

The structure module build the
3D structure based on the MSA
and pair interactions information

- end-to-end model produces prediction in one shot
- recycling (3X) to refine further prediction
- huge engineering effort

N
-
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="' The power of (Google) engineering
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pair values
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L]
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- »  pairbias weights
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] (ryr,h) | Y (ryr,h)
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'
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Supplementary Figure 8 | Invariant Point Attention Module. (top, blue arrays) modulation by the pair rep-
resentation. (middle, red arrays) standard attention on abstract features. (bottom, green arrays) Invariant
point attention. Dimensions: r: residues, c: channels, h: heads, p: points.
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="t AlphaFold2 at work

Matteo Dal Peraro

Recycling iteration 0, block 01
Secondary structure assigned from the final prediction

m Biological Chemistry 1 - BIO-212, Lecture 6 2024

Jumper et al. Nature 2021
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AlphaFold2 at work

Matteo Dal Peraro
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R§cycling iteration 0, block 01

Sécondary structure assigned from the final prediction Jumper et al. Nature 2021



="t AlphaFold2 database

= > 200 million protein structure predictions
= Almost all catalogued proteins (UniProt)

= Over 1 million organisms

= Freely and openly available

= Collaboration DeepMind and EMBL-EBI

» 35.2% predictions with mean pLDDT > 90
= 79.1% predictions with mean pLDDT > 70

=« https://www.alphafold.ebi.ac.uk/
= https://uniprot.org/

m Biological Chemistry 1 - BIO-212, Lecture 6 2024
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="t AlphaFold2 is self-assessing
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™

Model Confidence:
[l Very high (pLDDT > 90)

Confident (90 > pLDDT >
70)

Low (70 > pLDDT > 50) -/

i Very low (pLDDT < 50) = pLDDT: predicted local distance difference test score

= prediction of the local distances between pairs of
residues in the predicted structure compared to a
reference or ground truth structure.

= low score (<50) indicates that the region is
disordered or AF2 does not have enough information

N
o
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Home About FAQs Downloads API

AlphaFold Protein Structure Database

e ]

Free fatty acid receptor 2 At1g58602 Q5VSL9 E. coli

PAE: predicted alignment error

See search help @

pLDDT is a good score

3D viewer Predicted aligned error (PAE) onIy at short/local
. distances
Sequence of AF-P35247-F1 ¢  Chain ¢ 1:Pumonarysu s As @ 0
0 AF-P35247-F1 Q
.ili p Type Model 50
© 100 = it cannot give you good
O [ Guer s $ 150 estimation of the quality
Y era—— of a prediction with
a g2 different domains
@ Components z
250
[ Preset + Add
} . sw . - . ]
oo their reciprocal orientation
350

Model Confidence @

M Very high (pLDDT > 90)
High (90 > pLDDT > 70)
Low (70 > pLDDT > 50)

M Very low (pLDDT < 50)

7. Measurements

+ Add

@ Export Animation

*® Export Geometry

AlphaFold produces a per-residue model
confidence score (pLDDT) between 0 and 100.
Some regions below 50 pLDDT may be unstructured

inisolation.

i

0 50 100 150 200 250 300 350

Scored residue

0 5 10 15 20 25 30
Expected position error (&ngstrdms)

Click and drag a box on the PAE viewer to select
regions of the structure and highlight them on the
3D viewer.

PAE data is useful for assessing inter-domain
accuracy - go to Help section below for more
information.

cannot be estimated by
pLDDT

PAE is the solution for
this scenario


https://alphafold.ebi.ac.uk/entry/P35247

£PFL  ColabFold - Making protein prediction accessible to all

m Biological Chemistry 1 - BIO-212, Lecture 6 2024

A Multiple sequence alighment with MMseqs2
)\

C Result visualization

Sequence coverage

Sequences

fasta

>1
...HIECV
VCGDKS
SGKHYG
QFT...

e UniRef30 jumd

, model 1 o model 2 o model 3

1.0 I

Predicted LDDT

Sequence identity

—— model_2
—— model_3

model_4

model_5

0.0 0

0 25 50 75 100 125 150 175

Predicted Alignment Error

model 4 o e model 5

UniRef30
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st sc:

G- scEsc:
scEsc:

6

fy +

P
i
HR -
= x
-5 o
A -
amﬁ'
i
R

A R Nk

B Structure prediction %

C I9pOoN

Nature Methods | VOL 19 | JUNE 2022 | 679-682 |
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== AlphaFold2 is a new SB methods

Matteo Dal Peraro

|~200K (PDB) |

Biological Chemistry 1 - BIO-212, Lecture 6 2024

\ 4
|>200M (UniProt) |
T1037 / 6vr4 T1049 / 6y4f
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

Jumper et al. Nature 2021



="t AlphaFold2 is not the ultimate oracle
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= Limitations
= need for a deep MSA (>30 sequences) to create accurate models
= not all the models are highly accurate as an experimental structure
= it does not account for dynamics and multiple states
= does not account for the post-translational modifications

= Other potential benefits
= AF triggered many other developments
can assist experimental structure determination
eg, in molecular replacement in X-ray crystallography
eg, in cryoEM fitting and model building
it is a means to look at protein-protein networks

W
o

Matteo Dal Peraro



*F"L Proteins form assemblies and networks

= Proteins can then arrange into
supramolecular assemblies

3 = Interacting with nucleic acid, metabolites,
membranes, etc.

= They create large network of interactions

m Biological Chemistry 1 - BIO-212, Lecture 6 2024
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=PFL - AlphaFold Multimer
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coevolution coupling holds for protein-protein interactions

Protein A Protein B

Co-evolving sites

Mean DockQ score
o © I o o
N w » w (o))

o
A

o
o

ClusPro
topl [2]

AlphaFold-Multimer
AlphaFold-Linker [4]
AlphaFold-Gap
(ColabFold) [5]
AlphaFold refined ClusPro
topl [2]
AlphaFold refined ClusPro
plus AlphaFold
topl [2]

+ Support for multiple chains

+ Multi-chain features

+ Various architectural modifications
+ Paired MSAs

+ Training on complexes

Protein complex prediction with AlphaFold-Multimer
Richard Evans,..., John Jumper, Demis Hassabis
bioRxiv 2021.10.04.463034; doi: https://doi.org/10.1101/2021.10.04.463034
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nature structural & molecular biology a nature microbiology a

Article https://doi.org/10.1038/s41594-022-00910-8 Article https://doi.org/10.1038/541564-024-01791-x

Towards astructurally resolved human Proteininteractionsin human pathogens
proteininteraction network revealed through deep learning

Received: 11 February 2022 David F. Burke ®®, Patrick Bryant ® 2°°, Inigo Barrio-Hernandez®'°, Received: 28 April 2023 lan R. Humphreys'?®, Jing Zhang ® *#**, Minkyung Baek ® °**/*, Yaxi Wang ® %,
Accepted: 14 December 2022 Danish Memon ®"®, Gabriele Pozzati ®>*°, Aditi Shenoy ® >, Wensi Zhu*®, Accepted: 23 July 2022 Aditya Krishnakumar'?, Jimin Pei**®, Ivan Anishchenko'?, Catherine A. Tower®’,
) Alistair S. Dunham ®', Pascal Albanese**, Andrew Keller®, i Blake A. Jackson’, Thulasi Warrier®®', Deborah T. Hung ® *°°,
Published online: 23 January 2023 Richard A. Scheltema®*%, James E. Bruce ®°, Alexander Leitner ®’, Published online: 18 September 2024 S. Brook Peterson ®’, Joseph D. Mougous ® "2, Qian Cong®*®/ * &
Petras Kundrotas ®%*® -, Pedro Beltrao® "’ & Arne Elofsson ®2* — David Baker ® 2"
[® Check for updates
DockQ =0.83 DockQ=0.74
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Integrative structural biology

Individual subunits

e X-ray crystallography
* NMR

e Cryo-EM

° Al-based predictions

Volumetric maps

* Cryo-EM

e Electron tomography
* SAXS, SANS

* AFM

Structural flexibility

e Side-chain and backbone sampling
e Elastic network models

* NMR ensembles

* FRET, DEER EPR

* Molecular dynamics

_ Time (ns) Y,

Spatial connectivity

* Mutagenesis

e Evolutionary couplings
* Chemical crosslinking

* Proteomics

e H/D exchange

® ChlP-seq and ChlIP-exo
* 3G, 4C,5C and Hi-C

data integration and
model building

w
=

Matteo Dal Peraro



=" AF2 affects integrative structural biology

e.d., the Nuclear Pore Complex

100 nm

= yeast: ~52 MDa, ~550 proteins
= human: ~120 MDa, ~100 proteins

Mosalaganti et al. Science 2022

m Biological Chemistry 1 - BIO-212, Lecture 6 2024

w
(3]

Matteo Dal Peraro



https://alphafoldserver.com

Abramson, J et al.

AlphaFold Server About

Server FAQs

PhoR-PhoB

€ Back & Download © Clone and reuse [0 Feedback on structure

Very high (pIDDT > 90) Contigent (90 > pIDOT > 70} Low {70 > pIDDT > 50} Very low (pIDDT < 50)

ipT™ - 0.45 pTM - 0.46  learn more

@
=

S
e
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Aligned Residue

1 547 1082 1823 2164 2705 324¢

Scored Residue

o s 10 15 20 ri] 30
Fxoected Position Frror {Angstrams)

Hon-commarcia use anly. subjact to AphaFold Sarver Output Tarms of Use: no use In docking of screaning toals.

)

({ ¢

-

piomolecular interac

Type Coples
Protein 2
Ligand 50
Ligand 50
Protein 2

Seed: 1026411006

haFold 3.

Sequence

10
MLERLSWKRL

RSMTPPPGRG

130
FWCNGLAQQGI
190
PYTHKQLLMV
250
KALHTMREQT

3ie
FTFEIDNGLK

IAPEHIPRLT

430
IPERLIAKNS

PLM - Palmitic acid

OLA - Oleic acid

e
MARRILVVED

70
GIQFIKHLKR
130
RRISPMAVEE

190
NHVWGTNVYV

20
VLELLLCCLP
ge
SWEPLLYGLH
140
LGLRWPEDNG
209
ARDVTOMHQL

260
QRMEGLVKOQL

320
VSGNEDQLRS

380
ERFYRVDKAR
431

20
EAPIREMVCF
80
ESNTRDIPVV
140
VIEMQGLSLD

200
EDRTVDVHIR

30
AFILGAFFGY

90
OQMOQLRNKKRR
150
QNILNLLRYP
219
EGARRNFFAN
270
LTLSKIEAAP

330
AISNLVYNAV

399
SRAQTGGSGLG

30
VLEQNGFQPV

stunvuAé

RLRKALEPG

LPWFLLASV
RELGNLIKR
EFTOYLKTR
VSHELRTPE
THLLNEKVD
NHTPEGTHEK

LAIVKHAVN

EAEDYDSAV
RVRGLETGA
EPLENGPTE

2:
HDRMVQTVR



="' The folding paradigm

myoglobin

sequence structure function

evolution (billion year)

= Prediction of final structure and binding helps discovering new biology
= Not all the questions are answered though by AF2 !l

m Biological Chemistry 1 - BIO-212, Lecture 6 2024
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“""' The sequence space is enormous

Matteo Dal Peraro

structure
space

= potential sequence space for proteins of 150 amino acids 20150 ~ 10195
= atoms in the observed universe ~1080
= the sequences explored by evolution are much less (~1010-20), structures lesser

m Biological Chemistry 1 - BIO-212, Lecture 6 2024
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=’ The inverse folding problem — design

Matteo Dal Peraro

functional
space

= Application to study protein evolution and function
= Protein engineering for therapeutics, synthetic biology and (bio)technology

m Biological Chemistry 1 - BIO-212, Lecture 6 2024



“P"L The origins: the Paracelsus challenge (‘94)

m Biological Chemistry 1 - BIO-212, Lecture 6 2024

® Rose and Creamer: convert a protein to another fold
changing no more than 50% of its sequence

MTYKLILNGKTLKGETTTEAVDAATAEKVFEKQYANDNGVDGEWTYDDATKTFTVTE

5.4% MTEKA I LALNTAKFLRTQAAVLAAELEXKLGAQEANDNAVDLED TADDLY K TLLVLA

GTKQEKTALNMARYE IRSQTLTLLEKLNELDADEQAD I CESLEDEADELYRSCLARF

Dalal et al., Protein alchemy: Changing B-sheet into a-helix,
Nature Structural & Molecular Biology 1997

Fig. 1 Ribbon representation?® of the folds of
a, the B1 domain of IgG-binding protein G5 and
b, Rop®. ¢, An alignment of the sequences of
the B1 domain (blue), Rop (red) and Janus.
Residues in Janus are coded as follows: blue,
residues from B1; red, residues from Rop;
underlined red, RNA-binding residues in Rop'3;
green, residues that are conserved in both Rop
and B1; black, ‘a’ and ‘d’ position residues that
are different from those in wild-type Rop;
orange, the first residue of the turn between
Helix 1 and Helix 2. The D30G mutation was
introduced in the turn of Janus because a previ-
ous study demonstrated that this point muta-
tion increases the stability of Rop30. The percent
identity between the different sequences are
indicated. The seven amino acid, unstructured
C-terminal tail of Rop (Gly-Asp-Asp-Gly-Glu-
Asn-Leu) extends beyond the sequence depict-
ed for both Rop and Janus and is also not
shown in (b). It was retained in Janus because it
increases the solubility of wild type Rop3'.

40
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=P Multiple tasks for protein design

Protein-protein interface design

Protein design
= create de novo proteins = create high affinity binders
= explore new folds = therapeutic biologics

= embed new functions = artificial sensors/probes

= tailor enzymatic function " explore DNA interactions

- improve thermostability = new therapeutic solutions

el

* Filled colored circles - flexible side chains
o empty colored circles — flexible amino acid: design

= catalyse new reactions




*P"- Machine learning for protein design

RESEARCH ARTICLES
al Science
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= Application to study protein evolution and function

m Biological Chemistry 1 - BIO-212, Lecture 6 2024

= Protein engineering for therapeutics, synthetic biology and biotechnology
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... leading to molecular engineering

RESEA]

Matteo Dal Peraro

= Protein engineering for therapeutics, synthetic biology and biotechnology

B Institute of Advanced Studies - University of Bologna, April 9 2024
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=L Pipeline of today’s protein design

Matteo Dal Peraro

Backbone Sequence Computational
Generation Design Filtering / Oracle

Design Experimental
Criteria > éy g\ > Filtering
= AF2

= RFdiffusion = ProteinMPNN
= AF2 has been key to filter potentially good protein designs
= Experimental testing is the ultimate validation of designs
= Al methods enhanced the experimental rate of success
= Protein engineering is now feasible for therapeutics, synthetic biology and biotechnology

m Biological Chemistry 1 - BIO-212, Lecture 6 2024
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=L Pipeline of today’s protein design

o

W

@
)

mm RFdiffusion (ours)
EEm RosettaDesign

Matteo Dal Peraro

RFdiffusion 2D Class Averages 3D Reconstruction

o

w

o
.

o

N

]
A

HE0822
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e
N
S}

o

-

w
)

e

=

[S)
"

HE0626
Ccé6

Experimental Success Rate (%)

e

o

]
!

e

=)

=]
!

. . . HA 1-7Ra INSR PD-L1  TrkA
validation using cryoEM Target

credits to Baker Lab

= AF2 has been key to filter potentially good protein designs

= Experimental testing is the ultimate validation of designs

= Al methods enhanced the experimental rate of success

= Protein engineering is now feasible for therapeutics, synthetic biology and biotechnology

m Biological Chemistry 1 - BIO-212, Lecture 6 2024



*P"- Machine learning for protein design

Forward diffusion
image noisy image noise

Andrés érs
= Denoising Diffusion Models - as those used in DALL-E

= Trained to denoise noisy images, they can generate images by iteratively
denoising pure noise

m Biological Chemistry 1 - BIO-212, Lecture 6 2024
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Article

De novo design of proteinstructure and
function with RFdiffusion

https://doi.org/10.1038/s41586-023-06415-8

Received: 14 December 2022

Accepted: 7 July 2023

Published online: 11 July 2023

Open access

Diffusion model

MOJ)

Gaussian - -
noise
XT

A X XH

Joseph L. Watson'***, David 123, Nathaniel R. B ', Brian L. Trippe**%*,
Jason Yim*®®, Helen E. Emeh"'“ WOodyAhem“"“ Andrew J. Bom"’ Robert J. Ragotte'?,
Lukas F. Milles'?, Basile |. M. Wicky'?, Nikita Hanikel'*, Samuel J. Pellock'?, Alexis Courbet'**,
William Sheffler'?, Jue Wang'?, Preetham Venkatesh'*?, Isaac Sappington'*®,

Susana Vazquez Torres'?®, Anna Lauko'?*, Valentin De Bortoli®, Emile Mathieu™,

Sergey Ovchinnikov™?, Regina Barzilay®, Tommi S. Jaakkola®, Frank DiMaio'?, Minkyung Baek™
&David Baker'***

Forward (noising) process

<
<

m Single m

step

Y
«— L E

et —> "3
ﬁ Bk
¢

4

Protein
structure

A X

Reverse (generative) process

= the reverse process is learned using a neural network

= jts loss function encourages the reverse process to accurately estimate

how the data transitions from one noisy step to the previous step.
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https://www.bakerlab.org/2022/11/30/diffusion-model-for-protein-design/



Science

RESEARCH ARTICLES

Cite as: J. Dauparas ef al., Science
10.1126/science.add2187 (2022).

Backbone distances are encoded and
processed using a message-passing neural
network (Encoder) to obtain graph node and
edge features.

Robust deep learning-based protein sequence design using .
ProteinMPNN

J. Dauparas*?, I. Anishchenko"?, N. 23, H. Bai'>*, R. J. Ragotte?, L. F. Milles"?, B. I. M. Wicky"?,

A. Courbet“>*, R. J. de Haas®, N. Bethel*>%, P, J. Y. Leung®*?, T. F. Huddy"?, S. Pellock"2, D. Tischer"?, F. Chan"?,

B. Koepnick?, H. Nguyen'?, A. Kang'?, B. Sankaran®, A. K. Bera'?, N. P. King!?, D. Baker’2#*

"Department of Biochemistry, University of Washington, Seattle, WA, USA. 2Institute for Protein Design, University of Washington, Seattle, WA, USA. Molecular Engineering

Graduate Program, University of Washington, Seattle, WA, USA. *Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. *Department of Physical

Chemistry and Soft Matter, Wageningen University and Research, Wageningen, Netherlands. “Berkeley Center for Structural Biology, Molecular Biophysics and Integrated

Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA. | |
*C ing author. Email: .edu

The encoded features, together with a partial
sequence, are used to generate amino acids
iteratively in a random decoding order.

While deep learning has revolutionized protein structure prediction, almost all experimentally characterized
de novo protein designs have been generated using physically based approaches such as Rosetta. Here we
describe a deep learning-based protein sequence design method, ProteinMPNN, with outstanding
performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a
sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different
positions can be coupled between single or multiple chains, enabling application to a wide range of current
protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray
crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta
or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding

Biological Chemistry 1 - BIO-212, Lecture 6 2024

proteins.
A chainA Chain B .
ProteinMPNN
\\ Y2 Backbone Encoder \ / Sequence Decoder \
| Update .
edges -7 Probabilities
i~ A |
1 : Iterative
: 3x_ Update 1 1 decoding
! nodes A 3x ! decoding !
1 1 1
order
. 4 A ! ¥
Input: protein N Ca C O Nodes | <! Nodes <« Sequence
backbone C’ di t n ! Edges > Edges
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j Output: protein
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Cell

Preclinical proof of principle for orally delivered

Th17 antagonist miniproteins

Graphical abstract

g IL-17RA
minibinder
Kp ~10 pM

PK PD

v Gl tissues v IBD
v Serum efficacy

orally in mice
administered

Authors

Stephanie Berger, Franziska Seeger,
Ta-Yi Yu, ..., Matthias Siebeck,
Roswitha Gropp, David Baker

Correspondence

berger389@gmail.com (S.B.),
dabaker@uw.edu (D.B.)

Highlights

of IL-17A and IL-23R

proteolysis

mouse colitis

e Computational design yielded low- and sub-pM minibinders

e IL-23R minibinders are extremely resistant to heat, acid, and

e Oral IL-23R minibinder is as effective as a clinical mADb in

Berger et al., 2024, Cell 187, 4305-4317
August 8, 2024 © 2024 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2024.05.052
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Protein Structure Transformer @LBM

| #( interactions encoding )

v v v v

1 2 3 = nmn
O

°

O
° “\O./
v v v v

( transformer decoding )

@ («"'.p"") x32
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Y
| interface model (MLP) | | sequence model (MLP)

amino acid position

- .
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£ o,
g g
0 [}
PeSTo: binding interfaces CARBonAra: molecular design

Krapp et al. Nat Comms 2023 Krapp et al. Nat Comms 2024
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=L Unique ability — context awareness

= example with context = large-scale benchmark
100 —— T v |
1 without context

with context x ‘(

80 1 \ A
I 1E

60- \ S )\ =9 '\\5—6 JLS_O ,) /‘\ &
() ( )

N
o
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sequence recovery [%]

N
o
1

|| \\ / | \
! |
A Ll )\ T M T A AI ( T
protein  DNA RNA ligand ion lipid
protein interface type

o

1000 structures sampled with maximum 30% sequence identity
and separate C.A.T.H. classification from training set

colicin E7

m Biological Chemistry 1 - BIO-212, Lecture 6 2024
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=PfLCan we re-engineer an enzyme?

m Biological Chemistry 1 - BIO-212, Lecture 6 2024

= TEM-1 serine B-lactamase

nitrocefin

= sequences generation with substrate as constraint
» selected 10 top-ranked predictions based on pIDDT

= 4/10 designs are soluble and monomeric

only 50% sequence identity

D4
Em
D3

D1

SHV-100
» SHV-16

= they are folded and more thermostable than wild-type TEM-1
» catalytically active at high T - not as the wild-type yet

= represent a separate subclass of B-lactamases

CD [mdeg]

© o o ©o
[ N )

Conversion to product

o
o

3]
w

Matteo Dal Peraro

i

30 40 50 60 70 80 90
T[°C]

— TEM-110nM, 30°C
— D3 10uM, 70°C
D4 20uM, 70°C
— D120uM, 70°C
— D2 20uM, 70°C
— D4 20uM, 30°C
TEM-15uM, 70°C

spontaneous, 70°C

== spontaneous, 30°C

500 1000
Time [s]

Krapp et al. Nat Comms 2024



== The future is bright and exciting ...

m Biological Chemistry 1 - BIO-212, Lecture 6 2024

... biomolecular design will address many societal needs

= Medicine

vaccines & antivirals

smart medicines

drug delivery

SARS-CoV-2 RBD
nanoparticle immunogen (Cell 2020)

= Biotechnology

protein-silicon devices

bio-based computers

nanoscale manufacturing

SM proteomics with
S biological nanopores
o (Nat Chem 2021)

'
E=Y

Matteo Dal Peraro

= Sustainability

artificial photosynthesis
CO2 sequestration

plastic degradation

FAST-PETase
(Nature 2022)



Al FOR PROTEIN DESIGN
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REPORTER

Laboratory of Proteln and Cell Engineering

Extract sequence/
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IMMUNOENGINEERING

Laboratory of Protein and Cell Engineering

AIIosterlc biosensors for engineered cell therapies

native
receptor pairs

extracellular
Intracellular

assemble user-
defined

signaling sngnallng OUTPUT

predict signal
pathway A pathway B competence of A )
smmmll chimeric receptor ; optimally combine
N
-

chimeric receptor
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: 2 user-defined
LBDJ: ﬁ ‘[’ % ;-

: LBD, TMD and ICD

1 to design functional

V + chimeric receptor
1 with user-defined
+ INPUT-OUTPUT
! signaling

v

LBD: ligand binding domain
TMD: transmembrane domain
ICD: intraceliular (signaling) domain

Barth Lab

ELR+
chemokines

G -protein signal rewiring to boost CAR T-cells

physiological signaling

Engineered signal A Engineered signal B

CAR T-cell
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Redirecting cell migration
with designed receptors
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WT migration
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“*t Inverting AlphaFold for protein design

Bruno Correia, Laboratory of Protein Design and Immunoengineering

AlphaFold 2 FAPE loss

Sequence

T Structure

|
: . |
T - module :
/

EEAREWAEKWGAN ,
IETEEEREEEaEREIEE———— —_ Predicted structure

Target structure

PN e e ety e
l .‘.EH- :.?: :. E I..I.-l-tL
"| Tl '-FI'-' '1-' ':_!
=4 Normalize
“i hT L r:'F = and

PSSM update Error gradient

Argmax(PSSM)

Goverde et al, Protein
Science 2023

-Final sequences designed with proteinMPNN on AF2 generated backbones



*F*L High experimental success rates in binder design

Bruno Correia, Laboratory of Protein Design and Immunoengineering

m LPDI, EPFL

o
©

Cellular receptors Common allergens
70% 33% 86% 40% 57% 43%
560 nM 260 nM ' 793 nM 165 nM
PD-L1 IFNR2 DerF21 BetV1

Martin Pacesa & Lennart Nickel

I 5.3 uM

Structural

Cas12j2
N.D.

_ND.

Multi-domain nucleases

Experimental success rate Highest affinity binder (no experimental optimisation)

Pacesa & Nickel, et al., unpublished
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m LPDI, EPFL

We weren’t alone !!!!

Google DeepMind

About v  Research Technologies v  Impact Discover v

AlphaProteo generates novel proteins
for biology and health research

5 SEPTEMBER 2024

Protein Design and Wet Lab teams

< Share
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Home Our team On-going_Projects

Contact us

Designing Life
with Al

We're thrilled to introduce "Designing Life with Al"
at EPFL, where Al and protein design intersect,
involving faculty, professors, and 40 students
collaborating on topics like binder design and
phosphosite engineering to kinase remodeling.
After a year of innovative research, our projects
are now being tested in the wet-lab, and we're
working on creating a pipeline and resources for
new students, aiming to expand our project and

make EPFL a hub for protein design.

=PrL

MAKE |

USEFUL,CREATIVE, SUSTANASLE,

https://www.designinglifewithai.com/

contact the MAKE team for
ongoing projects offered by labs




