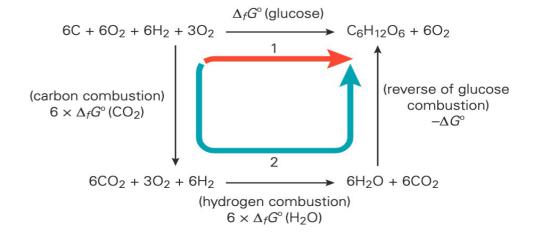
Exercise 11 2024

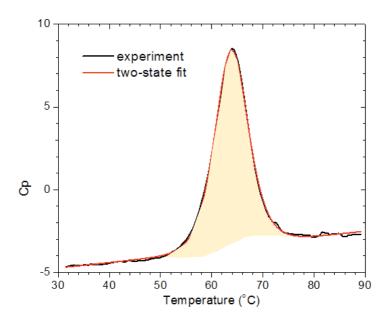
Question 1

During cellular respiration, a glucose molecule is gradually broken down into carbondioxide and water. Below you have a reaction:

$$\mathrm{C_6H_{12}O_6(glucose)} + 6\,\mathrm{O_2(gas)} \rightarrow 6\,\mathrm{CO_2(gas)} + 6\,\mathrm{H_2O(liquid)}$$


Using a table from the lecture:

Compound	ΔG°′ (kJ•mol⁻¹)				
acetate-	-369.2				
CO ₂ (gas)	-394.4				
CO ₂ (aqueous solution)	-386.2				
carbonate ion	-587.1				
ethanol	-181.5				
fructose	-915.4				
fructose-6- phosphate ²⁻	-1758.3				
$\alpha ext{-D-glucose}$	-917.2				
glucose-6- phosphate ²⁻	-1760.2				
H+ (aqueous solution)	0.0				
H ₂ (gas)	0.0				
H ₂ O (liquid)	-237.2				
isocitrate3-	-1160.0				
lactate-	-516.6				
OH-	-157.3				
pyruvate-	-474.5				
succinate ²⁻	-690.2				


- a) Calculate the standard Gibbs free energy change (ΔG) for the reaction
- **b)** Interpret the result: Is the reaction thermodynamicallyfavorable under standard conditions?

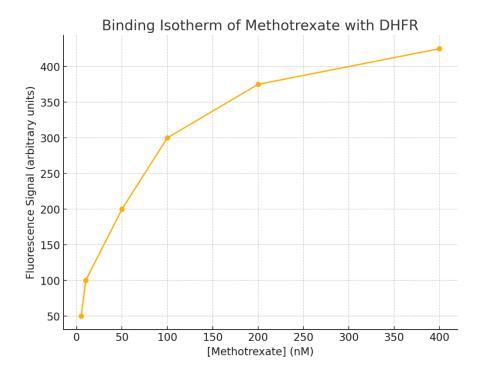
Question 2

In the lecture you had 2 pathways (1) and (2) on the picture below. Check what would be the Gibbs energy for both. What you can say?

You have a protein sample that was subjected to a technique that produces the piece of data shown below. The area under the curve of the peak between 55 and 75 $^{\circ}$ C (yellow) is 200 kJ/mol and the difference of C_p at low and high temperature (ΔC_p) is 3.5 kJ/K mol.

- a) Which technique can produce these data?
- b) Which type of biochemical reaction is the protein undergoing?
- c) Using the data available calculate the entropy contribution for the reaction at the temperature at the maximum of the curve and at 35 °C.

Question 4


Which of the following statements are TRUE, and which are FALSE?

- **a.** The binding affinity of a molecule increases as the dissociation constant (K_d) decreases.
- **b.** Enthalpy (ΔH) is the sole determinant of binding specificity in molecular recognition.
- **c.** Hydrophobic interactions play a major role in molecular recognition by reducing the entropy loss upon ligand binding.
- **d.** The Gibbs free energy (Δ G) of binding is independent of temperature.
- **e.** The binding of a ligand to a receptor often involves an enthalpy-entropy trade-off.
- **f.** The equilibrium constant (K_a) is inversely proportional to the dissociation constant (K_d) .
- **g.** Specificity in molecular recognition is always determined by the strongest non-covalent interaction.
- **h.** Hydrogen bonds in molecular recognition are stronger in a non-polar environment than in a polar environment.

- i. The entropy (ΔS) of binding is always positive for favorable binding interactions.
- **j.** Allosteric binding refers to the binding of a ligand at a site other than the active site of the receptor, affecting the receptor's activity.

Methotrexate is a potent inhibitor of dihydrofolate reductase (DHFR), binding to the active site and preventing the reduction of dihydrofolate to tetrahydrofolate. Below is a binding isotherm showing the interaction between DHFR and methotrexate. The fluorescence signal (arbitrary units) is measured as a proxy for binding. At the highest concentration of methotrexate tested (500 nM), the fluorescence signal saturates at 425 units.

a) Estimate the dissociation constant (K_D) for methotrexate from the binding curve.

b) Calculate the ΔG_{bind}° at 298 K for methotrexate's interaction with DHFR.

Question 6

The binding between the drug Ritonavir and the protein HIV-1 protease is measured, giving a binding free energy of -45 kJ/mol at human body temperature. What is the value of K_d ?

Question 7

At 298 K, the enzyme lysozyme binds to a specific polysaccharide substrate with a dissociation constant of 20 μ M. What are the values of association constant and ΔG_{bind} °?

The drug jafrasitor (MW = 540 Da) binds the histone deacetylase enzyme Sir2 with a dissociation constant of 0.1 nM. What mass of jafrasitor should be administered to a patient with a blood volume of 5.5 L such that Sir2 is at least 91% inhibited?

Question 9

Using your knowledge about calculating protonation states and the energy of charge-charge interactions, answer the following questions:

- a) Consider a protein with a surface-exposed histidine residue in a pH **5.5** solution. What is the fraction of protein molecules in which this histidine residue is charged? (Assume that the pKa is 6.0.)
- b) For a protein with a surface-exposed aspartic acid, at what pH will this residue be charged in 60% of the protein molecules? (Assume that the pKa is 3.65)
- c) Consider an electrostatic interaction between the histidine and the aspartic acid at a distance of 5.0 A°. What is the energy of interaction if the residues are on the protein surface (ϵ =70) at the pH is 5.0? Define the charge of these amino acids by checking the pKa values below.

Amino acid			pK _a values					
	Abbreviation symbol	on/ M _r	рК ₁ (—СООН)	pK ₂ (—NH ₃ +)	pK _R (R group)	pl	Hydropathy index*	Occurrence in proteins (%) [†]
Nonpolar, aliphatic								
R groups								
Glycine	Gly G	75	2.34	9.60		5.97	-0.4	7.2
Alanine	Ala A	89	2.34	9.69		6.01	1.8	7.8
Proline	Pro P	115	1.99	10.96		6.48	1.6	5.2
Valine	Val V	117	2.32	9.62		5.97	4.2	6.6
Leucine	Leu L	131	2.36	9.60		5.98	3.8	9.1
Isoleucine	lle I	131	2.36	9.68		6.02	4.5	5.3
Methionine	Met M	149	2.28	9.21		5.74	1.9	2.3
Aromatic R groups								
Phenylalanine	Phe F	165	1.83	9.13		5.48	2.8	3.9
Tyrosine	Tvr Y	181	2.20	9.11	10.07	5.66	-1.3	3.2
Tryptophan	Trp W	204	2.38	9.39		5.89	-0.9	1.4
Polar, uncharged								
R groups								
Serine	Ser S	105	2.21	9.15		5.68	-0.8	6.8
Threonine	Thr T	119	2.11	9.62		5.87	-0.7	5.9
Cysteine	Cys C	121	1.96	10.28	8.18	5.07	2.5	1.9
Asparagine	Asn N	132	2.02	8.80		5.41	-3.5	4.3
Glutamine	Gln Q	146	2.17	9.13		5.65	-3.5	4.2
Positively charged								
R groups								
Lysine	Lys K	146	2.18	8.95	10.53	9.74	-3.9	5.9
Histidine	His H	155	1.82	9.17	6.00	7.59	-3.2	2.3
Arginine	Arg R	174	2.17	9.04	12.48	10.76	-4.5	5.1
Negatively charged R groups								
Aspartate	Asp D	133	1.88	9.60	3.65	2.77	-3.5	5.3
Glutamate	Glu E	147	2.19	9.67	4.25	3.22	-3.5	6.3

A histidine is involved in an interaction with a glutamic acid that stabilizes the charged form of the histidine, such that the value of ΔGo for deprotonation is 15 kJ•mol–1 at pH 7.0 and 293 K (calculated using the biochemical standard state). What is the pKa of this histidine?