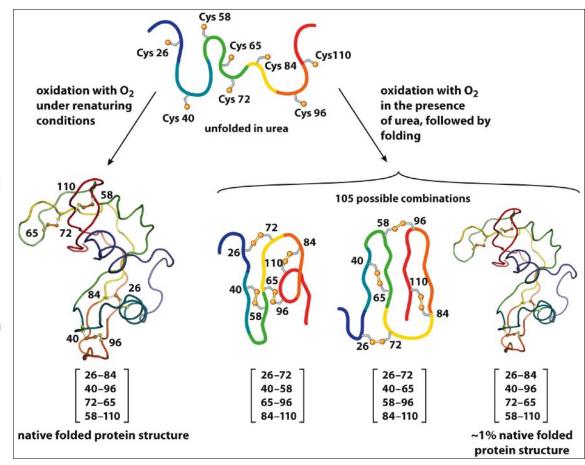


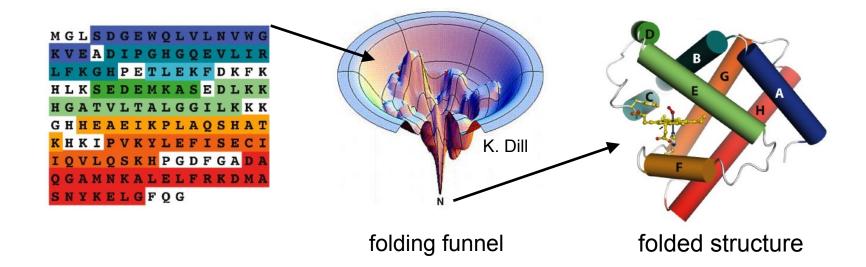
The machine learning revolution in structural biology

Your feedback

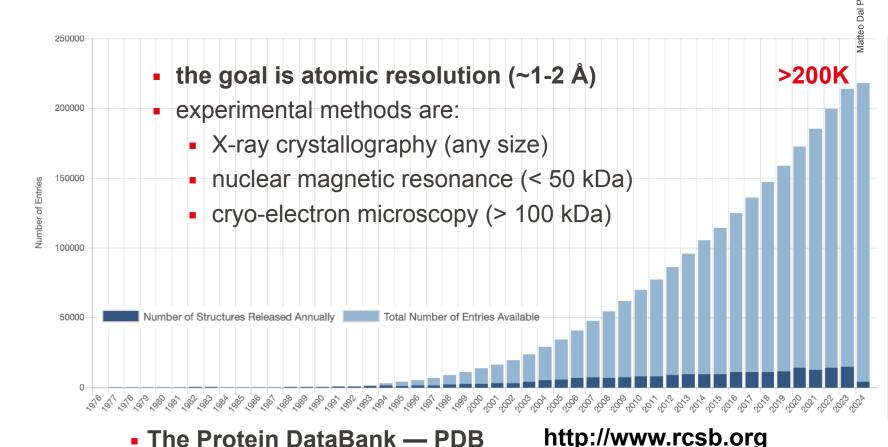
115/182 - 63%


- slides in advance
- course/slides too dense
- not enough TAs

Sequence Determines Structure


The Anfinsen experiment (1954)

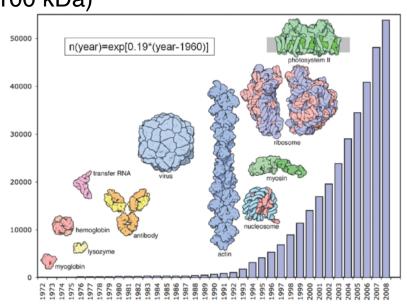
- A Nobel prize (1972) experiment that by measuring enzymatic activity figured out the principles of protein folding
- Ribonuclease refolded and oxidized recovers 100% activity
- -Ribonuclease oxidized and refolded in presence of urea recovers 1% activity



Protein sequence determines structure

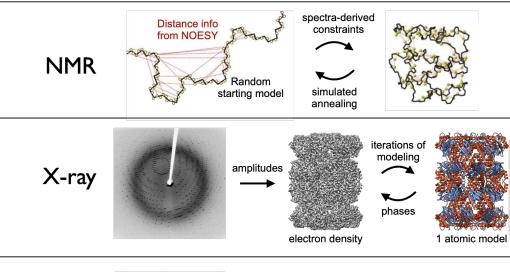
- Anfinsen discovered it in a key experiment already in 1954
- This has become the central dogma of structural biology

Structure determination is key

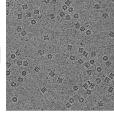

Biological Chemistry 1 - BIO-212 | Jecture 6 200

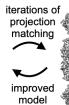
Biomolecular structure determination

atomic resolution (~1-2 Å, 0.1-0.2 nm - 10⁻¹⁰ m)


- X-ray crystallography (~1-2 Å; any size)
- nuclear magnetic resonance (~1-2 Å; < 50 kDa)
- cryo-electron microscopy (1-20 Å; > 100 kDa)

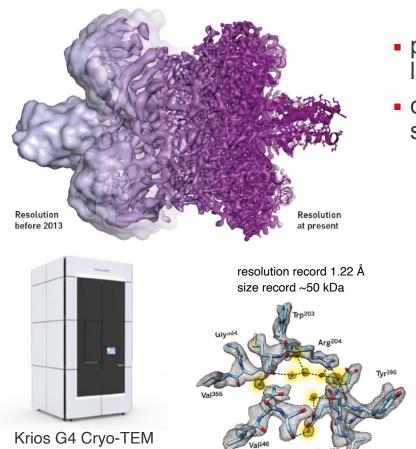
in the **structure** and **dynamics** of any biomolecule in the cell is encoded its **function**

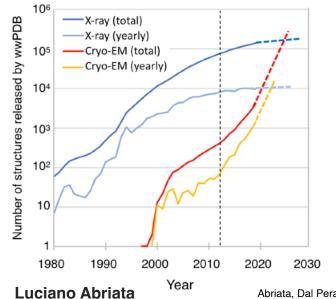

Methods for determining biomolecular structures



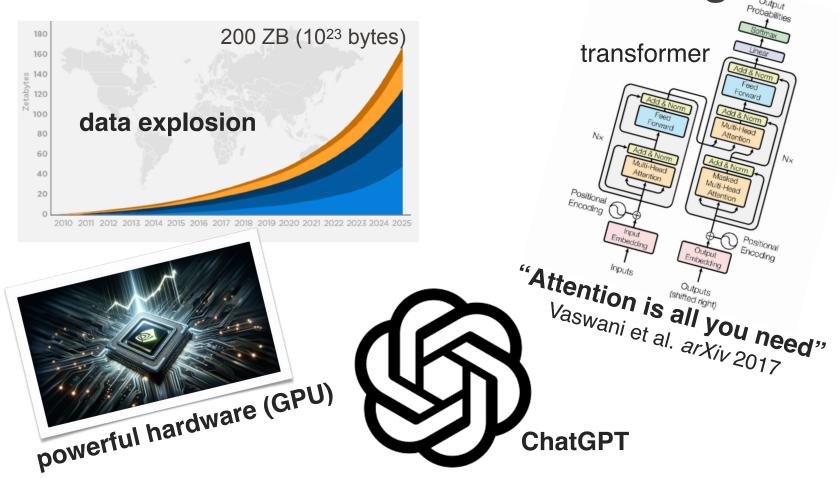
iterations of projection matching build best-fit model improved

- Versatile tool for studying protein structure and dynamics
- Computationally light
- Full structural analysis limited to smaller proteins (<50kDa)
- Requires isotopic labeling
- Results in model ensemble
- Gold-standard method for solving protein structures
- Not limited in size or achievable resolution
- Computationally light
- Requires highly homogenous, crystallizable sample
- Requires screening of crystallization conditions
- Phase problem
- Results in a single model
- Versatile tool for studying protein assembly, structure, dynamics
- Limited to proteins >40kDa
- No requirement for protein labeling
- Does not require homogenous samples
- Grid preparation procedure requires screening
- Real space imaging no phase problem
- Can be used to study protein dynamics
- Can be expanded to larger assemblies (e.g., viruses and cells)
- Results in 1 or more models per dataset
- Computationally heavy (TBs of data + requirement for GPU processing)





(per map)


Experimental revolution — cryoEM

- progress in cryo-electron microscopy led to much improved resolution
- cryo-EM is becoming the new gold standard in structural biology

Data revolution — machine learning

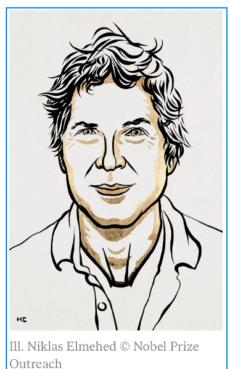
Machine learning in biology

One of biology's biggest mysteries 'largely solved' by AI

'It will change everything': DeepMind's Al makes gigantic leap in solving protein structures Google's deep-learning program for determining the 3D shapes of proteins stands to

transform biology, say scientists.

'The game has changed! Al triumphs at solving protein structures


In milestone, software predictions finally match structures calculated from experimental data

THE ENTIRE PROTEIN UNIVERSE': AI PREDICTS SHAPE OF NEARLY EVERY KNOWN PROTEIN

DeepMind's AlphaFold tool has determined around 200 million protein structures, which are now available to scientists in a database.

The Nobel Prize in Chemistry 2024 was divided, one half awarded to David Baker "for computational protein design", the other half jointly to Demis Hassabis and John M. Jumper "for protein structure prediction"

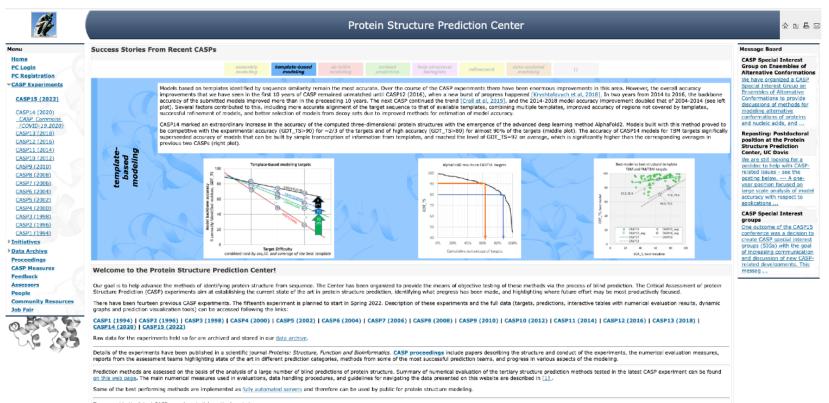
David Baker

Prize share: 1/2

Ill. Niklas Elmehed © Nobel Prize Outreach

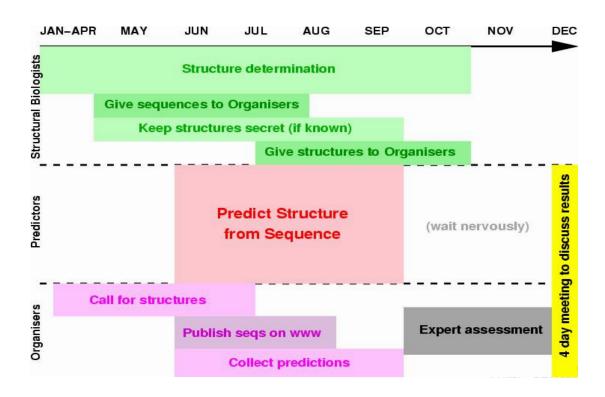
Demis Hassabis

Prize share: 1/4

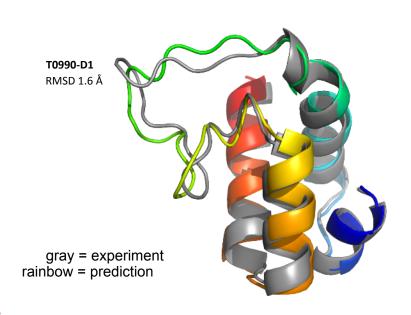


Ill. Niklas Elmehed © Nobel Prize Outreach

John M. Jumper


Prize share: 1/4

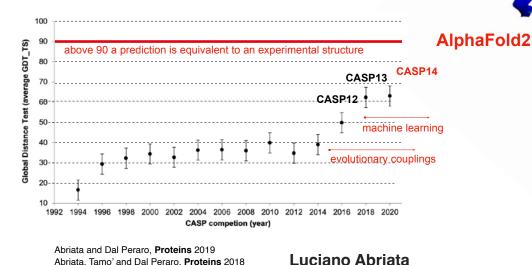
EPFL CASP: Critical Assessment of Techniques for **Protein Structure Prediction (now CASP16)**



To proceed to the latest CASP experiment click on the logo below:

CASP: Critical Assessment of Techniques for Protein Structure Prediction (now CASP16)

EPFL CASP: Critical Assessment of Techniques for Protein Structure Prediction (now CASP16)

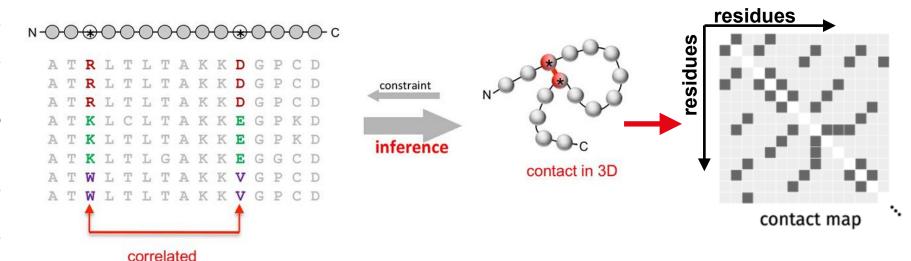


Root Mean Square Displacement :: RMSD defines a measure for similarity:

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} d_i^2}$$

AlphaFold2 solved a 70yo problem

Critical Assessment of protein Structure Prediction — CASP


experimental-like accuracy

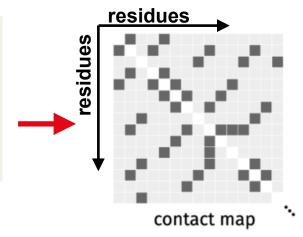
Abriata, Tamo' and Dal Peraro, Proteins 2018

>200 M predicted models available in UniProt

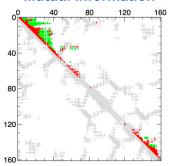
Evolutionary couplings for protein prediction

Marks, D. S.; Colwell, L. J.; Sheridan, R.; Hopf, T. A.; Pagnani, A.; Zecchina, R.; Sander, C. *PLoS One* **2011**, *6*, e28766.

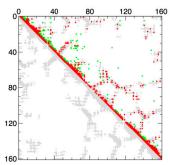
- correlations in the sequence space give structural information
- if you have enough predicted contacts you can fold a protein (similar to NMR)


Evolutionary couplings for protein prediction

Direct-coupling analysis (DCA)


Calculate covariance matrix for each pair of sequence positions for all pairs of amino acids (A,B)

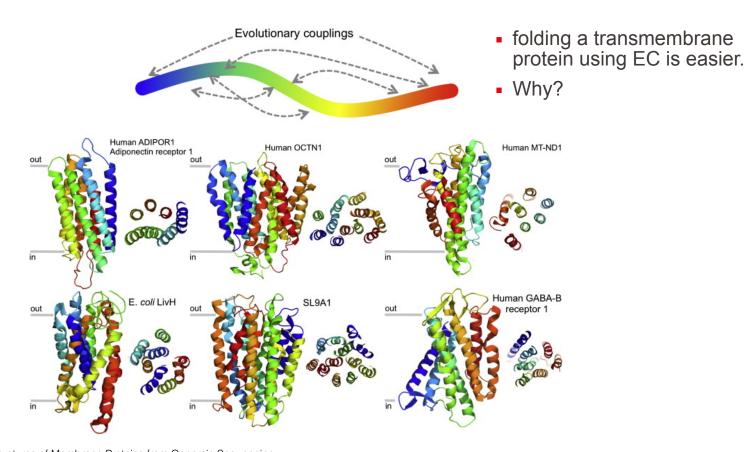
Identify maximally informative pair couplings using **statistical model** of entire protein to infer residue-residue co-evolution


$$C_{ij}(A,B) = f_{ij}(A,B) - f_i(A)P_j(B)$$
 high ranking transitive 'indirect correlations'
$$C_{ij}^{-1}(A,B) = -e_{ij}(A,B)_{i\times j}$$

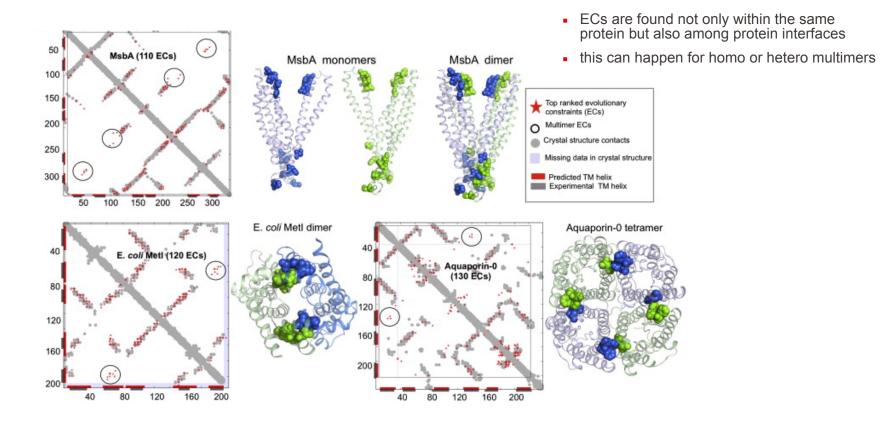
$$P_{ij}^{Dir}(A,B) = \frac{1}{Z} \exp\Big\{e_{ij}(A,B) + \tilde{h}_i(A) + \tilde{h}_j(B)\Big\}$$

$$DI_{ij} = \sum_{A,B=1}^q P_{ij}^{Dir}(A,B) \ln \frac{P_{ij}^{Dir}(A,B)}{f_i(A)f_j(B)}$$
 re-ranked correlations 'direct information' = DI

Mutual information

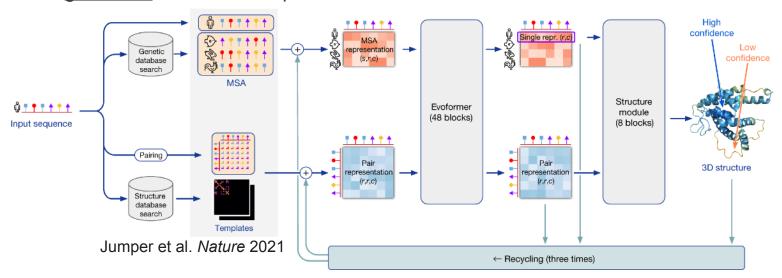


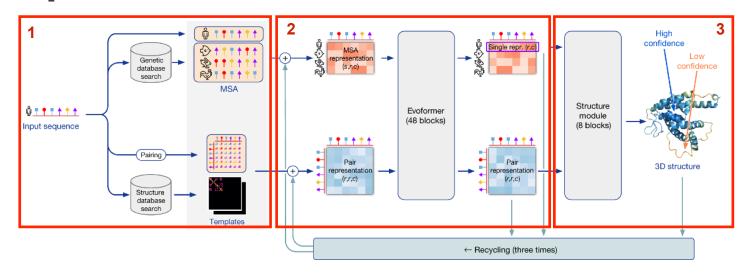
Direct information



 a statistical physics method were used to crack the problem (ie Potts model)

EC for membrane protein prediction


EC for protein oligomerization prediction


AlphaFold2 architecture

 "AlphaFold greatly improves the accuracy of structure prediction by incorporating novel neural network architectures and training procedures based on the <u>evolutionary</u>, <u>physical</u> and <u>geometric</u> constraints of protein structures".

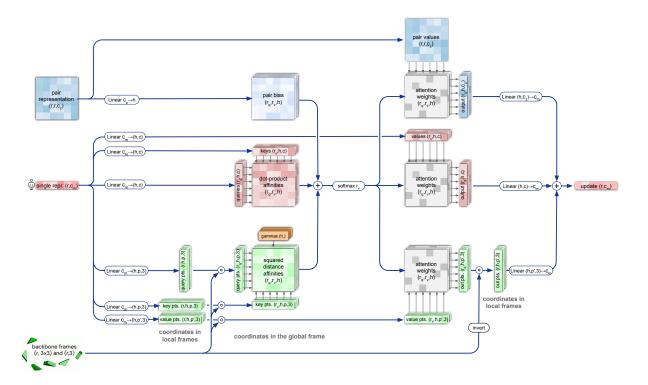
- trained on sequence similarity and structural templates from databases (UniProt/metagenomics and PDB)
- end-to-end model produces prediction in one shot using transformers

AlphaFold2 architecture

First module:

gather available information like sequence similarity (MSA) and structural templates from databases (UniProt/ metagenomics and PDB) to create a pair representation (which aa are likely in contact with each other)

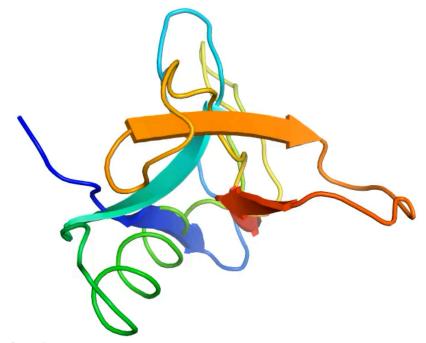
Second module:


Evoformer transformer which refine the MSA and pair interactions

Third module:

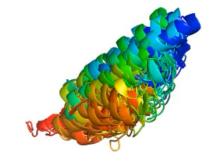
The structure module build the 3D structure based on the MSA and pair interactions information

- end-to-end model produces prediction in one shot
- recycling (3X) to refine further prediction
- huge engineering effort

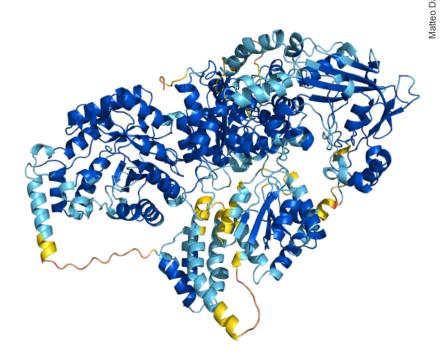

The power of (Google) engineering

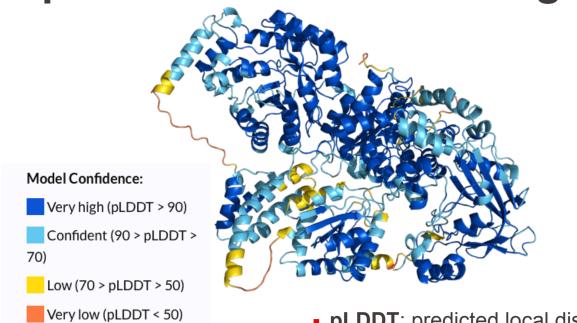
Supplementary Figure 8 | Invariant Point Attention Module. (top, blue arrays) modulation by the pair representation. (middle, red arrays) standard attention on abstract features. (bottom, green arrays) Invariant point attention. Dimensions: r: residues, c: channels, h: heads, p: points.

EPFL


AlphaFold2 at work

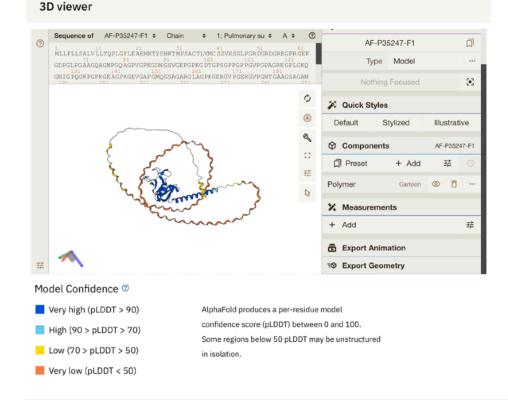
Recycling iteration 0, block 01 Secondary structure assigned from the final prediction

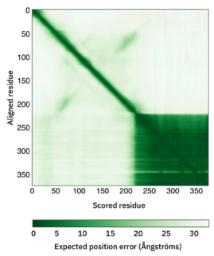

AlphaFold2 at work



AlphaFold2 database

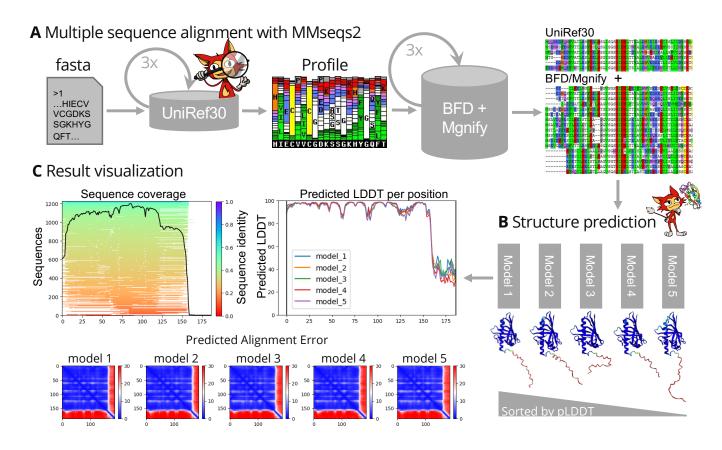
- > 200 million protein structure predictions
- Almost all catalogued proteins (UniProt)
- Over 1 million organisms
- Freely and openly available
- Collaboration DeepMind and EMBL-EBI
- 35.2% predictions with mean pLDDT > 90
- 79.1% predictions with mean pLDDT > 70
- https://www.alphafold.ebi.ac.uk/
- https://uniprot.org/

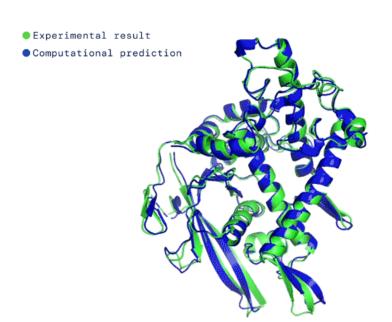

AlphaFold2 is self-assessing


- pLDDT: predicted <u>local</u> distance difference test score
- prediction of the local distances between pairs of residues in the predicted structure compared to a reference or ground truth structure.
- low score (<50) indicates that the region is disordered or AF2 does not have enough information

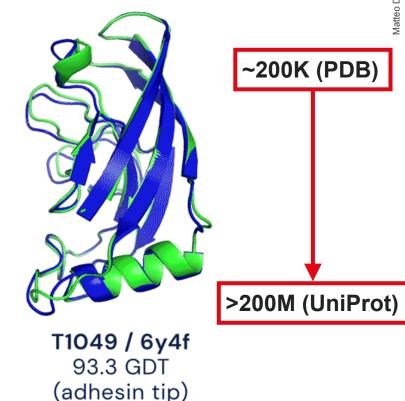
PAE: predicted alignment error

Predicted aligned error (PAE)




Click and drag a box on the PAE viewer to select regions of the structure and highlight them on the 3D viewer.

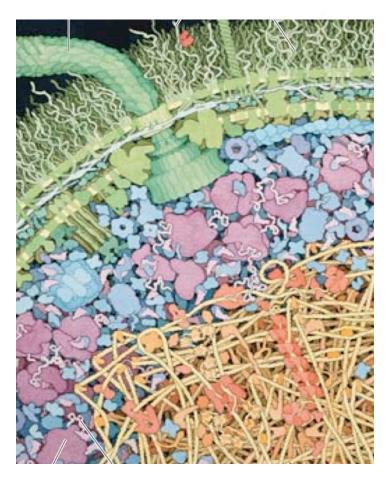
PAE data is useful for assessing inter-domain accuracy – go to Help section below for more information.


- pLDDT is a good score only at short/local distances
- it cannot give you good estimation of the quality of a prediction with different domains
- their reciprocal orientation cannot be estimated by pLDDT
- PAE is the solution for this scenario

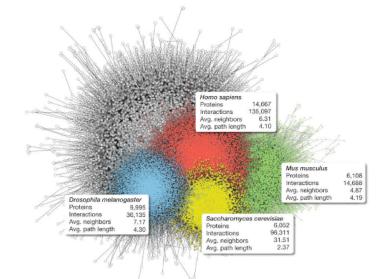
EPFL ColabFold - Making protein prediction accessible to all

T1037 / 6vr4 90.7 GDT (RNA polymerase domain)

AlphaFold2 is not the ultimate oracle

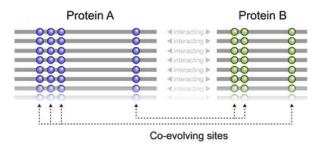

Limitations

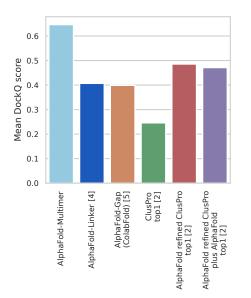
- need for a deep MSA (>30 sequences) to create accurate models
- not all the models are highly accurate as an experimental structure
- it does not account for dynamics and multiple states
- does not account for the post-translational modifications


Other potential benefits

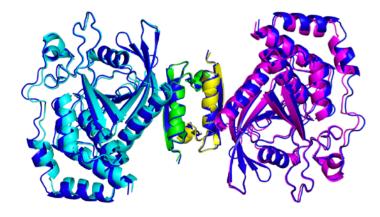
- AF triggered many other developments
- can assist experimental structure determination
- eg, in molecular replacement in X-ray crystallography
- eg, in cryoEM fitting and model building
- it is a means to look at protein-protein networks

Proteins form assemblies and networks




- Proteins can then arrange into supramolecular assemblies
- Interacting with nucleic acid, metabolites, membranes, etc.
- They create large network of interactions

EPFL AlphaFold Multimer


coevolution coupling holds for protein-protein interactions

+ Support for multiple chains

- + Multi-chain features
- + Various architectural modifications
- + Paired MSAs
- + Training on complexes

Protein complex prediction with AlphaFold-Multimer Richard Evans,..., John Jumper, Demis Hassabis bioRxiv 2021.10.04.463034; doi: https://doi.org/10.1101/2021.10.04.463034 Check for updates

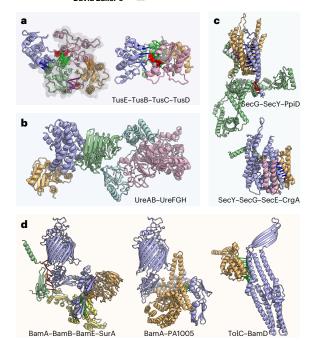
Article https://doi.org/10.1038/s41594-022-00910-8

Article https://doi.org/10.1038/s41564-024-01791-x

Towards a structurally resolved human protein interaction network

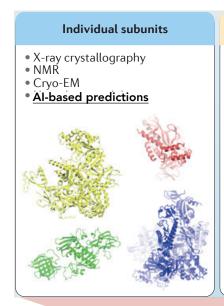
Protein interactions in human pathogens revealed through deep learning


David F. Burke 19, Patrick Bryant 19, Inigo Barrio-Hernandez 19, Patrick Bryant 19, Inigo Barrio-Hernandez 19, Patrick Bryant 1 Received: 11 February 2022 Danish Memon © 1.9, Gabriele Pozzati © 2.3.9, Aditi Shenoy © 2.3, Wensi Zhu 2.3, Accepted: 14 December 2022 Alistair S. Dunham 1, Pascal Albanese 4,5, Andrew Keller6, Published online: 23 January 2023


Received: 28 April 2023 Accepted: 23 July 2024

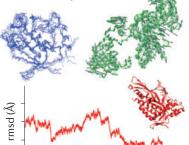
Published online: 18 September 2024

Ian R. Humphreys^{1,2,13}, Jing Zhang © ^{3,4,5,13}, Minkyung Baek © ^{6,13} , Yaxi Wang © ^{7,13}, Aditya Krishnakumar^{1,2}, Jimin Pei^{3,4,5}, Ivan Anishchenko^{1,2}, Catherine A. Tower ¹⁰ Blake A. Jackson⁷, Thulasi Warrier^{8,9,10}, Deborah T. Hung ® ^{8,9,10}, S. Brook Peterson ©7, Joseph D. Mougous ©7,11,12, Qian Cong3,4,5 2 &


David Baker 1,2,11

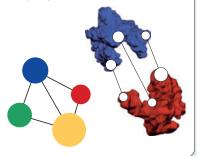


Integrative structural biology


Volumetric maps

- Cryo-EM
- Electron tomography
- SAXS, SANS
- AFM

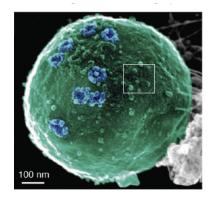
Structural flexibility


- Side-chain and backbone sampling
- Elastic network models
- NMR ensembles
- FRET, DEER EPR
- Molecular dynamics

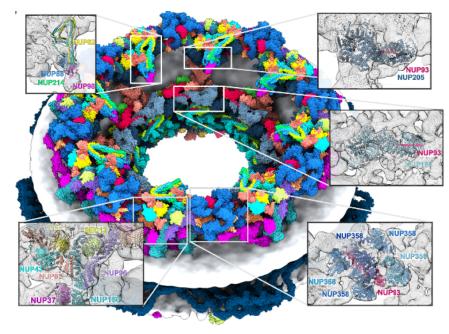
Time (ns)

Spatial connectivity

- Mutagenesis
- Evolutionary couplings
- Chemical crosslinking
- Proteomics
- H/D exchange
- ChIP-seq and ChIP-exo
- 3C, 4C, 5C and Hi-C



data integration and model building


AF2 affects integrative structural biology

e.g., the Nuclear Pore Complex

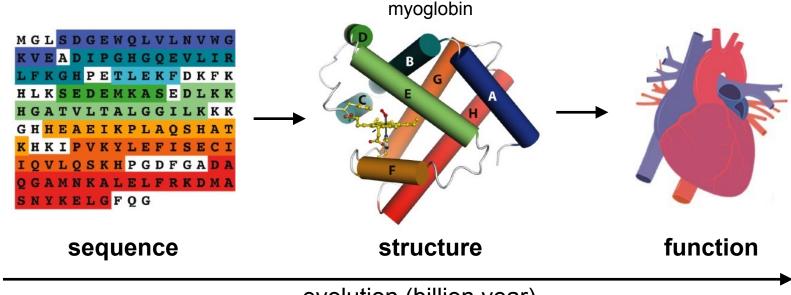
• yeast: ~52 MDa, ~550 proteins

• human: ~120 MDa, ~100 proteins

AlphaFold Server

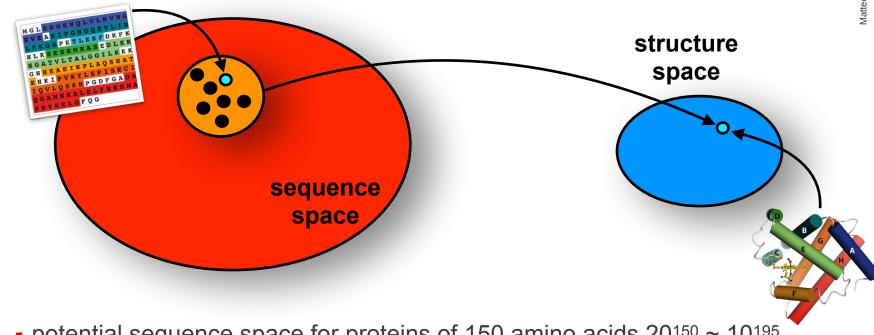
Powered by AlphaFold 3

Abramson, J et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature (2024)

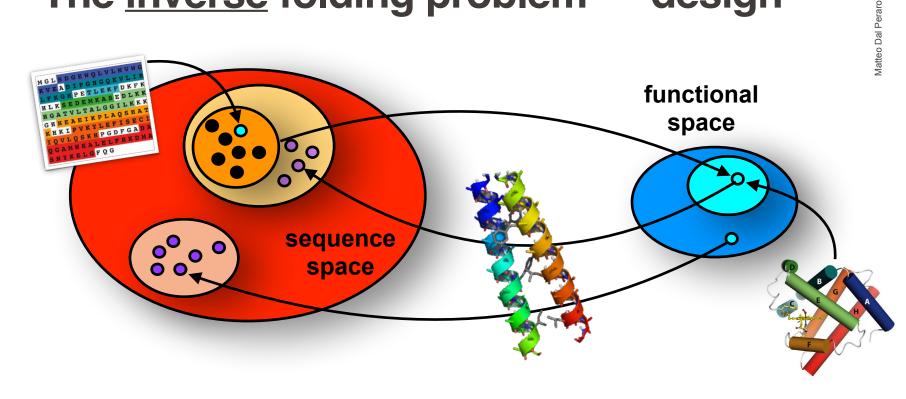

			, ,		_
Туре	Copies	Sequence			
Protein	2	M L E R L S W K R L 70 R S M T P P P G R G F W C N G L A Q Q I 190 P Y T H K Q L L M V 250 K A L H T M R E Q T 310 F T F E I D N G L K 370 I A P E H I P R L T 430 I P E R L I A K N S PTMs 213H: ND1-Phospho	V L E L L L C C L P S W E P L L Y G L H L G L R W P E D N G A R D V T Q M H Q L Q R N E G L V K Q L V S G N E D Q L R S E R F Y R V D K A R 431 D chistidine	A F I L G A F F G Y 90 91 92 93 94 95 96 97 98 98 150 210 270 E G A R R N F F A N L T L S K I E A A P 330 A I S N L V Y N A V S R Q T G G S G L G	LPWFLLASV RELGNLIKR EFTQYLKTR VSHELRTPL THLLNEKVD NHTPEGTHI LAIVKHAVN
Ligand	50	PLM – Palmitic acid			
Ligand	50	OLA – Oleic acid			
Protein	2	M A R R I L V V E D 70 G I Q F I K H L K R R R I S P M A V E E 190 N H V W G T N V Y V	E A P I R E M V C F 80 E S M T R D I P V V 140 V I E M Q G L S L D 200 E D R T V D V H I R	V L E Q N G F Q P V M L T A R G E E E D P T S H R V M A G E R L R K A L E P G G	E A E D Y D S A V R V R G L E T G A E P L E M G P T E H D R M V Q T V R
Seed: 1026411006					

Non-commercial use only, subject to AlphaFold Server Output Terms of Use; no use in docking or screening tools.

Matteo Dal Peraro



The folding paradigm


- evolution (billion year)
- Prediction of final structure and binding helps discovering new biology
- Not all the guestions are answered though by AF2!!

The sequence space is enormous

- potential sequence space for proteins of 150 amino acids 20¹⁵⁰ ~ 10¹⁹⁵
- atoms in the observed universe ~1080
- the sequences explored by evolution are much less (~10¹¹-²¹), structures lesser

The inverse folding problem — design

- Application to study protein evolution and function
- Protein engineering for therapeutics, synthetic biology and (bio)technology

The origins: the Paracelsus challenge ('94)

 Rose and Creamer: convert a protein to another fold changing no more than 50% of its sequence

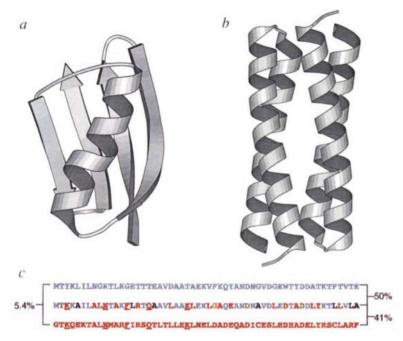
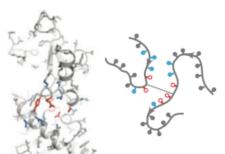


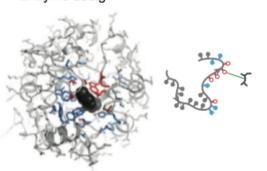
Fig. 1 Ribbon representation²⁹ of the folds of a, the B1 domain of IgG-binding protein G5 and b, Rop⁶. c, An alignment of the sequences of the B1 domain (blue), Rop (red) and Janus. Residues in Janus are coded as follows: blue. residues from B1; red, residues from Rop; underlined red, RNA-binding residues in Rop13; green, residues that are conserved in both Rop and B1; black, 'a' and 'd' position residues that are different from those in wild-type Rop; orange, the first residue of the turn between Helix 1 and Helix 2. The D30G mutation was introduced in the turn of Janus because a previous study demonstrated that this point mutation increases the stability of Rop30. The percent identity between the different sequences are indicated. The seven amino acid, unstructured C-terminal tail of Rop (Gly-Asp-Asp-Gly-Glu-Asn-Leu) extends beyond the sequence depicted for both Rop and Janus and is also not shown in (b). It was retained in Janus because it increases the solubility of wild type Rop31.

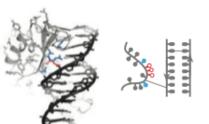

Dalal et al., Protein alchemy: Changing β-sheet into α-helix, Nature Structural & Molecular Biology 1997

Multiple tasks for protein design

- create de novo proteins
- explore new folds
- embed new functions

Protein design

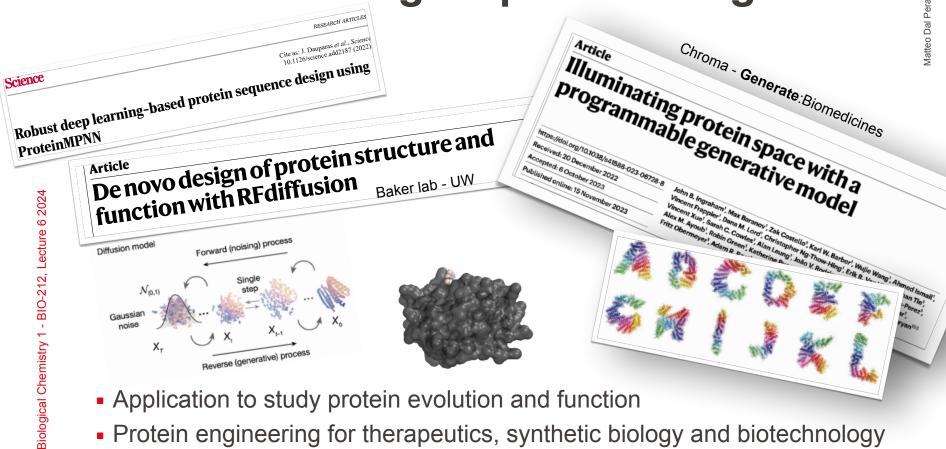

Protein-protein interface design


- create high affinity binders
- therapeutic biologics
- artificial sensors/probes

Enzyme design

- tailor enzymatic functionimprove thermostability
- catalyse new reactions

Protein-DNA interface design



- explore DNA interactions
- new therapeutic solutions

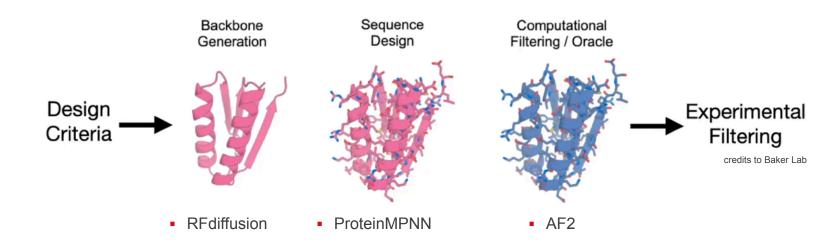
• Filled colored circles - flexible side chains


o empty colored circles – flexible amino acid: design

Machine learning for protein design

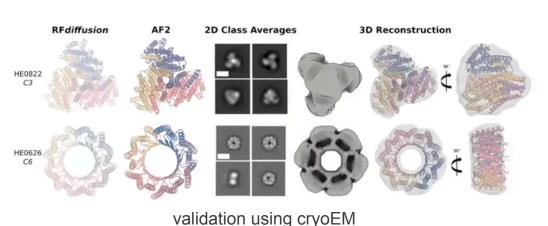
- Application to study protein evolution and function
- Protein engineering for therapeutics, synthetic biology and biotechnology

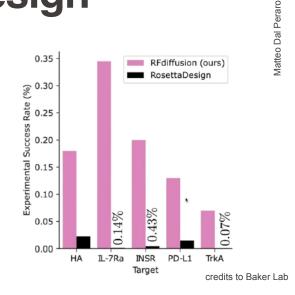
... leading to molecular engineering



- Application to study protein evolution and function
- Protein engineering for therapeutics, synthetic biology and biotechnology

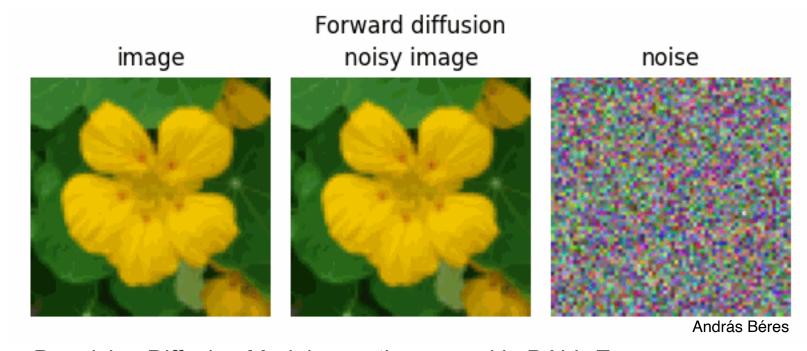
Matteo Dal Peraro


EPFL


Pipeline of today's protein design

- AF2 has been key to filter potentially good protein designs
- Experimental testing is the ultimate validation of designs
- Al methods enhanced the experimental rate of success
- Protein engineering is now feasible for therapeutics, synthetic biology and biotechnology

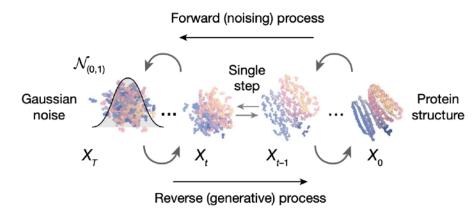
Pipeline of today's protein design



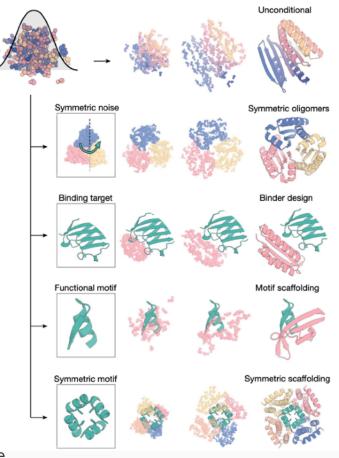
validation doing or your

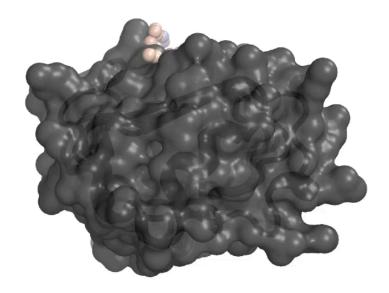
- AF2 has been key to filter potentially good protein designs
- Experimental testing is the ultimate validation of designs
- Al methods enhanced the experimental rate of success
- Protein engineering is now feasible for therapeutics, synthetic biology and biotechnology

Machine learning for protein design


- Denoising Diffusion Models as those used in DALL-E
- Trained to denoise noisy images, they can generate images by iteratively denoising pure noise

Open access


De novo design of protein structure and function with RFdiffusion


https://doi.org/10.1038/s41586-023-06415-8 Received: 14 December 2022 Accepted: 7 July 2023 Published online: 11 July 2023 Joseph L. Watson^{1,215}, David Juergens^{1,2,3,15}, Nathaniel R. Bennett^{1,2,3,15}, Brian L. Trippe^{2,4,5,15}, Jason Yim^{2,6,15}, Helen E. Eisenach^{1,2,15}, Woody Ahern^{1,2,15}, Andrew J. Borst^{1,2}, Robert J. Ragotte^{1,2}, Lukas F. Milles^{1,2}, Basile I. M. Wicky^{1,2}, Nikita Hanikel^{1,2}, Samuel J. Pellock^{1,2}, Alexis Courbet^{1,2,3}, William Sheffler^{1,2}, Jue Wang^{1,2}, Preetham Venkatesh^{1,2,9}, Isaac Sappington^{1,2,9}, Susana Vázquez Torres^{1,2,9}, Anna Lauko^{1,2,9}, Valentin De Bortoli³, Emile Mathieu¹⁰, Sergey Ovchinnikov^{1,12}, Regina Barzilay⁶, Tommi S. Jaakkola⁵, Frank DiMaio^{1,2}, Minkyung Baek¹³ & David Baker^{1,2,14,23}

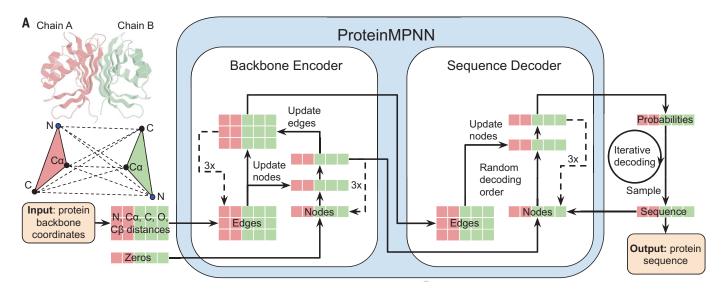
Diffusion model

- the reverse process is learned using a neural network
- its loss function encourages the reverse process to accurately estimate how the data transitions from one noisy step to the previous step.

https://www.bakerlab.org/2022/11/30/diffusion-model-for-protein-design/

*Corresponding author, Email: dabaker@uw.edu

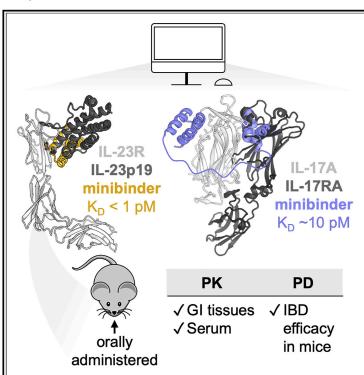
Cite as: J. Dauparas et al., Science 10.1126/science.add2187 (2022).


Robust deep learning-based protein sequence design using ProteinMPNN

J. Dauparas^{1,2}, I. Anishchenko^{1,2}, N. Bennett^{1,2,3}, H. Bal^{1,2,4}, R. J. Ragotte^{1,2}, L. F. Milles^{1,2}, B. I. M. Wicky^{1,2}, A. Courbet^{1,2,4}, R. J. de Haas², N. Bethel^{1,2,4}, P. J. Y. Leung^{1,2,2}, T. F. Huddy^{1,2}, S. Pellock^{1,2}, D. Tischer^{1,2}, F. Chan^{1,2}, B. Koepnick^{1,2}, H. Nguyen^{1,2}, A. Kang^{1,2}, B. Sankarn⁴, A. K. Bera^{1,2}, N. P. King^{1,2}, D. Baker^{1,2,4}, P. Sankarn⁴, A. K. Bera^{1,2}, N. P. King^{1,2}, D. Baker^{1,2,4}, P. Sankarn⁴, A. K. Bera^{1,2}, N. P. King^{1,2}, D. Baker^{1,2,4}, P. Sankarn⁴, A. K. Bera^{1,2}, N. P. King^{1,2}, D. Baker^{1,2,4}, P. Sankarn⁴, A. K. Bera^{1,2}, N. P. King^{1,2}, D. Baker^{1,2,4}, P. Sankarn⁴, A. K. Bera^{1,2}, N. P. King^{1,2}, D. Baker^{1,2,4}, P. Sankarn⁴, A. K. Bera^{1,2}, N. P. King^{1,2}, D. Baker^{1,2,4}, P. Sankarn⁴, A. K. Bera^{1,2}, N. P. King^{1,2}, P. Sankarn⁴, P. Sankarn⁴, A. K. Bera^{1,2}, N. P. King^{1,2}, P. Sankarn⁴, P. San

Department of Biochemistry, University of Washington, Seattle, MA, USA, "Institute for Protein Design, University of Washington, Seattle, MA, USA, "Molecular Engineering Graduate Program, University of Washington, Seattle, MA, USA, "Howard Hughes Medical Institute, University of Washington, Seattle, MA, USA, "Department of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, Netherlands. "Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawence Berkeley, Ladorstory, Berkeley, CA, USA.

While deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rossetta. Here we describe a deep learning—based protein sequence design method, ProteinMPNN, with outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding proteins.


- Backbone distances are encoded and processed using a message-passing neural network (Encoder) to obtain graph node and edge features.
- The encoded features, together with a partial sequence, are used to generate amino acids iteratively in a random decoding order.

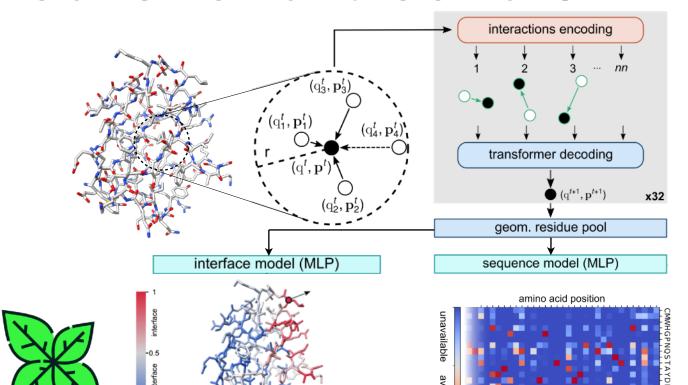
Preclinical proof of principle for orally delivered Th17 antagonist miniproteins

Graphical abstract

Authors

Stephanie Berger, Franziska Seeger, Ta-Yi Yu, ..., Matthias Siebeck, Roswitha Gropp, David Baker

Correspondence


berger389@gmail.com (S.B.), dabaker@uw.edu (D.B.)

Highlights

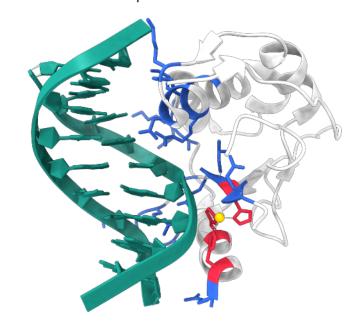
- Computational design yielded low- and sub-pM minibinders of IL-17A and IL-23R
- IL-23R minibinders are extremely resistant to heat, acid, and proteolysis
- Oral IL-23R minibinder is as effective as a clinical mAb in mouse colitis

Berger et al., 2024, Cell *187*, 4305–4317 August 8, 2024 © 2024 The Author(s). Published by Elsevier Inc. https://doi.org/10.1016/j.cell.2024.05.052

Protein Structure Transformer @LBM

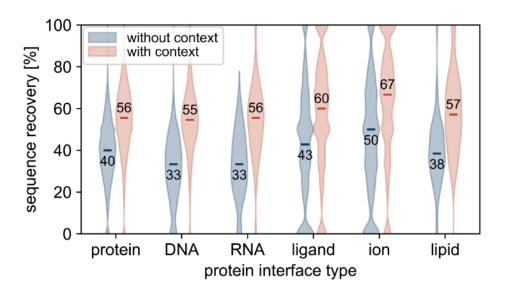
PeSTo: binding interfaces

Krapp et al. Nat Comms 2023


Krapp et al. Nat Comms 2024

Matteo Dal Peraro

EPFL

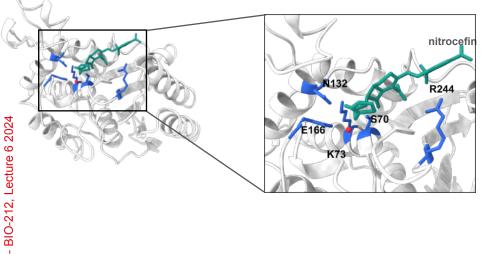

Unique ability — context awareness

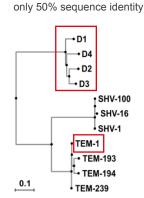
example with context

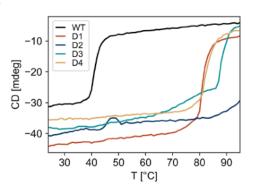
colicin E7

large-scale benchmark

1000 structures sampled with maximum 30% sequence identity and separate C.A.T.H. classification from training set

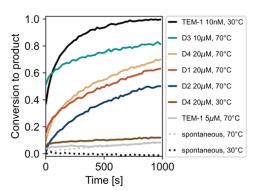

Matteo Dal Peraro

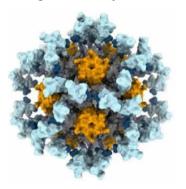

Biological Chemistry 1

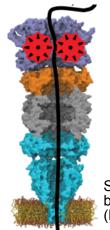

EPFL

Can we re-engineer an enzyme?

TEM-1 serine β-lactamase



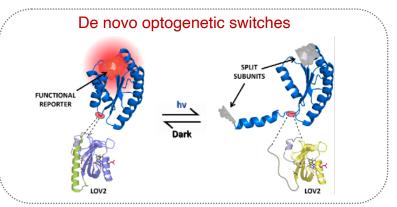

- selected 10 top-ranked predictions based on pIDDT
- 4/10 designs are soluble and monomeric
- they are folded and more thermostable than wild-type TEM-1
- catalytically active at high T not as the wild-type yet
- represent a separate subclass of β-lactamases

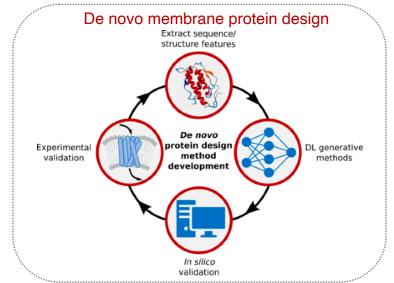

The future is bright and exciting ...

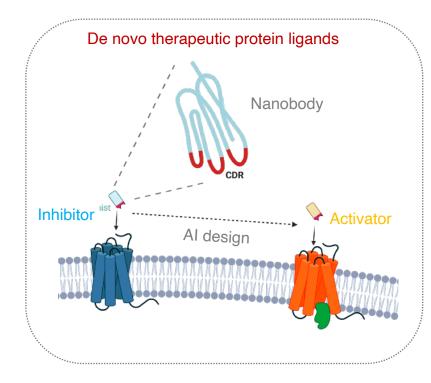
... biomolecular design will address many societal needs

Medicine vaccines & antivirals smart medicines drug delivery

SARS-CoV-2 RBD nanoparticle immunogen (Cell 2020) Biotechnology protein-silicon devices bio-based computers nanoscale manufacturing

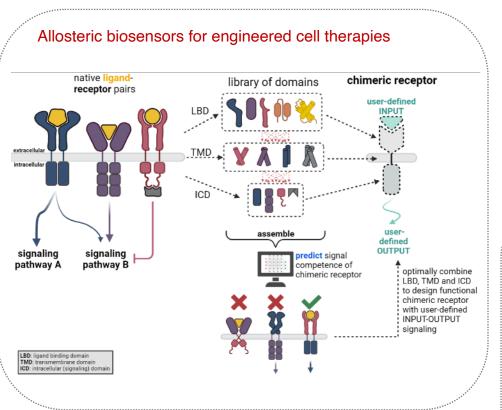


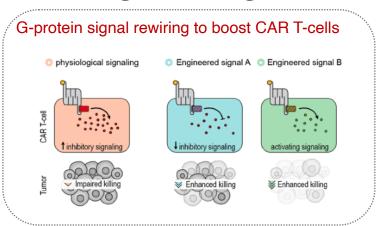

SM proteomics with biological nanopores (Nat Chem 2021) Sustainability artificial photosynthesis CO₂ sequestration plastic degradation

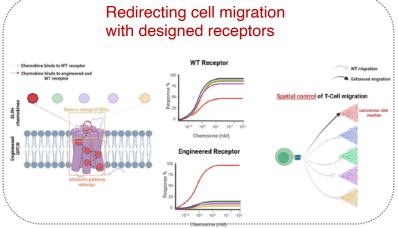


FAST-PETase (Nature 2022)

Laboratory of Protein and Cell Engineering

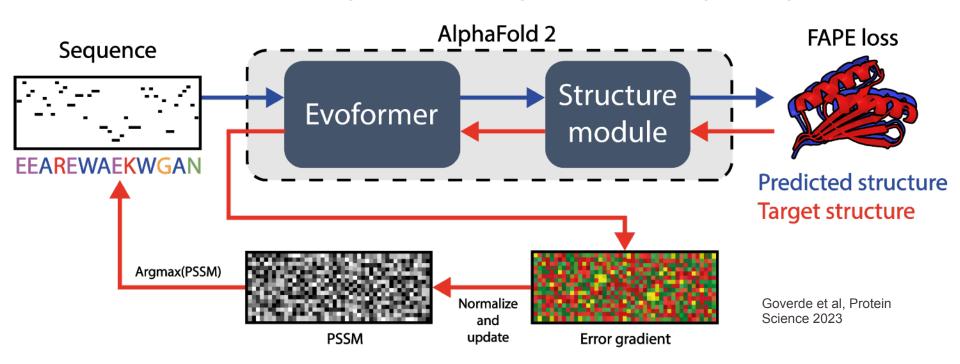






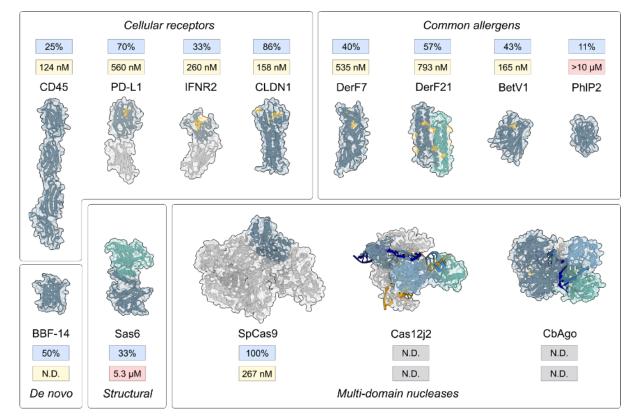
Barth Lab

Laboratory of Protein and Cell Engineering



Barth Lab

Inverting AlphaFold for protein design


Bruno Correia, Laboratory of Protein Design and Immunoengineering

-Final sequences designed with proteinMPNN on AF2 generated backbones

High experimental success rates in binder design

Bruno Correia, Laboratory of Protein Design and Immunoengineering

We weren't alone !!!!

Google DeepMind

About ∨ Research Technologies ∨

Impact Discover >

AlphaProteo generates novel proteins for biology and health research

5 SEPTEMBER 2024 Protein Design and Wet Lab teams

Share

Home

Designing Life with Al


We're thrilled to introduce "Designing Life with AI" at EPFL, where AI and protein design intersect, involving faculty, professors, and 40 students collaborating on topics like binder design and phosphosite engineering to kinase remodeling. After a year of innovative research, our projects are now being tested in the wet-lab, and we're working on creating a pipeline and resources for new students, aiming to expand our project and make EPFL a hub for protein design.

https://www.designinglifewithai.com/

contact the MAKE team for ongoing projects offered by labs

