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where are we so far …

2

molecular interactions 
nucleic acids 

lipids, glycans 

proteins 

Protein visualization  

structural biology 

Protein production and analysis 

• how biomolecules interact 
• how biomolecules are structured 
• how we reveal their structure 
• how we can visualise them in 3D 
• how we produce them for analysis in vitro 
• how we account for energy in biochemistry 
• how to characterise molecular binding  

Bioenergetics  
Binding and kinetics  



Why binding is that important ?
Because all cellular processes are controlled by the way that different molecules 
interact with each other, for example recognition of proper substrates by enzymes, 
the transmission of cellular signals, the recognition of one cell by another, the 
control of transcription and translation, and the fidelity of DNA replication.  
If one maps protein-protein  interactions across different organisms, this is what 
you get:   

3
-Dots are proteins, edges represent interactions



We can now understand some of the energetic principles that govern the interactions  
between macromolecules and determine how complex biological processes occur   

4

Atomic Interactions Macromolecular interactions

Molecular Interactions in Biomolecules 
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Potential energy for a chemical bond

A

B
   how such potential, U(r) would look like? 

➡ at very large distance r ? 

➡ at short distance? 

➡ at equilibrium distance, r0 ?

r0



U(r) = �
Z r

1
F (er)der

F (r) = �dU(r)

dr

Potential energy and forces

• potential energy is the 
energy stored in the system

• a simple case is when U 
depends on distance r only

• U(r) can have complex 
forms, from which forces on 
each atom are derived:

ΔU



Ubond(r) = D[1� e�a(r�r0)]2

Covalent bond potential energy function

   Morse potential  
D: dissociation energy (related to       
H of bond formation)  

r0: equilibrium bond distance 

a: force constant

ΔU



8

- nuclei and electrons are described 
by quantum mechanics by the 
Schrodinger equation 

- QM calculations more exact but 
computationally demanding 

- simplified “ball-and-spring” models 
following the laws of classical 
physics are good approximations 

- Empirical energy potential U(R) 
are  applicable to all classes of 
macromolecules     

Energetics of molecular interactions 

HΨ(r,R) = EΨ(r,R)
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Energy Levels    
- We need to think about molecules as entities that despite their homogenous 
composition populate multiple energetic levels, this is due to the quantum mechanical 
nature of matter - biological matter included 

- An example for some simple molecules:  

- Imagine how the energy levels would look for molecules with thousands of atoms 

high energy

low energy



• vibrational spectra give information about 
bonded interactions (3N-6 modes, with N 
number of atoms) 

• derived from infrared spectroscopy (IR: 
300-3000 cm-1), Raman spectroscopy or 
QM calculations 

• the higher the wavenumber the more 
difficult the deformation, but also depends 
on the environment and mass atoms water vibrational modes

Vibrational modes
how do we derive the parameters for these potentials?  

        wavenumber [cm-1]



• vibrational degrees of freedom can be 
modeled as harmonic oscillators, following 
Hooke’s law 

• the potential energy associated is: 

• if one solves the Schrodinger equation 
with this potential, the solutions are:

Vibrational modes as harmonic oscillators 

F = -k x

U(x)= k/2 x2

Eυ = (n+1/2) hν ; n = 0, 1, 2 ... 

ν =1/2π (k/m)1/2        wavenumber [cm-1]

quantum number  

angular frequency= 2π ν



• equilibrium bond lengths are obtained 
from X-ray or QM calculations (r0) 

• deviation from reference value (r0) is 
modeled as an harmonic potential  

• kb is the force constant  

• reasonable approximation for small 
deviation from r0 (~0.1 Å), 
dissociation for larger values  

Ubond(r) =
kb

2
(r � r0)2

µ = m1m2/(m1 + m2)
kb = (2⇡⌫)2µ = !2µ

Harmonic approx for covalent bonds 



• angles depend on hybridization 
of electronic orbitals  

• rule of thumb: sp:~180°; 
sp2:~120°; sp3:~109.5°

Uangle(✓) =
k✓

2
(✓ � ✓0)2

Bending potential energy functions



Procheck: http://www.ebi.ac.uk/pdbsum/

Secondary structure geometry 

Ramachandran plot



Utorsion(�) =
X

n
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2
[1 + cos(n�� �)]

Torsional potential energy functions

�1 = �

• barriers for torsional rotations 
need a periodic potential term 

• n is the periodicity, kϕ is the 
barrier height, δ is called phase 
(0, π) 

• Fourier series of torsional 
potentials (n=1,2,3,4) 

• parameters are again derived 
from spectroscopy or quantum 
mechanics calculations

leucine (Leu, L)



U(�) =
k�
2
(1 + cos3�)

⇡ kBT

Procheck: http://www.ebi.ac.uk/pdbsum/

leucine (Leu, L)



van der Waals interactions
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London forces are at the basis of the attractive interactions and coupled 
with repulsive interactions given by the Pauli principle define vdW 
interactions which are commonly modeled by Lennard-Jones (12-6) 
energy potentials:

⇡ kBT

r0 = eq. interatomic separation,        
r0 /2 = vdW radius if i and j are the 
same atom type



Molecular interactions in biomolecules 
(bonded and non-bonded)

kBT(300 K) = 0.6 kcal/mole - 2.5 kJ/mole - 4.1 pN nm - 4.1 * 10-21 J
(1 kcal/mol = 4.184 kJ/mole)



Molecular mechanics potentials
• molecular mechanics (MM) potential energy gives 

minimum-energy conformation of a molecule 

• based on physics, but uses simplified “ball-and-spring” 
models (classical physics), which mask the quantum 
nature (Schrodinger equation) 

• are empirical, i.e. calibrated to describe the quantum 
nature of chemical bonds and short-range interactions

UMM = Ubonded + Unon�bonded

⇢
1
1

�

Molecular mechanics potentials
•molecular mechanics (MM) potential energy gives 

minimum-energy conformation of a molecule

• based on physics, but uses simplified “ball-and-spring” 
models (classical physics, Newton equation), which 
mask the quantum nature (Schrodinger equation)

• are empirical, i.e. calibrated to describe the quantum 
nature of chemical bonds and short-range interactions

UMM = Ubonded + Unon�bonded

Ubonded = Ubond + Uangle + Utorsion

Unon�bonded = Uelectrostatics + UV dW

⇢
1
1

�



The force field:  

• large number of parameters 
fitted to represent  experimental 
data or QM calculated quantities 

• “trial and error” or least-squares 
fitting methods to converge to a 
consistent set of parameters  

• assumption that parameters can 
be transferable to different 
contexts (specialized vs. 
generalized FF)

UMM = Ubonded + Unon�bonded

history
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Like Sydney Altman1, I too was initially
rejected by the renowned Medical
Research Council (MRC) Laboratory of
Molecular Biology in Cambridge,
England. The year was 1967 and I was
then in my final year of a B.Sc. degree in
Physics at Kings College in London.
Enthralled by John Kendrew’s BBC 1964
television series “The Thread of Life”, I
wanted desperately to do my Ph.D. at the
MRC in Cambridge. Alas there was no
room for any new postgraduate students
in 1967!

After some negotiations, I was accepted
for the following year. More importantly,
John Kendrew said that I should spend the
intervening period at the Weizmann
Institute in Israel with Shneior Lifson.
Kendrew had just heard of Lifson’s initial
ideas2 on the consistent force field (CFF),
which was an attempt to simulate the
properties of any molecular system from a
simple potential energy function. He
believed that these methods should be
applied to protein and nucleic acid macro-
molecules. I arrived in Israel in October,
1967 and set to work programming the
consistent force field under the supervi-
sion of Lifson and his Ph.D. student Arieh
Warshel. At that time, computing at the
Weizmann Institute was amongst the best
in the world; in 1963 computer engineers
there had built their own machine, appro-
priately known as the Golem, after the
Jewish folklore automaton.
In a few short months we had a program

called CFF that allowed us to calculate the
energy, forces (energy first derivatives with
respect to atomic positions) and curvature
(energy second derivatives with respect to
atomic positions) of any molecular system.
Warshel went on to use the program to cal-
culate structural, thermodynamic and
spectroscopic properties of small organic
molecules3, while I followed Kendrew’s
dictum and applied these same programs
to proteins. This led to the first energy
minimization of an entire protein struc-
ture (in fact we did two, myoglobin and
lysozyme) in a process that became known
as energy refinement4.
I began my Ph.D. at the MRC in

Cambridge in September, 1968 and was
immediately immersed in the annual tra-

dition of Lab Talks. These talks by mem-
bers of the three divisions at the
Laboratory of Molecular Biology at that
time (Structural Studies Division under
Kendrew, the Cell Biology Division under
Sydney Brenner and Francis Crick, and
Protein and Nucleic Acid Chemistry
Division under Fred Sanger) were a treat
for newcomers to the Lab. The ‘Molecule
of the Year’ was tRNA, which had been
predicted to exist by Francis Crick 10 years
before5 and was now the subject of intense
structural and genetic interest. I decided
to try to build a model of tRNA and start-
ed off playing with CPK space-filling
models at home. Transfer RNA has almost
2,000 atoms and a space-filling model
weighs over 100 pounds. My most vivid
memory is lowering the tRNA CPK model
from the first floor window of our terrace
cottage in Newnham, while my somewhat
pregnant wife was having a hard time con-
trolling her laughter. The model, which
was then rebuilt from brass components,
towered over me as I measured all atomic
positions with a plumb line (a pointed
metal weight hanging from a string onto
graph paper) so that the model could be
energy refined. Modeling tRNA led me to

interact closely with both Crick and Aaron
Klug and so I was exposed to the wonders
of molecular and structural biology.

The model was published in 1969 
(ref. 6) and I settled down to work on my
thesis entitled “Conformation Analysis of
Proteins”7. This was entirely devoted to
computational biology and included
chapters entitled “Energy Parameters
from Proteins”, “Interpreting Problematic
Regions of Electron Density Maps Using
Convergent Energy Refinement”, “Energy
Refinement of Enzyme/Substrate Com-
plexes: Lysozyme and Hexa-N-Acetyl-
glucosamine” and “Energy Refinement of
Tertiary Structure Changes Caused by
Oxygenation of Horse Haemoglobin”.

Work on nucleic acids was not neglect-
ed and at that time it seemed that RNA
folding would be easier to tackle than pro-
tein folding8. Computational work on
protein folding began in 1973 during my
postdoctoral research with Shneior Lifson
back at the Weizmann Institute. Arieh
Warshel had returned from his postdoc at
Harvard and we started to work together
again on both protein folding and enzyme
reactions. Each project led to novel simu-
lations9,10 that became the basis for a great

The birth of computational structural
biology
M ichael Levitt

Fig. 1 The total potential energy of any molecule is the sum of simple allo wing for bond stre tch-
ing , bond angle bending , bond twist ing , van der Waals in teract ions and electrosta tics. M any prop-
erties o f a biomolecules can be simulated with such an empirical energy funct ion .
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Empirical potential energy function





"for the development of multiscale models for complex chemical systems"



(human acyl-protein thioesterase)

X-ray crystallography 

{xi, yi, zi}i=1,...,N



solvation 
pH 

post-translational modifications 
interactions network 

temperature effects (kBT) 
..... 

molecular modeling and 
simulations

{xi(t), yi(t), zi(t)}i=1,...,N

Laboratory for Biomolecular Modeling - LBM, Nature Chemical Biology 17(4), 438-447, 2021



State-of-the-art of molecular simulations
• up to 102 millions of atoms (e.g. viruses, ribosome)

James Gumbart, et al.  
Structure, 17:1453-1464, 2009.

drug binding 
on a kinase

HIV-1 
capsid

protein 
translocation

Zhao et al. Nature, 497:643-646, 2013

http://www.youtube.com/watch?v=pupVZl347H0
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Molecular mechanism of SARS-CoV2 spike opening 

https://www.youtube.com/watch?v=gDtTsP9-TrQ


State-of-the-art of molecular simulations

      Whole-cell Martini model of 
JCVI-syn3A. The four stages 
of cell building are shown on 
the side. The final system 
contains 60,887 soluble 
proteins (light blue), 2,200 
membrane proteins (blue), 503 
ribosomes (orange), a single 
500 kbp circular dsDNA 
(yellow), 1.3 million lipids 
(green), 1.7 million metabolites 
(dark blue), 14 million ions (not 
shown) and 447 million water 
beads (not shown) for a total of 
561 million beads representing 
more than six billion atoms. 

https://doi.org/10.3389/fchem.2023.1106495



• up to the millisecond timescale

State-of-the-art of molecular simulations

villin folding

Voelz et al. J. Am. Chem. Soc., 2010, 132, 1526

Freddolino, et al.. Biophysical Journal, 94:L75-L77, 2008.

http://www.youtube.com/watch?v=gFcp2Xpd29I


High-Performance Computing (HPC) resources

HPC@EPFL  Kuma (GPU H100)Frontier - Oak Ridge 1.2 exaFlops

CSCS Alps - 270 PetaFlops Anton D.E. Shaw Research 

http://www.top500.org/lists/


What to know...

30

- Simplified energy functions are used to calculate molecular potential 
energies rapidly using molecular simulation techniques  

- The energies of covalent bonds are approximated by functions such as 
the Morse, which account for covalent bond breakage, or by harmonic 
potentials more easily  

- The Lennard-Jones potentials describe weak attractions and strong 
repulsions between atoms. 

- The interactions between charged atoms is governed by Coulomb’s law. 

- Interactions with water weaken the effective strengths of hydrogen 
bonds and ionic interactions in proteins. 
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Favorable energy changes in energy are not sufficient to 
indicate the direction of the spontaneous change

Examples for spontaneous macroscopic reactions: 

This intuition for microscopic systems is not always correct, because: 
- The collective behavior also depends on entropy (see protein folding case) 
- or there are kinetic barriers for the reaction to be overcome

Spontaneous Reactions  



grees of freedom is to consider collective excitations. For
example, phonons characterize the vibrations of a crys-
talline solid and magnons describe collective excitations of
magnetic spins. 

Indeed, physicists talk of “-ons” of all kinds. The bio-
logical setting provides a loose analogy because some
biological structures are characterized with the label 
“-somes,” which derives from the Greek word for “body.”
The term refers to macromolecular assemblies that are
made from multiple molecular components that act in a
collective fashion to perform multiple functions. Some of
the most notable examples include the ribosome, used in
protein synthesis; the nucleosome, which is the individual
packing unit for eukaryotic DNA; the proteasome, an as-
sembly that mediates protein degradation; and the tran-
scriptisome, which mediates gene transcription. By mech-
anisms and principles that are still largely unknown,
proteins assemble into -somes, perform a task, and then
disassemble again.

One of the most pleasing examples of biological col-
lective action is revealed by the machines of the so-called
central dogma. The term refers to the set of processes
whereby DNA is copied (replication), genes are read and
turned into messenger RNA (transcription), and finally,
messenger RNA is turned into the corresponding protein
by ribosomes (translation). Such processes involve multi-
ple layers of orchestration that range from the assembly
of macromolecular complexes to the simultaneous action
of multiple machines to the collective manner in which
cells may undertake the processes. Figure 3 shows the ma-
chines of the central dogma in bacteria engaged in the
processes of transcription and translation simultaneously.

The theme of collective action is also revealed in the
flow of information in biological systems. For example, the
precise spatial and temporal orchestration of events that oc-
curs as an egg differentiates into an embryo requires that
information be managed in processes called signal trans-
duction. Biological signal transduction is often broadly pre-
sented as a series of cartoons: Various proteins signal by in-
teracting with each other via often poorly understood
means. That leads to a very simple representation: a net-
work of blobs sticking or pointing to other blobs. Despite lim-
ited knowledge, it should be possible to develop formal the-
ories for understanding such processes. Indeed, the general
analysis of biological networks—systems biology—is now
generating great excitement in the biology community.

Information flow in the central dogma is likewise often
presented as a cartoon: a series of directed arrows show-
ing that information moves from DNA to RNA to proteins,
and from DNA to DNA. But information also flows from
proteins to DNA because proteins regulate the expression
of genes by binding to DNA in various ways. Though all bi-
ologists know that interesting feature of information flow,
central-dogma cartoons continue to omit the arrow that
closes the loop. That omission is central to the difference
between a formal theory and a cartoon. A closed loop in a
formal theory would admit the possibility of feedback and
complicated dynamics, both of which are an essential part
of the biological information management implemented by
the collective action of genes, RNA, and proteins.

Understanding collective effects in the cell will require
merging two philosophical viewpoints. The first is that life
is like a computer program: An infrastructure of machines
carries out arbitrary instructions that are encoded into DNA

www.physicstoday.org May 2006    Physics Today 41

Electrostatic energy
of a spherical shell

Binding energy of an
electron in a box

Bending of
a 20:1 rod

Chemical
bonds

Fracture of
a 20:1 rod
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Thermal energy

10010 310 610 910 1210 15

10 30

10 25

10 20

10 15

10 10

1010

105

10 5

100

LENGTH (meters)

E
N

E
R

G
Y

(j
ou

le
s)

Figure 2. The confluence of energy scales is illustrated in this graph, which shows how thermal, chemical, mechanical, and
electrostatic energies associated with an object scale with size. As the characteristic object size approaches that at which mo-
lecular machines operate (shaded), all the energies converge. The horizontal line shows the thermal energy scale kT which, of
course, does not depend on an object’s size. We estimate binding energy (purple) by considering an electron in a box; for com-
parison, the graph shows measured binding energies for hydrogen bonds (square), phosphate groups in ATP (triangle), and co-
valent bonds (circle), along with characteristic energies for nuclear and subatomic particles. In estimating the bending energy
(blue), we took an elastic rod with an aspect ratio of 20:1 bent into a semicircular arc, and to compute the fracture energy
(green) we estimated the energy in chemical bonds in a longitudinal cross section of the rod. The electrostatic energy (orange)
was obtained for a spherical protein with singly charged amino acids of specified size distributed on the surface.

Edet/kBT

kBT = 4.1 pN*nm
   = 0.6 kcal/mol
   = 2.5 kJ/mol
   = 0.025 eV

at room temperature 
(300K)

Phillips and Quake, Physics Today 2006

• biological systems are subjected to deterministic forces (enthalpy) and thermal forces (entropy) 

• at the dimension scale of biological systems these are however on the same order of magnitude  

• all transformations in cells are thus determined by this subtle interplay, defined by the free energy of the 
system (G=H-TS) (accuracy in a noisy world, and use of thermal fluctuations to deploy biological function) 

The intriguing nature of biological interactions 
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Energy alone does not indicate the direction of spontaneous 
change (eg isothermal expansion of ideal gas). For microscopic 
systems we use a statistical approach to describe them and use 
the concept entropy which describe their randomness. 

This is related to the multiplicity of states of the system. The 
system is characterized by a macrostate with some global 
properties like temperature, pressure, and number of molecules. A 
microstate is a specific configuration of molecules that  
is consistent with that macrostate. Each of them corresponds to 
many different microstates.  

Macrostates and Microstates   

318 CHAPTER 7:  Entropy

Th e energy does not indicate the direction of spontaneous change in this case. In 
order to relate some other property of the molecules of the gas to the direction of 
spontaneous change (that is, expansion), we need a property of the system that 
will explain why the gas expands spontaneously even though the energy does not 
change. For an ideal gas, we can describe the physics of the random motion of 
individual gas molecules, from which we can deduce that the gas molecules exert 
a pressure on the walls of the container. If the pressure is unbalanced, then the 
container will expand (if the pressure inside is greater than the pressure outside) 
or contract (if the pressure outside is greater than the pressure inside) (see Box 
6.3).

For systems that are more complicated than an ideal gas, it becomes very diffi  -
cult to calculate the aggregate behavior of molecules by considering the physics 
of individual molecules. Instead, we turn to a statistical approach, which is based 
on the entropy of the system. Entropy is sometimes described as the randomness 
of a system (that is, the more ordered the system, the lower the entropy). We will 
defi ne the entropy of a system as the logarithm of the multiplicity (ln W ) of the 
system. 

For the expansion of an ideal gas, the introduction of entropy may seem like a 
needless complication because the behavior of the system is intrinsically simple. 
It turns out, though, that the statistical concepts that underlie entropy provide 
powerful tools for the analysis of much more complicated systems. We shall use 
the isothermal expansion of an ideal gas as a fi rst step towards a more general 
statistical treatment of entropy.

7.16 The multiplicity of a molecular system is the number of 
equivalent confi gurations of the molecules (microstates)

Understanding multiplicity is crucial to understanding the direction of spontane-
ous change in molecular systems. In a sequence of coin tosses, the multiplicity is 
the number of diff erent sequences that have the same aggregate outcome (that 
is, the same number of heads or tails). Th e multiplicity of a molecular system is 
defi ned as the number of diff erent confi gurations or conformations of the compo-
nent atoms or molecules that are equivalent. 

To better understand this defi nition, consult Figure 7.21, which shows two distinct 
confi gurations of the six atoms of an ideal gas. Only the positions of the atoms are 
shown in Figure 7.21, but to characterize the system completely we would also 
have to specify the velocities of the atoms, which determine their kinetic energies. 
Each particular spatial confi guration of the atoms corresponds to a multitude of 
diff erent possible velocities of the atoms. For simplicity, we shall ignore the veloc-
ites of the atoms in the following discussion and simply assume that the total 
kinetic energy of the atoms is the same in every case (that is, the confi gurations 
shown in Figures 7.21A and B correspond to the same total energy and, therefore, 
to the same state of the system). Each particular confi guration of atoms that is 
consistent with the defi nition of a state of the system is referred to as a microstate. 
We shall return to a discussion of the energies in Chapter 8.

What is the multiplicity of the state illustrated in Figure 7.21? To answer this 
question, we need to count the number of diff erent confi gurations of atoms 

(A) (B)

Figure 7.21 Two confi gurations of 
atoms of an ideal gas. All realistic 
considerations of a volume of an ideal 
gas would involve a very large number 
atoms (~1023), but for simplicity only 
six atoms are shown in this fi gure. 
The container is divided up into grid 
boxes (49 are shown in the fi gure). The 
size of each grid box is the same, and 
they allow us to identify the location 
of each atom and thereby defi ne the 
confi guration. Realistically, the grid 
boxes need to be small enough to 
uniquely defi ne the positions of the 
atoms, but for illustration we show a 
coarse grid of 7 × 7 = 49 squares. The 
actual number of boxes into which 
the space is divided is arbitrary, but in 
comparing different systems, we need 
to use the same size of grid boxes. 

Entropy

The entropy of a system of 
molecules is a measure of the 
disorder in the system. The 
greater the number of equivalent 
rearrangements of the molecules, 
the greater the value of the entropy.

microstate A microstate B

M potential configurations 
N molecules

(microstates) that are possible. To do this, we must divide up the space within 
the system into a set of M grid boxes, as shown in Figure 7.21. Th e number of grid 
boxes (M) is arbitrary (it is 7 × 7 = 49 in Figure 7.21), but is chosen to be suffi  ciently 
large that the positions of the atoms can be described at an adequate level of accu-
racy.

How many distinct confi gurations of atoms (microstates) are possible, given the 
six atoms and the 7 × 7 grid in Figure 7.21? Th is number is the multiplicity of the 
system, which we denote by W. Th e value of W is given by:

(7.45)

where M is the number of grid boxes into which the system is divided and N is the 
number of atoms. Equation 7.45 is justifi ed in Box 7.2, but it is essentially the same 
as Equation 7.4 for the multiplicity of coin tosses, if you treat the total number of 
grid boxes as the number of coin tosses, the number of atoms (fi lled boxes) as the 
number of heads, and the number of empty boxes as the number of tails. For the 
example in Figure 7.21, where M = 49 and N = 6, W is given by:

(7.46)

Th us, even for this very simple example of six atoms and 49 grid boxes, there are 
~10 million diff erent confi gurations or microstates, each of which is equally prob-
able.

7.17 The multiplicity of a system increases as the volume 
increases

What happens when we double the volume of the system while keeping the 
number of atoms the same, as shown in Figure 7.22? To do this, we increase the 
number of grid boxes from 49 to 98, while keeping the volume of each grid box the 
same as before (see Figure 7.22). Now M = 98 and N = 6, so the multiplicity (W) is 
given by:

(7.47)

In this case, the numbers are becoming large enough that it is more convenient to 
switch to ln W:

(7.48)

Stirling’s approximation (ln n! ≈ n ln n – n) only holds for large numbers, so we can 
use it to calculate the values of ln 98! and ln 92!, but not that of ln 6!, which we must 
calculate directly.

(7.49)

(7.50)

M = 49 M = 98

Figure 7.22 Calculating the change 
in multiplicity when the volume of 
the system expands. On the left is 
shown a system of six atoms (blue 
circles) in a volume divided into 49 
(7 × 7) grid boxes. To see what 
happens when the system expands to 
twice the volume, we keep the size of 
each grid box the same but double the 
number of grid boxes to 98.

States and microstates

A state of a system is characterized 
by the global properties of the 
system, such as the temperature, 
pressure, and number of molecules. 
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(microstates) that are possible. To do this, we must divide up the space within 
the system into a set of M grid boxes, as shown in Figure 7.21. Th e number of grid 
boxes (M) is arbitrary (it is 7 × 7 = 49 in Figure 7.21), but is chosen to be suffi  ciently 
large that the positions of the atoms can be described at an adequate level of accu-
racy.

How many distinct confi gurations of atoms (microstates) are possible, given the 
six atoms and the 7 × 7 grid in Figure 7.21? Th is number is the multiplicity of the 
system, which we denote by W. Th e value of W is given by:

(7.45)

where M is the number of grid boxes into which the system is divided and N is the 
number of atoms. Equation 7.45 is justifi ed in Box 7.2, but it is essentially the same 
as Equation 7.4 for the multiplicity of coin tosses, if you treat the total number of 
grid boxes as the number of coin tosses, the number of atoms (fi lled boxes) as the 
number of heads, and the number of empty boxes as the number of tails. For the 
example in Figure 7.21, where M = 49 and N = 6, W is given by:

(7.46)

Th us, even for this very simple example of six atoms and 49 grid boxes, there are 
~10 million diff erent confi gurations or microstates, each of which is equally prob-
able.

7.17 The multiplicity of a system increases as the volume 
increases

What happens when we double the volume of the system while keeping the 
number of atoms the same, as shown in Figure 7.22? To do this, we increase the 
number of grid boxes from 49 to 98, while keeping the volume of each grid box the 
same as before (see Figure 7.22). Now M = 98 and N = 6, so the multiplicity (W) is 
given by:

(7.47)

In this case, the numbers are becoming large enough that it is more convenient to 
switch to ln W:

(7.48)

Stirling’s approximation (ln n! ≈ n ln n – n) only holds for large numbers, so we can 
use it to calculate the values of ln 98! and ln 92!, but not that of ln 6!, which we must 
calculate directly.
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Figure 7.22 Calculating the change 
in multiplicity when the volume of 
the system expands. On the left is 
shown a system of six atoms (blue 
circles) in a volume divided into 49 
(7 × 7) grid boxes. To see what 
happens when the system expands to 
twice the volume, we keep the size of 
each grid box the same but double the 
number of grid boxes to 98.
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A state of a system is characterized 
by the global properties of the 
system, such as the temperature, 
pressure, and number of molecules. 
A microstate is a specifi c 
confi guration of molecules that 
is consistent with the state. Each 
state corresponds to many different 
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the simple example of tossing coins
4 coins, 16 possible outcomes (42), each coin can give head (H) or tail (T), 2 states 

number of microstates for each macrostate : 

M=4, N=4
M=4, N=3
M=4, N=2

M=4, N=1
M=4, N=0

N= number of coins with H

Ex: what is the # of microstates for having 5H and 5T if you toss 10 coins? 

If number of possible states is more than 2,  
let’s say t, the formula becomes in general equal to 
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two molecules in the ground state as “tails,” the multiplicity (Wenergy) of the energy 
distribution is:

 (8.8)

Because the molecules are identical, we do not count diff erent permutations of 
the molecules in the lowest energy rung separately. Th us, in general, if we have 
N molecules distributed among a total of t diff erent energy levels, then the multi-
plicity is given by: 

 (8.9)

where N1, N2, … , Ni are the numbers of molecules in the fi rst, second, etc., energy 
level (up to the highest level, t). We have dropped the “energy” subscript in Equa-
tion 8.9, with the understanding that “W” refers to the number of diff erent rear-
rangements of molecules that are possible among the energy levels.

Now consider a process that puts two units of energy into the system consisting 
of three molecules that are initially all in the lowest energy level (that is, U = 0 ĺ 
U = 2). Th ere are two diff erent energy distributions that are valid outcomes of this 
process. One energy distribution, shown in Figure 8.10A, puts two units of energy 

Figure 8.9 Adding one unit of 
energy to a system at minimal 
energy. (A) The process of adding 
one unit of energy to a system of 
three molecules is illustrated here. 
(B) By random chance, any one of 
the three molecules can pick up the 
unit of energy, and so there are three 
ways of achieving the end result. This 
corresponds to the multiplicity of the 
fi nal energy distribution, which is 
3 (W = 3). 
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Figure 8.10 Energy distributions 
and multiplicities for N = 3, 
U = 2. Shown is a system with three 
molecules and a total of two energy 
units. (A) and (B) show the two 
possible energy distributions for this 
system. Each distribution corresponds 
to three equivalent microstates, so 
the multiplicity of each distribution is 
3. (Adapted from K.A. Dill and 
S. Bromberg, Molecular Driving 
Forces: Statistical Thermodynamics 
in Biology, Chemistry, Physics, and 
Nanoscience, 2nd ed. New York: 
Garland Science, 2010.)
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Microstates   

(microstates) that are possible. To do this, we must divide up the space within 
the system into a set of M grid boxes, as shown in Figure 7.21. Th e number of grid 
boxes (M) is arbitrary (it is 7 × 7 = 49 in Figure 7.21), but is chosen to be suffi  ciently 
large that the positions of the atoms can be described at an adequate level of accu-
racy.

How many distinct confi gurations of atoms (microstates) are possible, given the 
six atoms and the 7 × 7 grid in Figure 7.21? Th is number is the multiplicity of the 
system, which we denote by W. Th e value of W is given by:

(7.45)

where M is the number of grid boxes into which the system is divided and N is the 
number of atoms. Equation 7.45 is justifi ed in Box 7.2, but it is essentially the same 
as Equation 7.4 for the multiplicity of coin tosses, if you treat the total number of 
grid boxes as the number of coin tosses, the number of atoms (fi lled boxes) as the 
number of heads, and the number of empty boxes as the number of tails. For the 
example in Figure 7.21, where M = 49 and N = 6, W is given by:

(7.46)

Th us, even for this very simple example of six atoms and 49 grid boxes, there are 
~10 million diff erent confi gurations or microstates, each of which is equally prob-
able.

7.17 The multiplicity of a system increases as the volume 
increases

What happens when we double the volume of the system while keeping the 
number of atoms the same, as shown in Figure 7.22? To do this, we increase the 
number of grid boxes from 49 to 98, while keeping the volume of each grid box the 
same as before (see Figure 7.22). Now M = 98 and N = 6, so the multiplicity (W) is 
given by:

(7.47)

In this case, the numbers are becoming large enough that it is more convenient to 
switch to ln W:

(7.48)

Stirling’s approximation (ln n! ≈ n ln n – n) only holds for large numbers, so we can 
use it to calculate the values of ln 98! and ln 92!, but not that of ln 6!, which we must 
calculate directly.

(7.49)

(7.50)

M = 49 M = 98

Figure 7.22 Calculating the change 
in multiplicity when the volume of 
the system expands. On the left is 
shown a system of six atoms (blue 
circles) in a volume divided into 49 
(7 × 7) grid boxes. To see what 
happens when the system expands to 
twice the volume, we keep the size of 
each grid box the same but double the 
number of grid boxes to 98.

States and microstates

A state of a system is characterized 
by the global properties of the 
system, such as the temperature, 
pressure, and number of molecules. 
A microstate is a specifi c 
confi guration of molecules that 
is consistent with the state. Each 
state corresponds to many different 
microstates.
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(microstates) that are possible. To do this, we must divide up the space within 
the system into a set of M grid boxes, as shown in Figure 7.21. Th e number of grid 
boxes (M) is arbitrary (it is 7 × 7 = 49 in Figure 7.21), but is chosen to be suffi  ciently 
large that the positions of the atoms can be described at an adequate level of accu-
racy.

How many distinct confi gurations of atoms (microstates) are possible, given the 
six atoms and the 7 × 7 grid in Figure 7.21? Th is number is the multiplicity of the 
system, which we denote by W. Th e value of W is given by:

(7.45)

where M is the number of grid boxes into which the system is divided and N is the 
number of atoms. Equation 7.45 is justifi ed in Box 7.2, but it is essentially the same 
as Equation 7.4 for the multiplicity of coin tosses, if you treat the total number of 
grid boxes as the number of coin tosses, the number of atoms (fi lled boxes) as the 
number of heads, and the number of empty boxes as the number of tails. For the 
example in Figure 7.21, where M = 49 and N = 6, W is given by:

(7.46)

Th us, even for this very simple example of six atoms and 49 grid boxes, there are 
~10 million diff erent confi gurations or microstates, each of which is equally prob-
able.

7.17 The multiplicity of a system increases as the volume 
increases

What happens when we double the volume of the system while keeping the 
number of atoms the same, as shown in Figure 7.22? To do this, we increase the 
number of grid boxes from 49 to 98, while keeping the volume of each grid box the 
same as before (see Figure 7.22). Now M = 98 and N = 6, so the multiplicity (W) is 
given by:

(7.47)

In this case, the numbers are becoming large enough that it is more convenient to 
switch to ln W:

(7.48)

Stirling’s approximation (ln n! ≈ n ln n – n) only holds for large numbers, so we can 
use it to calculate the values of ln 98! and ln 92!, but not that of ln 6!, which we must 
calculate directly.

(7.49)
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M = 49 M = 98

Figure 7.22 Calculating the change 
in multiplicity when the volume of 
the system expands. On the left is 
shown a system of six atoms (blue 
circles) in a volume divided into 49 
(7 × 7) grid boxes. To see what 
happens when the system expands to 
twice the volume, we keep the size of 
each grid box the same but double the 
number of grid boxes to 98.

States and microstates

A state of a system is characterized 
by the global properties of the 
system, such as the temperature, 
pressure, and number of molecules. 
A microstate is a specifi c 
confi guration of molecules that 
is consistent with the state. Each 
state corresponds to many different 
microstates.
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(microstates) that are possible. To do this, we must divide up the space within 
the system into a set of M grid boxes, as shown in Figure 7.21. Th e number of grid 
boxes (M) is arbitrary (it is 7 × 7 = 49 in Figure 7.21), but is chosen to be suffi  ciently 
large that the positions of the atoms can be described at an adequate level of accu-
racy.

How many distinct confi gurations of atoms (microstates) are possible, given the 
six atoms and the 7 × 7 grid in Figure 7.21? Th is number is the multiplicity of the 
system, which we denote by W. Th e value of W is given by:

(7.45)

where M is the number of grid boxes into which the system is divided and N is the 
number of atoms. Equation 7.45 is justifi ed in Box 7.2, but it is essentially the same 
as Equation 7.4 for the multiplicity of coin tosses, if you treat the total number of 
grid boxes as the number of coin tosses, the number of atoms (fi lled boxes) as the 
number of heads, and the number of empty boxes as the number of tails. For the 
example in Figure 7.21, where M = 49 and N = 6, W is given by:

(7.46)

Th us, even for this very simple example of six atoms and 49 grid boxes, there are 
~10 million diff erent confi gurations or microstates, each of which is equally prob-
able.

7.17 The multiplicity of a system increases as the volume 
increases

What happens when we double the volume of the system while keeping the 
number of atoms the same, as shown in Figure 7.22? To do this, we increase the 
number of grid boxes from 49 to 98, while keeping the volume of each grid box the 
same as before (see Figure 7.22). Now M = 98 and N = 6, so the multiplicity (W) is 
given by:

(7.47)

In this case, the numbers are becoming large enough that it is more convenient to 
switch to ln W:

(7.48)

Stirling’s approximation (ln n! ≈ n ln n – n) only holds for large numbers, so we can 
use it to calculate the values of ln 98! and ln 92!, but not that of ln 6!, which we must 
calculate directly.
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Figure 7.22 Calculating the change 
in multiplicity when the volume of 
the system expands. On the left is 
shown a system of six atoms (blue 
circles) in a volume divided into 49 
(7 × 7) grid boxes. To see what 
happens when the system expands to 
twice the volume, we keep the size of 
each grid box the same but double the 
number of grid boxes to 98.

States and microstates

A state of a system is characterized 
by the global properties of the 
system, such as the temperature, 
pressure, and number of molecules. 
A microstate is a specifi c 
confi guration of molecules that 
is consistent with the state. Each 
state corresponds to many different 
microstates.
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(microstates) that are possible. To do this, we must divide up the space within 
the system into a set of M grid boxes, as shown in Figure 7.21. Th e number of grid 
boxes (M) is arbitrary (it is 7 × 7 = 49 in Figure 7.21), but is chosen to be suffi  ciently 
large that the positions of the atoms can be described at an adequate level of accu-
racy.

How many distinct confi gurations of atoms (microstates) are possible, given the 
six atoms and the 7 × 7 grid in Figure 7.21? Th is number is the multiplicity of the 
system, which we denote by W. Th e value of W is given by:

(7.45)

where M is the number of grid boxes into which the system is divided and N is the 
number of atoms. Equation 7.45 is justifi ed in Box 7.2, but it is essentially the same 
as Equation 7.4 for the multiplicity of coin tosses, if you treat the total number of 
grid boxes as the number of coin tosses, the number of atoms (fi lled boxes) as the 
number of heads, and the number of empty boxes as the number of tails. For the 
example in Figure 7.21, where M = 49 and N = 6, W is given by:

(7.46)

Th us, even for this very simple example of six atoms and 49 grid boxes, there are 
~10 million diff erent confi gurations or microstates, each of which is equally prob-
able.

7.17 The multiplicity of a system increases as the volume 
increases

What happens when we double the volume of the system while keeping the 
number of atoms the same, as shown in Figure 7.22? To do this, we increase the 
number of grid boxes from 49 to 98, while keeping the volume of each grid box the 
same as before (see Figure 7.22). Now M = 98 and N = 6, so the multiplicity (W) is 
given by:

(7.47)

In this case, the numbers are becoming large enough that it is more convenient to 
switch to ln W:

(7.48)

Stirling’s approximation (ln n! ≈ n ln n – n) only holds for large numbers, so we can 
use it to calculate the values of ln 98! and ln 92!, but not that of ln 6!, which we must 
calculate directly.
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Figure 7.22 Calculating the change 
in multiplicity when the volume of 
the system expands. On the left is 
shown a system of six atoms (blue 
circles) in a volume divided into 49 
(7 × 7) grid boxes. To see what 
happens when the system expands to 
twice the volume, we keep the size of 
each grid box the same but double the 
number of grid boxes to 98.
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A state of a system is characterized 
by the global properties of the 
system, such as the temperature, 
pressure, and number of molecules. 
A microstate is a specifi c 
confi guration of molecules that 
is consistent with the state. Each 
state corresponds to many different 
microstates.
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(microstates) that are possible. To do this, we must divide up the space within 
the system into a set of M grid boxes, as shown in Figure 7.21. Th e number of grid 
boxes (M) is arbitrary (it is 7 × 7 = 49 in Figure 7.21), but is chosen to be suffi  ciently 
large that the positions of the atoms can be described at an adequate level of accu-
racy.

How many distinct confi gurations of atoms (microstates) are possible, given the 
six atoms and the 7 × 7 grid in Figure 7.21? Th is number is the multiplicity of the 
system, which we denote by W. Th e value of W is given by:

(7.45)

where M is the number of grid boxes into which the system is divided and N is the 
number of atoms. Equation 7.45 is justifi ed in Box 7.2, but it is essentially the same 
as Equation 7.4 for the multiplicity of coin tosses, if you treat the total number of 
grid boxes as the number of coin tosses, the number of atoms (fi lled boxes) as the 
number of heads, and the number of empty boxes as the number of tails. For the 
example in Figure 7.21, where M = 49 and N = 6, W is given by:

(7.46)

Th us, even for this very simple example of six atoms and 49 grid boxes, there are 
~10 million diff erent confi gurations or microstates, each of which is equally prob-
able.

7.17 The multiplicity of a system increases as the volume 
increases

What happens when we double the volume of the system while keeping the 
number of atoms the same, as shown in Figure 7.22? To do this, we increase the 
number of grid boxes from 49 to 98, while keeping the volume of each grid box the 
same as before (see Figure 7.22). Now M = 98 and N = 6, so the multiplicity (W) is 
given by:

(7.47)

In this case, the numbers are becoming large enough that it is more convenient to 
switch to ln W:

(7.48)

Stirling’s approximation (ln n! ≈ n ln n – n) only holds for large numbers, so we can 
use it to calculate the values of ln 98! and ln 92!, but not that of ln 6!, which we must 
calculate directly.
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Figure 7.22 Calculating the change 
in multiplicity when the volume of 
the system expands. On the left is 
shown a system of six atoms (blue 
circles) in a volume divided into 49 
(7 × 7) grid boxes. To see what 
happens when the system expands to 
twice the volume, we keep the size of 
each grid box the same but double the 
number of grid boxes to 98.
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A state of a system is characterized 
by the global properties of the 
system, such as the temperature, 
pressure, and number of molecules. 
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confi guration of molecules that 
is consistent with the state. Each 
state corresponds to many different 
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using Stirling’s approx

a system will tend to states of increased multiplicity or with 
maximal number of microstates.  
Since W is a very high number for molecular systems (NA), it is 
handier to use lnW, which has the nice property to be extensive 
(as most of the thermodynamic functions) 

initial volume. Molecular systems tend naturally towards states of increased mul-
tiplicity, which is one statement of the second law of thermodynamics. We shall 
discuss other statements of the second law later in the chapter, but keep in mind 
that spontaneous change is driven by a tendency to increase multiplicity.

7.19 The Boltzmann constant, kB, is a proportionality constant 
linking entropy to the logarithm of the multiplicity (ln W )

As we saw in the previous section, the value of the multiplicity (W) becomes 
unmanageably large when we consider more than a small number of atoms. Th e 
logarithm of the multiplicity (ln W), on the other hand, increases much more 
slowly with the number of atoms, and so the value of ln W is easier to work with 
than the value of W. We have already noted, in Section 7.11, that ln W increases or 
decreases when W increases or decreases and that ln W has a maximal value when 
W is maximal.

Another convenient property of ln W is that it is an extensive and additive prop-
erty of the system. To see why this is so, consider the two systems, A and B, shown 
in Figure 7.25. If the multiplicity of A is WA and the multiplicity of B is WB, then the 
multiplicity of the combined system (WA + B) is WA × WB.

(7.56)

(7.57)

Equation 7.57 demonstrates that ln W is an additive property of the system, but it 
also shows that ln W scales with the size of the system. Th at is, ln W is an extensive 
property that is also additive (Figure 7.26). Moreover, ln W is a state function, 

system A

system B

system A

system B

system A

system B

one
configuration
(microstate)
of system A

all microstates
of system B

all microstates
of system B

all microstates
of system B

another
microstate

of system A

another
microstate

of system A

Figure 7.25 The multiplicity of a combined system is the product of the multiplicities of the subsystems. Two systems are 
shown, one containing red atoms and one containing blue atoms. Each unique confi guration of red atoms can be paired with each 
unique confi guration of blue atoms. The total multiplicity is therefore the product of the individual multiplicities.

×W WA+B BWA=
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326 CHAPTER 7:  Entropy

because it depends only on the parameters that defi ne the present state of the sys-
tem, not on its history (that is, not on the path used to achieve its present state; see 
Section 6.4). Based on these properties of ln W, a new state function of the system, 
known as the entropy (S), is defi ned as follows:

(7.58)

where kB is the Boltzmann constant, which has a value of 1.38 × 10–23 J•K–1. Equa-
tion 7.45 is known as the statistical defi nition of entropy. Th e entropy defi ned in 
this way has the same units as the Boltzmann constant—that is, energy/tempera-
ture.

We have already encountered the Boltzmann constant when we discussed the 
Boltzmann distribution in Section 6.10. Recall that the Boltzmann constant is 
simply the gas constant (R) divided by Avogadro’s number (NA):

(7.59)

7.20 The change in entropy is related to the heat transferred 
during a process

Th e defi nition of entropy given in Equation 7.58, in which a pure number (ln W) is 
multiplied by a constant (kB) with units of energy over temperature, arose due to 
historical reasons. In the nineteenth century, the concept of entropy was derived 
from the study of heat engines, and the change in entropy during a process, ΔS, 
was defi ned as follows:

(7.60)

where qrev is the heat transferred to the system during a reversible or near-
equilibrium transition (discussed in greater detail in Section 7.21) from one 
state to another, and T is the absolute temperature. Equation 7.60 is known as the 
thermodynamic defi nition of entropy. Th e two defi nitions of entropy are made 
consistent by multiplying ln W by the Boltzmann constant, kB. As we discuss 
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Figure 7.26 The logarithm of the 
multiplicity (ln W) is an additive and 
therefore extensive property of the 
system. (A) Two systems, A and B, 
are shown. The combined multiplicity 
is the product of the individual 
multiplicities, and so ln W is additive. 
(B) Two systems are shown that are 
identical in terms of their composition, 
except that one is twice the size of the 
other. The value of ln W for the larger 
system is twice the value of ln W for 
the smaller system. 
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Statistical defi nition 
of entropy

The Boltzmann constant, kB, relates 
the multiplicity, W, to entropy, S, 
through the statistical defi nition of 
entropy:

S = kB ln W.

which is therefore extensive and a state function, and has the 
unit of energy/temperature, J/K, like the Boltzmann constant. 
This is equivalent to the thermodynamic definition of S: 

that you have seen derived from the study of heat engines 
(see page 330 Chapter 7 for a demonstration for ideal gas). 
Thus spontaneous processes will increase entropy and at 
equilibrium S will be maximal, ie:  

                             and                                 at equilibrium              

2nd law of thermodynamics - maximal entropy principle  
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because it depends only on the parameters that defi ne the present state of the sys-
tem, not on its history (that is, not on the path used to achieve its present state; see 
Section 6.4). Based on these properties of ln W, a new state function of the system, 
known as the entropy (S), is defi ned as follows:

(7.58)

where kB is the Boltzmann constant, which has a value of 1.38 × 10–23 J•K–1. Equa-
tion 7.45 is known as the statistical defi nition of entropy. Th e entropy defi ned in 
this way has the same units as the Boltzmann constant—that is, energy/tempera-
ture.

We have already encountered the Boltzmann constant when we discussed the 
Boltzmann distribution in Section 6.10. Recall that the Boltzmann constant is 
simply the gas constant (R) divided by Avogadro’s number (NA):

(7.59)

7.20 The change in entropy is related to the heat transferred 
during a process

Th e defi nition of entropy given in Equation 7.58, in which a pure number (ln W) is 
multiplied by a constant (kB) with units of energy over temperature, arose due to 
historical reasons. In the nineteenth century, the concept of entropy was derived 
from the study of heat engines, and the change in entropy during a process, ΔS, 
was defi ned as follows:

(7.60)

where qrev is the heat transferred to the system during a reversible or near-
equilibrium transition (discussed in greater detail in Section 7.21) from one 
state to another, and T is the absolute temperature. Equation 7.60 is known as the 
thermodynamic defi nition of entropy. Th e two defi nitions of entropy are made 
consistent by multiplying ln W by the Boltzmann constant, kB. As we discuss 

=S k WlnB

= =
•
×

= × •
−

− −k
R

N
8.314 J K
6.023 10

1.38 10 J KB
A

1

23
23 1

(A) lnW is an additive property

lnWA+B = lnWA + lnWB

multiplicity = WB

system B

multiplicity = WA

system A

multiplicity = WA

system A

multiplicity = WA

2 x (system A)

lnWB = 2lnWA

(B) lnW is an extensive property

2

Figure 7.26 The logarithm of the 
multiplicity (ln W) is an additive and 
therefore extensive property of the 
system. (A) Two systems, A and B, 
are shown. The combined multiplicity 
is the product of the individual 
multiplicities, and so ln W is additive. 
(B) Two systems are shown that are 
identical in terms of their composition, 
except that one is twice the size of the 
other. The value of ln W for the larger 
system is twice the value of ln W for 
the smaller system. 

=∆S
q
T
rev

Statistical defi nition 
of entropy

The Boltzmann constant, kB, relates 
the multiplicity, W, to entropy, S, 
through the statistical defi nition of 
entropy:

S = kB ln W.

336 CHAPTER 7:  Entropy

(R = 8.314 J•mol–1•K–1) by Avogadro’s number (NA = 6.022 × 1023 mol–1). Th e Boltz-
mann constant is needed in the statistical defi nition of the entropy in order to 
make it consistent with the thermodynamic defi nition of the entropy—namely, 

where qrev is the heat transferred to the system during a near-equilibrium (reversi-
ble) process and T is the absolute temperature. Th e statistical and thermodynamic 
defi nitions of the entropy are equivalent, a fact that is established in Chapter 8.

According to the second law of thermodynamics, all spontaneous transforma-
tions involve an increase in the entropy of the system and its surroundings. Th e 
second law can be expressed mathematically as follows:

for a spontaneous process, where dSsys and dSsurr are infi nitesimal changes in the 
entropies of the system and the surroundings, respectively. Th is is known as the 
maximal entropy principle. If a system is at equilibrium, which means that it is 
stable and not subject to spontaneous change, it follows that:
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A. COUNTING STATISTICS AND MULTIPLICITY

• The probability of obtaining a particular outcome (that 
is, a given number of heads) in a series of coin tosses 
is proportional to the multiplicity of the outcome. 

• The multiplicity, W, for an outcome corresponding 
to N heads in a series of M coin tosses is given by 
Equation 7.4: 

• When the number of events is large, Stirling’s 
approximation (Equation 7.12) simplifi es the 
calculation of the multiplicity. Stirling’s approximation 
states that when n is a large integer, then: 

• For a large number of coin tosses, the only observable 
outcomes will be ones that are close to the outcome 
with maximal multiplicity. This corresponds to an 
equal number of heads and tails when the coin is 
unbiased.

• The binomial distribution governs the probability of 
events with binary outcomes.

• When the number of events is large, the probability 
distribution is given by a Gaussian function (Equation 
7.36): 

• The multiplicity (W) of a molecular system is the 
number of equivalent confi gurations of the molecules 
(microstates) corresponding to the state of the 
system. If there are N equivalent confi gurations of the 
molecules and, if the space available to the molecules 
is divided up into M grid boxes, then the multiplicity is 

given by Equation 7.45:

• The relative probability of two outcomes is given by 
the ratios of their multiplicities.

• When the number of molecules is large, the 
distribution of multiplicities is very sharply peaked. 
As a consequence, we are unlikely to observe states 
of the system that are more than a few standard 
deviations away from the state with maximum 
multiplicity.

B. ENTROPY

• The logarithm of the multiplicity, ln W, is an additive 
and therefore extensive property of the system, and it 
is more convenient to work with than W because its 
numerical value remains manageable as the number 
of molecules in the system increases. The logarithm, 
ln W, is maximal when W is maximal.

• The entropy, S, of the system is given by Equation 
7.58:

  Equation 7.58 is known as the statistical defi nition 
of the entropy. The Boltzmann constant, kB, is a 
proportionality constant linking the entropy to ln W.

• The change in entropy on moving from one state to 
another is related to the heat transferred when the 
process is carried out near-equilibrium, or reversibly 
(qrev), as shown in Equation 7.60: 

 

Equation 7.60 is known as the thermodynamic 
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Similarly,

(7.74)

Th en,

(7.75)

Using the statistical defi nition of the entropy (S = kB ln W), we get:

(7.76)

where S1 and S2 are the values of the entropy when the volume of the system is V1 
and V2, respectively.

Th e number of atoms (N) can be expressed in terms of the number of moles (n) 
because N = nNA, where NA is Avogadro’s number. Th us,

(7.77)

Th e product of the Boltzmann constant (kB) and Avogadro’s number (NA) is the 
gas constant, R, so Equation 7.77 can be rewritten as:

(7.78)

Equation 7.78 (derived from the statistical defi nition of the entropy) is identical 
to Equation 7.69 (derived from the thermodynamic defi nition of the entropy) for 
the isothermal expansion of an ideal monatomic gas. Th e statistical and thermo-
dynamic defi nitions of the entropy given in Equations 7.58 and 7.60 are therefore 
equivalent, provided that we multiply lnW by the Boltzmann constant, kB. 

7.24 The second law of thermodynamics states that 
spontaneous change occurs in the direction of 
increasing entropy

Th e increase in the entropy of a system indicates the direction of spontaneous 
change. An isolated molecular system will not convert spontaneously from a 
state of high entropy (high multiplicity) to one of lower entropy (lower multiplic-
ity). Th e only way to achieve that kind of conversion is to couple the system to an 
external agent (that is, something in the surroundings) whose gain in entropy is 
great enough to bring about the change. In other words, for a process to occur 
spontaneously, the combined entropy of the system and the surroundings (which 
includes all external forces), must increase. Th is statement is another expression 
of the second law of thermodynamics.

If we denote the entropy of the system by Ssys and the entropy of the surroundings 
by Ssurr , then at equilibrium the second law can be stated as follows: 

(7.79)

Equation 7.79 is known as the maximal entropy principle. We commonly express 
Equation 7.79 in terms of the diff erential terms, dSsys and dSsurr , which are infi ni-
tesimally small changes in the values of Ssys and Ssurr , respectively:

(7.80)
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Chapter 7 also introduced the following defi nition of the entropy, which appears 
at fi rst glance to be unrelated to Equation 8.1:

(8.2)
where ̈ S is the change in entropy of a system upon transforming from one state to 
another, qrev is the heat (that is, energy in the form of random molecular motion) 
transferred to the system during the transformation, using a reversible process 
(that is, a near-equilibrium process; see Section 7.21), and T is the temperature 
(which is held constant during the transformation and is measured on the abso-
lute scale). Recall from Chapter 7 that Equation 8.2 is referred to as the thermody-
namic defi nition of the entropy, and that it arose historically from studying the 
direction of spontaneous change in heat transfer processes in heat engines. 

Th e multiplicity, W, which underlies the defi nition of the entropy in Equation 8.1, 
is an abstract concept. Although we can understand readily what W means, we 
cannot compute the value of W easily for systems of even moderate complexity, 
and there is no straightforward way to measure the value of W experimentally. 
Equation 8.2, on the other hand, tells us that if we carry out a transformation from 

q

W = number of conformations or configurations

= ¨lnW
¨S
kB

qrev

T
¨S = 

(A)

(B)

Figure 8.1 Statistical and 
thermodynamic defi nitions of 
entropy. (A) The statistical defi nition 
of entropy is based on the concept 
of the multiplicity of the system. The 
greater the multiplicity, the greater 
the entropy. The change in entropy for 
a process, such as protein unfolding, 
is proportional to the change in the 
logarithm of the multiplicity. (B) The 
thermodynamic defi nition of the 
entropy relates the change in entropy 
for a process to the heat delivered 
to the system while the process is 
carried out under reversible (that is, 
slow and near-equilibrium) conditions. 
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W is difficult to be measured, but heat can be measured and this equivalence 
provides a way to reconnect S to the molecular features of the system - the 
link is T, temperature 
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Energy distribution 
if we define the state of the system by the volume (V), the number of particles (N), and 
the total energy (U), this has a given W(positional), multiplicity in the configurational 
space and also a energy multiplicity, thus that in total for the system:

thus:
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not depend on the positions of the molecules, each of which behaves independ-
ently). Th e total multiplicity (Wtotal) is therefore given by:

 (8.3)

Equation 8.3 makes it possible to separate the total entropy of the system, Stotal, 
into two components, one due to positional rearrangements and one due to rear-
rangements of the energy. Th e total entropy is given by Equation 8.4:

 (8.4)

Substituting the value of Wtotal from Equation 8.3, we get:

(8.5)

where Spositional is the entropy that arises from positional variations (sometimes 
called the confi gurational entropy) and Senergy is the entropy due to the redistri-
bution of the energy among diff erent molecules. If the number of molecules and 

Figure 8.6 Energy distributions and 
microstates. An energy distribution 
with three molecules and a total 
energy of 1 energy unit is shown 
above. The term “energy distribution” 
refers to the populations of molecules 
in the different energy levels. In this 
case there are two molecules in the 
fi rst level and one in the second. 
The energy distribution does not 
specify which molecule is in which 
level; instead, it simply refl ects the 
aggregate probability of fi nding 
molecules in different energy levels. By 
specifying which individual molecules 
are in particular energy levels, we 
defi ne the various microstates of the 
system that are consistent with a 
particular energy distribution. In the 
example shown here, there are three 
different microstates that correspond 
to the energy distribution shown 
above. 

Figure 8.7 Confi gurational multiplicity and the multiplicity of energy levels. Shown here is a system with three molecules. 
There are many different positions (confi gurations) of these molecules, one of which is shown. For each confi guration, there are 
different microstates corresponding to different values of energy for each molecule, subject to the constraint that the total energy is 
constant. Two alternative microstates for the same positional confi guration are illustrated for a total energy of three energy units. 
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not depend on the positions of the molecules, each of which behaves independ-
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How do these two outcomes compare with one in which the energy is distributed 
evenly, with both systems having three units of energy, as shown in Figure 8.16C? 
In this case,

(8.26)

and

 (8.27)

Th e combined multiplicity of the system in Figure 8.16C (14,400) is much higher 
than for the system in Figure 8.16A (9450). We are therefore more likely to observe 
outcomes in which the energy is distributed equally. Th e multiplicity of system B 
is reduced (from 210 to 120) upon the redistribution of energy, but this is more 
than off set by the increase in the multiplicity of system A (from 45 to 120).

When the multiplicity of the combined system (WA+B) is calculated for all possible 
redistributions of the energy, the results shown in Figure 8.17 are obtained. Th e 
maximum value of WA+B occurs for the state in which there is equal energy in both 
systems (that is, UA = UB). When the two systems are brought into thermal con-
tact, therefore, the most likely outcome is one in which the energy is distributed 
equally between the two systems. Since system B starts off  at higher energy, there 
is a net transfer of energy from B to A.

8.8 Systems in thermal contact exchange heat until the 
combined entropy of the two systems is maximal

Recall from Chapter 7 that when we consider the positional multiplicity of only a 
small number of molecules, there is a signifi cant probability that we will observe 
outcomes that have less than the maximal value of the multiplicity. If we look at a 
very small number of molecules in a box, for example, there is a signifi cant prob-
ability that we will fi nd all the molecules in the left half of the box and none in the 
right half. 
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Figure 8.16 Multiplicity for systems 
with two energy levels. Two 
systems, A and B, are shown. The 
molecules in these systems have 
access to only two energy levels, with 
0 and 1 units of energy, respectively. 
(A) System A initially has two units of 
energy and System B has four. 
(B) All of the energy in the system is 
transferred to System B. (C) The energy 
is distributed equally between the two 
systems. (Adapted from K.A. Dill 
and S. Bromberg, Molecular Driving 
Forces: Statistical Thermodynamics 
in Biology, Chemistry, Physics, and 
Nanoscience, 2nd ed. New York: 
Garland Science, 2010.)
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Th us, the entropy increases as the number of energy levels that are occupied 
increases. Similarly, systems that have molecules distributed over a larger number 
of energy levels (that is, Figure 8.14B) are more disordered, and increased dis-
order corresponds to increased entropy. We could have calculated the entropies 
using Equations 8.1 and 8.9, and we would have obtained the same answers. Th e 
calculations, however, would have been far more laborious. 

8.7 The multiplicity of a system changes when energy is 
transferred between systems

How does the multiplicity of energy distributions change when two systems are 
able to exchange energy with each other? We assume that the atoms in each sys-
tem move in a random and unpredictable manner, and exchange energy whenever 
they collide. At the boundary between the two systems, energy can be transferred 
from one system to the other in the form of heat (that is, in the disordered motion 
of the component atoms). 

Th e atoms involved do not “know” anything about the direction in which the net 
energy transfer takes place between the two systems. Rather, every possible mode 
of energy transfer from one molecule to another is considered to be equally likely, 
as long as the total energy of the system is conserved (Figure 8.15). In the end, 
energy distributions that are associated with higher multiplicities are more likely 
to be observed than those with lower multiplicities. Th e logic used to analyze the 
outcomes of energy transfer is essentially the same as that used in Chapter 7 to 
analyze the outcomes of coin tosses or of molecular diff usion.

For simplicity, consider a system (system A) in which the molecules have access 
to only two energy levels, as shown in Figure 8.16. A realistic situation in which 
atoms have access to only two energy levels occurs in nuclear magnetic resonance, 
where the nuclear spin of a proton is either aligned with or against an external 
magnetic fi eld. Suppose that the system consists of 10 molecules and has a total 
energy of U = 2. Th e molecules are distributed as shown in Figure 8.16A, with eight 
molecules in the lowest level (U0 = 0) and two molecules in the higher level (U1 = 
1). According to Equation 8.9, the multiplicity of system A (that is, WA) is:

(8.20)

Now consider a second system (system B), which also consists of 10 molecules 
that can only access the same two energy levels (Figure 8.16A). Th e total energy of 
system B is U = 4 and its multiplicity (WB) is:

(8.21)

What happens when we put systems A and B into “thermal contact”—that is, A 
and B can exchange energy, but not molecules? Th e systems are isolated from 
everything else, so the total energy of the combined systems must remain con-
stant.
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Figure 8.14 Comparing the 
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distributions of molecular energies. 
A system with 10,000 molecules is 
illustrated. In the fi rst situation (A), 
half of the molecules are in the lowest 
energy level and half of the molecules 
are in the next level. In (B), the 
molecules are evenly distributed over 
the fi rst fi ve levels. The situation in 
(B) has higher entropy.

= =W
10!
2! 8!

45A

= =W
10!
4! 6!

210B

354 CHAPTER 8:  Linking Energy and Entropy: The Boltzmann Distribution

Th us, the entropy increases as the number of energy levels that are occupied 
increases. Similarly, systems that have molecules distributed over a larger number 
of energy levels (that is, Figure 8.14B) are more disordered, and increased dis-
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using Equations 8.1 and 8.9, and we would have obtained the same answers. Th e 
calculations, however, would have been far more laborious. 
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from one system to the other in the form of heat (that is, in the disordered motion 
of the component atoms). 

Th e atoms involved do not “know” anything about the direction in which the net 
energy transfer takes place between the two systems. Rather, every possible mode 
of energy transfer from one molecule to another is considered to be equally likely, 
as long as the total energy of the system is conserved (Figure 8.15). In the end, 
energy distributions that are associated with higher multiplicities are more likely 
to be observed than those with lower multiplicities. Th e logic used to analyze the 
outcomes of energy transfer is essentially the same as that used in Chapter 7 to 
analyze the outcomes of coin tosses or of molecular diff usion.

For simplicity, consider a system (system A) in which the molecules have access 
to only two energy levels, as shown in Figure 8.16. A realistic situation in which 
atoms have access to only two energy levels occurs in nuclear magnetic resonance, 
where the nuclear spin of a proton is either aligned with or against an external 
magnetic fi eld. Suppose that the system consists of 10 molecules and has a total 
energy of U = 2. Th e molecules are distributed as shown in Figure 8.16A, with eight 
molecules in the lowest level (U0 = 0) and two molecules in the higher level (U1 = 
1). According to Equation 8.9, the multiplicity of system A (that is, WA) is:

(8.20)

Now consider a second system (system B), which also consists of 10 molecules 
that can only access the same two energy levels (Figure 8.16A). Th e total energy of 
system B is U = 4 and its multiplicity (WB) is:

(8.21)

What happens when we put systems A and B into “thermal contact”—that is, A 
and B can exchange energy, but not molecules? Th e systems are isolated from 
everything else, so the total energy of the combined systems must remain con-
stant.
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two molecules in the ground state as “tails,” the multiplicity (Wenergy) of the energy 
distribution is:

 (8.8)

Because the molecules are identical, we do not count diff erent permutations of 
the molecules in the lowest energy rung separately. Th us, in general, if we have 
N molecules distributed among a total of t diff erent energy levels, then the multi-
plicity is given by: 

 (8.9)

where N1, N2, … , Ni are the numbers of molecules in the fi rst, second, etc., energy 
level (up to the highest level, t). We have dropped the “energy” subscript in Equa-
tion 8.9, with the understanding that “W” refers to the number of diff erent rear-
rangements of molecules that are possible among the energy levels.

Now consider a process that puts two units of energy into the system consisting 
of three molecules that are initially all in the lowest energy level (that is, U = 0 ĺ 
U = 2). Th ere are two diff erent energy distributions that are valid outcomes of this 
process. One energy distribution, shown in Figure 8.10A, puts two units of energy 

Figure 8.9 Adding one unit of 
energy to a system at minimal 
energy. (A) The process of adding 
one unit of energy to a system of 
three molecules is illustrated here. 
(B) By random chance, any one of 
the three molecules can pick up the 
unit of energy, and so there are three 
ways of achieving the end result. This 
corresponds to the multiplicity of the 
fi nal energy distribution, which is 
3 (W = 3). 
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Figure 8.10 Energy distributions 
and multiplicities for N = 3, 
U = 2. Shown is a system with three 
molecules and a total of two energy 
units. (A) and (B) show the two 
possible energy distributions for this 
system. Each distribution corresponds 
to three equivalent microstates, so 
the multiplicity of each distribution is 
3. (Adapted from K.A. Dill and 
S. Bromberg, Molecular Driving 
Forces: Statistical Thermodynamics 
in Biology, Chemistry, Physics, and 
Nanoscience, 2nd ed. New York: 
Garland Science, 2010.)
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molecules in the first, second, etc., energy level (up to the highest level, t) 

Using similar counting strategies as before, this is obtained by:
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see how the combined energy multiplicity for the system A+B is larger when both has 
higher multiplicity and in fact the value is maximal when the energy is equally 
distributed between A and B - ie manifestation of the 2nd law of thermodynamics 
and maximisation of entropy S

Th e situation is similar for the redistribution of energy when we bring two systems 
into thermal contact. Consider, for example, the system discussed in Section 8.7, 
which included a total of 20 molecules. Th e graph in Figure 8.17 shows that the dis-
tribution with maximum multiplicity is the one in which the energy is distributed 
equally, so this is the state with the highest probability of being observed. Th ere 
is signifi cant probability, however, of observing outcomes in which the energy is 
distributed unequally. But, as we saw in Chapter 7 for positional entropy, the dif-
ference between the multiplicity of the most likely outcome and the multiplicities 
of all other outcomes becomes enormously large when the number of molecules 
increases. For large numbers of molecules, the only outcomes that have realistic 
chances of being observed are ones that are very close to the one with maximum 
multiplicity.

What happens if we scale up the size of the system discussed in Section 8.7 by 
a factor of 1000? Th at is, consider a larger system in which NA = NB = 10,000 and 
UA + UB = 6000, where NA and NB are the number of atoms in systems A and B, 
respectively, and UA and UB are the energies of systems A and B, respectively. We 
must now calculate lnW instead of W because the number of molecules involved 
is so large, and we can do so for all possible values of UA and UB, making sure that 
energy is conserved. 

Th e value of lnWA+B as a function of the energy of system A is shown in Figure 
8.18. Again, the maximum value of lnWA+B is obtained when the energy is distrib-
uted equally between systems A and B, with 3000 units of energy in system A and 
3000 units in system B. 

When we scale up the system, the much larger number of molecules involved 
results in the combined multiplicity being much more sensitive to deviations from 
the state of maximal multiplicity. To see why this is so, we redistribute 10% of the 
energy of system A to system B, so that system A now has 2700 units of energy and 
system B has 3300 units (Case 1). We compare the multiplicity for this situation 
with that when the energy is distributed equally between the two systems (Case 2).
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Figure 8.18 The multiplicity for 
larger systems. The logarithm of 
the combined multiplicity (ln WA+B) is 
shown for two systems, A and B. A and 
B are similar to the systems illustrated 
in Figures 8.16 and 8.17, except 
that each has 10,000 molecules. The 
maximum value of ln WA+B occurs 
when the energy is distributed equally 
between A and B. 
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one state of the system to another using a near-equilibrium and isothermal proc-
ess, then the heat taken up by the system during the process is a direct measure of 
the entropy change between the two end states. Equation 8.2, therefore, provides 
a link between experiments we carry out in the laboratory and the value of the 
entropy.

Recall also from Chapter 7 that the statistical and thermodynamic defi nitions of 
the entropy are equivalent for an ideal monatomic gas. In this chapter, we shall 
show that these two defi nitions are strictly equivalent for all systems. In order 
to do this, we need to fi nd a relationship between W, the multiplicity (or S, the 
entropy), and T, the temperature of the system, and we need to link these two 
quantities to the amount of heat transferred in a reversible process. 

8.2 The concept of temperature provides a connection 
between the statistical and thermodynamic defi nitions 
of entropy

Th e key to relating the two defi nitions of entropy embodied in Equations 8.1 and 
8.2 turns out to be the concept of temperature. What exactly do we mean by the 
“temperature” of a system? One defi nition is to say that the temperature is a prop-
erty of the system that determines whether or not the system will transfer heat 
to or from another system that it is in contact with. If two systems at diff erent 
temperatures are brought into contact, there will be net transfer of heat from the 
system at higher temperature to the one at lower temperature, until equilibrium 
is established (Figure 8.2). At equilibrium, the two systems will have the same 
temperature. 

Defi ning the temperature of a system in terms of heat fl ow seems related intui-
tively to the energy of the system: the higher the energy of the molecules in the 
system, the higher we expect the temperature to be. If we place an object in which 
the molecules are moving faster (that is, they have higher kinetic energy) in con-
tact with one in which the molecules are moving slower, our intuition tells us that 
on average there will be transfer of kinetic energy from the molecules in the fi rst 
object to the molecules in the second object, until the molecules in both objects 
have the same average kinetic energy (Figure 8.3). Why, then, don’t we just defi ne 
the temperature as equal to the kinetic energy of the system, or at least connect it 
in some simple way to the kinetic energy of the system? 

A direct relationship between kinetic energy and temperature (kinetic energy = 
3RT/2) is easy to establish for an ideal gas, as we showed in Box 6.3. For more 
complex materials, however, an analogous relationship is diffi  cult to establish. 
One problem is that the energy alone does not always predict the direction of 
spontaneous change for molecular systems (see Section 6.5). Just as in the case 

Figure 8.2 Heat exchange between objects at different 
temperatures. Two objects, at temperatures T1 and T2, respectively 
(where T1 > T2), are brought into thermal contact. There is net energy 
transfer in the form of heat from the object at higher temperature to 
the object at lower temperature until the temperatures of the two 
objects become equal.
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Figure 8.3 Kinetic energy and temperature. For a monatomic 
ideal gas, the kinetic energy is related to the temperature by the 
following equation:

Thus, the higher the temperature, the higher the kinetic energy and 
the more the atoms move over the same time period. The object on 
the left is initially at higher temperature than the object on the right. 
When the two objects are brought into contact, energy is transferred 
until the kinetic energies become equal. 
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A. ENERGY DISTRIBUTIONS AND ENTROPY

• The thermodynamic defi nition of the entropy provides 
a link to experimental observations because it relates 
heat transfer to changes in the entropy.

• The concept of temperature, which is the 
thermodynamic parameter that determines the 
direction of heat fl ow, provides a connection between 

the statistical and thermodynamic defi nitions of 
entropy.

• Energy distributions describe the populations of 
molecules with different energies.

• The multiplicity of an energy distribution is the 
number of equivalent confi gurations of molecules 
that results in the same energy distribution.

Key Concepts

which specifi es the probabilities of fi nding molecules in diff erent energy levels at 
equilibrium. Th e Boltzmann distribution is given by:

(8.57)
where pj is the probability of fi nding molecules in the j th level, uj is the energy of 
the j th level, kB is the Boltzmann constant, and T is the absolute temperature. Q 
is the partition function of the system, which indicates the extent to which the 
molecules of the system are distributed over diff erent energy levels. Th e partition 
function, Q, is given by:

(8.56)
As the value of Q increases, so does the accessibility of the higher energy levels of 
the system at a given temperature. Th us, the value of kBT, which is also known as 
the “thermal energy” at a given temperature, is an important parameter. If levels 
have an energy < kBT above that of the lowest level then they will be occupied 
appreciably. If the energy is signifi cantly more than kBT above the energy of the 
lowest level, then the occupancy becomes very low.

In order to connect the probabilistic or statistical defi nition of entropy to the 
amount of heat transferred during a process, we need to relate the entropy to 
the temperature. Th e temperature of a system is that property of the system that 
determines whether net heat transfer occurs when the system is placed in thermal 
contact with another system. When two systems are in thermal equilibrium, there 
is no net heat transfer between them, and their combined entropies are maximal 
(assuming that the two systems are isolated from everything else). Th is leads to 
the following defi nition of the temperature:

(8.83)

Based on Equation 8.83, systems at lower temperatures undergo a larger increase 
in entropy for the same energy input than systems at higher temperatures.

Th e fi rst law of thermodynamics relates the change in energy of a system, the 
heat transferred to a system, and the work done by the system. For a reversible 
or near-equilibrium process, in which the work done is readily related to system 
properties, the fi rst law of thermodynamics and Equation 8.83 together lead to the 
conclusion that:

(8.98)
where ΔS is the change in entropy between two states of a system, T is the tem-
perature, and qrev is the heat delivered to the system when the transformation 
is carried out under reversible (near-equilibrium) conditions. Equation 8.98 is 
known as the thermodynamic defi nition of the entropy, and in this chapter we 
have shown that it is equivalent to the statistical defi nition of the entropy in a 
completely general way. 
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correspond to many diff erent energy distributions, each of which is consistent 
with the number of atoms and the total energy of the system. Two such energy dis-
tributions are shown in Figure 8.19. Energy distribution 1 has 14 atoms in the low-
est level (with zero units of energy each), nine in the second level (with one unit 
of energy each), and so on. Distribution 2 has a diff erent number of atoms in each 
level, but the same total energy and the same number of atoms as distribution 1.

Each energy distribution has many diff erent microstates associated with it, and 
the number of microstates associated with each distribution is the multiplicity 
(Figure 8.19 shows two possible microstates for each distribution). Because the 
system in the example has only a small number of atoms in it, we use Equation 8.9 
to count the number of microstates associated with each distribution explicitly. 
Th at is, we cannot use the probabilistic expression for the entropy (Equation 8.13) 
to derive the multiplicity for this particular case.

For distribution 1, the multiplicity, W1, is given by:

(8.43)

For distribution 2, the multiplicity, W2, is given by:

(8.44)

According to Equations 8.43 and 8.44, distribution 1 is more likely than distribu-
tion 2 because it has ~2.5 times more microstates associated with it. 

As the number of atoms in the system becomes very large, one particular energy 
distribution ends up dominating because the multiplicity associated with it is very 
much greater than for other distributions. Th e distribution with maximum multi-
plicity is the Boltzmann distribution.

8.10 The energy distribution at equilibrium must have an 
exponential form

Recall from Chapter 6 that the Boltzmann distribution is an exponential function 
of the energy:

(8.45)
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Figure 8.19 Energy distributions 
and microstates for a system with 
fi xed total energy and number of 
atoms. The total energy of the system 
is 27 units, distributed among energy 
levels that are equally spaced in 
steps of one energy unit. Two of the 
many different energy distributions 
that are consistent with the total 
energy are shown in (A) and (B). Each 
energy distribution corresponds to 
many different microstates, only 
two of which are shown for each 
distribution. In the diagrams for each 
microstate, the horizontal positions 
identify specifi c atoms. This contrasts 
with the diagrams for the energy 
distributions, in which specifi c atoms 
are not identifi ed, and the dots simply 
represent populations.
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correspond to many diff erent energy distributions, each of which is consistent 
with the number of atoms and the total energy of the system. Two such energy dis-
tributions are shown in Figure 8.19. Energy distribution 1 has 14 atoms in the low-
est level (with zero units of energy each), nine in the second level (with one unit 
of energy each), and so on. Distribution 2 has a diff erent number of atoms in each 
level, but the same total energy and the same number of atoms as distribution 1.

Each energy distribution has many diff erent microstates associated with it, and 
the number of microstates associated with each distribution is the multiplicity 
(Figure 8.19 shows two possible microstates for each distribution). Because the 
system in the example has only a small number of atoms in it, we use Equation 8.9 
to count the number of microstates associated with each distribution explicitly. 
Th at is, we cannot use the probabilistic expression for the entropy (Equation 8.13) 
to derive the multiplicity for this particular case.

For distribution 1, the multiplicity, W1, is given by:

(8.43)

For distribution 2, the multiplicity, W2, is given by:

(8.44)

According to Equations 8.43 and 8.44, distribution 1 is more likely than distribu-
tion 2 because it has ~2.5 times more microstates associated with it. 

As the number of atoms in the system becomes very large, one particular energy 
distribution ends up dominating because the multiplicity associated with it is very 
much greater than for other distributions. Th e distribution with maximum multi-
plicity is the Boltzmann distribution.

8.10 The energy distribution at equilibrium must have an 
exponential form

Recall from Chapter 6 that the Boltzmann distribution is an exponential function 
of the energy:

(8.45)
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Figure 8.19 Energy distributions 
and microstates for a system with 
fi xed total energy and number of 
atoms. The total energy of the system 
is 27 units, distributed among energy 
levels that are equally spaced in 
steps of one energy unit. Two of the 
many different energy distributions 
that are consistent with the total 
energy are shown in (A) and (B). Each 
energy distribution corresponds to 
many different microstates, only 
two of which are shown for each 
distribution. In the diagrams for each 
microstate, the horizontal positions 
identify specifi c atoms. This contrasts 
with the diagrams for the energy 
distributions, in which specifi c atoms 
are not identifi ed, and the dots simply 
represent populations.
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correspond to many diff erent energy distributions, each of which is consistent 
with the number of atoms and the total energy of the system. Two such energy dis-
tributions are shown in Figure 8.19. Energy distribution 1 has 14 atoms in the low-
est level (with zero units of energy each), nine in the second level (with one unit 
of energy each), and so on. Distribution 2 has a diff erent number of atoms in each 
level, but the same total energy and the same number of atoms as distribution 1.

Each energy distribution has many diff erent microstates associated with it, and 
the number of microstates associated with each distribution is the multiplicity 
(Figure 8.19 shows two possible microstates for each distribution). Because the 
system in the example has only a small number of atoms in it, we use Equation 8.9 
to count the number of microstates associated with each distribution explicitly. 
Th at is, we cannot use the probabilistic expression for the entropy (Equation 8.13) 
to derive the multiplicity for this particular case.

For distribution 1, the multiplicity, W1, is given by:

(8.43)

For distribution 2, the multiplicity, W2, is given by:

(8.44)

According to Equations 8.43 and 8.44, distribution 1 is more likely than distribu-
tion 2 because it has ~2.5 times more microstates associated with it. 

As the number of atoms in the system becomes very large, one particular energy 
distribution ends up dominating because the multiplicity associated with it is very 
much greater than for other distributions. Th e distribution with maximum multi-
plicity is the Boltzmann distribution.

8.10 The energy distribution at equilibrium must have an 
exponential form

Recall from Chapter 6 that the Boltzmann distribution is an exponential function 
of the energy:
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as the number of N increases one specific distribution dominates over all the other and 
this is the Boltzmann distribution, that is an exponential distribution, because this is 
the only mathematical way to reconcile that fact that 
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kth energy level is just the product of the individual probabilities:

 (8.49)

Th e situation we are considering is illustrated in Figure 8.20, with one of the atoms 
labeled “X” (in panel A) and another labeled “Y” (in panel B). Th e probability, pXY 
of fi nding atom X in level 3 and atom Y in level 4 in the same microstate is given, 
according to Equation 8.49, by the product of the independent probabilities of 
fi nding the individual atoms in these levels:

 (8.50)

Notice that the total energy of the X and Y atoms in the situation shown in Figure 
18.20C is fi ve energy units (atom X has two energy units and atom Y has three 
energy units). 

Now consider the probability that the X and Y atoms have a total energy of uj + uk 
(which is fi ve in the example shown in Figure 18.20C). Th ere are many distinct 
microstates in which the total energy of the X and Y atoms is fi ve units, but in 
which the energy is distributed diff erently between the X and Y atoms, as shown 
in Figure 8.21. In each microstate where the energy of X and Y is uj + uk, the energy 
of the rest of the system is always Utotal − (uj + uk), where Utotal is the total energy 
of the system. 

Th e important point that emerges is that all confi gurations of the X and Y atoms 
that have the same total energy for these two atoms (that is, uj + uk) have the same 
probability of occurring. To see why this is the case, recognize that the probability 
of a particular confi guration of X and Y atoms is proportional to the multiplicity 
of the system with the X and Y atoms in the defi ned energy levels. Th is is given by 
the multiplicity of the rest of the system, excluding the X and Y atoms (the atoms 
in the rest of the system are shown shaded in light yellow in Figure 8.21). But in 
each case, the rest of the system has the same total energy (22 units in our exam-
ple) and the same number of atoms (28 atoms in our example). So, the number of 
microstates, and therefore the multiplicity, for the rest of the system must be the 
same in each case.

By this reasoning, we conclude that the probability of fi nding the two atoms X 
and Y with total energy uj + uk is given by an unspecifi ed function g(uj + uk), which 
depends on the sum of the energies of the two atoms. Th us:

 (8.51)

Th e parameter B in Equation 8.51 is a normalization constant.
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Figure 8.21 Microstates of a system 
with X and Y atoms having the 
same total energy. Three different 
microstates are shown. In each 
one, the total energy of the X and 
Y molecules is fi ve units, but the 
fi ve units are distributed differently 
between X and Y. The remainder of the 
system (28 atoms) have 22 units of 
energy in each case. 
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kth energy level is just the product of the individual probabilities:
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in Figure 8.21. In each microstate where the energy of X and Y is uj + uk, the energy 
of the rest of the system is always Utotal − (uj + uk), where Utotal is the total energy 
of the system. 

Th e important point that emerges is that all confi gurations of the X and Y atoms 
that have the same total energy for these two atoms (that is, uj + uk) have the same 
probability of occurring. To see why this is the case, recognize that the probability 
of a particular confi guration of X and Y atoms is proportional to the multiplicity 
of the system with the X and Y atoms in the defi ned energy levels. Th is is given by 
the multiplicity of the rest of the system, excluding the X and Y atoms (the atoms 
in the rest of the system are shown shaded in light yellow in Figure 8.21). But in 
each case, the rest of the system has the same total energy (22 units in our exam-
ple) and the same number of atoms (28 atoms in our example). So, the number of 
microstates, and therefore the multiplicity, for the rest of the system must be the 
same in each case.

By this reasoning, we conclude that the probability of fi nding the two atoms X 
and Y with total energy uj + uk is given by an unspecifi ed function g(uj + uk), which 
depends on the sum of the energies of the two atoms. Th us:
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Th e parameter B in Equation 8.51 is a normalization constant.
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microstates are shown. In each 
one, the total energy of the X and 
Y molecules is fi ve units, but the 
fi ve units are distributed differently 
between X and Y. The remainder of the 
system (28 atoms) have 22 units of 
energy in each case. 

= +p Bg u u( )j kXY

N5 = 1
N4 = 3
N3 = 3
N2 = 5
N1 = 18

N5 = 4
N4 = 2
N3 = 2
N2 = 1
N1 = 21

N5 = 1
N4 = 3
N3 = 4
N2 = 6
N1 = 16

(A)

(C)

(B)

X

X

X

Y

Y

Y

U = 22
4
3
2
1
0

en
er

gy

4
3
2
1
0

en
er

gy

4
3
2
1
0

en
er

gy

U = 22

U = 22

U = 5

U = 5

U = 5

= × = ×p p p Af u Af uj k j kXY X, Y, ( () )

but also
Comparing Equations 8.49 and 8.51, we see that:

(8.52)

Equation 8.52 is the key result that reveals the nature of the probability distribu-
tion function for energy. According to the Equation 8.52, f with one argument 
multiplied by f with a second argument is proportional to a function whose argu-
ment is the sum of the two arguments of f. Th ere is only one mathematical func-
tion that has this property, and that is the exponential function.

Th e exponential function satisfi es Equation 8.52. If f and g are both exponential 
functions, then we can write:

and

Th en: 

(8.53)

From this, we reason that the probability distribution must be given by:

(8.54)

In principle, we could also choose the probability function as e+ ujβ , which would 
also satisfy Equation 8.52. But, the probability of fi nding molecules at higher 
energy levels must be smaller than the probability of fi nding molecules in lower 
energy levels. Hence, we choose e− ujβ  as the form of the probability function, 
because the value of this function decreases with increasing energy.

In Box 8.2, we provide a more rigorous derivation of the Boltzmann distribution, 
which starts from the statistical defi nition of the entropy and then applies the 
principles of energy conservation and entropy maximization. Th is analysis shows, 
for a system that exchanges heat with the surroundings, that the Boltzmann dis-
tribution is the one that maximizes the combined entropy of the system and the 
surroundings. Th e parameter β in Equation 8.54 is shown to be equal to 1/kBT. 
Th e complete form of the Boltzmann function is therefore:

(8.55)

8.11 The partition function indicates the accessibility of the 
higher energy levels of the system

As the system moves from a nonequilibrium state to equilibrium, its energy 
distribution keeps changing (Figure 8.22). Th e population of energy levels at 
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involved. Th e multiplicity (W ) in Equation 8.1 must be calculated by using Equa-
tion 8.9, and it is tedious to calculate the factorial values that enter into Equa-
tion 8.9 when the number of molecules is large. Th e probabilistic defi nition of 
the entropy considers only the fractional occupancy of each energy level (or out-
come) and these fractional occupancies (that is, what fraction of the molecules 
are in a particular energy level) are always less than 1.0.

By using Equation 8.13 to defi ne the entropy, we are focusing attention on the 
probability distribution of the molecules, which specifi es the probability of fi nd-
ing molecules in diff erent energy levels. Th e probability of fi nding a molecule in a 
particular energy level is given by:

(8.14)

where Ni is the number of molecules in the i th energy level and N is the total 
number of molecules (see Figure 8.12). Th e probabilities defi ned in this way are 
said to be normalized, which means that the sum of all the individual probabili-
ties is 1.0: 

(8.15)

Th e molecule must be in one of the energy levels (without specifying which one), 
so the normalization of a probability distribution ensures that the probability of 
fi nding a molecule in some available energy level is unity. Th e normalization con-
dition can be written as:

(8.16)

Th e probability of being in any particular energy level is always less than or equal 
to 1.0, so the value of ln pi is less than or equal to zero (the logarithm of a number 
that is less than 1.0 is negative):

(8.17)

Th e negative sign in Equation 8.13 therefore ensures that the entropy is always 
positive. 

To see how the probabilistic defi nition makes it easier to calculate the entropy, 
consider a collection of dice where each die represents a molecule that can be 
in one of six conformations. Figure 8.13 compares the entropy of such a system 
when all six outcomes are equally likely with situations where the outcomes are 
biased. Bias in the probability of outcomes lowers the entropy. 

Figure 8.14 illustrates the link between probability and entropy with a molecu-
lar example. Imagine a system in which all 10,000 molecules of the system are 
divided equally between the two lowest energy levels of the system (see Figure 
8.14A). Alternatively, imagine the 10,000 molecules are divided equally among 
the fi rst fi ve energy levels, as shown in Figure 8.13B. What are the values of the 
entropy in the two cases? 

In the fi rst case, the probability of being in either one of the fi rst two levels is 0.5, 
and the probability of being in any other level is zero. According to Equation 8.13, 
the entropy is calculated as follows:

(8.18)

Note that the value obtained in Equation 8.18 is S/(NkB) and not S. We shall often 
calculate S/(NkB) rather than S when we are only interested in comparing the 
values of the entropy in situations where the number of molecules is the same. 
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equilibrium will be given by the Boltzmann distribution, but in order to calculate 
these populations, we need to evaluate the normalization constant, A, in Equation 
8.55. 

Th e value of the constant A is chosen so that Equation 8.55 satisfi es the normaliza-
tion condition:

(8.56)

Th e term Q in Equation 8.56 known as the partition function. Combining Equa-
tions 8.55 and 8.56, we have the following expression for the Boltzmann distribu-
tion:

(8.57)

To see how to apply Equation 8.57 in practice, we shall work through a simple 
example. Consider two kinds of molecules, A and B, where the energy levels of 
A are more closely spaced together than the energy levels of molecule B (Figure 
8.23). Th is diff erence in spacing could be due to diff erences in electronic structure 
or, more interestingly for proteins, to conformational restrictions that are tighter 

and 8.2.12 are both satisfi ed in a consistent way. To do 
this, we incorporate α, a constant whose value we have 
yet to determine, directly into an equation that com-
bines Equations 8.2.12 and 8.2.14:

(8.2.15)

Grouping terms together, we get:

 (8.2.16)

Th e values of dpj, although infi nitesimally small, are not 
in general zero. Th us, the only way the left-hand side of 
Equation 8.2.16 can be guaranteed to be zero is if each 
of the individual terms in the brackets is always equal to 
zero. Th is yields the following condition for all values of j:

(8.2.17)

(8.2.18)

Th e term in square brackets is a constant (that is, it does 
not depend on the energy levels). We denote this term by 
A, and so we can write:

(8.2.19)

Equation 8.2.19 is in exactly the same form as Equation 
8.45 in the main text, and comparing the two equations 
shows that β = 1/kBT. 

Th e analysis that led to Equation 8.2.19 shows that the 
exponential form of the probability distribution follows 
directly from the probabilistic defi nition of the entropy, 
which is in turn derived from the application of Stirling’s 
approximation to the calculation of the multiplicity of 
the system. Th e value of the proportionality factor A in 
Equation 8.2.19 is evaluated by using the normalization 
condition, as discussed in the main text.
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where pj is the probability of fi nding a molecule in the j th energy level, uj is the 
energy of the j th energy level, and A and ȕ are constants (that is, they do not 
depend on the energy levels). It turns out that the probability distribution func-
tion describing molecular energies has to be an exponential function, because of 
certain conditions that such a function must satisfy. We present an explanation of 
why this is so that is based on an analysis of the Boltzmann distribution in Tipler 
and Llewellyn’s textbook on modern physics, which is listed under Further Read-
ing, at the end of this chapter.

Let us start by assuming that we do not know the functional form of the prob-
ability distribution. We assume that this function depends on the energy—that is, 
given the energy of a level, the function returns the probability of fi nding a mole-
cule in that level. If Nj is the number of atoms in the j th energy level, and N is the 
total number of atoms, then the probability distribution must be a function, f (uj), 
that is as yet unspecifi ed but which satisfi es the following equation:

(8.46)

Th e parameter A is a proportionality constant that ensures that the probability 
function is normalized—that is, the sum of its value over all energy levels is 1.0. 
We discuss the signifi cance of normalization in Section 8.11. 

Th e special property of energy distribution functions that helps defi ne the Boltz-
mann distribution becomes apparent when we consider the probability of fi nding 
two specifi c atoms in two specifi c energy levels. We then compare this with the 
probability of fi nding two atoms with the same total energy as in the fi rst case, but 
without specifying which energy level each atom is in. Th is comparison reveals 
the special defi ning property that we are looking for.

First, we consider the probability, pX,j, of fi nding a particular atom, labeled X, in 
the j th energy level of a system (Figure 8.20). According to Equation 8.46:

(8.47)

Likewise, the probability of fi nding another atom, labeled Y, in the kth energy level, 
with energy uk , is given by:

(8.48)

We assume that the atoms in the system are independent. Th erefore, the joint 
probability, pXY of fi nding the X atom in the j th energy level and the Y atom in the 
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Figure 8.20 Joint probability of 
fi nding two atoms in two energy 
levels. (A) A particular microstate with 
an atom labeled “X” in energy level 3. 
The probability of fi nding atom X in 
level 3 is denoted pX,3. (B) Similar to 
(A), but with a different atom, labeled 
“Y,” in energy level 4. The probability 
of fi nding atom Y in level 4 is denoted 
pY,4. (C) A microstate with atom X 
in level 3 and atom Y in level 4. The 
probability of this happening is given 
by pX,3 × pY,4. 
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kth energy level is just the product of the individual probabilities:

 (8.49)

Th e situation we are considering is illustrated in Figure 8.20, with one of the atoms 
labeled “X” (in panel A) and another labeled “Y” (in panel B). Th e probability, pXY 
of fi nding atom X in level 3 and atom Y in level 4 in the same microstate is given, 
according to Equation 8.49, by the product of the independent probabilities of 
fi nding the individual atoms in these levels:

 (8.50)

Notice that the total energy of the X and Y atoms in the situation shown in Figure 
18.20C is fi ve energy units (atom X has two energy units and atom Y has three 
energy units). 

Now consider the probability that the X and Y atoms have a total energy of uj + uk 
(which is fi ve in the example shown in Figure 18.20C). Th ere are many distinct 
microstates in which the total energy of the X and Y atoms is fi ve units, but in 
which the energy is distributed diff erently between the X and Y atoms, as shown 
in Figure 8.21. In each microstate where the energy of X and Y is uj + uk, the energy 
of the rest of the system is always Utotal − (uj + uk), where Utotal is the total energy 
of the system. 

Th e important point that emerges is that all confi gurations of the X and Y atoms 
that have the same total energy for these two atoms (that is, uj + uk) have the same 
probability of occurring. To see why this is the case, recognize that the probability 
of a particular confi guration of X and Y atoms is proportional to the multiplicity 
of the system with the X and Y atoms in the defi ned energy levels. Th is is given by 
the multiplicity of the rest of the system, excluding the X and Y atoms (the atoms 
in the rest of the system are shown shaded in light yellow in Figure 8.21). But in 
each case, the rest of the system has the same total energy (22 units in our exam-
ple) and the same number of atoms (28 atoms in our example). So, the number of 
microstates, and therefore the multiplicity, for the rest of the system must be the 
same in each case.

By this reasoning, we conclude that the probability of fi nding the two atoms X 
and Y with total energy uj + uk is given by an unspecifi ed function g(uj + uk), which 
depends on the sum of the energies of the two atoms. Th us:

 (8.51)

Th e parameter B in Equation 8.51 is a normalization constant.
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Figure 8.21 Microstates of a system 
with X and Y atoms having the 
same total energy. Three different 
microstates are shown. In each 
one, the total energy of the X and 
Y molecules is fi ve units, but the 
fi ve units are distributed differently 
between X and Y. The remainder of the 
system (28 atoms) have 22 units of 
energy in each case. 

= +p Bg u u( )j kXY

N5 = 1
N4 = 3
N3 = 3
N2 = 5
N1 = 18

N5 = 4
N4 = 2
N3 = 2
N2 = 1
N1 = 21

N5 = 1
N4 = 3
N3 = 4
N2 = 6
N1 = 16

(A)

(C)

(B)

X

X

X

Y

Y

Y

U = 22
4
3
2
1
0

en
er

gy

4
3
2
1
0

en
er

gy

4
3
2
1
0

en
er

gy

U = 22

U = 22

U = 5

U = 5

U = 5

= × = ×p p p Af u Af uj k j kXY X, Y, ( () )

362 CHAPTER 8:  Linking Energy and Entropy: The Boltzmann Distribution

kth energy level is just the product of the individual probabilities:

 (8.49)

Th e situation we are considering is illustrated in Figure 8.20, with one of the atoms 
labeled “X” (in panel A) and another labeled “Y” (in panel B). Th e probability, pXY 
of fi nding atom X in level 3 and atom Y in level 4 in the same microstate is given, 
according to Equation 8.49, by the product of the independent probabilities of 
fi nding the individual atoms in these levels:

 (8.50)

Notice that the total energy of the X and Y atoms in the situation shown in Figure 
18.20C is fi ve energy units (atom X has two energy units and atom Y has three 
energy units). 

Now consider the probability that the X and Y atoms have a total energy of uj + uk 
(which is fi ve in the example shown in Figure 18.20C). Th ere are many distinct 
microstates in which the total energy of the X and Y atoms is fi ve units, but in 
which the energy is distributed diff erently between the X and Y atoms, as shown 
in Figure 8.21. In each microstate where the energy of X and Y is uj + uk, the energy 
of the rest of the system is always Utotal − (uj + uk), where Utotal is the total energy 
of the system. 

Th e important point that emerges is that all confi gurations of the X and Y atoms 
that have the same total energy for these two atoms (that is, uj + uk) have the same 
probability of occurring. To see why this is the case, recognize that the probability 
of a particular confi guration of X and Y atoms is proportional to the multiplicity 
of the system with the X and Y atoms in the defi ned energy levels. Th is is given by 
the multiplicity of the rest of the system, excluding the X and Y atoms (the atoms 
in the rest of the system are shown shaded in light yellow in Figure 8.21). But in 
each case, the rest of the system has the same total energy (22 units in our exam-
ple) and the same number of atoms (28 atoms in our example). So, the number of 
microstates, and therefore the multiplicity, for the rest of the system must be the 
same in each case.

By this reasoning, we conclude that the probability of fi nding the two atoms X 
and Y with total energy uj + uk is given by an unspecifi ed function g(uj + uk), which 
depends on the sum of the energies of the two atoms. Th us:

 (8.51)

Th e parameter B in Equation 8.51 is a normalization constant.

( ) ( )= × = ×p p p Af Af3 4XY X,3 Y,4

Figure 8.21 Microstates of a system 
with X and Y atoms having the 
same total energy. Three different 
microstates are shown. In each 
one, the total energy of the X and 
Y molecules is fi ve units, but the 
fi ve units are distributed differently 
between X and Y. The remainder of the 
system (28 atoms) have 22 units of 
energy in each case. 

= +p Bg u u( )j kXY

N5 = 1
N4 = 3
N3 = 3
N2 = 5
N1 = 18

N5 = 4
N4 = 2
N3 = 2
N2 = 1
N1 = 21

N5 = 1
N4 = 3
N3 = 4
N2 = 6
N1 = 16

(A)

(C)

(B)

X

X

X

Y

Y

Y

U = 22
4
3
2
1
0

en
er

gy

4
3
2
1
0

en
er

gy

4
3
2
1
0

en
er

gy

U = 22

U = 22

U = 5

U = 5

U = 5

= × = ×p p p Af u Af uj k j kXY X, Y, ( () )

362 CHAPTER 8:  Linking Energy and Entropy: The Boltzmann Distribution

kth energy level is just the product of the individual probabilities:

 (8.49)

Th e situation we are considering is illustrated in Figure 8.20, with one of the atoms 
labeled “X” (in panel A) and another labeled “Y” (in panel B). Th e probability, pXY 
of fi nding atom X in level 3 and atom Y in level 4 in the same microstate is given, 
according to Equation 8.49, by the product of the independent probabilities of 
fi nding the individual atoms in these levels:

 (8.50)

Notice that the total energy of the X and Y atoms in the situation shown in Figure 
18.20C is fi ve energy units (atom X has two energy units and atom Y has three 
energy units). 

Now consider the probability that the X and Y atoms have a total energy of uj + uk 
(which is fi ve in the example shown in Figure 18.20C). Th ere are many distinct 
microstates in which the total energy of the X and Y atoms is fi ve units, but in 
which the energy is distributed diff erently between the X and Y atoms, as shown 
in Figure 8.21. In each microstate where the energy of X and Y is uj + uk, the energy 
of the rest of the system is always Utotal − (uj + uk), where Utotal is the total energy 
of the system. 

Th e important point that emerges is that all confi gurations of the X and Y atoms 
that have the same total energy for these two atoms (that is, uj + uk) have the same 
probability of occurring. To see why this is the case, recognize that the probability 
of a particular confi guration of X and Y atoms is proportional to the multiplicity 
of the system with the X and Y atoms in the defi ned energy levels. Th is is given by 
the multiplicity of the rest of the system, excluding the X and Y atoms (the atoms 
in the rest of the system are shown shaded in light yellow in Figure 8.21). But in 
each case, the rest of the system has the same total energy (22 units in our exam-
ple) and the same number of atoms (28 atoms in our example). So, the number of 
microstates, and therefore the multiplicity, for the rest of the system must be the 
same in each case.

By this reasoning, we conclude that the probability of fi nding the two atoms X 
and Y with total energy uj + uk is given by an unspecifi ed function g(uj + uk), which 
depends on the sum of the energies of the two atoms. Th us:

 (8.51)

Th e parameter B in Equation 8.51 is a normalization constant.

( ) ( )= × = ×p p p Af Af3 4XY X,3 Y,4

Figure 8.21 Microstates of a system 
with X and Y atoms having the 
same total energy. Three different 
microstates are shown. In each 
one, the total energy of the X and 
Y molecules is fi ve units, but the 
fi ve units are distributed differently 
between X and Y. The remainder of the 
system (28 atoms) have 22 units of 
energy in each case. 

= +p Bg u u( )j kXY

N5 = 1
N4 = 3
N3 = 3
N2 = 5
N1 = 18

N5 = 4
N4 = 2
N3 = 2
N2 = 1
N1 = 21

N5 = 1
N4 = 3
N3 = 4
N2 = 6
N1 = 16

(A)

(C)

(B)

X

X

X

Y

Y

Y

U = 22
4
3
2
1
0

en
er

gy

4
3
2
1
0

en
er

gy

4
3
2
1
0

en
er

gy

U = 22

U = 22

U = 5

U = 5

U = 5

= × = ×p p p Af u Af uj k j kXY X, Y, ( () )

Comparing Equations 8.49 and 8.51, we see that:

(8.52)

Equation 8.52 is the key result that reveals the nature of the probability distribu-
tion function for energy. According to the Equation 8.52, f with one argument 
multiplied by f with a second argument is proportional to a function whose argu-
ment is the sum of the two arguments of f. Th ere is only one mathematical func-
tion that has this property, and that is the exponential function.

Th e exponential function satisfi es Equation 8.52. If f and g are both exponential 
functions, then we can write:

and

Th en: 

(8.53)

From this, we reason that the probability distribution must be given by:

(8.54)

In principle, we could also choose the probability function as e+ ujβ , which would 
also satisfy Equation 8.52. But, the probability of fi nding molecules at higher 
energy levels must be smaller than the probability of fi nding molecules in lower 
energy levels. Hence, we choose e− ujβ  as the form of the probability function, 
because the value of this function decreases with increasing energy.

In Box 8.2, we provide a more rigorous derivation of the Boltzmann distribution, 
which starts from the statistical defi nition of the entropy and then applies the 
principles of energy conservation and entropy maximization. Th is analysis shows, 
for a system that exchanges heat with the surroundings, that the Boltzmann dis-
tribution is the one that maximizes the combined entropy of the system and the 
surroundings. Th e parameter β in Equation 8.54 is shown to be equal to 1/kBT. 
Th e complete form of the Boltzmann function is therefore:

(8.55)

8.11 The partition function indicates the accessibility of the 
higher energy levels of the system

As the system moves from a nonequilibrium state to equilibrium, its energy 
distribution keeps changing (Figure 8.22). Th e population of energy levels at 
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Figure 8.22 The energy distribution 
tends towards the Boltzmann 
distribution as the system relaxes 
towards equilibrium. Two molecular 
energy distributions are illustrated 
here. The vertical axis shows the 
energy, and the horizontal bars refl ect 
the relative populations of the energy 
levels. The distribution at left does not 
correspond to an equilibrium situation 
because the populations of the levels 
do not obey the Boltzmann rule. 
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The total energy of the system remains constant 

All microstates with the same total energy are equally likely.
Each particle’s energy distribution is independent of the others.
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Boltzmann Distribution
If you have eg an isolate system with N - number of atoms or molecules, and 
total energy U, when N is large (~NA), it is difficult to know how the energy is 
distributed through N atoms. Thus we can only describe in statistical terms 
the  population of a state, i.e. the Ni – number of molecules that will be found in 
an energy level with energy Ui. 

If you have M energy levels you can have different state distributions of this kind 
{N0, N1, … , NM}, eg if N = 100 , {98,0,2, …} or {96,1,1,1,1, …}. The most 
probable state is the one with more potential configurations and it is described by 
the Boltzmann distribution:

where Q is the partition function

and kB is the Boltzmann constant (kB = 1.381 x 10-23 J/K)

From this, temperature T is a parameter that characterises the distribution 
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involved. Th e multiplicity (W ) in Equation 8.1 must be calculated by using Equa-
tion 8.9, and it is tedious to calculate the factorial values that enter into Equa-
tion 8.9 when the number of molecules is large. Th e probabilistic defi nition of 
the entropy considers only the fractional occupancy of each energy level (or out-
come) and these fractional occupancies (that is, what fraction of the molecules 
are in a particular energy level) are always less than 1.0.

By using Equation 8.13 to defi ne the entropy, we are focusing attention on the 
probability distribution of the molecules, which specifi es the probability of fi nd-
ing molecules in diff erent energy levels. Th e probability of fi nding a molecule in a 
particular energy level is given by:

(8.14)

where Ni is the number of molecules in the i th energy level and N is the total 
number of molecules (see Figure 8.12). Th e probabilities defi ned in this way are 
said to be normalized, which means that the sum of all the individual probabili-
ties is 1.0: 

(8.15)

Th e molecule must be in one of the energy levels (without specifying which one), 
so the normalization of a probability distribution ensures that the probability of 
fi nding a molecule in some available energy level is unity. Th e normalization con-
dition can be written as:

(8.16)

Th e probability of being in any particular energy level is always less than or equal 
to 1.0, so the value of ln pi is less than or equal to zero (the logarithm of a number 
that is less than 1.0 is negative):

(8.17)

Th e negative sign in Equation 8.13 therefore ensures that the entropy is always 
positive. 

To see how the probabilistic defi nition makes it easier to calculate the entropy, 
consider a collection of dice where each die represents a molecule that can be 
in one of six conformations. Figure 8.13 compares the entropy of such a system 
when all six outcomes are equally likely with situations where the outcomes are 
biased. Bias in the probability of outcomes lowers the entropy. 

Figure 8.14 illustrates the link between probability and entropy with a molecu-
lar example. Imagine a system in which all 10,000 molecules of the system are 
divided equally between the two lowest energy levels of the system (see Figure 
8.14A). Alternatively, imagine the 10,000 molecules are divided equally among 
the fi rst fi ve energy levels, as shown in Figure 8.13B. What are the values of the 
entropy in the two cases? 

In the fi rst case, the probability of being in either one of the fi rst two levels is 0.5, 
and the probability of being in any other level is zero. According to Equation 8.13, 
the entropy is calculated as follows:

(8.18)

Note that the value obtained in Equation 8.18 is S/(NkB) and not S. We shall often 
calculate S/(NkB) rather than S when we are only interested in comparing the 
values of the entropy in situations where the number of molecules is the same. 
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- definition of the Boltzmann distribution:

- the partition function Q is constant at a given temperature (we assume  
that the energies of Ui don’t change with T), therefore we can say that 

Boltzmann Distribution and Energetic Levels    

and thus you can estimate the ratios of between different populations at 
different energy levels using the following relation:   

Remember that the gas constant R is the “molar” form of kB, in fact: 
R = NA kB = 8.3145 J/K*mol, thus if you work with KJ/mol you have to use RT in 
the Boltzmann distribution 
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-With the formula below we can access the ratios between  
populations of different energy levels using the following relation:  

Boltzmann Distribution and Energetic Levels    

At 300 K, the value of kBT is 4.2 × 10−21 J. Th is is an awkwardly small number, and 
it is more convenient to switch the units of energy to kJ•mol–1. Since 1 mol = 6.022 
× 1023 molecules,

(6.33)

Th us,

at 300 K, where ∆U is the diff erence in energy between the fi rst and second levels 
in units of kJ•mol–1. 

Table 6.1 expresses the Boltzmann factor e
U

k TB( )−∆
 as a function of energy in 

multiples of the value of kBT. Based on these values, we can see that when the dif-
ference in energy between two levels is much greater than kBT, the higher energy 
level is not populated to a signifi cant extent (see Figure 6.15). For example, if the 
energy diff erence between two levels is 2kBT, then the population of the upper 
level is ~13% that of the lower level. If the energy diff erence is 10kBT, then the 
population of the upper level decreases to 0.0045%.

Th e Boltzmann factor explains why we ignored electronic excitations when con-
sidering the contributions to the heat capacity of an ideal gas. Because we are 
concerned primarily with biological systems, we consider energy changes that 
occur near room temperature—that is, T ≈ 300 K and kBT ≈ 2.5 kJ•mol–1. Th e 
energy diff erence between the lowest electronic energy level and the next highest 
one is typically ~1000 kJ•mol–1—that is, ∆U >> kBT for electronic energy levels at 
room temperature. Th e much smaller thermal energy at room temperature (~2.5 
kJ•mol–1) is very unlikely to excite molecules to higher electronic energy levels. 
We can recognize that this is the case by considering that ultraviolet radiation can 
excite electrons into higher energy levels. Th e wavelength of ultraviolet radiation 
is ~100 nm, corresponding to an energy of ~1,200 kJ•mol–1.

When the Boltzmann constant (kB = 1.4 × 10−23 J•K−1) is expressed in units of 
J•mol–1, it is equivalent to the gas constant, R. Th at is, the gas constant is simply 
Boltzmann’s constant multiplied by Avogadro’s number (NA):

(6.34)

What this means is that if we use units of J•mol–1 for the energy, then instead of 
kBT we simply use RT to calculate the Boltzmann factor.
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-With the formula below we can access the ratios between  
populations of different energy levels using the following relation:  

3 molecules with different accessible energy levels - levels that are less spaced 
(< kT) are more accessible - at constant T

Boltzmann Distribution and Energetic Levels    

At 300 K, the value of kBT is 4.2 × 10−21 J. Th is is an awkwardly small number, and 
it is more convenient to switch the units of energy to kJ•mol–1. Since 1 mol = 6.022 
× 1023 molecules,
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level is ~13% that of the lower level. If the energy diff erence is 10kBT, then the 
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room temperature. Th e much smaller thermal energy at room temperature (~2.5 
kJ•mol–1) is very unlikely to excite molecules to higher electronic energy levels. 
We can recognize that this is the case by considering that ultraviolet radiation can 
excite electrons into higher energy levels. Th e wavelength of ultraviolet radiation 
is ~100 nm, corresponding to an energy of ~1,200 kJ•mol–1.
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What this means is that if we use units of J•mol–1 for the energy, then instead of 
kBT we simply use RT to calculate the Boltzmann factor.
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262 CHAPTER 6:  Energy and Intermolecular Forces

Th e partition function, Q, is a normalization factor that ensures that the probabil-
ity of fi nding a molecule in any one of the energy levels is 1.0, as will be explained 
in Chapter 8. Th e value of Q is a constant at a given temperature (that is, we assume 
that the energies, Ui , of the diff erent levels do not change with temperature), and 
so we can write a simpler form of the Boltzmann distribution as follows: 

(6.31)

Th e exponential term on the right-hand side of Equation 6.31 is known as the 
Boltzmann factor, and it determines the relative population of an energy level, as 
explained below. Note that the term kBT has units of energy, and that it is the ratio 
of the energy to the value of kBT that enters into the Boltzmann factor.

Th e Boltzmann distribution helps us understand which energy levels will be pop-
ulated to a signifi cant extent at a certain temperature at equilibrium (Figure 6.16). 
For example, consider any two energy levels for a molecule. Call the lower energy 
level 1, and call the higher energy level 2. Th e ratio of the number of molecules in 
level 2, N2 , to the number of molecules in level 1, N1, is given by the Boltzmann 
distribution as follows: 

(6.32)

where ∆U = U2 – U1.
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Figure 6.16 Population of energy levels as a function of the energy gap and temperature, as given by the Boltzmann 
distribution. (A) The energy spacings for three different kinds of molecules are shown, all at the same temperature. The energy of 
each level is shown in multiples of kBT. Molecule A has a large energy gap (∆U > kBT). The population of the upper levels is small. 
Molecule B has an intermediate energy gap (∆U ≈ kBT). The population of the upper levels increases. Molecule C has a small energy 
gap (∆U < kBT), and the population of the upper levels becomes much larger. The relative population, p, of each level is indicated 
on the right of each diagram. (B) Population of energy levels for the same molecule are shown at different temperatures. The 
population of the upper levels increases with temperature. Note that real molecules do not have equally spaced energy levels, and 
the examples shown here are merely illustrative.
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-With the formula below we can access the ratios between  
populations of different energy levels using the following relation:  

same molecule at different T, the occupancy of energy levels increases with T

Boltzmann Distribution and Energetic Levels    

At 300 K, the value of kBT is 4.2 × 10−21 J. Th is is an awkwardly small number, and 
it is more convenient to switch the units of energy to kJ•mol–1. Since 1 mol = 6.022 
× 1023 molecules,

(6.33)

Th us,

at 300 K, where ∆U is the diff erence in energy between the fi rst and second levels 
in units of kJ•mol–1. 

Table 6.1 expresses the Boltzmann factor e
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k TB( )−∆
 as a function of energy in 

multiples of the value of kBT. Based on these values, we can see that when the dif-
ference in energy between two levels is much greater than kBT, the higher energy 
level is not populated to a signifi cant extent (see Figure 6.15). For example, if the 
energy diff erence between two levels is 2kBT, then the population of the upper 
level is ~13% that of the lower level. If the energy diff erence is 10kBT, then the 
population of the upper level decreases to 0.0045%.

Th e Boltzmann factor explains why we ignored electronic excitations when con-
sidering the contributions to the heat capacity of an ideal gas. Because we are 
concerned primarily with biological systems, we consider energy changes that 
occur near room temperature—that is, T ≈ 300 K and kBT ≈ 2.5 kJ•mol–1. Th e 
energy diff erence between the lowest electronic energy level and the next highest 
one is typically ~1000 kJ•mol–1—that is, ∆U >> kBT for electronic energy levels at 
room temperature. Th e much smaller thermal energy at room temperature (~2.5 
kJ•mol–1) is very unlikely to excite molecules to higher electronic energy levels. 
We can recognize that this is the case by considering that ultraviolet radiation can 
excite electrons into higher energy levels. Th e wavelength of ultraviolet radiation 
is ~100 nm, corresponding to an energy of ~1,200 kJ•mol–1.

When the Boltzmann constant (kB = 1.4 × 10−23 J•K−1) is expressed in units of 
J•mol–1, it is equivalent to the gas constant, R. Th at is, the gas constant is simply 
Boltzmann’s constant multiplied by Avogadro’s number (NA):

(6.34)

What this means is that if we use units of J•mol–1 for the energy, then instead of 
kBT we simply use RT to calculate the Boltzmann factor.
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Th e partition function, Q, is a normalization factor that ensures that the probabil-
ity of fi nding a molecule in any one of the energy levels is 1.0, as will be explained 
in Chapter 8. Th e value of Q is a constant at a given temperature (that is, we assume 
that the energies, Ui , of the diff erent levels do not change with temperature), and 
so we can write a simpler form of the Boltzmann distribution as follows: 
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Th e exponential term on the right-hand side of Equation 6.31 is known as the 
Boltzmann factor, and it determines the relative population of an energy level, as 
explained below. Note that the term kBT has units of energy, and that it is the ratio 
of the energy to the value of kBT that enters into the Boltzmann factor.

Th e Boltzmann distribution helps us understand which energy levels will be pop-
ulated to a signifi cant extent at a certain temperature at equilibrium (Figure 6.16). 
For example, consider any two energy levels for a molecule. Call the lower energy 
level 1, and call the higher energy level 2. Th e ratio of the number of molecules in 
level 2, N2 , to the number of molecules in level 1, N1, is given by the Boltzmann 
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Figure 6.16 Population of energy levels as a function of the energy gap and temperature, as given by the Boltzmann 
distribution. (A) The energy spacings for three different kinds of molecules are shown, all at the same temperature. The energy of 
each level is shown in multiples of kBT. Molecule A has a large energy gap (∆U > kBT). The population of the upper levels is small. 
Molecule B has an intermediate energy gap (∆U ≈ kBT). The population of the upper levels increases. Molecule C has a small energy 
gap (∆U < kBT), and the population of the upper levels becomes much larger. The relative population, p, of each level is indicated 
on the right of each diagram. (B) Population of energy levels for the same molecule are shown at different temperatures. The 
population of the upper levels increases with temperature. Note that real molecules do not have equally spaced energy levels, and 
the examples shown here are merely illustrative.
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Boltzmann Distribution in macromolecules

Protein molecules take up 
energy as they unfold 

One can see how the formalism of the Boltzmann distribution helps us 
to understand what occurs in proteins and other biomolecules.

Shifting the distribution of populations 
with temperature 



Engineering different protein states
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Ground State (xtal-3dmv) 
Excited State 
Benzene 
Excited State Stabilizing Mutations 

Lysozyme

G113A  

R119P  

- Proteins can co-exist in multiple conformational states (e.g. ground and excited)

Protein Mutants 



What to know...
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- The Boltzmann distribution describes the populations of 
molecules in different energy levels.  

- Energy levels corresponding to energies much greater 
than kBT above the lowest energy level are not highly 
populated. 

- The energy required to break molecular interactions in 
folded macromolecules gives rise to the peak in heat 
capacity when the temperature is increased.
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Gibbs Free Energy 

- G is only dependent on the system 
- It accounts for both enthalpic and entropic contributions

How do we know when a biological process is at equilibrium 
or at least tend to the equilibrium conditions? We introduce a 
new function that will include the 1st and 2nd law, ie. 
conservation of energy and maximisation of entropy. This is 
the free energy (Gibbs free energy, G at constant pressure)  

which always decreases when a process occurs 
spontaneously and it is at a minimum at equilibrium at 
constant pressure and temperature 

388 CHAPTER 9:  Free Energy

We now defi ne a new state function of the system, which we call the Gibbs free 
energy (G): 

       G = H – TS                                                            (9.20)
All of the variables in Equation 9.20 refer to the system alone, and so we no longer 
use subscripts to distinguish them. Th e enthalpy (H), the temperature (T), and the 
entropy (S) in Equation 9.20 are all state variables, and so G is also a state function. 
Th e Gibbs free energy is named after Josiah Willard Gibbs, who fi rst introduced 
the ideas that led to the defi nition given in Equation 9.20. As we discuss below, in 
part C of this chapter, the change in Gibbs free energy during a process is equal 
to the maximum amount of non-expansion work that can be extracted from the 
process. Th e change in Gibbs free energy is therefore the amount of energy (or 
heat) that is “free” to be converted to work (the rest is bound up in entropy).

An infi nitesimally small change in G (that is, dG) is given by:
dG = dH – TdS – SdT

At constant temperature the value of dT is zero, and so this equation reduces to:
      dG = dH – TdS                                                        (9.21)

Substituting Equation 9.21 into Equation 9.19 yields:
dG ≤ 0  (constant pressure and temperature) (9.22)

Th us, a spontaneous process at constant temperature and pressure always 
involves a decrease in the Gibbs free energy of the system (that is, dG < 0). It fol-
lows, then, that the value of the Gibbs free energy is at a minimum (that is, dG = 0) 
at equilibrium, as shown in Figure 9.6. 
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The Gibbs free energy, G, of a 
system is given by:

G = H − TS
For a system at constant pressure 
and temperature, the value of G 
always decreases in a spontaneous 
process.
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heat) that is “free” to be converted to work (the rest is bound up in entropy).

An infi nitesimally small change in G (that is, dG) is given by:
dG = dH – TdS – SdT

At constant temperature the value of dT is zero, and so this equation reduces to:
      dG = dH – TdS                                                        (9.21)

Substituting Equation 9.21 into Equation 9.19 yields:
dG ≤ 0  (constant pressure and temperature) (9.22)

Th us, a spontaneous process at constant temperature and pressure always 
involves a decrease in the Gibbs free energy of the system (that is, dG < 0). It fol-
lows, then, that the value of the Gibbs free energy is at a minimum (that is, dG = 0) 
at equilibrium, as shown in Figure 9.6. 
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We now defi ne a new state function of the system, which we call the Gibbs free 
energy (G): 
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constant pressure. For reactions that do not involve changes in the number of gas 
molecules, the change in volume is often negligible, and under such conditions 
the two forms of the free energy can be used interchangeably to determine the 
direction of spontaneous change.

B. STANDARD FREE-ENERGY CHANGES

9.5 Standard free-energy changes are defi ned with reference 
to defi ned standard states 

Now that we have a prescription for identifying the direction of spontaneous 
change in terms of the free energy (that is, dG < 0), we are in a position to use 
it to determine the direction in which a chemical reaction will proceed under 
given conditions. We shall defer a discussion of how to determine the equilibrium 
points of chemical reactions until Chapter 10, when we discuss the concept of the 
equilibrium constant. Here we simply introduce some bookkeeping conventions 
so that we can calculate and compare free-energy values correctly. 

Consider the hydrolysis of ATP:
 (9.32)

where Pi represents the phosphate ion, [H(PO4)2–/H2(PO4)–]. In order to 
determine whether the reaction will proceed spontaneously from left to right, we 
need to know the value of the total change in free energy (ΔG) for the reaction 
(Figure 9.9):

(9.33)

Th e integral in Equation 9.33 indicates that we are summing over all the infi ni-
tesimal changes in free energy as the reactants are converted to products, and the 
value of the integral is just the diff erence between the free energies of the prod-
ucts, G (products), and the reactants, G (reactants). Writing out the free energies 
of the individual molecules that constitute the reactants and the products explic-
itly, we get:

 (9.34)
Th e free energy is an extensive property of the system because it depends on 
enthalpy and entropy, which are both extensive properties. Th is means that the 
values of each of the individual terms in Equation 9.34 will depend on how much 
ATP and water enter into the reaction, as explained in Figure 9.10. In order to 
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pressure, and concentration.

G
 (k

J)

¨G = free-energy change for 
         converting 2 moles of A into B
      = 2 × ¨Go

free energy
of 1 mole of B

B

¨Go = standard free-
           energy change
           for reaction

free energy
of 2 moles of A

A

free energy
of 2 moles of B

B

free energy
of 1 mole of A

A

G
 (k

J)

total free
energy of
reactants

A

total free
energy of
products

B

¨G = free-energy
         change of
         reaction

A B

Helmholtz free energy

The Helmholtz free energy, A, of a 
system is given by:

A = U − TS
For a system at constant volume 
and temperature, the value of A 
always decreases in a spontaneous 
process.

Consider ATP hydrolysis: 

390 CHAPTER 9:  Free Energy

constant pressure. For reactions that do not involve changes in the number of gas 
molecules, the change in volume is often negligible, and under such conditions 
the two forms of the free energy can be used interchangeably to determine the 
direction of spontaneous change.

B. STANDARD FREE-ENERGY CHANGES

9.5 Standard free-energy changes are defi ned with reference 
to defi ned standard states 

Now that we have a prescription for identifying the direction of spontaneous 
change in terms of the free energy (that is, dG < 0), we are in a position to use 
it to determine the direction in which a chemical reaction will proceed under 
given conditions. We shall defer a discussion of how to determine the equilibrium 
points of chemical reactions until Chapter 10, when we discuss the concept of the 
equilibrium constant. Here we simply introduce some bookkeeping conventions 
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where Pi represents the phosphate ion, [H(PO4)2–/H2(PO4)–]. In order to 
determine whether the reaction will proceed spontaneously from left to right, we 
need to know the value of the total change in free energy (ΔG) for the reaction 
(Figure 9.9):
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Usually we refer to the standard        at standard conditions: ie 
pressure 1 atm, 1 M of solute, apart for water (55 M), and room 
temperature 298 K. Thus at these conditions for ATP hydrolysis  
is ΔG0 = –28 kJ•mol–1 

provide a standard reference value for the free-energy change, we defi ne the 
molar free energy of a molecule as the free energy of one mole of that molecule. 
Since the free energy of a molecule changes with temperature, pressure, and 
whether it is pure or in a mixture, we need to know the conditions for which a 
free-energy change is being reported. 

By convention, free-energy changes are quoted for the standard state, which 
refers to a condition of defi ned concentration and pressure. Most biochemi-
cal reactions occur in aqueous solution, and the standard state is set to be a one 
molar (M) solution of the molecules in water and 1 atm pressure. Th e free-energy 
change that occurs upon converting a stoichiometric equivalent of reactant mole-
cules into the stoichiometric equivalent of product molecules, all under standard 
conditions, is known as the standard free-energy change, ΔGo, of the reaction 
(see Figure 9.10). Standard free-energy changes are usually reported at room tem-
perature (298 K). Th e value of ΔGo is temperature dependent, and so if we are 
interested in the standard free-energy change at a diff erent temperature, then we 
have to account for the change in ΔGo with temperature. Th is is discussed further 
in Chapter 10.

Th ere are some important special cases in the defi nition of standard states. Th e 
standard state for water is pure water (55 M). For a solid material the standard 
state is the pure solid. Th e natural standard state for protons in water is that of an 
aqueous solution at pH 7 ([H+] = 10–7 M). Th is convention, common in biochem-
istry, defi nes the biochemical standard state, and is diff erent from the conven-
tion in other branches of chemistry, where the standard states are set to be 1 M 
for all solutions, including H+ in water. To remind us of this diff erence, standard 
free-energy changes in biochemistry are often denoted as ΔGoމ rather than ΔGo. 
We shall always use the biochemical defi nition of the standard state in this book, 
unless stated otherwise, and will therefore drop the “prime” denotation.

Th e standard free-energy change (ΔGo) for the hydrolysis of ATP is –28 kJ•mol–1. 
Th e value of ΔGo for the hydrolysis of ATP depends on the concentration of Mg2+ 
ions in the solution, as well as the pH. Th e value quoted here is for pH 7 and a 
magnesium ion concentration of 100 mM. Th e negative value of the free-energy 
change means that the reaction will proceed spontaneously to the right for a 1 M 
solution of pure ATP in water, because the free energy of ATP and water (the reac-
tants) is higher than the free energy of ADP and Pi (the products). 

Th e standard free-energy change is a hypothetical concept, corresponding to the 
complete conversion of one mole of ATP (as a 1 M solution) into one mole of ADP 
(as a 1 M solution). In reality, if we start the reaction with a 1 M solution of ATP, 
the reaction will not proceed to completion, but will instead come to an equi-
librium point at which the concentration of ATP is not precisely zero (this eff ect 
arises from the concentration dependence of free energy, as we shall see in Sec-
tion 10.8).

9.6 The zero point of the free-energy scale is set by the free 
energy of the elements in their most stable forms

If we know the molar free energies of the reactants and products, we can readily 
calculate the molar free-energy change of a reaction by using Equation 9.34, but 
how do we know these values in the fi rst place? By convention, the molar free 
energy of a molecule is the standard free-energy change that results from convert-
ing stoichiometric amounts of the pure elements that are its constituents into one 
mole of the molecule of interest under standard conditions. Th is is referred to as 
the standard free energy of formation of the molecule (Δf Go).

We are usually interested only in diff erences in the values of free energies rather 
than the absolute values of the free energies. It therefore suffi  ces to defi ne a spe-
cifi c zero point for the free-energy scale, and to then measure all free-energy 
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constant pressure. For reactions that do not involve changes in the number of gas 
molecules, the change in volume is often negligible, and under such conditions 
the two forms of the free energy can be used interchangeably to determine the 
direction of spontaneous change.

B. STANDARD FREE-ENERGY CHANGES

9.5 Standard free-energy changes are defi ned with reference 
to defi ned standard states 

Now that we have a prescription for identifying the direction of spontaneous 
change in terms of the free energy (that is, dG < 0), we are in a position to use 
it to determine the direction in which a chemical reaction will proceed under 
given conditions. We shall defer a discussion of how to determine the equilibrium 
points of chemical reactions until Chapter 10, when we discuss the concept of the 
equilibrium constant. Here we simply introduce some bookkeeping conventions 
so that we can calculate and compare free-energy values correctly. 

Consider the hydrolysis of ATP:
 (9.32)

where Pi represents the phosphate ion, [H(PO4)2–/H2(PO4)–]. In order to 
determine whether the reaction will proceed spontaneously from left to right, we 
need to know the value of the total change in free energy (ΔG) for the reaction 
(Figure 9.9):
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Th e integral in Equation 9.33 indicates that we are summing over all the infi ni-
tesimal changes in free energy as the reactants are converted to products, and the 
value of the integral is just the diff erence between the free energies of the prod-
ucts, G (products), and the reactants, G (reactants). Writing out the free energies 
of the individual molecules that constitute the reactants and the products explic-
itly, we get:
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Th e free energy is an extensive property of the system because it depends on 
enthalpy and entropy, which are both extensive properties. Th is means that the 
values of each of the individual terms in Equation 9.34 will depend on how much 
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changes relative to the zero values of this scale. By convention, the free energy 
of an element (for example, N2, or O2) in the most stable form of that element 
(for example, oxygen gas, O2, and not ozone, O3) has its free energy set to zero 
under standard conditions. Th e free energies of all other molecular forms or 
phases are measured relative to this set point for the zero on the free-energy scale 
(Figure 9.11). Using this convention, the free-energy change for any reaction 
under standard conditions is given by:

(9.35)

Th e free energies of formation of a few compounds that are important in bio-
chemistry are given in Table 9.1. A more extensive list of such compounds may be 
found in biochemistry textbooks, or in compendia such as the Handbook of Bio-
chemistry and Molecular Biology (see Further Reading at the end of this chapter).

9.7 Thermodynamic cycles allow the determination of the 
free energies of formation of complex molecules from 
simpler ones

It is usually very diffi  cult, if not impossible, to measure the free energy of forma-
tion of a complex molecule by converting elemental molecules directly into the 
complex molecule in one step. Th e free energy is a state function, however, and 
so the change in free energy for a process is independent of the path, and can be 
obtained by summing over the free-energy changes for any particular stepwise 
pathway that links reactants and products. We can break up the formation of a 
complex molecule into a series of intermediate reactions involving less complex 
molecules. If the values of Δf Go for these less complex molecules can be deter-
mined experimentally, these values can then be combined to yield the value of 
Δf Go for the more complex molecule. 

We fi rst illustrate this idea in an abstract way by considering the free energy of for-
mation of a hypothetical molecule, denoted Z. Th en, in the subsequent sections, 
we make these ideas concrete by discussing how the free energy of formation of a 
particular molecule, glucose, is determined experimentally.

Imagine that the molecule Z is formed from the elements A, B, C, and D:

 (9.36)
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Figure 9.11 Standard free energies 
of formation. By convention, the 
molar free energies of elemental 
molecules in their standard states 
are set to zero. The standard free-
energy change for converting the 
pure elemental molecules into 
more complex molecules, in molar 
stoichiometry, is known as the 
standard free energy of formation, 
∆f Go, for the molecule.

Table 9.1 Standard free energies 
of formation of some biochemical 
compounds (1 atm, 298 K).

Compound ∆Goމ (kJ•mol–1)

acetate− –369.2

CO2 (gas) –394.4

CO2 (aqueous 
solution)

–386.2

carbonate ion –587.1

ethanol –181.5

fructose –915.4

fructose-6-
phosphate2−

–1758.3

α-D-glucose –917.2

glucose-6-
phosphate2−

–1760.2

H+ (aqueous 
solution)

0.0

H2 (gas) 0.0

H2O (liquid) –237.2

isocitrate3− –1160.0

lactate− –516.6

OH− –157.3

pyruvate− –474.5

succinate2− –690.2

(From D. Voet and J.G. Voet, Biochemistry, 
3rd ed. New York: John Wiley & Sons, 
2004; D.E. Metzler, Biochemistry, The 
Chemical Reactions of Living Cells. New 
York: Academic Press, 1977.) ⎯ →⎯⎯A + B + C + D ZG (Z )f∆

o
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(for example, oxygen gas, O2, and not ozone, O3) has its free energy set to zero 
under standard conditions. Th e free energies of all other molecular forms or 
phases are measured relative to this set point for the zero on the free-energy scale 
(Figure 9.11). Using this convention, the free-energy change for any reaction 
under standard conditions is given by:

(9.35)

Th e free energies of formation of a few compounds that are important in bio-
chemistry are given in Table 9.1. A more extensive list of such compounds may be 
found in biochemistry textbooks, or in compendia such as the Handbook of Bio-
chemistry and Molecular Biology (see Further Reading at the end of this chapter).

9.7 Thermodynamic cycles allow the determination of the 
free energies of formation of complex molecules from 
simpler ones

It is usually very diffi  cult, if not impossible, to measure the free energy of forma-
tion of a complex molecule by converting elemental molecules directly into the 
complex molecule in one step. Th e free energy is a state function, however, and 
so the change in free energy for a process is independent of the path, and can be 
obtained by summing over the free-energy changes for any particular stepwise 
pathway that links reactants and products. We can break up the formation of a 
complex molecule into a series of intermediate reactions involving less complex 
molecules. If the values of Δf Go for these less complex molecules can be deter-
mined experimentally, these values can then be combined to yield the value of 
Δf Go for the more complex molecule. 

We fi rst illustrate this idea in an abstract way by considering the free energy of for-
mation of a hypothetical molecule, denoted Z. Th en, in the subsequent sections, 
we make these ideas concrete by discussing how the free energy of formation of a 
particular molecule, glucose, is determined experimentally.

Imagine that the molecule Z is formed from the elements A, B, C, and D:
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Figure 9.11 Standard free energies 
of formation. By convention, the 
molar free energies of elemental 
molecules in their standard states 
are set to zero. The standard free-
energy change for converting the 
pure elemental molecules into 
more complex molecules, in molar 
stoichiometry, is known as the 
standard free energy of formation, 
∆f Go, for the molecule.

Table 9.1 Standard free energies 
of formation of some biochemical 
compounds (1 atm, 298 K).

Compound ∆Goމ (kJ•mol–1)

acetate− –369.2

CO2 (gas) –394.4

CO2 (aqueous 
solution)

–386.2

carbonate ion –587.1

ethanol –181.5

fructose –915.4

fructose-6-
phosphate2−

–1758.3

α-D-glucose –917.2

glucose-6-
phosphate2−

–1760.2

H+ (aqueous 
solution)

0.0

H2 (gas) 0.0

H2O (liquid) –237.2

isocitrate3− –1160.0

lactate− –516.6

OH− –157.3

pyruvate− –474.5

succinate2− –690.2

(From D. Voet and J.G. Voet, Biochemistry, 
3rd ed. New York: John Wiley & Sons, 
2004; D.E. Metzler, Biochemistry, The 
Chemical Reactions of Living Cells. New 
York: Academic Press, 1977.) ⎯ →⎯⎯A + B + C + D ZG (Z )f∆

o

∑ ∑( ) ( )= −G G Gproduct reactantf
all

products
all

reactants

∆∆ f∆
o o o

How to calculate these free energies? 
Using the free energy of formation of the 
molecules involved in the reactions, starting 
from the composing elements 
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Free Energy of chemical reactions
Since it might be difficult to measure the free energy of 
formation for some given products in one single step, the 
reaction is broken down in intermediate steps involving less 
complex reactions and thermodynamic cycles are used to 
calculate the final free energy (this is working because G is a 
state function) 

In the fi rst reaction, elemental carbon (graphite) combines with oxygen to yield 
carbon dioxide, and the standard free-energy change for this reaction is the free 
energy of formation of carbon dioxide, Δf Go(CO2). Th is is a combustion reac-
tion, involving the burning of a compound in oxygen. Th e second reaction is the 
combustion of hydrogen to produce water, with a standard free-energy change 
equal to the free energy of formation of water, Δf Go(H2O). Th e third reaction is 
the reverse of the combustion of glucose to produce carbon dioxide and water. 
Th e free-energy change of this reaction is the negative of the standard free-energy 
change for glucose combustion, ΔGo.

9.9 Enthalpies and entropies of formation can be combined 
to give the free energy of formation

Figure 9.14 shows the thermodynamic cycle formed by the chemical reactions 
depicted in Equation 9.42. Notice that all three reactions in pathway 2 are com-
bustion reactions. Combustion reactions are diffi  cult to initiate, but once initiated, 
they proceed essentially to completion. As we discuss in Chapter 10, one common 
way to determine the value of the standard free-energy change of a reaction is to 
determine the equilibrium constant by measuring the concentrations of the reac-
tions and products at equilibrium. Th is is impractical for combustion reactions, 
because the concentrations of the reactants are negligible after the combustion 
takes place. Instead, the changes in enthalpy and entropy for the reactions are 
determined separately, and then combined to yield the change in free energy. 

Th e standard change in enthalpy for a reaction is denoted ΔHo, and this is the 
change in enthalpy when one mole of reactants is converted to one mole of prod-
ucts under standard conditions. Th e standard change in entropy is defi ned simi-
larly, and is denoted ΔSo. Th e enthalpy of formation of a compound, denoted 
Δf Ho, is the diff erence in the enthalpy of one mole of the compound in the stand-
ard state and stoichiometric equivalents of the corresponding elements. Th e 
entropy of formation (Δf So) is defi ned similarly.

From the defi nition of the free energy (Equation 9.20), the standard free-energy 
change for a reaction, ΔGo, can be written in terms of the standard changes in 
enthalpy and entropy as:

ΔGo = ΔHo – TΔSo                                                      (9.43)

Th e enthalpy and the entropy are state functions, so changes in their values do not 
depend on the path followed between an initial state and a fi nal state. Just as we 
did for the free energy, we can construct thermodynamic cycles for the changes in 
enthalpy and entropy. Th ese cycles allow us to choose the most convenient exper-
imental route to determine the values of the changes in enthalpy and entropy.

6C + 6O2 + 6H2 + 3O2 C6H12O6 + 6O2

6CO2 + 3O2 + 6H2 6H2O + 6CO2

(carbon combustion)
6 × ¨fGo (CO2)

(reverse of glucose 
combustion)

–¨Go

(hydrogen combustion)
6 × ¨fGo (H2O)

¨fGo (glucose)

1

2

Figure 9.14 Thermodynamic cycle 
for the free energy of formation 
of glucose. Pathway 1 shows the 
formation of glucose from the 
elements. Pathway 2 involves three 
combustion reactions (one in reverse) 
that are combined to produce glucose 
from the elements. 
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