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Preface

This book is motivated by the very favorable reception given to the previous editions as well
as by the considerable range of new developments in the laser field since the publication of
the third edition in 1989. These new developments include, among others, Quantum-Well and
Multiple-Quantum Well lasers, diode-pumped solid-state lasers, new concepts for both stable
and unstable resonators, femtosecond lasers, ultra-high-brightness lasers etc. The basic aim
of the book has remained the same, namely to provide a broad and unified description of laser
behavior at the simplest level which is compatible with a correct physical understanding. The
book is therefore intended as a text-book for a senior-level or first-year graduate course and/or
as a reference book.

This edition corrects several errors introduced in the previous edition. The most relevant
additions or changes to since the third edition can be summarized as follows:

1. A much-more detailed description of Amplified Spontaneous Emission has been
given [Chapt. 2] and a novel simplified treatment of this phenomenon both for
homogeneous or inhomogeneous lines has been introduced [Appendix C].

2. A major fraction of a chapter [Chapt. 3] is dedicated to the interaction of radiation
with semiconductor media, either in a bulk form or in a quantum-confined structure
(quantum-well, quantum-wire and quantum dot).

3. A modern theory of stable and unstable resonators is introduced, where a more exten-
sive use is made of the ABCD matrix formalism and where the most recent topics
of dynamically stable resonators as well as unstable resonators, with mirrors having
Gaussian or super-Gaussian transverse reflectivity profiles, are considered [Chapt. 5].

4. Diode-pumping of solid-state lasers, both in longitudinal and transverse pumping
configurations, are introduced in a unified way and a comparison is made with
corresponding lamp-pumping configurations [Chapt. 6].

5. Spatially-dependent rate equations are introduced for both four-level and quasi-three-
level lasers and their implications, for longitudinal and transverse pumping, are also
discussed [Chapt. 7].
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6. Laser mode-locking is considered at much greater length to account for e.g. new
mode-locking methods, such as Kerr-lens mode-locking. The effects produced by
second-order and third-order dispersion of the laser cavity and the problem of disper-
sion compensation to achieve the shortest pulse-durations are also discussed at some
length [Chapt. 8].

7. New tunable solid-state lasers, such as Ti: sapphire and Cr: LISAF, as well as
new rare-earth lasers such as Yb3t, Er*t, and Ho’" are also considered in detail
[Chapt. 9].

8. Semiconductor lasers and their performance are discussed at much greater length
[Chapt. 9].

9. The divergence properties of a multimode laser beam as well as its propagation
through an optical system are considered in terms of the M>-factor and in terms of
the embedded Gaussian beam [Chapt. 11 and 12].

10. The production of ultra-high peak intensity laser beams by the technique of
chirped-pulse-amplification and the related techniques of pulse expansion and pulse
compression are also considered in detail [Chapt. 12].

The book also contains numerous, thoroughly developed, examples, as well as many
tables and appendixes. The examples either refer to real situations, as found in the literature
or encountered through my own laboratory experience, or describe a significative advance
in a particular topic. The tables provide data on optical, spectroscopic and nonlinear-optical
properties of laser materials, the data being useful for developing a more quantitative context
as well as for solving the problems. The appendixes are introduced to consider some specific
topics in more mathematical detail. A great deal of effort has also been devoted to the logical
organization of the book so as to make its content more accessible.

The basic philosophy of the book is to resort, wherever appropriate, to an intuitive picture
rather than to a detailed mathematical description of the phenomena under consideration.
Simple mathematical descriptions, when useful for a better understanding of the physical
picture, are included in the text while the discussion of more elaborate analytical models is
deferred to the appendixes. The basic organization starts from the observation that a laser can
be considered to consists of three elements, namely the active medium, the resonator, and the
pumping system. Accordingly, after an introductory chapter, Chapters 2-3, 4-5 and 6 describe
the most relevant features of these elements, separately. With the combined knowledge about
these constituent elements, chapters 7 and 8 then allow a discussion of continuos-wave and
transient laser behavior, respectively. Chapters 9 and 10 then describe the most relevant types
of laser exploiting high-density and low-density media, respectively. Lastly, chapters 11 and
12 consider a laser beam from the user’s view-point examining the properties of the output
beam as well as some relevant laser beam transformations, such as amplification, frequency
conversion, pulse expansion or compression.

With so many topics, examples, tables and appendixes, it is clear that the entire content
of the book could not be covered in only a one semester-course. However the organization
of the book allows several different learning paths. For instance, one may be more interested
in learning the Principles of Laser Physics. The emphasis of the study should then be mostly
concentrated on the first section of the book [Chapt. 1-5 and Chapt. 7-8]. If, on the other hand,
the reader is more interested in the Principles of Laser Engineering, effort should mostly be
concentrated on the second part of the book Chap. 6 and 9-12. The level of understanding



Preface

of a given topic may also be suitably modulated by e.g. considering, in more or less detail,
the numerous examples, which often represent an extension of a given topic, as well as the
numerous appendixes.

Writing a book, albeit a satisfying cultural experience, represents a heavy intellectual and
physical effort. This effort has, however, been gladly sustained in the hope that this edition
can serve the pressing need for a general introductory course to the laser field.

ACKNOWLEDGMENTS. I wish to acknowledge the following friends and colleagues,
whose suggestions and encouragement have certainly contributed to improving the book in
a number of ways: Christofer Barty, Vittorio De Giorgio, Emilio Gatti, Dennis Hall, Giinther
Huber, Gerard Mourou, Colin Webb, Herbert Welling. I wish also to warmly acknowl-
edge the critical editing of David C. Hanna, who has acted as much more than simply a
translator. Lastly I wish to thank, for their useful comments and for their critical reading
of the manuscript, my former students: G. Cerullo, S. Longhi, M. Marangoni, M. Nisoli,
R. Osellame, S. Stagira, C. Svelto, S. Taccheo, and M. Zavelani.

Milano Orazio Svelto
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Introductory Concepts

In this introductory chapter, the fundamental processes and the main ideas behind laser oper-
ation are introduced in a very simple way. The properties of laser beams are also briefly
discussed. The main purpose of this chapter is thus to introduce the reader to many of the con-
cepts that will be discussed later on, in the book, and therefore help the reader to appreciate
the logical organization of the book.

1.1. SPONTANEOUS AND STIMULATED EMISSION, ABSORPTION

To describe the phenomenon of spontaneous emission, let us consider two energy lev-
els, 1 and 2, of some atom or molecule of a given material, their energies being E; and
E; (E| < E») (Fig. 1.1a). As far as the following discussion is concerned, the two levels could
be any two out of the infinite set of levels possessed by the atom. It is convenient, however, to
take level 1 to be the ground level. Let us now assume that the atom is initially in level 2. Since
E, > E,, the atom will tend to decay to level 1. The corresponding energy difference, E; —E|,
must therefore be released by the atom. When this energy is delivered in the form of an elec-
tromagnetic (e.m. from now on) wave, the process will be called spontaneous (or radiative)
emission. The frequency vy of the radiated wave is then given by the well known expression

vo = (E» — E1)/h (1.1.1)

where A is Planck’s constant. Spontaneous emission is therefore characterized by the emis-
sion of a photon of energy hvy = E, — E;, when the atom decays from level 2 to level 1
(Fig. 1.1a). Note that radiative emission is just one of the two possible ways for the atom
to decay. The decay can also occur in a nonradiative way. In this case the energy difference
E, — E, is delivered in some form of energy other than e.m. radiation (e.g. it may go into
kinetic or internal energy of the surrounding atoms or molecules). This phenomenon is called
non-radiative decay.

O. Svelto, Principles of Lasers, 1
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FIG. 1.1. Schematic illustration of the three processes: (a) spontaneous emission; (b) stimulated emission; (c)
absorption.

Let us now suppose that the atom is found initially in level 2 and that an e.m. wave of
frequency v = v, (i.e., equal to that of the spontaneously emitted wave) is incident on the
material (Fig. 1.1b). Since this wave has the same frequency as the atomic frequency, there is
a finite probability that this wave will force the atom to undergo the transition 2 — 1. In this
case the energy difference E, — E is delivered in the form of an e.m. wave that adds to the
incident one. This is the phenomenon of stimulated emission. There is a fundamental differ-
ence between the spontaneous and stimulated emission processes. In the case of spontaneous
emission, the atoms emits an e.m. wave that has no definite phase relation with that emitted by
another atom. Furthermore, the wave can be emitted in any direction. In the case of stimulated
emission, since the process is forced by the incident e.m. wave, the emission of any atom adds
in phase to that of the incoming wave and along the same direction.

Let us now assume that the atom is initially lying in level 1 (Fig. 1.1c). If this is the
ground level, the atom will remain in this level unless some external stimulus is applied to
it. We shall assume, then, that an e.m. wave of frequency v = v, is incident on the material.
In this case there is a finite probability that the atom will be raised to level 2. The energy
difference E, — E| required by the atom to undergo the transition is obtained from the energy
of the incident e.m. wave. This is the absorption process.

To introduce the probabilities for these emission and absorption phenomena, let N be the
number of atoms (or molecules) per unit volume which, at time #, are lying in a given energy
level. From now on the quantity N will be called the population of the level.

For the case of spontaneous emission, the probability for the process to occur can be
defined by stating that the rate of decay of the upper state population, (dN,/dt),,, must be
proportional to the population N,. We can therefore write

dN
(—2) = —AN, (1.1.2)
dt s

where the minus sign accounts for the fact that the time derivative is negative. The coefficient
A, introduced in this way, is a positive constant and is called the rate of spontaneous emission
or the Einstein A coefficient (an expression for A was in fact first obtained by Einstein from
thermodynamic considerations). The quantity 7, = 1/ A is called the spontaneous emission
(or radiative) lifetime. Similarly, for non-radiative decay, we can often write

(dNZ) __M (1.1.3)

dt Tor
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where 1, is referred to as the non-radiative decay lifetime. Note that, for spontaneous emis-
sion, the numerical value of A (and ,,) depends only on the particular transition considered.
For non-radiative decay, t,, depends not only on the transition but also on the characteristics
of the surrounding medium.

We can now proceed, in a similar way, for the stimulated processes (emission or
absorption). For stimulated emission we can write

dN,
— = —W,N. 1.14
(dt )H 21N> ( )

where (dN,/dt) is the rate at which transitions 2 — 1 occur as a result of stimulated emission
and W, is called the rate of stimulated emission. Just as in the case of the A coefficient defined
by Eq. (1.1.2) the coefficient W,; also has the dimension of (time)_l. Unlike A, however, W5
depends not only on the particular transition but also on the intensity of the incident e.m.
wave. More precisely, for a plane wave, it will be shown that we can write

W21 =C721F (1.1.5)

where F is the photon flux of the wave and o07; is a quantity having the dimension of an
area (the stimulated emission cross section) and depending on the characteristics of the given
transition.

In a similar fashion to Eq. (1.1.4), we can define an absorption rate W,; by means of the
equation

A I (1.1.6)
a ).~ 124V -1
where (dN; /dt), is the rate of the 1 — 2 transitions due to absorption and N is the population
of level 1. Furthermore, just as in Eq. (1.1.5), we can write

W]z =O'12F (117)

where 0, is some characteristic area (the absorption cross section), which depends only on
the particular transition.

In what has just been said, the stimulated processes have been characterized by the stim-
ulated emission and absorption cross-sections, 0,; and oj,, respectively. Now, it was shown
by Einstein at the beginning of the twentieth century that, if the two levels are non-degenerate,
one always has W1 = Wy, and 021 = o75. If levels 1 and 2 are g,-fold and g,-fold degenerate,
respectively one has instead

&Wi = g1Wn (1.1.8)

i.e.
82021 = 81012 (1.1.9)

Note also that the fundamental processes of spontaneous emission, stimulated emission
and absorption can readily be described in terms of absorbed or emitted photons as follows
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(see Fig. 1.1). (1) In the spontaneous emission process, the atom decays from level 2 to level 1
through the emission of a photon. (2) In the stimulated emission process, the incident photon
stimulates the 2 — 1 transition and we then have two photons (the stimulating plus the stim-
ulated one). (3) In the absorption process, the incident photon is simply absorbed to produce
the 1 — 2 transition. Thus we can say that each stimulated emission process creates while
each absorption process annihilates a photon.

1.2. THE LASER IDEA

Consider two arbitrary energy levels 1 and 2 of a given material and let N; and N, be their
respective populations. If a plane wave with a photon flux F is traveling along the z direction in
the material (Fig. 1.2), the elemental change, dF, of this flux along the elemental length, dz, of
the material will be due to both the stimulated and emission processes occurring in the shaded
region of Fig. 1.2. Let S be the cross sectional area of the beam. The change in number between
outgoing and incoming photons, in the shaded volume per unit time, will thus be SdF. Since
each stimulated process creates while each absorption removes a photon, SdF must equal the
difference between stimulated emission and absorption events occurring in the shaded volume
per unit time. From (1.1.4) and (1.1.6) we can thus write SdF = (W, N, — W2N;)(Sdz) where
Sdz is, obviously, the volume of the shaded region. With the help of Eqgs. (1.1.5), (1.1.7) and
(1.1.9) we obtain

dF = 021F [N> — (g2N1/81)] dz (1.2.1)

Note that, in deriving Eq. (1.2.1), we have not taken into account the radiative and non-
radiative decays. In fact, non-radiative decay does not add any new photons while the photons
created by the radiative decay are emitted in any direction and do not contribute to the
incoming photon flux F.

Equation (1.2.1) shows that the material behaves as an amplifier (i.e., dF/dz > 0) if N, >
g2N1/g1, while it behaves as an absorber if N, < goN;/g;. Now, at thermal equilibrium, the
populations are described by Boltzmann statistics. So, if N{ and N5 are the thermal equilibrium

F

A\

F+dF

AN

* AN

FIG. 1.2. Elemental change dF in the photon flux F fro a plane e.m. wave in traveling a distance dz through the
material.
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populations of the two levels, we have

N¢ E,—E
2 - 82 exp — [_2 1} (1.2.2)
le g1 kT

where k is Boltzmann’s constant and 7 the absolute temperature of the material. In thermal
equilibrium we thus have NS < g>N{/gi. According to Eq. (1.2.1), the material then acts as
an absorber at frequency v. This is what happens under ordinary conditions. If, however, a
non-equilibrium condition is achieved for which N, > g,N;/g; then the material will act as
an amplifier. In this case we will say that there exists a population inversion in the material,
by which we mean that the population difference N, — (g2N1/g1) is opposite in sign to that
which exists under thermodynamic equilibrium [N, — (g2N;/g1) < 0]. A material in which
this population inversion is produced will be called an active material.

If the transition frequency vo = (E, — E)/ kT falls in the microwave region, this type
of amplifier is called a maser amplifier. The word maser is an acronym for “microwave
amplification by stimulated emission of radiation.” If the transition frequency falls in the
optical region, the amplifier is called a laser amplifier. The word laser is again an acronym,
with the letter / (light) substituted for the letter m (microwave).

To make an oscillator from an amplifier, it is necessary to introduce a suitable pos-
itive feedback. In the microwave region this is done by placing the active material in a
resonant cavity having a resonance at frequency vy. In the case of a laser, the feedback is
often obtained by placing the active material between two highly reflecting mirrors (e.g.
plane parallel mirrors, see Fig. 1.3). In this case, a plane e.m. wave traveling in the direc-
tion perpendicular to the mirrors will bounce back and forth between the two mirrors and
be amplified on each passage through the active material. If one of the two mirrors is made
partially transparent, a useful output beam is obtained from this mirror. It is important to
realize that, for both masers and lasers, a certain threshold condition must be reached. In
the laser case, for instance, the oscillation will start when the gain of the active material
compensates the losses in the laser (e.g. the losses due to the output coupling). Accord-
ing to Eq. (1.2.1), the gain per pass in the active material (i.e. the ratio between the output
and input photon flux) is exp {o[N2 — (g2N1/g1)]l} where we have denoted, for simplic-
ity, 0 = 07, and where [ is the length of the active material. Let R; and R, be the power
reflectivity of the two mirrors (Fig. 1.3) and let L; be the internal loss per pass in the laser
cavity. If, at a given time, F' is the photon flux in the cavity, leaving mirror 1 and traveling
toward mirror 2, then the photon flux, F’, again leaving mirror 1 after one round trip will be
F' = F exp{0o[N2—(g2N1/g1)]l} x(1—L;))Ry x exp {d[N2—(g2N/g1)]{} x (1—L;)R; . At thresh-
old we must have F/ = F, and therefore Ry R,(1 — L;)* exp {20[N> — (g2N1/g1)]l} = 1. This
equation shows that threshold is reached when the population inversion, N = N, — (g2N1/g1),
reaches a critical value, known as the critical inversion, given by

N, = —[InR,R, 4+ 2In (1 — L,)]/ 201 (1.2.3)

Output Beam

Mirror 1 Active Material Mirror 2

FIG. 1.3. Scheme of a laser.
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The previous expression can be put in a somewhat simpler form if we define

yi=—InR=—-In(1-Ty) (1.2.4a)
Y2 = —InR, = —ln(l - Tz) (124b)
yi=—In(1—L) (1.2.4¢)

where 7| and T, are the two mirror transmissions (for simplicity mirror absorption has been
neglected). The substitution of Eq. (1.2.4) in Eq. (1.2.3) gives

N.=vy/ol (1.2.5)
where we have defined

y=vi+ i +n)/2 (1.2.6)

Note that the quantities y;, defined by Eq. (1.2.4c), may be called the logarithmic internal loss
of the cavity. In fact, when L; < 1 as usually occurs, one has y; = L;. Similarly, since both T}
and T, represent a loss for the cavity, y; and y,, defined by Eq. (1.2.4a and b), may be called
the logarithmic losses of the two cavity mirrors. Thus, the quantity y defined by Eq. (1.2.6)
will be called the single pass loss of the cavity.

Once the critical inversion is reached, oscillation will build up from spontaneous emis-
sion. The photons that are spontaneously emitted along the cavity axis will, in fact, initiate
the amplification process. This is the basis of a laser oscillator, or laser, as it is more simply
called. Note that, according to the meaning of the acronym laser as discussed above, the word
should be reserved for lasers emitting visible radiation. The same word is, however, now com-
monly applied to any device emitting stimulated radiation, whether in the far or near infrared,
ultraviolet, or even in the X-ray region. To be specific about the kind of radiation emitted one
then usually talks about infrared, visible, ultraviolet or X-ray lasers, respectively.

1.3. PUMPING SCHEMES

We will now consider the problem of how a population inversion can be produced in a
given material. At first sight, it might seem that it would be possible to achieve this through
the interaction of the material with a sufficiently strong e.m. wave, perhaps coming from a
sufficiently intense lamp, at the frequency v = v,. Since, at thermal equilibrium, one has
g1N1 > g2N»g,, absorption will in fact predominate over stimulated emission. The incoming
wave would produce more transitions 1 — 2 than transitions 2 — 1 and we would hope
in this way to end up with a population inversion. We see immediately, however, that such a
system would not work (at least in the steady state). When in fact the condition is reached such
that goN> = g1Nj, then the absorption and stimulated emission processes will compensate one
another and, according to Eq. (1.2.1), the material will then become transparent. This situation
is often referred to as two-level saturation.
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FIG. 1.4. (a) Three-level and (b) four-level laser schemes.

With just two levels, 1 and 2, it is therefore impossible to produce a population inversion.
It is then natural to question whether this is possible using more than two levels out of the infi-
nite set of levels of a given atomic system. As we shall see, the answer is in this case positive,
and we will accordingly talk of a three-level laser or four-level laser, depending upon the
number of levels used (Fig. 1.4). In a three-level laser (Fig. 1.4a), the atoms are in some way
raised from the ground level 1 to level 3. If the material is such that, after an atom has been
raised to level 3, it decays rapidly to level 2 (perhaps by a rapid nonradiative decay), then a
population inversion can be obtained between levels 2 and 1. In a four-level laser (Fig. 1.4b),
atoms are again raised from the ground level (for convenience we now call this level 0) to
level 3. If the atom then decays rapidly to level 2 (e.g. again by a fast nonradiative decay), a
population inversion can again be obtained between levels 2 and 1. Once oscillation starts in
such a four-level laser, however, the atoms will then be transferred to level 1, through stim-
ulated emission. For continuos wave (henceforth abbreviated as cw) operation it is therefore
necessary that the transition 1 — 0 should also be very fast (this again usually occurs by a
fast nonradiative decay).

We have just seen how to make use of a three or four levels of a given material to produce
population inversion. Whether a system will work in a three- or four-level scheme (or whether
it will work at all!) depends on whether the various conditions given above are fulfilled. We
could of course ask why one should bother with a four level scheme when a three-level scheme
already seems to offer a suitable way of producing a population inversion. The answer is that
one can, in general, produce a population inversion much more easily in a four-level than in a
three-level laser. To see this, we begin by noting that the energy difference among the various
levels of Fig. 1.4 are usually much greater than k7. According to Boltzmann statistics [see,
e.g., Eq. (1.2.2)] we can then say that essentially all atoms are initially (i.e., at equilibrium) in
the ground level. If we now let NV, be the atom density in the material, these will initially all
be in level 1 from the three-level case. Let us now begin raising atoms from level 1 to level 3.
They will then decay to level 2 and, if this decay is sufficiently fast, level 3 will remain more
or less empty. Let us now assume, for simplicity, that the two levels are either non-degenerate
(i.e. g1 = g2 = 1) or have the same degeneracy. Then, according to Eq. (1.2.1), the absorption
losses will be compensated by the gain when N, = N;. From this point on, any further atom
that is raised will then contribute to population inversion. In a four-level laser, however, since
level 1 is also empty, any atom that has been raised to level 2 immediately produces population
inversion. The above discussion shows that, whenever possible, we should look for a material
that can be operated as a four-level rather than a three-level system. The use of more than
four levels is, of course, also possible. It should be noted that the term “four-level laser” has
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come to be used for any laser in which the lower laser level is essentially empty, by virtue of
being above the ground level by many k7. So if level 2 and level 3 are the same level, then
one has a level scheme which would be described as “four-level” in the sense above, while
only having three levels! Cases based on such a “four-level” scheme do exist. It should also
be noted that, more recently, the so-called quasi-three-level lasers have also become a very
important cathegory of laser. In this case, the ground level consists of many sublevels, the
lower laser level being one of these sublevels. Therefore, the scheme of Fig. 1.4b can still
be applied to a quasi-three-level laser with the understanding that level 1 is a sublevel of the
ground level and level O is the lowest sublevel of the ground level. If all ground state sublevels
are strongly coupled, perhaps by some fast non-radiative decay process, then the populations
of these sublevels will always be in thermal equilibrium. Let us further assume that the energy
separation between level 1 and level O (see Fig. 1.4b) is comparable to k7. Then, according to
Eq. (1.2.2), there will always be some population present in the lower laser level and the laser
system will behave in a way which is intermediate between a three- and a four-level laser.

The process by which atoms are raised from level 1 to level 3 (in a three-level scheme),
from O to 3 (in a four-level scheme), or from the ground level to level 3 (in a quasi-three-level
scheme) is known as pumping. There are several ways in which this process can be realized
in practice, e.g., by some sort of lamp of sufficient intensity or by an electrical discharge in
the active medium. We refer to Chap. 6 for a more detailed discussion of the various pumping
processes. We note here, however, that, if the upper pump level is empty, the rate at which the
upper laser level becomes populated by the pumping, (dN,/dt),, can in general be written as
(dN,/dt), = W,N, where W, is a suitable rate describing the pumping process and N is the
population of the ground level for either a three- or four-level laser while, for a quasi-three-
level laser, it can be taken to be the total population of all ground state sublevels. In what
follows, however, we will concentrate our discussion mostly on four level or quasi-three-level
lasers. The most important case of three-level laser, in fact, is the Ruby laser, a historically
important laser (it was the first laser ever made to operate) although no longer so widely used.
For most four-level and quasi-three-level lasers in commun use, the depletion of the ground
level, due to the pumping process, can be neglected.” One can then write N, = const and the
previous equation can be written, more simply, as

(dN»/dt), = R, (1.3.1)

where R, may be called the pump rate per unit volume or, more briefly, the pump rate. To
achieve the threshold condition, the pump rate must reach a threshold or critical value, R,,,.
Specific expressions for R, will be obtained in Chap. 6 and Chap. 7.

1.4. PROPERTIES OF LASER BEAMS

Laser radiation is characterized by an extremely high degree of (1) monochromaticity,
(2) coherence, (3) directionality, and (4) brightness. To these properties a fifth can be added,

* One should note that, as a quasi-3-level laser becomes progressively closer to a pure 3-level laser, the assumption
that the ground state population is changed negligibly by the pumping process will eventually not be justified.
One should also note that in fiber lasers, where very intense pumping is readily achieved, the ground state can be
almost completely emptied.
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viz., (5) short time duration. This refers to the capability for producing very short light pulses,
a property that, although perhaps less fundamental, is nevertheless very important. We shall
now consider these properties in some detail.

1.4.1. Monochromaticity

Briefly, we can say that this property is due to the following two circumstances: (1) Only
an e.m. wave of frequency vy given by (1.1.1) can be amplified. (2) Since the two-mirror
arrangement forms a resonant cavity, oscillation can occur only at the resonance frequencies
of this cavity. The latter circumstance leads to the laser linewidth being often much narrower
(by as much as to ten orders of magnitude!) than the usual linewidth of the transition 2 — 1
as observed in spontaneous emission.

1.4.2. Coherence

To first order, for any e.m. wave, one can introduce two concepts of coherence, namely,
spatial and temporal coherence.

To define spatial coherence, let us consider two points P and P, that, at time ¢t = 0, lie
on the same wave-front of some given e.m. wave and let £/ (¢) and E () be the corresponding
electric fields at these two points. By definition, the difference between the phases of the two
field at time r = 0 is zero. Now, if this difference remains zero at any time ¢ > 0, we will
say that there is a perfect coherence between the two points. If this occurs for any two points
of the e.m. wave-front, we will say that the wave has perfect spatial coherence. In practice,
for any point P, the point P, must lie within some finite area around P; if we want to have a
good phase correlation. In this case we will say that the wave has a partial spatial coherence
and, for any point P, we can introduce a suitably defined coherence area S.(P).

To define temporal coherence, we now consider the electric field of the e.m. wave at a
given point P, at times ¢ and ¢ 4 7. If, for a given time delay 7, the phase difference between
the two field remains the same for any time ¢, we will say that there is a temporal coherence
over a time t. If this occurs for any value of 7, the e.m. wave will be said to have perfect time
coherence. If this occurs for a time delay 7 such that 0 < t < 1, the wave will be said to have
partial temporal coherence, with a coherence time equal to 79. An example of an e.m wave
with a coherence time equal to 7y is shown in Fig. 1.5. The figure shows a sinusoidal electric
field undergoing random phase jumps at time intervals equal to 7y. We see that the concept of
temporal coherence is, at least in this case, directly connected with that of monochromaticity.
We will show, in fact, in Chap. 11, that any stationary e.m. wave with coherence time t has a
bandwidth Av 2 1/10. In the same chapter it will also be shown that, for a non-stationary but
repetitively reproducing beam (e.g., a repetitively Q-switched or a mode-locked laser beam)
the coherence time is not related to the inverse of the oscillation bandwidth Av and may
actually be much longer than 1/Av.

It is important to point out that the two concepts of temporal and spatial coherence are
indeed independent of each other. In fact, examples can be given of a wave having perfect spa-
tial coherence but only limited temporal coherence (or vice versa). If, for instance, the wave
shown in Fig. 1.5 were to represent the electric fields at points P; and P, considered earlier,



10

1 e Introductory Concepts

VIR AN AN AL

- To To

FIG. 1.5. Example of an e.m. wave with a coherence time of approximately q.

the spatial coherence between these two points would be complete still the wave having a
limited temporal coherence.

We conclude this section by emphasizing that the concepts of spatial and temporal coher-
ence provide only a first-order description of the laser’s coherence. Higher order coherence
properties will in fact discussed in Chap. 11. Such a discussion is essential for a full apprecia-
tion of the difference between an ordinary light source and a laser. It will be shown in fact that,
by virtue of the differences between the corresponding higher-order coherence properties, a
laser beam is fundamentally different from an ordinary light source.

1.4.3. Directionality

This property is a direct consequence of the fact that the active medium is placed in a
resonant cavity. In the case of the plane parallel one of Fig. 1.3, for example, only a wave
propagating in a direction orthogonal to the mirrors (or in a direction very near to it) can be
sustained in the cavity. To gain a deeper understanding of the directional properties of a laser
beam (or, in general, of any e.m. wave), it is convenient to consider, separately, the case of a
beam with perfect spatial coherence and the case of partial spatial coherence.

Let us first consider the case of perfect spatial coherence. Even for this case, a beam of
finite aperture has unavoidable divergence due to diffraction. This can be understood with the
help of Fig. 1.6, where a monochromatic beam of uniform intensity and plane wave-front is
assumed to be incident on a screen S containing an aperture D. According to Huyghens’ prin-
ciple the wave-front at some plane P behind the screen can be obtained from the superposition
of the elementary waves emitted by each point of the aperture. We thus see that, on account of
the finite size D of the aperture, the beam has a finite divergence 6,. Its value can be obtained
from diffraction theory. For an arbitrary amplitude distribution we get

6,=pB A/D (1.4.1)
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FIG. 1.6. Divergence of a plane e.m. wave due to diffraction.

where A and D are the wavelength and the diameter of the beam. The factor 8 is a numerical
coefficient of the order of unity whose value depends on the shape of the amplitude distribu-
tion and on the way in which both the divergence and the beam diameter are defined. A beam
whose divergence can be expressed as in Eq. (1.4.1) is described as being diffraction limited.

If the wave has only a partial spatial coherence, its divergence will be larger than the
minimum value set by diffraction. Indeed, for any point P’ of the wave-front, the Huygens’
argument of Fig. 1.6 can only be applied for points lying within the coherence area S, around
point P’. The coherence area thus acts as a limiting aperture for the coherent superposition of
the elementary wavelets. The beam divergence will now be given by

0 = BAr/[S.]"/? (1.4.2)

where. again, B is a numerical coefficient of the order of unity whose exact value depends on
the way in which both the divergence 8 and the coherence area S, are defined.

We conclude this general discussion of the directional properties of e.m. waves by point-
ing out that, given suitable operating conditions, the output beam of a laser can be made
diffraction limited.

1.4.4. Brightness

We define the brightness of a given source of e.m. waves as the power emitted per unit
surface area per unit solid angle. To be more precise, let dS be the elemental surface area at
point O of the source (Fig. 1.7a). The power dP emitted by dS into a solid angle d£2 around
direction OO’ can be written as

dP = B cos 0 dSd2 (1.4.3)

where 6 is the angle between OO’ and the normal n to the surface. Note that the factor cos 6
arises simply from the fact that the physically important quantity for the emission along the
OO0’ direction is the projection of dS on a plane orthogonal to the OO’ direction, i.e. cos 6 dS.
The quantity B defined through Eq. (1.4.3) is called the source brightness at the point O in the
direction OO'. This quantity will generally depend on the polar coordinates 6 and ¢ of the
direction OO’ and on the point O. When B is a constant, the source is said to be isotropic (or
a Lambertian source).

Let us now consider a laser beam of power P, with a circular cross section of diameter D
and with a divergence 6 (Fig. 1.7b). Since 6 is usually very small, we have cos # = 1. Since

11
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(a) (b)

FIG. 1.7. (a) Surface brightness at the point O for a general source of e.m. waves. (b) Brightness of a laser beam of
diameter D and divergence 6.

the area of the beam is equal to 7D?/4 and the emission solid angle is 762, then, according
to Eq. (1.4.3), we obtain the beam brightness as

B = 4P/(nD#)? (1.4.4)

Note that, if the beam is diffraction limited, we have 6 = 6, and, with the help of Eq. (1.4.1),
we obtain from Eq. (1.4.4)

2 2
B— (m) P (1.4.5)

which is the maximum brightness that a beam of power P can have.

Brightness is the most important parameter of a laser beam and, in general, of any light
source. To illustrate this point we first recall that, if we form an image of any light source
through a given optical system and if we assume that object and image are in the same medium
(e.g. air), then the following property holds: The brightness of the image is always less than
or equal to that of the source, the equality holding when the optical system provides lossless
imaging of the light emitted by the source. To further illustrate the importance of brightness,
let us consider the beam of Fig. 1.7b, having a divergence equal to 6, to be focused by a
lens of focal length f. We are interested in calculating the peak intensity of the beam in the
focal plane of the lens (Fig. 1.8a). To make this calculation we recall that the beam can be
decomposed into a continuous set of plane waves with an angular spread of approximately 6
around the propagation direction. Two such waves, making an angle 8’ are indicated by solid
and dashed lines, respectively, in Fig. 1.8b. The two beams will each be focused to a distinct
spot in the focal plane and, for small angle 6’, the two spots are transversely separated by a
distance r = f6’. Since the angular spread of the plane waves which make up the beam of
Fig. 1.8ais equal to the beam divergence 6, we arrive at the conclusion that the diameter, d, of
the focal spot in Fig. 1.8a is approximately equal to d = 2f6. For an ideal, lossless, lens the
overall power in the focal plane equals the power, P, of the incoming wave. The peak intensity
in the focal plane is thus found to be I, = 4P/nd*> = P/7(f0)*. In terms of beam brightness,
according to (1.4.4) we then have I, = (7r/4)B(D/f)*. Thus I, increases with increasing beam
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(a) (b)

FIG. 1.8. (a) Intensity distribution in the focal plane of a lens for a beam of divergence 6. (b) Plane-wave decompo-
sition of the beam of a.

diameter D. The maximum value of I, is then attained when D is made equal to the lens
diameter D; . In this case we obtain

1, = (7/4) (N.A)*B (1.4.6)

where N.A. = sin[tan™'(D./f)] = (D./f) is the lens numerical aperture. Equation (1.4.6)
then shows that, for a given numerical aperture, the peak intensity in the focal plane of a lens
depends only on the beam brightness.

A laser beam of even moderate power (e.g. a few milliwatts) has a brightness that is
several orders of magnitude greater than that of the brightest conventional sources (see, e.g.,
problem 1.7). This is mainly due to the highly directional properties of the laser beam. Accord-
ing to Eq. (1.4.6), this means that the peak intensity produced in the focal plane of a lens can be
several order of magnitude larger for a laser beam compared to that of a conventional source.
Thus the focused intensity of a laser beam can reach very large values, a feature which is
exploited in many applications of lasers.

1.4.5. Short Time Duration

Without going into any detail at this stage, we simply mention that by means of a special
technique called mode locking, it is possible to produce light pulses whose duration is roughly
equal to the inverse of the linewidth of the 2 — 1 transition. Thus, with gas lasers, whose
linewidth is relatively narrow, the pulse-width may be of ~ 0.1-1 ns. Such pulse durations are
not regarded as particularly short and indeed even some flashlamps can emit light pulses with
a duration of somewhat less than 1 ns. On the other hand, the linewidth of some solid state
and liquid lasers can be 10°-10° times larger than that of a gas laser, and, in this case, much
shorter pulses may be generated (down to ~ 10fs). This opens up exciting new possibilities
for laser research and applications.

Notice that the property of short time duration, which implies energy concentration in
time, can, in a sense, be considered to be the counterpart of monochromaticity, which implies
energy concentration in wavelength. Short time duration would, however, perhaps be regarded
as a less fundamental property than monochromaticity. While in fact all lasers can, in prin-
ciple, be made extremely monochromatic, only lasers with a broad linewidth, i.e. solid state
and liquid lasers, may produce pulses of very short time duration.

13
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1.5. TYPES OF LASERS

The various types of laser that have been developed so far, display a very wide range
of physical and operating parameters. Indeed, if lasers are characterized according to the
physical state of the active material, one uses the description of solid state, liquid or gas lasers.
A rather special case is where the active material consists of free electrons, at relativistic
velocities, passing through a spatially periodic magnetic field (free-electron lasers). If lasers
are characterized by the wavelength of the emitted radiation, one refers to infrared lasers,
visible lasers, UV and X-ray lasers. The corresponding wavelength may range from ~ 1 mm
(i.e. millimeter waves) down to ~ 1nm (i.e. to the upper limit of hard X-rays). The span in
wavelength can thus be a factor of ~ 10% (we recall that the visible range spans less than a
factor 2, roughly from 700 to 400 nm). Output powers cover an even larger range of values.
For cw lasers, typical powers go from a few mW, in lasers used for signal sources (e.g. for
optical communications or for bar-code scanners), to tens of kW in lasers used for material
working, to a few MW (& 5 MW so far) in lasers required for some military applications (e.g.
for directed energy weapons). For pulsed lasers the peak power can be much higher than for
cw lasers and can reach values as high as 1 PW (10'> W)! Again for pulsed lasers, the pulse
duration can vary widely from the ms level typical of lasers operating in the so-called free-
running regime (i.e. without any Q-switching or mode-locking element in the cavity) down to
about 10fs (1fs = 107" s) for some mode locked lasers. The physical dimensions can also
vary widely. In terms of cavity length, for instance, the length can be as small as ~ 1 um for
the shortest lasers up to some km for the longest (e.g. a laser 6.5 km long, which was set up in
a cave for geodetic studies).

This wide range of physical or operating parameters represent both a strength and a
weakness. As far as applications are concerned, this wide range of parameters offers enormous
potential in several fields of fundamental and applied sciences. On the other hand, in terms
of markets, a very wide spread of different devices and systems can be an obstacle to mass
production and its associated price reduction.

1.6. ORCANIZATION OF THE BOOK

The organization of the book is based on the fact that, as indicated in our discussion
so far, a laser can be considered to consist of three elements: (1) an active material, (2) a
pumping scheme, (3) a resonator. Accordingly, the next two chapters deal with the interaction
of radiation with matter, starting from the simplest cases, i.e. atoms or ions in an essentially
isolated situation, (Chap. 2), and going on to the more complicated cases, i.e. molecules
and semiconductors, (Chap. 3). As an introduction to optical resonators, the next Chapter
(Chap. 4) considers some topics relating to ray and wave propagation in particular optical
elements such as free-space, optical lens-like media, Fabry-Perot interferometers and multi-
layer dielectric coatings. Chapter 5 then deals with the theory of optical resonators while the
next Chapter (Chap. 6) deals with the pumping processes. The concepts introduced in these
chapters are then used in next two chapters (Chap. 7 and 8) where the theory is developed
for continuous wave and transient laser behavior, respectively. The theory is based on the
lowest order approximation, i.e. using the rate equation approach. This treatment is, in fact,
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capable of describing most laser characteristics. Obviously, lasers based upon different types
of active media have significant differences in their characteristics. So, the next two chap-
ters (Chap. 9 and 10) discuss the characteristic properties of a number of types of laser. Thus
Chap. 9 covers ionic crystal, dye and semiconductor lasers, these having a number of com-
mon features, while Chap. 10 considers gas, chemical and free-electron lasers. By this point,
the reader should have acquired sufficient understanding of laser behavior to go on to a study
of the properties of the output beam (coherence, monochromaticity, brightness, noise). These
properties are considered in Chap. 11. Finally, the theme of Chap. 12 is based on the fact that,
before being put to use, a laser beam is generally transformed in some way. This includes:
(1) spatial transformation of the beam due to its propagation through e.g. a lens system; (2)
amplitude transformation as a result of passing through an amplifier; (3) wavelength trans-
formation, or frequency conversion, via a number of nonlinear phenomena (second harmonic
generation, parametric processes); (4) time transformation by e.g. pulse compression.

PROBLEMS

1.1. The part of the e.m. spectrum that is of interest in the laser field starts from the submillimiter
wave region and goes down in wavelength to the X-ray region. This covers the following regions in
succession: (1) far infrared; (2) near infrared; (3) visible; (4) ultraviolet (uv); (5) vacuum ultraviolet
(vuv); (6) soft X-ray; (7) X-ray: From standard textbooks find the wavelength intervals of the above
regions. Memorize or record these intervals since they are frequently used in this book.

1.2. As a particular case of Problem 1.1, memorize or record the wavelengths corresponding to blue,
green, and red light.

1.3. Iflevels 1 and 2 of Fig. 1.1 are separated by an energy E> —E| such that the corresponding transition
frequency falls in the middle of the visible range, calculate the ratio of the populations of the two
levels in thermal equilibrium at room temperature.

1.4. When in thermal equilibrium at 7 = 300K, the ratio of the level populations N,/N; for some
particular pair of levels is given by 1/e. Calculate the frequency v for this transition. In what region
of the e.m. spectrum does this frequency fall?

1.5. A laser cavity consists of two mirrors with reflectivities R = 1 and R, = 0.5 while the internal
loss per pass is Lj = 1%. Calculate the total logarithmic losses per pass. If the length of the active
material is / = 7.5 cm and the transition cross section is ¢ = 2.8 x 107! cm?, calculate then the
threshold inversion.

1.6. The beam from a ruby laser (A = 694 nm) is sent to the moon after passing through a telescope
of 1 m diameter. Calculate the approximate value of beam diameter on the moon assuming that
the beam has perfect spatial coherence (the distance between earth and moon is approximately
384,000 km).

1.7. The brightness of probably the brightest lamp so far available (PEK Labs type 107/109, excited
by 100 W of electrical power) is about 95 W/em? sr in its most intense green line (A = 546 nm).
Compare this brightness with that of a 1 W Argon laser (A = 514.5 nm), which can be assumed to
be diffraction limited.
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Interaction of Radiation with Atoms
and lons

2.1. INTRODUCTION

This chapter deals with the interaction of radiation with atoms and ions which are weakly
interacting with any surrounding species, such as atoms or ions in a gas phase or impurity
ions in an ionic crystal. The somewhat more complicated case of interaction of radiation
with molecules or semiconductors will be considered in the next chapter. Since the subject
of radiation interaction with matter is, of course, very wide, we will limit our discussion
to those phenomena which are relevant for atoms and ions acting as active media. So, after
an introductory section dealing with the theory of blackbody radiation, a milestone for the
whole of modern physics, we will consider the elementary processes of absorption, stimulated
emission, spontaneous emission, and nonradiative decay. They will first be considered within
the simplifying assumptions of a dilute medium and a low intensity. Following this, situations
involving a high beam intensity and a medium that is not dilute (leading, in particular, to the
phenomena of saturation and amplified spontaneous emission) will be considered. A number
of very important, although perhaps less general, topics relating to the photophysics of dye
lasers, free-electron lasers, and X-ray lasers will be briefly considered in Chaps. 9 and 10
immediately preceding the discussion of the corresponding laser.

2.2. SUMMARY OF BLACKBODY RADIATION THEORY®

Let us consider a cavity filled with a homogeneous and isotropic medium. If the walls of
the cavity are kept at a constant temperature, 7, they will continuously emit and receive power
in the form of electromagnetic (e.m.) radiation. When the rates of absorption and emission

O. Svelto, Principles of Lasers, 17
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becomes equal, an equilibrium condition is established at the walls of the cavity as well as at
each point of the dielectric. This situation can be described by introducing the energy density
p, which represents the electromagnetic energy contained in unit volume of the cavity. This
energy density can be expressed as a function of the electric field, E(¢), and magnetic field,
H(t), according to the formula

1 > |-
,O=<§8E >+§,uH > (2.2.1)

where ¢ and u are, respectively, the dielectric constant and the magnetic permeability of the
medium inside the cavity and where the symbol < > indicates a time average over a cycle
of the radiation field. We can then represent the spectral energy distribution of this radiation
by the function p,, which is a function of frequency v. This is defined as follows: p,dv
represents the energy density of radiation in the frequency range from v to v + dv. The
relationship between p and p,, is obviously

o0
p:/ pvdv 2.2.2)
0

Suppose now that a hole is made in the wall of the cavity. If we let I, be the spectral intensity
of the light escaping from the hole, one can show that 7, is proportional to p, obeying the
simple relation

I, = (c/4n)py (2.2.3)

where c is the velocity of light in the vacuum and 7 is the refractive index of the medium
inside the cavity. We can now show that /,, and hence p, are universal functions, independent
of either the nature of the walls or the cavity shape, and dependent only on the frequency
v and temperature 7 of the cavity. This property of p, can be proven through the following
simple thermodynamic argument. Let us suppose we have two cavities of arbitrary shape,
whose walls are at the same temperature 7. To ensure that the temperature remains constant,
we may imagine that the walls of the two cavities are in thermal contact with two thermostats
at temperature 7. Let us suppose that, at a given frequency v, the energy density p/, in the
first cavity is greater than the corresponding value p/ in the second cavity. We now optically
connect the two cavities by making a hole in each and then imaging, with some optical system,
each hole onto the other. We also insert an ideal filter in the optical system, which lets through
only a small frequency range around the frequency v. If p/, > p/ then, according to Eq. (2.2.3),
one will have I, > I and there will be a net flow of electromagnetic energy from cavity 1 to
cavity 2. Such a flow of energy, however, would violate the second law of thermodynamics,
since the two cavities are at the same temperature. Therefore one must have p,, = p// for all
frequencies.

The problem of calculating this universal function p, (v, T) was a very challenging one
for the physicists of the time. Its complete solution was provided by Planck, who, in order to
find a correct solution of the problem, had to introduce the so-called hypothesis of light quanta.
The blackbody theory is therefore one of the fundamental bases of modern physics.() Before
going further into it, we first need to consider the electromagnetic modes of a blackbody
cavity. Since the function p, is independent of the cavity shape or the nature of the dielectric
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medium, we choose to consider the relatively simple case of a rectangular cavity uniformly
filled with dielectric and with perfectly conducting walls.

2.2.1. Modes of a Rectangular Cavity

Let us consider the rectangular cavity of Fig. 2.1. To calculate p,, we begin by calculat-
ing the standing e.m. field distributions that can exist in this cavity. According to Maxwell’s
equations, the electric field E(x, y, z, f) must satisfy the wave equation

1 °E

2
V2E — R 0 (2.2.4)

where V2 is the Laplacian operator and ¢, is the velocity of light in the medium considered.
In addition, the field must satisfy the following boundary condition at each wall:

Exn= 0 (2.2.5)

where n is the normal to the particular wall under consideration. This condition expresses the
fact that, for perfectly conducting walls, the tangential component of the electric field must
vanish on the walls of the cavity.

It can be easily shown that the problem is soluble by separation of the variable. Thus, if
we put

E = u(x,y,2)E(t) (2.2.6)

and substitute Eq. (2.2.6) in Eq. (2.2.4), we have

Viu = —k*u (2.2.7a)
d’E
47 = —(cak)’E (2.2.7b)

where k is a constant. Equation (2.2.7b) has the general solution

E = Eycos(wt + ¢) (2.2.8)

FIC. 2.1. Rectangular cavity with perfectly conducting walls kept at temperature 7.
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where Ey and ¢ are arbitrary constant and where
w = ¢,k (2.2.9)
With E(¢) given by Eq. (2.2.8), we see that the solution Eq. (2.2.6) can be written as
E(x,y,z,1t) = Eou(x,y, z) exp(jot + ¢) (2.2.9a)

and thus corresponds to a standing wave configuration of the e.m. field within the cavity. In
fact the amplitude of oscillation at a given point of the cavity is constant in time. A solution
of this type is referred to as a an e.m. mode of the cavity.

We are now left with the task of solving Eq. (2.2.7a), known as the Helmholtz equation,
subject to the boundary condition given by Eq. (2.2.5). It can readily be verified that the
expressions

uy = e, coskyx sinkyy sink.z
uy, = e, sink.x coskyy sink.z (2.2.10)
u; = e; sinkex sink,y cosk.z

satisfy Eq. (2.2.7a) for any value of e,, e, e., provided that
K4k 4k =k (2.2.11)

Furthermore, the solution Eq. (2.2.10) already satisfies the boundary condition Eq. (2.2.5) on
the three planes x = 0,y = 0,z = 0. If we now impose the condition that Eq. (2.2.5) should
also be satisfied on the other walls of the cavity, we obtain

k, = Ir/2a
ky = mm /2a (2.2.12)
k, =nm/L

where [, m, and n are positive integers. Their physical significance can be seen immediately:
they represent the number of nodes that the standing wave mode has along the directions x, y,
and z, respectively. For fixed values of /, m, and n it follows that k,, k,, and k. will also be
fixed and, according to Egs. (2.2.9) and (2.2.11), the angular frequency w of the mode will
also be fixed and given by

I\ mir \2 ni\2 2
w:[(z_) - (o) +(7)] 02y

where we have explicitly indicated that the frequency of the mode will depend on the indices
[, m, and n. The mode is still not completely determined, however, since e,, ey, and e; are still
arbitrary. However, Maxwell’s equations provide another condition that must be satisfied by
the electric field, i.e., V - u = 0, from which, with the help of Eq. (2.2.10), we get

e-k=0 (2.2.14)
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In Eq. (2.2.14) we have introduced the two vectors e and k, whose components along x, y,
and z axes are respectively, ey, ey, and e; and k,, k,, and k. Equation (2.2.14) therefore shows
that, out of the three quantities ey, e,, and e;, only two are independent. In fact, once we fix
[, m, and n (i.e., once Kk is fixed), the vector e is bound to lie in a plane perpendicular to k.
In this plane, only two degree of freedom are left for the choice of the vectors e, and only
two independent modes are thus present. Any other vector, e, lying in this plane can in fact be
obtained as a linear combination of the previous two vectors.

Let us now calculate the number of resonant modes, N,, whose frequency lies between
0 and v. This will be the same as the number of modes whose wave vector k has a magnitude,
k, between 0 and 27v/c,. From Eq. (2.2.12) we see that, in a system coordinate ki, ky, k;,
the possible values for k are given by the vectors connecting the origin with the nodal points
of the three-dimensional lattice shown in Fig. 2.2. Since, however, k., ky, and k; are positive
quantities, we must count only those points lying in the positive octant. It can furthermore be
easily shown that there is a one to one correspondence between these points and the unit cell
of dimensions (7/2a, 7w /2a, w/L). The number of points having k between 0 and (27 v/c,)
can thus be calculated as (1/8) times the volume of the sphere, centered at the origin, and
of radius (27v/c,) divided by the volume of the unit cell of dimensions (1/2a, 7 /2a, w/L).
Since, as previously noted, there are two modes possible for each value of k, we have

3
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FIG. 2.2. Pictorial illustration of the density of modes in the cavity of Fig. 2.1. Each point of the lattice corresponds
to two cavity modes.
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where V is the total volume of the cavity. If we now define p(v) as the number of modes per
unit volume and per unit frequency range, we have

pv)=—-— = ) (2.2.16)

2.2.2. The Rayleigh-Jeans and Planck Radiation Formula

Having calculated the quantity p(v) we can now proceed to calculate the energy density
pv. We can begin by writing p, as the product of the number of modes per unit volume per unit
frequency range, p(v), multiplied by the average energy <E> contained in each mode, i.e.

Py = py<E> (2.2.17)

To calculate <E> we assume that the cavity walls are kept at a constant temperature 7.
According to Boltzmann’s statistics, the probability dp that the energy of a given cavity mode
lies between E and E + dE is expressed by dp = C exp[—(E/kT)]dE, where C is a constant to
be established by the condition [;° Cexp[—(E/kT)dE = 1. The average energy of the mode
<E> is therefore given by

Jo” Eexp[—(E/KD)AE

<E> = —x
Iy~ exp[—(E/kT)]dE

(2.2.18)

From Eq. (2.2.16), Egs. (2.2.17), and (2.2.18) we then get

8 2
Py = ( s )kT (2.2.19)
c

n

This is the well known Rayleigh-Jeans radiation formula. It is, however, in complete disagree-
ment with the experimental results. Indeed, it is immediately obvious that Eq. (2.2.19) must
be wrong since it would imply an infinite total energy density p [see Eq. (2.2.2)]. Equa-
tion (2.2.19) does, however, represent the inevitable conclusion of the previous classical
arguments.

The problem remained unsolved until, at the beginning of this century, Planck introduced
the hypothesis of light quanta. The fundamental hypothesis of Planck was that the energy in a
given mode could not have any arbitrary value between 0 and oo, as was implicitly assumed
in Eq. (2.2.18), but that the allowed values of this energy should be integral multiples of
a fundamental quantity, proportional to the frequency of the mode. In other words, Planck
assumed that the energy of the mode could be written as

E = nhv (2.2.20)
where n is a positive integer and 4 a constant (which was later called Planck’s constant).

Without entering into too many details, here, on this fundamental hypothesis, we merely wish
to note that this essentially implies that energy exchange between the inside of the cavity
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and its walls must involve a discrete amount of energy iv. This minimum quantity that can
be exchanged is called a light quantum or photon. According to this hypothesis, the average
energy of the mode is now given by

ioj anhv exp[—(nhv /kT)] I
— 0 —
E=—5 "~ exp(hv/kT) — 1 2:221)

20: 2 €xpl—(nhv /kT)]

This formula is quite different from the classical expression Eq. (2.2.18). Obviously, for
hv < kT, Eq. (2.2.21) reduces to Eq. (2.2.18). From Eq. (2.2.16), Egs. (2.2.17), and (2.2.21)
we now obtain the Planck formula,

_ 8mv? hv 22.22)
v = ¢ exp(hv/kT) —1 -

which is in perfect agreement with the experimental results, provided that we choose for &
the value h = 6.62 x 1073* J x s. For example, Fig. 2.3 shows the behavior predicted by
Eq. (2.2.22) for p, vs frequency v for two values of temperature 7.

Lastly, we may notice that the ratio

<E> 1
<¢p> = = (2.2.23)
hv exp(hv/kT) — 1

gives the average number of photons <¢> for each mode. If we now consider a frequency
v in the optical range (v ~ 4 x 10'*Hz), we get hv ~ 1eV. For T = 300K we have
kT = (1/40)eV, so that from Eq. (2.2.23) it is <¢> = exp(—40). We thus see that the
average number of photons per mode, for blackbody radiation at room temperature, is very
much smaller than unity. This value should be compared with the number of photons ¢ that
can be obtained in a laser cavity for a single mode (see Chap. 7).
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FIC. 2.3. Plot of the function p, (v, T) as a function of frequency v at two values of the temperature 7.
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2.2.3. Planck's Hypothesis and Field Quantization

The fundamental assumption of Planck given by Eq. (2.2.20) was considered with a
degree of caution if not suspicion for some time after the idea was proposed. Someone even
considered it as a mere mathematical trick to transform an integral [Eq. (2.2.18)] into a sum-
mation [Eq. (2.2.21)] to get, by luck, a result in agreement with experiments. However,
the theory of the photoelectric effect, due to Einstein [1904], which was essentially based
upon Planck’s hypothesis, soon provided further evidence that the fundamental assumption of
Planck was indeed correct. It was many years later, however, before this assumption received
its complete conceptual justification by the quantum field theory of Dirac [1927]. Although a
detailed description of field quantization is beyond the scope of this book, it is worth devoting
a little space to indicate how field quantization arises.® This will also help provide a deeper
understanding of some topics to be considered later on in the book.

Consider a mode of the e.m. cavity, i.e. characterized by a given standing wave pattern,
and let v be its resonance frequency. If E,(r, f) and H,(r, t) are the transverse components of
its electric and magnetic fields, the corresponding energy density p will be given by Eq. (2.2.1)
and its energy will be equal to

E= / pdV (2.2.24)

where V is the volume of the cavity. A possible starting point to understand the basis of
quantum field theory is a recognition that, by analogy with the case of a particle, the pair of
quantities Ey(r, ) and H,(r, ) cannot be measured simultaneously with arbitrary precision.®
In other words, there is a form of Heisenberg uncertainty relation between E,(r, ) and H,(r, f)
analogous to that which exists between the position p, and momentum g, of a particle moving
e.g. in the x direction. Note that the Heisenberg uncertainty relation between p, and g, can
provide the starting point for the quantum theory of a particle. It indicates, in fact, that the
equations of classical mechanics, which are essentially based on the canonical variables p,
and g,, are no longer valid. Likewise, the uncertainty relation between E,(r, ) and H,(r, ) can
provide for the starting point of the quantum theory of radiation in the sense that they show
that Maxwell’s equations, and thus Eq. (2.2.4), are no longer valid. The analogy between
the quantum theory of a particle and the quantum theory of radiation can be taken further
by considering a particle bound to a given point by an elastic force. This is the case of the
harmonic oscillator, one of the fundamental examples for the quantum theory of a bound
particle. A harmonic oscillator oscillating e.g. along the x direction, is a mechanical oscillator
whose total energy is given by

E = (kp*/2) + (¢*/2m) (2.2.25)

where k is the elastic constant and m is the mass of the particle. In fact, this oscillator pro-
vides several analogies with a cavity mode. Both of them are, in fact, oscillators in the sense
that they are characterized by a resonance frequency. In the mechanical oscillator, oscillation
occurs because potential energy, represented by the term kp2/2, is periodically transformed
into kinetic energy, represented by the term ¢2/2m. In the electromagnetic oscillator rep-
resented by the cavity mode, electric energy represented by the term [(e<E,*>/2)dV, is
periodically transformed into magnetic energy, represented by the term [ (u<Hy2> /2)dVv.
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Based on this close analogy, one can then look for similar quantization rules. The appropri-
ate quantization procedure leads to the fundamental result that the energy of the given cavity
mode is quantized in exactly the same way as the harmonic oscillator. Namely, the eigenvalues
for the mode energy are given by

E = (1/2)hv + nhv (2.2.26)

where n is an integer value. The first term, the zero point energy, has a similar origin to
that of the harmonic oscillator. In the latter case, in fact, it arises because the energy cannot
be zero since, according to Eq. (2.2.25), this would require that both p, and g, are zero,
which is contrary to the Heisenberg uncertainty principle. Likewise, for the cavity mode, the
energy cannot be zero because, according to Eq. (2.2.1), this would require both E, and H,
to be zero, which, by the same argument is again impossible. Thus field quantization predicts
that the energy levels of a given cavity mode of frequency v are given by Eq. (2.2.26), a
conclusion which coincides with the Planck’s assumption [Eq. (2.2.20)] apart from the zero
point energy term. The results of field quantization thus provide a framework wherein Planck’s
assumption is given a more fundamental justification. Needless to say, Maxwell’s equations,
as seen in Sect. 2.2.1, do not impose any condition on the total energy density of a cavity
mode. Thus, according to these equations, the mode energy could have any value covering the
range between 0 and oo, continuously.

As a closing comment to this section we note that, according to Eq. (2.2.26), the energy
levels of a cavity mode, just like those of the harmonic oscillator, can be displayed as in
Fig. 2.4. In the lowest, zero-point energy, level both <E?> and <Hy2.> are different from zero
and are referred to as the zero-point fluctuations of the electric and magnetic field, respec-
tively. Note also that the zero point energy value of (hv/2) has really no physical significance.
If, instead of Eq. (2.2.24), one were to define the energy of the mode as

E:(/mw)—mwm (2.2.27)

then one would have a zero value for the lowest energy state. It can be shown, however, that
this state would still include, at the same level as before, the zero-point field fluctuations of
both <E?> and <Hy2.>, these fluctuations being the quantities which actually characterize the
zero-point energy state.

hv

hv

hv/2

FIC. 2.4. Energy levels of a cavity mode.

25



26

2 e Interaction of Radiation with Atoms and lons

2.3. SPONTANEOUS EMISSION

As a first attempt at describing spontaneous emission, we will follow a semiclassical
approach where the atoms are treated as quantized (i.e. treated according to quantum mechan-
ics) while the fields are treated classically (i.e. treated through Maxwell’s equations). As we
shall see, this attempt fails to describe the phenomenon of spontaneous emission in a correct
way (i.e. in agreement with experiment). The approach will turn out to be very instructive,
however. The results obtained will then be compared with the correct ones, i.e. those pre-
dicted by a full quantum theory where both atoms and fields are quantized, the former by
quantum mechanics and the latter by quantum field theory. Thus, to correctly describe the
phenomenon of spontaneous emission, a very common phenomenon of every day experience
(the light from the sun or from ordinary lamps arises from spontaneous emission), we will
need to introduce sophisticated concepts of quantum theory.

2.3.1. Semiclassical Approach

Let us assume that a given atom, initially raised to its excited level 2, of energy E», is
decaying by spontaneous emission to level 1, of energy E; (Fig. 1.1a). We will assume that
the two levels are non-degenerate and so let

Vi (r, 1) = ui (r) exp[—ji(E1 /h)1] (2.3.1a)

and

Ya(r, 1) = up(r) exp[—j(Ea/h)1] (2.3.1b)

be the corresponding wave functions, where u; »(r) are the eigenfunctions of the two station-
ary states, r denotes the co-ordinate of the electron undergoing the transition, the origin being
taken at the nucleus, and 4 = h/27. When the atom is undergoing the 2 — 1 transition due
to spontaneous emission, its wave function can be expressed as a linear combination of the
wave functions of the two states, i.e.

¥ =a ()Y + ey (2.3.2)

where a; and a; are time-dependent complex numbers. Note that, according to quantum
mechanics, we have

lar|* + |az|* = 1 (2.3.3)

and thus |a, |2 and |a2|2 represent the probabilities that, at time ¢, the atom is found in state 1
or 2, respectively.

To understand how spontaneous emission arises, let us calculate the electric dipole
moment of the atom p. According to quantum mechanics we have

n= —/e|1p|2rdV (2.3.4)
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where e is the magnitude of the electron charge and the integral is taken over the whole volume
of the atom. The form of Eq. (2.3.4) can be readily understood by noting that e||>dV is the
elemental charge expected in the volume dV at position r and that this charge produces an
elemental dipole moment du = —(e|y|2dV)r. The substitution of Eq. (2.3.2) into Eq. (2.3.4)
with the help of Eq. (2.3.1) gives

u= /er|a1|2|u1|2dV—+—/er|a2|2|uz|2dV+
+ [ er [aya3uyu3 exp j(wot) + afazuius exp —j(wor)|dV (2.3.5)

where * stands for complex conjugate and wy = (E; — E;)/h. Equation (2.3.5) shows that pu
has a term p,., oscillating at the frequency wy, which can be written as

Hose = Re[zal/a; M1 €Xp ](a)ol)] (236)

where we have defined a time-independent dipole moment p,; given by

Uy = /u;er udv. (2.3.7)

The vector p,, is referred to as the matrix element of the electric dipole moment operator or, in
short, the electric dipole moment of the atom. Equation (2.3.6) shows that, during the 2 — 1
transition, the atom acquires a dipole moment, u,,,., which is oscillating at frequency w, and
whose amplitude is proportional to the vector p,; given by Eq. (2.3.7). Now, from classical
electrodynamics we know that any oscillating dipole moment must radiate power into the
surrounding space. Accordingly, from a semiclassical standpoint, the process of spontaneous
emission can be identified as arising from this radiated power. To be more specific, let us
write the oscillating dipole moment as p = p cos(wot + ¢) = Re[u] exp(iwot)], where
is a real vector describing the amplitude of the dipole moment, Re stands for real part and
is a complex vector! given by 1, = Mo exp(j¢). According to classical electrodynamics, we
know that this oscillating dipole moment will radiate into the surrounding space a power P,
given by®

2. 4
p, = K% (2.3.8)

127 80603
where 1 = |uy| = |ug| is the amplitude of the electric dipole moment, 7 is the refractive

index of the medium surrounding the dipole, and ¢y is the light velocity in the vacuum. In the
present case we can still use Eq. (2.3.8) provided that 1 is now taken to be 1 = 2|ajasny |,
i.e. it is the magnitude of the complex vector 2a;a; 1,;. We thus see that the radiated power
can be written as

/ 2 2
Py = P|ai|"|az] (23.9)
T We recall that a complex vector A, is a vector whose components e.g. Ay, Ay, A, are complex numbers. The

magnitude A of a complex vector is a real quantity given by A = [A A*]!/2 where A* is the vector conjugate to
A (i.e. with components A*y, A"‘y and A*, which are the complex conjugated of those for A).
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where P, is a time independent quantity given by

_ 16730 1| vg

Pl 3eoc) (2.3.10)
and where || = |u,,;| is the magnitude of the complex vector w,,. To calculate the atom’s
rate of decay we use an energy balance argument to write

leif =—P, (2.3.11)
where the atom energy is now given by
E = |a1|’E| + |as|*E; (2.3.12)
With the help of Eq. (2.3.3), Eq. (2.3.12) can be readily transformed to
E = E| + hvo|as|? (2.3.13)

where vy = (E, — Ej)/h is the transition frequency. Equation (2.3.11) with the help of
Eq. (2.3.9), Egs. (2.3.10) and (2.3.13) can then be written as

d|ag|2 1 2 12 1 s s
- =—— (1-— 2.3.14
yraie Tmlall |as| o (1 —laal’) |azl ( )

where we have defined a characteristic time 7y, = hvg / P’r as

3heoc(3)

= — 2.3.15
1673 v3n|pu|? ( )

Tsp

which is called the spontaneous-emission (or radiative) lifetime of level 2. The solution of
Eq. (2.3.14) can be conveniently written in the form

1 t—1t
2= _|1-tanh 2.3.16
off = 51— nn (5 2316

where 1 is set by the initial condition, i.e. by the value |a,(0)|? Indeed, from Eq. (2.3.16) one
gets that

1
la2(0)|? = 3 [1 — tanh (_22[,)} (2.3.17)

which, for a given value of |a»(0)|> (provided it is smaller than 1) yields a unique value
of 5. As an example, Fig. 2.5 shows the time behavior of |a,(f)|> for the initial condition
|a2(0)]> = 0.96. Note that, by choosing a different value of |a>(0)|> one merely changes the
value of fy in Eq. (2.3.16), i.e. one only changes the origin of the time axis. Assuming for
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FIC. 2.5. Time behavior of the upper state occupation probability, \azlz, and of the normalized radiated power,
¥ = gy Pr/hvy. Solid lines: semiclassical theory; dashed line: quantum electrodynamics theory.

instance |a,(0)|*> = 0.8, the curve of |a,(f)|? is obtained simply by horizontally shifting the
curve of Fig. 2.5 to the left until it crosses the vertical + = 0 axis at the value 0.8. This shows
the advantage of expressing the decay of |a,(¢)|? in the form of Eq. (2.3.16). Once |a,(t)| has
been calculated, the radiated power, P,, according to Egs. (2.3.11) and (2.3.13), is obtained
as P, = —hvyd|ay|?/dt. The time behavior of the normalized radiated power, y = TP/ vy,
is also shown in Fig. 2.5. For the discussion that follows it is important to notice that the time
behavior of |a,(¢)|? can be approximated by an exponential law, i.e.

lax(®) | = | a2(0) |* exp[— (/)] (2.3.18)

only when |a;(0)|> < 1. In this case, in fact, we can put |a;|> = 1 into Eq. (2.3.14) thus
readily obtaining Eq. (2.3.18).

A particularly important case occurs when |a;(0)|> = 1. In this case we find from
Eq. (2.3.17) that #y) = oo, which means that, according to this semiclassical theory, the atom
should not decay. Indeed, when |a>(0)|> = 1, then |a;(0)|> = 0, and from Eq. (2.3.14)
one gets d|as|*/dt = 0. Another way of looking at this case is to observe that, when
a1(0) = 0, p,, given by Eq. (2.3.6) vanishes. Since the atom does not have an oscillat-
ing dipole moment, it cannot radiate power and it is therefore in an equilibrium state. Let us
now investigate the stability of this equilibrium. To do this, we assume the atom to be per-
turbed so that |a;| < 1 att = 0. Physically, this means that, as a result of this perturbation,
there is a finite probability |a;|* of finding the atom in level 1. Equation (2.3.6) then shows
that a dipole moment oscillating at frequency wy is now produced. This moment will radiate
into the surrounding space and the atom will tend to decay to level 1. This implies a decrease
of |a,|? and the atom moves further away from equilibrium. The atom is therefore in unstable
equilibrium.

Before going further, it is worth summarizing the main results obtained with this semi-
classical approach: (1) The time behavior of |a,|?> can generally be described in terms of an
hyperbolic tangent equation, Eq. (2.3.16), but, for very weak excitation (i.e. for |a,|> < 1), it
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follows an approximately exponential law [Eq. (2.3.18)]. (2) When the atom is initially in the
upper state (i.e. |a;(0)|*> = 1), the atom is in (unstable) equilibrium and no radiation occurs.

2.3.2. Quantum Electrodynamics Approach

Although a quantum electrodynamics approach is beyond the scope of this book, it is
worthwhile to summarize some of the results obtained from such an approach and comparing
them with the semiclassical results. The most relevant results of the quantum approach can
be summarized as follows:*9 (i) Unlike the semiclassical case, the time behavior of |ay|? is
now always described, to a good approximation (Wigner-Weisskopf approximation), by an
exponential law. This means that Eq. (2.3.18) is now always true, no matter what the value of
|a2(0) |2. (ii) The expression of the spontaneous emission lifetime, 7,,, turns out to be given, in
this case too, by Eq. (2.3.15). (iii) Since the radiated power is given by P, = —hvd|a,|?/dt,
this power will also decay exponentially with a time constant 7,,. We see that the semiclas-
sical and the quantum electrodynamics approaches give completely different predictions for
the phenomenon of spontaneous emission (see Fig. 2.5). All available experimental results*
confirm that the quantum electrodynamics approach gives the correct answer to the problem.
From Eq. (2.3.15) we can then write the rate of spontaneous emission, A = 1/7,, as

_ 1673 v3n|pu|?

A
3heoc(3]

(2.3.19)

The above remarks imply that, according to quantum electrodynamics, an atom in the upper
level is not in a state of unstable equilibrium and the physical reason for the disappearance of
this unstable state on passing from the semiclassical to the quantum electrodynamics approach
deserves some further discussion. In the semiclassical case, the atom’s wave function was
generally written as in Eq. (2.3.2) and this implies that the atom is not in a stationary state.
According to quantum mechanics, this can only occur when some sort of perturbation is
already applied to the atom. Furthermore, to remove the unstable equilibrium position dis-
cussed before, we need again to assume that the atom is somewhat perturbed, and we now
look for some cause for this perturbation. At first sight we may be tempted to say that there
will always be enough stray radiation around the material to perturb the atom. To be more
specific, let us suppose that the material is contained in a blackbody cavity whose walls
are kept at temperature 7. We might then imagine this stray radiation to be provided by the
blackbody radiation within the cavity. This conclusion would be wrong, however, since the
radiation produced in this way would actually be due to the process of stimulated emission,
i.e., stimulated by the blackbody radiation. The phenomenon of spontaneous emission would
then depend upon the wall temperature and would cease at T = 0. The correct form of per-
turbation needed to describe the phenomenon of spontaneous emission is actually provided
by the quantum electrodynamics approach. In fact, according to the discussion presented in

* Of these, we should like to mention the very accurate measurements of the so-called Lamb shift, another phe-
nomenon that occurs during spontaneous emission. The center frequency of the spontaneously emitted light does
not occur at frequency vg (the transition frequency) but at slightly different value. Lamb-shift measurements for
hydrogen are among the most careful measurements so far made in physics, and they are always exactly agreed
(within the experimental errors) with the predictions of the quantum electrodynamic approach.
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Sect. 2.2.3, the mean square values <E>> and <H?> of both the electric and magnetic fields
of a given cavity mode are different from zero even at T = 0 (zero-point field fluctuations). We
may therefore consider these fluctuations as the perturbation acting on the atom and which,
in particular, upsets the unstable equilibrium predicted by the semiclassical treatment. Cor-
respondingly we may think of the spontaneous emission process as originating from these
zero-point fluctuations.

2.3.3. Allowed and Forbidden Transitions

Equation (2.3.19) shows that, to have A # 0, we must have || # 0. In this case the
spontaneous emission process arises from the power radiated by the electric dipole of the
atom and the transition is said to be electric dipole allowed. By contrast, when || = 0, we
have A = 0 and the transition is said to be electric dipole forbidden. In this case the transition
may occur via other multipole radiation processes e.g. through the oscillating magnetic dipole
moment of the atom (magnetic dipole transitions). This is usually a much weaker process,
however.

Let us now consider the situation when the transition is electric dipole forbidden i.e.,
when || = 0. Since || = |u,;|, Eq. (2.3.7) shows that this occurs when the eigenfunctions
uy and u, are either both symmetric or both anti symmetric*. In fact, in this case, the two
contributions from the integrand of Eq. (2.3.7) at points r and —r, respectively, are equal and
opposite. It is therefore of interest to see when the wave functions u(r) are either symmetric
or anti symmetric. This occurs when the Hamiltonian H,(r) of the system is unchanged by
changing r into —r, i.e. when’

Ho(—r) = H,(r) (2.3.20)
In this case, in fact, for any eigenfunction u,(r), one has
Ho(r)u,(r) = E,u,(r) (2.3.21)
From Eq. (2.3.21), changing r into —r and using Eq. (2.3.20), one gets
Hy(r)u,(—r) = E u,(—1) (2.3.22)

Equations (2.3.21) and (2.3.22) show that u,(r) and u,(—r) are both eigenfunctions of the
Hamiltonian H, with the same eigenvalue E,. For non degenerate energy levels, there is, by
definition only one eigenfunction for each eigenvalue, apart from an arbitrary choice of sign,
so that

u, (—r) = Fu,(r) (2.3.23)

Therefore, if H,(r) is symmetric, the eigenfunctions must be either symmetric or anti-
symmetric. In this case, it is usually said that the eigenfunctions have a well defined

parity.

* It may be recalled here that a function f(r) is symmetric (or of even parity) if f(—r) = f(r), while it is
antisymmetric (or of odd parity) if f(—r) = —f(r).
© If the Hamiltonian Hy is a function of more than one coordinate ry,rp,...., the inversion operation must be

simultaneously applied to all these coordinates.
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Example 2.1. Estimate of 15, and A for electric-dipole
allowed and forbidden transitions For an electric-dipole
allowed transition at a frequency corresponding to the
middle of the visible range, an estimate the order of
magnitude of A is obtained from Eq. (2.3.19) by there
substituting the values A = ¢/v = 500nm and |pu| =
ea, where a is the atomic radius (¢ =~ 0.1nm). We
therefore get A =~ 108s™! (i.e. 7, = 10ns). For mag-
netic dipole transitions A is approximately 10° times
smaller, and therefore 7y, = 1ms. Note that, according
to Eq. (2.3.19), A increases as the cube of the frequency,
so that the importance of the process of spontaneous
emission increases rapidly with frequency. In fact spon-
taneous emission is often negligible in the middle to far
infrared where nonradiative decay usually dominates. On
the other hand, when one considers the x-ray region (say
A < 5nm), 7y, becomes very short (10-100fs) a fea-
ture that constitutes a major problem for achieving a
population inversion in X-ray lasers.

Interaction of Radiation with Atoms and lons

It remains now to see when the Hamil-
tonian satisfies Eq. (2.3.20), i.e., when it
is invariant under inversion. Obviously this
occurs when the system has a center of sym-
metry. Another important case is that of an
isolated atom. In this case, the potential
energy of the k-th electron of the atom is
given by the sum of -the potential energy due
to the nucleus (which is symmetric) and that
of all other electrons. For the i-th electron,
this energy will depend on |r;—ry|, i.e., on the
magnitude of the distance between the two
electrons. Therefore, these terms will also be
invariant under inversion. An important case
where Eq. (2.3.20) is not valid is where an
atom is placed in an external electric field
(e.g., a crystal’s electric field) that does not
possess a center of inversion. In this case the
wave functions will not have a definite parity.

To sum up, we can say that electric
dipole transitions only occur between states

of opposite parity, and that the states have a well-defined parity if the Hamiltonian is invariant

under inversion.

2.4. ABSORPTION AND STIMULATED EMISSION

In this section, we will study in some detail the processes of absorption and stimulated
emission induced in a two-level system for a single atom interacting with a monochromatic
electromagnetic (e.m.) wave. In particular, our aim is to calculate the rates of absorption W,
and stimulated emission W [see Egs. (1.1.4) and (1.1.6)]. We will follow the semiclassical
approximation, wherein, as already explained, the atom is quantized while the e.m. radiation is
treated classically. It can be shown, in fact, that the quantum electrodynamics approach gives
the same result as the semiclassical treatment when the number of photons in a given radiation
mode is much greater than unity. Since this applies to any system other than an exceedingly
weak e.m. wave, we can dispense with the complication of the full quantum treatment. We
will at first assume the two levels to be non-degenerate and treat the case of degenerate levels

later in this Chapter.

2.4.1. Rates of Absorption and Stimulated Emission

Let us first consider the case of absorption and assume that, for time ¢ > 0, a monochro-
matic e.m. wave is incident on the atom so that the atomic wave-function can be described as
in Eq. (2.3.2) where we will assume the initial conditions |a;(0)|> = 1 and |a,(0)|> = 0.
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As a result of the interaction with the e.m. wave, the atom will acquire an interaction
energy H'. In the treatment that follows this energy H’ is considered to be due to the interac-
tion of the electric dipole moment of the atom with the electric field E(r,t) of the e.m. wave
(electric dipole interaction), where the origin of the r coordinate is taken at the nucleus. The
electric field at the nuclear position can then be written as

E(0, 1) = Eosin(wt) 2.4.1)

where w is the angular frequency of the wave. We will also assume that the wavelength of the
e.m. radiation is much greater than the atom’s dimension so that the phase-shift of the e.m.
wave over an atomic dimension is very small. Then Eq. (2.4.1) can be taken to give the value
of the electric field for any location in the atom (electric dipole approximation). We will also
assume the frequency w to be close to the resonant frequency, wy, of the transition.

Classically, for a given position r of the electron within the atom, the atom would exhibit
an electric dipole moment p = —er, where e is the magnitude of the electronic charge. The
interaction energy H’ resulting from the external electric field would then be

H =u-E=—e- Egsinwt (2.4.2)

In a quantum mechanical treatment, this sinusoidally time-varying interaction energy is
treated as a sinusoidally time-varying interaction Hamiltonian #’(¢), which is then inserted
into the time-dependent Schrodinger wave equation. Since w = w,, this interaction Hamil-
tonian results in the transition of the atom from one level to the other. This implies that, for
t > 0, |a;(f)|> will decrease from its initial value |a;(0)|*> = 1 and |ax()|*> will increase cor-
respondingly. To derive an expression for a, () we will additionally assume that the transition
probability is weak, so that a perturbation analysis can be used (time dependent perturbation
theory), and that the interaction occurs for a long time after ¢t = 0.
Given the above assumptions, the time behaviour of |a,(#)|? is shown, in Appendix A, to
be given by
2
(1)) = W|M21|2E(2)5(V — Vo)t (2.4.3)
where v = w/27m, vog = wy/27, § is the Dirac delta function, E is the amplitude of the vector
Eo and |p,, | is the amplitude of the complex vector p,; given by Eq. (2.3.7). Equation (2.4.3)
shows that, for ¢ > 0, |a,(f)|? increases linearly with time. We can then define the transition
rate WjJ as

W3S = d|ay|*/dt (2.4.4)
From Eq. (2.4.3) we then get
sa nZ 2 2
12 = gl Egd(v —vo) (2.4.5)

Note that the transition rate defined by Eq. (2.4.4) refers to the case of a single atom interacting
with monochromatic radiation and this situation is denoted by the superscript sa (single atom)
added to Wy,.
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To gain a more physical understanding of the absorption phenomenon, we begin by notic-
ing that, for ¢+ > 0, the wave function can be described as in Eq. (2.3.2). For ¢ > 0 the atom
thus acquires an oscillating dipole moment, u,,., given by Eq. (2.3.6). In contrast to the case
of spontaneous emission, however, since a;(f) and a,(f) are now driven by the electric field
of the e.m. wave, the phase of . turns out to be correlated to that of the wave. In particular,
for absorption, i.e. when one starts with the initial conditions a;(0) = 1 and a,(0) = 0, the
phase of the dipole is such that the dipole absorbs power from the e.m. wave. The interaction
phenomenon is thus seen to be very similar to that of a classical oscillating dipole moment
driven by an external field.©®

Equation (2.4.5) can also be expressed in terms of the energy density of the e.m.
wave. Since

p = n*eoES /2 (2.4.6)

where n is the refractive index of the medium and ¢, is the vacuum permittivity, we obtain

5 272
Wis = Wlum I08(v — vo) (2.4.7)

Note that W}4 is proportional to the Dirac § function. This implies the unphysical result that
W = 0 for v # vy and Wi, = oo when v = vy, i.e. when the frequency of the e.m. wave is
exactly coincident with the frequency of the atomic transition. The reason for this unphysical
result can be traced back to the assumption that the interaction of the e.m. wave with the
atom could continue undisturbed for an indefinite time. Indeed, from a classical viewpoint,
if a sinusoidal electric field at frequency v drives a (lossless) oscillating dipole moment at
frequency vy, there would only be an interaction, i.e. a net energy transfer, if v = vy. Actually,
there are a number of perturbation phenomena (such as collisions with other atoms or with
lattice phonons) that prevent this interaction from continuing undisturbed indefinitely. These
phenomena will be discussed at some length in a later section, but the general result they
lead to can be expressed in a very simple way: Eq. (2.4.7) remains valid provided the Dirac
§ function — an infinitely sharp function centred at v = vy and of unit area, i.e., such that
J 8(v —vg)dv = 1 - be replaced by a new function g(v — vg), symmetric about v = vy again
of unit area, i.e. such that [ g(v — vo)dv = 1, and generally given by

2 1
TAvy 1+ [2(v — vg)/ Avg)?

g(v —vg) = (2.4.8)

where Av, depends on the particular broadening mechanism involved. We can therefore write
for W5 the expression

272
Wis = 3’12—80}12|M21 *pg(v — vo) (2.4.9)

The normalized function [g(v — vg) Avp] is plotted in Fig. 2.6 vs the normalized frequency
difference (v — vy)/(Avo/2). The full width of the curve between the two points having



2.4 e Absorption and Stimulated Emission
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FIC. 2.6. Normalized plot of a Lorentzian line.

half the maximum value (FWHM, from Full Width at Half Maximum) is simply Avy. The
maximum of g(v — vp) occurs for v = vy and its value is given by

g(0) =2/mAvg = 0.637/Avy (2.4.9a)

A curve of the general form described by Eq. (2.4.8) is called Lorentzian after H.E. Lorentz
who first derived it in his theory of the electron oscillator.© For a plane e.m. wave it is often
useful to express W4 in terms of the intensity, /, of the incident radiation. Since

I = cop/n (2.4.10)

where 7 is the refractive index of the medium, we find from Eq. (2.4.9) that

oo — 2 o Pl ( ) 2.4.11)
= — i V) e
12 3neoch? M21| 18 0

We consider next the case of stimulated emission. The starting points, namely the wavefunc-
tion of the two-level system [Eq. (2.3.2)] and the interaction energy H' [Eq. (2.4.2)] remain
unchanged. Thus, the corresponding pair of equations describing the evolution, with time, of
|a>(£)|? and |a;(f)|? (see Appendix A) also remain unchanged. The only difference arises from
the fact that the initial condition is now given by |a2(0)|> = 1 and thus |a;(0)|> = 0. It can
be readily seen that the new equations for stimulated emission are then obtained from those
corresponding to absorption by simply interchanging the indices 1 and 2. Thus the transition
rate W3{ is obtained from Eq. (2.4.5) by interchanging the two indices. From to Eq. (2.3.7)
one immediately see that p, = pu3,, implying that [p,| = |H,;|. Therefore we have

Wi = Wy (2.4.12)

showing that the probabilities of absorption and stimulated emission are equal in this case
[compare with Eq. (1.1.8)].
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As a conclusion to this section, according to Egs. (2.4.9) and (2.4.11), the stimulated
transition rate can be written as™

W = 2 Pog(o ) (2.4.13)
= v —Vp). 4.
32egh? " pg 0
2 2
Wt = T uPIg(v — o) (2.4.132)
3neoch?
where, from Eq. (2.4.12), we have set W* = W] = W;{. and where we have also set

Il = |l = [l

2.4.2. Allowed and Forbidden Transitions

Equations (2.4.13) and (2.3.19) show that the transition rate W*¢, and the spontaneous
emission rate A are proportional to |u|>. This indicates that the two phenomena must obey
the same selection rule. Thus the stimulated transition via electric dipole interaction (electric
dipole transition) only occurs between states, u#; and up, of opposite parity. The transition
is then said to be electric dipole allowed. Conversely, if the parity of the two states is the
same, then W* = 0 and the transition is said to be electric-dipole forbidden. This does
not mean, however, that the atom cannot pass from level 1 to level 2 through the influence
of an incident e.m. wave. In this case, the transition can occur, for instance, as a result of
the interaction of the magnetic field of the e.m. wave with the magnetic dipole moment of
the atom. For the sake of simplicity, we will not consider this case any further (magnetic
dipole interaction), but limit ourselves to observing that the analysis can be carried out in a
similar manner to that used to obtain Eq. (2.4.11). We may also point out that a magnetic
dipole transition is allowed between states of equal parity (even-even or odd-odd transitions).
Therefore, a transition that is forbidden by electric dipole interaction is, however, allowed
for magnetic dipole interaction and vice versa. It is also instructive to calculate the order
of magnitude of the ratio of the electric dipole transition probability, W,, to the magnetic
dipole transition probability, W,,. Obviously the calculation refers to two different transitions,
one being allowed for electric dipole and the other for magnetic dipole interaction. We shall
assume that the intensity of the e.m. wave is the same for the two cases. For an allowed
electric dipole transition, according to Eq. (2.4.5), we can write W,  (.Eo)* ~ (eaEy)?,
where Ej is the electric field amplitude and where the electric dipole moment of the atom
/L. has been approximated (for an allowed transition) by the product of the electron charge

* Tt should be noted that the factor 3 appearing in the denominator of Eq. (2.4.3) and, hence, of Eq. (2.4.5),
Eq. (2.4.7), Eq. (2.4.9), Eq. (2.4.11), Egs. (2.4.13), and (2.4.13a), refers to the case of a linearly polarized wave
interacting with randomly oriented atoms (such as in a gas). In this case, in fact, we have W o< |, - Eo\z >=
I = |pan [PE3<cos? 0> = |ua |2E§/3, where 0 is the angle between p,; and Eq and the average is taken
over all atom-field orientations. Indeed, for randomly oriented p,; vectors, one has < cos?f> =1 /3 where the
average is taken in the three dimensional space, i.e. < cos? 8> = [ cos26 dS2 /4r. For different cases of atom/field
orientation, the factor |u2; \2 /3 should be changed appropriately. Thus, for aligned ions (such as in ionic crystals)
and a linearly polarized wave, the factor 3 should be dropped and |u21| should represent the magnitude of the
component of u,; along Eg.
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e and the radius a of the atom. For a magnetic dipole interaction, it can likewise be shown
that W,, o (umBo)*> ~ (BBo)?, where By is the magnetic field amplitude of the wave and
where the magnetic dipole moment of the atom, p,,, has been approximated (for an allowed
transition) by the Bohr magneton B (8 = 9.27 x 1072* A x m?). Thus we get

(W./Wy,) = (eaEy/BBy)? = (eac/B)? = 10° (2.4.14)

To obtain the numerical result of Eq. (2.4.14) we have made use of the fact that, for a plane
wave it is Ey/By = c¢ (where c is the light velocity), and we have assumed that a =~ 0.5 nm.
The probability of an electric dipole transition is thus much greater than that of a magnetic
dipole.

2.4.3. Transition Cross Section, Absorption and Gain Coefficient

In Sect. 2.4.1, the transition rate has been calculated for the case of a single atom interact-
ing with an incident e.m. wave and whose linewidth is determined by some line-broadening
mechanism. We now consider an ensemble of N, atoms per unit volume and we want to
calculate the corresponding, average, transition rate.

The first case we will consider is where both the resonance frequency vy and the line
shape are the same for every atom (the case of homogeneous broadening). The transition rate,
W), for this homogeneous case will then be the same for every atom, so that we can simply
write

Wi(v —vg) = W — vp) (2.4.15)

If we now let all atoms be in the ground state, the power absorbed per unit volume, dP,/dV,
will then be given by

(dP,/dV) = W,N,hv (2.4.16)

Since W}, is proportional to the wave intensity, hence to the photon flux F = I/hv, we can
define an absorption cross section, gy, as

o, = W, /F (2.4.17)
From Egs. (2.4.13a) and (2.4.17), 0, is seen to be given by

272

= 3n80ch|'u|2vg(v — ) (2.4.18)

Oh

With the help of the same argument used in connection with Fig. 1.2, we obtain from
Egs. (2.4.16) and (2.4.17) the equation describing the variation of the photon flux along the z
direction as [compare with Eq. (1.2.1)]

dF = —o N,Fdz (2.4.19)
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FIG. 2.7. Effective absorption cross section, 0,4, of atoms in a light beam of cross section S.

Examination of Eq. (2.4.19) leads to a simple physical interpretation of this transition cross
section. First, let us suppose that we can associate with each atom an effective absorption cross
section oy, in the sense that, if a photon enters this cross section, it will be absorbed by the
atom (Fig. 2.7). If we let S be the cross-sectional area of the e.m. wave, the number of atoms
in the element dz of the material (see also Fig. 1.2) is N,Sdz, thus giving a total absorption
cross section of o,N,;Sdz. The fractional change (dF/F) of photon flux in the element dz of
the material is therefore

(dF/F) = —(0,N,Sdz/S) (2.4.20)

A comparison of Eq. (2.4.20) with Eq. (2.4.19) shows that 0, = 0,, so that the meaning we
can attribute to oy, is that of an effective absorption cross section as defined above.

A somewhat different case occurs when the resonance frequencies v, of the atoms are
distributed around some central frequency vy (case of inhomogeneous broadening). This
distribution will be described by the function g* (vj — vo) whose definition is such that
dN; = N,g* (v(’) — vo) d v gives the elemental number of atoms with resonance frequency
between v, and vy +dv). According to Eq. (2.4.16), the elemental power absorbed by this ele-
mental number of atoms, dNy, is given by d(dP,/dV) = (N;hv)W, (v - v(/]) g* (v(/] - vo) dvy,
where W), (v — 1) is the transition rate for those atoms with resonance frequency v). The
total power absorbed per unit volume is then given by

(dP,/dV) = N;hv / Wi(v — v()g* (v — vo)dv}, (2.4.21)

A comparison of Eq. (2.4.21) with Eq. (2.4.16) shows that we can define an inhomogeneous
transition rate, W;,, as

Wi, = / Wi (v — v)g™* (v) — vo)dvy (2.4.22)

According to Eq. (2.4.17) we can now define an inhomogeneous cross-section o;, as 0, =
W,/ F. Upon dividing both sides of Eq. (2.4.22) by F and using Eq. (2.4.17) we then get

Oin = /O’h(\) —v)g* (V) — vo)dv, (2.4.23)
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Following the argument presented in connection with Fig. 2.7 one can see that o;, is an effec-
tive absorption cross section that one can associate with a single atom, so that a photon will
be absorbed if it enters this cross section. Note, however, that, in this case each atom has,
in reality, a different cross section 0y, (v — v) at the frequency of the incoming radiation and
oin 1s just an effective average cross section. Note also that, according to Eq. (2.4.23), the
line shape and linewidth of a;, depend on the function g* (v() — vo) i.e. on the distribution of
the atomic resonance frequencies. The phenomena leading to this frequency distribution will
be discussed at some length in a later section. Here we limit ourselves to pointing out that
g* (U(’) - vo) is generally described by a function of the form

2 (In2)\"? 4(vy — vp)?
(=) = —= exp— | —2———" In2 2.4.24
cpmm = (22) T[] iy

where Av} is the transition linewidth (FWHM), its value depending of the particular
broadening mechanism under consideration.
With the help of Eq. (2.4.18), Eq. (2.4.23) can be transformed to

27?2

C—s |iPvg (v — vo) (2.4.25)

Oin =

In Eq. (2.4.25) we have used the symbol g;(v — vy) for the total line shape function which can
be expressed as

+o00
o= [ el —w -l (2.4.26)
—00

where we have put x = 1) —vg. The expression of the cross section for inhomogeneous broad-
ening, 0;,, is thus obtained from that for homogeneous broadening, given by Eq. (2.4.18), by
substituting g(v — vg) with g,(v — vg). Note that, according to Eq. (2.4.26), g, is the convolu-
tion of the functions g and g*. Since both functions are normalised to unity it can be shown
that g, is also normalised to unity, i.e. that [ g,(v — v,)dv = 1. Note also that Eq. (2.4.25)
provides a generalisation of Eq. (2.4.18). Indeed, it is immediately seen from Eqs. (2.4.26)
and (2.4.25) that o;, reduces to 0, when g* (v) — v9) = & (v) — vg), i.e. when all atoms have
the same resonance frequency. Conversely, if the width of the line shape function, g (v - v(/]),
is much smaller than that due to inhomogeneous broadening, g* (v, — vo), then g (v — v{)
can be approximated by a Dirac § function in Eq. (2.4.26) and one gets g, =~ g*(v — vp) (case
of pure inhomogeneous broadening). In this case from Eq. (2.4.24) we get

2 (In2)\"? 4(v — vg)?
g =g"Wv—w) = Av* (7) exp — [%1112} (2.4.27)
0 0

The normalized function [g* (v —vo)Avg ] is plotted in Fig. 2.8 vs the normalized frequency
difference (v — vg)/ (Av(’)" / 2). According to Eq. (2.4.27), the width of the curve (FWHM) is
simply A v, the maximum of the function occurs for v = v and its value is given by

2 (mz)l/2 0939

= 2.4.28
Av§ ( )

*
0) =
g (0) Ave

T
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FIG. 2.8. Normalized plot of a Gaussian line.

A curve of the general form described by Eq. (2.4.27) is called Gaussian.
Based on the preceding discussion we will, from now on, use the symbol ¢ = o;, to
indicate the absorption cross section, for which the general expression can be written as

272

o= |LPvg:(v —vg) (2.4.29)
3n80ch

The corresponding expression for the absorption rate W = o F can then be written as

272

= 3’12—80}12|M|2P31(V — Vo) (2.4.30)
where p = (nl/c) = (nFhv/c) is the energy density of the e.m. wave.

One could now repeat the same arguments for the case of stimulated emission. According
to Eq. (2.4.12) one readily sees that, for non degenerate levels, the general expressions for the
stimulated emission cross section and for the rate of stimulated emission are again given by
Egs. (2.4.29) and (2.4.30) respectively.

It should be emphasized that, according to Eq. (2.4.29), o depends only on material
parameters [| ,u|2 , &, and vp] and on the frequency of the incident wave. A knowledge of o as
a function of v is therefore all that is needed to describe the interaction process. The transition
cross section o is therefore a very important and widely used parameter of the transition. It
should also be observed that, for the case where the populations of the two levels are N; and
N,, Eq. (2.4.19) generalises to

dF = —a(N| — N;)Fdz (2.4.31)
This has the same form as that originally derived in Chap. 1 [see Eq. (1.2.1) with g; = g»].

The discussion presented in this section, however, provides a deeper understanding of the
meaning of the (effective) cross section o.
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Another way of describing the interaction of radiation with matter involves defining a
quantity « as

o = O'(N1 - Nz) (2432)

If N > N, then « is positive and is referred to as the absorption coefficient of the material.
Using Eq. (2.4.29) the following expression is obtained for o:

272

- 3n£och

(N1 — No)|ie|*vgi(v — vg) (2.4.33)

Since o depends on the populations of the two levels, it is not the most suitable parameter
for describing a situation where the level populations are changing, such as, for example, in
a laser. Its usefulness, however, lies in the fact that the absorption coefficient & can often be
directly measured. From Eqs. (2.4.31) and (2.4.32) we get in fact

dF = —aFdz (2.4.34)

The ratio between the photon flux after traversing a length [ of the material and the incident
flux is therefore [F(I)/ F(0)] = exp(—al). By experimentally measuring this ratio with a suffi-
ciently monochromatic radiation, we can obtain the value of « for that particular wavelength.
The corresponding value of the transition cross section is then obtained from Eq. (2.4.32)
once N, and N, are known. If the medium is in thermodynamic equilibrium, Ny and N, can be
obtained from Eq. (1.2.2) once the total population N, = N; + N, and the level’s degenera-
cies are known. The instrument used the measure the absorption coefficient @ is known as an
absorption spectrophotometer. We note, however, that an absorption measurement obviously
cannot be performed for a transition in which level 1 is empty. This situation, for instance,
occurs when level 1 is not the ground level and its energy above the ground level is much
larger than k7. As a final observation we note that if N, > N, the absorption coefficient c,
defined by Eq. (2.4.32), becomes negative and, of course, the wave gets amplified rather than
absorbed in the material. In this case it is customary to define the new quantity g, as

g=0lO>—Ny) (2.4.35)

which is positive and is called the gain coefficient.

2.4.4. Einstein Thermodynamic Treatment

In this section we will describe a treatment, given by Einstein,? of both spontaneous and
stimulated transitions (absorption and emission). In this treatment the concept of stimulated
emission was first clearly established and the correct relationship between spontaneous and
stimulated transition rates was derived well before the formulation of quantum mechanics and
quantum electrodynamics. The calculation makes use of an elegant thermodynamic argument.
To this end, let us assume that the material is placed in a blackbody cavity whose walls
are kept at a constant temperature 7. Once thermodynamic equilibrium is reached, an e.m.
energy density with a spectral distribution p, given by Eq. (2.2.22) will be established and
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the material will be immersed in this radiation. In this material, both stimulated-emission and
absorption processes will occur, in addition to the spontaneous-emission process. Since the
system is in thermodynamic equilibrium, the number of transitions per second from level 1 to
level 2 must be equal to the number of transitions from level 2 to level 1. We now set

Wa1 = Baipy, (2.4.36)
Wiz = Biapy, (2.4.37)

where B, and B, are constant coefficients (the Einstein B coefficients), and let N{ and N; be
the equilibrium populations of levels 1 and 2, respectively. We can then write

AN; + B pyN; = Bi2py, Ny (2.4.38)
From Boltzmann statistics we also know that, for non degenerate levels, one has
N5 /N = exp(—hvy/kT) (2.4.39)
From Egs. (2.4.38) and (2.4.39) it then follows that

A
* " Biexp(hvo/kT) — B

oy (2.4.40)

A comparison of Eq. (2.4.40) with Eq. (2.2.22), when v = vy, leads to the following relations:

By =By =B (2.4.41)
A 8nhv8n3

Equation (2.4.41) shows that the probabilities of absorption and stimulated emission due to
blackbody radiation are equal. This relation is therefore analogous to that established, in a
completely different way, in the case of monochromatic radiation [see Eq. (2.4.12)]. Equa-
tion (2.4.42), on the other hand, allows the calculation of A, once B, i.e., the coefficient
for stimulated emission due to blackbody radiation, is known. This coefficient can easily
be obtained from Eq. (2.4.30) once we remember that this equation was established for
monochromatic radiation. For blackbody radiation, we can write p,dv for the energy den-
sity of radiation whose frequency lies between v and v + dv and simulate this elemental
radiation by a monochromatic wave. The corresponding elemental transition probability dW
is then obtained from Eq. (2.4.30) by substituting p, dv for p. Upon integration of the resulting
equation with the assumption that g,(v — vy) can be approximated by a Dirac § function in

comparison with p, (see Fig. 2.3), we get
272
= 3n2—80hz|’u|2va (2.4.43)

The comparison of Eq. (2.4.43) with Egs. (2.4.36) or (2.4.37) then gives

_2m?|uf?

- 2.4.44
3nZegg h? ( )
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so that, from Eq. (2.4.42), we obtain

_ 16 w303 n|pl?

A
3 heyc3

(2.4.45)

It should be noted that the expression for A that we have just obtained is exactly the same
as that obtained by a quantum electrodynamics approach [see Eq. (2.3.19)]. Its calcula-
tion is in fact based on thermodynamics and the use of Planck’s law (which is quantum
electrodynamically correct).

2.5. LINE BROADENING MECHANISMS

In this section we will discuss, in some detail, the various line broadening mechanisms
mentioned in previous sections. According to the earlier discussion, there is an important
distinction to be made from the outset between homogeneous and inhomogeneous line-
broadening. A line-broadening mechanism is referred to as homogeneous when it broadens
the line of each atom in the same way. In this case the line-shape of the single-atom cross
section and that of the overall absorption cross section would be identical. Conversely, a line-
broadening mechanism is said to be inhomogeneous when it distributes the atomic resonance
frequencies over some spectral range. Such a mechanism thus broadens the overall line of the
system (i.e. that of ) without broadening the lines of individual atoms.

Before proceeding, it is worth recalling that the shape of the function g,(v — vg) can
be determined in two ways: (a) By an absorption experiment, with the help of a spectropho-
tometer. In this case one measures the absorption coefficient as a function of frequency v,
using the spectrophotometer to select the light frequency. From Eq. (2.4.33) one sees that
o x vg(v — vp). Since the linewidth of the function g,(v — vp) is, typically, much smaller
than vy, we can approximately write @ o< vog,(v — vp). Thus, to a very good approximation,
the shape of the & vs v curve coincides with that of the function g,(v — vp). (b) By an emis-
sion experiment, in which one passes the spontaneously emitted light trough a spectrometer
of sufficiently high resolution and one determines g,(v — vg) by measuring the shape of the
spectral emission. It can be shown that, for any transition, the lineshapes obtained by these
two approaches are always the same. So, in the discussion that follows, we will consider the
lineshape function either in absorption or in emission, whichever is the more convenient.

2.5.1. Homogeneous Broadening

The first homogeneous line-broadening mechanism we consider is one due to collisions
and is known as collision broadening. In a gas, it is due to the collision of an atom with
other atoms, ions, free electrons, etc. or with the walls of the container. In a solid it is due
to the interaction of the atom with the phonons of the lattice. After a collision the two level
wavefunctions v and V¥, of the atom [see Eq. (2.3.1)] will undergo a random phase jump.
This means that the phase of the oscillating dipole moment p,,. [see Eq. (2.3.6)] will undergo
a random jump compared to that of the incident e.m. wave. These collisions thus interrupt
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FIG. 2.9. Time behavior of the electric field of an e.m. wave, E(r), as seen from an atom undergoing collisions. Note
that, in actual cases, there may 107 or more collisions during the collision time t.

the process of coherent interaction between the atom and the incident e.m. wave. Since it is
the relative phase which is important during the interaction process, an equivalent way of
treating this problem is to assume that it is the phase of the electric field rather than that of
1, that undergoes a jump at each collision. The electric field will therefore no longer appear
sinusoidal but will instead appear as shown in Fig. 2.9, where each phase jump occurs at the
time of a collision. It is therefore clear that, under these conditions, the atom no longer sees a
monochromatic wave. In this case, if we write dp = p,-dv’ for the energy density of the wave
in the frequency interval between v’ and v’/ 4+ dv’, we can use this elemental energy density
in the formula valid for monochromatic radiation, i.e., Eq. (2.4.7), which gives

27T2 2 / /
dWy, = 3n2—80hz|#21| pv8(v" — vo)dv (25.1)

The overall transition probability is then obtained by integrating Eq. (2.5.1) over the entire
frequency spectrum of the radiation, thus giving

+o00
Wi = | |2/ 5 — vo)dv' 25.2)
= / vV — D V BON
12 3 n2eg 12 H21 Pv 0
—00
We can now write p,’ as
Py = pgv’ =) (2.5.3)

where p is the energy density of the wave [see Eq. (2.4.6)], and g(v' — v) describes the
spectral distribution of p,/. Since one obviously has p = [ p,/dV’, the integration of both
sides of Eq. (2.5.3) then shows that g(v" — v) must satisfy the normalization condition

+o0
/ gV —v)dv =1 (2.5.4)

Upon substituting Eq. (2.5.3) into Eq. (2.5.2) and using a well known mathematical property
of the § function we get

”’ = IL I“ v Y 2.5.5
12 3 280 hz 21 g 0
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As anticipated in Sect. 2.4.1, it is seen that W), is indeed obtained by substituting g(v — vg)
to 8(v — vp) in Eq. (2.4.7). Note that, according to Eq. (2.5.4), we also have

+o00

/ gv —vo)dv =1 (2.5.6)

—00

There now remains the problem of calculating the normalized spectral density of the incident
radiation g(v’ — v). This will depend on the time interval, T, between collisions (Fig. 2.9),
which will obviously be different for each collision. We will assume that the distribution of
the values of t can be described by a probability density

pe = [exp(—=1/7.)]/ 7 (2.5.7)

Here p, dt is the probability that the time interval between two successive collisions lies
between t and t 4-dt. Note that 7, has the physical meaning of the average time <7> between
collisions. It is easy, in fact, to see that

o0
<> = /‘L’prd‘t =1 (2.5.8)
0

At this point the mathematical problem to be solved is well defined. We need to obtain the
normalized spectral lineshape of a wave as in Fig. 2.9 for which the time t between two
successive collisions has the statistical distribution p, given by Eq. (2.5.7). Referring to the
Appendix B for the mathematical details we merely quote the final result here. The required
normalized spectral lineshape is given by

1
[1+4m222(0" —v)?]

g(v' —v) =2z, (2.5.9)

According to Eq. (2.5.5) the line shape of the transition is obtained from Eq. (2.5.9) by
substituting v’ by vg. We then get

1
1 44722 (v — vo)z]

g(v —vo) = 2rc[ (2.5.10)

which is our final result. We thus obtain a function with a Lorentzian lineshape, as generally
described by Eq. (2.4.8) [see also Fig. 2.6], where the peak value is now 27, and the linewidth
AU() is

Avy = 1/7mz, (2.5.11)
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Example 2.2. Collision broadening of a He-Ne laser As a first example of collision broadening, we
consider the case of a transition for an atom, or ion, in a gas at pressure p. An estimate of t. is, in this
case, given by t. = [/vy, where [ is the mean free path of the atom in the gas and vy, is its average thermal
velocity. Since vy, = (3kT/M)'/? where M is the atomic mass and taking / to be given by the expression

resulting from the hard-sphere model of a gas, we obtain
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1/2 1/2
v = (%) 1 WD) (25.12)

3 8t pa?

where a is the radius of the atom and p is the gas pressure. For a gas of Neon atoms at room temper-
ature and at a pressure p = 0.5 Torr (typical pressure in a He-Ne gas laser) using Eq. (2.5.12) with
a = 0.1nm and 7, = 0.5 us, we find from Eq. (2.5.11) that Av, = 0.64 MHz. Note that t. is inversely
proportional, and hence Avy directly proportional, to p. As a rough “rule of thumb” we can say that, for
any atom, collisions in a gas contribute to the line broadening by an amount (Avy/p) = 1 MHz/Torr, com-
parable to that shown in the example of Ne atoms. Note also that, during the collision time 7, the number
of cycles of the e.m. wave is equal to m = vt For a wave whose wavelength falls in the middle of the vis-
ible range we have v = 5 x 10'* Hz and thus the number of cycles is 5 x 108. This emphasizes the fact that
Fig. 2.9 is not to scale since the number of cycles in the time t is much larger than suggested in the figure.

Example 2.3. Linewidth of Ruby and Nd:YAG As a third example of collision broadening, we will con-
sider an impurity ion in an ionic crystal. In this case the collisions of the ion occur with the lattice
phonons. Since the number of phonons in a given lattice vibration is a strong function of the lattice
temperature, we expect the transition linewidth to show a strong dependence on temperature. As a rep-
resentative example, Fig. 2.10 shows the linewidth versus temperature for both Nd:YAG and ruby, the
linewidth being expressed in wavenumbers [cm™!], a quantity widely used by spectroscopists rather than
actual frequency.* At 300K the laser transition linewidths are seen to be Avy =~ 4cm™! = 120 GHz for
Nd:YAG and Avy 2 11 cm™! = 330 GHz for ruby.

A second homogeneous line-broadening mechanism has its origin in the phenomenon of
spontaneous emission. Since this emission is an inevitable feature of any transition, the cor-
responding broadening is called natural or intrinsic. In the case of natural broadening, it is
easiest to consider the behavior in terms of the spectrum of the emitted radiation. It should be
noted however that, as pointed out in Sect. 2.3.2, spontaneous emission is a purely quantum
phenomenon, i.e. it can only be correctly explained by quantizing both matter and radia-
tion. It follows therefore that a correct description of the lineshape of the emitted radiation
also needs a quantum electrodynamics treatment. We will therefore limit ourselves to quot-
ing the final result, which happens to be very simple, and to justifying it by some simple
arguments. The quantum electrodynamics theory of spontaneous emission® shows that the
spectrum g(v — vp) is again described by a Lorentzian line whose shape can be obtained from
Eq. (2.5.10) by replacing 7. by 27,,, where 7y, is the decay time of the spontaneous emission.
Thus, in particular, the full width of the line (FWHM) is given by

Avy = 1/27 7y, (2.5.13)

* For a given wave of frequency v, the corresponding frequency in wave numbers (e.g. in cm™!) is given by w =
1/C, where c is the velocity of the wave in a vacuum (in cm/s). The true frequency v is then obtained from the
frequency in wave numbers by the simple relation v = cw while the corresponding wavelenght is simply given
by A = ¢/v = 1/w (in cm). This illustrates the advantages of the wave number notation. The trem wave number
arises from the fact that w gives the number of wave periods, n, comprised in a given unitary length / (e.g. in 1
cm). The number 7 is in fact given by n = [/A so that n/l = 11 = w.
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FIC. 2.10. Laser linewidth vs temperature for ruby and Nd:YAG, as determined by phonon broadening.

To justify this result we notice that, since the power emitted by the atom decays in time as
exp(—t/ty,), the corresponding electric field can be thought as decaying according to the rela-
tionship E(f) = exp(—t/2t,) X cos wot. The decay of emitted intensity [which is proportional
to <E?(f)>] would then show the correct temporal behavior, namely, exp(—t/t,,). We can
now easily calculate the power spectrum corresponding to such a field E(¢) and verify that the
line shape is Lorentzian and that its width is given by Eq. (2.5.13).

Example 2.4. Natural linewidth of an allowed transition As a representative example we can find an
order of magnitude estimate for Av,,, for an electric-dipole allowed transition. Assuming || = ea with
a = 0.1nm and A = 500 nm (green light) we already obtained in example 2.1 that 7y, = 10ns. From
Eq. (2.5.13) we then get Av,, = 16 MHz. Note that Av,, just as A = 1/1,,, is expected to increase
with frequency as vg . Therefore the natural linewidth increases very rapidly for transitions at shorter
wavelengths (down to the UV or X-ray region).

2.5.2. Inhomogeneous Broadening

We will now consider some mechanisms where the broadening arises from the distribu-
tion of the atomic resonance frequencies (inhomogeneous broadening).

As a first case of inhomogeneous broadening we consider that which occurs for ions
in ionic crystals or glasses. Ions will experience a local electric field produced by the sur-
rounding atoms of the material and, due to material inhomogeneities which are particularly
significant in glass medium, these fields will be different from ion to ion. These local field
variations will then produce, via the Stark effect, local variation of the energy levels and thus
of the transition frequencies of the ions (the term inhomogeneous broadening originates from
this case). For random local field variations, the corresponding distribution of the transition
frequencies g* (v, —vo) turns out to be given by a Gaussian function, i.e. by the general expres-
sion Eq. (2.4.27) where the linewidth Av] (FWHM) will depend upon the extent of variation
of transition frequencies in the material and hence upon the amount of field inhomogeneity
within the crystal or glass.
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Example 2.5. Linewidth of a Nd:glass laser As a rep-
resentative example we consider the case of Nd** ions
doped into a silicate glass. In this case, due to glass
inhomogeneities, the linewidth of the laser transition at
A = 1.05um is Ay} = 5.4THz ie. it is about 40
times broader than that of Nd:YAG at room temperature
(see Example 2.3). It should be noted that these inhomo-
geneities are an unavoidable feature of the glass state.

A second inhomogeneous broadening
mechanism, typical of gas, arises from
atomic motion and is called Doppler broad-
ening. Assume that an incident e.m. wave
of frequency v is propagating in the positive
z direction and let v, be the component of
atomic velocity along this axis. According to
the Doppler effect, the frequency of the wave,

as seen from the rest frame of the atom, is

v’ = v[l — (v,/c)] where c is the velocity of
light in the medium. Notice the well known result that, when v, > 0, we have v/ < v and
vice versa. Of course, absorption by the atom will occur only when the apparent frequency v’
of the e.m. wave, as seen from the atom, is equal to the atomic transition frequency vy, i.e.,
when v[1 — (v;/c)] = vo. If we now express this relation as

v =vg/[1 — (v;/0)] (2.5.14)

we can arrive at a different interpretation of the process. As far as the interaction of the e.m.
radiation with the atom is concerned, the result would be the same if the atom were not moving
but instead had a resonant frequency v}, given by

vy = vo/[1 = (v;/c)] (2.5.15)

where vy is the true transition frequency. Indeed, following this interpretation, absorption
is expected to occur when the frequency v of the e.m. wave is equal to v/ i.e. when v =
vy, in agreement with Eq. (2.5.14) when the expression Eq. (2.5.15) for v} is used. When
looked at in this way, one can see that this broadening mechanism does indeed belong to the
inhomogeneous category as defined at the beginning of this section.

To calculate the corresponding line shape g* (v}, — vo) it is now sufficient to remember
that, if we let p,dv, be the probability that an atom of mass M in a gas at temperature 7 has a
velocity component between v, and v, 4+ dv,, then p, is given by the Maxwell distribution

M o\/2
_ _ 2
Dy = (anT) exp—(Mv; /2kT) (2.5.16)

From Eq. (2.5.15), since |v;| < ¢, we get v = vo[l + (v./c)] and thus v, = c(v] — vo)/vo.
From Eq. (2.5.16) one then obtains the desired distribution upon recognizing that one must
have g* (v, — vo)dv, = pyvdv.. One then gets

1 M\ Mc? (v — vo)z
koo 0
— = 2.5.17
§" (o = wo) Vo (27rkT) exp 2kT Vg ( )

Thus one again obtains a Gaussian function whose FWHM linewidth (Doppler linewidth) is
now readily found from a comparison of Eq. (2.5.17) with Eq. (2.4.24), giving

Avg = 2v [2kT In2/M?]"? (2.5.18)

For the purely inhomogeneous case the lineshape will be given by the general expression of
Eq. (2.4.27) where Avj is given by Eq. (2.5.18).
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Example 2.6. Doppler linewidth of a He-Ne laser Consider the Ne line at the wavelength A = 632.8 nm
(the red laser line of a He-Ne laser) and assume T = 300 K. Then from Eq. (2.5.18), using the appropriate
mass for Ne, we get Avy = 1.7GHz. A comparison of this value with those obtained for collision
broadening, see example 2.2, and natural broadening, see Example 2.4 (the transition is allowed by electric
dipole), shows that Doppler broadening is the predominant line broadening mechanism in this case.

2.5.3. Concluding Remarks

According to the previous discussion, we have seen that the shape of a homogeneous
line is always Lorentzian while that of an inhomogeneous line is always Gaussian. When two
mechanisms contribute to line broadening, the overall line shape turns out to be always given
by the convolution of the corresponding line-shape functions, as indicated in Eq. (2.4.26)
for the case of one line being homogeneously and the other inhomogeneously broadened.
It can now be shown that the convolution of a Lorentzian line, of width Av,, with another
Lorentzian line, of width Av,, again gives a Lorentzian line whose width is now Av =
Av; + Av,. The convolution of a Gaussian line, of width Av;, with another Gaussian line,

of width Av,, is again a Gaussian line, this time of width Av = (Av? + Av%)l/z. For any
combination of broadening mechanisms, it is therefore always possible, to reduce the problem
to a convolution of a single Lorentzian line with a single Gaussian line and this integral (which
is known as the Voigt integral®) is tabulated. Sometimes, however, (e.g. as in the previously
discussed cases for Ne), one mechanism predominates. In this case, it is then possible to talk
of a pure Lorentzian or Gaussian line.

We conclude this section by showing, in Table 2.1, the actual range of linewidths for the
various line-broadening mechanisms considered. Note that, in the middle of the visible range,
we have 7, = 10ns and hence Av,,; = 10 MHz for an electric dipole allowed transition.
For an electric dipole forbidden transition, on the other hand, one has 7y, =~ 1 ms and hence
Avyy, = 1kHz. Note also that, in the case of a liquid, collision broadening and local field
inhomogeneous broadening are the predominant broadening mechanisms. In this case, the
average time between two consecutive collisions is indeed much shorter than in the gas phase
[t. = 0.1ps] and hence we have Av. = 1/m7. = 100cm™'. Inhomogeneous broadening
arises from the local density variations associated with a given temperature and may produce
a value for the linewidth Av] comparable to that of collision broadening. In a solid, inhomo-
geneous broadening due to local field variations may be as high as 300 cm™' for a glass and
as low as 0.5cm™!, or even lower, for a good quality crystal such as in presently available
Nd:YAG crystals.

TABLE 2.1. Typical magnitude of frequency broadening for the various line-broadening mechanisms

Type Gas Liquid Solid
Homogeneous Natural 1kHz =+ 10 MHz Negligible Negligible

Collisions 5 =+ 10 MHz/Torr ~300cm™! -

Phonons - - ~10cm™!
Inhomogeneous Doppler 50MHz =+ 1 GHz Negligible -

Local field - ~500cm™! 1+500cm™!
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2.6. NONRADIATIVE DECAY AND ENERGY TRANSFER

Besides decaying via radiative emission, an excited species can also undergo nonradia-
tive decay. There exists a variety of ways by which this can occur and the detailed description
of the various physical phenomena can often be quite complicated. We shall therefore limit
ourselves to a qualitative discussion with the main aim being to elucidate the physical phe-
nomena involved. We will then consider the combined effect of radiative and non-radiative
decay processes.

2.6.1. Mechanisms of Nonradiative Decay!"

First we consider a nonradiative decay mechanism which arises from collisions, some-
times called collisional deactivation. In this case, for a gas or a liquid, the transition energy is
released as excitation and/or as kinetic energy of the colliding species or given to the walls of
the container. In the case of a solid, such as an ionic crystal or glass, the energy of the excited
ion is taken up by the lattice phonons or by the glass vibrational modes.

The collisional deactivation process, for the case where the energy of an excited species
B* is released as kinetic energy of a colliding species A, can be expressed in the form

B*+A—B+A+ AE (2.6.1)

where AE is equal to the excitation energy. Since AE ends up as kinetic energy of the colliding
partners, the process is also referred to as a superelastic collision or a collision of second kind.
For a process of the form shown in Eq. (2.6.1), the rate of change of B* population, Ng=, can
be written as

dN g+
dt

— kAN Ny (2.6.2)

where N, is the population of species A and k=4 is a coefficient which depends on the transi-
tion of species B and on species A. The process is particularly effective, i.e. kp* 4 is particularly
large, when A has a very small mass (e.g. the He in the gas of a CO; laser) so it can more
readily take-up the surplus energy AE, from the collision process, as kinetic energy. For the
same reason the process can readily occur in a gas discharge when A is a discharge electron
(e.g. deactivation of the 23S state of He in a He-Ne laser). According to Eq. (2.6.2), we can
now define a nonradiative decay rate

Wor = kpxaNa (2.6.3)

From Eqgs. (2.6.2) and (2.6.3) we then get

N\ N
(7) __ M (2.6.4)

TI'L r

where, to conform with previous notations, we have let N, be the population of the species
undergoing collisional deactivation and where we have defined a nonradiative decay time as
Tor = (1/Wp,).
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It should be observed that, in writing Eq. (2.6.2), we have neglected the reverse process
of that given by Eq. (2.6.1) i.e.,

B+A—>B*+A—- AE (2.6.5)

where species B is excited at the expense of the kinetic energy AE of the two colliding partners
(thermal activation or collision of first kind). If this process were taken into account, one
should write, instead of Eq. (2.6.2), the following equation

(dNp« /dt) = —kpxpNpxNa + kpaNpNa (2.6.6)

where kg, is a coefficient describing the process of thermal activation. To find the relationship
between kg4 and kg+4 we can consider species B in thermal equilibrium with species A and
then apply the so-called principle of detailed balance. This principle can generally be formu-
lated by requiring that, in thermodynamic equilibrium, the rate of any process must be exactly
balanced by the rate of the corresponding reverse process®. Thus in this case, according to
Eq. (2.6.6), we require

kp+aNp+Na = kpaNpNy (2.6.7)

In thermal equilibrium and for nondegenerate levels we have Ngx = N exp(—AE/kT) where
AE is the excitation energy of species B and T is the temperature of the ensemble of species
B and A. From Eq. (2.6.7) we then get

kB*A = kBA exp(AE/kT) (268)

which shows that the rate coefficient k£ for the exothermic reaction Eq. (2.6.1) is always
larger than that of the endothermic reaction Eq. (2.6.5). Actually, for electronic and for most
vibrational transitions, AE is much larger than k7. Thus, according to Eq. (2.6.8), we have
kp=s > kpa. It is very important also to realize that, although Eq. (2.6.8) has been derived for
thermal equilibrium conditions, the same relation still holds if the population of species B is
maintained in a non equilibrium state of excitation, e.g. by some pumping process, provided
that the translational degrees of freedom of both species B and A are still in thermal equilib-
rium. In fact, the quantum mechanical calculation of the rate coefficient k does not depend on
the population of B but only upon the eigenfunctions of the two species involved, and on their
relative velocities. For a steady excitation of species B away from the Boltzmann equilibrium,
i.e. when Np« is of the same order of Ng, we thus have kp+sNp+ > kpaNp and Eq. (2.6.6)
reduces to Eq. (2.6.2). Thus, to conclude, collisional deactivation takes the simple form given
by Eq. (2.6.4) only when AE >> kT so that thermal activation may be neglected, which
is the case for electronic transitions and for most vibrational transitions. For deactivation of
the lowest energy vibrational levels of some molecules [e.g. the (010) state of CO,] and for
rotational transitions, thermal excitation must however be taken into account.

* Note that the equation expressing the balance of processes between a two level atom and the blackbody radiation,
established in Sect. 2.4.4., is another example of the principle of detailed balance.
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FIG. 2.11. (a) Nonradiative decay of a species B by near resonant energy transfer to a species A. (b) Reverse,
back-transfer, process.

When the electronic energy of species B is released in the form of internal energy of
some other species A, we can represent this with an equation of the form (collision of the
second kind*)

B*+A— B+ A"+ AE (2.6.9)

where AE = Ep — Ej4 is the difference between the internal energies of the two species
(see Fig. 2.11a). The quantum mechanical calculation of the corresponding transition rate
is beyond the scope of this book and we refer the reader elsewhere for details.(!) Here we
limit ourselves to pointing out that, since AE must be added to or removed from the kinetic
energy of the two colliding partners, the process turns out to be particularly effective when
AE is appreciably smaller than k7. Therefore, the process is also called near-resonant energy
transfer and often plays an important role as a pumping mechanism in gas lasers (e.g. energy
transfer between excited He and ground state Ne, in a He-Ne laser, or between excited N, and
ground state CO, in a CO, laser). The process also results in an effective deactivation channel
for species B. To consider the dynamics of this deactivation process, we must also take into
account the reverse process (back-transfer, see Fig. 2.11b)

B+A* > B* +A— AE (2.6.10)

Actually, again applying the principle of detailed balance one can now show that, e.g., for the
case of exact resonance (i.e., AE = 0), one has kg4 = kgy*, Where kg+4 and kgy+ are the

* Collisions of the first kind involve conversion of the kinetic energy of one species into internal energy of another
species [see Eq. (2.6.5)]. In collisions of the second kind, internal energy is converted into some other form of
energy (other than radiation) such as kinetic energy [see Eq. (2.6.1)], or is transferred into internal energy of
another species (same or different species) [see Eq. (2.6.9)]. Collisions of the second kind thus also include, for
instance, the conversion of excitation energy into chemical energy.



2.6 e Nonradiative Decay and Energy Transfer

rate constants of the two processes described by Egs. (2.6.9) and (2.6.10), respectively. This
indicates that the back-transfer reaction often plays a very important role. This process can
however be neglected when the decay of species A from its excited state is very fast, as it may
occur by the onset of stimulated emission. In this case one has (Na+/Ns) < (Np*/Np), the
back transfer may be neglected, and the rate of decay of the excited species, B*, can simply
be written as

(dNp* /dt) = —kpxaNp=Na (2.6.11)

We again obtain an equation of the general form given by Eq. (2.6.4) where now (1/t,,) =
kpxaNa.

Finally we consider the case where collisional deactivation of species B (e.g. an active ion
in an ionic crystal) occurs through interaction with lattice phonons or with glass vibrational
modes*. In many cases, except for some nonradiative decay processes occurring in tunable
solid state lasers (see Chap. 9), we are dealing with electronic transitions and thus with tran-
sition energies of species B which are many times (typically at least 3 to 4 times) larger than
that of the most energetic phonon. This means that, to conserve energy, the transition energy
must be released in the form of many phonons (multiphonon deactivation). Thus, in this case,
the deactivation process can be represented in the form

B* - B+ Z i(hvy) (2.6.12)
1

where v; are the frequencies of the phonons involved and the sum is extended over all phonons
created in this resonant or near-resonant process. Again we can define a transition rate W,
according to the relation

dN g+
dt

= —W,B* (2.6.13)

In this case, since many phonons are involved, the quantum mechanical calculation for the
process would involve a higher order perturbation theory. It is therefore not considered here
in any detail. We simply limit ourselves to pointing out that, if only a phonon of frequency v is
involved, W,,, can be written as W,, = A exp(—BAE/hv), where A and B are host-dependent
constants and AF is the transition energy of species B. We thus see that the transition rate
rapidly decreases with the increasing number, n = AE/hv, of phonons involved i.e. with the
increasing order of the multiphonon process. The dominant contribution to the nonradiative
process thus comes from the lattice phonon of the highest energy, since this means that the
lowest order process is then involved. The large variation in vibrational spectra shown by
different material then makes W,, extremely host dependent. By contrast, the rate is found
to be relatively independent of the actual electronic state or even the particular active ion
involved.

* The absence of translational invariance in glass means that, strictly speaking, one should not talk in terms of
honons, in this case, as one does for a crystal. For now on, however, for brevity we will refer to phonons even in
p Yy y p
this case.
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As a conclusion to this discussion on collisional deactivation, we note that, while the
process can take a variety of forms, the decay behavior of the excited state can, subjects to
limits that we have discussed, always be described by the general relation Eq. (2.6.4), where
the value of 7, will depend upon the particular process under consideration. It should be
noted explicitly, however, that there is a fundamental difference between the nonradiative
decay time, t,,, discussed here, and the collision time . discussed in Sect. 2.5.1, although
they both originate from collisions. In fact, a nonradiative decay process requires an inelastic
collision since the decaying species gives up its energy to its surroundings. By contrast, 7, is
the average time between two consecutive dephasing collisions and thus arises from elastic
collisions only. Note that, in general, elastic collisions are more likely than inelastic ones and
thus 7, is smaller, and often much smaller, than t,,,.

A kind of nonradiative decay that does not rely on collisions, arises from dipole-dipole
interaction between an excited species that we shall call the donor, D, and, e.g., a ground
state species that we shall call the acceptor, A. The interaction results in energy being trans-
ferred between donor and acceptor. This process has been extensively studied by Forster for
liquids® and by Dexter for solids.!'¥ It plays a very important role e.g. for active ions in
crystals or glasses and for mixtures of organic dyes in solution. Consider the donor, undergo-
ing the downward transition, while at a distance R from the acceptor. During the transition,
the donor will develop a dipole moment, pp, oscillating at its transition frequency. From the
theory of electric dipole radiation,! it is known that this moment generates, at a distance R,
a nonradiating electric field (the so called near-zone field) whose magnitude, Ep(?), as for an
electrostatic dipole, is equal to w,,/4meoR>. Under these conditions, nonradiative decay may
occur by energy transfer arising from the interaction of the near-zone field Ep (¢, R) at the posi-
tion of the acceptor with the oscillating dipole moment of the acceptor, p,. The interaction
energy, H, can then be written as

H o |Ep - py| o< [ - gl /R (2.6.14)

Of course, the interaction will have a significant strength only if the oscillation frequency of
Up is nearby resonant with that of p,. This means that there should be a good overlap between
the emission spectrum of the donor and the absorption spectrum of the acceptor from its initial
state (often not necessarily being the ground state). The detailed calculation shows that, for a
single donor and acceptor separated by a distance R, the rate of energy transfer can be written
as(lZ)

3 IN| 1 [y e
Wpa = (@) (ﬁ) —/ (E) go(V)aa(v)dv (2.6.15)
0

Tsp

where 7, is the spontaneous lifetime of the donor, n is the refractive index of the surrounding
medium gp is the line-shape function of the donor and o4 is the absorption cross-section of
the acceptor. Note that since, as usual, the dependence of Wp, with the interaction energy H
is Wpa o |H|?, from Eq. (2.6.14) we expect Wps o |wp|?|1ea]?/R. By this relation one can
understand the dependence of Wp, not only from R~° but also from (1/ Tsp) [remember that
1/t o |ppl?, see Eq. (2.3.15)] and to the cross section o4 of the acceptor [remember that
o4 o |y %, see Eq. (2.4.29)].
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(a) (b) (c)

FIG. 2.12. Different forms of energy transfer by dipole-dipole interaction within the same species: (a) Migration of
excitation. (b) Cross relaxation. (c) Cooperative up-conversion.

It should be noted finally that, dipole-dipole interactions may take somewhat different
forms from the classical donor-acceptor situation just considered. For instance, it may occur
between members of a single species (referred to as species D) and thus lead for example to
energy transfer between an excited and an unexcited atom [Fig. 2.12a]. Such a resonant energy
transfer usually can, for example, lead simply to spatial excitation migration within the same
species D. It may also lead, however, to a nonradiative decay if the excitation eventually
reaches a D site which is close to a, nearly resonant, acceptor site which itself has a fast
decay. Energy transfer may also occur into an intermediate level, i, as shown in Fig. 2.12b
(cross relaxation). This process will be particularly effective for near resonant transfer i.e.
when AEy; = AE; . Finally, energy transfer may occur throughout an upper level, with both
donor and acceptor initially excited and the acceptor then being excited to a higher level u
(Fig. 2.12c¢). This process, known as cooperative up-conversion, is particularly effective again
for near resonant energy transfer i.e. when AE,, = AE,,.

Example 2.7. Energy transfer in the Yb>* : Er™ : glass laser system"® Donor-acceptor type of energy
transfer is very effective in the Yb>* : Er’T:glass laser system (see Chap. 9) in transferring the excitation
from the Yb? ion, initially excited to its >Fs /2 state, to the T /2 excited level of Ert (Fig. 2.13a). This
energy transfer, besides being an effective nonradiative decay mechanism for the Yb ion, constitutes a
very effective way of pumping the active Er ion. Note that, at high Yb ion concentrations, this energy
transfer is assisted by energy migration between Yb ions until the excitation reaches a closely spaced
Yb-Er pair.

Example 2.8. Nonradiative decay from the *F /2 upper laser level of Nd:YAG Cross relaxation turns out
to be the main nonradiative decay mechanism for the Nd:YAG *F;/, upper laser level. In this case the
intermediate level i of Fig. 2.12b is the *I;5 /2 level of the Nd ion (Fig. 2.13b). The excitation energy of
this level is then rapidly lost via multiphonon relaxation and the ion passes successively through the *I,3 /2
and the *I;; /2 lower levels (not shown in the figure, see however Fig. 2.15) to the 1o /2 ground level. The
energy difference between these sublevels (e.g. *I;3 2 = T /2) 18, in fact, about 2,000 cm™! (the Stark
sublevels are even closer) i.e. only 4 times larger than the highest vibrational frequency of YAG crystal
(~450 cm™!). This mechanism limits the optimal concentration of Nd ions in a YAG crystal to about 1%.
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FIG. 2.13. Examples of energy transfer by dipole-dipole interaction: (a) Y3t — Ert energy transfer in an Yb:Er

laser or amplifier. (b) Nonradiative decay of Nd:YAG by cross relaxation. (c) Cooperative upconversion in an ErT
laser or amplifier.

Example 2.9. Cooperative upconversion in Er** lasers and amplifiers!> Cooperative up-conversion is
believed to be the major cause of inefficiency for Er** lasers or amplifiers (Fig. 2.13c¢). In this case, out
of two neighboring Er ions initially excited to the *I;3 /2 laser level, one decays to the ground ;5 /2 level
while the other is raised to the *Io /2 level. From this level the ion, when in an oxide glass host, then decays
rapidly back to the *I;3 /2 level by multiphonon decay. The net result of this cooperative up-conversion is
that one Er ion, initially excited to the laser *I;3 /2 level, is effectively quenched to the ground level i.e.,
one looses 50% of the population.

2.6.2. Combined Effects of Radiative and Nonradiative Processes

Let us first consider the case where the nonradiative decay can be described by an equa-
tion of the general form Eq. (2.6.4). The time variation of the upper state population N, can
then be written as

dN N, N
e (—2 + —2) (2.6.16)
dt T T

Equation (2.6.16) can be put in the simpler form
dN,/dt = —(N2/7) (2.6.17)

provided that one defines an overall decay time 7 given by

111
R (2.6.18)

T Tr Tar

The population N, (7) at time ¢ is then obtained by integrating Eq. (2.6.17). We get

Na(f) = N (0) exp —(t/7) (2.6.19)
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where N,(0) is the population at t = 0. To calculate the time behavior of the spontaneously
emitted light, we notice that, according to Eq. (2.6.16), N>/t gives the number of atoms
decaying radiatively per unit volume and unit time. Assuming, for simplicity, that radiative
decay occurs to one lower level only, say level 1, and letting v, be the corresponding transition
frequency, the spontaneously emitted power at time ¢ will then be

P(t) = N2(H)hvoV /1, (2.6.20)
where V is the volume of the material. With the help of Eq. (2.6.19), Eq. (2.6.20) gives
P(t) = [N2(0)hvoV /1, ] exp —(t/7T) (2.6.21)

Note that the time decay of the emitted light is exponential with a time constant t rather
than 7, as one, perhaps, might have expected at a first sight. By monitoring the decay of the
spontaneously emitted light from a sample having, at t = 0, an initial upper state population
N;(0), one thus measures the overall lifetime 7. To obtain t,, let us first define the fluorescence
quantum yield ¢ as the ratio of the number of emitted photons to the number of atoms initially
raised to level 2. Using Eq. (2.6.21), we have

_ [ P®/hvo)dt T (2.6.22)
B NZ(O)V B Tr o

Note that one can easily show that the above relation remains true also when the decay is into
a number of lower levels provided that, in defining the quantum efficiency ¢, one includes the
photons emitted in all of these transitions. The measurement of ¢ thus allows calculation of
7, once 7 is known from the decay measurement of the emitted radiation. This measurement,
however, is sometimes not an easy one especially when t is very short (picoseconds or even
less), i.e. when ¢ is very small.

We now briefly consider the case in which nonradiative decay occurs via a dipole-
dipole mediated energy transfer. According to Eq. (2.6.15), the transition rate Wpy is strongly
dependent upon the donor to acceptor distance, R. For a population of Np donors and Ny
acceptors, due to the different distances between donors and acceptors, the decay rate will
be different from each donor to acceptor couple and the resulting overall decay will show
a non-exponential behavior, the initial faster decay corresponding to sites with the smallest
separation R. A particularly important case occurs where there are random values of the donor-
acceptor spacing and where this distance is either fixed, as in a solid, or slowly varying over a
spontaneous decay time, as often occurs for liquids (Forster regime). In this case, when both
radiative and nonradiative decay channels are taken into account, the overall decay is given by

Na(t) = Na(0) exp— [ (1/7,) + C1'P?] (2.6.23)

The time behavior of the radiated power is then obtained by substituting Eq. (2.6.23) into
Eq. (2.6.20) and thus follows the same non-exponential decay as that of the population N,(¥).
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2.7. DEGENERATE OR STRONGLY COUPLED LEVELS

So far we have considered only the simplest case in which both levels 1 and 2 are non-
degenerate. We will now briefly consider the case when the two levels are degenerate or are
made up of a number of strongly coupled levels. The situation is depicted in Fig. 2.14 where
levels 1 and 2 are assumed to consists of g; and g, sublevels which are either degenerate (i.e.
have the same energy) or so close in energy to be strongly coupled. We will let Ny and N,
be the total populations of levels 1 and 2 and use Ny; and N,; to indicate the population of a
particular sublevel of the lower and upper manifolds respectively.

2.7.1. Degenerate Levels

We first look at the degenerate case and begin by considering the thermal equilibrium
situation. In this case, the population of each sublevel of both upper and lower state will obey
the usual Boltzmann equation, thus

N§ = Nf exp [~ (Es — E1) /T (2.7.1)

Since, however, the sublevels of e.g. level 1 are also in thermal equilibrium, their population
must all be equal, thus

Ni, = Nj/g (2.7.2a)
Similarly we have
st =N;/g (2.7.2b)
From Egs. (2.7.1) and (2.7.2b) we then get
N3 = Ni(g2/g1) exp [~ (E2 — E1) /kT] (2.7.3)
Let us now see how the expressions for transition cross section, gain, and absorption coeffi-

cient need to be modified in the case of degenerate levels. For this purpose we consider an
e.m. wave passing through a material with given overall populations, N; and N,, in the two

J ] Ez‘gz, N2

i }E1,g1, Nj

FIG. 2.14. Two level system in which the two levels comprise many sublevels which are either degenerate or strongly
coupled.
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levels, and we calculate the rate of change of the overall population N, due to all radiative and
nonradiative transitions between sublevels j and i. We therefore write

sz 81 82 Nz'
(7) ==Y i) i Wiy — Wy + t—’) (2.7.4)
1 1

Jl

where Wj; is the rate of stimulated transition between j and i sublevels, W;; is the rate of
absorption and (1/7j) is the rate of spontaneous decay, radiative and nonradiative, between
the same two sublevels. Note that W; and W;; are obtained from Eq. (2.4.30) by substituting
the dipole moments between j and i sublevels, |x;;|* and |w;i|?, for |14]?. These dipole moments
can in turn be readily obtained from Eq. (2.3.7). For instance |j4;| is obtained from Eq. (2.3.7)
by substituting u;, the eigenfunction of the i-th lower level, for u; and u;, the eigenfunction of
the j-th upper level, for u,. It then follows that:

Wi = W; (2.7.5)

If a rapid relaxation towards thermal equilibrium occurs between the sublevels within each
level, then all sublevels of the upper level will again be equally populated, and the same will
occur to the sublevels of the lower level. Therefore

sz = Nz/gz (2763)
Nii=Ni/gi (2.7.6b)

Upon substitution of Eq. (2.7.6) into Eq. (2.7.4) we then get

%__W(&_ﬂ)_&
dt T

82 81

(2.7.7)

where, with the help of Eq. (2.7.5), we have defined

81 82 81 82

W= "3 W= 1> W (2.78)
1 1 1 1

and

g1 &2

i i(1/m)

-+t r 2.7.9)
T 82

From Eq. (2.7.7) one can observe now that WN, /g, represents the change in the unit time
of the total upper state population due to all stimulated emissions processes and, likewise,
WN, /g, represents the population change due to all absorption processes. The change in
photon flux dF when the beam travels a distance dz in the material (see Fig. 1.2) can then be
written as

N, N
dF =W|——-—)dz (2.7.10)
82 81
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We can now define a stimulated emission cross section, 0,;, and absorption cross section,
O12, as

021 = W/(g2F) (2.7.11a)

o = W/(g1F) (2.7.11b)
from which we obviously have

82021 = g1012 (2.7.12)

When (N;/g1) > (N2/g2) Eq. (2.7.10) with the help of Eq. (2.7.11b) can be put in the familiar

form dF = —«aFdz provided one defines the absorption coefficient « as
81
o =012 (N1 —Nz—) (2713)
82

Similarly, when (N,/g2) > (N1/g1), Eq. (2.7.10) with the help of Eq. (2.7.11a) can be put in
the familiar form dF = gFdz provided one defines the gain coefficient g as

g = 021 (Nz _ng_z) (2.7.14)
81

The reasons for defining 0,; and o7, respectively, as in Egs. (2.7.11a) and (2.7.11b) is now
apparent. When in fact Ny > N, (as usually applies to absorption measurements involving
optical transitions) Eq. (2.7.13) simply reduces to @ = ,/N;. Conversely, when N, > N (as
applies in a four-level laser), Eq. (2.7.14) simply reduces to g = 0,1 V,.

2.7.2. Strongly Coupled Levels

We now turn to the case where the upper level, 2, and lower level, 1, actually consist of
g» and g sublevels, respectively, with different energies but with very fast relaxation among
the sublevels belonging to each particular level (strongly coupled levels). Each sublevel, of
both upper and lower levels, may also consists, itself, of many degenerate levels. In this
case, thermalization among the sublevels of either lower and upper level will occur rapidly
so that we can assume Boltzmann’s statistics to be always obeyed. Instead of Eq. (2.7.6), we
write now

Ny = fo; Na (2.7.15a)
Ny = fii Ny (2.7.15b)
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where f>; (f1;) is the fraction of total population of level 2 (level 1) that, at thermal equilibrium,
is found in sublevel j(i). According to Boltzmann’s statistics, we then have

- exp —(Es; /KT
Fi= = 82j xp —(Ex/kT) (2.7.16a)

Z m&2m eXP_(EZm/kT)
1
i exp—(Ey/kT
fu= SHEP (Evi/kT) (2.7.16b)

> 181 exp—(Ey/kT)
T

where E,,, and Ey; are the energies of the sublevels in the upper and lower level, respectively
and g, and gy; are the corresponding degeneracies.

Let us now assume that the stimulated transition occurs between a given sublevel (say /)
of level 1 to a given sublevel (say m) of level 2. Equation (2.7.4) then simplifies to

dN 81 82 No
(d_tz) = —W,uNow + WiNiy — ZiZj (t—zj) (2.7.17)
Jl

1 1

With the help of Eq. (2.7.15), Eq. (2.7.17) can be written as
(dN,/dr) = —W:sz + Wlele —(N2/7) (2.7.18)

where we have defined the effective rates of stimulated emission, W¢

v 1» stimulated absorption,

W , and spontaneous decay, (1/7), respectively as
Wi = fom Wi (2.7.192)
Wi = fu Win (2.7.19b)
81 82
(1/7) = ZiZj(ij/Tji) (2.7.19¢)
1

According to Eq. (2.7.18), the change in photon flux dF when the beam travels a distance dz
in the material is given now

dF = (Wg,N, — W Ny) dz (2.7.20)
We can then define an effective stimulated emission cross section, o, and an effective
absorption cross section, oy, , as

Ot = Wi/ F = fomOim (2.7.21a)

m

Ot = Wi/ F = fu0im (2.7.21b)

where Egs. (2.7.19a) and (2.7.19b) have been used and where o3, = W},,/F and 0,y = W,,;/F
are, respectively, the effective cross sections of absorption and stimulated emission for the /
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to m transition. Note that, if the two sub-levels / and m are non-degenerate (or have the same
degeneracy) one has o0y, = 0,,;. Note also that, according to Egs. (2.7.20) and (2.7.21), the
absorption coefficient for the propagating photon flux, can be written as

Ay = O';:an — O"fllNz (2722)

This shows the usefulness of the concepts of effective cross sections: the absorption coef-
ficient, or the gain coefficient when N, > Nj, is simply obtained upon multiplying the
effective cross section with the total population of the upper and lower state. In particular,
at thermal equilibrium one has N, =~ 0 and N; = N, where N, is the total population and
Eq. (2.7.22) gives

O = op,N; (2.7.23)

This equation indicates that o/, can readily be obtained from an absorption measurement.

Example 2.10. Effective stimulated emission cross section for the A = 1.064 um laser transition of
Nd:YAG The scheme of the relevant energy levels for the Nd: YAG laser is shown in Fig. 2.15. Laser action
can occur on the *F; /2 = Iy /2 transition (A = 1.064 ;um), which is the most popular one, as well as on
4F3/2 = *I132(A = 1.32 um) and *F3/, — *Io), transitions (A = 0.94 um). The 1.064 um transition
occurs between one sublevel, m = 2, of the *F; /2 level to one sublevel, [ = 3, of the I 2 level (R — Y3
transition). We let fop = Ny /Ny = Ny /(Nay + Nyo) be the fraction of the total population which is found
in the upper laser level, where N>, and N;; are the populations of the two sublevels of the 4F, /2 level
and N, is the total population of this level. Since the two sub-levels are each two-times degenerate, then,
according to Eq. (2.7.3) one has Ny, = Ny; exp—(AE/kT) where AE is the energy separation between
the two sublevels. Form the previous expression of f>; we then obtain 5 = 1/[1 + exp(AE/kT)]. For
AE = 84cm™! and kT = 208cm™'[T = 300K], we get o = 0.4. From measured spectroscopic
data on the R, — Y3 transition, the actual peak cross section of the transition has been deduced as
023 = 6.5%x 10712 cm?.@9 The effective cross section of the R, — Y3 transition, 033, 1s then obtained from
Eq. (2.7.21a) as 0%, = fnoy3 = 2.8 x 107" cm?.

Example 2.11. Effective stimulated emission cross section and radiative lifetime in Alexandrite The rel-
evant energy levels of Alexandrite are shown in Fig. 2.16. The upper laser level is the *7 state and the
laser transition occurs to a vibronic level of the “A, ground state (A == 730 < 800 nm). Since the *T level
is strongly coupled to the 2F level, the fraction of the total population which is found in the 4T, state, for,
is given by for = Nar/(Nag + Nor) where Nog and N7 are the populations of the two levels. At ther-
mal equilibrium, we also have N,y = Nppexp —(AE/kT), where AE is the energy separation between
the two levels. From the previous expressions we obtain for = exp—(AE/kT)/[1 + exp—(AE/kT)].
Assuming AE = 800cm™! and kT = 208 cm™! [T = 300K] we get for = 2.1 x 1072, According to
Eq. (2.7.21a), the effective stimulated emission cross section is given by o7, = foro7s, where oy is the
actual cross section. From this last expression, assuming o7y = 4% 1079 cm? at A = 704 nm,?) we obtain
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fr =2.1x107? and 0%, = 0.8 x 1072 cm?. Note the small value of for i.e. the small fractional value of
the upper laser level population, which results in a strong reduction of the effective stimulated emission
cross section. Note also that this cross section increases with increasing temperature as for increases with
temperature. To calculate the effective lifetime of the upper laser level, T, we note that the rate of sponta-
neous decay, 1/77, of the T, —* A, laser transition is (1/77) = 1.5 x 10° sec™! (7 2 6.6 us) while the
rate of the 2E —* A, transition is (1/7z) = 666.6 sec™! (zz = 1.5ms). From Eq. (2.7.19c) we then get
(1/7) = (fae/te) + (far/ 1) wWhere fop = Naog/(Nag 4+ Nor) = 1—for is the fraction of the total population
which is found in the 2E level. Inserting the appropriate numbers into the previous expression of (1/7) we
get T = 200 us at T = 300 K. Thus the effective lifetime is considerably lengthened (from 6.6 to 200 us)
due to the presence of the strongly coupled and long lived 2E level which then acts as a storage level or
reservoir. Note that the effective lifetime, likewise the effective cross section, is temperature dependent.

AE =84 cm-!
4 J— N
Fy2 =zz= N2
1.32pm
1.064um 0.946 um
1
152
4
L
1.06pm
4 Py —
Inf2 I =
0.94pum
4 e T———
92 —<I_

FIG. 2.15. Relevant energy levels for the A = 1.064 pm laser transition of Nd:YAG laser.

“T.
2 AE=800cm
E

A-6804nm |N=730+800nm
IoA2
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FIG. 2.76. Relevant energy levels of the Alexandrite laser.
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2.8. SATURATION

The purpose of this section is to examine the absorption and emission behavior of a
transition (of frequency vp) in the presence of a strong monochromatic e.m. wave of intensity
I and frequency v == vy. For simplicity, we will assume the levels to be non degenerate.
Consider first the case where [ is sufficiently weak that the populations of the two levels,
N; and N, do not differ significantly from their thermal equilibrium values. One then has
N > N, (often N; > N,) and the absorption processes, of rate WN|, will dominate the
stimulated emission process, of rate WN,, i.e. more atoms undergo the 1 — 2 transition than
the 2 — 1 transition. Consequently, at sufficiently high values of the intensity /, the two
populations will tend to equalize. This phenomenon is referred to as saturation.

2.8.1. Saturation of Absorption: Homogeneous Line

We will consider first an absorbing transition (N; > N,) and assume the line to be
homogeneously broadened. The rate of change of the upper state population, N,, due to the
combined effects of absorption, stimulated emission and spontaneous decay (radiative and
nonradiative), Fig. 2.17, can be written as

dN N
S22 W(N, =Ny — 2 (2.8.1)
dt T

where N, is the population of level 1. We can also write
Ni+ N, =N, (2.8.2)
where N, is the total population. Equation (2.8.1) can be put into a simpler form by defining
AN =N, — N, (2.8.3)

Equations (2.8.2) and (2.8.3) then give N| and N, as a function of AN and N, and Eq. (2.8.1)
becomes

dAN

1 1
—— = —-AN (— + ZW) + —N; (2.8.4)
dt T T

When (dAN/df) = 0, i.e. in the steady state, we get
N,

AN = ——— (2.8.5)
14 2Wr
No E,
|
rUm,—» WN; WNp  Noft
Ny 3

FIC. 2.17. Two-level system interacting with an e.m. wave of high intensity /.
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To maintain a given population difference, AN, the material needs to absorb from the incident
radiation a power per unit volume (dP/dV) given by

dP NW
— = (hw)WAN = (hy) ——— 2.8.6
av =M ) 2we (2.8.6)
which, at saturation, i.e., for Wz > 1, becomes
(dP/dV)s = (h)N,/2t (2.8.7)

Equation (2.8.7) shows that the power that must be absorbed by the system to keep it in
saturation, (dP/dV)s, is, as expected, equal to the power lost by the material due to the decay
of the upper state population (N;/2).

It is sometimes useful to have Eqgs. (2.8.5) and (2.8.6) rewritten in a more convenient
form. To do this we first notice that, according to Eq. (2.4.17), W can be expressed as

W = ol/hv (2.8.8)

where o is the absorption cross section of the transition. Equations (2.8.5) and (2.8.6) with
the help of Eq. (2.8.8) can be recast in the following forms:

T 2.8.9
N, 1+ /L) (2.8.9)
ap/dv - 1/I;
@pP/dv), 1+ (/1) (2.8.10)
where
I = hv/207 2.8.11)

is a parameter that depends on the given material and on the frequency of the incident wave.
Its physical meaning is obvious from Eq. (2.8.9). In fact, for I = I, we get AN = N,/2. When
v = vy, the quantity /; has a value that depends only on the parameters of the transition. This
quantity is called the saturation intensity.

Let us now see how the shape of an absorption line changes with increasing value of
the intensity, I, of the saturating beam. To do this, consider the idealized experimental situ-
ation shown in Fig. 2.18 where the absorption measurements are made using a probe beam
of variable frequency v’ and whose intensity I’ is small enough so as not to perturb the sys-
tem appreciably. In practice the beams need to be more or less collinear to ensure that the
probe beam interacts only with the saturated region. Under these conditions, the absorption
coefficient as seen by the probe beam is obtained from Eq. (2.4.33) by substituting the total
lineshape g;(v — vg) with the homogeneous lineshape g(v’ —vg), where v has been substituted
by v’. Since Ny — N, = AN is now given by Eq. (2.8.9), we can write

oo
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Saturating beam L1(v ]

’\W material

of

FIG. 2.18. Measurement of the absorption or gain coefficient at frequency v’, by a probe beam of intensity I’ (v’) in
the presence of a saturating beam, I(v), of intensity I and frequency v[I(v) > I (v)].

NS

o '

FIG. 2.19. Saturation behavior of the absorption coefficient, «, vs frequency, v/, for increasing values of the
intensity, 7, of the saturating beam (homogeneous line).

where
27?2

- 3negch

o | Nov'g(v — vp) (2.8.13)
is the absorption coefficient when the saturating wave at frequency v is absent (unsaturated
absorption coefficient). Equations (2.8.12) and (2.8.13) show that, when the intensity / of the
saturating beam is increased, the absorption coefficient is reduced. The line shape, however,
remains the same since it is always described by the function g(v’ — vy). Figure 2.19 shows
three plots of the absorption coefficient « vs v’ at three different values of 1/I.

We next consider the case where the saturating e.m. wave consists of a light pulse with
intensity / = (), rather than a cw beam. For simplicity, we will confine ourselves to a
comparison between two limiting cases in which the pulse duration is either very long or very
short compared to the upper state lifetime t. If the pulse duration is very long compared to the
lifetime, the time evolution of the resulting population difference AN, due to saturation, will
occur at very slow rate so that we can assume in Eq. (2.8.4) dAN/dt < N,/t. Accordingly,
AN turns out to be still given by the steady state Eq. (2.8.9) where now I = I(f). The saturation
behavior in this case is essentially the same as for a cw beam. If, on the other hand, the light
pulse is very short compared to the lifetime 7, then the absorption term —2W AN in Eq. (2.8.4)
dominates the spontaneous decay term (N; — AN)/z, i.e. [(N; — AN)/t] < 2WAN. In this
case Eq. (2.8.4) reduces to

(dAN/df) = —2WAN = —(20/hv)I(1) AN (2.8.14)
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where Eq. (2.8.8) has also been used. Integration of Eq. (2.8.14) with the initial condition
AN(0) = N, gives

AN(t) = Nyexp —(20/hv)/1(t)dt (2.8.15)
0

Equation (2.8.15) can be put in a more suggestive form if we define the energy fluence I"(¢) as

t

re = /I(t)dt (2.8.16)
0
and the saturation fluence as
I's=hv/20 (2.8.17)
From Eq. (2.8.15) we then get
AN(t) = Nyexp—[I'(2)/ 1] (2.8.18)

We see that, in this case, it is the beam energy fluence rather than its intensity that determines
the saturation behavior. The population difference AN, that is left in the material after the
pulse has passed is, according to Eq. (2.8.18), given by

ANoo = Nyexp—(I}/T3) (2.8.19)

where I7; is the total energy fluence of the light pulse. The material saturation fluence I’y can
therefore be looked upon as the fluence that the pulse should have to produce a population dif-
ference ANs = N,/e. Having calculated the population difference resulting from saturation
by a light pulse, the corresponding absorption coefficient of the material can then be obtained,
for a homogeneous line, again from Eq. (2.4.33) by substituting g;(v — vg) with g(v/ — vp).
For a light pulse that is, either, slow or fast compared to 7, the value of « is respectively given
by Eq. (2.8.12) [with I = I(¢)] or by

a=opexp [T )/ Ty (2.8.20)

where « is the unsaturated absorption coefficient. Note that, in the pulsed regime as in the
cw regime, the shape of the absorption line remains unchanged when saturation occurs.

2.8.2. Gain Saturation: Homogeneous Line

We now consider the case where the transition 2 — 1 exhibits net gain rather than net
absorption. We assume that the medium behaves as a four-level system (Fig. 2.20) and the
inversion between levels 2 and 1 is produced by some suitable pumping process. We will
further assume that the 3 — 2 and | — g transitions are so fast that we can take N3 =
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FIG. 2.20. Energy levels and transitions involved in gain saturation of a four-level laser.

N; = 0. With these simplifying assumptions we can write the following rate equation for the
population of level 2:

(dN,/dt) = R, — WN, — (N>/7) (2.8.21)

where R, is the pumping rate and N; is the total population. In the steady state (i.e., for
dN,/dt = 0) we find from Eq. (2.8.21)

R,T
Ny = 7 2.8.22
: 14+ Wz ( )
With the help of Eq. (2.8.8), Eq. (2.8.22) can be rewritten as
Nao
Npy= ———— 2.8.23
= T ) (2829

where Nyg = R, is the population of level 2 in the absence of the saturating beam (i.e. for
I = 0) and

I, =hv/ot (2.8.24)

A comparison of Eq. (2.8.24) with Eq. (2.8.11) shows that the expression for the saturation
intensity I; of a four-level system is twice that of the two-level system of Fig. 2.17. The
difference arises from the fact that, in a two-level system, a change in population of one level
causes an equal and opposite change in population in the other level. Thus AN is twice the
change in population of each level.

In an experiment such as that shown in Fig. 2.18, the probe beam at frequency v’ will now
measure gain rather than absorption. From Eq. (2.4.35), with N; = 0, using also Eq. (2.8.23),
the gain coefficient, g, can be written as

80

=140 (2.8.25)

8

where g9 = 0Ny is the gain coefficient for I = 0, i.e. when the saturating beam is
absent (unsaturated gain coefficient). This gain coefficient, since the line is homogeneously
broadened, can be obtained, using Eq. (2.4.18), as
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- 3neogch

80 |20 Nagg (v, — vo) (2.8.26)
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Equations (2.8.25) and (2.8.26) show that, just as in the case of absorption, the saturation
again leads to a decrease of g as I increases while the gain profile remains unchanged.

We next consider the case where the saturating e.m. wave consists of a light pulse of
intensity /(¢). If the pulse duration is very long compared to the lifetime t, we can neglect
the time derivative of N, in Eq. (2.8.21) compared to the other terms. Thus we again get
Eq. (2.8.23) for the upper state population and Eq. (2.8.25) for the gain coefficient, where [ is
now function of time. If the light pulse is very short compared to the lifetime t, then, during
the interaction of the light pulse, the pump term R,, and the spontaneous decay term N,/t can
be neglected compared to the stimulated term WN,. Thus we get

(dN,/dt) = —(al/hv)N, (2.8.27)
where Eq. (2.8.8) has been used again. Integration of Eq. (2.8.27) gives
Na(1) = Nygexp{—[I"()/ I}]} (2.8.28)

where Nyg = R,7 is the population of level 2 before the arrival of the pulse, I"(¢) is the energy
fluence of the beam [see Eq. (2.8.16)], and

I,=hv/o (2.8.29)

is the amplifier saturation fluence. A comparison of Eq. (2.8.29) with Eq. (2.8.17) shows that
the saturation fluence of a four-level amplifier is twice that of an absorber. The saturated gain
coefficient is given by

g = goexp{—[I"()/ ]} (2.8.30)

where go = 0 Ny is the unsaturated gain coefficient and is again given by Eq. (2.8.26). Thus,
in the pulsed regime, just as for the cw case, the shape of the gain line remains unchanged
when saturation occurs.

2.8.3. Inhomogeneously Broadened Line

When the line is inhomogeneously broadened, the saturation phenomenon is more com-
plicated and we will limit ourselves to just a qualitative discussion (see Problems for further
details). For the sake of generality, we will assume that the line is broadened both by homo-
geneous and inhomogeneous mechanisms so that its shape is expressed as in Eq. (2.4.26): the
overall line g,(v —p) is given by the convolution of the homogeneous contributions g(v —v())
of the various atoms. Thus, in the case of absorption, the resulting absorption coefficient can
be visualized as shown in Fig. 2.21. In this case, for an experiment such as that envisaged
in Fig. 2.18, the saturating beam of intensity /(v) will interact with only those atoms whose
resonance frequency, v, is in the neighborhood of the frequency, v. Accordingly, only these
atoms will undergo saturation when /(v) becomes sufficiently large. The modified shape of
the absorption line, for various values of /(v), will then be as shown in Fig. 2.22. In this case,
as I(v) is increased, a hole will be produced in the absorption line at frequency v. The width
of this hole is of the same order as the width of each of the dashed absorption profiles of
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FIG. 2.21. Lineshape of a transition broadened by both homogeneous and inhomogeneous mechanisms. The corre-
sponding line-shape function, g,(v — vg), is obtained from the convolution of the homogeneous lines g(v — vy’) of
the individual atoms.

o

FIG. 2.22. Saturation behavior of the absorption coefficient, «, vs frequency, v/, as measured by the test beam of
intensity for increasing values of the intensity, I/ (v”), for increasing values of the intensity, I(v), of the saturating
beam (inhomogeneous line).

Fig. 2.21, i.e. the width of the homogeneous line. A similar argument applies if a transition
with net gain rather than absorption is considered. The effect of the saturating beam will, in
this case, be to burn holes in the gain profile rather than the absorption profile. Note also that
a similar argument can be applied when absorption or gain saturation is produced by a light
pulse of sufficiently high energy fluence.

2.9. DECAY OF AN OPTICALLY DENSE MEDIUM

In Sect. 2.3 the decay of an essentially isolated atom or ion has been considered. In a
real situation, any atom will be surrounded by many other atoms, some in the ground state
and some in the excited state. In this case new phenomena may occur since the decay may
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be due to the simultaneous occurrence of both spontaneous and stimulated processes. These
phenomena will be briefly discussed in this section.

2.9.1. Radiation Trapping

If the fraction of atoms that is raised to the upper level is very small and if the medium
is optically dense, the phenomenon known as radiation trapping may play a significant role.
In this case, a photon that is spontaneously emitted by one atom, instead of escaping from the
medium, can be absorbed by another atom which thereby ends up in the excited state. The
process therefore has the effect of slowing down the effective rate of spontaneous emission.
A detailed discussion about radiation trapping can be found elsewhere.('® We merely limit to
point out here that the lifetime increase depends on the atomic density, on the cross section
of the transition involved, and on the geometry of the medium. Radiation trapping may be
particularly important for UV transitions with large cross sections [according to Eq. (2.4.29)
one has 0 « | ,uv|2 v which increases rapidly in going to the UV through the v term and the
increase of ||*> with frequency]. This can result in an increase of the effective life-time of
spontaneous emission by as much as a few orders of magnitude.

2.9.2. Amplified Spontaneous Emission

If the fraction of atoms raised to the upper level is very large and if the medium is
optically dense the phenomenon known as Amplified Spontaneous Emission (ASE) may play
a very important role.

Consider a cylindrically shaped active medium and let §2 be the solid angle subtended by
one face of the cylinder as seen from the center O of the other face [Fig. 2.23a]. If the gain of
the active material, G = exp o (N, — Ny)l, is large enough, the fluorescence power, emitted by
atoms around point O into the solid angle §2, may be strongly amplified by the active medium
by a factor that may, in some cases, be as high as 10* or even higher. Thus, under suitable
conditions, which are considered below, the active medium will preferentially emit its stored
energy into the solid angle §2 of Fig. 2.23a and, obviously, along the opposite direction as
well. If a totally reflecting mirror (R = 1) is placed at one end of the medium (Fig. 2.23b),
then an unidirectional output is obtained. This is the basic ASE phenomenon. In contrast to
spontaneous emission, ASE possesses some distinctive features which shows some similarity

FIC. 2.23. Solid angle of emission in the case of amplified spontaneous emission: (a) Active material without end
mirrors. (b) Active material with one end mirror.
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to laser action. Indeed ASE has, to some degree, the property of directionality, its bandwidth is
appreciably narrower than that of spontaneous emission, it shows a “soft” threshold behavior,
and the beam of ASE light can be quite intense. We will briefly consider these properties here,
while we refer to Appendix C for further details.

The directionality is immediately apparent from Fig. 2.23. For D « [ the emission solid
angle §2 of Fig. 2.23a is, in fact, readily seen to be given by

2 = n D?/4P (2.9.1)

where D is the diameter and [/ is the length of the active material. Likewise, in the case of
Fig. 2.23b, the emission solid angle is

Q' = D?/16 (2.9.2)

Note that, in both cases, due to refraction taking place at the exit face of the active medium,
the external solid angle £2, of both Figs. 2.23a and b is obtained from Egs. (2.9.1) and (2.9.2)
by multiplying the right hand side by n*> where 7 is the refractive index of the material. In any
case, if D < I, ASE will occur in a narrow cone as can be perhaps best appreciated from the
following example.

Example 2.12. Directional property of ASE Let us consider the active medium to consists of gaseous
Nitrogen, for which there is a laser transition occurring at A 22 337 nm (see Chap. 10). We take D = 2cm
and / = 1m and assume that a totally reflecting mirror is placed at one end. From Eq. (2.9.2) we get
2’ 2 0.8 x 10~* sterad which shows that the emission solid angle is very much smaller than the 47t sterad
angle into which spontaneous emission occurs. On the other hand, the beam divergence is much larger
than would be obtained from the same active medium used in a two-mirror laser resonator. The half-cone
divergence angle of the ASE beam, #’, is in fact given by 6’ = [’/ 71]1/ ? ~ 5mrad. By comparison,
in the case of a laser resonator, the minimum attainable divergence, as set by diffraction, is given by
04 =~ (A/D) = 20 pu rad, i.e. it is 250 times smaller.

The spectral narrowing of ASE can be understood when we notice that the gain expe-
rienced by the spontaneously emitted beam will be much higher at the peak, i.e. at v = vy,
than in the wings of the gain line. This situation is illustrated in Fig. 2.24 for a Lorentzian
line. The dashed curve shows, in fact, the normalized spectral profile, g(v — vg)/gp, of the
spontaneously emitted light while the solid lines show the normalized profile, I, /I,,, of ASE
spectral emission at two different values of the peak gain G. In the previous expressions, g,
and 1,, are the peak values of the functions g and /,,, respectively, and G = exp (0,N,1), where
0, is the peak cross section and N, is the upper state population (we assume Ny = 0). The ASE
spectral profile has been obtained from the approximate theory of Appendix C. The ratio of
the ASE linewidth, Av4gg, to the spontaneous emission linewidth, Av, (FWHM), as obtained
from the same approximate theory, is plotted vs (a,,Nzl) in Fig. 2.25 as a dashed curve. In
the same figure, three corresponding plots are also shown, as continuous lines, at three values
of (£2/4m), when gain saturation is also taken into account (after reference!'”).Note that, for
practical values of the unsaturated gain 10 <G <10%ie. for7 < 0p N2l < 14 and for prac-
tical values of the emission solid angle 1073 < (2 /4m) < 1073, the reduction in linewidth is
roughly in the range between 3 and 4.
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FIC. 2.24. Normalized ASE spectral emission at two different values of the peak, unsaturated, single pass gain. For
comparison, the dashed curve shows the normalized spectrum of spontaneous emission.
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FIG. 2.25. Linewidth of ASE, Avasg, normalized to the linewidth of spontaneous emission, Avy, as a function of

the unsaturated single-pass gain o, Nal.

To calculate the “apparent” threshold we begin by pointing out that, according to the
theory of Appendix C, the intensity of one of the two ASE beams of Fig. 2.23a is given by

2\ (G-1)>?
I=¢I, (4n3/2) GGl (2.9.3a)
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for a Lorentzian line and by

—_ 13
o (2) 0
4

Example 2.13. ASE threshold for a solid-state laser rod
We consider a solid-state laser rod, such as Nd: YAG, with
D =6mm, [ = 10cm and n = 1.82 and consider first
the symmetric configuration of Fig. 2.23a, so that, from
Eq. (2.9.1) we get (22/4m) = 2.25 x 107, Since the
line of Nd:YAG is Lorentzian and one can take ¢ = 1
for this line, from Eq. (2.9.4a) we obtain G = 2.5 x 10*
i.e. 0, Nyl = InG = 10.12. Taking 2.8 x 107" cm? as
the value of the peak stimulated emission cross section
op for Nd:YAG [see Example 2.10], we then get a thresh-
old inversion for ASE of N, = 3.6 x 10'"® cm™3. For
the single end configuration of Fig. 2.23b we get from
Eq. (2.9.2) (2 /4m) = 5.62x 107 and from Eq. (2.9.5a)
G = 6.4 x 102, i.e. a much smaller value for the thresh-
old peak gain. The threshold inversion for ASE is, in this
case, equal to Ny, = InG/o,l = 2.3 x 10" cm®. Note
that the emission solid angle would be n? times larger

[G1nG]'/? (2.9.3b)

for a Gaussian line. In both previous equa-
tions ¢ is the fluorescence quantum yield and
I, = hvy/o,t is the saturation intensity of
the amplifier at the transition peak. We can
define the ASE threshold as the condition
where ASE becomes the dominant mech-
anism depopulating the available inversion.
We thus require that / becomes comparable to
the saturation intensity /;. In this case, in fact,
a sizable fraction of the available energy will
be found in the two ASE cones of Fig. 2.23
rather than in the 4 solid angle of the spon-
taneously emitted radiation. For G > 1,
Egs. (2.9.3a) and (2.9.3b) then show that the
threshold peak gain must satisfy the relatively
simple conditions

3/2
than the value calculate above. We thus get 2, = n’2 = G= 4ﬂ—[ln G]l/ 2 (2.9.4a)
9.36 x 1073 sterad and 2/, = n>£2, = 2.33 x 1073 sterad, $$2
in the two cases respectively. for a Lorentzian line and
4
G=—[nG]"? 2.9.4b
o2 [InG] ( )

for a Gaussian line. Note that, if a totally reflecting mirror is placed at one end of the medium
(Fig. 2.23b), the resulting threshold condition can be obtained from Eq. (2.9.4) provided G,
the single-pass peak gain, is replaced by G* the double-pass peak gain, and £2 is replaced by
£2'. We thus get

4 3/2
G2 = ;9 [InG?'" (2.9.52)
for a Lorentzian line and
) 4w 211/2
G = ¢Q,[1nG ] (2.9.5b)

for a Gaussian line.
The “soft” threshold which is characteristics of ASE is apparent from Fig. 2.26 where
the normalized intensity of one of the two ASE beams of Fig. 2.23a is plotted vs o,N [ for
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FIG. 2.26. Intensity of ASE emission, /, normalized with respect to the saturation intensity, Iy, as a function of
the single-pass gain, 0, N2/, for an emission solid angle 2 = 47 X 10~ sterad. The dashed and dotted lines show
the results of simplified theories which apply for (I/1;) < 1 and (I/I) >> 1, respectively. The solid line shows the
computed behavior when gain saturation has been taken into account exactly.

(£2/4) = 107 and upon assuming a Lorentzian line and ¢ = 1. The dashed curve is
obtained from Eq. (2.9.3a), which is valid in the limit case / < I;. The dotted line, which
applies in the other limit case / >> I, is obtained from the condition that half of the avail-
able fluorescence power is found in the right-propagating ASE beam, i.e. from the equation
(I/1)s = 0,N,1/2. The solid line is obtained by a more accurate calculation in which the
saturation of the upper state population, i.e. gain saturation, has been properly taken into
account.(”

ASE has been used, usually with the configuration of Fig. 2.23b, to obtain directional
and narrow bandwidth radiation of high intensity from high gain materials such as nitrogen,
excimers or plasmas for X-rays (see Chap. 10). Since one either requires only one mirror or no
mirror at all, these systems have been (incongruously) called mirrorless lasers. In fact, ASE
emission, although having some spatial and temporal coherence, just consists of amplified
spontaneous emission noise and should therefore not be confused with laser radiation, whose
coherence properties are conceptually different, as will be explained in Chap. 11. In many
other situations, ASE is generally a nuisance. For instance it limits the maximum inversion
which can be stored in high gain pulsed laser amplifiers. It is also the dominant noise term in
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TABLE 2.2. Emission wavelengths, peak transition cross sections, upper-state lifetime and transition

linewidths for some of the most common gas and solid state lasers(18—21)
Transition A [nm] op [em?] T [us] Avg Remarks
He-Ne 632.8 3x 10713 150 x 1073 1.7GHz
Art 514.5 25x 10713 6x 1073 3.5GHz
Nd:YAG 1,064 2.8 x 1071 230 120 GHz
Nd:Glass 1,054 4x 10720 300 5.4THz
Rhod. 6G 570 32x 10716 55x1073 46 THz
Alexandrite 704 0.8 x 10720 300 60 THz T =300K
Tt : ALO; 790 4x1071 39 100 THz E||c axis
Ccrt : LiSAF 845 5% 10720 67 84 THz E||c axis

fiber amplifiers, such as the Er*™ doped fiber amplifiers (EDFA), now widely used for optical
communications at wavelengths around 1,550 nm.

2.10. CONCLUDING REMARKS

In this Chapter several aspects of the interaction of radiation with matter, mostly relating
to atoms or ions, have been discussed. In particular, it has been shown that the two most
important parameters to describe this interaction are the cross section, 0 = o (v — 1y), and the
lifetime, 7, of the upper laser level. In the case of a pure Gaussian or Lorentzian lineshape,
one actually needs to know only the peak value, 0, of the cross section and the value of the
linewidth (A Vo orA v(’)" ) Note also that 7 refers to the overall upper level lifetime and, as such,
it includes all radiative and nonradiative decay processes which depopulate the upper level.
In the case of degenerate or strongly coupled levels, 0, and 7 refer to the effective stimulated
emission cross section and upper state lifetime, respectively, as discussed in Sect. 2.7.

A summary of the values of 0,,, T and Ay (or Av(’)" ) for many common laser transitions
in gases and ionic crystals are shown in Table 2.2. For comparison, the corresponding values
for Rhodamine 6G, a common dye laser material, are also included. Note the very high values
of 0, (10713 cm?) for gas lasers as a result of the rather small values of Avy (a few GHz) and
the rather short lifetimes (a few ns). The lifetime is short because the transitions are electric-
dipole allowed. By contrast, for active ions in ionic crystals or glasses such as Nd:YAG or
Nd:phosphate glass, o, is much smaller (1072 = 107" cm?) and the lifetime is much longer
(several hundredths of us) indicative of a forbidden electric dipole transition. Note also that
the linewidths are much larger (from hundredths to thousands of GHz) which also results in
a strong reduction of the peak cross section. Dye laser materials, such as Rhodamine 6G, are
intermediate between these two cases, showing a fairly high cross section (~107'% cm?) and
also a very short lifetime, a few ns, since, again, the transitions are electric-dipole allowed.
The last three laser materials listed in Table 2.2, namely Alexandrite, Tt - Al,O3 and
Cr’*:LISAF, belong to the category of tunable solid state lasers. Indeed, for these materials,
the laser linewidths are extremely wide (tens to more than a hundred THz). The cross sections
are comparable to those of narrower linewidth materials such as Nd: YAG, while the lifetimes
are somewhat shorter.
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PROBLEMS

2.1.

2.2.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

For a cavity volume V = 1cm?® calculate the number of modes that fall within a bandwidth
AA = 10nm centered at A = 600 nm.

Instead of py, a spectral energy density p, can be defined, p) being such that p; dA gives the
energy density for the e.m. waves of wavelength lying between A and A +dA. Find the relationship
between p) and py.

For blackbody radiation find the maximum of p; vs A. Show in this way that the wavelength A
at which the maximum occurs satisfies the relationship Ay 7T = hc/ky (Wien’s law), where the
quantity y satisfies the equation 5[1 — exp(—y)] = y. From this equation find an approximate
value of y.

The wavelength Ay at which the maximum occurs for the distribution in Fig. 2.3 satisfies the
relation AT = 2.9x 1073 m x K (Wien’s law). Calculate s for T = 6,000 K. What is the color
corresponding to this wavelength?

The R; laser transition of ruby has, to a good approximation, a Lorentzian shape of width
(FWHM) 330 GHz at room temperature (see Fig. 2.10). The measured peak transition cross
section ino = 2.5 x 10729 cm?. Calculate the radiative lifetime (the refractive index is n = 1.76).
Since the observed room temperature lifetime is 3 ms, what is the fluorescence quantum yield?

Nd:YAG, a typical active laser material, is a crystal of Y3AlsO, (yttrium aluminum garnet, YAG)
in which some of the Y31 ions are substituted by Nd37 jons. The typical Nd37 atomic concen-
tration used is 1%, i.e. 1% of Y3% ions are replaced by Nd3T. The YAG density is 4.56 g/cm3.
Calculate the Nd>t concentration in the ground (419 /2) level. This level is actually made up of
five (doubly degenerate) levels (see Fig. 2.16), the four higher levels being spaced from the low-
est level by 134, 197, 311,and 848 cm™ L respectively. Calculate the Nd37 concentration in the
lowest level of the *I, /2 state.

The neon laser transition at A = 1.15 um is predominantly Doppler broadened to Avy™ = 9 x
108 Hz. The upper state lifetime is ~1077 s. Calculate the peak cross section assuming that the
laser transition lifetime is equal to the total upper state lifetime.

The quantum yield of the S| — Sp transition (see Chap.9) for Rhodamine 6G is 0.87, and the
corresponding lifetime is ~5 ns. Calculate the radiative and nonradiative lifetimes of the S; level.

Calculate the total homogeneous linewidth of the 633 nm laser transition of Ne knowing that
Avpgr = 20MHz and Av, = 0.64 MHz. What is the shape of the overall line?

Find the relationship between the intensity, /, and the corresponding energy density, p, for a
plane wave.

A cylindrical rod of Nd:YAG with diameter of 6.3 mm and length of 7.5 cm is pumped very hard
by a suitable flashlamp. The peak cross section for the 1.06 um laser transition is 0 = 2.8 x
10'% cm? and the refractive index of YAG is n = 1.82. Calculate the critical inversion for the
onset of the amplified spontaneous emission (ASE) process (the two rod end faces are assumed
to be perfectly antireflection coated, i.e., non-reflecting). Also calculate the maximum energy that
can be stored in the rod if the ASE process is to be avoided.

A solution of cryptocyanine (1,1’-diethyl-4,4’-carbocyanine iodiode) in methanol has been used
simultaneously to Q-switch and mode-lock (see Chap. 8) a ruby laser. The absorption cross section
of cryptocyanine for ruby laser radiation (A = 694.3nm) is 8.1 x 10710 cm?. The upper state
lifetime is © = 22 ps. Calculate the saturation intensity at this wavelength.
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2.13. Upon applying the principle of detailed balance to the two near-resonant transfer processes of
Egs. (2.6.9) and (2.6.10), show that, at exact resonance i.e., for A E = 0, one has kx4 = kpy*,
where kg4 and kp,+ are the rate constant of the two processes, respectively

2.14. Instead of observing saturation as in Fig. 2.19, we can also do this by using just the beam 7(v) and
measuring the absorption coefficient for this beam at sufficiently high values of the intensity /(v).
For a homogeneous line, show that the absorption coefficient is, in this case,
a0(0)
L+ 200 = vo)/Avo] + (I/10)
where «(0) is the unsaturated (I < Iy) absorption coefficient at v = v and Iy is the saturation
intensity, as defined by Eq. (2.8.11), at v = vg. Hint: begin by showing that
(o) (0) 1
L+ [2(v = vo)/Awg? 1+ (I/1)

a(v—vp) =

a(v =) =

where [; is the saturation intensity at frequency v. Continue by expressing /s in terms of /9.

2.15. From the expression derived above, find the behavior of the peak absorption coefficient and the
linewidth versus /. How would you then measure the saturation intensity /5o?

2.16. Show that, for an inhomogeneous line with line shape function g, the saturated absorption
coefficient for an experiment as in Fig. 2.20 can be written as

( 272 ) ey (2/7Avg) Vg * (v — o) 1

/
dv

2 I 1
[ 14+~
1+ [2(v =) /Avg] 10 T+ v—v)) Ave]
where the homogeneous contribution is accounted for by a Lorentzian line. [Hint: begin by cal-
culating the elemental contribution, de, of the saturated absorption coefficient due to the fraction

g* (v, — vo)dvy of atoms whose resonant frequencies lie between v and v} + dv}]

t
3n80c0h

2.17. Under the assumptions that (1) the homogeneous linewidth is much smaller than the inhomoge-
neous linewidth and (2) I < Io, show that the expression for « given in the previous problem can
be approximated as

272
o= (—) |L2Niv'g % (0 — vp) x

3negcoh

x [1—=@2/mAv )L/ v
" Lo {1+ 2 = vg) /avo P} {1+ [2 (v = vg) /Aw )

Since the integral is now the convolution of two Lorentzian lines, what is the width of the hole in
Fig. 2.22?
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3

Energy Levels, Radiative
and Nonradiative Transitions
in Molecules and Semiconductors

The purpose of this chapter is to specialize some of the results and considerations of the
previous chapter to the somewhat more complicated case of molecules and semiconductors.
Particular emphasis will be given to semiconductors, either in bulk or quantum well form,
since they play an increasingly important role as laser media.

3.1. MOLECULES

We will first consider the energy levels, and the radiative and nonradiative transitions
in molecules. The considerations will be limited to a qualitative description of those features
which are particularly relevant for a correct understanding of laser action in active media such
as molecular gases or organic dyes. For a more extensive treatment of the wider subject of
molecular physics the reader is referred to specialized texts.(!)

3.1.1. Energy Levels

The total energy of a molecule consists generally of the sum of four contributions: (1)
electronic energy, E, due to the motion of electrons about the nuclei; (2) vibrational energy
E,, due to the vibrational motion of the nuclei; (3) rotational energy E,, due to the rotational
motion of the molecule; and (4) translational energy. We will not consider the translational
energy any further since it is not usually quantized. The other types of energy, however, are
quantized and it is instructive to derive, from simple arguments, the order of magnitude of the
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Energy, U(R)

Nuclear separation, R

FIC. 3.1. Potential energy curves and vibrational levels of a diatomic molecule.

energy difference between electronic levels (AE,), vibrational levels (AE,), and rotational
levels (AE,). The order of magnitude of AE, is given by
hz

AE —_—
T ma?

Il

3.1.1)

where A = h /27, m is the mass of the electron, and a is the size of molecule. In fact, if we
consider an outer electron of the molecule, the uncertainty in its position is of the order of a,
then the uncertainty in momentum, via the uncertainty principle, is # / a, and the minimum
kinetic energy is therefore #2 / 2ma?. For a diatomic molecule consisting of masses M and M,
we assume that the corresponding potential energy, U, vs internuclear distance R, around the
equilibrium distance Ry, can be approximated by the parabolic expression U, = kg (R—Ro)?/2
(see Fig. 3.1). Then, the energy difference AE, between two consecutive vibrational levels is
given by the well known harmonic oscillator expression

ko712
AE, = hvy = h [—"} (3.1.2)
1%

where u = MM, / (M + M,) is the reduced mass. For a homonuclear molecule made of
two atoms of mass M, the energy difference between two vibrational levels is then

2k01|1/2

AE, =h [ﬁ (3.1.3)

We also expect that a displacement of the two atoms from equilibrium by an amount equal to
the size of the molecule would produce an energy change of about AE, since this separation
would result in a considerable distortion of the electronic wavefunctions. We can thus write

AE, = koa® /2 (3.1.4)
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From Egs. (3.1.1), (3.1.3) and (3.1.4) one can eliminate a* and kg to obtain
AE, =2(m/M)'?AE, (3.1.5)

For a homonuclear diatomic molecule, the rotational energy is then given by E, = #2J(J +
1)/ Ma?, where J is the rotational quantum number. Therefore, the difference AE, in
rotational energy between e.g. the J/ = 0 and J = 1 levels is given by AE, = 24 / Ma* =
(m / M)AE,, where Eq. (3.1.1) has been used. From Eq. (3.1.5) we then obtain

AE, = (m/M)"?AE, (3.1.6)

Sincem /| M = 1074, it follows that the separation of rotational levels is about one-hundredth
that of the vibrational levels. The spacing of the vibrational levels is, in turn, about one-
hundredth of AE,. In fact, as indicated in earlier discussion, the actual frequency ranges,
(AE, / h), for electronic, (AE, / h), for vibrational and, (AE, / h), for rotational transitions
are found to be roughly 2550 x 10*cm™!, 500-3000cm™" and 1 —20cm™", respectively.

After these preliminary considerations, we will first consider the simplest case of a
molecule consisting of two identical atoms. Since, as already stated, rotations and vibrations
occur on a much slower time scale than electronic motion, we can use the Born—-Oppenheimer
approximation in which the two atoms are first considered to be at a fixed nuclear separation
R and non-rotating. By solving Schrodinger’s equation for this situation it is then possible to
find the dependence of the electronic energy levels on the separation R. Even without actu-
ally solving the equation (which is usually very complicated), it is easy to appreciate that, for
bound states, the dependence of energy on R must have the form shown in Fig. 3.1, where the
ground state, 1, and first excited state, 2, are shown as examples. If the atomic separation is
very large (R — 00), the levels will obviously be the same as those of the single atom. If the
separation R is finite, then, as a result of the interaction between the atoms, the energy levels
will be displaced. To understand the shape of these curves we note that, with the inclusion
of a suitable constant, they can be shown to represent the potential energy of the molecule as
a function of the internuclear distance R. In particular, since the minimum energy for curve
1 has been set equal to zero in Fig. 3.1, this curve just represents the potential energy of the
ground electronic state. Since the derivative of the potential energy with respect to R gives
the force exerted by the atoms on each other, the force is seen to be attractive at large sepa-
rations and then to become repulsive for small separations. The force is zero for the position
corresponding to the minimum of each curve (e.g. Rp), which is, therefore, the separation
that the atoms tend to take up (in the absence of oscillation). One notes that the minimum of
the curve for the excited state is generally shifted to larger values of R relative to that of the
ground-state, owing to the larger orbit occupied by the excited electrons.

So far our discussion has referred to the case in which the two atoms are held fixed at
some nuclear separation R. If we now suppose that the molecule is e.g. in its electronic state, 1,
and that the two atoms are released at some value R, with R # Ry, the internuclear force will
cause the atoms to oscillate around the equilibrium position Ry. The total energy will then be
the sum of the potential energy already discussed, plus the vibrational energy. For small oscil-
lations about the position Ry, curve 1 can be approximated by a parabola and the restoring
force between the two atoms is elastic, i.e. is proportional to the displacement from equilib-
rium. In this case the problem has well-known solutions i.e. those of the harmonic oscillator.
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FIC. 3.2. Vibrational energy levels belonging to two consecutive electronic states of a molecule. The arrows indicate
allowed transitions starting from the v/ = 0 and v”/ = 1 levels.

The energy levels are thus equally spaced by an amount &vy given by Eq. (3.1.2) where the
elastic force constant ky is equal to the curvature of the parabola. Therefore, when vibrations
are taken into account, it is seen that the energy levels (for each of the two electronic states)
are given by levels 1,2,3, etc., of Fig. 3.1. We note that the v = 0 level does not coincide
with the minimum of the curve because of the well-known zero-point energy, (hvy /2), of a
harmonic oscillator. Curves 1 and 2 now no longer represent the energy of the system since
the atoms are no longer fixed and, instead of Fig. 3.1, the simpler representation of Fig. 3.2
is sometimes used. However, the representation of Fig. 3.1 is, in fact, more meaningful than
that of Fig. 3.2. Suppose, for example, that the system is in the v” = 3 vibrational level
of the ground level 1. From Fig. 3.1 one readily sees that the nuclear distance R oscillates
between values corresponding to the points P and P’ shown in the figure. At these two points,
in fact, the vibrational energy coincides with the potential energy, which means that the kinetic
energy must be zero. For large oscillations about the equilibrium position Ry, the curve for
the potential energy cannot be approximated adequately by a parabola and, in fact, the higher
vibrational levels are no longer equally spaced. One can show that the level spacing decreases
with increasing energy because the restoring force becomes smaller than that predicted by the
parabolic approximation.

We next briefly consider the case of a polyatomic molecule. In this case, the representa-
tion given by Fig. 3.1 can still be used provided R is intepreted as some suitable coordinate
that can describe the given mode of vibration. Consider for example the SFs molecule, which
has an octahedral shape (see Fig. 3.3) with the sulfur atom at the center of the octahedron
and each of the six fluorine atoms at an apex. For the symmetric mode of vibration shown
in the same figure (mode Aj,) the coordinate R may be taken as the distance between the
sulfur atom and each of the fluorine atoms. Actually SF¢ is seen from Fig. 3.1 to have six
independent, nondegenerate modes of vibration. The potential energy U for a general state of
the molecule will thus depend upon all six vibrational coordinates of the molecule and should
therefore be represented in a seven-dimensional space. So, the representation of Fig. 3.1 can
now be regarded as a section of this seven-dimensional function when only one vibrational
coordinate is undergoing change.
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FIG. 3.3. Normal modes of vibration of an octahedral molecule (e.g. SF¢) The sulfur atom occupies the center of
the octahedron and the six fluorine atoms are at the corners of the octahedron (after ref.®) by permission).

The description given so far does not give a complete picture of the molecular system
since we have ignored the fact that molecule can also rotate. According to quantum mechanics
the rotational energy is also quantized, and, for a linear rigid rotator (e.g. a rigid diatomic or
linear triatomic molecule), it can be expressed as

E, =BJJ+1) (3.1.7)

where the rotational constant B is given by #2 / 21 with I being the moment of inertia about
an axis perpendicular to the internuclear axis and through the center of mass. Thus, the total
energy of the system is given by the sum of the electronic, vibrational, and rotational energies.
Accordingly the energy levels of, say, the v” = 0 and v’ = 1 vibrational levels of the ground
state will be as indicated in Fig. 3.4. Note that, unlike tha case for vibrational levels, the
spacing between consecutive rotational levels is not constant. In fact it increases linearly with
the rotational quantum number J, i.e. [E,(J) — E,(J — 1)] = 2BJ.

3.1.2. Level Occupation at Thermal Equilibrium

At thermodynamic equilibrium the population, N(E,, E,, E,), of a rotational-vibrational
level belonging to a given electronic state can be written as

N(E,, Ey, E;) & g.8v8r exp—[(Ee + E, + E;) / kT| (3.1.8)
where E,, E,, and E, are the electronic, vibrational, and rotational energies of the level and

8, 8v, and g, are the corresponding level degeneracies [see Eq. (2.7.3)]. According to the
estimates of the previous section, the order of magnitude of E, / hcis 1,000 cm™" while E, / hc
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FIC. 3.4. Rotational energy levels belonging to two consecutive vibrational states of a molecule. The arrows indicate
allowed transitions belonging to the P — branch and R — branch.

is more than an order of magnitude larger. Since kT / hc = 209 cm™! (at T = 300 K), it then
follows that both E, and E, are appreciably larger than k7. Accordingly we can say as a “rule
of thumb” that, at thermal equilibrium at room temperature, a molecule lies in the lowest
vibrational level* of the ground electronic state. The probability of occupation of a given
rotational level of this lowest vibrational state can then be written, according to Eqs. (3.1.7)
and (3.1.8), as

p(J) o< (2J + 1)exp[—BJ(J + 1) / kT (3.1.9)

The factor (2J + 1) in front of the exponential accounts for level degeneracy: a rotational level
of quantum number J is in fact (2J + 1)-fold degenerate. Taking, as an example, B = 0.5 cm™!
and assuming k7 = 209 cm™! (room temperature) we show in Fig. 3.5 the population distri-
bution among the various rotational levels of a given vibrational state (e.g. the ground state).
Note that, as a result of the factor (2/ + 1) in Eq. (3.1.9), the most heavily populated level
is not the ground (i.e. J = 0) level but rather the one whose rotational quantum number J
satisfies the relation

(2J 4 1), = (2kT / B)"/? (3.1.10)

A conclusion that can be drawn from this section is that for simple molecules at room tem-
perature, the molecular population will be distributed among several rotational levels of the
ground vibrational state.

* While this statement is true for diatomic molecules, it is generally not true for polyatomic molecules. In the latter
case (e.g., the SF molecule) the spacing between vibrational levels is often appreciably smaller than 1000 cm™!
(down to ~ 100cm™") and many excited vibrational levels of the ground electronic state may have a significant
population at room temperature.
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FIC. 3.5. Population distribution among the rotational levels of a given vibrational state.
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3.1.3. Stimulated Transitions

According to the earlier discussion, transitions between energy levels of a molecule can
be divided into three types:

e Transitions between two rotational-vibrational levels of different electronic states-
these are called vibronic transitions, a contraction from the words vibrational and
electronic. They generally fall in the near-UV spectral region.

e Transitions between two rotational-vibrational levels of the same electronic state
(rotational-vibrational transitions). They generally fall in the near- to middle-infrared
spectral region.

e Transitions between two rotational levels of the same vibrational state, e.g. v = 0,
of the ground electronic state (pure rotational transistions). They generally fall in the
far-infrared spectral region.

In the discussion that follows, we briefly consider vibronic and rotational-vibrational tran-
sitions, since the most widely used molecular gas lasers are based on these two types of
transitions. Lasers based on pure rotational transitions, thus oscillating in the far-IR, also
exist, but their use is relatively limited so far (e.g. for spectroscopic applications). In what
follows, the quantum mechanical selection rules for these three types of transitions will be
briefly considered (see Appendix D for more details).

Consider first a vibronic transition and assume that the symmetry of the electronic wave-
functions in the lower and upper electronic states allows an electric dipole transition. Since
the electronic motion occurs at much faster speed than nuclear motion we readily appreci-
ate the so-called Franck—Condon principle which states that the nuclear separations do not
change during the process of a radiative transition. If we now also assume that all molecules
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FIG. 3.6. Allowed vibronic transitions for a diatomic molecule.

are in the v” = 0 level of the ground electronic state,* then, referring to Fig. 3.6, the tran-
sition must occur vertically i.e. somewhere between the transitions A — A’ and B — B’. The
Franck—Condon principle can be rephrased in a more precise way by saying that the transition
probability between a given vibrational level, v”, of the ground state and some vibrational
level, v’, of the upper electronic state can be written as

2

Wi ‘/uvﬁ u, dR 3.1.11)

where u,7(R) and u,/(R) are the vibrational wave functions of the two levels. Within the
harmonic approximation these functions are know to be given by the product of a Gaus-
sian function and a Hermite polynominal. Since the v” = 0 wavefunction is known to be
a Gaussian function., the transition probability, according to Eq. (3.1.11), will be greatest
to the vibrational state whose wavefunctions u,s ensures the best overlap with the function
uyr. In the example of Fig. 3.6 the most probable transition will therefore be to the v/ = 2
level. Another, simple minded, way of understanding this circumstance follows from noticing
that, neglecting zero-point energy, the molecule in the ground state may be considered at rest
with a nuclear distance midway between points A and B. Upon absorption, the molecule will
pass to an upper vibrational level with the same nuclear separation and still remains at rest
(nuclear motion, i.e. position and velocity, cannot change during an electronic transition). This
requires the transition to occur toward point C’ of level 2. Since the minimum of the potential
energy curve for the excited state is shifted toward larger values of the internuclear distance
R, the two atoms of the molecule, after absorption, will experience a repulsive force and the
molecule will be left in the excited, v” = 2, vibrational state. As a conclusion, we can say

* When many vibrational levels of the ground electronic state are occupied, transitions may start from any of these
levels. Absorption bands originating from v”/ > 0 are referred to as hot bands.
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that the transition probability for an electric-dipole allowed vibronic transition is proportional

to | S uyruydR 2, this quantity being called the Franck—Condon factor.

Let us now consider a transition between two vibrational levels of the same electronic
state (rotational-vibrational transitions) and assume that the symmetry of the molecule allows
for this transition to occur. In this case the transition is said to be infrared active.* For such
a transition, the quantum mechanical selection rule requires that Av = £1, where Av is
the change in vibrational quantum number. Thus, if we start from the ground state v’ = 0,
a transition can only occur to the v” = 1 state, see Fig. 3.2. If, however, we start from the
v” = 1 level, then the transition may occur to the v” = 2 (absorption) or to the v” = 0
level (emission). This result should be contrasted with that for vibronic transitions for which
the transition may occur to several vibrational levels, with a probability proportional to the
corresponding Franck—Condon factor. It should also be pointed out that the Av = +1 selec-
tion rule holds rigorously within the harmonic potential approximation. Since the electronic
energy curves of Fig. 3.6 are not exactly parabolic, then it can be shown that transitions obey-
ing the selection rules Av = £2, 43, etc., may also occur as a result of this anharmonicity
although with much lower probability (overtone transitions).

For both vibronic and vibrational-rotational transitions, we have so far ignored the fact
that, corresponding to each vibrational level, there actually exists a whole set of closely spaced
rotational levels and these are occupied, at thermal equilibrium, according to Eq. (3.1.9)
(see also Fig. 3.5). We thus realize that e.g. the absorption takes place between a given
rotational level of the lower vibrational state to some rotational level of the upper vibra-
tional state. For diatomic or linear triatomic molecules the selection rules usually require that
AJ = +1,(AJ =J" —J', where J” and J' are the rotational numbers of the lower and upper
vibrational states). In the case of a rotational-vibrational transition, for instance, a given vibra-
tional transition (e.g. v” = 0 — v” = 1 of Fig. 3.2), which, in the absence of rotation, would
consist of just a single frequency vy, is in fact made up of two sets of lines (Fig. 3.7). The
first set, having the lower frequencies, is called the P branch and corresponds to the AJ = 1
transition. The transition frequencies of this branch are lower than vy because the rotational
energy of the upper level is smaller than that of the lower level (see Fig. 3.4). The second set,
having the higher frequencies, is called the R branch and corresponds to AJ = —1. With the
help of Eq. (3.1.7), it can be readily shown that the lines are evenly spaced in frequency by
the amount 2B / h. One also observes from Fig. 3.7 that the amplitudes of the lines are not
the same, as a result of the different populations in the rotational levels of the ground state
(see Fig. 3.5). Note also that each line is assumed to be broadened by some line-broadening
mechanism (e.g. Doppler or collision broadening). For more complex molecules, the selec-
tion rule AJ = 0 also holds and, in this case, the transitions from all the rotational levels of
a given vibrational state give a single line centered at frequency vy (Q branch). Finally we
observe that, when a population inversion is present between the vibrational levels (such as
the v/ = 1 and v” = 0 levels of Fig. 3.4) the same spectrum of Fig. 3.7 can be observed in
emission rather than in absorption.

* A simple example of infrared inactive transition is that of homonuclear diatomic molecules (e.g. Hy).
Ro-vibrational transitions are not allowed in this case, because, on account of symmetry, the molecule cannot
develop an electric dipole moment when it vibrates.
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FIG. 3.7. Transitions between two vibrational levels, taking account of the rotational splitting. This transition, which,
in the absence of rotational energy, would consist of a single line centered at vy, actually consists of two groups of
lines: the so-called P — branch, which corresponds to a jump in rotational quantum number of AJ = +1 and the
so-called R — branch, which corresponds to a jump in rotational quantum number of AJ = —1.

Example 3.1. Emission spectrum of the CO; laser transition at A = 10.6 um. Here we will consider the
00°1 — 10°0 transition (see the section on CO; lasers in Chap. 10), whose fundamental frequency, vy, in
wavenumbers is at vy = 960.8 cm™!.% The rotational constant of the CO, molecule is B 2~ 0.387 cm~! 0
and this value will be taken to be the same for upper (00°1) and lower (10°0) vibrational levels. From
previous considerations, the transition energies of the P-branch transitions are given by

E=hvy+BJ(J +1)—BJ'"(J" +1)=hvy—2BJ" (3.1.12)

where J” is the rotational quantum number of the lower vibrational state. The rotational number J',, of
the most populated rotational level of the upper vibrational state is given by Eq. (3.1.10). Assuming a
rather hot CO, molecule, i.e. T = 450 K, we get J,;,,x &~ 19.6. For the CO, molecule, symmetry dictates
that only J'(odd) — J”(even) transitions can occur. Thus the most populated rotational level in the upper
state which is available for the transition is either the J = 19 or the J' = 21 level. Assuming that the
J' = 21 level is the most populated, this level will decay, for a P-branch transition, to the J” = 22
level [P(22) transition]. The corresponding transition frequency, according to Eq. (3.1.12), will then be
v = v9—(2BJ"/h) = 943.8 cm™!, corresponding to a wavelength of A = (1/943.8) cm 2= 10.6 um. Note
that the wavelength corresponding to the fundamental frequency vy is A = ¢/vy = 10.4 um. Since only
even J” numbers are involved, the separation between two consecutive P-branch transitions, according to
Eq. (3.1.12), will given by Av = 2BAJ” = 4B = 1.55cm™!.

Example 3.2. Doppler linewidth of a CO, laser. Consider a CO; laser oscillating on the P(22) line at
A = 10.6 wm and assume T = 450K [see example 3.1]. Then from Eq. (2.5.18), using the appropriate
mass of CO, we get A vy = 50 MHz. Note that, since according to Eq. (2.5.18) one has A v o< vg, the
calculated linewidth for a CO, molecule is much smaller than that of the He-Ne laser in example 2.7 of
Chap. 2, essentially because the oscillation frequency vy is now approximately 17 times smaller. Note also
that the gas is assumed hotter in this case because, to obtain the high output powers typical of CO, lasers,
higher pump power are used than in the He—Ne case.
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Chap. 10), collision broadening becomes the dominant line broadening mechanism.

Example 3.3. Collision broadening of a CO, laser. We will consider a CO, laser containing a gas mixture
of the Hp, N,, and CO,. In this case, the laser linewidth due to collision broadening is found experi-
mentally to be given by A v = 77.58 (Yo, + 0.73¥n, + 0.6Y5,) X p (SOO/T)I/2 MHz [compare with
Egs. (2.5.12) and (2.5.11)] where v are the fractional partial pressures of the gas mixture, T is the gas
temperature and p is the total pressure (in Torr). Taking, as an example, a typical low pressure gas mixture
(p =@ 15 Torrina 1:1:8 CO; : N; : He mixture) at T = 450 K we get A v, =~ 40 MHz. A comparison with
the result of example 3.2 then shows that, for a low pressure CO, laser, collision broadening is compara-
ble to Doppler broadening. However, for higher pressure CO, lasers, e.g. atmospheric pressure lasers (see

Finally, for pure rotational transitions, the selection rule requires that the molecule pos-
sess a permanent dipole moment. In fact, considering e.g. the phenomenon of spontaneous
emission, the emitted radiation can be looked upon as originating from the rotation of this
dipole moment. For a diatomic or linear triatomic molecule the selection rule further requires
that AJ = =£1. Thus, in the case of stimulated emission from a given rotational level J,
transitions can only occur to the rotational level with quantum number J — 1.

Before continuing, it is worth summarizing the selection rules which apply for vibronic,
rotational-vibrational, and rotational transitions. For an electric dipole allowed vibronic tran-
sition one has AJ = =1 for the change of rotational quantum number while the change in
the vibrational quantum number is not strictly established by a precise selection rule. In fact,
starting from a given vibrational level v” of the lower electronic state the transition may occur
to several vibrational levels of the upper electronic state with probabilities proportional to the
corresponding Franck—Condon factors. For an infrared-active rotational-vibrational transition,
one must have, within the harmonic approximation, Av = %1 for the change of vibrational
quantum number and again AJ = =+£1 for the change of rotational quantum number. For pure
rotational transitions in molecules with a permanent dipole moment one again has AJ = +£1.

3.1.4. Radiative and Nonradiative Decay

Let us first consider spontaneous emission and assume that the molecule is raised to
some vibrational level of an excited electronic state (Fig. 3.6). From this state the molecule
often decays rapidly by some nonradiative process (e.g. by collision) to the v’ = 0 vibra-
tional level.* This is particularly the case for molecules in the liquid phase where collisions
occur very frequently. From there the molecule may decay radiatively to a vibrational level
of the ground state (fluorescence see Fig. 3.6). This transition again occurs vertically and the
transition probability from the v/ = 0 level to some level of the ground state will again be
proportional to the corresponding Franck—Condon factor. Again roughly speaking, the ground
state vibrational levels involved will be those nearby the CD level of Fig. 3.6. Finally, by non-
radiative decay (e.g. by collisions), the molecule rapidly returns to the v” = 0 level of the
ground electronic state (or, more precisely, thermal equilibrium is again established in the
ground electronic state). It is now clear from Fig. 3.6 why the fluorescence wavelength is

*Actually, this rapid decay results in a thermalization of the molecules in the upper electronic state. The probability
of occupation of a given vibrational level of this state is thus given by (3.2.8). For simple molecules, therefore, the
lowest vibrational level has the predominant populatation.
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longer than that of absorption, a phenomenon referred to as Stoke’s law. Spontaneous emis-
sion may also occur between two ro-vibrational levels of e.g. the ground electronic state and
again, for an infrared active transition, the selection rules Av = £1 and AJ = +£1 apply.
For pure rotational transitions, spontaneous emission may only occur in molecules having a
permanent dipole moment (as explained in the previous section) and the AJ = +1 selection
rule again applies. It should be noted however that, for ro-vibrational transitions and more
so for pure rotational transitions, the small value of the transition frequency means that the
spontaneous emission lifetime becomes very long i.e. from milliseconds even to seconds (one
should remember that 7y, o< 1/ vS). The spontaneous decay of the molecule is then usually
dominated by nonradiative processes.

We next briefly consider the phenomena which may cause nonradiative decay. With ref-
erence to the more general discussion presented in Sect. 2.6.1, we point out that the main
mechanisms are as follows: (a) Collisional deactivation with another like or unlike species.
As pointed out before, this occurs particularly for molecules in the liquid phase. In the gas
phase, this decay route is particularly effective when the transition energy is small (e.g. for
a rotational transition) and when the colliding species have small mass [e.g. deactivation of
the CO, (0, 1, 0) level by He atoms, see Chap. 10]. Collisional deactivation results in a rapid
thermalization among the rotational levels of a given vibrational state. (b) By a near-resonant
energy transfer to another like or unlike species [see Eq. (2.6.9)]. The phenomenon is par-
ticularly effective when the energy imbalance AE is appreciably smaller than k7. A notable
example of this nonradiative decay process is again found in a CO, molecule for the relaxation
of the CO;(0, 2,0) level to the CO,(0, 1,0) level [see Chap. 10]. (c) By internal conversion
to some other vibrational-rotational level of the same molecule (Fig. 3.8). The process is
also called unimolecular decay since it occurs within the same molecule and it is particularly
effective when there is a large number of vibrational-rotational modes which are near reso-
nant with the given transition. These modes may also belong to a different electronic state.
Thus, for instance, referring again to Fig. 3.6, we note that the molecule, once it is in the
lowest vibrational level of the upper electronic state (v’ = 1 level of Fig. 3.6), can decay
nonradiatively to a nearly isoenergetic vibrational level of the ground electronic state (dotted
level in Fig. 3.6). Internal conversion may be particularly effective for large molecules, e.g.
dye molecules, which have many modes of vibration. In this case, in fact, the numbers of
vibrational modes belonging to the ground electronic level that are in near resonance with the
v’ = 0 level of Fig. 3.6 can be quite large and the corresponding nonradiative lifetime may
even be as short as a few tens of picoseconds.

excited mode
of vibration

>

vibrational modes
of the same molecule

P

FIG. 3.8. Internal conversion between near-resonant rotational-vibrational modes of the same molecule.
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3.2. BULK SEMICONDUCTORS

In this section we will consider the problem of interaction of radiation with matter in
the case of a bulk semiconductor, i.e. whose physical dimensions are much larger than the
de Broglie wavelength of the electrons under consideration. The case of quantum-confined
semiconductors [quantum wells, quantum wires and quantum dots], wherein one, two, or all
three physical dimensions, respectively, are comparable to the De Broglie wavelength and
which play an increasingly important role in laser physics, will be considered in the next two
sections. Again we will limit our description to the most prominent features of the complex
phenomena that occur. For a more extensive treatment of this subject the reader is referred to
a specialized text.®

3.2.1. Electronic States

The outer electrons of the atom of a semiconductor material are delocalized over the
whole crystal and the corresponding wave functions can then be written as Bloch wave
Sfunctions®

¥ (r) = u(r)[exp j(k - r)] (3.2.1)

where u;(r) has the periodicity of the crystalline lattice. The substitution of Eq. (3.2.1) into
the Schrodinger wave equation shows that the corresponding eigenvalues of the electron
energy, E, are a function of k and that these values fall within allowed bands. From now
on we will limit our considerations to the highest filled band, known as the valence band,
and the next higher one, known as the conduction band. Within the parabolic band approx-
imation, the E vs k relations can be approximated by a parabola and we then arrive at the
picture of Fig. 3.9 for the valence and conduction bands. The energy E, in the conduction
band, measured from the bottom of the band upwards (Fig. 3.9a), can then be written as

2 2
E. =

(3.2.22)

2m,

where m, = #2/[d*E. /| d k*]i= is the effective mass of the electron at the bottom of the
conduction band. Likewise, the energy in the valence band, measured from the top of the
band downwards (Fig. 3.9a), can be written as

hZ k2
E, =

3.2.2b
o, ( )

where m, = h*/(d’E, / d k%)= is the effective mass of the electron at the top of the valence
band. In some cases, particularly when dealing with a given transition, it may be more con-
venient to refer the energy to the same reference level e.g. from the top of the valence band
upwards (Fig. 3.9b). If we call E’ the energy in this coordinate system, the energies in the
conduction and valence bands are now obviously given by

E'.=E, +E, (3.2.3a)
E,=—E, (3.2.3b)
where E, is the energy gap.
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FIC. 3.9. Energy vs k relation for a bulk semiconductor: (a) Energy scale starting from the bottom of the conduction
band, upwards, for the conduction band and from the top of the valence band, downwards, for the valence band. (b)
Energy scale starting from the top of the valence band, upwards, for both conduction and valence bands.

The above simple one-dimensional model can be readily generalized to the three-
dimensional case. If we let k,, k, and k. be the components of the electron’s k vector, and
if we assume that the effective mass, i.e. the band curvature, is the same along x, y, and z
directions, we again obtain Eqs. (3.2.2) and (3.2.3) where now k> = kf + ki + kzz.

So far we have assumed the semiconductors crystal to be of infinite extent. For a finite
sized crystal in the form of a rectangular parallelepiped with dimensions L., L, and L, we
need to impose the boundary condition that the total phase shift k- r across the crystal be some
multiple integer of 27t. Thus we get

k= (2nl/L) (3.2.4)

where i = x,y,z and [ is an integer. So, in the one dimensional case, the available states can
be indicated as dots, in the valence band, or open circles, in the conduction band, as shown in
Fig. 3.9.

The existence of a valence and conduction band can also be explained by a simple phys-
ical argument. Consider for simplicity the case of sodium, where each atom contains 11
electrons. Ten of these electrons are tightly bound to the nucleus to form an ion of overall
positive charge e. The eleventh electron moves in an orbit around this ion. Let E| and E; be
the energies of this electron in its ground and first excited state, respectively, and 1, ¥, the
corresponding wave functions. Consider now two sodium atoms at some distance d apart. If
d is much larger than the atomic dimensions, the two atoms will not interact with each other
and the energy of the two states will remain unchanged. Another way of expressing this is to
say that, considering, e. g., the two atoms in their energy state E;, the one-electron energy
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FIG. 3.10. (a) Symmetric and (b) antisymmetric linear combination of the atomic wave functions ¥4 and ¥;p of
two identical atoms at separation d.

Conduction band

%—Ez
.

TVaIence band

d

FIG. 3.11. N —fold splitting of the atomic energy levels as a function of the atomic separation d for an N — atom
system.

level of the two-atom system is still £, and that this level is doubly degenerate. The overall
wave function can in fact be expressed as a combination of the two wave functions ¥4 and
Y1 in which the two functions combine either in phase or 180° out of phase (Fig. 3.10).
In the absence of an interaction potential, these two states have the same energy E;. When,
however, the atomic separation d becomes sufficiently small, the energies of these two states
become slightly different owing to the interaction, and the doubly degenerate level is split
into two levels. Likewise, for an N-atom system where the atoms are close enough to interact
with each other, the N-fold degenerate level of the state of energy E| is split into N closely
spaced levels. The state of energy E; will thus give rise to the valence band while the state of
energy E, gives rise, likewise, to the conduction band (Fig. 3.11). From the previous argu-
ment it is apparent that each band actually consists of N closely spaced levels, where N
is the total number of atoms in the semiconductor crystal. Since N is usually a very large
number, the individual energy levels of a semiconductor, in each band, are generally not
resolvable.
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To sum up the previous discussion, we can say that, within the parabolic band approxi-
mation, Eqgs. (3.2.2) and (3.2.3) together with the boundary conditions (3.2.4) provide a very
simple description of the allowed energy values in a semiconductor. Note that, within this
approximation, the electron is considered as if it were a free particle of momentum p = hk
(indeed E = p? / 2m for a free particle) and the details of the actual quantum system have
been reduced to appearing in the values of the energy gap E, and of the effective masses m,
and m,,. Thus, for the three-dimensional case, we will write

p=hk (3.2.5)

as the equation relating the momentum p of the electron to the k-vector of the wavefunction.
Note also that, in writing Eqs. (3.2.2) and (3.2.3), we have been considering only direct gap
semiconductors, where the top of the valence band and the bottom of the conduction band
occur at the same k value. Indirect gap semiconductors, such as Si or Ge, are not considered
here since they are not relevant as laser materials. Of the various direct gap semiconductors,
we will limit our considerations to the III-V compounds such as GaAs, InGaAs, AlGaAs or
InGaAsP. In particular, for GaAs, one has m, = 0.067 my where my is the rest mass of a free
electron. It should also be noted that, for all III-V semiconductors, there are three different
types of valence band, namely the heavy hole, hh, (my, = 0.46 my for GaAs), the light hole,
lh, (my, = 0.08 mg for GaAs), and the split-off band (see Fig. 3.12). This circumstance can be
understood when, based on the previous discussion about sodium atoms, we view the energy
bands as originating from the discrete atomic energy levels of the isolated atoms which made
up the crystal. Accordingly, one can show that there is only one conduction band because the
excited state of the corresponding isolated atoms has spherical symmetry like that of the s-
state atomic orbitals. Likewise, since the lower state (state 1 of energy E; in Fig. 3.11) can be
shown to have p-symmetry, the three valence bands originate from a suitable combination of

E
Conduction
band
k
A _Heavy hole
band
Valence .—Light hole
bands band
Split-off
band

FIC. 3.12. Heavy-hole, light-hole and split-off valence bands for unstrained I//-V semiconductors.
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the p,, p, and p_ orbitals of this state, account being taken of the crystal’s symmetry. Actually
in a crystal of cubic symmetry such as in all unstrained III-V compounds, the three bands
are expected to have the same energy at k = 0. However, spin-orbit interactions lower one
of these bands, the split-off band, by an amount corresponding to AE = 0.34 eV for GaAs.
Since this value is much larger than k7[=0.028 eV], the split-off band will always be filled
with electrons and will not participate in radiative and non-radiative transitions. For reasons
which will be explained in the next section, the light hole band also makes little contribution
to these transitions. Thus, to first order, the valence band of a III-V semiconductor can be
thought to be made of only the heavy hole band.

3.2.2. Density of States

Following what was done for the cavity modes in Sect. 2.2.1, we can now proceed to
calculating the number of energy states, p(k), whose k value ranges from O to k. With ref-
erence to Fig. 2.2, since now both positive and negative values of k; are allowed, p(k) is
given by the volume of the sphere of radius k, 47 k* / 3, divided by the volume of the unit
cell, (271)3 / LyLyL., times a factor 2 to account for the two states arising from the electron
spin. Thus

p (k) = (K°V /37%) (3.2.6)

where V = L, L, L, is the crystal volume. Since the number of states is very large, we can
calculate the density of states per unit volume, p (k), as

dp K?

= =_ 3.2.7
Vdk n? ( )

Pe,y
where Eq. (3.2.6) has been used. Note that this expression is valid for both the valence and
conduction bands and, to indicate this, the density of states has been denoted with both indices
¢ and v. We are also interested in calculating the density of states, p (E), in terms of the
electron energy. Since p., (E) dE = p.., (k) dk, from Eq. (3.2.2) we obtain

1 (2m\*?

pe (Eo) = 53 ( - ) E\/? (3.2.82)
1 (2m)\*?

oy (E,) = 53 ( - ) E\/? (3.2.8b)

We recall that E, and E, are measured from the bottom of the conduction and the top of
the valence bands, upwards and downwards, respectively (Fig. 3.9a). One notes that, since
for III-V compounds, one has m, << m, = my,, then it follows that p. << p,. One
also notes that, since my, << myy,, the density of states of light holes is only a small frac-
tion of that of heavy holes. Accordingly, the light holes are very much in a minority for a
III-V semiconductor, and their presence can normally be neglected in comparison with heavy
holes.
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3.2.3. Level Occupation at Thermal Equilibrium

We will first assume that the semiconductor is in overall thermal equilibrium. Since
electrons are fermions, i.e. must comply with the Pauli exclusion principle, they must
obey Fermi—Dirac statistics rather than Boltzmann statistics. The probability for the elec-
tron to occupy a given level of energy E’, either in the valence or conduction band, is then
given by

N 1
f(E) = e[ —F) JAT] (3.2.9)

where EJ is the Fermi level. In this case, the energy of both valence and conduction bands
has been referred to the same reference energy level as in Fig. 3.9b. An interpretation of EJ, is
obtained from Eq. (3.2.9) by setting E' = E}.. We get f (E};) = 1/2. Another interpretation of
the significance of E}. is also obtained from Eq. (3.2.9) by letting 7 — 0. We get f (E') = 1
for E' < E. and f(E') = 0 for E' > E}. Thus, at T = 0, the Fermi level separates the
filled region from the empty region in a semiconductor. One should now remember that, for
undoped semiconductors, EJ. is situated approximately in the middle of the energy gap. Thus,
for T > 0, the relation f(E’) vs E’ will be as shown in Fig. 3.13b. This means that, since
E, >> kT, the level occupancy in the conduction band is very small i.e. very few electrons
are thermally activated to the conduction band. As a consequence of this circumstance, in both
Fig. 3.13a and Fig. 3.9a, the available states in the valence band are denoted by a full circle to
indicate the presence of an electron. Conversely, the available states in the conduction band are
denoted by an open circle to indicate the absence of an electron i.e. the presence of a hole. For
n-type-doping, on the other hand, Er must be displaced toward the conduction band in order

\\ k T f(E)

(a) (b)

_,]E_F'

FIG. 3.13. Energy E’ vs k relation, (a) and level occupation probability f (E), (b) for both conduction and valence
bands under thermal equilibrium.
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to accomodate the electrons in this band arising from the dopant ions. Similarly, for p-type-
doping, the Ef is displaced toward the valence band. Finally, for very heavy doping (doping
level of ~10'"® cm™3), Ey is displaced so much that it actually enters the conduction or the
valence band, respectively. The semiconductor is then called degenerate since its conductivity
becomes similar to that of a metal.

Suppose now that electrons are raised from the valence to the conduction band by some
suitable pumping mechanism. The intraband relaxation (whose typical relaxation time 7, as
established by electron—phonon collisions, is A1 ps) is usually much faster than interband
relaxation (whose typical relaxation time t is &1 ns, due to electron-hole recombination).
Thus, a thermal equilibrium will rapidly be established within each band even though there is
no overall equilibrium in the semiconductor. One can therefore talk of occupation probabilities
/v and f, for the valence and conduction band separately. This means that f, and f, will be given
by expressions of the general form of Eq. (3.2.9) in each band, respectively. More precisely,
referring now to the energy coordinate system of Fig. 3.9a, one can write

1
Je(E) = 1 + exp [(E. — Er,) /kT] (3.2.102)
and
F(E) = ! (3.2.10b)

1 + exp[(Er, — E,) /kT]

where Er, and Er, are now the energies of the so-called quasi-Fermi levels of the valence
and conduction bands, respectively. Thus, for given values of Er, and Ef,, the plots of f.(E,)
vs E. and of f,(E,) vs E, will be as shown in Fig. 3.14b. Note that, following the previous
discussion about the Fermi level, the quasi-Fermi levels indicate, in each band, the boundaries
between the zones of fully occupied and completely empty states at 7 = 0 K. Accordingly, for
T = 0K, the states occupied by an electron (full circle) and the states occupied by a hole (open
circle) will be as shown in Fig. 3.14a. In the same figure, the hatched area thus correspond
to states filled with an electron. Sometimes, it is more convenient to express Eq. (3.2.10)
using the energy coordinate of Fig. 3.9b. According to Egs. (3.2.3a) and (3.2.3b) we then
obtain

N 1
fe (EC) =17 oxp [(Eé — E}{) /kT] (3.2.11a)

and
B 1
"~ l+exp[(E,—Ep) /KT]

1 (EY) (3.2.11b)

As observed above, the quasi-Fermi levels indicate, in each band, the boundaries between
occupied and empty states. Consequently, the values of El/% and El/% in Eq. (3.2.11) must
depend of the number of electrons raised to the conduction band. To obtain this dependence,
we calculate the electron density in the conduction band, N,, as

o

N, = /pc (Ec) fe (Ec) dE: (3.2.12)
0
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EC

(a) (b)

FIC. 3.14. Energy E vs k relation, (a) and level occupation probability f., (E), (b) for conduction and valence bands
under thermal equilibrium within each band.

To calculate the corresponding hole density, V;, in the valence band, we notice that fv(Ev) =
1—f,(E,) is the probability that a given state in the valence band is not occupied by an electron
and thus filled by a hole. From Eq. (3.2.10b) we then get

_ 1
ME) =17 exp[(E, — Er,) / kT] (3.2.13)

Equation (3.2.13) shows that, in the energy coordinate system of Fig. 3.9a, the probability of
hole occupation in the valence band takes on the same functional forme as that of electron
occupation in the conduction band [compare Eq. (3.2.13) with Eq. (3.2.10a)]. This makes
the calculation for the valence band completely symmetrical to that of the conduction band.
Thus, for a given value of the quasi-Fermi level in the valence band, the hole density, N, is
obtained as

oo

N, = /pv(Ev)fv(Ev)dEv (3214)
0

Suppose now that a given density of electrons, N, is raised by a suitable pumping process
from the valence to the conduction band. The hole density left in the valence band will also
be equal to N and the quasi-Fermi levels of both the valence and conduction bands can be
obtained from Eqgs. (3.2.12) and (3.2.14) by setting the condition N, = N;, = N. In fact, from
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FIG. 3.15. (a) Normalized plot of the quasi-Fermi energy of the conduction band, Ef,, vs the normalized concen-
tration of injected electrons density, N,. The same normalized relation also holds for holes in the valence band. (b)
Normalized plots of the quasi-Fermi levels of both valence and conduction bands, Er / kT, vs the concentration of
injected carriers, N, for GaAs.

Eq. (3.2.12) with the help of Egs. (3.2.8a) and (3.2.10a), we get

2 [ e
N =N, [ £ ae (3.2.15)
0

wl/? 1 +exp [e—¢F]

3/2
where N, = 2(27r me kT/hz) , e = E./KT and ep = Ep, /kT. From Eq. (3.2.14),
with the help of Egs. (3.2.8b) and (3.2.13), we obtain an expression which is the same
as Eq. (3.2.15), provided we interchange suffixes ¢ and v. Equation (3.2.15) then shows
that Ep, /kT is a function of only N /N, and this function is plotted vs N /N, in
Fig. 3.15a. The same figure also holds for the valence band provided we interchange suffix ¢
with v.

3.2.4. Stimulated Transitions

Let us consider the interaction of a monochromatic e.m. wave of frequency v with a bulk
semiconductor. As for the case of an atomic system, the interaction Hamiltonian, within the
electric dipole approximation, can be written as,* [see Eq. (2.4.2)],

H =—¢E-r (3.2.16)

* To conform with the treatment of Chapt. 2, the interaction Hamiltonian is written in terms of an electric dipole
interaction rather than in terms of the interaction of the vector potential with the electron momentum p, as com-
monly done in many textbooks on semiconductors. The two Hamiltonians can be shown however to lead to the
same final results.
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Example 3.4. Calculation of the quasi-Fermi energies for
GaAs. We take m. = 0.067mgy and m, = my;, = 0.46m
and assume T = 300 K. We get N, = 4.12 x 10" cm™3
and N, = (m, / me)>> N, = 7.41 x 10" cm~3, where N..
is the electron concentration defined in connection with
Eq. (3.2.15) and N, is the corresponding quantity for the
holes. At each electron concentration, N, one can now
obtain the quantity N / N, and, from the general plot of
Fig. 3.15a, deduce the corresponding quantity Er, / kT. A
similar calculation can be made for the holes. The values
of Er / kT, calculated in this way for both electrons and
holes in GaAs, are plotted in Fig. 3.15b vs the carrier
concentration, N.

where vo = (E', — E'y) / hand

| = ‘ / Yl (—er-Eo e ™) yrdv
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where E = E(r, ) is the electric field of the
e.m. wave at position r and time ¢. For a plane
wave, its expression can be written as

E =Ej expj(Kop: - T — ) (3.2.17)
where K, is the field wave vector and w =
2nv. If v > E,/h a transition may occur
from a state in the valence band to a state in
the conduction band. If we let E} and E| be
the corresponding energies of the two states,
the transition rate W, according to Eq. (A. 23)
of Appendix A, is

2 )
W= - |H|™8 (v —v,) (3.2.18)

2
(3.2.19)

Note that ¥, and ¥, in Eq. (3.2.19) are the Bloch wave functions of levels 1 and 2 as given by

Eq. (3.2.1).

From Egs. (3.2.18) and (3.2.19) we can now obtain the selection rules for the interaction.

From Eq. (3.2.18), noting the §-Dirac function on the right hand side, one sees that v = vy.
This means that

(B, — E’) =hv (3.2.20)
which is often referred to as the energy conservation rule for the interaction. Similarly, from
Eq. (3.2.19), since ¥, o exp(jk, - r) and ¥,  exp(iKk. - r) one can show that the integral is
non-vanishing only when

ke =Kk + ky (3.2.21)
The proof of Eq. (3.2.21) is somewhat involved and requires that the periodic properties of
u.(r) and u,(r) appearing in Eq. (3.2.1) be properly taken into account.!' The selection rule
Eq. (3.3.21) can however be physically understood when we notice that an exponential factor
of the form expj[(k, + Koy — k) - r] is present in the integrand of Eq. (3.3.19) and this
term, since it oscillates rapidly with r, makes the value of the integral zero unless k, + Kk, —
k. = 0. Since %k, is the electron momentum in the conduction or valence band and hk(,,,,
is the photon momentum, Eq. (3.2.21) shows that the total momentum must be conserved in
the transition. One should note that one has k,,, = 27n / A where n is the semiconductor

refractive index and A is the transition wavelength. Thus, with e.g. n = 3.5 and A = 1 um,
one has k., = 10°cm™!. On the other hand one typically has k., = 10°® = 10’ cm™! for
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an electron or hole of average thermal energy (see Example 3.5). Thus k,,; << k., and
Eq. (3.2.21) simplifies to

ke =k, (3.2.22)

Equation (3.2.22) is often referred to as the k-selection or k-conservation rule and indicates
that stimulated transitions must occur vertically in the E vs k diagram (see Fig. 3.13a). Note
finally that the e.m. wave does not interact with the electron’s spin or, in other words, that spin
is not involved in the interaction Hamiltonian Eq. (3.2.16). The spin, therefore, cannot change
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in the transition i.e. the selection rule for the change of the electron spin, A S, is simply

AS=0 (3.2.23)

As for the case of atomic transitions consid-
ered in the previous Chapter, Eq. (3.2.18)
needs to be modified when line broaden-
ing mechanisms are taken into account. For
semiconductors, the main broadening mech-
anism arises from electron-phonon dephas-
ing collisions. Thus the §-Dirac function in
Eq. (3.2.18) must be replaced by a Lorentzian
function g(v—vy), whose width, according to
Eq. (2.5.11) is given by Avy = 1/mt, where

Example 3.5. Calculation of typical values of k for a
thermal electron. For an electron in the conduction band
having average thermal velocity vy, one has mcvrzh =
3k T where T is the electron temperature. We also have
p = hk. = m.uy. Combining the two previous expres-
sions, we get k. = [3mckT]1/2 /h. If we take m, =
0.067 my, as for GaAs, and kT = 0.028 eV (T = 300 K)
we thus get k. = 2.7 x 10°cm™'. Similarly one has
k, = [3m,kT]"? /# and thus k, = (m, / me)"*k, =
7 x 10°cm™! if we take m, = my, = 0.46 mg for GaAs.

7. is the average electron-phonon dephasing

collision time (., = 0.1 ps for GaAs). Pro-
ceeding as in Sect. 2.4.4, we can arrive at a definition of a transition cross section which has
the same form as for atomic transitions,* namely [see also Eq. (2.4.18)]

2 2 2
o= YR g —1) (3.2.24)
negch 3
where i = |p| and
n= /uceruvdV (3.2.25)

where u. = u amd u, = u,; are the Bloch wavefunctions, appearing in Eq. (3.2.1). Note the
factor 3 in the term u? / 3 of Eq. (3.3.24) which arises from averaging the matrix element
over all electron k vector directions, for a fixed electric field polarization [in this regard, see
footnote appearing in connection with Egs. (2.4.13).

* Note that the concept of cross section as discussed in connection with Fig. 2.7 loses its meaning for a delocalized
wavefunction such as the Bloch wavefunction. We nevertheless retain the same symbol o for a semiconductor to
make an easier comparison with the case of isolated atoms or ions. Here o has the only meaning that the transition
rate for a plane wave is W = o F, where F is the photon flux of the wave or, alternatively, W = op c¢/hv, where p
is the energy density and v is the frequency of the wave.
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3.2.5. Absorption and Gain Coefficients

Consider first two energy levels, Eé and E’l, in the conduction and valence band, respec-
tively, whose energy difference is equal to Ey = hvy, where vy is the frequency of the
transition. Under the k-selection rule given by Eq. (3.2.22), the energies E} and E| are
uniquely established for a given value of vy. In fact, from Eqs. (3.2.3) and (3.2.2), one writes

E) = E, + (h*k* / 2m,) (3.2.26a)
E| = —h** | 2m, (3.2.26b)

where we have set k = k. = k,. From Eq. (3.2.26), since E), — Eﬁ = Ey = hvy, we obtain

hvy = E, + (h*k* / 2m,) (3.2.26¢)

1 1

where m, is the reduced mass of the semiconductor, given by the relation m! = m ! + m; .
Equation (3.2.26) constitute a set of three equations in the three unknowns E’,, E/ and k.

As a next step, we define the joint density of states with respect to the energy variable
Ey = E)—E| so that p;dE, gives the density of transitions with transition energy lying between
Ey and Ey 4 dEy. Under the k-selection and spin selection rules given by Eqgs. (3.2.22) and
(3.2.23), any state in e.g. the valence band, with a given spin, is coupled to only one state in the
conduction band with the same spin. The number of transitions is thus equal to the number of
corresponding states in either valence or conduction bands. We thus write p;dEy = p (k) dk,
where p (k) = p.,, (k) is given by Eq. (3.2.7), so that we obtain

p;j(Eo) = (K / 7*) (dk / d Eo) (3.2.27)

With the help of Eq. (3.2.26¢), Eq. (3.2.27) gives

_ 1 zmr 3/2 1/2
For our purposes it is better to introduce the joint density of states, p; (vy), with respect to the
transition frequency vo = Ey / h. Since p; (vo) d vo = p; (Eo) dEy, we get from Eq. (3.2.28)

4
pivo) = 75 @m)*? [hvy — E,]'? (3.2.29)

Consider now the elemental number of transitions dN = p; (vo) dvo whose transition
frequency lies between vy and vy + dvy. For absorption to occur, the lower level, of energy
E', must be occupied by an electron while the upper level, of energy E’, must be empty. The
number of transitions available for absorption will thus be

dN, = (dN) f,(E})[1 —f. (E3)] (3.2.30)
where f, (E}) is the probability that the lower level is full while [1 — £, (E})] is the probability

that the upper level is empty. Note that a general case of equilibrium within each band is
assumed so that f, (E’l) and f, (Eé) are obtained by Egs. (3.2.11b) and (3.2.11a) with E] and



3.2 e Bulk Semiconductors

E! being substituted by E' and E} respectively. To calculate the net absorption, we must also
take into account the process of stimulated emission between the same two levels. This will
occur when the upper state is full while the lower state is empty. The number of transitions
available for stimulated emission will then be

dN,, = @N) f. (Ey)[1 =1, (E})] (3.2.31)

Once the elemental numbers of available transitions for absorption and stimulated emission
are calculated, the absorption coefficient at frequency v is obtained, via (2.4.32), as do =
o (v —vg) (dN, — dN,.), where 0 = 0y, is the homogeneous cross section for the E] — E)
transition. From Eq. (3.2.24) we then get

do = (U / )] d 3232
o= (nsoch) 38 (v —vo) p; (vo) [fy (E}) —f: (E5)] dvo (3.2.32)
The overall absorption coefficient at frequency v is obtained from Eq. (3.2.32) by integrating
over all transition frequencies vg. If we assume that g (v — vp) vs Vg is a much narrower
function than both p; (vo) and (f, —f;), than g (v — vg) can be approximated by a § function,
8 =6 (v —vp). We then get

2 2 2
o= ( T ”) %pj W [ (E) £ ()] (3.2.33)

neoch

where E’, and E| are now the energies of the two levels whose energy difference is hv. They
can be readily calculated from Eq. (3.2.36) by substituting hvy with hv.
According to Eq. (3.2.33), the absorption coefficient « = «(v) can be written as

o = ap [ (E) —fe(E)] (3.2.34)
where
2720\ p?
= —p; 3.2.35
w= (20 ) ) (3.2.39)
The meaning of op = (V) is understood when we consider a semiconductor in overall

thermal equilibrium at T = 0 K. The quasi-Fermi levels coincide in this case with the Fermi-
level and, if this level is within the energy gap, one has f, (E{) = 1 and f; (E;) = 1. One then
has a(v) = ap(v) which is the maximum absorption coefficient that the semiconductor can
have at frequency v. Note that, for an intrinsic semiconductor and assuming E, >> kT as is
the case for all JII-V semiconductors, we still have f, (E’l) ~ 1 and f, (Eé) ~0ie o = a
even at room temperature. From Eq. (3.2.35), with the help of Eq. (3.2.29) with v, substituted
by v, we then get

v p? 1/2
o) = = om)¥*[w —E 3.2.36
0 n£0ch3 3 ( ) [ g] ( )

The frequency behaviour of «(v) is then determined, to a good approximation, simply by the

frequency behaviour of (hv — Ej) 12
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Example 3.6. Calculation of the absorption coefficient for GaAs. As an approximation, we will assume
the frequency v, appearing in the first term of the right hand side of Eq. (3.2.36), to have the value
v = E,/h = 3.43 x 10" Hz, where the energy gap E, is taken to be 1.424eV. We will also take
m, = 0.46mg and m. = 0.067 my, so that m, = 0.059my = 5.37 x 10732 Kg. To calculate the average

. 1/2
dipole moment p,, = [,uz / 3] / we note that the accurate value of the average electron moment M,, was
recently shown to be such that M2, = 3.38 m,E,.® Since the relation between average dipole moment

and electron momentum is M,, = mow |itay| / e,9 we get g, = e [3.38Eg/m0]1/2 /2mv = 0.68 x
1072 C x m. We see that, if we write ry, = Iay / €, then r,, = 0.426 nm. Substitution into Eq. (3.2.36) of
the values for v and ,, given above together with the value n = 3.64 for the refractive index, gives «p =
19,760 [hv - Eg] I/ 2, where o is expressed in cm™' and the energy in eV. The absorption coefficient, as
calculated from the latter expression, is plotted vs hiv—E, in Fig. 3.16. One notes that, when hv exceeds the
energy gap by only 10 meV, the absorption coefficient already reaches very large value (~2,000cm™!).

T I I
10| -
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= sl ﬂ
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(E-Eg) [meV]

FIG. 3.76. Idealized plot of the absorption coefficient, «, vs the difference between the photon, E, and gap energy, E,, for an
intrinsic GaAs bulk semiconductor.

Consider next the case of the gain coefficient of an “inverted” semiconductor. One can readily
see that the previous considerations remain valid provided we interchange the suffices v and
c. Thus, from Eq. (3.2.34), the gain coefficient is seen to be given by

g = ao[fe(E3) = £1(EY)] (3.2.37)

It then follows that, at any transition frequency, the maximun gain coefficient is attained at
T = 0K and equals «. Note from Eq. (3.2.37) that, for any temperature, the condition for net
gain is f, (E;) > fy (E/l) With the help of Egs. (3.2.11a) and (3.2.11b) one can readily show
that this implies

E,—E; <E, —E} (3.2.38)

This is a necessary condition for net gain and was originally derived by Bernard and Duraf-
fourg.©® One can see that the factor f, (Eé) —f (E’l) in Eq. (3.2.37) originates from the term
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f (BS) [1 =1 (E)] = £ (E}) [1 = f. (ES)] which gives the difference in probability between
stimulated emission and absorption. Thus the Bernard—Duraffourg condition states that the
stimulated events must exceed the absorption events and, in this respect, is seen to be equiva-
lent to the N, > N; condition for a simple two-level atomic system. The relation Eq. (3.2.38)
can also be understood graphically if we consider the simple case of T = OK. For a given
level of electron-hole injection the position of the quasi-Fermi levels will be as shown in
Fig. 3.17, where the dashed zones are filled with electrons and the clear zones are unoccu-
pied by electrons (i.e. full of holes). The condition Eq. (3.2.38) then simply implies that level
2 must belong to the full zone while level 1 must belong to the empty zone in Fig. 3.17.
The actual derivation of the Bernard—Duraffourg condition shows however that Eq. (3.2.38)
is valid at any temperature.

It is worthwhile remembering, at this point, that E; — E/1 = hv and that one must also
have hv > E,. Then from Eq. (3.2.38) we get

E,<hv <Ej —Ej, (3.2.39)

which establishes the gain bandwidth of the semiconductor. According to Eq. (3.2.39), to have
gain at any frequency, one must have E}C - E}v > E, and the limiting case

E, —E, =E, (3.2.40)

is called the transparency condition. In this case one has g = 0 at v = E, / h. To achieve
this condition we must inject a density of electrons in the conduction band (and holes in
the valence band) which is called the fransparency density and which will be indicated
as N,

FIG. 3.17. Graphical illustration of the Bernard—Duraffourg condition for achieving net gain in a bulk
semiconductor at 7 = 0 K.
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Example 3.7. Calculation of the transparency density for GaAs. It is first convenient to transform
Eq. (3.2.40) into the unprimed energy axes of Fig. 3.9a. According to Eq. (3.2.3) one can write E}C =
E; + Ep, and E;; = —EF,, and Eq. (3.2.40) transforms to Er, + Er, = 0. From Fig. 3.15a one sees
that E, / kT is a function of (N/N,) i.e. one can write Eg, / kT = f (N / N.). Similarly, one can write
Ep, / kT = f (N / N,) and the transparency condition becomes

f(Niw /Ne) + f(Niy / Ny) =0 (3.2.41)

To obtain N, from Eq. (3.2.41) for GaAs, we have plotted in Fig. 3.15b, as a dashed line, the function
(Er, / kT) + (EF, / kT) vs N. The curve is obtained as the sum, at each carrier concentration N, of the
values given by the two continuous curves of the figure. According to Eq. (3.2.41) we can now say that
the transparency density, V., is the carrier concentration at which the dashed line of Fig. 3.15b crosses
the (Er, / kT) + (Er, / kT) = 0 horizontal line. From Fig. 3.15b we get N;, = 1.2 x 10'8 cm ™.

When the density of injected electrons, N, exceeds the transparency density, we have
E}(_ —E}V > Eg, and, according to Eq. (3.2.39), net gain will occur for a photon energy between
E, and El/% - E}v. The gain coefficient vs photon energy, as calculated using Eq. (3.2.37), is
shown in Fig. 3.18 for GaAs, using the injected carrier density, N, as a parameter. One notes
that, upon increasing the carrier density, the difference in quasi-Fermi energies, E}C - E}V,
increases and this results in a corresponding increase of the gain bandwidth. This bandwidth,

160 T T I

Gain [cm-1]

1424 1.46 1.50
hv [ev]

FIG. 3.18. Plot of the gain coefficient vs photon energy with the injected carrier density, N, as a parameter (in units
of 10" cm™3) as expected according to Eq. (3.2.37) for GaAs at T = 300K (after ref.,(!>) by permission).
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FIG. 3.19. Plot of the peak gain coefficient vs the injected carrier density for GaAs (after ref.,(!>) by permission).

even at the highest carrier injections considered in the figure is, however, smaller than 0.07 eV
i.e. it is a small fraction of the energy gap. One can also observe from Fig. 3.18 that the peak
gain of each curve increases with increasing N. Again for GaAs, Fig. 3.19 shows the plot
of this peak gain coefficient vs the density of injected electrons. For typical gain coefficients
of interest for semiconductors lasers (20 < g < 80cm™!), the plot of Fig. 3.19 can be
approximated by a linear relation i.e. one can write

g=0(N—Ny) (3.2.42)

where 0 2 1.5 x 107® cm? for GaAs. It should be noted that o has some analogy to the gain
cross section defined for atomic systems [compare Eqgs. (3.2.42) with (2.4.35)]. As already
mentioned, however, the concept of cross section is not appropriate for a delocalized wave-
function such as that of an electron in a semiconductor. For this reason, since from Eq. (3.2.42)
one has 0 = dg/ dN, o is often referred to as the differential gain of the semiconductor. We
will still retain the notation of o for this differential gain, however, as a reminder of the fact
that o has the dimension of an area.

Most of the examples which have been discussed in this section refer to the partic-
ular case of a GaAs semiconductor. However, many other materials are also of interest
as laser materials, a notable example being the quaternary alloy In;_,Ga,As,P;_, which,
depending upon the composition indices x and y, covers the so-called second and third
communication windows of optical fibers (1,300nm < A < 1,600nm). For the pur-
pose of comparison, Table 3.1 shows the values of E,, m./moy, mpy,/mo, N, and o,
for In()_75Ga()_25AS()_55P()_45(A ~ 1,300 nm) and for Ino_6Ga0,4As0,ggP0.12 (A ~ 1,550 nm),(7)
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TABLE 3.1. Values of emission wavelength, A, energy gap, E,, conduction band electron mass, mc,
heavy-hole, my;,, carrier density at transparency, Ny, material differential gain, o, and lifetime 7, for
GaAs (A = 850 nm), and InGaAsP (A = 1,300 and A = 1,550 nm) bulk semiconductors

GaAs Ing 73Gag27As0.6Po.4 Ing 58Gag.42As9.9Po.1
A [nm] 840 1,310 1,550
E, [eV] 1.424 0.96 0.81
me/mg 0.067 0.058 0.046
/10 0.46 0.467 0.44
N, [10"% ecm™3) 1.2 1 1
o106 cm?] 15 12525 12525
7[ns] 3 4.5 4.5

as well as the corresponding values for GaAs, as discussed in this section. It should be
noted that the reported values for N, and o fall in a range of values reported for these
semiconductors and are included in Table 3.1 just as indicative numbers. It does seem, how-
ever, that both N, and o for InGaAsP are somewhat smaller than the corresponding values
for GaAs.

3.2.6. Spontaneous Emission and Nonradiative Decay

Let us first consider the spontaneous emission process and define the spectral rate
R, so that R,dv represents the number of spontaneous emission events per unit time and
volume which result in light emitted with frequency between v and v + dv. To calcu-
late R, consider first the transitions, p; (vo) dvg, whose transition frequencies lie between
Vo and vy + dvy. They will give an elemental contribution, d R,, to R, given by dR, =
Anig (v —o) x {f (E3o) [1 =1, (Elo) ]} 05 (o) dvg where Ay = Azy (o) is the rate of spon-
taneous emission between the two levels and g (v — vg) is the lineshape function of the
transition. It should be noted that p; (v9) has been multiplied by f; (Ej) [1 —f, (E},)] since,
as for stimulated emission, spontaneous emission can only occur between an occupied upper
state and an empty lower state. The total spectral rate R, is then obtained by integrating the
above expression over all transition frequencies vy. Thus

Ry = [ Aaig =) lf (8 [1 =1 ()]} ivo)dve (3.243)

In the limit where g (v — vp) can be considered a much narrower function of v, than all other
functions in the integrand, g (v — vg) can be approximated by a § function § (v — vy) and
Eq. (3.2.43) reduces to

Ry = A il () [1 = £ (E))]}oi(v) (3.2.44)

where A, is the spontaneous emission rate for vy = v and F, and E/| are now the energy levels
corresponding to a transition frequency v. As an example, Fig. 3.20 shows the qualitative
behaviour of R, vs the photon energy /v for an electron injection rate exceeding the rate for
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FIG. 3.20. Qualitative behaviour of the spontaneous emission spectra, R,, and of optical gain, g, at a given value of
the injected carrier density (after ref.(') by permission).

transparency and by assuming A,; independent of v. In the same figure the gain coefficient,
as calculated by Eq. (3.2.37), is also indicated for comparison. One can observe that the
emission spectrum, unlike the case for atomic systems, is now different from and generally
wider than the gain spectrum. This is because R, is proportional to f. (E;) [1 — f, (E})] while
a is proportional to f; (E3) — f, (E}).

Once the spectral rate, R,, of spontaneous emission is calculated, the total rate R is
obtained by integrating R, over all emission frequencies. Thus

R= / Anf(E5) [1 = £(E)] oy (v) dv (3.2.45)
In practice, however, one often makes use of the phenomenological relation
R = BN, N, = BN? (3.2.46)

where B is a suitable constant. A justification of Eq. (3.2.46) can be given by assuming that any
electron can recombine with any hole, which implies that the k-selection rule does not strictly
hold.® We will not give any further discussion of this question which has to do with the so
called band tails in a semiconductor,('” and we will take Eq. (3.2.46) as a phenomenological
relation which holds well at the electron and hole densities of interest. We note that, according
to the definition of R, one has (d N, / df) = —R. We can therefore define a radiative lifetime
7, such that R = N, / 7, and thus write

7, = (BN,)”! (3.2.47)
Let us next consider nonradiative transitions. They generally occur at deep impurity cen-

ters in which a carrier, electron or hole, is trapped (deep trap recombination). Consider for
instance an n-type semiconductor. At sufficiently high doping values, the Fermi level will be
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close enough to the conduction band that these traps will be filled with electrons. A nonra-
diative transition then occurs by recombination of a free hole with this trapped electron, the
excess energy being given to the lattice. A similar argument applies for p-type-doping. For
small gap semiconductors, nonradiative transitions can also occur by direct recombination
of untrapped electrons and holes, the excess energy being given to another electron (or hole)
which gets excited to a higher energy state in the band (Auger recombination'?). Since Auger
recombination is a three-body process, the decay of electron density due to this procees can
be written phenomenologically as (dN, / dt) = —CN.NyN, = —CN?, where C is a suitable
constant. Accordingly, we can define a nonradiative lifetime due to Auger recombination,
T4, @S

o =[cN]" (3.2.48)

The dominant nonradiative mechanism seems to be deep-trap recombination for GaAs and
Auger recombination in long wavelength semiconductor laser materials such as InGaAsP.

Example 3.8. Radiative and nonradiative lifetimes in GaAs and InGaAsP. For GaAs, we will take B =
1.8 x 107%cm®s ™ and N, = N, = 1.2 x 10!8cm™. We then get 7, = 1/BN,, =~ 4.6ns, to be

1

compared with the measured overall lifetime, at transparency, of t = 3ns (T = 300K). Since t7" =
T, Iy ‘L’l;l, where 7, is the lifetime due to the nonradiative process, we can infer a nonradiative lifetime
T,r, in this case due to deep-trap recombination, of about 9 ns. For InGaAsP at A = 1,300 nm we take
B=2x10""cm’s ", N, =N, = 1 x 10" cm®and C =~ 3 x 102 cm®s . We get from Eq. (3.2.47)
7, = Sns and from Eq. (3.2.48) t4 = 33.3 ns which gives an overall lifetime, 7, in agreement with the
measured value [t =~ Sns at T = 300K].

3.2.7. Concluding Remarks

We have seen in this section that the phenomena leading to radiative and nonradiative
transitions in a bulk semiconductor are notably more complicated than those occurring for
isolated atoms or ions, which were considered in the previous Chapter. From a practical view-
point, however, the most important physical parameters which are needed to predict laser
behaviour are the differential gain o, the transparency density N, and the overall lifetime ©
for spontaneous decay (resulting from both radiative and non radiative processes). For GaAs
and for the InGaAs alloys considered here, these quantities can be obtained from Table 3.1.
It should be reminded that the lifetime depends on the carrier concentration and the values
reported in the table refer to a concentration equal to the transparency density.

In concluding this section we also recall that the gain value given by Eq. (3.2.37) refers
to a semiconductor of large dimensions (bulk semiconductor). For this reason, the gain values
quoted in Table 3.1 are often referred to as the material gain. The actual gain in a double-
heterostructure laser is smaller than this and it is determined by the ratio of the transverse
dimension of the active layer to that of the cavity mode. This gain, often called the modal
gain, thus depends on details of the laser configuration and will be considered in the relevant
section of Chap. 9 dealing with semiconductor lasers.
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3.3. SEMICONDUCTOR QUANTUM WELLS

In a quantum well (QW) semiconductor, a very thin layer (L, = 5 = 20 nm) of a smaller
bandgap material, E,,, is sandwiched between two layers of larger bandgap material, E,,,
(Fig. 3.21a). Technically, this is done by the sophisticated techniques of Molecular Beam
Epitaxy (MBE) or Metallo-Organic Chemical Vapor Deposition (MOCVD). Since E,, < E,,,
potential wells will be established for the electrons at the top of the valence band, v.b., and,
for the holes, at the bottom of the conduction band, c.b., (Fig. 3.21b). Due to the electron
and hole confinment in these potential wells and since the semiconductor dimension is now
comparable to the electron and hole DeBroglie wavelength, the energy levels of electrons
and holes show very marked quantum size effects. Furthermore, due to the small thickness
of the layer, one can allow the lattice constants for the two materials to differ significantly,
resulting in strain being developed within the thin quantum layer. The strain changes the
quantum properties of the QW semiconductor considerably and, in particular, it changes the
effective masses. The quantum size effects and, for a strained QW, the change in effective
masses, result in the optical properties of semiconductor’s QW being markedly different from
those of the corresponding bulk material. In particular, the material differential gain increases
considerably. The transparency electron density remains comparable, for an unstrained QW,
while it shows a sizeable decrease for a strained QW. The advantages that these improved
properties imply in terms of lowering the laser threshold and increasing the modal gain will
be discussed in the relevant section on semiconductor lasers in Chap. 9. Here we merely limit
ourselves to pointing out that semiconductor quantum wells, of either strained or unstrained
type, have become the most widely used semiconductor laser materials.

3.3.1. Electronic States

To calculate the energy levels of the electrons and holes in the potential wells of
Fig. 3.21.b, one needs to know how the difference in bandgap energy AE, = E,, — Eg,
is partitioned between the well in the conduction band (AE,) and that in the valence band
(AE,). This problem (the so-called band offset) involves complicated details of physics of

Ly c¢b
; 1 L AECI
L« Egz E$91 Egz
/ v.b.l M l
l l Lz AEy
o z 0 z

(a) (b)

FIG. 3.21. (a) Schematic representation of a Quantum Well semiconductor; (b) Corresponding plot of the energy of
the bottom of the conduction band, c.b., and of the top of valence band, v.b., as a function of the z-coordinate of (a).
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semicondutors. Experimentally, for two of the most important types of QW system, one
finds: (1) AE. = 0.67 AE; and AE, = 0.33 AE,. for an AlGaAs/GaAs/AlGaAs QW. (2)
AE. = 0.39 AE, and AE, = 0.61 AE, for a InP/InGaAsP/InP QW.

To calculate the energy levels of both electrons and holes in the corresponding QW, we
will make the much simplified assumption of infinite well depth [i.e. (AE,, AE,) — oo]. The
potential wells will then appear as in Fig. 3.22. We take the z-axis orthogonal to the well with
the origin at one well interface. According to Eq. (3.2.1), the Bloch wavefunctions, both in
the conduction and valence bands, can be written as

Ve () = u(ry) & Lsin(nm z/ L) (3.3.1)

wherer | and k are the components of r and k in the well plane (the x,y plane) and where n is
a positive integer. Note that, written in this way, V., already satisfies the boundary conditions
Y.y, = 0forz = 0 and z = L, i.e. at the two well boundaries. If we set similar periodic
conditions along the x and y axes, we get

ky = (Ir / Ly) (3.3.2a)
ky = (mm / L) (3.3.2b)

where [/ and m are also positive integers. Note the difference between Eqgs. (3.3.2) and (3.2.4)
which essentially reflects the fact that we are limiting ourselves, in this case, to positive num-
bers. Of course, one can also write the boundary condition as in Eq. (3.2.4) i.e. allowing for

c.b.
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FIG. 3.22. Plots of the n = 1 and n = 2 energy levels (continuous horizontal lines) and of the corresponding
eigenfunctions (dashed lines) in both conduction and valence bands, for infinite well depths.
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both positive and negative integers, and still obtain the same final results. Within the parabolic
band approximation, the energy eigenvalues for either valence or conduction bands are

R e R

© 2me, 2m, L2 © 2me,

E., + n’Ey., (3.3.3)

where ki = k)% + k;, mc,, is the electron mass in the conduction band or the hole mass in
the valence band (only the heavy hole mass is considered, for simplicity) and where we have
indicated by Ej., the energy of the first quantum-well state (n = 1) for either conduction or
valence bands, as given by

K22

ElC v =
2me, L2

(3.3.4)

One should note that, for both Egs. (3.3.3) and (3.3.4), the energy is measured from the
bottom of the conduction band upwards, for the electrons, and from the top of the valence
band, downwards, for the holes. One should also note that, for finite depth of the potential
wells, the electrons are not totally reflected at the well interfaces, i.e. the wavefunction is not
zero at the interfaces, as assumed in Eq. (3.3.1). The wavefunction will then penetrate into the
barrier layer and the expressions for the wavefunctions and energy eigenvalues become more
complicated.!® We will not consider this case any further, since it only produces quantitative
rather than qualitative changes to the results which follow.

To discuss Eqgs. (3.3.3) and (3.3.4) let us first consider the case of electrons with zero
transverse momentum [k; = 0]. The first two energy levels (n = 1 and n = 2) for both the
conduction and valence bands are shown as solid horizontal lines in Fig. 3.22 while the corre-
sponding eigenfunctions are shown as dashed lines. One can see that, according to Eq. (3.3.3),
one has E,. = 4FE|., the same relation holding also for the valence band. If we now consider
electrons with k; > 0, the energy E vs k, relations, for each of the n = 1, n = 2, etc.,
states considered before, will be as shown in Fig. 3.23a. One sees that individual sub-bands
are now introduced in the conduction and valence bands. In the same figure, the available
states, as obtained via Eq. (3.3.2), are shown as dots in the valence band and open circles
in the conduction band. Note finally that, when dealing with transitions between valence and
conduction sub-bands, an alternative energy scale, that we shall call E’, starting e.g. from the
top of the valence band and increasing upwards may, sometimes, be more convenient (see
Fig. 3.23b). The transformation between the primed, E’, and unprimed, E, energy scales will
again be given by Eq. (3.2.3), where E, and E, are now expressed by Eq. (3.3.3).
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obtained from e.g. Fig. 9.1 in ref® as E;, =~ 28 meV and E}, = SmeV.

Example 3.9. Calculation of the first energy levels in a GaAs / AlGaAs quantum well. Let us take L, =
10 nm and assume that the electron and hole (heavy hole) masses in the GaAs well are the same as those of
the bulk material, i.e. m. = 0.067 my and m, = my;, = 0.46 my. From Eq. (3.3.4) we get E;. = 56.2 meV
and £, = 8 meV. If the confinment layer, at both sides, is Aly>GaggAs then E,, = 1.674¢V. Since the
bandgap of GaAs is E,, = 1.424¢eV, we obtain AE, = 250 meV and thus AE, = 0.65 E;, = 162.5meV
and AE, = 0.35 AE;, = 87.5meV. Since E|. is comparable to AE,, the assumption of an infinite well
is not a good approximation in this case. Taking barrier penetration into account, the actual values can be
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FIG. 3.23. Energy vs k relations of the n = 1 and n = 2 subbands of both valence and conduction bands for a
quantum well semiconductor. In (a) the origin of the energy axis for the conduction subbands is taken at the bottom
of the conduction band of the bulk material and increases upwards. The origin of the energy axis for the valence
subbands is taken at the top of the valence band and it increases downwards. In (b) the energy axis is the same for all
subbands, the origin is taken at the top of the valence band and energy increases upwards.

3.3.2. Density of States

Let us refer to Fig. 3.24 where the allowed states, as obtained via Eq. (3.3.2), are indi-
cated as dots in the (k,, k,) plane (compare with Fig. 2.2). One can see that only the allowed
states of the n = 1 level are indicated. Indeed, note that one typically has L, = 10 nm while
L, and L, may range between 10 and 100 j2m, i.e. they are 10* to 10* times larger than L.
Thus the separation in Ak, between two successive states along the k,-axis (Ak, = 7w / L;) is
about 10° to 10* times larger than the separation between successive states along the k, or ky
direction. The allowed states are now lying in well-separated planes orthogonal to the k,-axis
so it is appropriate now to calculate the density of states in each of these planes. Thus, let
N (k) be the number of states, in each plane e.g. in the n = 1 plane of Fig. 3.24, whose
transverse vector is between 0 and k . According to the discussion relating to Fig. 2.2, it is
readily seen that N (k) is given by (1/4) the area of the circle of radius k divided by the area,
Ak, Aky, of the unit cell, and then multiplied by a factor 2 to account for the two possible spin
orientations in each state. We thus get

2(1/Hmkh K
Nk )= "-L"""+ "Ly 335
(k1) AGAK, SeAL ( )
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FIG. 3.24. Representation in k., ky, k; space of the allowed states for the n = 1 subband.

where A; = L,L, is the transverse area of the quantum well. The number of states per unit
k) and per unit area is then obtained as

dN(ky) ki
=== 3.3.6
Pi A dk, T ( )

One can see that, compared to the case of a bulk semiconductor, p; now gives the number of
states per unit area rather than per unit volume. As a reminder of this feature, we have used
the superscript 2D to draw attention to the fact that we are now in a two-dimensional rather
than in a three-dimensional situation. One should also note that Eq. (3.3.6) holds both for the
valence and conduction bands.

To obtain the density of states in energy coordinates, we write, e.g. for the conduction
band, p?dE, = piPdk, . From Eq. (3.3.6) we then get

o2l = kydk, | ndE, (3.3.7)
From (3.3.3), for the example of the n = 1 subband, we have
K = (2me [/ h?) (E. — E) (3.3.8)

The quantity k;dk; in Eq. (3.3.7) is readily obtained by differentiating both sides of
Eq. (3.3.8). Equation (3.3.7) then gives

pZD =m. | h* (3.3.9)

One observes that p?” is independent of the value of k i.e. of the transverse part of the
energy hzkﬁ_ / 2m [see Eq. (3.3.3)]. This is shown graphically in Fig. 3.25a where the quantity
0P/ L, is plotted vs the electron energy E, (continuous line). Energy is measured from the
bottom of the conduction band and the function is plotted for £, < E. < E»., where E, is the
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FIG. 3.25. (a) Plot of the quantum well density of states in the conduction band, pcz.D, normalized to the well
thickness, L, as a function of the state energy E. [staircase, solid line]. In the same figure, the plot of the density of
states for the corresponding bulk semiconductor, p., is also shown as a dashed line. (b) Plots of the E,. vs k| relations
for the n = 1 and n = 2 conduction subbands.

energy of the n = 2 subband. In fact, for E. > E,., one must also take into account the states
lying in the plane k, = 27/ L, (not shown in Fig. 3.24). The density of these states, however,
is the same as that for the n = 1 plane i.e. it is again given by Eq. (3.3.9). For E. > E),. the
overall density will then be the sum of the densities of both n = 1 and n = 2 subbands. The
corresponding curve is given by the solid-line step function labelled » = 1 4 2 in Fig. 3.25a.
For the sake of comparison we also show in Fig. 3.25a, as a dashed curve, the density of
states for the same semiconductor material in bulk form, p, as given by Eq. (3.2.8a). One can
readily show that the p. curve touches the pr / L, staircase plot at E. = Ej., E. = E,. and
so on. For completeness, we also show in Fig. 3.25b a plot of E,. vs k [see Fig. 3.23]. Thus,
for any value of energy E|. < E. < Ej, Fig. 3.25b gives directly the corresponding value of
the k; component of the electron k vector. Similar considerations can also be made for the
density of states in the valence band. The corresponding density, p22, is simply obtained from
Eq. (3.3.9) by substituting m. with m, and similar plots to those of Fig. 3.25 can then be made
for the valence band. Since for GaAs one has m, = my;, = Sm,, the steps of the staircase in
Fig. 3.25a for the valence band are 5 times larger in state density, p??, and 5 times smaller in
energy, E,.

3.3.3. Level Occupation at Thermal Equilibrium

Let us first consider the case of overall thermal equilibrium. The probability of occupa-
tion of a given state of energy E’ (see Fig. 3.23b), either in the conduction or valence subbands,
is again given by Fermi—Dirac statistics as in Eq. (3.2.9) where E'r is the Fermi energy. Sup-
pose now that some electrons are raised to the conduction subbands n = 1,n = 2, etc., and
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assume a fast relaxation among these subbands (typically r = 0.1 ps) both in the conduction
and in the valence band. The equilibrium situation can then be described by again introducing
two quasi-Fermi levels. The probability of occupation of a given level in the conduction or
valence subbands will be given by Eqgs. (3.2.10a) and (3.2.10b) for the unprimed energy axes
of Fig. 3.23a or by Eqgs. (3.2.11a) and (3.2.11b) for the primed energy axes of Fig. 3.23b.

Just as for a bulk semiconductor, the values of Er, and Ef, are established by the number
of electrons, N,, and holes, N, which are injected in the corresponding bands. One can indeed
calculate N, and N, by the relations

N, = / (p” /L) f. dE. (3.3.10a)

Ny = / (02" /L) f, dE, (3.3.10b)

In Eq. (3.3.10a) p?P is the surface density of states, and it is given, for each subband, by
Eq. (3.3.9) (see also Fig. 3.25a). In Eq. (3.3.10b) psD is the surface density of states for the
valence subbands and f, is the occupation probability of the holes as given by Eq. (3.2.13).
Since p2D is constant in each subband, the integrals in Eq. (3.3.10) can be calculated
analytically and the final result can be written as

me; Er. — Eji

N, =kTZi(ﬂh2LZ)ln [1 + exp (k—T)} (3.3.11a)
My Er, —E;

Ni =kTZi(ﬂh2LZ)ln [1 + exp (k—T)} (3.3.11b)

where the sum is taken over all subbands, m,.; and m,; are the electron and hole masses in each
subband, and E;. and E;, are the minimum energies of each subband. One should note that, by
choosing the unprimed energy axes of Fig. 3.23a, the expressions for N, and N}, take exactly
the same functional form.

3.3.4. Stimulated Transitions

Consider a stimulated transition (absorption or stimulated emission) between two given
levels, 1 and 2, belonging to a valence and a conduction subband, respectively. Within the
electric dipole approximation, the corresponding transition probability, W, will again be

2
proportional to }H;OZ‘ given by

0 |2 2
’Hiz = ‘/w: [~er- E(©)] yrdV (3.3.12)

where . and v, are now given by Eq. (3.3.1) and E(r) is the electric field of the e.m. wave at
the position r in the quantum well [compare with Eq. (3.2.19)]. To simplify our considerations,
we will take the case of E-field polarization in the plane of the well. Then er-E (r) = er -E (r)
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Example 3.10. Calculation of the Quasi-Fermi energies
for a GaAs/AlGaAs quantum well. We will take m,; =
m. = 0.067 mg and m,; = 0.46 myg, i.e. we will assume
that the masses are the same as those of the bulk material
and we will neglect the contribution of the light holes.
We will also assume L, = 10nm and 7 = 300 K. From
Eq. (3.3.11) one readily obtains the two plots of concen-
tration N vs (Er — E1)/kT, both for electrons and holes,
shown in Fig. 3.26. From this figure, the position of the
quasi-Fermi levels for a given injection, N, of electrons
and holes, can be readily obtained.

0
‘HIZ

X

2 , . .
= '[ u* (rp) e et rL [—erJ_ -Eoe’k”f’"rl] Uy (r1 )Tl dxdy| X

[ sin (n.mwz/L;) sin (n,7wz/L;)dz

Energy Levels, Radiative and Nonradiative Transitions

where r) is the component of the r vector
in the well plane. We further notice that the
well thickness is much smaller than the wave-
length of light. Hence E(r) can be taken to be
constant along the direction z orthogonal to
the well and we can thus write E = E(ry)
i.e. a function of only the transverse coordi-
nate r . It then follows that er | -E (r) reduces
to er] - E(r1) and Eq. (3.3.12) can be split
into two integrals, one over the orthogonal
coordinates, x and y, and the other over the
longitudinal one z, viz

2
(3.3.13)

2

As in the case of a bulk semiconductor, the integral over the transverse coordinates can be
shown to vanish unless k, 1 + Kk,,; = K1 . Since again |k0p[| << (JkyL|,|Ke1]) we obtain the
selection rule [compare with Eq. (3.2.22)]

key = koo (3.3.14)

Thus the k-conservation rule still holds for the transverse component, k; , and this implies
that transitions must occur vertically in Fig. 3.23. From the second integral of the right hand

A | 1 | ]
0 1 2 3 4 5

N (108 cm-3]

FIG. 3.26. Plots of the normalized difference between the quasi-Fermi energy, Er, and the energy of the n = 1
subband, E;, vs density of injected carriers, for both electrons and holes, in a 10 nm GaAs/AlGaAs quantum well.
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side of Eq. (3.3.13), since n. and n, are positive integers we get the selection rule for the
quantum number 7z as

An=n.—n,=0 (3.3.15)

which shows that transitions can only occur between two subbands, one in the conduction and
the other in the valence band, with the same quantum number n. One should finally note that
spin is not involved in the interaction Hamiltonian e r - E, i.e. the e.m. wave does not interact
with spin. This implies that spin cannot change in the transition i.e. that

AS=0 (3.3.16)

where S is the spin quantum number of the electron involved.

It should be noted that the selection rules Egs. (3.3.14), (3.3.15), and (3.3.16) have been
derived subject to the simplifying assumptions that the E-field be polarized in the plane of the
well. It can be shown however(!? that the same rules hold in general and, from now on, these
rules will be used extensively.

3.3.5. Absorption and Gain Coefficients

To calculate absorption obeying Kk -conservation rule it is appropriate to first introduce
the joint density of transitions or joint density of states, p},? , such that p},?dk 1 gives the
number of available transitions or the number of coupled states per unit area, with k; ranging
between k; and k; + dk, . Since transitions can only occur vertically in Fig. 3.23 and since
AS = 0, this number is also equal to the number of states in either the valence or conduction

bands within the same elemental interval dk | . Thus we get
o =" =ky/ 7 (3.3.17)

where Eq. (3.3.6) has been used. Consider now two given energy levels of energy E'; and E'4
belonging to e.g. the n = 1 subbands of the conduction and valence band respectively. From
Fig. 3.23b and Eq. (3.3.3), the energy difference, Ey = hvy = E’, — E, is seen to be given by
2k2
Ep = E; + —= + AE, (3.3.18)
2m,

where m, is the reduced mass and AE| = E|. + E,. If we now introduce the density of states
in the Ej coordinate, pfgo, we can write

pi2 dEy = piPdky = kydky /7 (3.3.19)

where Eq. (3.3.17) has been used. The quantity k dk is then obtained by differentiating both
sides of Eq. (3.3.18). From Eq. (3.3.19) we then get

pip =m, | wh’ (3.3.20)
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If we now define the density of states with respect to the transition frequency coordinate
V0. Py, then, since we must have again p72 dvg = pjf, dEo, we get from Eq. (3.3.20)

Py = 4mm, [ h (3.3.21)

The calculation of the overall absorption at the frequency v of the incoming e.m. wave
can be made in the same way as the calculation performed for bulk material, i.e. through
Eqgs. (3.2.30)-(3.2.32), provided we substitute p; (vp) with (p%’o / LZ) which is the joint density
of states for our case. Again assuming infinitely narrow transitions between any two states,
the absorption coefficient for the n = 1 — n = 1 quantum well transition is readily obtained
from Eqgs. (3.2.34) and (3.2.35) as

2 2 2D
son = () 5 (22 In ) -1 (22) (3322)

neoch L,

where E| and E}, are now the energies of the two levels whose transition frequency is equal to
v. Under the k| -conservation rule, E; and E’1 can readily be obtained from Fig. 3.23a,b with
the help of Eq. (3.3.3), by letting vp = v.

Example 3.11. Calculation of the absorption coefficient in a GaAs/AlGaAs quantum well. We will first
consider the case of 7 = O K. In this case all valence subbands are full, all conduction subbands are empty
and we have f, (E’l) = landf, (E;) = 0. The absorption coefficient then has its maximum value, given by

2120\ p? p2P
max Jv
= — 3.3.23
%o (nsoch) 3 L, ( )

whose dependence upon the photon energy is essentially determined by p72. The absorption coefficient vs
the difference, (E - Eg), between the photon energy and the gap energy as calculated from Eq. (3.3.23)
for a L, = 10 nm quantum well is shown in Fig. 3.27. According to Fig. 3.25a, p}f is seen to be zero for
a photon energy E < E, + Ej. + Ey, = E, + AE;. No absorption is thus expected for (E — E,) < AEj.
Assuming againm, = 0.067 mg and m,, = 0.46 my, from example 3.8 we get AE; = E|.+E;, = 65meV.
For AE; < (E—E,;) < AE,, where AE, = Ey. + Eyy, ,03{,) is given by Eq. (3.3.21), with vyp = v, and the
absorption coefficient has a constant value given by

83 w2\ m,
— - 3.3.24
T = oA ( 3 ) L, (3.3:24)

where A = ¢/v According to example 3.5, we will take [,u2/3]1/2 = 068 x 10702°C xm, m =
5.37 x 1072 Kg, n = 3.64 and A = 833 nm. From Egq. (3.3.24) we then get apw = 5,250 cm™!. For
(E — Eg) > AE,, transitions between the n = 2 subbands also occur, the joint density of states doubles
(see also Fig. 3.25a) and the absorption coefficient will also double. Note that, since E,. = 4E;. and
Ey, = 4E),, one has AE, = 4AE; = 260meV = 260 meV (one can now compare Fig. 3.27 with
Fig. 3.16).
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FIC. 3.27. Idealized plot of the absorption coefficient, «, vs the difference between photon energy and gap energy
in a 10 nm GaAs/AlGaAs quantum well.

We can proceed in a similar way for the case of stimulated emission. It can readily be
seen that the corresponding formula for gain coefficient can be obtained from Eq. (3.3.22) by
interchanging the indices ¢ and v and the indices 1 with 2. We then get

2772 2 2D
sew = ( ; v) M? (pjv ) Ve (E2) = £ (E1)] (3.3.25)

neoch L,

The necessary condition for positive net gain is again that f; (E}) > f, (E}), which again
implies the Bernard—Duraffourg condition hv = Ej — E| < E, — EJ. . On the other hand, hv
must be larger than E; + AE| so that

E,+ AE, <hv < Ej —Ej. (3.3.26)

which establishes the gain bandwidth. From Eq. (3.3.26), the transparency condition is
obtained as

E}. — Ej, = E, + AE, (3.3.27)
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Example 3.12. Calculation of the transparency density in a GaAs quantum well. From Fig. 3.23 [see also
Eq. (3.2.3)] we have E}(_ = Er. + E, and E/V = —FEr,. Equation (3.3.27), in the new variables Er, and

Er,, transforms to the simpler expression

(Er, —Ei0) + (EF, —E1,) =0

where we have used the relation AE; = E|. + E),. To obtain from Eq. (3.3.28) the corresponding value
of the transparency density, N;., we have plotted in Fig. 3.26 the quantity [(Er, — Ei.) + (Er, — E1,)] /kT
as a dashed curve. The curve is obtained by taking, for each carrier concentration N, the sum of the values

(3.3.28)
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given by the two continuous curves of Fig. 3.26. According to Eq. (3.3.28) the transparency density
corresponds to the point where the dashed curve crosses the zero value of the ordinate. From Fig. 3.26 we
thus obtain N, = 1.25 x 10'8 electrons/cm’.

For N > N,., the quantum well will exhibit gain and its value can be obtained from
Eq. (3.3.25) once, for a given injection N, the quasi-Fermi levels are calculated (in our
example from Fig. 3.26). Typical plots of the gain, as obtained by this procedure for a
8 nm GaAs/Aly,GaggAs QW, vs the photon energy E, are shown in Fig. 3.28 as solid curves
for several values of N (in units of 10'8 cm™3). The case labelled N = 0 corresponds to
quantum-well absorption and should be compared with Fig. 3.27. The steps are not sharps here
because spectral broadening of individual transitions has also been included. One should also
note that all possible transitions to the heavy-hole (HH) and light-hole (LH) subbands have
been taken into account, in this case, and that transparency occurs for N, =~ 2 x 1018 ecm™3.
For N > N, the peak gain coefficient can again be approximated by an expression similar to
Eq. (3.2.42), namely

g = ogw (N — Ny) (3.3.29)

with ogw = 7 x 10716 cm?. Comparing these results with those of the bulk material shows
that, while ,, is almost the same for the two cases, the differential gain opw for a quantum
well is considerably larger (about twice) than that of the bulk semiconductor. The same situ-
ation also occurs for In;—Ga,As,P;_,/InP quantum well lasers,'¥ and is basically related to
the different form for the density of states for the two cases (see Fig. 3.25a).('9 We note how-
ever that, both for GaAs/AlGaAs and In;_.Ga,As,P,_,/InP quantum wells, a linear relation
between o, and N holds less accurately than for the corresponding bulk materials. In fact, a
plot of &g, vs N, at a given temperature, shows that a saturation of o, occurs at sufficiently
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FIC. 3.28. Plots of the gain (or absorption) coefficient vs photon energy with the injected carrier density, N, as a
parameter (in units of 10'8 cm™3) for a 8 nm GaAs /Alp2Gap g As quantum well, in the parabolic band approximation
(after ref.® by permission).
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high values of N, this effect also being basically related to the different form for the density
of states for the two cases. Lastly, we recall that the expression in Eq. (3.3.29) gives the mate-
rial gain coefficient of the quantum-well. How this translates into the modal gain coefficient
in a quantum well semiconductor laser and the real advantages of quantum-well lasers will be
discussed in Sect. 9.4.4.

3.3.6. Strained Quantum Wells

In a GaAs/Alp>GaggAs quantum well, the lattice constant of GaAs is, to within better
than 0.1%, equal to that of Aly,GaggAs (all [II-V materials have cubic symmetry). The same
situation occurs for the In;_,Ga,As,P;_,/InP quantum well if we choose x 2 0.45 y. Consider
now, for example, the case of a In,Ga;_,As/Aly,GapgAs quantum well where, since the
substitution of Al with In lowers the bandgap, In,Ga;_,As is the well material. For 0 <
x < 0.5 one then has 1.424eV > E, > 0.9¢V and the emitted light covers the important
wavelength range 840nm < A < 1,330 nm. The lattice constant of InGaAs is now larger
than that of AlGaAs [by as much as 3.6% at x = 0.5], and, before the well is formed, the
situation of the two materials will be as shown in Fig. 3.29a. In forming the quantum well,
the two lattice constants must become equal in the QW well plane and this produces a biaxial
compression of InGaAs in this plane and a uniaxial tension along the direction orthogonal to
the plane (Fig. 3.29b). The InGaAs QW then looses its cubic symmetry and this changes the
values of the valence band effective masses and of the band gap.*

What needs to concern us mostly is the heavy hole mass in the plane of the QW as
it enters into the expression for the density of states in the valence band (see Sect. 3.3.2).
Under compressive strain this mass is greatly reduced (by as much as a factor 2 for x = 0.2)
becoming closer in value to that of the electron mass in the conduction band. This makes
the density of states in the valence band, p??, comparable to that, p?°, in the conduction

v o c

band. The reduction of heavy hole mass and the corresponding reduction in state density,

HHHH

of 010 — Ta,
HHH o
- an

a,(=a;)<ag<a
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FIC. 3.29. Crystal lattice deformation resulting from the epitaxial growth of a thin quantum-well layer of III-V
material with original lattice constant ag (e.g. InyGa;_5As) between two thick layers of a material with a lattice
constant a; < ag (e.g. Alp2GaggAs).

* We recall that, in the parabolic band approximation, all the quantum details are essentially hidden in the values of
the effective masses and energy gap.
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0P, results in two very important advantages compared to typical unstrained QW: (1) The
transparency density, Ny, is greatly reduced by an amount as large as a factor 2 [down to
Ny = (0.5-1) x 10" cm™]. (2) The differential gain do,/dN is greatly increased by an
amount as large as a factor 2 [up to (15-30) x 107'®cm?]. The reasons for both circum-
stances are fundamentally related to the reduced value of p? and to the shift in position of
the quasi-Fermi levels, at transparency, upon reducing the hole mass.("” Indeed, the lowest
value of N, and the highest value of dg/dN are attained in the completely symmetrical case
m, = me.

In concluding this section we can say that there are three main beneficial effects of
strained QW lasers: (1) A considerable reduction of N,. This effect results in a consis-
tent reduction of the threshold current density, Jy;, since it will be shown in Chap. 9 (see
Sect. 9.4.4) that J;;, is fundamentally related to N.. (2) An increase of electron-hole recom-
bination time, 7, because both the radiative decay rate, (1/t,) = BN, and the Auger rate,
(1/t4) = CN?, are reduced as a consequence of the reduction of N,.. This effect also results
in a further decrease of J;, since J;, o« 1/7. (see Sect. 9.4.4 again). (3) A considerable increase
of the differential material gain and, hence, of the differential modal gain. It will be shown in
Chap. 9, that this effect not only decreases the threshold current density but also increases the
laser efficiency. For these reasons, strained QW lasers are becoming increasingly important as
laser media.

3.4. QUANTUM WIRES AND QUANTUM DOTS

We have seen in the previous section that the improvement in optical properties obtained
on going from bulk material to the corresponding QW material is essentially due to a quantum
confinment effect arising from the fact that one dimension of the semiconductor has become
comparable to the DeBroglie wavelength. It is therefore natural to expand this idea to con-
sider the other two possible cases of quantum confinment, namely quantum wires, QWR,
and quantum dots, @D, wherein two or all three dimensions are made comparable with the
DeBroglie wavelength (Fig. 3.30a). As for a QW, the fundamental difference between these
quantum confined structures and the bulk material relies on the different forms of the density

e

Quantum Quantum
Bulk Quantum  wire dot

well
E E E E
p3D p2D p10 pOD

FIG. 3.30. Different configurations, (a), and corresponding forms of the density of states, (b), for bulk, quantum
well, quantum wire and quantum dot semiconductors (after ref.,!”) by permission).
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of states. Without entering into detail here (for more detail see ref.('¥) we show in Fig. 3.30b
the qualitative behavior of the density of states for QWR and QD as compared to bulk and QW
materials. Using these different forms of state density, one can proceed in a similar way as
for a QW to calculate the expected gain. We do not pursue this here and, as a representative
example, we limit ourselves to showing in Fig. 3.31 the expected material gain vs photon
energy for a Gag 47Ing 51 As/InP system (Gag 47Ing 51 As now constitutes the quantum confin-
ment material). In the figure, the curves of predicted material gain vs photon energy for the
bulk case, fora 10nm QW, 10nm x 10 nm QWR, and 10 nm x 10 nm x 10 nm QD are plotted
at the same electron injection N = 3 x 10'® cm™3.09 The calculated transparency density is
about the same for bulk, QW and QWR [N,, ~ 1.3x10'8 cm_3] while it is somewhat higher
for QD [N,, ~ 1.8x10'8 cm_3]. In agreement with our earlier discussion of QW structures,
the gain is seen to increase on going from bulk to QW, from QW to QWR, and from QWR
to OD. The gain bandwidth, on the other hand, decreases from QW to QWR and from QWR
to OD.

As a laser material, quantum wires and dots will perhaps be used in the form of an
array, such as the planar ones of Fig. 3.32a, b. Considerable technological difficulties (such
as high packing density, low size fluctuations, and low defect density) are still preventing
the fabrication of quantum wires and quantum dots having good optical properties. If these
difficulties can be solved, semiconductor laser materials of still lower threshold, much higher
differential gain and narrower bandwidth will become available.

104 T T T I
Gay,yIngssAs/INP
T =300K
T,71x10™s

N=3x10"® cm3 ~
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FIG. 3.31. Plot of calculated gain coefficient vs emission wavelenght, at N = 3 x 10'8 cm™ electron injection, for
a Gag 47Ing 53 As bulk semiconductor and for Gag 47Ing 53As/InP 10 nm quantum well, 10 nm X 10 nm quantum wire
and 10nm x 10nm x 10nm quantum dot. (after ref.('”) by permission).
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quantum quantum
wire box

(a) (b)

FIC. 3.32. Planar array of multiple quantum wires, (a), and multiple quantum dots, (b).

3.5. CONCLUDING REMARKS

In this chapter, as compared to the previous one, we have progressed from the simple
case of atoms to the more complicated cases of molecules and semiconductors and have ana-
lyzed these in some detail. As our discussion showed, a physical understanding of the optical
properties of these materials requires a rather detailed description of their physical behavior.
In doing this we have limited ourselves to the most elementary aspects. From a phenomeno-
logical viewpoint, however, as we shall see in Chaps. 7 and 8, only a few physical parameters
are needed to predict laser behaviour, namely: (1) The wavelengths and bandwidths of the
gain transitions. (2) The transition cross section or, for a semiconductor, the differential gain
and the transparency density. (3) The lifetime of the upper state or, for a semiconductor, the
electron-hole recombination time. These are in fact the most important physical parameters to
come out of the present as well as of the previous chapter.

PROBLEMS

3.1. Show that the vibrational frequency of a homonuclear diatomic molecules is v = (1/27)
(2ko / M)l/ 2 where M is the mass of each atom and kg is the constant of the elastic restoring
force.

3.2. The vibrational frequency of a N molecule is about ¥ = 2,360 cm™!. Calculate the value of the
elastic constant kp. Then calculate the potential energy for a nuclear distance away from equilib-
rium of R— Ry = 0.3 A.(Compare this energy with that shown in Chap. 10 for the potential energy
curve of a N molecule).

3.3. The equilibrium internuclear distance of a Ny molecule is Ry = 0.11 nm. Calculate the rotational
constant, B, the transition frequency and corresponding transition wavelength for the / = 0 —
J = 1 rotational transition.

3.4. Using the result obtained from the previous problem for the rotational constant, B, of the Ny
molecule, calculate the frequency separation between two consecutive lines of the P-branch of the
v” = 0 — v’ = 1 transition. Also calculate the quantum number of the most populated rotational
level of the v” = O state.
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3.5.

3.6.

3.7.
3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

The rotational constant of a CO, molecule in its 00°1 vibrational level is B = 0.37 cm™!. Assum-
ing the same value for the rotational constant of the 10°0 level, calculate the P-branch and
R-branch spectrum at T = 450K of the 00°1 — 10°0 transition [remember that only rotational
levels of the 00° 1 upper state of even J number can partecipate in the transition].

Assuming that the rotational constant of the ground vibrational state of a CO, molecule is B =
0.37cm™!, i.e. itis equal to that of the (00°1) state, calculate the equilibrium distance Ry between
the carbon and oxygen atoms.

From the condition f, (E/ 2) > £ (E’ 1) prove the Bernard-Duraffourg relation E'r, — E'p, > hv.

With the help of Fig. 3.15b calculate for GaAs: (a) The values of Er, and Ef, at N = 1.6 X
10'8 cm™3 carrier injection. (a) The overall gain bandwidth at the same injection.

In the energy reference system of Fig. 3.9a calculate, for GaAs, the energies, E> and Ej, of the
upper and lower laser levels for a transition energy exceeding the bandgap energy by 0.45 k7.

For a bulk GaAs semiconductor, with the help of Fig. 3.16, calculate the expected gain at a photon
energy exceeding the badgap energy by 0.45 kT and for a carrier injection of N = 1.6x 108 cm ™3,

Assuming that the peak gain in a bulk GaAs semiconductor at a carrier injection N = 1.6 x
10'8 cm™3 occurs at a photon energy exceeding the gap energy by 0.45 kT and using some of the
results obtained in problems 3.9, 3.10 and 3.11, calculate the differential gain o = doig/dN.

With the help of Fig. 3.15a, plot on the same figure the quantities Er, /kT, Er,/kT, and
(EFC + EFV) /kT vs the concentration, N, of electrons and holes for bulk InGaAsP at A =
1,300 nm. From these plots then calculate the transparency density N, and, from a compari-
son of this figure with Fig. 3.15b, explain why N, is, in this case, somewhat smaller than in the
GaAs case. From the same plots calculate also the overall gain bandwidth and the values of Ef,
and Er, at N = 1.6 x 10'8 cm™3 carrier injection. On assuming that the maximum gain occurs at
an energy of AE = 0.65 kT above band gap energy, calculate the corresponding wavelength.

For a 10 nm GaAs quantum well calculate from Fig. 3.26 the overall bandwidth of the gain curve
and the values of the quasi-Fermi levels for an injected carrier density of N = 2 x 108 cm™3. In
the (E-E,) reference axis of Fig. 3.27 find the energy interval in which positive gain occurs.

Calculate how the first step of Fig. 3.27 at (E-E;) = 65 meV needs to be modified if a Lorentzian
lineshape with a dephasing time 7, = 0.1 ps is assumed for each transition from an upper level in
the first conduction subband to a lower level in the first valence subband.

References

1. G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Company, Princeton NJ, 1950).

2. G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules,
(D. Van Nostrand Company, Princeton NJ, 1968), p. 122, Fig. 51.

3. G.B. Agrawal and N.K. Dutta, Long Wavelength Semiconductor Lasers (Chapman and Hall, New York, 1986).
4. C. Kittel, Introduction to Solid State Physics, 6th Ed. (Wiley, New York, 1986)

5. R.H. Yan, S.W. Corzine, L.A. Coldren, and I Suemune, Correction for the Expression for Gain in GaAs, IEEE J.
Quantum Electron QE-26, 213-216 (1990).

6. M.G. Bernard and G. Duraffourg, Laser Conditions in Semiconductors, Phys. Status Solidi 1, 699 (1961).
7. Ref. [3] Chap. 3

129



130

19.

20.

3 e Energy Levels, Radiative and Nonradiative Transitions

. S.W. Corzine, R.H. Yan, and L.A. Coldren, Optical Gain in III-V Bulk and Quantum well Semiconductors, In:

Quantum Well Lasers ed. by P.S. Zory (Academic, San Diego, CA, 1993) Chap. 1.

. G.H.B. Thompson, Physics of Semiconductor Lasers Devices (Wiley, New York, 1980) sect. 2.5.2.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Ref. [9] sect. 2.4.2.

Ref. [8] Fig. 2.14.

Ref. [3] sect. 3.3.

Ref. [8] sect. 3.1.

Ref. [3] Chap. 9.

A. Yariv, Quantum Electronics third ed. (Wiley, New York, 1989) sect. 11.2

Ref. [8], sect. 4.1.

Ref. [8] Fig. 6.

E. Kapon, Quantum Wire Semiconductor Lasers, In: Quantum Well Lasers, ed. by P.S. Zory (Academic, San
Diego, CA, 1983) Chap. 10.

M. Asada, Y. Miyamoto, and Y. Suematsu, Gain and Threshold of Three-Dimensional Quantum-Box Lasers,
IEEE J. Quantum Electron QE-22, 1915-1921 (1986).

P.K. Cheo, CO; Lasers, In: Lasers Vol. 3, Eds. A.K. Levine and A. DeMaria (Marcel Dekker, New York, 1971).



4

Ray and Wave Propagation
Through Optical Media

4.1. INTRODUCTION

Before beginning a detailed discussion on optical resonators, which is to be the subject
of the next Chapter, we introduce in this Chapter a few topics from geometrical and wave
optics. The aim is to introduce some subjects that are not usually covered in elementary optics
texts and that constitute a very useful background for the topics to be considered in next
chapter. Thus, in particular, the matrix formulation of geometrical optics within the paraxial-
ray approximation and wave propagation within the paraxial-wave approximation, leading to
the ideas of Gaussian beam propagation, will be discussed here. Situations involving multiple
interference such as in a multilayer dielectric coating or in a Fabry-Perot interferometer will
also be considered.

4.2. MATRIX FORMULATION OF GEOMETRICAL OPTICS®™

Consider a ray of light that is either transmitted by or reflected from an optical element
which has reciprocal and polarization-independent behavior (e.g. a lens or a mirror). Let z be
the optical axis of this element (e.g. the line passing through the centers of curvature of the
two spherical surfaces of the lens). Assume that the ray is traveling approximately along the z
direction in a plane containing the optical axis. The ray vector r; at a given input plane z =z;
of the optical element (Fig. 4.1) can be characterized by two parameters, namely, its radial
displacement r(z;) from the z axis and its angular displacement 6;. Likewise, the ray-vector
r, at a given output plane z =z can be characterized by its radial, 72(z2), and angular 6,
displacements. Note that the r-axis is taken to be the same for both input and output rays
and oriented as in Fig. 4.1. The sign convention for the angles is that the angle is positive if

O. Svelto, Principles of Lasers, 131
DOI: 10.1007/978-1-4419-1302-9_4, (© Springer Science+Business Media LLC 2010
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91 — . . F; OZ
A}"tﬁ "2 \ }

i

z, optical z,
element

FIG. 4.1. Matrix formulation for the propagation of a ray through a general optical element.

the r-vector must be rotated clockwise to make it coincide with the positive direction of the
z-axis. Thus, for example, 6, is positive while 6, is negative in Fig. 4.1.

Within the paraxial-ray approximation the angular displacements 6 are assumed to be
small enough to allow the approximation to be made, sinf = tanf == 6. In this case the
output, (r2, 6,), and input, (r;, 6;) variables are related by a linear transformation. If we
therefore put 6, = (dr/dz1),, =r| and 6, = (dr,/dz)., = r) we can write

ry = Ary + Br} (4.2.12)
ry = Cri + Dr} (4.2.1b)

where A, B, C, and D are constants characteristic of the given optical element. In a matrix
formulation it is therefore natural to write (4.2.1) as

) r

4.2.2)

| A B
1 c D

rh r
where the ABCD matrix completely characterizes the given optical element within the paraxial
ray approximation.

As a first and simplest example we will consider the free-space propagation of a ray
along a length Az = L of a material with refractive index n (Fig. 4.2a). If the input and output
planes lie just outside the medium, in a medium of refractive index equal to unity, we have,
using Snell’s law in the paraxial approximation

rp=r +Lr/n (4.2.3a)
’=r (4.2.3b)

and the corresponding ABCD matrix is therefore

(4.2.4)

1 L/n
o "

As a next example we consider ray propagation through a lens of focal length f (f is
taken to be positive for a converging lens). For a thin lens we obviously have (Fig. 4.2b).

rn=r (4.2.5a)
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FIG. 4.2. Calculation of the ABCD matrix for: (a) free-space propagation, (b) propagation through a thin lens, (c)
reflection from a spherical mirror.

The second relation is obtained from the well-known law of geometrical optics, viz., (1/p) +
(I1/q) = (1/f), and using the fact that p=r/r} and g = — r»/r}. By also using Eq. (4.2.5a)
we get

ry=—1/f)r +7 (4.2.5b)

According to Egs. (4.2.5) the ABCD matrix is, in this case,
1 0
4.2.6
i 0 (20
As a third example we consider reflection of a ray by a spherical mirror of radius of
curvature R (R is taken to be positive for a concave mirror). In this case the z; and z, planes
are taken to be coincident and to be placed just in front of the mirror and the positive direction
of the r-axis is taken to be the same for incident and reflected rays (Fig. 4.2¢c). The positive
direction of the z axis is taken to be that from left to right for the incident vector and from
right to left for the reflected vector. The angle for the incident ray is positive if the r; vector
must be rotated clockwise to make it coincide with the positive z; direction while the angle for
the reflected ray is positive if the r,-vector must be rotated anticlockwise to make it coincide
with the positive z, rection of the z-axis. Thus, for example, r/1 is positive while ré is negative
in Fig. 4.2c. Given these conventions, the ray matrix of a concave mirror of curvature R and,
hence, focal length f = R/2 can be shown to become identical to that of a positive lens of
focal length f = R/2. The ray matrix is therefore equal to
1 0
4.2.7
|2 1] 427)
In Table 4.1 we have collected together the ray matrices for the optical elements consid-
ered so far as well as for a spherical dielectric interface. We draw attention to the fact that the
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TABLE 4.1. Ray matrices for some common cases

n,=1 ny=n ng=1 - -
1 L
Free space n
propagation Z 0 1
z, z, L .
1 0
Thin lens .
A 1
f
L J
- .
Spherical 1 0
mirror -2 1
R
Spherical 1 0
dielectric
interface n-ng 1 Ny
n, R N,
i ! |
| | | P
! |7 —
| i
. e !
r | |
)': | |
| ! !
1 |
! | | z
! [
z2=2Z, zZ2=-2Z; zZ=Z

FIG. 4.3. Ray propagation through three distinct planes when the two matrices between planes z =z and z = z; and
between z = z; and z = z» are known.

determinant of the ABCD matrix is unitary i.e.
AD—-BC =1 (4.2.8)

provided that the input and output planes lye in media of the same refractive index. In fact,
this situation holds for the first three cases considered in the table.

Once the matrices of the elementary optical elements are known, one can readily obtain
the overall matrix of a more complex optical element by subdividing it into these elementary
components. Suppose in fact that, within a given optical element, we can consider an interme-
diate plane of coordinate z; (Fig. 4.3) such that the two ABCD matrices between planes z = z;
and z = z; and planes z = z; and z = z, are known. If we now call r; and rlf the coordinates of
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the ray vector at plane z = z;, we can obviously write

r; A B r
= 4.2.9
‘ r ‘ ‘ C, D ’ r ‘ *:29
r A B r;
= 4.2.10
‘ r ‘ ‘ G Dy || r ‘ ( )

If Eq. (4.2.9) is substituted for the vector r; on the right-hand side of Eq. (4.2.10) we obtain

r 1

4.2.11)

| Ay B
| G Dy

A1 B
Ci D

rh r
The overall ABCD matrix can thus be obtained by the multiplication of the ABCD matrices of
the elementary components. Note that the order in which the matrices appear in the product
is the opposite to the order in which the corresponding optical elements are traversed by the
light ray.

As a first and perhaps somewhat trivial example of using the above result, we will con-
sider free-space propagation through a length L; followed again by free-space propagation
through a second length L,, in a medium with refractive index n. According to Eq. (4.2.4) the
overall matrix equation can be written as

r

r

r

r)

_1L2/n
101

1 Ll/}’l
0 1

(4.2.12)

Using well-known rules of matrix multiplication it can readily be shown that the product of
the two square matrices gives an overall matrix
‘ (1) (L +1L2)/ " (4.2.13)

This calculation confirms the obvious result that the overall propagation is equivalent to a
free-space propagation over a total length L=L; + L,.
As aless trivial and more useful example, we will consider free propagation over a length
L (in a medium with refractive index n = 1) followed by reflection from a mirror of radius
of curvature R. According to Eqgs. (4.2.4), (4.2.7), and (4.2.11) the overall ABCD matrix is
given by
A B 1 0 1 L 1 L
& o 1=l —em o TI=|em 1-aum @219
Note that the determinant of the matrix of Eq. (4.2.13) as well as that of Eq. (4.2.14) are
again unitary, and this result holds for any arbitrary cascade of optical elements since the
determinant of a matrix product is the product of the determinants.

We now address the question of finding the ray-matrix elements A’, B', C’, D’ for reverse
propagation through an optical system, in terms of the given matrix elements A,B,C,D for
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forward propagation. So, referring to Fig. 4.1, one can see that if we take —r, as the input
vector, i.e. if we reverse the propagation direction of the r, vector, then the output vector must
be —r,. For backward propagation we take the same sign conventions as those used for the ray
reflected from a spherical mirror (Fig. 4.2c) namely: (a) The z-axis is reversed while the r-axis
remains unchanged. (b) The angle between the r-vector and the z-axis is positive if the r-vector
be must rotated anticlockwise to coincide with the z-axis. Given these conventions, it is seen
that the rays —r; and —r, are described by coordinates (r, —r}) and (r,, —r}), respectively.
Thus one must have

r
c D

‘A’ B

’ 2 ’ (4.2.15)

J J
- -

From Eq. (4.2.15) we can obtain r» and r} as a function of r; and r}. Since the determinant of
the A’B’C’'D’ matrix is also unitary, we get

rp=D'r; + B'r| (4.2.16a)

r; =C'ry +A/r’1 (4.2.16b)

A comparison of Egs. (4.2.16) with Egs. (4.2.1) then shows that A’=D, B'=B, C'=C, and
D’ = A so that the overall A’'B'C’D’ matrix is
A B

‘ o (4.2.17)

| D B
-l
Equation (4.2.17) then shows that the matrix for backward propagation is obtained from that
of forward propagation by simply interchanging the matrix elements A and D.

The matrix formulation is not only useful to describe the behavior of a ray as it passes
through an optical system, but it can also be used to describe the propagation of a spherical
wave. Consider in fact a spherical wave originating from point P; of Fig. 4.4 and propagating
along the positive z direction. After traversing an optical element described by a given ABCD
matrix, this wave will be transformed into a new spherical wave whose center is the point P;.
Consider now two conjugate rays r; and r;, of the two waves, which means that the optical
element transforms the incident (or input) ray r; into the output ray r,. The radii of curvature
R, and R, of the two waves at the input plane, z;, and output plane, z,, of the optical element
are readily obtained as

Ry =r/r] (4.2.18a)
R2 = rz/r’z (4218b)

1 !
n r2 "2
R

Optical Element

N0
N

z, Z2

FIG. 4.4. Propagation of a spherical wave emitted from point P; through a general optical element described by a
given ABCD matrix.
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FIG. 4.5. Propagation of a spherical wave: (a) through free space; (b) through a thin lens.

Note that in (4.2.18) we have used the sign convention that R is positive if the center of
curvature is to the left of the wave front. From Eqs. (4.2.1) and (4.2.18) we get

AR +B

_Aki+ b (4.2.19)
CR, + D

2
Equation (4.2.19) is a very important result since it relates, in simple terms, the radius
of curvature, R;, of the output wave to the radius of curvature, R, of the input wave via the
ABCD matrix elements of the given optical component.
As a first and elementary example using this result, consider the free-space propagation
of a spherical wave between points having coordinates z; and z; in Fig. 4.5a. From Eq. (4.2.4),
with n=1 and L=z, — z;, and Eq. (4.2.19) we get R, =R + (z2 — z1) which of course
is an obvious result. Consider next the propagation of a spherical wave through a thin lens
(Fig. 4.5b). From Egs. (4.2.6) and (4.2.19) we get

1 1 1
11 (4.2.20)
R, R f

which is simply the familiar law of geometrical optics p~' + ¢! =f~1.

Although the two examples of Fig. 4.5 are both rather elementary applications of
Eq. (4.2.19), the usefulness of this equation can really be appreciated when dealing with a
more complicated optical system made up, e.g., of a sequence of lenses and spaces between
them. In this case, the overall ABCD matrix will be given by the product of the matrices of
each optical component and the radius of curvature of the output wave will again be given by
Eq. (4.2.19).

4.3. WAVE REFLECTION AND TRANSMISSION AT A DIELECTRIC
INTERFACE®

Consider a wave which is incident on the plane interface between two media of refractive
indices n| and n,. If the wave is initially in the medium of refractive index n; and it is normally
incident on the surface, the electric field reflectivity is

rip = (m1 —n2) / (m + na) (4.3.1)
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while the field transmission is
te =2n/ (n + o) (4.3.2)

Note that, if n; < ny, one has rj; <0 and this means that the reflected field has a 7 phase-shift
compared to the incident field. Of course, if n; > n, one has rj, > 0 and there is no phase-shift
upon reflection. One can also observe that, according to Eq. (4.3.2), one always has #;, >0
i.e. there is no phase-shift upon transmission.

For non-normal incidence, the expressions for electric field reflectivity and transmission
are more complicated and depend also on the field polarization. As a representative example
Fig. 4.6 shows the plots of the intensity reflectivity, or reflectance, R = (r12)? vs the incidence
angle 6 for a p-polarized wave (E-field in the plane of incidence) and a s-polarized wave
(E-field orthogonal to the plane of incidence), and for n; = 1 and n, = 1.52. One can see that,
for 6 =0, the two reflectances are obviously equal and, according to Eq. (4.3.1), have the
value R =4.26%. One also notices that, for a p-polarized wave, there is a particular angle
(6 = 56.7° in the figure) at which R = 0. The situation occurring in this case can be described
with the help of Fig. 4.7. Suppose that the incidence angle 65 is such that the refracted beam
is orthogonal to the direction of the reflected beam. The E field in the optical material and
hence its polarization vector will therefore be parallel to the direction of reflection. Since the
reflected beam may be considered to be produced by radiation emitted by the polarization
vector of the medium where refraction occurs, this reflected beam will in this case be zero
since an electric dipole does not radiate along its own direction. A straightforward calculation
based on geometrical optics can now give the value of the incidence angle 6, which is called
the Brewster angle or polarizing angle. According to the previous discussion we have

0} + 0 = 7/2 (4.3.3)

0.6 s-polarization

0.4

0.2

1 |
0 20 40 60 80

0 [degree]

FIG. 4.6. Power reflectivity, R, vs angle of incidence, 6, at an interface between air and a medium of refractive
index n = 1.5. The two curves refer to the cases of E-field polarization in the plane of incidence (p-polarization) and
orthogonal to this plane (s-polarization).
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FIG. 4.7. Reflected and refracted beams for incidence at Brewster’s angle: (a) incidence from the less dense medium;
(b) incidence from the more dense medium.

where 6y is the angle of the refracted beam. From Snell’s law we also have
nsin 6y = sin O (4.3.4)

Since according to Eq. (4.3.3) one has sin 8 = cos 6, from Eq. (4.3.4) we get the following
expression for the Brewster angle:

tanfp = n 4.3.5)

Note that, if the direction of the rays is reversed (Fig. 4.7), the reflected beam will again
be zero since the refracted and reflected beams are again orthogonal. So, if a plane parallel
plate of a given optical material is inserted at Brewster’s angle into a beam polarized in the
plane of the figure, no reflection will occur at the two surfaces of the plate. Let us now assume
that a plane parallel plate of e.g. refractive index n = 1.52 is inserted, at the Brewster angle,
within an optical cavity. According to Fig. 4.6, the reflectance of an s-polarized beam at each
of the two interfaces will be R = 15%. Thus, an s-polarized beam would suffer around 30%
loss, due to the reflection at the two interfaces. If the laser gain per pass is smaller than 30%,
the s-polarization will not oscillate and the laser beam will be found to be linearly polarized
in the plane of incidence to the plate.

4.4. MULTILAYER DIELECTRIC COATINGSG#

The mirror surfaces, used as high-reflectivity laser mirrors or beam splitters, are com-
monly fabricated by the technique of deposition of a multilayer dielectric stack on the optical
surface, plane or curved, of a substrate material, such as glass. The same technique can also
be used to greatly reduce the surface reflectivity of optical components (antireflection coating)
or to produce optical elements such as interference filters or polarizers. The coating is usually
produced in a vacuum chamber by evaporation of the required dielectric materials, which then
condense in a layer on the substrate. The widespread use of multilayer dielectric coatings for
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laser optical components arises from the fact that the layers are made of transparent materi-
als and can thus withstand the high intensity of a laser beam. This is to be contrasted to the
behavior of thin metal layers (of, e.g., Ag or Au), also produced by vacuum deposition and
often used for conventional optical components. In fact, metals and metal layers have a large
absorption (5 <+ 10%) in the near-infrared to the ultraviolet region and they are not communly
used as materials for laser mirrors. It should be noted however that absorption losses, for
these materials, are much less in the middle to far infrared, e.g., at the 10.6-um wavelength
of a CO; laser. Thus, high-reflectivity gold-coated copper mirrors or, more simply, polished
copper mirrors are often used in this wavelength range.

Consider an optical substrate, such as glass, coated with a number of layers having alter-
nately high, ny, and low, ny, refractive indices compared to that, ny, of the substrate. If the
thickness of the layers Iy and [, are such that ny Iy =ny I} = Ao/4 where Ay is a specified
wavelength, the electric field reflections at all layer interfaces, for an incident beam of wave-
length A = A, will add in phase. Consider, for instance, the two interfaces of a high-index
layer (Fig. 4.8a). According to Eq. (4.3.1), the electric field reflectivity at the low-to-high
index interface has a negative sign and the electric field undergoes a phase shift of ¢; =x
upon reflection. Conversely, the reflectivity at the high-to-low index interface is positive and
no phase shift of the reflected wave will occur there. If now the optical thickness, ny Iy, of
the layer is equal to A¢/4, the phase shift after the round trip in the high refractive index layer
will be ¢y = 2kiy = (47tny /L)l = 7. This means that the two reflected waves have the same
phase and the corresponding fields will add. One can easily show that the same conclusion
applies for the two interfaces of a low-index layer. It then follows that all reflected beams in a
multilayer dielectric coating, as well as their multiple reflections, add in phase. If therefore a
sufficient number of (A/4) layers of alternating low and high indices are deposited, the overall
reflectivity, due to all of the multiple reflections, can reach a very high value. If the multilayer
stack starts and ends with a high-index layer, so that there is an odd number, J, of layers, the
resulting power reflectivity (at A = A¢) turns out to be

2
JH1_ g1
R(Ao) = (w) (4.4.1)

J+1 J—1
ny  +np ong

IH:)\O/‘QH !L= )\O/Ln
= nelnyl N, ¢, n=1ln | ng
< P —
incident ~ N
beam v A
¢)2 = ¢2 =<7
Zle:TT 2k£L:2T[

(a) (b)

FIC. 4.8. (a) First two reflections at the two interfaces of a high index layer in a multilayer dielectric coating. (b) First
two reflections at the two interfaces of a low index layer in a single layer antireflection coating. Multiple reflections
also occur [see e.g. the case of a Fabry-Perot interferometer], but are not shown in the figures.



4.4 e Multilayer Dielectric Coatings
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FIG. 4.9. Reflectivity versus wavelength curves of a /4 multilayer dielectric stack made of TiO, and SiO; for a
total number of layer of 3, dashed curved, and 15, continuous curve (substrate material BK7-glass).

If the wavelength A of the incident
wave is different from Ag, the reflectivity
will of course be lower than the value given
by Eq. (4.4.1). As representative examples,
Fig. 4.17 shows curves of reflectivity ver-
sus wavelength for /=15 and J=3. One
notices that the peak reflectivity value obvi-
ously increases with the number of layers and
that the high reflectivity region gets wider
and has steeper edges as the number of layers
is increased. One can also observe that, for
the high reflectivity curve, high reflectivity is

maintained over a wavelength range AL = A —
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n)]? = 4.9%.

Example 4.1. Peak reflectivity calculation in multilayer
dielectric coatings. We will consider TiO, and SiO;
for the high and low index materials, respectively. At
the Nd:YAG laser wavelength of 1y = 1.06 um, one has
ny = 2.28 and n, = 1.45. Taking BK-7 glass as substrate
material one has n; = 1.54. From Eq. (4.4.1) we obtain
R =~ 61.8% for J =3 and R =99.8% for J = 15. We also
note that, the reflectance at a single interface, accord-
ing to Eq. (4.3.1) is, in our example, [(ng — ny)/(ng +

Ao = £(10%) .

To reduce the reflectivity of a given optical surface, a single layer coating of a material
with refractive index lower than that of the substrate can be used. As one can easily see from
Fig. 4.8b, since n; < ng, the first two reflections now have opposite phases if ny.l;, = Ao/4. The
overall reflectivity is thus reduced and, after taking account of all multiple reflections, one can

show that the reflectivity at A = A is given by

R =[(n=n}) / (ns +n})]

(4.4.2)

From this one notes that zero reflection would be obtained when n; = (n,)'/2, a condition
which is difficult to achieve, in practice, due to the limited number of available materials with

low enough refractive index.
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Example 4.2. Single layer antireflection coating of laser materials. Consider a BK-7 glass substrate for
which, at A = 1.06 um one has n; = 1.54. To achieve zero reflectivity with a single layer, the refractive
index of the layer material should be n; = [n,]'/> = 1.24. The lowest refractive index material available
as a stable film is provided by MgF, (Fluorite) with n; = 1.38. From Eq. (4.4.2) we get R =~ 1.1% which,
although not zero, is still significantly smaller than the reflectivity of the bare surface, which, according
to Eq. (4.3.1), is given by R = [(n, — 1) /(ns + 1)]*> = 4.5%. Fluorite is a rather soft material, however, and
it can easily be scratched. Consider next a Nd:YAG rod (n, = 1.82) and consider a A/4 layer of SiO;, a
rather hard and durable material (n, = 1.45), for antireflection coating. From Eq. (4.4.2) we get in this
case R =3.4% which while far from perfect is significantly less than the reflectivity of the bare surface
(R = 8.5%). One notes that Fluorite would provide an almost perfect match, in this case, the reflectivity
according to Eq. (4.4.2) being reduced to R =~ 4 x 107*.

The minimum reflectivity value given by Eq. (4.4.2) applies, of course, for A = A¢y. The
width of the low reflectivity region, for a single layer coating, is however very large. For exam-
ple, if Ay corresponds to the center of the visible range, the reflectivity is reduced below that
of the bare surface for the whole visible range. Quite often, for laser applications, even lower
reflectivities than those considered in example 4.2 may be required (down to perhaps 0.1%).
This can be achieved using more than one layer in the antireflection coating. A coating consist-
ing of two, A /4, layers of low and high refractive index material, with the sequence n;/n;/ngy,
is often used for glass. A very hard and durable two-layer coating, which is often used is
ZrO; (ny =2.1)-MgF, (n;, = 1.38). The region of low reflectivity is reduced, for this type of
coating, with the reflectivity versus wavelength curve having a sharp, V-shaped, minimum.
Such a coating is commonly referred to as a V-coating.

4.5. THE FABRY-PEROT INTERFEROMETER®

We now go on to consider a second example of multiple interference, the case of a
Fabry-Perot (FP) interferometer. This interferometer, a common spectroscopic tool since its
introduction in 1899, plays a very important role in laser physics for at least three different
reasons: (1) On a fundamental level its physical behavior forms a basis to the behavior of
optical resonators. (2) It is often used as a frequency selective element in a laser cavity. (3) It
is often used as a spectrometer for analyzing the spectrum of the light emitted by a laser.

4.5.1. Properties of a Fabry-Perot Interferometer

The FP interferometer consists of two plane or spherical mirrors with power reflectivities
R and R, separated by a distance L and containing a medium of refractive index n,. Although,
for the ultimate performance, interferometers make use of spherical mirrors, we will, for
simplicity, consider here the case of two plane and parallel mirrors. In this case, consider a
plane wave of frequency v incident on the interferometer in a direction making an angle 6’
with the normal to the two mirrors (Fig. 4.10). This wave is indicated schematically by the ray
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FIG. 4.70. Multiple-beam interference in a Fabry-Perot interferometer.

0 in Fig. 4.10. The output beam, leaving the interferometer, will consist of the superposition
of the beam resulting from a single pass through the two mirrors (ray 1 in Fig. 4.10) with the
beams arising from all multiple reflections, two of which are indicated by rays 2 and 3 in the
figure. Thus, the electric field amplitude of the output beam E; is obtained by summing the
amplitudes E; of all these beams, taking proper account of their corresponding phase-shifts.
To illustrate this, the electric fields of the first three beams are also indicated in the figure. If
all multiple reflections are taken into account, we get

E =) iE = [Eotizexp(j$')] D u(rirs)" exp(2mjg) 4.5.1)
i 0

In both Eq. (4.5.1) and Fig. 4.10, Ej is the amplitude of the beam incident on the interfer-
ometer; t; and #, are the electric field transmissions of the two mirrors and r; and r, are the cor-
responding electric field reflectivities; ¢’ is the phase shift for a single pass and it also includes
any phase shift due to passage through the two mirrors; 2¢ is the phase difference between
successive multiple reflections and is given by 2¢ = kL; = 2kL cos 6 = (47tn,v/c)Lcos 9,
where L, is the sum of the lengths of the two segments AB and BC of Fig. 4.10, and where
the angle 6 is related to the incidence angle 6’ by Snell’s law (7, sin & = sin ”). Note that the
previous expression can, for simplicity, be transformed to

¢ =2nLl'v/c (4.5.2)

where
L' =n.Lcosf (4.5.3)

The geometrical series appearing in Eq. (4.5.1) can be readily summed to give

) 515
E, = Eyé&? 454
R T ) exp(2i9) @9

The power transmission Trp of the Fabry-Perot interferometer is simply given by
Trp = |E;|*/|Eo|? and from Eq. (4.5.4) we get

2
_ 15
1 —2r1ryco8(29) + r3r3

Trp (4.5.5)
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FIC. 4.11. Intensity transmission of a Fabry-Perot interferometer versus the frequency of the incident wave.

Since R; = r%, R, = r%, and, for a lossless mirror, t% = l—r% =1—R; and t% = l—rg =1—R,,
Eq. (4.5.5) transforms to

Top = (1-R)(1 —Ry) (4.5.6)

[1— (RiR)2]” + 4(RiR,)"/? sin® ¢

which is the final result of our calculation.

To illustrate the properties of the FP interferometer, Fig. 4.11 shows a plot of transmis-
sion T versus frequency of the incident wave for Ry = R, = 64%. This plot is obtained from
Eq. (4.5.6), with Eq. (4.5.2) used for ¢. One sees that the curve consists of a series of evenly
spaced maxima. These maxima occur when sin? ¢ = 0 in Eq. (4.5.2),i.e. when ¢ = m, where
m is a positive integer. With the help of Eq. (4.5.2) the frequencies v, of these maxima are
seen to be given by

v, = mc/2L 4.5.7)
The frequency difference between two consecutive maxima, for reasons which will become

clear at the end of this section, is called the free-spectral range of the interferometer, Avg,.
From Eq. (4.5.7) we immediately get

Avg, = ¢/2L (4.5.8)

At a transmission maximum one has sin ¢ = 0 and the value of the transmission is seen from
Eq. (4.5.6) to be

_ (=R)(1-Ry)

459
[1— (RiRy)?] (29

Note that if R; =R, =R then T},,,x = 1 irrespective of the value of the mirror reflectivity R.
This result only holds if the mirrors have no absorption, as assumed in our analysis here.
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The transmission minima occur when sin® ¢ =1, i.e., midway between maxima. The
transmission at this minimum point is obtained from Eq. (4.5.6) as

7. - A-R)A-Ry)

4.5.10
[1+ (RiR)'?] #210

Note that, under usual circumstances, the value of Ty, is very small (see example 4.3).

To calculate the width, Av., of a transmission peak, we notice that, according to
Eq. (4.5.6), the transmission will fall to '/, of its maximum value for a displacement
A¢ from the value ¢ = nm such that 4(RR,)"/?sin?> Ag = [1 — (RiR,)"/?]>. Assuming that
A¢ is much smaller than 7 we can make the approximation sin A¢p =~ A¢p, which gives
A¢ = =+ [I — (RiRy)"/?]/2[RiR;]"/*. This last equation shows that the two “half-intensity”
points, corresponding to A¢ and A¢_, are symmetrically situated at either side of the
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maximum. If we let Ap, = Ap;+ — Ap_, then we get

_ 1/2
AP, = % (4.5.11)
and, from (4.5.2)
Av, = i% (4.5.12)
We now define the “finesse,” F, of the interferometer as
F = Avg,/Av, (4.5.13)

From Eq. (4.5.8) and Eq. (4.5.12) we then get

7(RiRy)*

The finesse indicates how narrower the
transmission peak is compared to the free
spectral range: typically it is much greater
than 1.

The previous expressions and consid-
erations hold for perfectly lossless mir-
rors. For finite mirror absorbance we will
assume, for simplicity, the same reflectiv-
ity and the same transmission for the two

mirrors, i.e. we will take Ry =R, =R and £}

Example 4.3. Free-spectral range, finesse and transmis-
sion of a Fabry-Perot etalon. Consider a F-P interferometer
made of a piece of glass with two plane-parallel surfaces
coated for high reflectivity (often called a F-P etalon).
If we assume L=1cm and n, =1.54, the free-spectral
range for near normal incidence, ie. for 8 =~ 0, is
Avgg = ¢/2n,L =9.7 GHz. If we now take Ry = R, =0.98,
we get from Eq. (4.5.14) a finesse F =~ 150, so that
Av, = Avg,/F = 65 MHz. For a lossless coating, the peak
transmission, according to Eq. (4.5.9) is Tyyax = 1, while the
minimum transmission, from Eq. (4.5.10), is Tiin = 1074,
Note the very small value of Tpip.

= t% =T, where T is the mirror transmission.

From Eq. (4.5.5) one then readily gets that the transmission of the Fabry-Perot interferometer,

Trp, can now be written as

(1-R)?

Trp = ry
.

(1 —R)? + 4Rsin® ¢

(4.5.14a)
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Note tha T is now given by T=1 — R — A where A is the fraction of the incident power
absorbed by the mirror (mirror absorption). For finite absorption, one therefore has 7 < 1 — R.
The comparison of Eq. (4.5.14a) with Eq. (4.5.6), when R = R, = R, then shows that mirror
absorption reduces the overall transmission of the interferometer by a factor [(7/(1 — R)]>.

4.5.2. The Fabry-Perot Interferometer as a Spectrometer

After this general description of the properties of a FP interferometer we now describe its
use as a spectrum analyzer. We consider the simplest case where the direction of the incident
light is normal to the interferometer mirrors (i.e., cos @ = 1) and the medium inside the inter-
ferometer is air (n, = 1). We assume that the length L can be changed by a few wavelengths
by, e.g., attaching one of the two FP plates to a piezoelectric transducer (scanning FP interfer-
ometer). To understand what happens in this case let us first consider a monochromatic wave
at frequency v (wavelength A). According to the previous discussion, the transmitted light
will exhibit peaks when ¢ = m, i.e., when the interferometer length is equal to L =mA /2
(see Fig. 4.12a), where m is a positive integer. The change in L needed to shift from one
transmission peak to the next one is then

ALy, = A/2 (4.5.15)

The width of each transmission peak, AL, will be such that 27v/c,) AL, = A¢. where
Ag¢,. is given by Eq. (4.5.11). With the help of Eq. (4.5.14) we then get AL, = A/2F. We
therefore have

AL, = ALy, /F (4.5.16)

i.e. the analogous relation to Eq. (4.5.13).
Alg=4f2

AL,

ni/2 (n+1)3/2 L
a

()

FIG. 4.712. Intensity transmission of a scanning Fabry-Perot interferometer when the incident wave is: (a)
monochromatic, (b) made up of two, closely spaced, frequencies.
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We now consider the case where two waves at frequencies v and v + Av are incident
on the interferometer. The wave at frequency (v + Av) will produce a set of transmission
peaks displaced by a quantity AL from those corresponding to frequency v (Fig. 4.12b). Since
2mLv/c = nm, the displacement AL must be such that 2z (L + AL)(v + Av)/c=nn, i.e.
such that AL= — (Av/v)L. The two frequencies v and v + Av will be resolved by the
spectrometer if | AL| > AL,. The equality sign in this expression corresponds to the minimum
frequency interval Av,, which can be resolved, which gives (Av,,/v)L = AL.. With the help
of Eq. (4.5.16) and Eq. (4.5.15) we then get (Av,,/v)L=A/2F. Using Eq. (4.5.8) with L' =L
we obtain

Av,, = Avg, /F 4.5.17)
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Thus the finesse of the interferometer
specifies its resolving power in terms of the
free spectral range.

It must be noted that when |AL| = AL,
i.e. when Av = Avg, =c/2L, the transmis-
sion peaks at frequencies v + Av and v
will be coincident, although shifted by one
order relative to each other. Therefore, when
Av > Avg,, an ambiguity by a multiple of
Avg, occurs in the measurement of Av.
Thus, when using the interferometer to pro-
vide a measurement of frequency difference,
a simple and unambiguous result is only
obtained when Av < Avg,, which explains
why Avy, is called the free spectral range of
the interferometer. We can readily generalize
the above result and say that if Av,, is the
spectral bandwidth of the incident light, then
to avoid frequency ambiguity, we must have
Avoge < Avg,. If the equality is assumed to
hold in this relation, then from Eq. (4.5.17)
we get

Av, = Aveg/F

Example 4.4. Spectral measurement of an Ar™-laser
output beam. We will consider an Ar-ion laser oscillat-
ing on its green line at A =514.5nm wavelength. We
will assume the laser to be oscillating on many lon-
gitudinal modes encompassing the full Doppler width
of the laser line (Avj =3.5GHz). We will thus have
Avyee = Avy =3.5GHz. To avoid frequency ambiguity,
we must have Avg.=(c¢/2L) > 3.5GHz ie. L <
4.28cm. If we now assume a finesse F =150 and
take L =4.28cm, according to Eq. (4.5.18) we have,
for the interferometer resolution, Av, = Av,/F =
23 MHz. If, for example, the length of the laser cavity
is Ly = 1.5m, consecutive longitudinal modes are sep-
arated (see next Chapter) by Av=c¢/2L; =100 MHz.
Thus, since Av,, < Av, the FP interferometer is able to
resolve these longitudinal modes. One can also observe
that, since the frequency of the laser light is v =c¢/A =
5.83 x 10'* Hz, the corresponding resolving power of the
interferometer is v/ Av,, = 2.54 x 10. This is a very high
resolving power compared, e.g., to the best that can be
obtained with a grating spectrometer (v/Av < 10%).

(4.5.18)

Thus the finesse F also provides a measure of how finely we can discriminate frequencies

within the total spectral bandwidth Av,.

4.6. DIFFRACTION OPTICS IN THE PARAXIAL APPROXIMATION®

We shall consider a monochromatic wave under the so-called scalar approximation where
the e.m. fields are uniformly (e.g. linearly or circularly) polarized. The electric field of the
wave can then be described by a scalar quantity viz

E(x,y,z,1) = E(x,y,2) exp(j 1)

(4.6.1)
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where the complex amplitude E must satisfy the wave equation in scalar form i.e.
(V2 + ) E(x,y,2) =0 (4.6.2)

with k = w/c. An integral solution for the field amplitude can be obtained using the Fresnel-
Kirchoff integral. For a given field distribution E (x1,y1,21) in the z =z plane, the resulting
field distribution E(x, y, z), at a general plane at coordinate z along the propagation direction,
turns out to be given by

~ J ~ —(jk
By =3 [[ B S s an a, (463)

In Eq. (4.6.3) r is the distance between point P, of coordinates (x;,y;), and point P, of
coordinates (x, y), (see Fig. 4.13), 8 is the angle that the segment P, P makes with the normal
to the plane z = z;, the double integral is taken over the coordinates x;, y; in the z=z; plane,
and the limits are defined by some general aperture S located in the plane. One can see that
Eq. (4.6.3) is really the expression of the Huygens principle in mathematical form. Indeed
[E (x1,y1,21) dxldyl] [exp —(jkr)] /r represents the Huygens’ wavelet originating from the
elemental area dx;dy, around P; and the field at point P is obtained by summing the wavelets
coming from all points in the plane z=z;. The term cos 6 is the so-called obliquity factor,
the need for which was recognized by Fresnel. The (j/A) term in front of the integral is a
normalization factor which arises from a detailed treatment of the theory. It indicates that
the Huygens wavelets have a 7/2 phase-shift compared to the beam which is incident at
z=2z; plane.

We will now consider the E-field solutions either in differential [Eq. (4.6.2)] or integral
forms [Eq. (4.6.3)], within the paraxial wave approximation where the wave is assumed to be
propagating at a small angle, 6, to the z-direction. In this case we can write

E(x, v,2) = u(x,y,z) exp—(jkz) (4.6.4)

FIC. 4.13. Field calculation u(P) at plane z > z;, when the field profile u(P1), at plane z = z;, is known.
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where u is a slowly varying function, i.e., varying little on a wavelength scale, in z coordinate.
Under the paraxial approximation, the substitution of Eq. (4.6.4) into Eq. (4.6.2) gives

ou

VZiu—2jk
1u J e

=0 (4.6.5)
where V2 = (8%/9 x?) + (9*/0 y*). Equation (4.6.5) is the paraxial wave equation.

To obtain an approximate form of Eq. (4.6.3), under the paraxial wave approximation,
we write cosf = 1 and r =z — z; in the amplitude factor of the spherical wavelet. In con-
sidering approximation of the phase factor, —kr, we must be more careful, however. In fact,
consider, for instance, a distance r =~ 1 m and assume that this distance is evaluated with
an accuracy of Ar =1 pm. For the amplitude factor, this would give the very good relative
accuracy of Ar/r =107°. The phase accuracy, however, would be A¢p =kAr =27 Ar/A and
for A =1 um, it would give A¢ = 27, an unacceptable level of accuracy as, for example, a
phase change A¢ = & changes the sign of the entire phase term in the integral. Thus a better
accuracy is needed for the phase term in Eq. (4.6.3). To this purpose we write the distance r

between points Py and P of Fig. 4.13asr= [(z—21)* + (x —x1)* + (v — »1)?] "2 Under the
paraxial wave approximation one has [|x — x|, |y — y1|] < |z — z1|. We can therefore write

2 212
r=(z—2z) |:1+ & XI()Z +Z(;}2 il :|
-z
(4.6.6)
~ (-2 + (—x1)*+ =)’
- ! 2(z—z1)

The substitution of Eq. (4.6.6) into the phase term of Eq. (4.6.3) then gives

i  oxt—ik(z — i T
Eoy.2) :Jexi(zj_(ZZI) 21) //E(xl,yl,zl)exp—jk[(x xlz)(ztg) y1) }dxldyl

(4.6.7)

which is the Huygens-Fresnel-Kirchoff integral in the so-called Fresnel approximation. The
substitution of Eq. (4.6.4) into Eq. (4.6.7) then gives

. 2 2
. X—x1)) + Q-
u(x,y,z) = /\J—L //u(xl,yl,zl)exp —jk |:( ) 2L(y ) ]dxldyl (4.6.8)

where we have put L = z — z;. Equation (4.6.8) provides a solution for the E-field in inte-
gral form within the paraxial wave approximation while (4.6.5) gives the same solution in
differential form. It can be shown, however, that the two forms are completely equivalent.
We next consider wave propagation, within the paraxial approximation, through a general
optical system described by the ABCD matrix of sect. 4.2. With reference to Fig. 4.14, we let
u(x1,y1,z1) and u(x,y,z) be the field amplitudes at planes z=_z; and z =z just before and
after the optical system, respectively. We also assume that the Huygens principle applies to a
general optical system of Fig. 4.14 provided that no field-limiting apertures are present in the
optical system. This would for instance imply that any lens or mirror within the optical system
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FIC. 4.14. Field calculation, u(x,y, z), at plane z after an optical system described by the ABCD matrix, when the
field profile, u(x;,y1,z1) at plane z = z; is known.

has an “infinite” aperture i.e. an aperture much wider than the transverse dimensions of the
field*. According to this extension of the Huygens principle to a general optical system, the
field u(x,y, z) is obtained by the superposition of the individual wavelets emitted from plane
z=z; and transmitted through this system. One then obtains”

1 A +y})+D(F+y") —2xx—2
”(X,y,z) = ﬁ/[”(xl,)’l’zl)exp_jk[ (XI yl) (sz Y ) ki ] d'xldy]
(4.6.9)

which constitutes a generalization of Eq. (4.6.8). Obviously, for free space we have (see
Table 4.1) A= D =1 and B =L and Eq. (4.6.9) reduces to Eq. (4.6.8).

4.7. GAUSSIAN BEAMS

We now go on to discuss a very important class of E-field solutions, commonly called
Gaussian beams. The properties of these beams, in the paraxial wave approximation, could be
derived either via the paraxial wave equation Eq. (4.6.5) or via the Fresnel-Kirchoff integral in
the Fresnel approximation [see Egs. (4.6.8) and (4.6.9)]. We will follow the integral approach
since it proves to be more useful also for describing the properties of optical resonators, to be
discussed in the next Chapter.

4.7.1. Lowest-Order Mode

Consider a general optical system described by its corresponding (ABCD) matrix (see
Fig. 4.14). We may ask the following question: is there any solution of Eq. (4.6.9) that retains
its functional form as it propagates? In other words, is there any eigensolution of Eq. (4.6.9)?
An answer is readily obtained if we assume that there is no limiting aperture in the z =z,

* For “finite” apertures of the optical system, diffraction effects would be produced at these apertures thus sizeably
changing the transmitted field.
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plane so that the double integral of Eq. (4.6.9) can be taken between —oo and +oo for both
x1 and y; variables. In this case we can readily show by direct substitution in Eq. (4.6.9) that

u(x,y,z) o exp—jk [(x* +y%) /24] 4.7.1)

where ¢ =¢(z) is a complex parameter (often called the complex beam parameter of a
Gaussian beam), is an eigensolution of Eq. (4.6.9). If we write, in fact,

u(x1,y1,21) o exp—jk [(x] +7) /241] 4.7.2)
we get from Eq. (4.6.9)
1 24y
u(x,y,z) = —————— exp—jk 4.7.3)
R S 77 R
where ¢ is related to g; by the very simple law
A B
q= Lt (4.7.4)
Cq+D

Equation (4.7.4) is a very important relation, known as the ABCD law of Gaussian beam
propagation. It bears an obvious similarity to Eq. (4.2.19) which shows how the radius of
curvature of a spherical wave is transformed by an optical system. We will come back to this
equation in sect. 4.7.3. for a deeper discussion.

We now go on to discuss a physical interpretation of the Gaussian solution of Eq. (4.7.1).
For this we use Egs. (4.7.1) and (4.6.4) and write

2 2
rt+y } (4.7.5)

E « exp—jk [z+

Consider now a spherical wave with center at coordinates x =y =z=0. Its field at point
P(x, y, z) can be written as E o [exp—jk R] /R, where R is the wave’s radius of curva-
ture. Within the paraxial approximation, following a similar argument to that in Eq. (4.6.6),
we write

24y
R = 4.7.6
Y (4.7.6)
and the field of the spherical wave transforms to
. 2 4y?
E —jk 4.7.7
X exp—j [z + 7R } ( )

A comparison of Eq. (4.7.7) with Eq. (4.7.5) then shows that the Gaussian beam can be looked
upon as a spherical wave of complex radius of curvature, g. To understand the meaning of this
complex beam parameter we separate the real and imaginary part of 1/g, i.e. we write

1 1 oA
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FIG. 4.15. Field profile of, (a), the lowest order and, (b), next order Gaussian mode.

The substitution of Eq. (4.7.8) into Eq. (4.7.5) then gives

B 2 +y?
E(x,y,z) o< exp— Wzy x exp —jk [Z+

2 2
iy } (4.7.9)

2R

The amplitude factor on the right hand side of Eq. (4.7.9) i.e. up = exp —[(x* + y*)/w?]
is plotted in Fig. 4.15a vs r/w, where r = [x* + y*]'/? is the radial beam coordinate. One sees
that the maximum value is reached at » = 0 and that, for r = w, one has uy = 1/e. The quantity
w therefore defines the transverse scale of the beam and is called the beam spot size (at the
z-position considered). One can also notice that, since the beam intensity is given by I o |E|?,
we have I = Iy exp —[2(x* + y?)/w?]. If we define the spot size of the intensity profile, w;
as the value at which I = I, /e, we then have w; =w/ V2. Generally, when referring to a
beam spot size, it is the field spot size, w, that is implied rather than the intensity spot size.
Note that the intensity I reduces to 1/¢? of its maximum at a radial distance of one field’s
spot size. We now turn our attention to the phase factor in Eq. (4.7.9). A comparison with
Eq. (4.7.7), which applies to a spherical wave, shows that the two expressions are identical.
This leads us to identify R, in Eq. (4.7.8), as the radius of curvature of the spherical wavefront
of the Gaussian beam. To see this better, consider the equiphase surface of the Gaussian beam
which intercepts the z axis at a given position z’. The x,y, z coordinates of this surface must
then satisfy the relation kz + k(x> 4+ y?)/2R = kz/, which gives

z—z/—xz+y2
- 2R

(4.7.10)

Equation (4.7.10) thus shows that the equiphase surface is a paraboloid of revolution around
the z-axis. It can be shown further that the radius of curvature of this paraboloid at x =y =0,
i.e. on the beam axis, is just equal to R. This demonstrates rather clearly why, within the



4.7 e Gaussian Beams

paraxial wave approximation, the phase terms of the spherical wave, Eq. (4.7.7), and Gaussian
beam, Eq. (4.7.9), are the same.

4.7.2. Free Space Propagation

Consider the propagation of the Gaussian beam of Eq. (4.7.1) along the positive z-
direction without any restricting aperture in the x or y direction (i.e. in free-space). From
Eq. (4.7.4)withA=D =1 and B =z we get

qg=q +z (4.7.11)

Assume that at z = 0 one has R = oo. We then write
(1/q1) = —j (A/7wp) 4.7.12)

where wy is the spot size at z = 0. We now write Eq. (4.7.11) as (1/q) = 1/(q; + z), substitute
1/g from Eq. (4.7.8), and 1/¢; from Eq. (4.7.12), and separate the real and imaginary parts
of the resulting equation. After some straightforward algebraic manipulation one arrives at
the expressions for the spot size, w, and radius of curvature, R, of the equiphase surfaces, at
z-coordinate, as

2
WA(2) = Wl [1 n (%) } (4.7.132)
0
|: w2\’
Riz)=z|1+ (—0) (4.7.13b)
Az

From Egs. (4.7.3) and (4.7.12) we also write

1 xz—i-y2

1= (Az/nw%):|eXp " 2g

u(x,y,z) = [ (4.7.14)

The complex factor in brackets in Eq. (4.7.14) can now be expressed in terms of its
amplitude and phase. Using also the expression Eq. (4.7.8) for (1/¢), we get the expression
for the field amplitude as

2.2 2.2
u(x,y,z) = o exp—x +2 exp —jkx exp j o (4.7.15)
w w 2R
where
A
¢ = tan™! (—Zz) (4.7.15a)
W

Equation (4.7.15) together with the expression for w(z), R(z), and ¢(z) given by
Egs. (4.7.13) and (4.7.15a), solve our problem completely. One can see from Eq. (4.7.13)
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that w, R, and ¢ (and hence the field distribution) depend only on wy (for given A and z). This
can be readily understood when we notice that, once wy is known, the field distribution at
z=201s known. In fact we know its amplitude, since the field distribution is a Gaussian func-
tion with spot size wy, and its phase, since we have assumed R = oo for z = 0. Once the field at
z=201is known, the corresponding field at z > 0 is uniquely established as it can be calculated
by means, for instance, of the Fresnel-Kirchoff integral Eq. (4.6.8). Again using Eq. (4.7.11),
one can show that Eq. (4.7.13) holds also for negative z-values i.e. for forward propagation
toward rather than from the z = 0 plane. It should finally be noted that, if we define

=W/ A (4.7.16)

where zg is called the Rayleigh range (whose significance will be discussed later), Eq. (4.7.13)
can be put in the more suggestive form

w(2) = wi [1 + (z/z0)*] (4.7.172)
R() =z [1 + (zz/2)7] (4.7.17b)
$(z) = tan™" (z/zr) (4.7.17¢)

Equation (4.7.15) together with Eq. (4.7.17) are the final results of our calculations. One sees
that u(x, y, z) is made up of a the product of an amplitude factor, (wy/w) exp — [(x2 +3y%)/ wz],
with a transverse phase factor, exp —jk [(x2 +y%)/2 R], and a longitudinal phase factor exp i¢.
The physical meaning of these factors will now be discussed in some detail.

The amplitude factor in Eq. (4.7.15) shows that the beam, while propagating (both for
z> 0 and z < 0), retains its Gaussian shape but its spot size changes according to Eq. (4.7.17a).
One thus sees that w?(z) can be written as the sum of w? and (1z/ 7wo)?, a term arising from
beam diffraction. A plot of the normalized spot size, w/wy vs the normalized propagation
length, z/zg, is shown as a solid line in Fig. 4.16a for z > 0. For z < 0, the spot size is readily
obtained from the same figure since w(z) is a symmetric function of z. Thus the minimum spot
size occurs at z = 0 (hence referred to as the beam waist) and, for z = zg, one has w = V2wy.
The Rayleigh range is thus the distance from the beam waist to where the spot has increased

W/Wo R/ZR
AN 4
-
2+ ’/” 2
’,
-
/”XG
) P 0
0 1 2 z/z2q O 1 2 z/z4
(a) (b)

FIG. 4.16. Normalized values of the beam spot size, w, (a) and radius of curvature of the equiphase surface, R, (b),
vs normalized values of the propagation length, z.



4.7 e Gaussian Beams

[
I 1
\

i
M‘—
vy

FIG. 4.17. Beam profile, continuous curves, and equiphase surfaces, dashead curves, for a TEMgo Gaussian mode.
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by a factor /2. One can also observe that, for z — oo (i.e., for z > zg), one can write
w R wyz/g = Az /T wy (4.7.18)

Equation (4.7.18) is also plotted as dashed line in Fig. 4.16a. At large distances, w increases
linearly with z, hence one can define a beam divergence, due to diffraction, as ; = w/z and
thus get

Od = A/JT wo (4.7.19)

The physical reason for the presence of the quantity wo/w in the amplitude factor of
Eq. (4.7.15) is also readily understood when one observes that, since the medium is assumed
to be lossless, the total beam power must be the same at any plane z. This requires that
IS |u|*dxdy be independent of z. Now, it is just the presence of the quantity wy/w(z) that
ensures that this condition holds. In fact, using Eq. (4.7.15), we can write

+o00

+o00
/ |u|* dxdy = (w§/2) /_ exp (—&%) d¢ / exp (—n%) dn (4.7.20)

oo —00

where £ =+/2x/w and = +/2 y/w. By inspection, one can confirm that [ [ |ul*dxdy is
independent of z.

Let us now consider the transverse phase factor of Eq. (4.7.15). According to the discus-
sion of the previous section, it indicates that for z > 0 the beam acquires, due to propagation,
an approximately spherical wavefront with a radius of curvature R. A plot of the normalized
radius of curvature, R/zg vs the normalized variable, 7/zg, is shown in Fig. 4.16b for z > 0.
For z <0, the radius of curvature is readily obtained from the same figure since R(z) is an
antisymmetric function of z. One sees that R — oo for z =0, while R reaches its minimum
value for z = zg. For z > zz one has R & z and the equation R = z is also plotted as dashed line
in Fig. 4.16b. Thus the wavefront is plane at z =0 and, at large distances, increases linearly
with z, just as for a spherical wave, being plane again at z = =+ oco.

Lastly, we consider the longitudinal phase factor of Eq. (4.7.15). Using Eq. (4.6.4) one
sees that the Gaussian beam has, besides the phase shift —k z of a plane wave, an additional
term ¢ (z) which changes from —(7r/2) to (7r/2) on going from z < — zg to z>> zg.

The results of Fig. 4.16 can be put together in a suggestive form as in Fig. 4.17, where the
dimensions of the beam profile 2w(z), are shown as solid curves and the equiphase surfaces
as dashed lines. The beam is seen to have a minimum dimension in the form of a “waist” at
z=0. Therefore, the corresponding spot size, wy, is usually called the spot size at the beam
waist or waist spot size. It should also be noted that, according to the convention used for the
sign of wavefront curvature, since R > 0 for z> 0 and R <0 for z < 0, the center of curvature
is to the left of the wavefront for z > 0 and to the right of the wavefront for z <0.
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4.7.3. Gaussian Beams and the ABCD Law®

The propagation of a Gaussian beam through a general medium described by an ABCD
matrix is given by Eq. (4.7.3). The solution, for a given ABCD matrix, then depends only on
the complex beam parameter ¢ whose expression, in terms of the matrix elements, is given
by Eq. (4.7.4). This is a very important law of Gaussian beam propagation and it is often
referred to as the ABCD — law of Gaussian beams. Its usefulness was already proved for
the case of free-space propagation considered in the previous section. In this section we will
further illustrate the importance of this law in some other examples which are somewhat more
complex.

Example 4.5. Gaussian beam propagation through a thin lens. Consider a thin lens of focal length f.
According to Eq. (4.7.4), the complex beam parameters just before, g;, and just after the lens, ¢, are seen
to be related by

1 C+D/q)

=72 4.7.21)
q A+ (B/q1)
With the help of the matrix elements of a lens given in Table 4.1, we then get
1 1 1
— =4 — (4.7.22)
92 @

Using Eq. (4.7.8) to express both 1/¢; and 1/g,, we can separately equate the real and imaginary parts of
Eq. (4.7.22) to obtain the following relations between the spot sizes and the radii of curvature before and
after the lens:

Wy = Wq (47233)
1 1 1
= —_ (4.7.23b)
Ry R f

The physical relevance of Eq. (4.7.23) can now be discussed in connection with Fig. 4.18. Considering
first Eq. (4.7.23a), one immediately see that its physical meaning is obvious since, for a thin lens, the
beam amplitude distributions immediately before and after the lens must be the same i.e., there cannot
be a discontinuous change of spot size (see Fig. 4.18a). To understand the meaning of Eq. (4.7.23b),
consider first the propagation of a spherical wave through the same lens (Fig. 4.18b). Here a spherical
wave originating from a point source P; is focused by the lens to the image point P,. The radii of curvature
R, and R, just before and after the lens will, in this case, be related by Eq. (4.2.20). A spherical lens can
then be seen to transform the radius of curvature R of an incoming wave to a radius R, of the outgoing
wave according to Eq. (4.2.20). Since this is expected to occur irrespective of the transverse amplitude
distribution, Eq. (4.2.20) is expected to hold also for a Gaussian beam, as indeed Eq. (4.7.23b) indicates.
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(a) (b)

FIG. 4.18. Propagation through a lens of: (a) a Gaussian beam; (b) a spherical wave.

Example 4.6. Gaussian beam focusing by a thin lens. Consider now a Gaussian beam, with spot size wy;
and with plane wavefront, entering a lens of focal length f (i.e., the beam waist is located at the lens). We
are interested in calculating the beam waist position after the lens and its spot-size value wg,. According to
Eq. (4.2.4) and Eq. (4.2.6), the transmission matrix for a lens of focal length, f, followed by a free-space
length, z, is given by
' I=2/f 2 (4.7.24)
-1/f 1

The complex beam parameter, g», after this combination of lens plus free-space can again be obtained from
Eq. (4.7.21) where the A,B,C,D elements are obtained from Eq. (4.7.24) and where (1/g;) is given by

(1/q0) = =j A/ 7wy = =i/, (4.7.25)
with zg, being the Rayleigh range corresponding to the spot-size wy;. If now the coordinate z, after the
lens corresponds to the position where the beam waist occurs, then, according to Eq. (4.7.8), 1/g, must

also be purely imaginary. This means that the real part of the right hand side of Eq. (4.7.21) must be zero.
With the help of Eq. (4.7.24) and Eq. (4.7.25) we then readily find that z,, is given by

an =f/ [1 + (f/le)z] (4.7.26)
Thus one sees, perhaps with some surprise, that the distance z,, from the lens, at which the minimum spot
size occurs, is always smaller than the focal distance f. It should be noted, however, that, under typical

conditions one usually has zg, > f, so that z,, ~ f. By equating the imaginary parts of both sides of
Eq. (4.7.21) and using Eqs. (4.7.24) and (4.7.25) again, the spot size at the focal plane, wy,, is obtained as

1/2
Wo2 = Af/]‘[ Wo1 [1 + (f/ZRl)Z:I (4727)
Again for zg, > f we obtain from (4.7.27)

wor & Af /7wy (4.7.28)
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4.7.4. Higher-Order Modes

We now return to the problem considered in sect. 4.7.1 and ask ourselves whether there
are other eigensolutions of Eq. (4.6.8), for free-space, or of Eq. (4.6.9) for a general optical
system. The answer is again positive and one can show that a particularly useful set of eigen-
solutions can be written as the product of a Hermite polynomial with a Gaussian function. In
fact, with reference to Fig. 4.14, let us assume that

(e, yi,21) = Hi [ﬁxl/wl] H, [ﬁyl/wl] exp[—jk (2 +?) /2q1] (4.7.29)

where H; and H,,, are Hermite polynomials of order / and m, g, is the complex beam parameter
at z=2z; and w; is the corresponding spot size. Substitution of Eq. (4.7.29) in the right hand
side of Eq. (4.6.9) gives

1 1+1+m ﬁx ﬁy . (x2 + y2)
u(x,y, Z) = [m} H] (7) Hm (T X €xXp _sz—q (4730)

where ¢ is the complex beam parameter after the optical system of Fig. 4.14 as given by
Eq. (4.7.4), and w is the corresponding spot size.

For free space propagation, if we let the z; plane be the waist plane then one has
q1 = jjrw(z) /A, where wy is the spot size at the beam waist. On substituting the previous
expression for g; into Eq. (4.7.30) and using Eq. (4.7.8) we obtain

un(6,y,2) = (w/wo)H; [212%x/w] H,, [2'%y/w]exp [— (¥ + *) /w?] 4.731)

X exp {—j [k (x2 +y2) /2R] +j( +l+m)¢} o
where ¢ is again given by Eq. (4.7.15a) and where, using Eq. (4.7.11) to obtain ¢ = ¢(z), it is
seen that w and R are again given by Eqgs. (4.7.13a) and (4.7.13b).

The lowest order mode is obtained from Eq. (4.7.31) on setting / =m = 0. Since the
Hermite polynomial of zeroth order is a constant, Eq. (4.7.31) reduces to the Gaussian solution
already discussed in sect. 4.7.1. [see Eq. (4.7.15)]. This solution is called the TEMy, mode,
where TEM stands for Transverse Electric and Magnetic (within the paraxial approximation
both the electric and magnetic fields of the e.m. wave are approximately transverse to the
z-direction) and where the indices 00 indicate zeroth order polynomials for both H; and H,,
in Eq. (4.7.31). The radial intensity profile of a TEM(, Gaussian mode, at any z-coordinate,
will then be Ioo(x,y) o |ugo|*> o< exp [—2(x2 +y?%)/ wz] and will only depend on the radial
coordinate r = (x> + y*)!/2. The mode thus corresponds to a circular spot [Fig. 4.19].

The next higher order mode is obtained from Eq. (4.7.31) by setting /=1 and m=0
(or I=0 and m=1). Since H; (x) o x, the field amplitude is now given by |ujg| x x X
exp — [(x2 +y%)/ wz]. Thus, at a given x, the field profile will be described by a Gaussian
function [see Fig. 4.15a] along the y-coordinate while, at a given y, it is described by the
function x exp — (x2 / wz) along the x-coordinate. This function, normalized to its peak value,
is plotted vs x/w in Fig. 4.15b. This mode is called TEM |y and a picture of the corresponding
intensity profile is shown in Fig. 4.19. The TEMy,; [[ =0 and m = 1], is obtained simply by
rotating the picture of the TEM o mode in Fig. 4.19 by 90°.
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TEMgo TEM4o
TEMgq TEMgq

FIC. 4.19. Intensity patterns of some low-order Gaussian modes.

Two pictures of still higher order modes are also indicated in the figure. We note here
the general result that the indices / and m give the number of zeros of the field (other than the
zeros occurring at x = =£ oo and y = =+ 00) along the x and y axes, respectively.

4.8. CONCLUSIONS

In this chapter a few topics from geometrical and wave optics which constitute a very
useful background to the topics on optical resonators considered in next chapter, have been
discussed. We have found, in particular, that the transformation effected on a ray of an optical
element (such as an isotropic material, a thin lens, a spherical mirror etc.) can be described
by a simple 2 x 2 matrix. The same matrix has also been found to describe the propagation of
a Gaussian beam. A rather basic description of multilayer dielectric coatings and a somewhat
more detailed discussion of a Fabry-Perot interferometer have also been presented.

PROBLEMS

4.1. Show that the ABCD matrix for a ray entering a spherical dielectric interface from a medium of
refractive index n1 to a medium of refractive index n, is

1 0
np—n 1 m

n R m

where R is the radius of curvature of the spherical surface (R > 0 if the center is to the left of the
surface).
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4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.
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Considering a thin lens of refractive index n; as a sequence of two, closely spaced, spherical
dielectric interfaces of radii R and R, and using the result of Problem 4.1, show that its focal

length is given by the relation
1 np—n 1 1
250 (hed)
f n Rl R

where n; is the refractive index of the medium surrounding the lens.

A Fabry-Perot interferometer is made up of two identical mirrors with the same power reflectivity,
R =0.99, and same fractional internal power loss, A = 0.005. Calculate the peak transmission and
the finesse of the interferometer.

A Fabry-Perot interferometer, made up of two identical mirrors, air-spaced by a distance L, is
illuminated by a monochromatic e.m. wave of tunable-frequency. From the measurement of the
transmitted intensity versus the frequency of the input wave one finds that the free spectral range
of the interferometer is 3 x 10° Hz and its resolution is 60 MHz. Calculate the spacing L of the
interferometer, its finesse and the mirror reflectivity. If the peak transmission is 50%, calculate
also the mirror loss.

A Fabry-Perot interferometer, made up of two identical mirrors air-spaced by a distance L, is
illuminated by a 1-ps pulse from an external source at the wavelength A = 600 nm. The output
beam is observed to be made of a regular sequence of 1-ps pulses spaced by 10 ns. The energy of
the pulses decreases exponentially with time with a time constant of 100 ns. Calculate the cavity
length and the mirror reflectivity.

By direct substitution of Eq. (4.7.2) into the right hand side of Eq. (4.6.9) show that the double
integral appearing in Eq. (4.6.9), when taken between —oo and +o0, gives Eq. (4.7.3) where q is
related to go by Eq. (4.7.4).

A positive lens of focal length f is placed at a distance d from the waist of a TEMg beam, of waist
spot size wg. Derive the expression for the focal length f (in terms of wg and d) that is required in
order that the beam, leaving the lens, has a plane wavefront.

Show that the power contained in a TEMgy Gaussian beam of spot size w is given by
P= (71’ w2/ 2) I, where I is the peak (v = 0) intensity of the beam.

A given He-Ne laser, oscillating in a pure Gaussian TEM o mode at A = 632.8 nm with an output
power of P =5mW is advertised as having a far-field divergence angle of 1 mrad. Calculate the
spot size, the peak intensity and the peak electric field at the waist position.

The beam of an Ar laser, oscillating in a pure Gaussian TEMgp mode at A = 514.5 nm with an
output power of 1 W, is sent to a target at a distance of 100 m from the beam waist. If the spot
size at the beam waist is wg = 2 mm, calculate, at the target position, the spot size, the radius of
curvature of the phase front and the peak intensity.

Consider a TEMp Gaussian beam of spot size w; entering a lens of diameter D and focal length f.
To avoid excessive diffraction effects at the lens edge, due to truncation of the Gaussian field by the
lens, one usually chooses the lens diameter according to the criterion D > 2.25 w;. Assume that:
(i) the equality holds in the previous expression; (ii) the waist of the incident beam is located at the
lens, i.e. wi =wor; (iil) f L zg, = ﬂw%l /A; (iv) Eq. (4.7.27) is still valid. Under these conditions,
express the minimum spot size after the lens as a function of the lens numerical aperture N.A.
[N.A. = sin 6, where 6 = tan™! (D/f), so that, for small 8, N.A. = (D/f)].
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4.12. Suppose that a TEMyo Gaussian beam from a Ruby laser (1 = 694.3 nm) is transmitted through a
1 m diameter diffraction-limited telescope to illuminate a spot on the face of the moon. Assuming
an earth-moon distance of z & 348,000 km and using the relation D = 2.25 w(; between telescope
objective diameter and beam spot size (see previous problem) calculate the beam spot size on the
moon (distortion effects from the atmosphere can be important, but are neglected here).

4.13. A Gaussian beam of waist spot size wy is passed through a solid plate of transparent material of
length, L, and refractive index n. The plate is placed just in front of the beam waist. Using the
ABCD law of Gaussian beam propagation, show that the spot size and radius of curvature of the
phase front after the plate are the same as for propagation, in a vacuum, over a distance L' = L/n.
According to this result, is the far-field divergence angle aftected by the insertion of the plate?

4.14. From Eq. (4.7.26) show that a Gaussian beam of waist spot size wg; cannot be focused at a distance
larger than zg, /2, where zg, =7 w%l /A. What is the focal length corresponding to this maximum

focusing condition?
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Passive Optical Resonators

5.1. INTRODUCTION

This chapter deals with the theory of passive optical resonators i.e. where no active
medium is present within the cavity. The most widely used laser resonators have either plane
or spherical mirrors of rectangular (or, more often, circular) shape, separated by some dis-
tance L. Typically, L may range from a few centimeters to a few tens of centimeters, while
the mirror dimensions range from a fraction of a centimeter to a few centimeters. Laser res-
onators thus differ from those used in the microwave field (see e.g. Sect. 2.2.1) in two main
respects: (1) The resonator dimensions are much greater than the laser wavelength. (2) Res-
onators are usually open, i.e. no lateral surfaces are used. The resonator length is usually much
greater than the laser wavelength because this wavelength usually ranges from a fraction of a
micrometer to a few tens of micrometers. A laser cavity with length comparable to the wave-
length would then generally have too low a gain to allow laser oscillation. Laser resonators
are usually open because this drastically reduces the number of modes which can oscillate
with low loss. In fact, with reference to example 5.1 to be considered below, it is seen that
even a narrow linewidth laser such as a He-Ne laser would have a very large number of modes
(~ 109) if the resonator were closed. By contrast, on removing the lateral surfaces, the number
of low-loss modes reduces to just a few (6 in the example). In these open resonators, in fact,
only the very few modes corresponding to a superposition of waves traveling nearly parallel
to the resonator axis will have low enough losses to allow laser oscillation.

According to the previous discussion, it is seen that open resonators have inevitably some
losses due to diffraction of the e.m. field, which leads to some fraction of the energy leaving
the sides of the cavity (diffraction losses). Strictly speaking, therefore, the mode definition
given in Sect. 2.2.1 cannot be applied to an open resonator and true modes (i.e. stationary
configurations) do not exist for such a resonator. In what follows, however, we shall see that
standing-wave configurations having very small losses do exist in open resonators. We will
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therefore define, as a mode, an e.m. configuration whose electric field can be written as
E(r,t) = Egu(r) exp [(—t/27.) + jw 1] (5.1.1)

Here 7. (the decay time of the square of the electric field amplitude) is called the cavity photon
decay time.
Of the various possible resonators we make particular mention of the following types:

a. Plane — Parallel (or Fabry—Perot) Resonator. This consists of two plane mirrors set parallel
to one another. To a first approximation the modes of this resonator can be thought of as
the superposition of two plane e.m. waves propagating in opposite directions along the
cavity axis, as shown schematically in Fig. 5.1a. Within this approximation, the resonant
frequencies can be readily obtained by imposing the condition that the cavity length L must
be an integral number of half-wavelengths, i.e. L = nA/2, where n is a positive integer.
This is a necessary condition for the electric field of the e.m. standing wave to be zero on
the two mirrors. It then follows that the resonant frequencies are given by

v = n(c/2L) (5.1.2)

It is interesting to note that the same expression Eq. (5.1.2) can also be obtained by impos-
ing the condition that the phase shift of a plane wave due to one round-trip through the
cavity must equal an integral number times 27, i.e. 2kL = 2nm. This condition is read-
ily obtained by a self-consistency argument. If the frequency of the plane wave is equal
to that of a cavity mode, the phase shift after one round trip must be zero (apart from an
integral number of 27) since only in this case will the amplitudes at any arbitrary point,
due to successive reflections, add up in phase so as to give an appreciable total field. Note
that, according to Eq. (5.1.2), the frequency difference between two consecutive modes,
i.e. modes whose integers differ by one, is given by

Av = ¢/2L (5.1.3)

This difference is called the frequency difference between two consecutive longitudinal
modes with the word longitudinal used because the number n indicates the number of
half-wavelengths of the mode along the laser resonator, i.e. longitudinally.

T
-

(a) (b)

FIG. 5.1. (a) Plane-parallel resonator; (b) concentric resonator.
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L

FIG. 5.2. Confocal resonator.

b. Concentric (or Spherical) Resonator. This consists of two spherical mirrors having the
same radius R and separated by a distance L such that the mirror centers of curvature
C; and C; are coincident (i.e. L = 2R) (Fig. 5.1b). The geometrical-optics picture of the
modes of this resonator is also shown in the figure. In this case the modes are approximated
by a superposition of two oppositly traveling spherical waves originating from the point C.
The application of the above self-consistency argument again leads to Eq. (5.1.2) as the
expression for the resonant frequencies and to Eq. (5.1.3) for the frequency difference
between consecutive longitudinal modes.

c. Confocal Resonator (Fig. 5.2). This consists of two spherical mirrors of the same radius
of curvature R and separated by a distance L such that the mirror foci F; and F, are coin-
cident. It then follows that the center of curvature C of one mirror lies on the surface of
the second mirror (i.e. L = R). From a geometrical-optics point of view, we can draw any
number of closed optical paths of the type shown in Fig. 5.2 by changing the distance of
the two parallel rays from the resonator axis C; C,. Note also that the direction of the rays
can be reversed in Fig. 5.2. This geometrical optics description, however, does not give any
indication of what the mode configuration will be, and we shall see that in fact this con-
figuration cannot be described either by a purely plane or a purely spherical wave. For the
same reason, the resonant frequencies cannot be readily obtained from geometrical-optics
considerations.

Resonators formed by two spherical mirrors of the same radius of curvature R and sep-
arated by a distance L such that R < L < 2R (i.e. somewhere between the confocal and
concentric conditions) are also often used. In addition, we can have L > R. For these cases it
is not generally possible to use a ray description in which a ray retraces itself after one or a
few passes.

All of these resonators can be considered as particular examples of a general resonator
consisting of two either concave (R > 0) or convex (R < 0) spherical mirrors, of different
radius of curvature, spaced by some arbitrary distance L. These various resonators can be
divided into two categories, namely, stable resonators and unstable resonators. A resonator
will be described as unstable when an arbitrary ray, in bouncing back and forth between the
two mirrors, will diverge indefinitely away from the resonator axis. An obvious example of
an unstable resonator is shown in Fig. 5.3. Conversely, a resonator for which the ray remains
bounded will be described as a stable resonator.
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FIC. 5.3. Example of an unstable resonator.

===

! |

\ L] /

optical diode

(a) (b)

FIG. 5.4. (a) Simplest three-mirror ring resonator. (b) Folded ring resonator.

A particularly important class of laser resonator is the ring resonator where the path
of the optical rays is arranged in a ring configuration (Fig. 5.4a) or in a more complicated
configuration such as the folded configuration of Fig. 5.4b. In both cases the resonance
frequencies can be obtained by imposing the condition that the total phase shift along the
ring path of Fig. 5.4a or along the closed-loop path of Fig. 5.4b (continuous paths) be
equal to an integral number of 2. We then readily obtain the expression for the resonance
frequencies as

v =nc/L, (5.1.4)

where L, is the perimeter of the ring or the length of the closed-loop path of Fig. 5.4b,
and n is an integer. Note that the arrows of the continuous paths of Fig. 5.4 can in general
be reversed which means that e.g. in Fig. 5.4a the beam can propagate either clockwise or
anticlockwise. Thus, in general, a standing wave pattern will be formed in a ring resonator.
One can see, however, that, if a unidirectional device is used, allowing the passage of e.g.
only the right to left beam in Fig. 5.4a (optical diode, see Sect. 7.8.2.2. for more details),
then only the clockwise propagating beam can exist in the cavity. So the concepts of a cav-
ity mode and cavity resonance frequency are not confined to standing-wave configurations.
Note also that ring resonators can be either of the stable (such as in Fig. 5.4) or unstable
configuration.
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5.2. EIGENMODES AND EIGENVALUES®

Consider a general two-mirror res-
onator, (Fig. 5.5a), consisting of two spher-
ical mirrors of different radius of curvature
(either positive or negative) spaced by a dis-
tance L and which may be either stable or
unstable. Assume that a beam of general
shape is launched in the cavity starting from
e.g. mirror 1 and consider its propagation
back and forth in the cavity. This propagation
can be regarded as equivalent to that occur-
ring in the periodic lens-guide structure of
Fig. 5.5b with the same beam traveling in
one direction, e.g. along the positive direction
of the z-axis. One should note that the focal
lengths f; and f> in Fig. 5.5b are related to
the radii of curvature R; and R, of Fig. 5.5a
by the well known relations fi = R;/2 and
f» = Rp/2. 1t should also be noted that the

Example 5.1. Number of modes in closed and open res-
onators. Consider a He-Ne laser oscillating at the wave-
length of A = 633 nm, with a Doppler-broadened gain
linewidth of Avy = 1.7 x 10° Hz. Assume a resonator
length L = 50cm and consider first an open resonator.
According to Eq. (5.1.3) the number of longitudinal
modes which fall within the laser linewidth is Nypen, =
2LAvg§/c = 6. Assume now that the resonator is closed
by a cylindrical lateral surface with a cylinder diameter
of 2a = 3mm. According to Eq. (2.2.16) the number
of modes of this closed resonator which fall within the
laser linewidth Avy is Nesea = 8mv2V AV /3, where
v = ¢/ is the laser frequency and V = 7 a’L is the res-
onator volume. From the previous expressions and data
we readily obtain Ny = (Cma/ )&)2 Nopen = 1.2 x
10° modes.

two diaphragms, 1 and 2, of diameter 2a; and 2a; situated after the corresponding lenses in
Fig. 5.5b, simulate the apertures of the two mirrors of Fig. 5.5a. Now let E (x1,y1,0) be the
complex field amplitude of the beam at some given point having transverse co-ordinates x;
and y; at diaphragm 1, whose longitudinal co-ordinate is taken to be z = 0. The field ampli-
tude E (x,y,2L) after one lens-guide period, i.e. at z = 2L, can be calculated, once E (x1,y1,0)
and the lens-guide geometry (i.e. the quantities fi, f>, a;, a; and L) are specified. For this cal-
culation one can use e.g. the Huyghens—Fresnel propagation equation (see Sect. 4.6). The
calculation can become somewhat involved for finite values of the apertures 2a; and 2a5, as
we shall see in Sect. 5.5.2. The calculation can be even more involved if one needs to con-
sider the case of some additional optical elements (e.g. a lens or a sequence of lenses) being
located within the cavity of Fig. 5.5a. In general, as a consequence of the linearity of the

f,=R,2 12 Ry/2 f,

1 E 1
252

1 2 23, 2a,
T Bl
o4 & [P | .
‘L ~ 0 2L 2z
R o

1
L .
(a) (b)

FIG. 5.5. (a) General two-mirror resonator. (b) Lens-guide structure equivalent to the resonator of (a).
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Huyghens—Fresnel equation with respect to the field amplitudes, one can write

By 20 = @024 [[ Koo B Odndy 520
1

where the double integral is taken over the aperture 1 at the input plane (z = 0) and where K
is a function of the transverse co-ordinates of both input (z = 0) and output (z = 2L) planes,
being known as the propagation kernel. A few examples of this kernel will be considered in
Sect. 5.5.2. One can see however that, if E(xl, y1, 0) were a bidimensional Dirac §-function
centered at co-ordinates x;, ; i.e. if E (x1, y1,0) = § (x; — x|, y1 — ), then from Eq. (5.2.1)
one would have E(x,y,2L) = exp(—2jkL) k (x,y;x],)’). Thus, apart from the phase factor
exp(—2jkL), the kernel K(x,y,x|,y;) represents the field at the output plane generated by a
point-like source located at co-ordinates xj, y; in the input plane.

Instead of considering a general beam propagating in the lens-guide structure of Fig. 5.5b
let us now consider a beam whose transverse structure corresponds to that of a cavity mode
of Fig. 5.5a. In this case, for self-consistency, the field must reproduce its shape after one
lens-guide period. More precisely we require

E(x,y,2L) = & exp (—2jkL) E (x,y,0) (5.2.2)

where the constant ¢ is generally complex since the propagation kernel X is itself a complex
function. We can therefore write

o= |0|expjo (5.2.3)

where the amplitude |G| is expected to be smaller than one as a result of beam attenuation, due
to diffraction losses. The phase ¢ then gives the additional contribution to the round trip (or
single-period of the lens-guide) phase-shift besides the obvious one, i.e. —2 kL, arising from
the free-space propagation of a plane wave over the distance 2L. According to Egs. (5.2.2)
and (5.2.3) the total single-period phase shift is

Ap=—2kL + ¢ (5.2.4)

If the left hand side of Eq. (5.2.1) is now replaced by the right hand side of Eq. (5.2.2) one
obtains

& E(x.y.0) = // K, y,x1, 1) B, 1,0) dx dy, (5.2.5)

which represents a Fredholm homogeneous integral equation of the second kind. Its eigenso-
lutions, Elm (x,y,0), if any exists, will give the field distributions which are self-reproducing
after each period of the lens-guide structure of Fig. 5.5b. Therefore, they will also describe
the field distributions over the mirror aperture for the cavity modes of Fig. 5.5a. Each solution
in the infinite set of eigenstates is distinguished by a pair of integers, / and m. Accordingly,
the corresponding eigenvalue will be indicated as 6.
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From the above discussion, the eigenvalues G, are seen to be such that |5;,|> gives the
factor by which the beam intensity is changed as a result of one round trip. Since this change
is due to diffraction losses, we must then have |G;,|> < 1; thus the quantity

Vim=1—61m | (5.2.6)

gives the round-trip fractional power loss due to diffraction. One can also see that, according
to Eq. (5.2.4), A¢y, = —2 kL + ¢y, is the corresponding round-trip phase shift. For the field

to be self-reproducing, we must then require that A¢;, = —2m n, where n is an integer. We
thus get —2kL + ¢, = —27n, and, with the substitution k = 27tv/c, we obtain the cavity
resonance frequencies as
c d)lm
mn — ~5 ~ 5.2.7
Vi = o1 [" + 27ri| >:2.7)

Note that we have indicated explicitly that these frequencies are dependent on the values of
the three numbers /, m, and n. The integers / and m represent the order of the eigensolution
in Eq. (5.2.5) while the integer number n specifies the total phase shift of the beam, after one
round trip, in units of 27t (i.e. n = —Ad¢y,,/27).

As a conclusion of this section we can say that the eigenmodes and the eigenvalues
of our problem can be obtained upon solving the integral equation Eq. (5.2.5). In fact, its
eigensolutions, Ej,, give the field of the eigenmodes at all point in a given plane. For each
mode l:]lm, the corresponding eigenvalue 6y, then gives: (a) The round-trip diffraction loss,
Yim, through its magnitude |6, | [see Eq. (5.2.6)]. (b) The resonance frequency, vy, through
its phase, ¢y, [see Eq. (5.2.7)].

5.3. PHOTON LIFETIME AND CAVITY Q

Consider a given mode of a stable or unstable cavity and assume, for generality, that
some losses other than diffraction losses are also present. For instance one may have mirror
losses as a result of mirror reflectivity being smaller than unity. One may also have scattering
losses in some optical element within the cavity. Under these conditions we want to calculate
the rate of energy decay in the given cavity mode. To this purpose, let Iy be the initial intensity
corresponding to the field amplitude E(x;, y;, 0) at a given transverse coordinate x,, y;. Let
Ry and R, be the (power) reflectivities of the two mirrors and 7; the fractional internal loss
per pass due to diffraction and any other internal losses. The intensity /(z;) at the same point
x1,y1 atatime t; = 2L/c, i.e. after one cavity round trip, will be

I(t1)) = Ry Ra(1 = T3) % I (5.3.1)

Note that, since T; is defined here as the fractional internal loss per pass, the intensity is
reduced by a factor (I — T;) in a single pass and hence by a factor (I — T;)? in a double pass
(round trip). The intensity, at the same transverse co-ordinate, after m round trips, i.e. at time

tn =2mL/c (5.3.2)
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is then
I(tn) = [RiRx(1 = T)*]" Iy (5.3.3)

Let now ¢ () be the total number of photons in the given cavity mode at time ¢. Since the
mode retains its shape after each round trip, we can set ¢ (¢) o I(f). From Eq. (5.3.3) we can
then write

¢(tw) = [Ri Ry 1= T)*]" ¢0 (5.3.4)
where ¢y is the number of photons initially present in the cavity. We can also set
¢ (tm) = [exp(—t/7c)]o (5.3.5)

where 7, is a suitable constant. In fact, a comparison of Egs. (5.3.5) with (5.3.4) with the help
of Eq. (5.3.2) shows that

exp(—2mL/c 1) = [Ri R (1 = T)?*]" (5.3.6)
from which one finds that . is independent of the number of round trips, m, and is given by
.= —2L/cIn[R| Ro(1 — T))?] (5.3.7)

If we now assume that Eq. (5.3.5) holds, not only at times f,,, but also at any time ¢ (>0), we
can then write

¢ (1) = exp (—t/7:) ¢o (5.3.8)

In this way, we justify the assumption

Example 5.2. Calculation of the cavity photon lifetime. Eq. (5.1.1) for the mode field and iden-

We will assume Ry = R, = R = 098 and 7; =~ 0. From
Eq. (5.3.7) we obtain 7. = t7/[—In R] = 49.5 77, where

tify Eq. (5.3.7) as the expression for the
cavity photon lifetime. One can notice that

7r is the transit time of the photons for a single-pass in Eq. (5.3.7), with the help of Egs. (1.2.4)

the cavity. From this example we note that the photon life-
time is much longer than the transit time, a result which is

and (1.2.6), can readily be transformed to

typical of low loss cavities. If we now assume L = 90 cm, .= L/cy (5.3.9)

we get t7 = 3ns and 7, = 150 ns.

We thus see that the cavity photon lifetime
is just equal to the transit time t7 = L/c of the beam in the laser cavity divided by the
(logarithmic) cavity loss y.

Having calculated the photon lifetime, the time behavior of the electric field, at any point
inside the resonator can, according to Eq. (5.1.1) and within the scalar approximation, be
written as E(f) = Eexp [(—t/21.) + jwt], where w is the angular resonance frequency of
the mode. The same time behavior then applies for the field of the output wave leaving the
cavity through one mirror as a result of finite mirror transmission. If we now take the Fourier
transform of this field, we find that the power spectrum of the emitted light has a Lorentzian
line shape with linewidth (FWHM) given by

Av. =1/27 7, (5.3.10)
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It should be noted that the spectrum of the
emitted light, obtained in this way, does not
exactly agree with the transmission spectrum
shown for a Fabry—Perot interferometer in
Sect. 4.5, whose shape is not Lorentzian [see
Eq. (4.5.6)]. In particular, the expression for
Av,. obtained here [see Eq. (5.3.10)], when
combined with Eq. (5.3.7) with T; = 0, does
not coincide with that obtained in Sect. 4.5
[see Eq. (4.5.12) with L' = L]. This discrep-
ancy can be traced back to the approximation
made in writing Eq. (5.3.8). In numerical
terms, however, the discrepancy between the
two results is quite small, especially at high
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Example 5.3. Linewidth of a cavity resonance. If we take
againR; = R, = 0.98 and 7; = 0, from Egs. (5.3.10) and
(5.3.7) we get Av, == 6.4307 x 1073 x (c/2L), while from
Eq. (4.5.12) we get Av, = 6.4308 x 107 x (c/2L). For
the particular case L = 90cm, we then obtain Ay, =
1.1 MHz. Even at the relatively low reflectivity values of
R; = R, = 0.5, the discrepancy is not large. In fact from
Eqgs. (5.3.10) and (5.3.7) we get Av, =0.221 x (c¢/2L),
while from Eq. (4.5.12) Av, = 0.225 x (c/2L). Again
for L = 90 cm we then obtain Av. =~ 37.5 MHz. Thus,
in typical cases, Av, may range from a few to a few tens
of MHz.

values of reflectivity, as can be seen from the following example. From now on we will there-
fore assume that the cavity line shape is Lorentzian with width given by Eq. (5.3.10) and that
the cavity photon lifetime is given by Eq. (5.3.7).

Having discussed the cavity photon lifetime, we can now introduce the cavity quality
factor, or Q factor, and derive its relation to the photon lifetime. For any resonant system, and
in particular for a resonant optical cavity, one defines the cavity Q factor (usually abbreviated
to cavity Q) as Q = 2m(energy stored)/(energy lost in one cycle of oscillation). Thus a high
value of cavity Q implies low losses of the resonant system. Since, in our case, the energy

stored is ¢hv and the energy lost in one cycle is hv(—d¢ /df)(1/v) = —hd¢ /dt, we have

Q = —2nv¢/(dg/dr)

From Eq. (5.3.8) we then get

0=2nvt,

which, with the help of Eq. (5.3.10), can be
transformed to the more suggestive form
0 =v/Av, (5.3.13)

Thus the cavity Q factor can be interpreted as
the ratio between the resonance frequency, v,
of the given mode and its linewidth, Av,.

5.4. STABILITY CONDITION

(5.3.11)

(5.3.12)

Example 5.4. Q-factor of a laser cavity According to
example 5.2 we will again take 7. = 150 ns and assume
v 2 5x 10" Hz (i.e. A = 630 nm). From Eq. (5.3.12) we
obtain Q = 4.7 x 103. Thus, very high Q-values can be
achieved in a laser cavity and this means that a very small
fraction of the energy is lost during one oscillation cycle

Consider first a general two-mirror resonator (Fig. 5.6a) and a ray leaving point Py of a
plane S inside the resonator e.g. just in front of mirror 1. This ray, after reflection from mirrors
2 and 1, will intersect the plane f at some point P. If we let ry and r; be the transverse
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FIG. 5.6. (a) Stability analysis of a two-mirror resonator. (b) Stability analysis of a general resonator described by
the ABCD matrix.

coordinates of Py and P; with respect the resonator axis and r;, and r| the angles that the
corresponding rays make with the axis, then according to Eq. (4.2.2) we can write

V]_AB
r’l_CD

where the ABCD matrix is the cavity round trip matrix. The ray leaving point P, (rl, r]) will,
after one round trip, intersect the plane 8 at point P, (rz, ré) given by

(5.4.1)

o ‘
/
o

2

r A B 1 A B )
= = 542
rh ‘ C D ' r ‘ C D r ‘ ( )
Therefore, after n round trips, the point P, (r,, r;l) is given by
Tn A B |" )
= 543
AN 04

For the resonator to be stable, we require that, for any initial point (ry, r(/)), the point (4, 7))
should not diverge as n increases. This means that the matrix

n

A B
¢ 5

must not diverge as n increases.
The previous considerations can be readily extended to a general resonator whose round
trip ray transformation is described by a general ABCD matrix e.g. a two-mitror resonator
containing some other optical elements such as lenses, telescopes etc. (see Fig. 5.6b). In

this case we again require that the n-th power of the ABCD matrix does not diverge as n
increases.
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For both resonators shown in Fig. 5.6a, b the ray starts from and arrives at the same plane
B, which means that the refractive index is the same for both rays, input, ry, and output, ry. It
then follows that the determinant of the matrix, AD-BC, has unit value. A theorem of matrix
calculus,® sometimes referred to as Sylvester’s theorem, then shows that, if we define an
angle 0 by the relation

cosf = (A+D)/2 (5.4.4)
one has
A B 1 Asinnd — sin(n — 1)0 Bsinnf (5.4.5)
C D | sinf Csinnf Dsinné — sin(n — 1)0 o

Equation (5.4.5) shows that the n-th power matrix does not diverge if 6 is a real quan-
tity. Indeed, if 6 were complex, say 6 = a + ib, the terms proportional to e.g. sinnf in
Eq. (5.4.5) could be written as sinnf = [exp(jnf) + exp(—jnd)]/2j = [exp(jna — nb) +
exp(—jna + nb)]/2j. The quantity sinnf would then contain a term growing exponentially
with n, e.g. [exp(—jna + nb)]/2j for b > 0, and the overall n-th power matrix would thus
diverge as n increases. So, for the resonator to be stable, we require 6 to be real and, according

to Eq. (5.4.4), this implies that
A+D
-1 < (%) <1 (5.4.6)

Equation (5.4.6) establishes the stability condition for the general resonator of Fig. 5.6b.
In the case of the two-mirror resonator of Fig. 5.6a we can go one step further by explic-
itly calculating the corresponding ABCD matrix. We recall that a given overall matrix can be
obtained by the product of matrices of the individual optical elements traversed by the beam,
with the matrices written down in the reverse of the order in which the ray propagates through
the corresponding elements. Thus, in this case, the ABCD matrix is given by the ordered prod-
uct of the following four matrices: (1) Reflection from mirror 1, (2) free-space propagation
from mirror 1 to 2, (3) reflection from mirror 2, (4) free-space propagation from mirror 2 to
1. With the help of Table 4.1 we then have

A B 1 0 1 L 1 0 1 L
= 4.7
el am Vol e Tl V[ o

After performing the matrix multiplication of Eq. (5.4.7), we obtain

A+D . 2L 2L 20

5438
2 R R + R Ry ( )

Equation (5.4.8) can be readily transformed to

AtD (- LY(i-LE) (5.4.9)
2 ( Rl)( Rz) o
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FIG. 5.7. g1, g> stability diagram for a general spherical resonator. The stable region corresponds to the shaded parts
of the figure. The dashed curves correspond to the possible confocal resonators.

It is now customary to define two dimensionless quantities for the cavity, called the g; and g,
parameters, and defined as

g1=1—(L/Ry) (5.4.10a)
g =1-(L/R) (5.4.10b)

In terms of these parameters, the stability condition of Eq. (5.4.6), with the help of Eq. (5.4.9),
readily transforms to the very simple relation

0<gig <1 (5.4.11)

The stability condition Eq. (5.4.11) can be conveniently displayed in the g;, g» plane
[Fig. 5.7]. For this purpose we have plotted in Fig. 5.7, as heavy lines, the two branches of
the hyperbola corresponding to the equation g;g> = 1. Since the other limiting condition in
Eq. (5.4.11), namely g1, = 0, implies either g; = 0 or g = 0, one can readily see that the
stable regions in the g;, g» plane correspond to the shaded area of the figure. A particularly
interesting class of two mirror resonators is that corresponding to points on the straight line AC
making an angle of 45° with the g; and g, axes. This line corresponds to resonators having
mirrors of the same radius of curvature (symmetric resonators). As particular examples of
these symmetric resonators, we notice that those corresponding to points A, B and C of the
figure are the concentric, confocal, and plane resonators, respectively. Therefore all three
of these resonators lie on the boundary between the stable and unstable regions. For these
resonators, only some particular rays, e.g. rays normal to the plane mirrors in Fig. 5.1a, do not
diverge during propagation. For this reason, these resonators are also said to be marginally
stable and, in general, the conditions g;g> = 0 or g;g» = 1 are described as being of marginal
stability.
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5.5. STABLE RESONATORS

To greatly simplify our analysis we will first consider a resonator with no limiting
aperture. We will then briefly consider the effects of a finite aperture.

5.5.1. Resonators with Infinite Aperture+

With reference to Fig. 5.6b for a general resonator and to 5.5a for a two-mirror resonator
we will assume no limiting aperture i.e. we will take a; = a, = oo in Fig. 5.5a. The field
distribution u(x, y, z) after one cavity round trip of Fig. 5.5a or after one period of the lens-
guide system of Fig. 5.5b i.e. at z = 2L, can be obtained from Eq. (4.6.9) with z; = O,
where the ABCD matrix is the one-round-trip (or one-period) matrix. If we now take, at the
z1 = 0 plane, E (x1,¥1,0) = u(x1,y1,0), then, within the paraxial wave approximation and
according to Eq. (4.6.4), we can write E(x, y, 2L) = u(x, y, 2L) exp (—2jkL). On inserting, into
this relation, the expression for u(x, y, z) given by Eq. (4.6.9) we get

+00 +00

E(x,y,2L) = exp (—2jkL) / / (ﬁ) exp

—00 —O0

) A(x12+y12)+D(x2+y2)—2x1x—2y1y
—JK 2B
x E(x1, y1,0)dx dy, (5.5.1)

A comparison of Egs. (5.5.1) with (5.2.1) then shows that the propagation kernel
K(x,y;x1,y1), is given, in this case, by

. A 2+ 2 +D 2+ 2 ) )
K=(-L)exp—jk ( +3?) +D (2 +07) —2nx—2ny (5.5.1a)
BA 2B

As explained in Sect. 4.7, the lowest order Gaussian solution, Eq. (4.7.1), and the gen-
eral solution for higher order, Eq. (4.7.30), are eigensolutions of the propagation equation,
Eq. (4.6.9), when no aperture is present within the optical system described by the given
ABCD matrix. For these Hermite—Gaussian eigensolutions to describe the field distribution of
the cavity eigenmodes, we must now require that the beam reproduces itself after one round
trip. This means that if we let g; be the complex beam parameter of the Gaussian beam leaving
plane g in front of e.g. mirror 1 of Fig. 5.8a, the complex beam parameter ¢ after one round-
trip must be equal to ¢;. From the ABCD law of Gaussian beam propagation Eq. (4.7.4), if we
set g1 = ¢, we obtain

__Agq+B
- Cq+D

q (5.5.2)

The g parameter must then satisfy the quadratic equation

Ci*+(D—-A)g—B=0 (5.5.3)
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FIC. 5.8. (a) Calculation of the g-parameter for a two-mirror resonator. (b) Spot size and equiphase surfaces in a two
mirror-resonator. (c) Transformation of a two-mirror resonator into a resonator with plane end-mirrors. (d) General
resonator with two plane end-mirrors.

Since ¢ must be a complex quantity one can see from the standard solution of a quadratic
equation that the discriminant of Eq. (5.5.3) must be negative i.e.

(D—A)*+4BC <0 (5.5.4)

Since however AD — BC = 1, Eq. (5.5.4) readily gives (D + A)? < 4, i.e. the same condi-
tion given by Eq. (5.4.6). This means that a Gaussian beam solution can only be found for
stable resonators or, alternatively, that all stable resonators with infinite aperture have modes
described by the general Hermite—Gaussian solution of Eq. (4.7.30).

5.5.1.1. Eigenmodes

Consider first the two-mirror resonator of Fig. 5.8b. To obtain an expression for the com-
plex amplitude distribution, u(x,y, z), at e.g. mirror 1 one just needs to calculate the complex
beam parameter g, obtained as a solution of Eq. (5.5.3), for given values of the matrix elements
A,B,C, and D. Having calculated the g-parameter, one obtains the real and imaginary parts of
1/g from which, in accordance with Eq. (4.7.8), the spot size, w and the radius of curvature
of the wavefront, R, at the given position, are obtained. One can proceed in a similar way for
calculating w and R at any position within the resonator including mirror 2 (Fig. 5.8b). For
these calculations it is convenient to transform the resonator of Fig. 5.8b into that of Fig. 5.8¢c
where e.g. the spherical mirror of radius R) is substituted by a combination of a plane mirror
plus a thin lens of focal length fi = R;.* The resonator of Fig. 5.8c is then seen to belong to a

* The fact that we are considering here an equivalent lens of focal length fi = R; while the focal length of the
equivalent lens-guide structure was fi = R;/2 (see Fig. 5.5b) may generate some confusion. One should note,
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general class of resonators consisting of two plane mirrors and containing an optical element
whose single-pass propagation matrix from mirror 1 to mirror 2 will be represented by the
matrix elements A;, By, C; and D; (Fig. 5.8d).

To obtain g from Eq. (5.5.3) we need to calculate the round-trip matrix for the general
resonator of Fig. 5.8d. To this purpose we see that, according to Eq. (4.2.17), the matrix
for a single-pass backwards, i.e. propagation from mirror 2 to mirror 1, is simply obtained
from the A;B;C; D matrix by interchanging the elements A; and D;. We also notice that the
matrix of a plane mirror is readily obtained from that of a spherical mirror (see Table 4.1)
by letting R — oo. One then sees that the matrix of a plane mirror is simply the unit
matrix

1 0
0 1

The round trip matrix, starting from mirror 1, is then simply given by
A B _ D] Bl A] Bl _ 2A]D1 -1 2B]D1 (5 5 5)
C D| | C A || G D | | 2A4C 24D -1 "

From Eq. (5.5.5) one sees immediately that A = D and from Eq. (5.5.3) one then gets

.| B .| BiD (5.5.62)
q9=4q91 =] C—J e 5.6a

It should be noted that one can readily show that the stability condition Eq. (5.4.6) implies
B1D;/A;Cy < 0. This means that ¢; is purely imaginary i.e. that the equiphase surface just in
front of mirror 1 (see Fig. 5.8c, d) is plane. One could repeat the same argument starting from

mirror 2 and shows that
.| A1B;
=j - 5.5.6b
q2 J‘/ C\D, ( )

Since again A;B;/CiD, = (A;/B))*(BiD;/A,C;) < 0, g, is also purely imaginary and
the wavefront at mirror 2 is again plane. This means that the wavefront radius of curvature,
after e.g. lens f; in Fig. 5.8c or in front of mirror 1 in Fig. 5.8b, is equal to R; and a similar
argument applies for mirror 2. So, we reach the general conclusion that the equiphase surface
on a cavity mirror always coincides with the mirror surface. This result can be understood
from e.g. Fig. 5.8b where the field corresponding to the given eigenmode is considered in
terms of a superposition of traveling waves. Then e.g. the right-traveling wave in Fig. 5.8b
(indicated by left-to-right arrows) must transfer, upon reflection at mirror 2, into the left-
traveling wave (indicated by right-to-left arrows). In geometrical optics terms, this implies
that the propagating rays at mirror 2 must be orthogonal to the mirror surface. This means
that the wavefront, being always orthogonal to these rays, must be coincident with the mirror
surface at the mirror location.

however, that, due to the reflection at the plane mirror of Fig. 5.8c, the lens fi in the figure is traversed twice by
the beam and its effect is thus equivalent to a single lens of overall focal length f /2.
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The general results of Egs. (5.5.6) can now be specialized to the two-mirror resonator.
With reference to Fig. 5.8c we notice that, in propagating from mirror 1 to mirror 2, the
beam passes through lens f; then through a free-space of length L and then a lens f>. The
A1, B1Cy, D matrix is then simply obtained from the product of the corresponding three matri-
ces with written order inverse to the propagation order. Using the matrices of Table 4.1, it is
then a simple matter to show that

‘Al B, ‘:‘ &1 L ‘ (5.5.7)

Ci D -(1-g182)/L g

where g; and g, are given by Egs. (5.4.10). From Eq. (5.5.6a) with the help of Eqgs. (4.7.8)

and (5.5.7) we then get
L /2 1/4
Wy = (—) [L} (5.5.82)
b g1 (1—g182)

Similarly, starting from Eq. (5.5.6b), we obtain

1/2 1/4
w = (P & (5.5.8b)
7T g (1—g1g2)

which can be obtained straightforwardly from Eq. (5.5.8a) by interchanging the indices 1
and 2. Starting from the spot size wy; = w; of Fig. 5.8c, one can then calculate the spot size,
wy, at the beam waist using Eq. (4.7.27) with f = f; and wg, = wy. We obtain

LI\ /2 1— 1/4
Wy = (_) [ 8182 ( glgz)z} (5.5.9)
7T (&1 + 8 —28182)

Again, knowing the spot size, w;, on mirror 1, one can obtain the waist distance from that
mirror upon using the expression for z,, given by Eq. (4.7.26) with the substitutions f = f; =
Riandzg, =7 WSI/A.

For a symmetric resonator one has Ry = R, = Rand g; = g» = g = 1 — (L/R) and
both Egs. (5.5.8a) and (5.5.8b) reduces to

L /2 1 1/4
wz(?) [l_gz} (5.5.102)

while Eq. (5.5.9) gives

LN 1/4
WOZ(—) [i} (5.5.10b)
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Example 5.5. Spot sizes for symmetric resonators The first case we shall consider is that of a confocal
resonator, for which one has g = 0. From Eqs. (5.5.10 a and b) we get, respectively,

we = (LA/m)'?, woe = (LA)27)"? (5.5.11)

where the suffix ¢ stands for confocal. Equation (5.5.11) show that the spot size at the beam waist is, in
this case, /2 smaller than that at the mirrors (Fig. 5.9a). For the case of a near-plane resonator, i.e. when
R > L, we can write g = | — ¢ where ¢ is a small, positive quantity. Neglecting higher order terms in ¢,
we get from Eq. (5.5.10)

(w,lp/wc) ~ (wo,lp/wc) ~ (1/28)1/4 (5.5.12)

where the suffix np stands for near-plane and where the spot sizes have been normalized to the mirror
spot size of a confocal resonator. Equation (5.5.12) show that, to first order, the two spot sizes are equal
and thus the spot size is nearly constant over the length of the resonator (Fig. 5.9b). For the case of a near
concentric resonator, i.e. when L = 2R, we can write g = —1 + & where again ¢ is a small, positive
quantity. Neglecting terms of higher order in ¢ we get from Eq. (5.5.10)

Wae/we) = (1/26)7* (wone/we) = (/8)"/* (5.5.13)

where the suffix nc stands for near-concentric. Equation (5.5.13) show that the mirror spot size is given
by the same expression, as a function of &, as that for a near-plane resonator. The spot size at the beam
waist, however, is now much smaller and it decreases with decreasing values of . The spot size behavior
along the resonator is then as shown in Fig. 5.9c. Numerically, if we take L = 1m and A = 514 nm (an
Argon laser wavelength) we get w. = 0.4 mm for a confocal resonator. If we now consider a near plane
resonator, still with L = 1m and A = 514 nm and with R = 10 m, we get g = 0.9 and, from Eq. (5.5.10)
we obtain w, 2 0.59 mm and w 2 0.61 mm. One should note the small values of beam spot size obtained
in each case.

L=R

ufwc/ﬁ jV{c=<u/u)'/z
i

(a)

L<R v]
f WoNx W
R
T
(b) (c)

FIG. 5.9. Spot-size behavior in symmetric resonators: (a) confocal; (b) near-plane; (c) near-concentric.
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5.5.1.2. Eigenvalues

A comparison of Eqgs. (4.7.29) with (4.7.30) shows that, if the ABCD matrix corresponds
to the cavity round-trip matrix and if ¢ = ¢, the field amplitude u(x, y,2L) after one round
trip is equal to the initial field u(x; = x,y;1 = y,z1 = 0) except for the amplitude factor
1/[A + (B/¢)])'"""*™. According to Eq. (5.2.2) it then follows that

. 1
Ol = W (5.5.14)

From Eq. (5.5.3) we see that, since A = D, one has

q=jv—-B/C (5.5.15)

If we now write
o=A+ (B/q) (5.5.16)

from Eq. (5.5.16), with the help of Eq. (5.5.15), we get |o|> = A> — BC = AD — BC = 1.
From Eq. (5.5.14) it then follows that the magnitude of 6y, is also unity and, according to
Eq. (5.2.6), the diffraction loss, y;,, vanishes. This result is actually to be expected from our
analysis since we stipulated at the outset that there were no limiting aperture (Fig. 5.8d) and
considered, in particular, a two-mirror resonator with infinite mirror size (Fig. 5.8¢).

To obtain an expression for the phase of the eigenvalue, 6,, we write

o = exp—j¢ (5.5.17)
From Eqgs. (5.5.17) and (5.5.16), with the help of Egs. (5.5.15) and (5.5.5) we get

cosp =A=2A,D;—1 (5.5.18a)
sinq&:Bv—C/B:ZBlDl \/—A1C1/BID1 (5518b)

From Eq. (5.5.18b) we see that 0 < ¢ < m for BiD; > O and —7 < ¢ < O for BiD; < 0.
From Eq. (5.5.18a) we get cos?(¢/2) = (1 + cos¢)/2 = A;D; and hence

¢ =2cos ' £/A D, (5.5.19)

where the positive or negative signs hold depending on weather B D, is positive or negative.
From Egs. (5.5.14), (5.5.16), and (5.5.17) we obtain 6, = expj(l + [ + m)d = expjdm
where ¢y, = (1 + [ 4+ m)¢. From Egs. (5.5.19) and (5.2.7) we then obtain

141
Vimn = i [n + MCOS_I + /AID]} (5520)
b/

the + or — signs again depending on whether B;D; is positive or negative.



5.5 e Stable Resonators 181

For the particular case of a two-mirror resonator, the matrix elements A; and D; are
obtained from Eq. (5.5.7). Equation (5.5.20) then transforms to

c[ 1+14+m
Vimn = n+—

7 cos™! + @} (5.5.21)

and, according to Eq. (5.5.7), the 4 or — sign is chosen according to whether g, (and hence
g1) is positive or negative.

Example 5.6. Frequency spectrum of a confocal resonator For a confocal resonator one has gy = g» =0
and from Eq. (5.5.21) we get

- ﬁ 2n+ (1 41+ m)] (5.5.22)

The corresponding frequency spectrum is shown in Fig. 5.10a. One can observe that modes having the
same value of 2n 4 [ 4+ m have the same resonance frequency although they correspond to different spa-
tial configurations. These modes are said to be frequency-degenerate. It is also seen that, instead of the
simple expression given by Eq. (5.1.2) for a plane parallel resonator, the frequency spacing between
consecutive modes is now c¢/4L. The two consecutive modes, however, need to have different (I, m)
values and ¢/4L is seen to correspond to the frequency difference between two consecutive transverse
modes [e.g. (n,0,0) — (n,0, 1)]. On the other hand, the frequency spacing between two modes with the
same (/,m) values (e.g. TEMy) and with n differing by 1 (i.e. the frequency spacing between adjacent
longitudinal modes) is still ¢/2L, the same as for the plane parallel resonator.*

Example 5.7. Frequency spectrum of a near-planar and symmetric resonator In this case one has g; =
g =g =1—(L/R), with L/R < 1. Thus g is positive and slightly less than unity. Accordingly one has
cos™' g = cos™'[I — (L/R)] = (2L/R)"/? and Eq. (5.5.21) becomes

(5.5.23)

Vimn =

¢ (L+14+m) [20\"?
P n+— P
2L T R

The corresponding frequency spectrum is shown in Fig. 5.10b. One can see that the frequency spac-
ing between consecutive longitudinal modes is again c¢/2L, while the frequency difference between two
consecutive transverse modes is (c/2L) (2L/m*R)"/>.

The usage of the terms “longitudinal mode” and “transverse mode” in the laser literature has sometimes been
rather confusing, and can convey the (mistaken) impression that there are two distinct types of modes, viz.,
longitudinal modes (sometimes called axial modes) and transverse modes. In fact any mode is specified by three
numbers, e.g., n, m, [ of (5.5.24). The electric and magnetic fields of the modes are nearly perpendicular to the
resonator axis. The variation of these fields in a transverse direction is specified by /, m while field variation in a
longitudinal (i.e., axial) direction is specified by n. When one refers, rather loosely, to a (given) transverse mode,
it means that one is considering a mode with given values for the transverse indices (I, m), regardless of the value
of n. Accordingly a single transverse mode means a mode with a single value of the transverse indexes ([, m). A
similar interpretation can be applied to the “longitudinal modes”. Thus two consecutive longitudinal modes mean
two modes with consecutive values of the longitudinal index n [i.e., n and (n + 1) or (n — 1).
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FIC. 5.10. (a): Mode spectrum of a confocal resonator. (b): Mode spectrum of a near-plane resonator.

5.5.1.3. Standing- and Traveling-Waves in a Two-Mirror Resonator

Following the discussion presented in the previous two sections about spot sizes and
resonance frequencies in a general resonator, we are now ready to present a description of the
corresponding behavior of the mode along the laser cavity. We will limit our discussion to a
two-mirror resonator. The field inside this resonator, according to Egs. (4.7.31) and (4.6.4),
can be written as:

242
Epn(x,y,2) = %Hl |:\/Sxi| H, [%] exp [_x ;y i| (5.5.24a)
x exp [—jkz + j(1 + [ + m)¢] (5.5.24b)
x exp [—jk(x* +*)/2R] (5.5.24c)

where w(z), R(z), and ¢(z) are given by Egs. (4.7.17) and can be calculated once the waist
position and the corresponding spot size, wy, are known. One should observe that the field
eigenmode E has been explicitly indicated to be dependent of the three subscripts /, m and
n. The subscripts / and m come from the order of the Hermite polynomials involved in
Eq. (5.5.24a). The subscript n is also explicitly indicated since k = 2mv/c and the reso-
nant frequency depends on the three indices /, m and n [see Eq. (5.5.21)]. An interesting
interpretation of these indices is as follows: (1) The indices / and m give the field nulls along
the x and y axis, respectively, as already pointed out in Sect. 4.7.4. (2) The index n, following
the discussion in Sect. 5.1, gives the number of half-wavelengths of the standing wave mode
along the resonator, i.e. it gives the number of field nulls along the z-direction.

To conclude this section, we consider the question of whether Eq. (5.5.24) represents
a traveling or standing wave pattern for the field eigenmode. The answer depends on the
form of the time behavior of the mode. If, according to Eq. (4.6.1) we write E = E exp(jo?)
where ® = Wy = 27V, is the angular frequency of the mode resonance, then, from
the longitudinal phase factor of Eq. (5.5.24b) we get, taking the example of a TEMy, mode,
E o< expj[—kz + ¢ + wt] which corresponds to a wave propagating in the positive z-direction.
If, on the other hand, we write E = E exp(—jwt), we obtain a wave propagating in the negative
z-direction. The standing-wave eigenmode is then obtained by the sum of these two waves, i.e.
upon writing E = E cos wt. Following the above argument one then realizes that, apart from a
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proportionality factor given by the mirror’s transmission, E = E exp(jwr) also represents the
wave escaping through mirror 2 and propagating in the positive z-direction.

5.5.2. Effects of a Finite Aperture

In Sect. 5.5.1.2 it was shown that, for a general resonator with no limiting aperture such
as that of Fig. 5.8d, the diffraction loss vanishes. Indeed, to calculate these losses, one must
take into account the actual size of any apertures present in the resonator (often a diaphragm
is inserted in the resonator or the aperture is set by the transverse dimension of the active
medium). The loss introduced by a finite aperture can, in fact, be appreciated with the help of
Fig. 5.11 where a TEMyy mode is considered and where we indicate the transverse profile of
this mode over the plane containing the aperture of diameter 2a. The Gaussian TEMy mode
is seen to be truncated by this aperture and the dashed wings of the beam are therefore lost
each time the beam passes through the aperture. This description is, however, an approximate
one because, in fact, the introduction of a limiting aperture significantly modifies the field
distribution, which would then no longer be precisely Gaussian.

To perform a correct and accurate calculation, we must return to the original integral
equation, Eq. (5.2.5), and take into account there the finite size of the aperture. In the discus-
sion that follows, we will limit ourselves to considering a two-mirror resonator, assuming the
limiting aperture to be set by the finite mirror size.

Consider first a symmetric resonator (Ry = R, = R and a; = a, = a, see Fig. 5.12a)
and its equivalent lens-guide structure (Fig. 5.12b). By virtue of the symmetry of the problem,
we can limit our considerations to one period of length L and require that the field reproduces

D

2a

FIG. 5.71. Diffraction losses arising from beam truncation by an aperture of radius a.

FIG. 5.12. (a) Mode and diffraction loss calculation in a symmetric resonator. (b) Equivalent lens-guide configura-

tion.
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its shape after this period. We then arrive at an integral equation similar to Eq. (5.2.5), namely

+a+a
C?E(x,y,O) = //K(x,y,xl,yl)E(xl,yl,O)dxldyl (5.5.25)

—a —a

where the double integral is taken over the limiting aperture and K is the single pass propa-
gation kernel. Since the beam encounters no other limiting apertures when propagating from
the diaphragm at z = O to that at z = L (Fig. 5.12b), the kernel can be expressed as in
Eq. (5.5.1a), where the ABCD matrix refers now to one period of length L. The matrix is then
given by the product of the matrix of free-space propagation over a length L with the matrix
of a lens of focal length f = R/2. One should note, however, that, since the double integral
in Eq. (5.5.25) does not extend between —oo and 400, the eigensolutions no longer have the
form of a product of a Hermite polynomial with a Gaussian function. To solve Eq. (5.5.25) one
usually adopts some iterative procedure, generally with the help of a computer. An approach,
often used, is the so-called Fox-Li iterative procedure, after Fox and Li® who first applied
this procedure to obtain the eigenmodes of a plane-parallel resonator. One starts by assuming
some field expression E(x, y, 0) in the right hand side of Eq. (5.5.25) and then one calculates,
by performing the double integral, the field E(x, y, L) after one lens-guide period. This field is
then inserted back into the right hand side of Eq. (5.5.25) and a new field E(x,y,2L) is then
calculated by performing the double integration again, and so on. The procedure, although
rather slow (it usually converges in a few hundred iterations), eventually leads to a field which
does not change any more on each successive iteration, except for an overall amplitude reduc-
tion due to diffraction loss and a phase factor which accounts for the single-pass phase shift. In
this way one can compute the field amplitude distribution of the lowest order mode and also of
higher order modes, as well as the corresponding diffraction losses and resonance frequencies.

Example 5.8. Diffraction loss of a symmetric resonator.® The diffraction loss, per pass, for a symmetric
two-mirror resonator of finite mirror aperture, as calculated according to the Fox and Li iterative procedure
is plotted in Fig. 5.13a (for a TEMyy mode) and b (for a TEMy; mode) vs the Fresnel number

N =d*/LA (5.5.26)

The calculation has been performed for a range of symmetric resonators, which are characterized by their
corresponding g values. Note that, for a given g value and for a given mode (e.g. the TEMy, mode),
the loss rapidly decreases with increasing Fresnel number. This is easily understood when, according
to Eq. (5.5.11), one writes the Fresnel number as N = a?/mw?, where w, is the mirror spot size for a
confocal resonator of the same length and of infinite aperture. Since the mirror spot size does not change
strongly upon changing the g-value (see example 5.5) the Fresnel number can be interpreted as a number
proportional to the ratio of the mirror cross section (;ra” for a circular mirror) and the mode cross-sectional
areas (mw?) on the mirror. The reason why the loss decreases rapidly when increasing the latter ratio is
now readily appreciated with the help of Fig. 5.11. Note also from Fig. 5.13 that, for a given Fresnel
number and g value, the TEMyy mode has lower losses than the TEMy; mode. The TEMy mode actually
turns out to have the loss lower than for any of the higher order modes. So the lowest order mode is
identified as the lowest loss mode.
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FIG. 5.13. Diffraction loss per transit versus Fresnel number for, (a), the TEMgg mode and, (b), for the TEMy

mode, for several symmetric resonators (after Li,®) copyright 1965, American Telephone and Telegraph Company,
reprinted with permission.)

Example 5.9. Limitation on the Fresnel number and resonator aperture in stable resonators To obtain
oscillation on the TEMyo mode only, we must provide a sufficiently high value of diffraction losses, o1,
for the TEMy; mode. On the other hand, to obtain a large value of the spot size we must design the
resonator to operate near the instability boundary ¢ = 1 or g = —1 (see example 5.5). Furthermore,
if we consider e.g. a near-planar resonator, we cannot operate too close to the instability boundary or
the resonator would become too sensitive to external perturbation (e.g. mirror tilt due to vibrations or
temperature changes). We choose then, as an example, yo; = 10% and g < 0.95 (R < 20L). From
Fig. 5.13b we then get N < 2, which can be considered a typical result. Thus, for L = 2m and A =
1.06 um (a Nd:YAG laser wavelength) we obtain a < 2 mm while for L = 2m and A = 10.6 um (typical
wavelength of a CO, laser) we get a < 6.3 mm.

Let us now consider the general two-mirror resonator of Fig. 5.5a and its equivalent lens-
guide structure of Fig. 5.5b. If we let E(x;, y1,0) be the field at a general point (x;, y;) of the
z = 0 plane in Fig. 5.5b, the field at point (x»,y,) of the z = L plane is readily obtained as
E(xz,yz,L) = (exp —jkL) ffl Ko (x2, y2;x1,y1) X E(xl,yl, 0)dx1dy, where K}, is the kernel
for beam propagation from the z = 0 to the z = L planes and where the double integral
is taken over aperture 1. Similarly, the field at point (x3,y3) at z = 2L plane is obtained as
E()C3,y3, 2L) = (exp —]kL) ./IZ K> ()C3,y3;)C2,y2) E()Cz,yz,L)d)Czdyz where Kj; is the kernel
for beam propagation from the z = L to z = 2L plane and where the double integral is taken
over aperture 2. The combination of the last two equations leads to

E(x3,y3,2L) = (exp —2jkL) // K> (3, y33 %2, y2 ) dxody,

2 ) (5.5.27)
X// Ki2(x2, y25x1, 1) E(x1, y1, 0)dx 1 dy,
)
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On interchanging the order of integration in Eq. (5.5.27) we readily see that we can write

E (x3,y3,2L) = (exp—2jkL) //K(xg,y3;x1,y1) E(x1,y1,0)dx;dy, (5.5.28)
I

provided we define an overall kernel K, (one-period in Fig. 5.5b i.e. one round trip in
Fig. 5.5.a), as

K (x3,y3;x1,51) = // K>1 (x3,y33%2,¥2) K12 (X2, 2, X1, y1) dxody, (5.5.29)
2

This would be the appropriate kernel to use in Eq. (5.2.5) in order to calculate the field
eigenmodes and the corresponding eigenvalues.

5.5.3. Dynamically and Mechanically Stable Resonators

A very important problem which arises with stable resonators is to increase the beam
spot size within the active medium to a size comparable to the transverse dimensions of the
medium. In fact, considering for simplicity a symmetric two-mirror resonator, one can see
from Eq. (5.5.10) that, to significantly increase the spot size within the laser cavity beyond
the value established for a confocal cavity, one should choose a resonator much closer to the
g = %1 point (near-plane or near-concentric resonator). The cavity would then be too close to
an instability boundary and would generally be very sensitive to any cavity perturbations such
as those arising from variation of the pump power. We shall now consider a laser design which
allows large spot sizes to be achieved within the active medium, the design being particularly
insensitive to cavity perturbations arising either from changes of pump power or from mirror
tilting (dynamically and mechanically stable resonator).?

We first consider a laser resonator consisting of two spherical mirrors of radii R; and R,
and containing an active medium whose pump-induced thermal effects can be simulated by
a thin lens whose dioptric power, 1/f, is proportional to the pump power (Fig. 5.14a). This
model corresponds well with the situation for solid-state lasers. In fact, some of the ideas
which follow can also be applied to the more complex perturbations induced by the pump in
a gas medium.

A first constraint for the design of the laser cavity of Fig. 5.14a can be obtained by the
condition that the spot size in the active medium, w,, be insensitive to the change of the lens
diopric power. We thus write

dwa/d(1/f) =0 (5.5.30)

A resonator for which this condition is satisfied is often referred to as dynamically stable.
A second constraint can be obtained by the condition that the spot size, w,, be comparable to
the radius a of the active medium. So as not to introduce excessive diffraction losses due to
beam truncation by this finite aperture, we can e.g. require that®

2a = 7w, (5.5.31)
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FIG. 5.14. (a) General two-mirror spherical resonator which includes a lens, of focal length f, simulating the thermal
lens of the active medium. (b) Generalization of the resonator of (a), where the A}, By, Ci, and D elements of the
one-way matrix include the matrix of the thermal lens.
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FIG. 5.15. Spot size in the active medium, w,, and combined misalignment sensitivity, S., vs dioptric power, 1/f,
for the cavity of Fig. 5.14a.

For given values of a and 1/f, Egs. (5.5.30) and (5.5.31) provide a pair of equations for the
cavity parameters R;, R», L, and L.

One may now ask the question whether a dynamically stable point actually exists for
the cavity of Fig. 5.14a. To answer this, we show in Fig. 5.15 the general behavior of w,
vs dioptric power 1/f, for the above cavity for given values of the other cavity parameters.
From this figure one notices the following general characteristic features: (1) Two dynamically
stable points, i.e. satisfying Eq. (5.5.30), are found when the lens dioptric power is changed.
(2) Both points correspond to a minimum of w,, the minimum value, w,,,, being the same
for the two points. (3) The minima belong to two different stability zones, with the spot size
actually diverging at each zone boundary. (4) The width, A(1/f), of the two zones is the same
and satisfies a fundamental relationship with the minimum spot size given by the equation

2
%au /f) =2 (5.5.32)

independently of the values of the other cavity parameters.
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FIC. 5.16. Stability diagram for the general resonator of Fig. 5.14b. In the same figure, the two stability zones
discussed in Fig. 5.15 and the corresponding geometrical-optics description of the cavities corresponding to the
stability boundaries are also shown.

The existence of two stability zones can generally be understood with reference to
Fig. 5.14b (see also Fig. 5.8d) which represents a generalization of Fig. 5.14a and where
the elements Ay, By, C;, D; of the one-way matrix turn out to be linear functions of 1/f.
From Egs. (5.4.6) and (5.5.5) one can then see that, in terms of the one-way matrix elements,
the cavity stability condition can simply be written as 0 < A;D; < 1. This stability condi-
tion is represented in Fig. 5.16, where the horizontal and vertical axes represent A; and Dj,
respectively. Now, since A; and D; are linear functions of 1/f, a plot of the values for A,
vs the corresponding values of D, obtained by changing 1/f, will show a linear relationship
in the A} — D, plane (see Fig. 5.16). This straight line then generally intersects the stability
boundaries at four distinct points which define two distinct stable zones. The laser beam con-
figurations corresponding to these four limit points can be described by geometrical optics
and are also shown in the same figure.

Having understood the origin of the two stability zones, it may be worth observing that
the dioptric power of an optically pumped rod turns out to be given by®

1 k

where P, is the pump power absorbed in the rod and & is a constant characteristic of the given
material. If the expression for 1/f given by Eq. (5.5.33) is substituted in Eq. (5.5.32) and if,
according to Eq. (5.5.31), one takes (w,,,/a) = (2/7) in the resulting expression, one can
readily see that the range of acceptable absorbed power, AP,, corresponding to each stability
zone, is a constant for a given laser material (e.g. AP, = 10 W for a diode-pumped Nd: YAG).

From the above discussion, it would appear that the optical properties of the two stabil-
ity zones are identical. A strong distinction between these zones is however revealed when
one considers the misalignment properties of the laser cavity. We first define misalignment
sensitivities, S and S,, for mirrors 1 and 2 according to the relations S; = 8r./w,66; and
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Sy, = 6rp/w.80,, where, e.g. for mirror 1, ér.; is the displacement of the beam center in
the laser rod arising from a tilt 86, of mirror 1, and similarly for mirror 2. One can now

define a combined misalignment sensitivity of the two mirrors as S, = [S% + S%] 1/2. A plot
of this combined sensitivity vs lens dioptric power is also shown in Fig. 5.15. One can then
see that one of the two zones, henceforth referred to as zone 1, is much less sensitive to mir-
ror misalignment than the other, henceforth referred to as zone 2. The reason for the reduced
sensitivity to misalignment for zone 1 can be understood by noting that the spot sizes at the
mirrors are much smaller in zone 1 than in zone 2. Indeed, according to geometrical optics,
one of the two stability boundaries of zone 1 corresponds to the beam being focused on both
mirrors (see Fig. 5.16). Thus, when close to this boundary, the mirror spot size, w,,, is very
small and the beam divergence, 8 =~ 6; = A/mw,, very large. Consequently, the mirror tilt,
needed to produce a beam axis rotation comparable to the beam divergence, must also be large.
As a conclusion we can say that a dynamically and mechanically stable resonator can
be designed for a general laser cavity describable as in Fig. 5.14b and comprising a variable
element such as the thermally induced lens in the laser rod. The resonator should be chosen to
belong to the more stable zone, zone 1, and must satisfy conditions Eqgs. (5.5.30) and (5.5.31).
In practice, instead of satisfying Eq. (5.5.30), the resonator can be designed to correspond to
the center of zone 1. So, if the distance L;, shown in Fig. 5.14a, is assumed to be the variable
parameter, its value can be taken as the mean of its limiting values, L’1 and L’l’ , in zone 1.
From the geometrical optics description shown in Fig. 5.16, one then finds that L} and L}
must satisfy the conditions L;™' + Ly' = f~" and (L] — Rl)_1 + L' = f7!, respectively,
where L, is also shown in Fig. 5.14a. Once designed for a given focal length, f, and hence a
given absorbed power, P,, the resonator can then work for a range of absorbed pump power,
AP,, which is the same for a given active medium, independently of the cavity parameters.

5.6. UNSTABLE RESONATORS(?

The stability condition for a generalized spherical resonator was discussed in Sect. 5.4
and the unstable regions were shown to correspond to the unshaded regions of the g; — g»
plane in Fig. 5.7. Unstable resonators can be separated into two classes: (1) positive branch
resonators, which correspond to the case g;g> > 1, and (2) negative branch resonators, which
correspond to the case g;g, < 0.

Before going on to a quantitative discussion of unstable resonators, it is worth pointing
out here the reasons why these resonators are of interest in the laser field. First we note that,
according to the results obtained in example 5.5, for a stable resonator corresponding to a
point in the g; — g» plane that is not close to an instability boundary, the spot size w is
typically of the order of that given for the case of a confocal resonator and, for a wavelength
of ~1 yum, is usually smaller than 1 mm. We also note that, according to the discussion in
example 5.9, a resonator aperture with radius a < 2mm needs to be inserted in the laser
resonator if oscillation is to be limited to the TEMyy mode. When oscillation is confined to a
TEMyo mode of such a small cross section, the power (or energy) available in the output beam
is necessarily limited. For unstable resonators, on the contrary, the field does not tend to be
confined to the axis (see, for example, Fig. 5.3), and a large mode volume in a single transverse
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mode is possible. With unstable resonators, however, there is the problem that rays tend to
walk off out of the cavity. The corresponding modes, therefore, have substantially greater
(geometrical) losses than those of a stable cavity (where the losses are due to diffraction).
This fact can, however, be used to advantage if these walk-off losses are turned into useful
output coupling.

5.6.1. Geometrical-Optics Description

To establish the mode configurations of an unstable resonator, we can start by using a
geometrical-optics approximation, as first done by Siegman.(V To do this, we begin by recall-
ing the two main results that were obtained for the eigensolutions of a stable resonator [see
Eq. (5.5.24)]: (1)The amplitude is given by the product of a Hermite polynomial with a Gaus-
sian function. (2)The phase distribution is such as to give a spherical wave front. The presence
of the Gaussian function limits the transverse size of the beam and essentially arises from the
focusing properties of a stable spherical resonator. The fact that the wave-front is spherical
is, on the other hand, connected with the boundary conditions set by a spherical mirror. In
the unstable case there are no Hermite—Gaussian solutions, as indeed discussed in connection
with the solution of Eq. (5.5.4). Since the beam is no longer focused toward the resonator
axis, but rather spread out over the whole resonator cross section, it is natural to assume, as a
first approximation, that the solution has a constant amplitude over the resonator cross section
while the wave front is still spherical, i.e. the solution is represented by a spherical wave.
More precisely, since the mode can always be considered as being due to the superposition of
two counter-propagating waves, we will assume that these consist of two counter-propagating
spherical waves. It should be noted that one reaches the same conclusion by considering the
solution of Eq. (5.5.3) in the unstable region. In this case, the discriminant of the quadratic
equation in Eq. (5.5.3) is positive and one generally gets two real solutions for the parameter
q and these will correspond to two spherical waves.

To calculate the mode field, we let P; and P, be the centers of curvature of the two spher-
ical waves in the general two-mirror unstable resonator of Fig. 5.17a. By symmetry, P; and
P, must lie on the resonator axis and their position are easily calculated by a self-consistency
argument: the spherical wave originating from point P;, after reflection at mirror 2, must give
a spherical wave originating from P, and, vice-versa, the spherical wave originating from P,,
after reflection at mirror 1, must give a spherical wave originating from P;. These two condi-
tions lead to two equations, which can readily be established by a straightforward calculation
based on geometrical optics, in the two unknowns, namely the positions of points P; and P;.
If these positions are expressed in terms of the dimensionless quantities r; and r, indicated in
Fig. 5.17a, these last quantities turn out to be functions only of the resonator g, g» parameters.
In fact, after some lengthy but straightforward calculations, one arrives at the relations

12
M= [1- e a1 (5.6.12)

» 2
r =gz[1—(glgz) ] +g -1 (5.6.1b)
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(b)

FIG. 5.17. (a) General, convex mirror, unstable resonator; (b) single-ended unstable resonator.

Having calculated r; and r, one can easily obtain from Fig. 5.17a the so-called single-pass
magnification factor on going from mirror 1 to mirror 2, Mj,, or from mirror 2 to mir-
ror 1, My;. For instance, M, is defined as the increase in diameter of the spherical wave
when propagating from mirror 1 to mirror 2. From simple geometrical considerations one
gets from Fig. 5.17a

Mp=04+nr)/n (5.6.2a)
Similarly one gets
Mp=0+n)/n (5.6.2b)

Usually, for laser applications, a single-ended resonator such as that of Fig. 5.17b, is of inter-
est. In this case, the diameter of mirror 1, 2a;, must be larger than the transverse extent, at
mirror 1, of the spherical wave originating from point P,. We thus require a; > M;;a,. With
this condition, the only wave that emerges from the cavity is the spherical wave emitted by
point P; escaping around mirror 2 (mirrors 1 and 2 are assumed to be 100% reflecting). This
spherical wave starts from mirror 2 with a diameter 2a, (see Fig. 5.17b) and returns to mirror
2, after one round trip, magnified by a factor M given by

M=MyMp=(1+r") (1+r") (5.6.3)

where Eqgs. (5.6.2) have been used. With the help of Egs. (5.6.1), (5.6.3) readily gives

2
M= Qgig—1)~2g18 [1 - (2182 ] (5.6

which shows that M, the round trip magnification factor, depends only on the cavity g parame-
ters. Note that, when g;g, < 0, M becomes negative and then it is the magnitude of this value
that must be considered. Having calculated the round trip magnification factor, one can easily
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FIG. 5.18. Confocal unstable resonators: (a) Negative-branch and (b) positive-branch.

obtain the expression for the round trip cavity loss, L;, arising from transmission around the
output mirror. In fact, since we have assumed uniform illumination, the fraction of the beam
power that is coupled out of mirror 2, after a round trip, is seen to be

S-S, M —1
=22 22 _ (5.6.5)

L;
s M

where S, = na% andS, =7 M zag are, respectively, the cross section for the beam originating
from mirror 2 and that after one round trip. Note that, according to Eq. (1.2.4c) the round-trip
logarithmic loss y; is given by y; = —In(1 — L;). Note also that y;, like M, is independent of
mirror diameter 2a;.

Example 5.10. Unstable confocal resonators A particularly important class of unstable resonator is the
confocal resonator, which can be of negative-branch or positive-branch. These are shown in Fig. 5.18a, b,
respectively. In both cases, the two mirror foci F; and F are coincident, and one can readily show that the
resonators are represented, in the g; — g» plane, by the two branches of the hyperbola indicated as dashed
curves in Fig. 5.7 [the equation of the hyperbolais (2g; — 1)(2g2 — 1) = 1]. Of these various resonators,
only the (symmetric) confocal one (g; = g> = 0) and the plane-parallel one (g; = g» = 1) lie on the
boundary between the stable and unstable regions. All other confocal resonators are unstable and may
either belong to the negative or positive branch of the instability region. As shown in Fig. 5.18 and as one
can also show from Eq. (5.6.1), the mode consists of a superposition of a plane wave with a spherical
wave originating from the common focus | = F,. The round-trip magnification factor M is simply given
by M = |R;|/|Rz|, where R; and R, are the two curvature radii of the two mirrors (|R;| > |R3|). If the
aperture of diameter 2a; at mirror 1 is made sufficiently large (2a; > 2Ma,), only the plane beam will
escape out of the cavity. Thus the beam escaping from a single-ended confocal resonator is a plane wave
and this constitutes one of the main advantages of unstable confocal resonators. The round trip loss, or
fractional output coupling, of this single-ended resonator is then given by Eq. (5.6.5).

5.6.2. Wave-Optics Description

The discussion so far has been based on a geometrical-optics approximation. To get a
more realistic picture of the modes of an unstable resonator one must use a wave approach,
e.g. use the integral equation Eq. (5.2.5), which arises from the Huyghens—Fresnel diffraction
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FIG. 5.19. Typical example of the radial behavior of mode intensity distribution in an unstable cavity obtained using
a wave-optics calculation (after Rensch and Chester,(1?) by permission).

equation Eq. (5.2.1). For unstable resonators, the limited aperture size of the output mirror
constitutes an essential feature, since the beam must exit around this mirror. Consequently,
the kernel K to be used in Eq. (5.2.5) can be obtained, in principle, by essentially the same
procedures as those developed, for a stable cavity, in Sect. 5.5.2. Thus the solution of the inte-
gral equation can be obtained by an iterative approach such as the Fox-Li procedure discussed
in that section. These calculations will not be discussed at any length here and we will limit
ourselves to pointing out and commenting on a few relevant results.

A first important result is that the wave-optics description does indeed show that eigen-
solutions, i.e. field profiles which are self-reproducing after one round trip, do exist also
for unstable resonators. To shows this in some detail, we will limit our discussion to a
single-ended unstable confocal resonator and define an equivalent Fresnel number as N, =
[(M —1)/2] x (a3/L)), for the positive branch, and as N, = [(M + 1)/2](a3/LA), for the
negative-branch, with 2a, being the diameter of the output mirror. A typical example of a
computed plot of the radial intensity profile, which is self-reproducing after one round trip,
is shown in Fig. 5.19. The calculation relates to a positive branch confocal resonator with
M = 2.5 and N, = 0.6, and the intensity profile refers to the field just in front of mirror
2 (Fig. 5.18b) of a beam propagating to the right inside the resonator. The intensity profile
in Fig. 5.19 is plotted vs the x (or y) transverse coordinate normalized to the radius, a;, of
mirror 1. To ensure a single-ended output, the condition a; = 2.5 a, is assumed. Conse-
quently, the vertical lines in the figure, occurring at (x/a;) = +0.4, mark the edge of the
output mirror. Note the peculiar meaning of a round-trip self-reproducing profile for unstable
resonators. Starting in fact from mirror 2, the left propagating spherical wave (see Fig. 5.18b),
will arise only from that part of the beam of Fig. 5.19 for which —0.4 < (x/a;) < 0.4. In fact,
the remaining part of the beam escapes around mirror 2 to form the output beam. The part
remaining in the resonator, after propagation over a round trip, will produce again, through
the combined effect of spherical divergence and beam diffraction, the whole intensity pro-
file of Fig. 5.19. The amplitude of the beam profile after one round trip will of course be
smaller than the original value due to the loss represented by that part of the beam which has
been coupled out of mirror 2. One should note that the beam intensity profile in Fig. 5.19 is
quite different from the constant value assumed in the geometrical-optic theory, the differ-
ence being due to field diffraction, in particular from the edges of mirror 2. Indeed, one sees
from Fig. 5.19 that, if x is interpreted as the radial distance from the mirror’s center, several
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FIC. 5.20. Intensity profiles of the three lowest-order eigenmodes for a strip unstable resonator with M = 25 and
Neg = 0.6 (after Siegman,19 by permission).

diffraction ring arising from the sharp edges of mirror 2 are present in the beam. Despite this
significant difference between the intensity profile predicted by wave optics and that predicted
by geometrical optics, the phase variation turns out to be remarkably similar in the two cases.
Thus the wavefront turns out to be close to spherical, with radius almost equal to that predicted
by geometrical optics (i.e. plane in this case).

A second relevant result of the wave-optics calculation is that for unstable resonator
also, just as for stable, there exist different transverse modes, i.e. different self-reproducing
spatial patterns. These modes generally differ from each other in the location and strength of
the diffraction rings. An example of three such modes, again for a positive branch confocal
unstable resonator, is shown in Fig. 5.20. Unlike the case of stable resonators, it is not possible,
in this case, to make a clear distinction in terms of these field distribution between the lowest
order and higher order modes. It should be noted, however, that the mode labeled / = 0 in
the figure shows a field amplitude distribution which is more concentrated toward the beam
axis. Thus, in this case, this mode will have the lowest loss i.e. it will be the “fundamental”
mode.

A third characteristic result is found when one changes the equivalent Fresnel number,
i.e. one changes either M or a,, or L. In fact, at each integer value of the equivalent Fresnel
number a different and distinct mode becomes the “lowest-order” i.e. the lowest-loss mode.
This circumstance can be understood with the help of Fig. 5.21, where the magnitude of
the eigenvalue o is plotted vs N,, for the three modes indicated in Fig. 5.20. One notes in
particular that, since y = 1 — |o|?, the I = 1 mode becomes the lowest order mode when
N,4 becomes larger than one (and smaller than two). The reason for this circumstance arises
from the fact that as N, increases, starting from e.g. the value N, = 0.6 of Fig. 5.20, the
mode / = 1 contracts inwards while the mode / = 0 spreads outwards so that, at N, = 1,
the role of the two modes is interchanged. One can also notice from Fig. 5.21 that, at each
half-integer values of N, there is a large difference between the losses of the “lowest order”
mode and those of other modes. This might seem to suggest that a large transverse-mode
discrimination can only be obtained under these conditions. It should be noted, however, that
when the loss curves of two modes cross each other (i.e. for integer values of N, in Fig. 5.21),
the intensity patterns of these two modes happen to become identical. Thus, ate.g. N, = 1, a
large difference in loss exists between the / = 2 mode and the [ = 0, / = 1 modes, which, in
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FIC. 5.21. Typical example of the oscillatory behavior of eigenvalue magnitude, o, vs equivalent Fresnel number,
Ny, for the three consecutive modes of Fig. 5.20.
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FIG. 5.22. Coupling losses of an unstable resonator vs magnification factor M; dashed curve: geometrical optics
result; solid-lines: wave-optics results (after Siegman,!®) by permission).

terms of transverse beam profile, can be considered as effectively corresponding to the same
mode.* As a conclusion one can say that unstable resonators always have a large transverse-
mode discrimination, the discrimination being perhaps strongest at half-integer values of N,,.
One can also point out that, from the wave-optics calculation and for half-integer values of
N,q4, one obtains a loss of the lowest order mode which is considerably smaller than the value
predicted by geometrical optics. This result is apparent from Fig. 5.22 where the loss y is
plotted vs the round trip magnification factor M. In the figure the solid curves (which apply

* The two modes still differ with respect to the total round trip phase shift, i.e., they still differ in the field variation

along the longitudinal z axis and thus in their resonance frequencies.
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to successive half-integer values of N,,) are obtained by wave-optics, while the dashed curve
corresponds to the geometrical-optics result given by Eq. (5.6.5). The reason why the loss
of the “lowest-order” mode, according to wave optics, is smaller than the value predicted
by geometrical optics stems from the fact that the intensity distribution of the lowest order
mode, rather than having the constant value predicted by geometrical optics, tends to be more
concentrated toward the beam axis (see Fig. 5.20).

5.6.3. Advantages and Disadvantages of Hard-Edge Unstable
Resonators

The main advantages of hard-edge unstable resonators compared to stable resonators can
be summarized as follows: (1) Large, controllable mode volume; (2) good transverse-mode
discrimination; (3) all reflective optics (which is particularly attractive in the infrared, where
metallic mirrors can be used). The main disadvantages are as follows: (1) The output beam
cross-section is in the form of a ring (i.e. it has a dark hole at its center). For example, in a
confocal resonator (Fig. 5.18), the inner diameter of the ring is 2a, while its outer diameter
is 2Ma,. Although this hole disappears in the focal plane of a lens used to focus the beam
(far-field pattern), the peak intensity in this focal plane turns out to decrease with decreasing
ring thickness. In fact, for a given total power, the peak intensity for an annular beam is
reduced by (M? — 1)/M? from that of a uniform-intensity beam with a diameter equal to
the large diameter of the annular beam. (2) The intensity distribution in the beam does not
follow a smooth curve, but exhibits diffraction rings. (3) An unstable resonator has greater
sensitivity to cavity perturbations compared to a stable resonator. The above advantages and
disadvantages mean that unstable resonators find their applications in high-gain lasers (so that
M can be relatively large), especially in the infrared, and when high-power (or high-energy)
diffraction-limited beams are required.

5.6.4. Variable-Reflectivity Unstable Resonators

Some, if not all, of the disadvantages of hard-edge unstable resonators can be overcome
by using a variable reflectivity unstable resonator. In this case the reflectivity of the output
mirror, rather than being equal to one for r < a, and equal to zero for r > ay, as in the
hard edge case, decreases radially from a peak value Ry down to zero over a radial distance
comparable to that of the active medium.(" We will let p(r) be the field reflectivity of mirror
2 and assume a single-ended resonator with round-trip magnification M. For simplicity we
will follow an approach based on geometrical optics. In terms of the radial coordinate, r, we
can then say that the field u’,(Mr), incident, after one round trip, at coordinate Mr of mirror
2, comes from the field u,(r) of the beam incident at coordinate r of mirror 2 at the start of the
round trip. After taking into account the field reflectivity profile of mirror 2 and the round-trip
magnification M, we can then write

p(r) ux(r)

!
Mr) =
w2 (Mr) M

(5.6.6)
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Note the quantity M appearing at the denominator of the right hand side of Eq. (5.6.6). This
is a consequence of the fact that, after a magnification by a factor M, the beam area increases
by a factor M>. To conserve the power of the beam, the intensity must therefore decrease by a
factor M? and the field by a factor M. If u, corresponds to a cavity mode, then it follows that
u'5(r) = ouy(r) where o is now a real quantity, with magnitude smaller than unity, in order
to account for cavity losses. From Eq. (5.6.6) we then get

p(r) ua(r)

ouy(Mr) = i

(5.6.7)

The eigensolutions u(r) = uy(r) of Eq. (5.6.7) will give the field distributions inside the
cavity, in front of mirror 2, while the eigenvalues of Eq. (5.6.7) will give the round-trip losses,
due to the output coupling, according to the familiar relation (see Eq. (5.2.6))

y=1—0o2 (5.6.8)

The first case that we shall consider is that of a Gaussian reflectivity profile.(!’:12 We
therefore write

0 = po exp (—rz/w,zn) (5.6.9)

where py is the peak field reflectivity and w,, sets the transverse scale of the mirror reflectivity
profile. One should note that, according to Eq. (5.6.9), the intensity reflectivity profile, which
is the quantity usually measured experimentally, will be given by

R = Ryexp(—2r*/w2) (5.6.10)

where Ry = p(z] is the peak reflectivity. With the help of Eq. (5.6.9), the lowest order solution
of Eq. (5.6.7) can be shown, by direct substitution, to be given by

u20(r) = u20(0) exp(—r*/w?) (5.6.11)
where
w? = (M> = 1)w?, (5.6.12)
The corresponding eigenvalue o is
o = po/M (5.6.13)
so that, according to Eq. (5.6.8), the output coupling losses are given by
y =1-(Ro/M?) (5.6.14)
The radial intensity distribution for the beam incident on mirror 2 is then given by

Lin(r) = Iin(0) exp(—2r7 /w?) (5.6.15)
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One notes that the radial profiles of both the field amplitude, u,, and beam intensity, /;,, are
described by Gaussian functions. On the other hand, the intensity of the output beam, I, is
given by

Lou(r) = Lin(r)[1 = R(r)]

= I;,(0)[exp(—=2r%/w?) — Ry exp(—2M*1%/w?)] (5.6.16)

where Egs. (5.6.15), (5.6.10) and (5.6.12) have been used. Note that I, is not described
by a Gaussian function and that, under appropriate conditions, one can expect an intensity
profile that has a flat top for r = 0, a feature that is of interest for some applications. This
circumstance occurs in fact when (d*1,,/ drz)rzo = 0. In this case, we find from Eq. (5.6.16)
that the central reflectivity, Ry, and the cavity magnification, M, must satisfy the condition

RoM? =1 (5.6.17)

For this resonator, the round trip cavity losses will, according to Egs. (5.6.14) and (5.6.17), be
given by

y=1—(1/M* (5.6.18)

The above equations give the salient results for unstable resonators with mirrors of Gaussian
reflectivity profile. Although these results are based on a simple geometrical optics approach,
they are in good agreement with results based on a wave-optics approach for sufficiently large
values of the equivalent Fresnel number (N, > 5).® For Gaussian reflectivity mirrors one
can also use an elegant wave optics analysis based on a suitable ABCD matrix with complex
matrix elements.'9

Example 5.11. Design of an unstable resonator with an output mirror having a Gaussian radial reflectivity
profile We will assume y = 0.5 as the value which optimizes the output coupling of a given laser (see
Chap. 7) and we will consider the case where the output beam has its flattest profile. From Eq. (5.6.18)
we get M> = /2, from Eq. (5.6.17) Ry = 1/M?* = 1/+/2 = 0.71 and from Eq. (5.6.12) w? = 0.41 w2,
The reflectivity profile and the corresponding intensity profiles inside and outside the resonator are all
shown in Fig. 5.23. If we now let a be the radius of the active medium and if the medium is placed in
front of mirror 2, the beam intensity profile within the medium will be given by I, (7). To avoid excessive
beam truncation by the active medium aperture, i.e. to avoid excessively pronounced diffraction rings
arising from this truncation, we can, e.g. impose the condition I;,(a)/I;,(0) = 2 x 10~2. We then obtain
a = 0.9 wy, which, for a given aperture a, establishes the spot size w,, of the Gaussian reflectivity profile.
As an example, if we take a = 3.2 mm we get w,, = 3.5 mm. Thus, to conclude, the Gaussian mirror
must have a peak reflectivity of Ry = 71%, a spot size w,, = 3.5 mm and it must be used in an unstable
cavity (e.g. a confocal cavity) with a round trip magnification of M = [2]'/* = 1.19.

The second case that we shall consider is that of a super-Gaussian reflectivity profile.(!”
Instead of Eqgs. (5.6.9) and (5.6.10) we will now write

p = poexp (—r”/w,’jl) (5.6.19a)
R = Roexp (—2r"/w},) (5.6.19b)
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FIG. 5.23. Radial intensity profiles inside, /;,, and outside, /,,;, an unstable cavity with a Gaussian reflectivity output
coupler, R(r) (case of the flattest profile for ;).

and, for n > 2, Eqgs. (5.6.19) describe curves with super-Gaussian reflectivity profile. The
substitution Egs. (5.6.19a) into (5.6.7) then gives

uy(r) = up(0) exp(—r"/w") (5.6.20)

where
W= wu(M" = 1)'/" (5.6.21)
Again we have 0 = pg/M and y = 1 —0? = 1 — (Ry/M?). From Eq. (5.6.20) we now obtain
Iin(r) = Iin(0) exp(=2"/W") (5.6.22)

and the radial profiles of both u, and [;, are described by super-Gaussian functions of the
same order, n, as that of the reflectivity profile. The intensity of the output beam, I, is readily
obtained from I,,,, = I;,(r)[1 — R(r)] and one notes that it is not described by a super-Gaussian
function.

To make a comparison between the performance of unstable resonators with Gaussian
and super-Gaussian reflectivity profiles, we show in Fig. 5.24a the intensity profiles, I;,, for
n = 2 (Gaussian) and n = 5, 10 (super-Gaussian). The curves have all been normalized to
their peak values and the corresponding spot size w in Egs. (5.6.22) and (5.6.15) have been
chosen so that exp-(2a"/w") = 2 x 1072, where a is the radius of the active medium. The
comparison is therefore made for the same degree of beam truncation by the active medium.
The main advantage of a super-Gaussian mirror compared to a Gaussian mirror is apparent
from Fig. 5.24a: super-Gaussian mirrors of increasing super-Gaussian order, n, allow better
exploitation of the active medium (i.e. the area of the mode, A,,, increases as n is increased).
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FIC. 5.24. Comparison between a Gaussian and super-Gaussian (n = 5, n = 10) reflectivity profile: (a) Radial
intensity profile inside the resonator. (b) Radial intensity profile outside the resonator (after G. Cerullo et al.,('®) by
permission).

On the other hand, the diffraction angle, 6, increases with increasing n, as can be understood
from Fig. 5.24b. In this figure the corresponding radial intensity profiles, as predicted by the
previous equations for 1,,,(r) and for Ry = 0.45 and M = 1.8, are shown. One sees that, as n
increases, a hole of increasing depth appears in the output beam and this results in an increased
beam divergence. As a consequence of these two conflicting tendencies, the beam brightness,
which may be taken to be proportional to A,,/ 93, has an optimum value as a function of n.
It turns out that this optimum value depends on the cavity round trip magnification, M, and
on peak mirror reflectivity Ry but, for all practical cases, it ranges between 5 and 8.(® Thus,
in terms of beam brightness, super-Gaussian mirrors with super-Gaussian order n = 5 = 8
provide the best choice for a variable-reflectivity unstable resonator.

5.7. CONCLUDING REMARKS

In this chapter a few of the most relevant features of stable and unstable resonators have
been considered. It is shown, in particular, that, to obtain single transverse mode oscilla-
tion, one can use stable resonators provided that the Fresnel number is typically smaller than
two. This usually means that the radius of the limiting aperture (e.g. the radius of the active
medium) must typically be smaller than 2mm at A = 1.06 um and ~6.5mm at A = 10.6 um.
For larger values of the active medium dimensions, unstable resonators need to be used. In
this case, radially-variable reflectivity output mirrors of Gaussian or, better, super-Gaussian
profile provide the best solution.

PROBLEMS

5.1. A two-mirror resonator is formed by a convex mirror of radius Ry = —1 m and a concave mirror
of radius R, = 1.5 m. What is the maximum possible mirror separation if this is to remain a stable
resonator?



Problems

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

Consider a confocal resonator of length L = 1m used for an ArT laser at wavelength 1 =
514.5 nm. Calculate: (a) the spot size at the resonator center and on the mirrors; (b) the frequency
difference between consecutive longitudinal modes; (c) the number of non-degenerate modes
falling within the Doppler-broadened width of the Art line (A vy = 3.5GHz, see Table 2.2)

Consider a hemiconfocal resonator (plane-spherical resonator with L = R/2) of length L = 2m
used for a CO; laser at a wavelength of A = 10.6 um. Calculate: (a) the location of the beam
waist; (b) the spot size on each mirror; (c) the frequency difference between two consecutive
TEMgp modes; (d) the number of TEMyy modes falling within the laser linewidth (consider a
typical low pressure CO; laser and thus take Av >~ 50 MHz).

Consider a resonator consisting of two concave spherical mirrors both with radius of curvature 4 m
and separated by a distance of 1 m. Calculate the spot size of the TEMy mode at the resonator
center and on the mirrors when the laser oscillation is at the ArT laser wavelength A = 514.5 nm.

How is the spot size modified at each mirror if one of the mirrors of the above problem is replaced
by a plane mirror?

Using Egs. (4.7.26) and (5.5.8a), show that the beam waist for the two-mirror resonator of
Fig. 5.8b occurs at a distance, z1, from mirror 1 given by z; = (1 — g1)g2L/(g1 + &2 — 28182)-

One of the mirrors in the resonator of Problem 5.4 is replaced by a concave mirror of 1.5 m radius
of curvature. Using the result of Problem 5.6, calculate: (1) the position of the beam waist; (2) the
spot size at the beam waist and on each mirror.

A resonator consists of two plane mirrors with a positive lens inserted between the two mirrors. If
the focal length of the lens is f, and L and L, are the distances of the lens from the two mirrors,
calculate: (1) the spot size at the lens position, and the spot sizes at each mirror; (2) the conditions
under which the cavity is stable.

A triangular ring cavity is made up of three plane mirrors (Fig. 5.4a) with a positive lens inserted
between two of the mirrors. If p is the length of the ring perimeter, calculate the position of
minimum spot size, its value, and the spot size at the lens position. Also find the stability condition
for this cavity.

A laser operating at A = 630 nm has a power gain of 2 x 1072 per pass and is provided with a
symmetric resonator consisting of two mirrors each of radius R = 10m and spaced by L = 1 m.
Choose an appropriate size of mirror aperture in order to suppress TEMg; mode operation while
allowing TEMp mode operation.

On account of its relatively small sensitivity to mirror misalignment (see problem 5.16), a nearly
hemispherical resonator (i.e. a plane-spherical resonator with R = L + A and A < L) is often
used for a He-Ne laser at A = 630 nm wavelength. If the cavity length is L = 30 cm, calculate: (1)
the radius of curvature of the spherical mirror so that the spot size at this mirror is w,, = 0.5 mm;
(2) the location in the g1—g> plane corresponding to this resonator; (3) the spot size at the plane
MirTor.

Consider the nearly hemispherical He-Ne resonator of the previous problem and assume that the
aperturing effect produced by the bore of the capillary containing the He-Ne gas mixture (see
Chap. 10) can be simulated by a diaphragm of radius, a, in front of the spherical mirror. If the
power gain per pass of the He-Ne laser is taken to be 2 x 1072, calculate the diaphragm radius
needed to suppress the TEM(; mode (Hint: Show that the round-trip loss of this resonator is the
same as the single pass loss of a near concentric symmetric resonator of length L,, = 2L and
Ri = Ry = R. To calculate diffraction loss, then use Fig. 5.13, assuming the loss for a resonator
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5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.
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of negative g-value to be the same as that of the corresponding resonator with corresponding
positive g-value).

Consider the AjB1C1D; matrix of Fig. 5.8d and show that, for a stable cavity, one must have
0 <AD; < 1and —1 < B{Cy < 0. From these results, then show that B;D1/A1C; < 0 so that
q1 in Eq. (5.5.6a) is purely imaginary.

For a stable two-mirror resonator one can define a misalignment sensitivity, §, as the transverse
shift of the intersection of the optical axis with a given mirror, normalized to the spot size on
that mirror, for a unit angular tilt of one of the two mirrors. In particular, for mirror 1, one can
define two misalignment sensitivity factors 811 and 81> as 617 = (1/wy)(dr1/d6y) and &2 =
(1/w1)(dr1/d6,), where dry/d6; (i = 1,2) is the transverse change of beam center at mirror 1
for unit angular tilt of either mirror 1 or 2. Show that, for a confocal resonator, (§11). = 0 and

(812)c = (wwy/R).

Using the definitions given in the previous problem, show that, for a near-plane symmetric res-
onator, the misalignment sensitivity is such that 811 = 812 = 81 = 820 = (§12)c4w?/ wf, where
(812)c is the misalignment sensitivity of the confocal resonator, w is the spot size on the mirror
for the actual resonator and wy is the mirror spot size of a confocal resonator of the same length.
According to the above equation which of the two resonators is the less sensitive to mirror tilt?

Consider a nearly hemispherical resonator (R = L+ A with A < L) in which mirror 1 is the plane
mirror. Show that we have in this case §12 = (812)c(w2/ws) and 821 = (812)c(ws/w2). Comparing
this resonator with the long radius resonator of the previous problem, for the same value of mirror
spot-size, i.e. w = wp, what conclusion can be drawn with regard to the misalignment sensitivity
of a nearly hemispherical resonator compared to that of a nearly flat resonator?

An unstable resonator consists of a plane mirror (mirror 1) and a convex mirror (mirror 2) of radius
of curvature R, = 2m, spaced by a distance L = 50 cm. Calculate: (1) The resonator location in
the g1, g2 plane. (2) The location of points P and P; of Fig. 5.17. (3) The condition under which
the resonator is single-ended with beam output only occurring around mirror 2. (4) The round-trip
magnification factor and the round trip losses.

A confocal unstable resonator is to be used for a CO; laser at a wavelength of A = 10.6 um.
The resonator length is chosen to be L = 1 m. Which branch would you choose for this resonator
if the mode volume is to be maximized? Calculate the mirror apertures 2a; and 2a; so that: (1)
Neg = 7.5, (2) single-ended output is achieved, and (3) a 20% round-trip output coupling is
obtained. Then find the radii of the two mirrors R and R5.

Using a geometrical-optics approach (and assuming lowest-order mode oscillation), calculate the
round-trip loss of the resonator designed in the above problem. What are the shape and dimensions
of the output beam?

Consider an unstable resonator consisting of a convex mirror, mirror 1, of radius R and a plane
mirror (mirror 2) spaced by a distance L = 50 cm. Assume that the plane mirror has a super-
Gaussian reflectivity profile with a super-Gaussian order n = 6 and peak power reflectivity
Rop = 0.5. Assume also that the active medium consists of a cylindrical rod (e.g. a Nd:YAG
rod) with radius a = 3.2 mm, placed just in front of mirror 2. To limit the round-trip losses to
an acceptable value, assume also a round trip magnification M = 1.4. Calculate: (1) The spot
size w of the field intensity, /;,,, for a 2 x 1072 intensity truncation by the active medium. (2) The
corresponding mirror spot size wy,. (3) The cavity round trip losses. (4) The radius of curvature of
the convex mirror.
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6

Pumping Processes

6.1. INTRODUCTION

We have seen in Chap. 1 that the process by which atoms are raised from level 1 to level
3 (for a three-level laser, Fig. 1.4a) or from level O to level 3 (for a four-level or a quasi-three-
level laser, Fig. 1.4b) is called the pumping process. Usually it is performed in one of the
following two ways: (i) Optically, i.e. by the cw or pulsed light emitted by a powerful lamp
or by a laser beam. (ii) Electrically, i.e. by a cw, radio-frequency, or pulsed current flowing in
a conductive medium such as an ionized gas or a semiconductor.

In optical pumping by an incoherent source, the light from a powerful lamp is absorbed
by the active medium and the atoms are thereby pumped into the upper laser level. This
method is particularly suited to solid-state or liquid lasers (i.e. dye lasers). The line-
broadening mechanisms in solids and liquids produce in fact very considerable broadening,
so that one is usually dealing with pump bands rather than sharp levels. These bands can,
therefore, absorb a sizable fraction of the, usually broad-band, light emitted by the lamp. The
availability of efficient and powerful, cw or pulsed, laser sources at many wavelengths has
recently made laser pumping both attractive and practical. In this case, the narrow line emis-
sion from a suitable laser source is absorbed by the active medium. This requires that the laser
wavelength fall within one of the absorption bands of the medium. It should be noted, how-
ever, that laser’s monochromaticity implies that laser pumping needs not to be limited to just
solid-state and liquid lasers but can also be applied to gas lasers, provided that one can ensure
that the line emitted by the pumping laser coincides with an absorption line of the medium
to be pumped. This situation occurs, for instance, in most far-infrared gas lasers (e.g., methyl
alcohol or CH30H, in the vapor state) which are usually pumped by a suitable rotational-
vibrational line of a CO; laser. For solid-state or liquid lasers, on the other hand, Argon ion
lasers, for cw excitation, Nitrogen or Excimer lasers, for pulsed excitation, and Nd: YAG lasers
and their second and third harmonics, either cw or pulsed, are often used. Whenever possi-
ble, however, semiconductor-diode lasers, due to the inherently high efficiency of these laser
sources (overall optical to electrical efficiencies larger than 60% have been demonstrated),
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are now commonly used (diode-laser pumping). Actually one can foresee that, in a not too far
future, diode-laser pumping will become the dominant means of optical pumping, replacing
even high power lamps.

Electrical pumping is usually accomplished by means of a sufficiently intense electrical
discharge and it is particularly suited to gas and semiconductor lasers. Gas lasers, in particular,
do not usually lend themselves so readily to lamp pumping because their absorption lines are
typically much narrower than the usual broad-band emission of the pumping lamp. A notable
exception that should be mentioned is the case of the optically pumped Cs laser, in which
Cs vapor is pumped by a lamp containing low-pressure He. In this case the situation was
quite favorable for optical pumping since the strong ~ 390 nm He emission line (which is
rather sharp owing to the low pressure used) happens to coincide with an absorption line of
Cs. This laser, however, is no longer in use and its importance resides mostly in its historical
significance as the most notable lamp-pumped gas laser and, particularly, as it was the earliest
proposed laser scheme. Electrical pumping of gas lasers, on the other hand, can be a fairly
efficient process (e.g. for pumping the CO; laser) because the linewidth of the excitation cross-
section of a given transition by electron impact is usually quite large (from a few to a few tens
of eV, see Figs. 6.25 and 6.27). This circumstance occurs because electron impact excitation,
namely ¢ + A — A* + e where A is the species to be excited, is a non-resonant process.
The surplus energy, above that needed to excite species A, is in fact left as kinetic energy of
the scattered electron. By contrast, the process of optical excitation by an incoming photon of
energy hv, namely hv +A — A*, is a resonant process because the photon energy must equal
the excitation energy of species A. Actually, as discussed in Chap. 2, some line-broadening
processes occur in this case on account of some energy, arising e.g. from thermal movement
of species A (as in Doppler broadening), which can be added to the process. The resulting
width of the absorption line, however, turns out to be quite small (e.g. ~ 107> eV for Doppler
broadening of Ne atoms) and this is the fundamental reason why optical pumping by a broad-
band source would be so inefficient for a gas laser. In the case of semiconductor lasers, on the
other hand, optical pumping could be used very effectively, since the semiconductor medium
has a strong and broad absorption band. Indeed, a number of optically pumped semiconductor
lasers (particularly by laser pumping) have been made to operate. Electrical pumping proves
to be more convenient, however, since a sufficiently large current density can be made to flow
through a semiconductor, usually in the form of a p-n or p-i-n diode.

The two pumping processes considered above, optical pumping and electrical pumping,
are not the only ones available for pumping lasers. A form of pumping which is somewhat
similar to optical pumping is involved when the medium is excited by a beam from an X-ray
source (X-ray pumping). Likewise, a pumping process somewhat similar to electrical pumping
is involved when the medium is excited by a beam of electrons from an electron-beam machine
(e-beam pumping). Although both X-ray and e-beam pumping are able to deliver high pump
powers or energies in a large volume of active medium (generally in gaseous form), these
pumping mechanisms are not widely used, in practice, due to the complexity of the X-ray or
e-beam apparatus. It should also be noted, in this contest, that possibly the shortest wavelength
so far achieved in a laser (A = 1.4 nm i.e. around the boundary between soft and hard X-ray
region) has been achieved using the intense X-rays produced by a small nuclear detonation.
The details of this laser are still classified but one can readily appreciate that this pumping
configuration is not easily duplicated in the typical laboratory!
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A conceptually different and rather interesting type of pumping is involved when the
required inversion is produced as a direct result of an exothermic chemical reaction (chemical
pumping). There are two general kinds of these reactions which can be used, namely: (i)
Associative reactions, i.e. A+B — (AB)*, resulting in the molecule AB being left in an excited
vibrational state. (ii) Dissociative reactions, e.g. where the dissociation is induced by a photon
i.e. AB + hv — A + B*, resulting in species B (atom or molecule) being left in an excited
state. Chemical pumping usually applies to materials in the gas phase and generally requires
highly reactive and often explosive gas mixtures. On the other hand, the energy available in
an exothermic reaction is often quite large and high powers, for cw operation, or energies, for
pulsed operation, can be available for laser action if a good fraction of the available energy
is converted into laser energy. These features have enabled chemical lasers to produce the
largest cw laser powers so far available (2.2 MW for the so-called MIRACL laser, an acronym
for Mid Infrared Advanced Chemical Laser). In view of the handling problems associated
with reactive and hazardous materials, the use of these lasers has been confined to the military
field, for use as directed energy weapons.

Another conceptually different type of pumping mechanism for gas molecules is by
supersonic expansion of a gas mixture containing the particular molecule (gas-dynamic pump-
ing). In this case, a suitable mixture, usually involving the CO, molecule as the active species
(e.g. CO,:N;,:H,O in the 6:76:1 ratio), is used. The mixture is raised, in a suitable container,
to a high pressure (e.g. &~ 17 atm) and temperature (e.g. ~ 1,400 K) by combustion of appro-
priate fuels (e.g. combustion of benzene, C¢Hg, and nitrous oxide, N,O, thus automatically
supplying hot CO, with a CO,/H;O0 ratio of 2:1). The CO, molecule in this mixture is, of
course, not inverted but, due to the high temperature, a substantial fraction of molecules is
found in the lower laser level (& 25%) while a lower but still substantial fraction is found
in the upper laser level (&~ 10%). It should be noted, in fact, that the CO, laser is a roto-
vibrational laser and the lower and upper laser levels of the ground electronic state can be
significantly excited thermally, i.e., by having the mixture at a high temperature. The gas mix-
ture is then made to expand, adiabatically, to a very low pressure (e.g. ~ 0.09 atm) trough a
row of expansion nozzles (an example of this expansion system can be found in the chemi-
cal laser section of Chap. 10). Due to expansion, the translational temperature of the mixture
will be reduced to a much lower value (e.g. &~ 300 K). Consequently, during the expansion
process, upper and lower state populations will tend to relax to the, much lower, equilibrium
values appropriate to this lower temperature. For a CO, laser, however, the lifetime of the
upper state is appreciably longer than that of the lower state. This means that relaxation of the
lower level will occur at an earlier stage, downstream in the expanding beam. Thus there will
be a fairly extensive region, downstream from the expansion nozzle, where the population
of the lower laser level has decayed, while that of the upper level has persisted at its initial
value in the container. Thus a population inversion is created in this region via the expan-
sion process. Gas-dynamic pumping has been mainly applied to CO, lasers and has yielded
high cw powers (=~ 100kW). The complications of the system have been an obstacle to its
use for civilian applications while its lower power, compared to chemical lasers, has put it at
disadvantage for military applications.

As for the case of radiation-matter interaction, considered in Chaps. 2 and 3, where
the ultimate goal was the calculation of both stimulated and spontaneous transition rates, so
the ultimate goal here would be to calculate the pump rate per unit volume, R,, as defined
by Eq. (1.3.1). When pumping with a broad-band light source, i.e. a lamp, the calculation
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of R, becomes rather involved.( This is also the case when pumping via electrons in a gas
discharge, where a distribution of electron-velocities is involved.® So, we will limit ourselves
here to a description of various pumping schemes with some discussion of the underlying
physical mechanisms involved in the processes.

6.2. OPTICAL PUMPING BY AN INCOHERENT LIGHT SOURCE

In the case of optical pumping by a powerful incoherent source, i.e. a lamp, the pump
light is emitted in all directions and, generally, over a broad spectrum. This light then needs
to be transferred into the active medium. The object of the next section is to describe how this
transfer can be achieved by a suitable optical system.

6.2.1. Pumping Systems®

The lamps used for laser pumping are, often, of cylindrical shape. Figure 6.1 shows two
of the most commonly used pumping configurations when a single lamp is used. In both cases
the active medium is taken to be in the form of a cylindrical rod with length and diameter about
equal to those of the lamp. The diameter usually ranges from a few millimeters to some tens
of millimeters and the length from a few centimeters to a few tens of centimeters. In Fig. 6.1a
the lamp is placed along one of the two focal axes, F, of a specularly reflecting cylinder of
elliptical cross-section (labeled 1 in the figure and usually referred to as the pumping cham-
ber). The rod is placed along the second focal axis F,. A well-known property of an ellipse
is that a ray F P, leaving the first focus F, passes, after reflection by the elliptical surface,
through the second focus F, (ray PF5). This means that a large fraction of the light emitted
by the lamp is conveyed, by the pumping chamber, to the active rod. High reflectivity of this
chamber is achieved by vacuum deposition of a gold or silver layer on the inside surface of the
cylinder. Figure 6.1b shows an example of what is known as a close-coupled configuration.
The rod and the lamp are placed as close as possible and are closely surrounded by cylindrical
reflector (labeled 1 in the figure). In this case, pumping chambers made of diffusely reflecting

(a) (b)

FIC. 6.1. Pump configurations using one lamp: (a) elliptical cylinder; (b) close-coupling.
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Lamps
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FIG. 6.2. Pump configurations using two lamps: (a) double-ellipse; (b) close-coupling.
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FIG. 6.3. Pumping configuration using many lamps: (a) Active medium in the form of a single slab with the laser
beam traversing the slab in a zig-zag path. (b) Active medium made of many slabs inclined at Brewster’s angle to the
laser beam.

materials are often used instead of specular reflectors. For highly diffusing materials such
as compressed BaSO, powders or white ceramic, which are very efficient scattering media,
the efficiency for close-coupled configuration is usually not much less than that of specularly
reflecting cylinders. The pump light distribution within the laser rod is much more uniform,
however. Figure 6.2 shows two common examples of pumping chambers involving the use of
two lamps. In Fig. 6.2a, the specularly reflecting cylinder consists of a double-ellipse sharing a
common focal axis. The laser rod is placed along this axis while the two lamps lie on the other
two focal axes of the ellipses. Figure 6.2b shows two lamps placed as close as possible to the
laser rod (close-coupled configuration) the reflecting cylinder again being usually of diffusive
material. The efficiencies of these two-lamp configurations are lower than for the correspond-
ing single-lamp configurations of Fig. 6.1. The pump uniformity is however better and higher
pump energies, for a given lamp loading, can be obtained from a two-lamp, compared to a
single-lamp, configuration. For high-power or high-energy systems, multiple-lamp configura-
tions have also been used. A widely-used configuration involves the active medium arranged
in the form of a slab (Fig. 6.3a) or multiple slabs (Fig. 6.3b). In both cases each lamp is placed
along e.g. the focal line of a parabolic reflecting cylinder so as to ensure uniform illumination
of the slab(s). In Fig. 6.3a, laser action occurs by total internal reflections at the two slab
faces. The advantage of this zig-zag beam path is that it averages out the stress-birefringence
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and thermal focusing induced in the medium by the pump light. This configuration, despite
its greater complexity compared to schemes using a rod-shaped laser medium is particularly
advantageous when a laser beam of very high optical quality is required. In Fig. 6.3b, laser
action takes place along the beam direction indicated in the figure and the slabs are oriented
so that the beam is incident at Brewster’s angle. The main advantage of this configuration
stems from the fact that the transverse dimension of the laser medium can be made very large.
Furthermore the slabs can be individually cooled by e.g. a gas refrigerant. This configuration
finds application in large aperture (up to 40 cm diameter) Nd:glass amplifiers used for laser
fusion experiments.

For pulsed lasers, medium-to-high pressure (500 <+ 1500 Torr) Xe or Kr flashlamps are
used and the pump light pulse is produced by discharging, through the lamp, the electrical
energy stored in a capacitor bank, charged by a suitable power supply (Fig. 6.4). A series
inductance L is often used in the electrical circuit to limit the current rise-time. The discharge
may be initiated by ionizing the gas in the lamp through a high-voltage trigger pulse applied
to an auxiliary electrode around the lamp (parallel trigger, see Fig. 6.3a). Alternatively, the
preionization may be produced by a voltage pulse directly applied between the two main elec-
trodes of the lamp (series trigger, see Fig. 6.3b). Once ionized, the lamp produces an intense
flash of light whose duration is determined by the circuit capacitance and inductance as well
as by the lamp electrical characteristics (usually the duration ranges from a few microseconds

Lamep == Lam
J/ i P
Power i
. trigger
411 Ltrigger Power
Supply -l— g Dpulse Supply T pulse
(a) (b)

FIG. 6.4. Pulsed electrical excitation of a flashlamp using either an external trigger, (a), or series trigger
configuration, (b).

Boost Trigger

voltage| |circuit

Power | Lamp
Supply C

FIG. 6.5. Electrical excitation of a cw lamp.




6.2 e Optical Pumping by an Incoherent Light Source

to a few milliseconds). For cw lasers, high-pressure (1-8 atm) Kr lamps are most often used
and the cw current may be delivered by a current regulated power supply, see Fig. 6.5 where
the L/C filter network is used for ripple suppression. In this case, also, an electrical trigger
pulse, usually from a series trigger, is needed to provide the required initial ionization. For
reliable lamp starting, the voltage of the power supply must be boosted to a sufficiently high
value and for a sufficiently long time, during the trigger phase, so as to ensure a high enough
density of ions and electrons in the lamp to stabilize the discharge. This is conveniently done
by impulsively exciting the trigger transformer through a low-current booster power supply.

6.2.2. Absorption of Pump Light

To understand the process of light emission by a lamp, we begin by showing in Fig. 6.6a
the emission spectra, for pulsed excitation, of a Xe flashlamp at two typical current densities.
For the case of cw excitation, Fig. 6.6b shows the emission spectrum of a cw Kr lamp at a
current density of J = 80 A/ cm’. Actually the typical operating current density of a Kr lamp
is somewhat higher than this, i.e. J = 150 A/ cmz, but this difference does not influence the
discussion that follows. Note that, at the relatively low current density of a cw lamp, the emis-
sion is concentrated mostly in various Kr emission lines which are considerably broadened
by the high gas pressure. By contrast, at the much higher current densities of a flashlamp, the
spectrum also contains a broad continuous component arising from electron-ion recombina-
tion (recombination radiation) as well as from electrons deflected by ions during collisions
(bremsstralung radiation). For both these phenomena, the emission arises from electron-ion
interaction. Accordingly, the intensity of the emitted light is expected to be proportional to the
product N.N;, where N, and N; are the electron and ion densities in the discharge. In a neu-
tral gas discharge one has N, = N; while the two densities are proportional to the discharge
current density, J, by the well known relation N, = J/evgyy, where vy, is the electron drift
velocity. It then follows that, to a first approximation, the continuous component of the spec-
trum is expected to grow as J. By contrast, to a first approximation, the intensity of the line
spectrum of Fig. 6.6b can be taken as proportional to N, and hence to J. This is the reason
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FIG. 6.6. Comparison of the emission spectra of a Xe flashlamp, at 500 Torr pressure (a), and of a cw-pumped Kr
arc lamp, at 4 atm pressure (b).
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FIG. 6.7. Absorption cross section of Nd*7 ion in YAG (solid line) and of Cr37 ion in Alexandrite (dashed line).
The left-hand scale refers to the cross-section of Nd:YAG and the right-hand scale to alexandrite. For alexandrite, the
average of the three values measured for polarization parallel to the a, b, and ¢ axes has been taken.

why the continuous spectrum becomes dominant over the line spectrum at higher values of
the current density (Fig. 6.6a) while it is not apparent at the much lower current densities of a
cw lamp (Fig. 6.6b).

To understand the details of how the light emitted by the lamp is absorbed by the active
medium, we begin by showing in Fig. 6.7, as a solid line, the absorption spectrum of Nd:YAG
(N&*t in Y3A150, crystal) and, as a dashed line, the absorption spectrum of Alexandrite
(Cr** in a BeAl,Oy crystal). In both cases, it is the dopant ion, present in the crystal as
a trivalent ion impurity, which is responsible for the absorption and which also acts as the
active element. A comparison of Fig. 6.7 with 6.6a indicates that the relatively broad spec-
tra of both Nd** and Cr** ions allow a reasonably good utilization of the light emitted by
a flashlamp. The situation is even more favorable for cw excitation of a Nd:YAG by a Kr
lamp. A comparison of Fig. 6.7 with 6.6b shows, in fact, that some strong emission lines
of Kr, in the 750 = 900 nm range, happen to coincide with the strongest absorption lines of
Nd** ions. Note that the absorption spectrum of a rare-earth element, such as Nd3 +, does
not vary much from one host material to another, since the absorption arises from electron
transitions between inner shells of the ion. So the spectrum of Nd:YAG can be taken, to
first order, as representative of other Nd-doped materials such as Nd:YLiF4, Nd:YVO, and
Nd:glass (Nd** ions in a glass matrix). For a transition metal dopant such as Cr’™, where
the spectrum arises from the outermost electrons, the host material has a larger influence on
the spectrum. However, the spectrum for alexandrite is similar to that of ruby (Cr3 T in Al,O3
crystal), a historically important and still widely used material, and to those of more recently
developed and now very important laser materials such as Cr:LiSrAlFg (LISAF for short) or
Cr:LiCaAlFs (LICAF).
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6.2.3. Pump Efficiency and Pump Rate

Consider first a cw laser pumped by a pump rate, R, which is assumed uniform troughout
the volume of the pumped region, V. We can ask ourselves what would be the minimum pump
power, P, needed to obtain a given pump rate R,. With reference to Fig. 6.17, this would
correspond to the case where the upper laser level were directly pumped from the ground state
by, e.g. monochromatic pump photons of energy hv,,,, where v,,, is the frequency difference
between the ground level and the upper laser level. The minimum pump power, P, is then
given by

Py, = (dN2/dt),V hvyy = R,V hv,, (6.2.1a)

where V is the pumped volume of the active medium. We can now define a pump efficiency,
1p, as the ratio between this minimum pump power, P,,, and the actual electrical pump power,
P, entering the lamp i.e.

Np = Pu/Pp (6.2.1)
For non-uniform pumping, we can then write

P = hvm, [ RydV =
"af ! 6.2.2)
= hvyp<R,>V

where the integral is taken over the whole volume of the medium and <R,,> is the average of
R, in the medium. From Egs. (6.2.1) and (6.2.2) we then get

Ny = (hVup <R,>V)/P, (6.2.3)

For a pulsed pumping system, we can, likewise, define 7, as

= (A / R,dVdi)/E, (6.2.4)

where the integral is also taken over the whole duration of the pump pulse and E, is the
electrical pump energy given to the lamp.

To calculate or simply estimate the pumping efficiency, the pump process can be divided
into four distinct steps: (i) the emission of radiation by the lamp; (ii) the transfer of this radia-
tion to the active medium; (iii) the absorption in the medium; (iv) the transfer of the absorbed
radiation to the upper laser level. Consequently, the pumping efficiency can be written as the
product of four terms, namely,

P, P, P, P,

= omo_ 6.2.5
P, P, P, Pa NrNiNallpg ( )

where: (i) n, = P,/P, is the ratio between the radiated power of the lamp in the wavelength
range corresponding to the pump bands of the laser medium, P,, and the total electrical pump
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power to the lamp, P,. The efficiency 7, is referred to as the lamp radiative efficiency and
is smaller than one because some of the electrical input power is emitted into not useful
wavelength ranges or transformed as heath. (ii) n, = P,/P, is the ratio between the power
actually transmitted to the the medium by the pumping system and the radiated power, P,.
The efficiency 7, is referred to as the transfer efficiency of the pump system and is smaller
than one because not all radiative power emitted by the lamp, P,, is conveyed into the active
medium. (iii) n, = P,/ P; is the ratio between the power actually absorbed by the medium, P,,
and the power entering into it, P,. The efficiency 7, is referred to as the absorption efficiency
and is smaller than one because not all power entering into the medium is there absorbed.
(iv) npg = Pm/P, is the ratio between the minimum pump power considered above and the
absorbed power P,. The efficiency 7, is referred to as the power quantum efficiency and is
smaller than one because the absorbed power raises atoms to generally a few pump bands with
energy larger than hv,,,, and because not all excited atoms then decay to the upper laser level.

Specific expressions for the above four efficiency terms can be obtained when the lamp
spectral emission, pump geometry, medium absorption coefficient and geometry are known."
We will not undertake an in-depth consideration of this topic here, so we will limit ourselves
to a discussion of a few typical results in the example that follows.

Example 6.1. Pump efficiency in lamp-pumped solid state lasers We will take as the active medium a
cylindrical rod with 6.3 mm diameter pumped in a silvered elliptical pumping chamber with major axis of
2a = 34 mm and minor axis 2b = 31.2 mm. For each laser medium, the lamp current density is assumed to
have the appropriate value for that laser configuration, ranging generally between 2,000 and 3,000 A/ e’
Under these pumping conditions, the calculated values for the four efficiency terms 7, 1, 114, 74 and for
the overall pump efficiency, 7,, for ruby, alexandrite, Nd: YAG and Nd:glass are listed in Table 6.1. From
this table we may notice, in particular, that: (i) The lamp radiative efficiency is typically less than 50%
in all cases considered. (ii) In view of the larger Nd content in a glass and broader absorption bands of
Nd:glass material, the overall efficiency of Nd:glass is almost twice that of Nd:YAG. (iii) The overall
efficiency of Alexandrite is almost 3 times higher than for the other Cr’t -doped materials, i.e. ruby.
This is due mainly to the stronger absorption bands of Alexandrite owing to the higher Cr** content.
Still higher pump efficiency, above the 10% level, are then expected for other Cr** -doped media such as
Cr:LISAF and Cr:LICAF on account of the even higher (by more than an order of magnitude) Cr content.
(iv) In all cases considered, the overall efficiency, being the product of four efficiency terms, turns out to
be quite small (3 + 8%).

In concluding this section we note that, once the overall pump efficiency is calculated
or, perhaps, simply estimated, the pump rate can be readily obtained from Eqs. (6.2.1a)

TABLE 6.1. Comparison between computed pumping efficiency terms for different laser materials”

Active Medium 1 (%) 1 (%) 1a (%) Npq (%) 1y (%)
Ruby 27 78 31 46 3.0
Alexandrite 36 65 52 66 8.0
Nd:YAG 43 82 17 59 35

Nd:Glass (Q-88) 43 82 28 59 5.8
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and (6.2.1) as

P
R, =n, [ —— 6.2.6
v =T (Alhvmp) 6.26)

where A is the cross-sectional area of the pumped volume of the active medium and [ is its
length. This is the simple basic expression for the pump rate often used in the laser literature®
and which will be used frequently in the following chapters. Note however that, to obtain R,
from Eq. (6.2.6), one needs to know 7, implying that the detailed calculations, such as those
discussed in,V need to have been performed by someone!

6.3. LASER PUMPING

Laser beams have often been used to pump other lasers since the early days of lasers,
being used for example in the first demonstration of laser action in a dye medium.®-9 In partic-
ular, Ar ion lasers are widely used to pump cw dye and Ti**:Al,Oj lasers, Excimer, Nitrogen
and Copper Vapor lasers are used for pulsed pumping of dye lasers, Nd:YAG and its second
harmonic beam are used as pumps for cw and pulsed dye and solid-state lasers (including
color-center lasers). Laser pumping has become a very much more important pumping tech-
nique, however, since efficient and high power diode lasers have been developed and become
widely available. A particularly interesting case is the use of diode lasers to pump other
solid-state laser materials thus providing an all-solid-state laser. The most relevant examples
include: (i) Nd:YAG, Nd:YLF, Nd:YVO, or Nd:glass pumped by GaAs/AlGaAs* Quantum
Well(QW) lasers at ~ 800 nm (typical oscillation wavelengths are around 1 pm, 1.3 pm and
0.95 um). (ii) Yb:YAG, Er:glass or Yb:Er:glass pumped by InGaAs/GaAs strained QW lasers
in the 950 = 980 nm range (oscillation wavelength is around 1 pm for Yb and 1.54 pm for Er
lasers). Note that, in the case of Er:Yb codoping, the pump light is absorbed by Yb>* ions
and then transferred to Er*T lasing ions. (iii) Alexandrite, Cr:LISAF or Cr:LICAF pumped by
GalnP/AlGalnP QW lasers in the 640 = 680 nm range and oscillating in a ~ 130 nm range
at ~ 840 nm. (iv) The Tm:Ho:YAG laser pumped by AlGaAs QW lasers at 785 nm and oscil-
lating around 2.08 pm. Note that, in this case, the pump light is absorbed by Tm*™ ions and
transferred to the Ho> " lasing ions.

As a representative example of Nd ion lasers, we show in Fig. 6.8a the relevant plots
of the absorption coefficient vs wavelength for both Nd: YAG, continuous line, and Nd:glass,
dashed line. Note that Nd:YAG is most effectively pumped at a wavelength of A = 808 nm
and this is obtained by a Gagg; AlygoAs/Gag7Alp3As QW laser whose emission bandwidth
is typically 1 = 2nm wide. Nd:glass, on the other hand, due to its broader and featureless
absorption profile, can be pumped over a broader range around the 800 nm peak. For the case
of Yb-ion lasers, we show in Fig. 6.8b the relevant plots of the absorption coefficient vs wave-
length for Yb: YAG (solid line) and Yb:glass (dashed line). Again the absorption coefficient for
glass appears broader and featureless compared to that of YAG. The best pumping wavelength

* 1In all double-compound (A/B) semiconductor lasers, considered in this section, the first compound (A) refers to
the active layer while the second one (B) is the so called cladding layer (see Chapt. 9, Sect. 9.4)
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FIG. 6.8. Absorption coefficient vs wavelength in the wavelength range of interest for diode laser pumping: (a)
Nd:YAG, solid line, and Nd:glass, dashed line. Neodymium concentration is 1.52 x 102 cm™3 for Nd:YAG (1.1
atomic % doping) and 3.2 X 102 ecm™3 for Nd:glass (3.8% by weight of Nd>O3) (after ref.(10) by permission). (b)
Yb:YAG, solid line, and Er:Yb:glass, dashed line. Ytterbium concentration is 8.98 x 102 cm™3 for Yb:YAG 6.5
atomic %) and 1 X 10?! cm™3 for Yb:glass. The curves of Yb:YAG and Yb:glass are based on the corresponding
plots of ref.(!7) and,('®) respectively.

TABLE 6.2. Comparison between pumping parameters and laser wavelengths for different laser

materials

Nd:YAG Yb:YAG Yb:Er:glass Cr:LISAF Tm:Ho:YAG
Concentr. 1at. % 6.5 at.% 1 mol.% 6.5 at.% Tm 0.36 at. %Ho
Pumping Diode AlGaAs InGaAs InGaAs GalnP AlGaAs
Wav. (nm) 808 950 980 670 785
Active-ion conc. 1.38 9 10 [YDb] 0.9 8 [Tm]
[10% cm™3]

1 [Erx] 0.5 [Ho]

Pump abs. coeff. 4 5 16 4.5 6
(em™")
Oscillation Wav. 1.06 1.03 1.53 0.72 = 0.84 2.08
(1m)

1.32,1.34

0.947

is 960 nm for Yb:YAG and 980 nm for glass and these wavelengths can be obtained from a
InGaAs/GaAs QW laser (e.g. Ing,GaggAs/GaAs for A = 980 nm). The plots of the absorp-
tion coefficient vs wavelength for Cr’" ion lasers (Alexandrite, Cr:LISAF, Cr:LICAF) show
the general structureless shape of the dashed curve of Fig. 6.7. The peak absorption coefficient
at 600 nm wavelength is ~ 0.5 cm™' for Alexandrite and up to 50cm™! cm™' for Cr:LISAF.
Note that the higher absorption coefficient in Cr:LISAF is due to the higher Cr concentration
which can be used (~ 100 times higher than for Alexandrite) without incurring the problem
of concentration quenching of the upper state lifetime. Due to the lack of suitable diode lasers
at shorter wavelengths, pumping is achieved in the 640 = 680 nm wavelength range, obtained
from GaInP/AlGalnP QW lasers (e.g. Gag sIng sP/Alp25Gag2sIng sP for 670 nm wavelength)
with GalnP being the active QW layer. Table 6.2 summarizes the most relevant pumping data
for some of the active media considered above.
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6.3.1. Laser Diode Pumps

There are essentially four types of pumping laser diodes, listed in order of increasing
output power as: (i) Single-stripe; (ii) diode-array; (iii) diode-bar; (iv) stacked-bars.

At the lower end of the output power range (P < 100 mW) one has the single-stripe
semiconductor laser such as the index-guided laser of Fig. 6.9a. By means of a suitable insu-
lating oxide layer, the diode current is confined to a 3 <+ 5 um wide stripe which extends over
the whole length of the diode. The emitted beam has an elliptical shape with a diameter in
the direction perpendicular to the laser junction of d; = 1 <+ 3 pm and a diameter in the
junction plane of djj = 3 + 6 um. With such small spot-sizes, the beam is spatially coherent
i.e. it is diffraction limited. In fact, in a typical situation, the divergence half-angle-cone at
1/¢?* intensity point is 8, = 20° = 0.35rad, perpendicular to the junction. One then gets
01 = 2A/nd) provided one takes, at A = 800nm, d; = 1.4 pm. In the junction plane one
typically has 0] = 5° = 0.09 rad and again one gets 0] == 21 /md)| by taking d)| = 5.8 um.
[Gaussian distributions in the two planes, with spot sizes w1 = d1 /2 and wy| = d|/2, are
assumed so that beam divergence is calculated according to Eq. (4.7.19)]. Note that, in view
of this strong difference between the beam divergences in the two directions, the beam has its
major axis direction rotated by 90° after beam propagation just a few micrometers away from
the diode exit face.
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FIG. 6.9. (a) Single-stripe index-guided semiconductor diode laser. (b) Monolithic array of many stripes on a single
semiconductors chip.
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FIG. 6.70. (a) Monolithic 1-cm bar for cw operation. (b) Stacked bars for quasi cw operation.

To obtain larger output power values, one uses a monolithic array of diode-laser stripes,
fabricated on the same semiconductor substrate (Fig. 6.9b). In typical cases the array may
contain twenty stripes, each 5 pm wide, with their centers spaced by ~ 10 pm. The overall
dimensions of the emitted beam are d; =~ 200 um X d; == 1um and, for arrays having
uncorrelated phases, the beam divergences are 6 =~ 20° and 6 = 5° i.e. the same as for a
single stripe. The beam divergence parallel to the junction plane, 6|, is now about 40 times
more than the diffraction limit (6)d) /24 = 34). Actually, for lower power devices, some
phase correlation among the various emitters may develop leading to a characteristic two-
lobed angular emission pattern, the two lobes being spaced by ~ 10° and each ~ 1° wide.
Output power from such array may be up to ~ 2 W.

To obtain still larger output powers, the array described above may be serially repeated
in a single substrate to form a monolithic bar structure (Fig. 6.10a). The device shown in the
figure is seen to consist of 20 arrays, whose centers are spaced by 500 um, each array being
100 um long and containing 10 laser stripes. The overall length of the bar is thus ~ 1 cm, the
limit being set by considerations of processing practicality. Again all the stripe emitters may
be considered to be phase uncorrelated and output powers up to 10 <+ 20 W are usual.

The bar concept can be extended to the case of a stack of bars which form a two-
dimensional structure (Fig. 6.10b). In the figure, six, 1 cm long, bars are shown stacked so
as to form an overall, 2mm x 1 cm, emitting area. These stacked bars are so far intended for
quasi-cw operation with a duty cycle up to 2%. Peak power density may be up to 1 kW/ cm?
and average power up to 100 W/ cm’.

To pump laser materials such as Nd:YAG, having narrow absorption lines, the width
of the diode’s spectral emission is an important parameter to be considered. The spectral
emission bandwidth of a single stripe may be as narrow as 1 nm, which compares favorably
with the ~ 2 nm bandwidth of the 808 nm absorption peak of Nd:YAG. For the case of arrays
and, even more so, for bars or stacked bars, spectral emission may be substantially larger than
this value due to compositional variation between stripes and temperature gradients, both
leading to different stripe emission wavelength. Currently, the best results for a bar may be
a spectral width as low as ~ 2nm. To tune and to stabilize the emission wavelength, diode
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lasers are normally cooled by a thermoelectric cooler, for low power devices, and by liquid
cooling for the highest powers. A temperature stability and accuracy of less than 1 C is usually
required.

6.3.2. Pump Transfer Systems

For efficient pumping, the light emitted by the diode laser systems described above must
be properly transferred to the active medium. There are, basically, two types of pump system
geometry: (i) Longitudinal (or axial) pumping, where the pump beam enters the laser medium
along the resonator axis. (ii) Transverse pumping, where the beam is conveyed to the active
medium generally from one or more directions, transverse to the resonator axis. We shall
consider the two cases separately because the diode lasers and pump transfer systems are
somewhat different for the two cases.

6.3.2.1. Longitudinal Pumping

For longitudinal pumping, the beam emitted by the diode laser generally needs to be
concentrated into a small (100 pm = 1 mm diameter) and usually not so necessarily circular
spot into the active medium. Three of the most common laser configurations are shown in
Fig. 6.11a, b and c, respectively. In Fig. 6.11a, the laser rod is shown in a plane-concave
resonator, the plane mirror being directly deposited to one rod face, and the pump beam
focused on this face. In Fig. 6.11b and ¢ two pump beams, from two different diode systems,
are focused into the rod center from the two sides of the rod. The laser resonator may then
consist either of a folded ring configuration (Fig. 6.11b) or a z-shaped folded linear cavity

Pump HR rmrrors Pump Pump

beam beam beam
4::@:3 —{ =========\-

(a) (b)

FIC. 6.11. Typical configurations for longitudinal diode laser pumping: (a) Single-ended pumping in a simple plane-
concave resonator. (b) Double-ended pumping for a ring laser in a folded configuration. (c) Double-ended pumping
for a z-shaped folded linear cavity.
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FIG. 6.12. (a) Pump-transfer system for compensating the astigmatism of a single-stripe diode laser. (b) Simple
cylindrical lens combination to realize an anamorphic system. (c) Anamorphic prism-pair configuration.

(Fig. 6.11c¢). For these last two resonators, the resonator axis is also indicated by a dashed
line. Given these resonators, we now address the question of how to transform the pump
beam into a circular shape, of the appropriate size, within the laser rod.

Let us first consider the single-stripe configuration of Fig. 6.9a, which is still used as a
pump source for low power devices (output powers up to a few tens of mW may be achieved
with single stripe pumping). The ellipticity of the strongly diverging beam of the diode stripe
can be compensated by a combination of two spherical lenses and by an anamorphic opti-
cal system, which is indicated schematically as a box in Fig. 6.12a. In the figure, the beam
indicated by a continuous line corresponds to the beam behavior in the plane parallel to the
laser diode junction while the beam indicated by dashed lines corresponds to the plane per-
pendicular to the junction. Lens L;, of focal length fi, is a spherical lens of short focal length
and high numerical aperture to collimate the highly divergent beam from the laser diode.
Since 0, =~ 49H, the beam, after the lens, will have an elliptical shape with a dimension
d1 = fitgf) perpendicular to the junction (the so-called fast-axis) and d|| = fj tgf) parallel
to the junction (the slow axis). Thus, in a typical case, we may have d, /d|| = tgf /tgf) = 4.
This elliptical beam is then passed through an anamorphic expansion system i.e. a system
which provides different beam expansions along the two axes. If, for instance, the system
provides a 4:1 expansion of beam along the slow axis and no expansion along the fast axis,
then a circular spot will result after this expansion. The simplest configuration for such an
anamorphic expander could perhaps be provided by the combination of two cylindrical lenses,
L3 and L4, in a confocal (or telescopic) arrangement (Fig. 6.12b). If the two lenses have their
focusing action in the plane containing the slow axis, there will be a beam expansion of f4/f3,
where f; and f; are the focal lengths of the two lenses, for the beam in this plane (solid-line).
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For the other plane, however, the two cylindrical lenses behave simply as plane parallel plates
and the beam will thus be unaffected, in the fast-axis direction, by the beam expander. The
anamorphic system of Fig. 6.12b is seldom used in practice, however, because, to save space,
the system would require cylindrical lenses of short focal length and such lenses, if they are
to be aberration free, are rather expensive. Thus, the anamorphic prism pair of Fig. 6.12c is
usually employed.? In the figure we again consider the beam behavior only in the slow-axis
plane (solid line). By simple geometrical considerations one can show that, after refraction at
the front surface of the first prism, the incident beam, of diameter D;, is enlarged to a diameter
D, such that D, /D; = cos 6,/ cos ;, where 6; and 6, are, respectively, the angles of incidence
and refraction at the prism surface. Then, if the exit face of the first prism is made near nor-
mal to the beam direction, no refraction will occur at this face and the beam will pass through
it unchanged. Under these conditions the beam magnification, M, after the first prism, will
simply be given by
M D, cosf, 631
T D; cosb; 6.3.1)
Let us now consider the passage of the beam through the second prism. If the prism is
identical to the first one, is oriented as in Fig. 6.12c and if the angle of incidence at the entrance
face is again equal to 6;, then the beam will again be magnified by a factor M on traversing
the second prism. The overall beam magnification is then equal to M? and the direction of
the output beam is parallel to that of the input beam, although shifted laterally. In the fast
axis plane, on the other hand, the two prisms behave as simple plates and so there is no beam
magnification. Thus, for the example considered in Fig. 6.12a, if one chooses an anamorphic
prism pair with appropriate values for 6; and for the prism refraction index, n, one can readily
arrange to have M = 2 i.e. an overall magnification of M> = 4. The beam, after the prism-
pair, will thus have a circular shape. If the collimating lens L; in Fig. 6.12a has a sufficiently
high numerical aperture to accept the highly diverging beam along the fast axis, and if the
lens is, ideally, aberration free, the beam after this lens and, hence, after the prism-pair will
still retain the diffraction limited quality of the original beam from the diode. Since the beam
leaving the prism pair has a circular shape, the beam divergence will now be equal along the
two axes. A spherical lens L, of appropriate focal length f>, can then be used to focus the
beam to a round spot of appropriate size in its focal plane (Fig. 6.11a) i.e. where the active
medium is placed. If lens L, is also aberration free, the beam in the focal plane will again be
of circular symmetry and diffraction limited.

Example 6.2. Calculation of an anamorphic prism-pair system to focus the light of a single-stripe diode
laser We will consider the system configuration of Fig. 6.12 and a single-stripe laser with 6; = 20°
and )] = 5°, so that, assuming diffraction limited Gaussian distributions, we can take d; = 1.4 um
and d) = 5.8 pm. We will consider a collimating lens, L, of focal length f; = 6.5 mm. After lens L;,
the beam diameters along the fast and slow axes, will be respectively D; = 2fijtg6; = 4.73 mm and
Dy = 2fitgf) = 1.14mm. Each prism must then provide a magnification of M = [DL/DH]I/2 >~ 2.
Assuming the prisms to be made of fused silica, so that the refractive index at 800 nm wavelength is
n = 1.463, then 6; and 0, are found from Eq. (6.3.1) and from Snell’s law sin ; = nsin 8,. The solution
can be readily obtained either graphically or by a fast iterative procedure. For this procedure, we first
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assume a tentative value of 6; and use Snell’s law, with n = 1.463, to calculate a first value of 6,. This
value is then inserted into Eq. (6.3.1), with M = 2, to calculate a new value of 6; corresponding to
the first iteration, and so on. Starting from e.g. 6; = 70°, this iterative calculation rapidly converges,
in a few iterations, to §; = 67.15° and 6, =~ 39°. Since the beam is assumed to exit normal to the
second face of the prism, a simple geometrical argument shows that the apex angle of the prism must be
o = 0, = 39°. In this way, after the second prism, a circular beam with diameter Dy = D, = 4.73 mm
is obtained. Let us now take the focal length of lens L, to be f, = 26 mm and assume that the beam
is still diffraction limited after this lens. The beam spot size in the focal plane of this second lens will
then be d = 4Af;/nD =~ 5.52 um [the expression which applies for Gaussian beam focusing is again
used here, see Eq. (4.7.28)]. Note the very small value of the pump diameter which can, in principle, be
achieved. Indeed one readily sees that the effect of the optical system in the fast axis plane (Fig. 6.12a)
is to make a f>/f; =~ 4 magnified image of the field distribution at the diode exit face. Since one has
d; = 1.4 um, we then expect d = (f2/f1) d1. = 5.6 um. To obtain such a small spot, however, lenses
which are well corrected for spherical aberration must be used, in particular for the collimator lens, L;.
In a typical situation, account being taken of the finite resolving powers of lenses L; and L,, the beam
diameter in the focal plane of lens L, may be 5 < 10 times larger In any case, the beam divergence in
the focal plane of lens L, is given by 8 = D/2f,, where D is the beam diameter at the lens position. If
a rod of refractive index ny is placed in the focal plane, then, due to beam refraction, the divergence is
approximately reduced by a factor ng. If we then take ng = 1.82, as appropriate for YAG crystals, we
then get 0, = D/2f;ng = 0.05rad = 3°.

In the case of e.g. a 200 um wide array, since the divergence angles 6, and 6 are approx-
imately the same as for a single-stripe, the configuration of Fig. 6.12a and ¢ can still be used to
produce a circular spot after the anamorphic prism-pair. Since the slow-axis beam divergence
is however ~ 40 times larger than the diffraction limit, the spot in the focal plane of lens L,
would be elliptical with a 40:1 ratio between the two axes. Following the previous example
and for a well corrected collimating lens L, the elliptical beam should have a 2.8 umx112 pm
dimensions. In practice, the aberrations of the optical system, which are more pronounced for
the fast-axis direction, will tend to produce a more circular spot with a spot size of perhaps
150 um. Another way, widely used for a diode arrays, for transferring the pump beam to the
active medium is by means of a multimode optical fiber. For a 200 um stripe, a fiber with a
200 um core diameter can be used and the fiber may be butt-coupled to the diode. With this
configuration, however, the fiber numerical aperture (N.A. = sin 8;, where 0, is the accep-
tance angle of the fiber) needs to have a sufficiently high value to accept the highly diverging
beam of the diode, i.e. sin 6y > sin; = 0.4. The output beam after propagation in the fiber
is circular but its divergence is established by the fiber N.A., i.e. 8,,, = 6. In doing so, there-
fore, one worsen the slow axis divergence from 6;, = 6| to 0,,;, = 6y = 6.. To reduce the
beam divergence, one can use a cylindrical lens of very short focal length to collimate the
beam in the fast-axis direction to a diameter equal to the fiber diameter and then use a fiber
of numerical aperture approximately equal to the slow-axis divergence, i.e. take 6y = 6)|. In
this case, as shown in more details in the example which follows, the beam of a 200 um wide
array can be focused into a fiber of perhaps 250 <+ 300 um core diameter and N.A. of 0.1.

In the case of a 1 cm bar, a single 1 cm long cylindrical microlens can be used to focus
each array of the bar into a single multimode fiber. Since each array is now typically 100 pm
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Example 6.3. Diode-array beam focusing into a multimode optical fiber We will consider the simple
configuration of Fig. 6.13, where a cylindrical lens of sufficiently short focal lens, f, is used to collimate
the beam along the fast axis (dashed lines). The beam diameter, after the lens and along this axis, will
then be given by Dy = 2f tgf, . Along the slow-axis, the cylindrical lens behaves like a plane-parallel
plate and the beam (continuous line) will be essentially unaffected by the lens. (To draw attention to
this in the figure, the cylindrical lens is drawn as a dashed line to indicate that it only focuses in the
fast axis plane). The beam diameter in the slow axis plane, after the lens, will then be approximately
Dy ~ L, +2f tg0) where L, is the length of the array. If one now sets the condition D, = D one obtains
f = La/2(tgfL —tgh))). Taking L, = 200 um, 6, = 20° and 0] = 5°, we get f = 350 um, a focal length
which can be obtained with fiber microlenses. With such a small value of focal length, the beam diameter
after the lens will be D = D), = Dy = 2ftgf; = 254 um which can easily be accepted into e.g. a
300 um diameter, multimode fiber, but coupled to the microlens. For a well corrected fiber microlens, the
beam divergence, after the lens, will mostly arise from the uncompensated divergence of the slow-axis
beam. The fiber numerical aperture must then be N.A. = sin 6y > sin 6] 2 0.09. The beam divergence of
the light leaving the fiber, for a sufficiently long fiber, will then have circular symmetry and be equal to
the fiber’s N.A.

long (see Fig. 6.10a) fibers with 200 pm core diameter and 0.1 N.A. can be used for each array
(see Fig. 6.13). In this way, one can convey the whole beam of the bar into 20 fibers, whose
ends can be arranged into a circular fiber bundle of 1+1.5 mm diameter and overall divergence
equal to the N.A., 0.1, of the fiber. The beam emitted by this bundle is then imaged into
the rod along one (Fig. 6.11a) or two longitudinal directions (Fig. 6.11b, c). With this pump
configuration, an overall transmission of the transfer system up to 85% has been demonstrated.
Output powers up to ~ 15 W in a TEM, mode with an optical-to-optical efficiency of ~ 50%
have been obtained using a Nd:YVO, rod pumped by two such fiber-coupled diode bars.

A quite interesting and alternative approach has been demonstrated which allows the
very asymmetric output beam from a diode bar or array to be reshaped so as to produce the
same beam dimensions and divergences along the original fast-axis (vertical) and slow-axis
(horizontal) directions. The technique involves sending the beam from a diode bar or array,
after collimation in the fast direction by a fiber lens, to a tilted pair of parallel mirrors which,
by multiple reflections of the beam, effectively chop it into several segments in the horizontal
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FIG. 6.13. Use of a cylindrical micro-lens to couple the output of a diode array to a multimode optical fiber.
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direction and then stack these segments above each other, resulting in a rectangular shape.® In
equalizing the beam parameters in the horizontal and vertical directions, the decrease in beam
brightness in the vertical direction is compensated by increase in brightness in the horizontal
direction so that overall brightness can be maintained. This shaped beam allows very intense
longitudinal pumping, which is particularly effective for the otherwise difficult cases of low
gain and quasi-three-level lasers.

6.3.2.2. Transverse Pumping

In the case of transverse pumping, active media in the shape of either slabs or rods can be
used. Figure 6.14 shows a particularly interesting, transversely pumped, slab configuration.®
Pumping is achieved through 25 individual laser arrays, each coupled to a 600 pm core diam-
eter 0.4 N.A. fiber. The power of the beam exiting each fiber is ~ 9.5 W and the total power is
235 W. The fibers ends are spaced along the two sides of a 1.7 mm thick, 1.8 mm wide, minia-
ture slab. The center line length of the slab is ~ 58.9 mm and this corresponds to 22 total
internal reflections at the two slab faces (see Fig. 6.3a). Due to the averaging properties of
the resulting zigzag pattern, the optical quality of the active medium, as seen by the beam, is
excellent and an output power of 40 W in a TEM, mode with an optical-to-optical efficiency
of ~ 22% have been achieved. A particularly interesting configuration using a Nd:YAG rod
is shown in Fig. 6.15.09 The 4 mm diameter rod, cooled by water flowing in a surrounding
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FIG. 6.14. Transverse pumping configuration for a Nd:YAG slab (after ref.,”) by permission).
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FIG. 6.16. Pump light distribution in the Nd:YAG rod for the transverse pump distribution of Fig. 6.15 (after ref.,(10
by permission).

tube, is radially pumped by either 3 or 5 pump modules placed in a circularly symmetric
arrangement. Each pump module consists of sixteen, 800 pm core diameter 0.22 N.A., fibers,
mounted side by side in a linear row with 2 mm center-to-center spacing. Into each fiber, the
beam of a diode array with a nominal output power of 10 W is injected. The output beam
from each fiber directly irradiates the laser rod without any additional focusing optics. A
pump transfer efficiency of ~ 80% is estimated for this transverse pump configuration. To
help achieve sufficient absorption of the diode-laser radiation, pump light reflectors, facing
each pump module, are mounted around the rod. For large enough fiber-to-rod distances the
pump light distribution within the rod, achieved in this way, turns out to be rather uniform.
As an example, Fig. 6.16 shows this pumping light distribution for a 13 mm fiber-to-flow-tube
distance. Using both configurations of Fig. 6.15 an output power of ~ 60 W in a TEMy mode
has been achieved with an optical-to-optical efficiency of 25%.

6.3.3. Pump Rate and Pump Efficiency

In the case of longitudinal pumping, if we let 1, (r, z) be the pump intensity at the location
inside the laser medium specified by radial coordinate r and longitudinal coordinate z, the
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pump rate is readily obtained as

al,(r,z)

Ry(r,z) = o
P

(6.3.2)

where « is the absorption coefficient of the laser medium at the frequency v, of the pump. We
will now assume a Gaussian distribution of the pump beam, i.e. we take

I,(r,2) = 1,(0,0) exp— (2r° /w>) exp(—a2) (6.3.3)

where 1,(0,0) is the peak intensity at the entrance face of the rod, w, is the pump spot-
size which is taken, for simplicity, to be independent of z. Note that « is the absorption
coefficient under the laser operating conditions and, to a good approximation, it coincides
with the unpumped absorption coefficient since the population raised to the upper levels by
the pumping process is usually only a small fraction of the total population. The intensity
1,(0,0) is related to the incident pump power, Pp;, by

o0
Py = /I,,(r, 0)27 rdr (6.3.4)
0
From Egs. (6.3.3) and (6.3.4) we obtain
2P,;
1,(0,0) = —5 (6.3.5)
T w,

The incident pump power, P,;, is then related to the diode laser electrical power, P, by
Ppi = r’rr]th (6.3.6)

where 7, is the diode radiative efficiency and 7, is the efficiency of the pump transfer system.
From Eq. (6.3.2), with the help of Egs. (6.3.3), (6.3.5) and (6.3.6), we obtain

P 2 2r?
R,(r,2) = nm; u a exp — il exp (—u z) (6.3.7)
hv, Tws wh

It is shown in Appendix E that, as far as the threshold condition is concerned, the pump-
rate which is effective for a given cavity mode is the average, <R,>, of R, taken over the
field distribution of the mode. More precisely, if we let u(r, z) be the complex field amplitude
normalized to its peak value, <R,> is given by

<R,> = /Rp|u|2dV //|u|2dV (6.3.8)

a

where the integrals are taken over the whole of the active medium. Let us consider a TEMgg
single-longitudinal mode. If the spot size at the beam waist, wy, is located in the laser rod
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and if the spot size is assumed constant along the rod, then, according to Eq. (5.5.24), with
R — oo and ¢ = 0, one has

|u|* oc exp — (217 /w§) cos® kz (6.3.9)

Equation (6.3.8) with the help of Eqgs. (6.3.7) and (6.3.9) gives

P, \ 2{1 —exp[—(a)]}
<R,> = | L= 6.3.10
4 MM (h\)p) T (W% + le)) l ( )

where [ is the length of the laser rod. It should be noted that, in performing the integral along
the z coordinate in Eq. (6.3.8), we have made the approximation fol exp —(az) cos” kzdz =
(1/2) fol exp —(az)dz, using the fact that, since cos’(kz) changes much more rapidly with z
then the exp —(az) term, we can substitute cos?(kz) with its average value < cos?(kz)> =
(1/2). If we now define the absorption efficiency, 7,, as

Ng =1—exp—(al) (6.3.11)

equation (6.3.10) can then be put in the more suggestive form

R ( Fy ) 2 (6.3.12)
<R3>=n|—]—F—7— 3.

! g hv, ) m (w% + wg) [

where we have defined 7, = 7,7,n,. Equation (6.3.12) constitutes the final result of our

calculation for the effective pump rate in the case of longitudinal pumping. Note that, for a
given value of P,, <R),> increases as w,, decreases so that the maximum value of <R,> would
be attained for w, — 0. For very small values of pump spot-size, however, divergence of the
pump beam in the active rod cannot be neglected with the result that the beam may actually
become larger than the laser beam at the end of the rod. For this reason and to optimize the
optical efficiency, the condition w, = wy is often taken as a rough guide to the optimum case.

In the case of transverse pumping, we begin by writing the following obvious relation
between pump rate and power, Pp;, incident on the rod

/ hv, Ry dV = 0, Py; (6.3.13)

a

where 7, is the fraction of the incident power which is absorbed in the active medium. Note
that, according to Eq. (6.3.11), the absorption efficiency 1, can be written as 7, =~ (1 —
exp —aD) where D is the relevant transverse dimension of the rod (D = Dg, where Dy is
the rod diameter, for a single pass or D = 2Dg, for a double pass of the pump beam in
the rod). Equation (6.3.13) allows the pump rate to be calculated once its spatial variation
is known. If we take, as a simple case, R, = const, we obviously obtain from Eq. (6.3.13)
R, = n,nMaP,/hv,Al where A is the cross-sectional area of the rod and where Eq. (6.3.6)
has been used. To calculate <R,> we consider a conceptually simpler model of the laser rod,
where the active species is assumed to be confined to the central region of the rod, 0 < r < a,

227



228

6 e Pumping Processes

while the rod is undoped, for r > a (cladded rod). In this case, Eq. (6.3.9) can be taken to
hold for any value of r while one has R, = const for 0 <r < aand R, = 0 for » > 0. Then,
from Eqs. (6.3.8) and (6.3.9), we obtain

e ) 6319

<R,> = —_—
! p (hvp 7 a?l

where again we have written 1, = 7,7,7,. This equation constitutes the final result for our
calculation of the effective pump rate in the case of transverse pumping.

For the comparison to be performed in sect. 6.3.5, it is appropriate to also calculate
here the effective pump rate that applies for lamp pumping. Assuming the cladded rod model
considered above and again taking R, to be constant in the active medium, i.e., for0 < r < q,
we obtain from Egs. (6.2.6) and (6.3.8)

N

<R,> =

4 vt (hvmp 7 a?l
where 7,; is the pumping efficiency for lamp pumping given, according to Eq. (6.2.5), by
Npt = NrMNiNallpg-

6.3.4. Threshold Pump Power for Four-Level
and Quasi-Three-Level Lasers

With the results obtained in the previous section for the effective pump rate, we can now
go on to calculate the expected threshold pump rate and threshold pump power for a given
laser. We will limit our considerations to two very important cases: (i) An ideal four-level
laser, where pumped atoms are immediately transferred to the upper laser level, 2, and where
the lower laser level, 1, is empty [see Fig. 1.4b]. (ii) An ideal quasi-three-level laser, where
pumped atoms are again transferred immediately to the upper laser level, 2, and where the
lower laser level is a sublevel of the ground level 1. The first case includes lasers such as
Nd:YAG at A = 1.06 um or A = 1.32 um, Ti:Al,O3, and Cr:LISAF or LICAF. The most
important lasers belonging to the second category are Nd:YAG at A = 0.946 um, Er:glass or
Yb:Er:glass at A = 1.45 um, Yb:YAG or Yb:glass, and Tm:Ho: YAG.

Let us first consider an ideal four-level laser and let us assume that the upper laser level
actually consists of many strongly coupled sublevels whose fotal combined population will be
called N,. According to Eq. (1.2.5), the threshold value of this population, N,., can be written
as No, = y/o, I, where o, now indicates the effective stimulated emission cross-section [see
sect. 2.7.2]. Actually, this previous expression only holds for a spatially uniform model i.e.,
when both R, and the mode configuration, |u|?, are considered to be spatially independent.
When spatial dependency is taken into account, the previous expression for the threshold
upper state population gets modified as follows (see Appendix E)

<Ny>. =y/o.l (6.3.16)
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where <N, > is the effective value of population, given by

<Ny> = /N2|u|2dv //|u|2dv (6.3.17)

The critical, or threshold, pump rate can then be obtained from the condition that the
number of atoms raised by the pumping process must equal the number of atoms decaying
spontaneously. Thus we get R, = N/, where 7 is the effective lifetime of the upper laser
level, taking account of the decay of all the sublevels [see again sect. 2.7.2]. It then follows that

<R,>. = <Npy>./7 (6.3.18)
From Egs. (6.3.16) and (6.3.18) we get

<Ry, = — (6.3.19)
o,lt

Once the threshold value of the pump rate is calculated, we can readily obtain the corre-
sponding threshold pump power. Using Eq. (6.3.19) into Egs. (6.3.12) and (6.3.14), we get in
fact the following expressions

2 2
P = (l) (h_) [M} 6320,
Mp T 20,

Py = (ny—p) (%) {Ue i —exgiz(zaZ/wg)]§ 6.3.21)

which hold for longitudinal and transverse pumping, respectively. The expression of the
threshold pump power for longitudinal pumping given by Eq. (6.3.20) agrees with that given
by Kubodera, Otsuka, and Miyazawa.('” Note that, again for longitudinal pumping, the
threshold pump power increases as wy is increased because, as wy increases, the wings of
the mode extend further into the less strongly pumped regions of the active medium. Like-
wise, for transverse pumping and for the cladded rod model considered above, the threshold
pump power increases as wy is increased because, as wy increases, the wings of the mode
extend further into the cladding, i.e., into the unpumped part of the medium. Similar consid-
erations could be applied to the more realistic case of a rod without cladding. In this case,
however, the calculation would be more involved because, in general, Eq. (6.3.9) would no
longer apply and the true field distribution, account being taken of the aperturing effects estab-
lished by the finite rod diameter, would have to be used. When wy is appreciably smaller than
a (say wy < 0.7a), however, the field distribution is not greatly affected by the presence of
this aperture and Eq. (6.3.21) can be assumed to hold also for a rod without cladding. In this
case, of course, [1 —exp— (2a2/ w%)] is very much closer to unity and, in calculating the
threshold pump power, this term could even be omitted from Eq. (6.3.21). As we will show
in the next Chapter, however, it is important to keep this term in Eq. (6.3.21) to obtain the
correct expression for the slope efficiency.
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For the comparison to be made in next section, it is also appropriate to calculate the
threshold pump rate for lamp pumping. From Egs. (6.3.15) and (6.3.19) we get

(2 (Tvm 7 d?
Py = (77171) ( T ) § o, [1 —exp— (Zaz/w%)] (6.3.22)

Let us now consider a quasi-three-level laser where the lower laser level, 1, is a sublevel
of the ground level and assume that the population raised, from the pumping process, to the
pump level(s) is immediately transferred to the upper laser level (ideal quasi-three-level laser).
We will assume that all ground state sub-levels are strongly coupled and hence in thermal
equilibrium and call N, the total combined population of level 1. We will also assume that the
upper laser level, level 2, consists of a number of strongly coupled sublevels and call N,
the total combined population of the upper level. The threshold values for the population
of the two levels is again established by the condition that the total net gain equals the losses.
For the space-dependent case and according to Eq. (6.3.16) we now obtain (see Appendix E)

[Oe<Ny>. — 0, <N1>/]l =y (6.3.23)

Where <N,> and <N;> again indicate spatially averaged values as in Eq. (6.3.17) and o,
and o, are, respectively, the effective values of the stimulated emission and absorption cross
sections. Since, for an ideal quasi-three-level laser, one has Ny + N, = N, it follows that
<N;> 4+ <N,> = N, and using this expression in Eq. (6.3.23) we can readily calculate
<N,>.. The effective value of the threshold pump rate must again satisfy Eq. (6.3.18) and,
using the value of <N,>, in this way calculated, we obtain

[oaN: 1 + )’]
R>, = CaNil+ 7] 6.3.24
<ty (0, +0,) it ( )

Note that Eq. (6.3.24) obviously reduces to Eq. (6.3.19) if we let o, — 0.
In our calculation of the corresponding threshold pump power, we limit our considera-

tions to longitudinal pumping, since this is the only configuration which has allowed operation
with a reasonably low threshold, in this case. From Egs. (6.3.24) and (6.3.12) we obtain

P, = (OaNtl+ )/) (h_vp) |:7T (W% + W127):| (6.3.25)

Np T 2(0, + 04,)

which agrees with the expression given by Fan and Byer.?” Note again that Eq. (6.3.25)
reduces to Eq. (6.3.20) if we let o, — 0.

6.3.5. Comparison Between Diode-pumping and Lamp-pumping

Following the discussion presented in the previous sections, we are now ready to per-
form a general comparison between lamp pumping and diode pumping. The comparison can
only be made for four-level lasers, since quasi-three-level lasers have mostly been operated
by means of longitudinal pumping by diodes. To compare Eq. (6.3.22) with Egs. (6.3.20)
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FIG. 6.17. Actual pump frequency, v,, and ideal minimum pump frequency, v,,,, in a 4-level laser.

TABLE 6.3. Comparison between pumping efficiencies of lamp pumping and diode pumping

Pump Configuration 0, (%) (%) 1.(%) 1y (%) 1, (%)

Lamp 43 82 17 59 35
Diode (longitudinal) 50 80 98 82 32
Diode (transverse) 50 80 90 82 30

and (6.3.21), it is convenient, for diode pumping, to define a pump quantum efficiency 7,4 as
hVyp/hvp, where v, is the actual pump frequency and v,,, is the minimum pump frequency,
i.e., the pump frequency that would have been required for direct pumping to the upper laser
level (see Fig. 6.17). Equations (6.3.20) and (6.3.21) then readily transform to

2 2
Py = (L) (hvm”) [n (45 + W”)} (6.3.26)
Npd T 20,

_ (v (T wa?
Py = (npd) ( T ) { o, [1 —exp— (zaz/w(z])]§ (6.3.27)

where we have defined 1,y = 1,7,y = 1MMaNpg as the overall pump efficiency for
diode pumping. Equations (6.3.23), (6.3.26) and (6.3.27) allow us now to make a general
comparison between lamp pumping and diode pumping.

A first comparison can be made in terms of the four efficiency factors 1, 1;, M4, Mpg
and hence of the overall pump efficiency 1, = 7,7,m47,,. Limiting ourselves to the case of
Nd:YAG, Table 6.3 shows the estimated values of these efficiency factors where the values
for lamp pumping have been taken from Table 6.1. In the case of longitudinal pumping by a
diode laser, a 1 cm long crystal is considered while, for transverse pumping, a 4 mm diameter
rod is assumed. Note that, despite the great diversity of the various pumping systems which
have been considered so far, the comparison in terms of these four efficiency factors become
very simple and instructive. One can see, in fact, that the radiative and transfer efficiencies are
approximately the same for lamp and diode pumping and that the almost ten times increase in
overall pump efficiency for diode pumping comes from the very large increase in absorption
efficiency (by almost a factor 6) and a consistent increase of the pump quantum efficiency (by
a factor of ~ 1.5). Note also that, in terms of pump efficiency, longitudinal and transverse
pumping are roughly equivalent with a slightly smaller value of the absorption efficiency for
transverse pumping.

A second comparison can be made with respect to threshold pump powers. According to
Egs. (6.3.24) and (6.3.31) and for the same value of rod cross-sectional area, the main differ-
ence in pump thresholds between lamp pumping and transverse pumping arises for the almost
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ten-fold increase in pump efficiency for diode pumping. Comparing longitudinal diode pump-
ing to lamp pumping, one sees from Eqs. (6.3.24) and (6.3.30) that the pump threshold for
diode-pumping, besides being reduced by the increase of pump efficiency, is further reduced
by a factor (w(% + wﬁ) X [1 —exp— (2a2/wgl)] /2a?, where wy, is the laser spot size for the
case of lamp pumping. It is this factor that accounts for most of the reduction in threshold
pump power when wy and w, are very small. A dramatic case of this type occurs for fiber
lasers where, for single mode fibers, the value of wy as well as that of w, may be as small
as 2 -+ 3 um. If, for example, we take wp = w, = 2 um, for the case of a fiber laser, and
a = 2mm and wy = 0.5 a, in the case of lamp pumping, the expected reduction aris-
ing from the previous geometrical factor is by almost six orders of magnitude! This is the
essential reason why fiber lasers exhibit such small pump thresholds. Comparing longitu-
dinal and transverse pumping, we may note from Eqs. (6.3.22) and (6.3.23) that the pump
threshold is lower for longitudinal compared to transverse pumping essentially by the ratio
(w(% + WIZJ)Z [1 —exp— (2a2 / w%r)] /2a?, where the suffices / and ¢ stand for longitudinal and
transverse pumping, respectively. For the very small values of spot sizes, wy and w,, that
can be used in longitudinal pumping, this ratio may again have very small values. However,
to achieve comparable outputs for the two cases, the TEMyg spot-size of the two cases will
need to be more comparable. It is instructive, therefore, to make this comparison for the same
value of spot size in each case i.e., for (wy); = (wp);. To avoid excessive diffraction effects
arising from beam truncation at the aperture formed by the rod diameter, the spot size for
transverse pumping must then be somewhat smaller than the rod radius, a. In practice, a value
of (wp); = 0.7a may be chosen. Assuming best overlapping condition, i.e. wy = w,, for
longitudinal pumping, it then follows that (wg + wy), x [1 —exp — (2a°/w§,)] /2a* = 0.48
and, under these conditions, the threshold pump power for longitudinal pumping may be only
a factor ~ 0.5 smaller than that for transverse pumping.

Compared to lamp pumping, besides having much higher pump efficiency and very
much lower pump threshold, diode pumping has the additional advantage of inducing a
reduced thermal load in the active medium. In fact, for a given absorbed power P, in the
medium, the fraction 7,,P, is available in the upper laser level and, consequently, the frac-
tion 1,4 (hv/hv,,)P, is available as laser power, hv being the energy of the laser photon. The
power dissipated as heat is thus [1-1,,(hv/hvy,,)] P,. From Table 6.2 one then sees that the
thermal load for lamp pumping is ~ 2 larger than for diode pumping. This reduced thermal
load has two beneficial effects: (i) Reduced thermal lensing and thermally-induced birefrin-
gence in the rod. (ii) Reduced thermal fluctuations of the refraction index of the medium for a
given pump power fluctuation. Both these effects are important for obtaining solid-state laser
operation on a single transverse and longitudinal mode of high quality.

6.4. ELECTRICAL PUMPING

We recall that this type of pumping is used for gas and semiconductor lasers. We will
limit our considerations here to the case of gas lasers and defer discussion of the more
straightforward case of semiconductor laser pumping to the semiconductor laser section of
Chap. 9.
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FIG. 6.18. Most frequently used pumping configurations for gas-discharge lasers: (a) Longitudinal discharge. (b)
Transverse discharge.

Electrical pumping of a gas laser is achieved by allowing a current, which may be con-
tinuous (d.c. current) or at radio-frequency (r.f. current) or pulsed, to pass through the gas
mixture. Generally, the current through the gas passes either along the laser axis direction
(longitudinal discharge, Fig. 6.18a) or transversely to it (transverse discharge, Fig. 6.18b).
Since the transverse dimension of a laser medium is usually much smaller than its longitudi-
nal dimension, then, for the same gas mixture, the voltage needed in a transverse configuration
is significantly less than for a longitudinal configuration. On the other hand a longitudinal dis-
charge, when confined in a dielectric (e.g. a glass) tube, as in Fig. 6.18a, often provides a more
uniform and stable pumping configuration. In fact. in the discussion that follows we will con-
centrate on the so-called glow discharge, where, due to the uniformity of the current density,
a uniform bluish glow of light is observed from the discharge. The situation that needs to be
avoided is that of an arc discharge where current is observed to flow in one or more streamers,
emitting white light of high intensity (as in a lightning).

One requires the presence of a series resistance, Rp, often called the ballast resistance,
as shown in both Fig. 6.18a and b, to stabilize the discharge at the desired operating point.
To understand this feature, we show in Fig. 6.19, as a solid line, the voltage vs current
characteristic of a gas discharge. Note that, in the operating region, the voltage across the
discharge remains nearly constant as discharge current increases. A peak voltage, V), about
an order of magnitude larger than this constant operating voltage is needed to induce gas
break-down. Thus, the behavior of a discharge tube is very different from that of a simple
resistor! In the same figure we also show, as a dashed line, the voltage vs current character-
istic of a power supply giving a voltage, Vj, in series with a ballast resistance, Rg. One notes
that the current will stabilize at either of the intersections A and C of the two curves (the
intersection B corresponds to an unstable equilibrium situation). Thus, starting with a lamp
that is initially unenergized and then applying the voltage from the power supply, the lamp
will stabilize itself at point C with very little current flowing in the discharge. To reach the
other stable point, A, the desired operating point, one can briefly raise the applied voltage so
as to overcome the voltage barrier V,. This is usually achieved by applying an over-voltage
to the high voltage electrode for a long enough time to produce sufficient gas ionization (see
also Fig. 6.4b and 6.5). Alternatively, a high voltage pulse may be applied to some auxiliary
electrode (see also Fig. 6.4a).

Various different electrode structures are used for both longitudinal and transverse dis-
charges. For a longitudinal discharge, the electrodes often have an annular structure with the
cathode surface usually much larger than that of the anode to help reduce degradation due
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FIG. 6.719. Voltage, V, vs current, /, characteristic of a gas discharge (solid line) and of a power supply with a series
resistance (dashed line).
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FIC. 6.20. Radio-frequency transverse excitation of a gas in a quartz tube.

to impact of the heavy ions. In a transverse discharge, the electrodes extend over the whole
length of the laser material and the opposing surface of each electrode must have a very
smooth curvature. In fact, if there is any sharp corner, the high electric field produced there
may easily result in an arc formation rather than in a uniform discharge. Usually, longitudinal
discharge arrangements are only used for cw lasers while transverse discharges are used with
cw, pulsed, or rf lasers. A particularly interesting case of a transverse discharge, using rf
excitation, is shown in Fig. 6.20, where the rf electrodes are applied to the outside of the dis-
charge tube, usually made of glass. The presence of a finite thickness of the glass tube presents
several advantages: (i) It acts as a series capacitor for the discharge whose impedance, at the
frequency of the rf voltage, acts as an effective, capacitive, ballast for stabilizing the discharge.
The loss of pump power in the resistive ballast, Rp, of Fig. 6.18 is thus avoided. (ii) Since the
glass dielectric medium extends over the whole of the electrode structure, the problem of arc
formation is greatly reduced. (iii) Since the gas mixture is not in contact with the electrodes,
the plasma-chemical effects, occurring at the electrode surface and leading to dissociation of
the mixture, are eliminated. When this configuration is applied to a CO, laser, for instance,
an order of magnitude reduction in the electrode maintenance time can be gained and a factor
of two decrease in the gas consumption rate.
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FIC. 6.21. Laser pumping by near-resonant energy transfer.

We now go on to present a general description of the physical phenomena leading to
excitation in the gas. First we recall that, in an electrical discharge, both ions and free electrons
are produced and, since these charged particles acquire additional kinetic energy from the
applied electric field, they are able to excite a neutral atom by collision. The positive ions,
owing to their much greater mass, are accelerated to much lower velocities than the electrons
and therefore do not play any significant part in the excitation process. Therefore, electrical
pumping of a gas usually occurs via one, or both, of the following two processes: (i) For a
gas consisting of only one species, the excitation is only produced by electron impact, i.e., the
process

e+X—>X"+e (6.4.1)

where X and X* represent the atom in the ground and excited state, respectively. Such a pro-
cess is called a collision of the first kind. (ii) For a gas consisting of two species (say A and B),
excitation can also occur as a result of collisions between atoms of different species through
a process known as resonant energy transfer (see also Sect. 2.6.1). Referring to Fig. 6.21,
let us assume that species B is in the ground state and species A is in the excited state, as a
result of electron impact. We will also assume that the energy difference AE between the two
transitions is less than k7. In this case, there is an appreciable probability that, after collision,
species A will be found in its ground state and species B in its excited state. The process can
be denoted by

A* +B = A+ B* — AE (6.4.2)

where the energy difference AE will be added to or subtracted from the translational energy
of the colliding partners, depending on its sign. This is the reason why AE must be smaller
than k7. This process provides a particularly effective way of pumping species B, if the upper
state of A is metastable (forbidden transition). In this case, once A is excited to its upper
level, it will remain there for a long time, thus constituting an energy reservoir for excitation
of species B. A process of the type indicate in Eq. (6.4.2) is called a collision of second kind*.

* Collisions of the first kind involve conversion of the kinetic energy of one species into potential energy of another
species. In collisions of the second kind, potential energy is converted into some other form of energy (other than
radiation) such as kinetic energy, or is transformed into potential energy (in the from of electronic, vibrational, or
rotational energy) of another like or unlike species. Collisions of the second kind therefore include not only the
reverse of collisions of the first kind (e.g., e + X* — e + X) but also, for instance, the conversion of excitation
energy into chemical energy.
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In the discussion that follows we will limit our considerations to just the electron impact
excitation process since it is both the most common and the simplest excitation mechanism.
Also, electron impact excitation constitutes the first step for the near-resonant energy transfer
process.

6.4.1. Electron Impact Excitation

Electron impacts involve both elastic and inelastic collisions. In an inelastic collision, the
atom may either be excited to a higher state or be ionized. Of the various possible excitations
the one we are usually interested in is that which excites the atomic species to the desired
upper laser level. In order to describe the above excitation phenomena by means of appropri-
ate collision cross-sections, we will first consider the simple case of impact excitation by a
collimated beam of mono-energetic electrons. If F, is the electron flux (number of electrons
per unit area per unit time), a total cross section g, can be defined in a similar way to the case
of a photon flux [see Eq. (2.4.20)]. Thus, if we let dF, be the change of flux that results from
the beam traveling a distance dz in the material, we can write

dF, = —o,N,F.dz (6.4.3)

where NV, is the total population of the atomic species. Collisions that produce electronic exci-
tation will only account for some fraction of the total cross section. In fact, the cross section
for elastic collisions, o, is usually the largest, its order of magnitude being ~ 107 cm?. If
we now let o, be the cross section for electronic excitation from the ground level to the upper
laser level, then, according to Eq. (6.4.3), the rate of population of the upper state due to the
pumping process is

(sz/dl‘)p = 0N, F, = N;N,v0,» (6.4.4)

where v is the electron velocity and N, is the electron density. A calculation of the pump rate
requires a knowledge of the value of o,,, which is expected to depend on the energy E of the
incident electron, i.e. 0,5 = 0. (E). In a gas discharge the electrons have a distribution of
energies which can be described by the distribution f(E); its meaning is that dp = f(E)dE
represents the elemental probability that the electron energy ranges between E and E + dE.
In this case the rate of population of the upper state is obtained from Eq. (6.4.4) by averaging
over this distribution, viz.

(dN,/dt), = N;N,<v0> (6.4.5)

where
<vo> = [va (E)f(E)dE (6.4.6)

According to Egs. (1.3.1) and (6.4.5) the pump rate is then given by

R, = NN, <v0,> 6.4.7)
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Where <vo> is given by Eq. (6.4.6). The calculation of R, thus requires the knowledge of
the energy dependence of both ¢ and f. This dependence will be considered in the following
sections.

6.4.1.1. Electron Impact Cross Section

The qualitative behavior of o vs the electron energy E is indicated in Fig. 6.22 for the
three cases: (1) optically allowed transition, (2) optically forbidden transition involving no
change of multiplicity, (3) optically forbidden transition involving a change of multiplicity.
In all three cases, the peak value of ¢ has been normalized to unity. Note that, in each case,
there is a distinct threshold Ejy, for the cross section. As expected, the value of Ej, turns out
to be close to the energy of the transition involved. The cross section rises very sharply above
threshold, reaches a maximum value, and thereafter decrease slowly. The peak value of o
and the width of the curve depend on the type of transition involved: (1) For an optically
allowed transition, the peak value of o can be typically 107'® cm? and the width of the curve
may be typically 10 times greater than the threshold energy (curve a of Fig. 6.22). (2) For an
optically forbidden transition involving no change of multiplicity, the peak cross section is
drastically reduced by nearly three orders of magnitude (to about 107"’ cm?) and the width
of the curve may be only 3 =+ 4 times the threshold energy (curve b of Fig. 6.22). (3) When
a change of multiplicity is involved, the peak cross section may actually be larger than for
an optically forbidden transition and the width of the curve may now be typically equal to
or somewhat smaller than the threshold energy Ej; (curve c of Fig. 6.22). It should be noted
that, in any case, the width of the curve is roughly comparable to the threshold energy, i.e.
to the transition energy. By contrast, the transition linewidths for photon absorption are much
sharper (typically 10™* <+ 107 of the transition frequency). This very important circumstance

de (arbitrary units)

/ey

FIG. 6.22. Qualitative behavior of electron-impact excitation cross section vs the energy of the incident electron: (a)
Optically allowed transitions. (b) Optically forbidden transitions involving no change of multiplicity. (c) Optically
forbidden transitions involving a change of multiplicity.
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arises from the fact that, as explained in Sect. 6.1, the electron impact excitation is basically
a non-resonant phenomenon. This is the basic reason why excitation of a gaseous medium is
performed much more effectively by a “polychromatic” source of electrons (such as in a gas
discharge) than by a polychromatic light source (such as a lamp).

To provide a deeper insight into the mechanism involved in electron impact excitation,
we now give a sketch of the procedure for a quantum mechanical calculation of the cross
section o. For optically allowed transitions or for optically forbidden transitions involving no
change of multiplicity, the simplest, and often the most accurate, calculation uses the Born
approximation. Before collision, the atom is described by the ground state wave-function u;
and the incident electron by the plane wave function exp(jko - r), where Ky is the electron
wave vector and r is the vector describing the position of the incident electron with respect to
a center situated e.g. at the nuclear position. After collision, the atom is described by the upper
state wave-function u, and the scattered electron by the plane wave exp(jk, - r), where k,, is
the wave-vector of the scattered electron. For the discussion that follows, one needs to recall
that k = 27 /A, where A is the deBroglie wavelength of the electron which can be expressed
as A = (1.23/ «/\_/) nm, where V is the electron energy in electron volts. The interaction
has its origin in the electrostatic repulsion between the incident electron and the electrons
of the atom. This interaction is assumed to be weak enough for there be only a very small
probability of a transition occurring in the atom during the impact and for the chance of two
such transitions to be negligible. In this case the Schrodinger equation for the problem can be
linearized. It then turns out that the transition rate and hence the transition cross section can
be expressed as

2
O, X ‘/ [tz exp(jk,, - ©)]* [u1 exp(iko - r)] AV (6.4.8)

From the above expression for the deBroglie wavelength and assuming an electron
energy of only a few eV, the wavelength ' = 27 /|ky — k,| = 27 /| AK]| is seen to be appre-
ciably larger than the atomic dimensions. This means that (Ak - r) < 1 for |r| < a, where
a is the atomic radius. In this case the factor expj[(ko — k;) - r] = expj(AK - r) appearing
in Eq. (6.4.8) can be expanded as a power series of (AK - r). Since u; and u, are orthogonal
functions, the first term in this expansion which gives a non-vanishing term for o, is j(Ak - r)
and one gets

2

O '/uz rudV| o |, |? (6.4.9)

where W,, is the matrix element of the electric dipole moment of the atom [see Eq. (2.3.7)].
It then follows that, when p,, # 0, i.e. when the transition is optically allowed, the electron
impact cross section turns out to be proportional to the photon absorption cross section. Thus
strong optically allowed transitions are expected to also show a large cross section for electron
impact. For optically forbidden transitions involving no change of multiplicity (AS = 0, e.g.
the 1'S — 21§ transition in He, see Chap. 10), Eq. (6.4.8) gives a non-vanishing value for
the next-higher-order term in the expansion of expj(AKk - r) namely —(Ak -r)?/2. This means
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FIG. 6.23. Tlustration of the phenomenon of electron exchange in the case of the 1'S — 23S transition in a
He atom.

that o, can now be written as o, | J w3 (Ak- r)zuldViz. This relation is completely different
from the corresponding one that would apply in the case of a photon interaction, i.e., that
due to a magnetic dipole interaction. It is therefore no surprise to find that the ratio between
the two peak cross sections Oforbidden/ Tallowed 18 typically, in this case, about 1073 while the
same ratio was shown to be ~ 107 for photon absorption [see (2.4.14)]. So one can make
the assertion that optically forbidden transitions are relatively more easily excited by electron
impact than by “photon impact,” and this has some profound consequences for the operating
principles of most gas lasers, since pumping is often achieved through optically forbidden
transitions.

When a change of multiplicity is involved (e.g., the 1'S — 23S transition in He, see
Capt. 10) the Born approximation gives a zero cross section in any order of the expansion
of expj(Ak - r). In fact, such a transition involves a spin change, while, within the Born
approximation, the incoming electron, through its electrostatic interaction, can only couple
to the orbital motion of the atom rather to its spin*. The theory, in this case is largely due
to Wigner and its starting point is the observation that, in a collision, it is the total spin of
the atom plus that of the incident electron that must be conserved, not necessarily that of
the atom alone. Transitions may, therefore, occur via an electron exchange collision, where
the incoming electron replaces the electron of the atom involved in the transition and this
electron is in turn ejected by the atom. To conserve the total spin, the incoming electron must
have its spin opposite to that of the ejected one. To clarify this exchange process we show
in Fig. 6.23 the electron impact excitation of the 1'S — 23S transition in He. Note that the
process can be visualized as the incident electron, labeled 1, is captured in the 2s state of He
while the electron of the atom with opposite spin, labeled 2, is actually ejected. It should be
pointed out, however, that this constitutes a very naive way of describing the phenomenon
because, during the collision, the two electrons are quantum mechanically indistinguishable.
From this simple description, however, one readily understands that this exchange mechanism
must be of a more resonant nature than that considered in the Born approximation: there will
be a high probability for this exchange to occur only if the energy of the incoming electron
closely matches the transition energy. In this case, in fact, the electron energy is just what
is needed to leave the electron 1, after collision, in the upper level, 2s, while the second
electron, electron 2, is ejected with zero velocity. For higher energies of the incident electron,
the exchange process would leave electron 1 in the 2s orbital, while electron 2, ejected from

* This assumes a negligible spin-orbit coupling, which is true for light atoms (e.g., He, Ne), while it would not be
true for heavy atoms like Hg.
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the atom, would carry off the corresponding surplus energy. This would definitely be a less
likely process to occur. Having established that this process is somewhat resonant, we can
now understand why the peak cross section, in this resonant case, can be even higher than for
optically forbidden transitions involving no change of spin.

6.4.2. Thermal and Drift Velocities

As already mentioned in previous sections, it is the electrons that are responsible for
the phenomena occurring in a gas discharge. They acquire energy from the applied electric
field and lose or exchange energy through three processes: (1) Inelastic collisions with the
atoms, or molecules, of the gas mixture, which either raise the atom to one of its excited
states or ionize it. These electron-impact excitation or ionization phenomena are perhaps the
most important processes for laser pumping, hence the extended discussion in these sections.
(2) Elastic collisions with the atoms. If we assume that the atoms are at rest before collision
(the mean velocity for an atom is indeed much smaller than for an electron), the electron
will lose energy upon collision. It can be shown by a straightforward analysis of the elastic
collision process that, for random direction of the scattered electron, the electron loses, on
average, a fraction 2(m/M) of its energy, where m is the mass of electron and M is the mass
of the atom. Note that this loss is very small since m/M is small (e.g., m/M = 1.3 x 107 for
Ar atoms). (3) Electron-electron collisions. For a gas which is ionized to a moderate degree,
the frequency of such collisions is usually high since both particles are charged and exert
forces on one another over a considerable distance. Moreover, since both colliding particles
have the same mass, the energy exchange in the collision is considerable. As a result of the
collision phenomena mentioned above and as a consequence of the electrons being accelerated
by the electric field of the discharge, the electron “gas” in the plasma acquires a distribution of
velocities. We can describe this by introducing the distribution f(vy, vy, v;) with the meaning
that f(vy, vy, v)duiduydu;, gives the elemental probability that the electron is found with
velocity components in a range dvy, dvy, dv, around vy, vy, U;. Given this distribution we can
define a thermal velocity vy, so that

Vi = <v?> (6.4.10)

where the average is taken over the velocity distribution. Similarly, we can define a drift
velocity, Ugyis;, as the average velocity along the field direction i.e.

Varift = <Uz> (6.4.11)

where the z-axis is taken along the field direction and where, again, the average is taken over
the electron velocity distribution.

To make a rough calculation of both vy, and v, we make the simplifying assumption
that, at each collision, some constant fraction § of the kinetic energy of the electron is lost.
A first equation can then be obtained from a power balance consideration: the average power
lost by the electron must equal the average power delivered to the electron by the external field.
To proceed with this, we note that the average kinetic energy of the electron is mvlzh /2 while
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FIG. 6.24. Calculation of the drift velocity resulting from acceleration of an electron by the external electric field in
between two consecutive collisions.

vy /1, where [ is the electron mean free path, is the average collision rate. The average power
lost by the electron is therefore §(vy, /1) (mvtzh / 2), and this must equal the power supplied by
the electric field, &, namely, e€ vy, Hence

e& vy = 8(vn/1) (mvtzh/Z) (6.4.12)

The second equation is obtained from the requirement of an average momentum bal-
ance between two consecutive collisions. We assume that, after each collision, the electron
is scattered in a random direction and hence it loses its preferential drift velocity. With ref-
erence to Fig. 6.24, the electron velocity at point 1, after the first collision, is thus assumed
to have a magnitude equal to the thermal velocity vy, and a direction making a general angle
0 to the field direction. During its free flight between points 1 and 2, the electron will be
accelerated by the electric field and, at point 2, just before the next collision, it will have
acquired an additional velocity, vg.y, along the field direction, with a direction opposite to
the field. The impulse produced by the corresponding force will be —e&!/vy,, where [ is the
distance between points 1 and 2 (which is assumed, on the average, to be equal to the elec-
tron mean free path). This impulse can now be equated to the change of momentum, i.e.,
(mv’ —mvy,) = mMVgyi;. In terms of their magnitudes we can then write

e&l = mugVaip (6.4.13)

which, together with Eq. (6.4.12), provides the two required equations. From these equations
we get
v = (2/8)*(e€1/m)'? (6.4.14)

and

Varip(8/2)V/*(e€1/m)'/? (6.4.15)
Note that, on taking the ratio between Eqgs. (6.4.15) and (6.4.14), we obtain

(Varie/ V) = (8/2)"1 (6.4.16)

We have already mentioned earlier that an electron, after undergoing elastic scattering
with an atom, loses a fraction of its kinetic energy equal, on the average, to 2 m/M. If we then
assume 6 = 2m/M, we get from Eq. (6.4.16), (Varp/vm) = (m/M)"/? 2= 1072. This show
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that the drift velocity is a very small fraction of the thermal velocity, so that we can consider
the movement of electrons in a gas as a slowly drifting swarm of randomly moving particles
rather than a stream of particles.

The calculation given above is a rather crude one since it is based on the assumption
that the electron loses a constant fraction, §, of its energy in each collision. Although this is
true for elastic collisions with atoms, this is not obviously true for inelastic collisions, where
the energy lost equals the excitation energy of the atom. It should be noted that, although
elastic collisions are actually more frequent than inelastic collisions, the energy lost in an
elastic collision is, however, very small. Thus, if elastic collisions are the dominant process,
the discharge would not provide a particularly efficient means for pumping a laser. Indeed, if
elastic collisions were the predominant mechanism of electron cooling, most of the discharge
energy would be used to heat up rather than to excite the atoms. It should also be noted that
electron-electron collision does not play any role in the energy balance equation expressed by
Eq. (6.4.12), since this process simply redistributes the electron velocities without changing
their average energy.

6.4.3. Electron Energy Distribution

We now proceed to a consideration of the distribution of electron velocities or of electron
energies in a gas discharge. If the energy redistribution due to electron-electron collisions is
fast enough compared to the energy loss due to both elastic and inelastic collision with the
atoms, then the prediction of statistical mechanics is that the distribution of electron veloc-
ities (or energies) is given by the Maxwell-Boltzmann (MB) distribution function. This can
be described, for instance, by the energy distribution function f(E), where f(E)dE is the ele-
mental probability for an electron to have its kinetic energy lying between E and E + dE. We
then obtain

2 E\'"?
f(E) = (ankTe) (k_Tg) exp —(E/kT,) (6.4.17)

where T, is the electron temperature. One thus sees that, when the distribution can be
described by the MB law, the electron temperature is the only parameter that needs to be
specified for characterizing the distribution.

Once T, is known, one can calculate vy, from Eq. (4.10) using the electron energy distri-
bution given by Eq. (6.4.17). Using the standard relation v> = 2E/m, we readily obtain from
Eq. (6.4.10)

v = [3kT,/m]'? (6.4.18)

which relates vy, to T,. From Eqgs. (6.4.18) and (6.4.14) we then obtain

2\ ¢
T, = |:(3) §:| (&) (6.4.19)

Since the electron mean free path [ is inversely proportional to the gas pressure p,
Eq. (6.4.19) shows that, for a given gas mixture, 7, is proportional to the ratio & /p. A more
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detailed treatment than the simple one leading to (6.4.14) shows that T, is a function of &/p
rather then being simply proportional to this ratio i.e.

T. = f(&/p) (6.4.20)

The &/p ratio is thus the fundamental quantity involved in establishing a given electron
temperature and it is often used in practice for specifying the discharge conditions.

We now address the question as to whether the electron energy distribution can actu-
ally be described by MB statistics. Indeed, one obvious reason for the distribution not being
Maxwellian is that the MB distribution implies that the velocity distribution in space is
isotropic. Actually, if this were the case, the drift velocity, as defined by Eq. (6.4.11), would
be zero and hence there could be no current flowing in the discharge! We have seen, however,
that the drift velocity is a very small fraction of the thermal velocity and, consequently, the
effect of the drift velocity in altering the MB distribution may be considered to be negligi-
ble. An important case, however, where MB statistics constitutes only a crude approximation,
occurs for a weakly ionized gas with high values for the electron impact cross sections e.g.
for CO, or CO gas laser mixtures. In this case, in fact, due to the low electron concentration,
the energy redistribution process arising from electron-electron collisions does not proceed at
a sufficiently fast rate compared to that for inelastic collisions. As we shall discuss in more
depth in the following example, one thus expects, in this case, to find dips in the energy
distribution function at energies corresponding to specific transitions of the molecules. By
contrast, for neutral atom or ion gas lasers, the electron density is much higher because these
lasers are relatively inefficient, and, as discussed further in the second example that follows,
the departure from a Maxwellian distribution is expected to be less significant.

Example 6.4. Electron energy distribution in a CO, laser We show in Fig. 6.25 the situation occurring
for a CO,:N;:He gas mixture with a 1:1:8 ratio between the corresponding partial pressures. In the figure,
the electron impact cross section for N, excitation up to the v = 5 vibrational level is shown!" (the
main pumping mechanism is, in fact, via energy transfer from an excited N, molecule to the lasing CO,
molecule). As a result of the very high value of the peak cross section (~ 3 x 107!®cm?) for the Nj
molecule and, also, as a result of the low value of the current density required in a CO; laser (the CO,
laser is one of the most efficient lasers), the assumption of a Maxwellian distribution is expected to be
inadequate, in this case. To calculate the correct electron energy distribution, one then needs to perform an
ab initio calculation using the appropriate electron transport equation (the Boltzmann transport equation)
where all possible electron collision processes leading to excitation (or de-excitation) of the vibrational
and electronic levels of all gas species are taken into account.!? The electron distribution, f(E), computed
in this way for an & /p ratio of ~ 8 V.cm™! Torr™! and corresponding to an average electron energy* of
~ 1.7eV is indicated as a solid line in the same figure.'¥ For comparison, the Maxwellian distribution,
f'(E), for the same average energy is also shown as a dashed line. One should note in the figure that the

*Although for a non-Maxwellian distribution the concept of temperature loses its meaning, one can still define an
average electron energy and, as in the case of a Maxwellian distribution, this energy turns out to be a function of
the & /p ratio.
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depression of the f(E) curve, compared to the Maxwellian curve, for E > 2eV is due to the very high
value of the electron impact cross section for N,. In fact, when accelerated by the electric field of the
discharge, few electrons go beyond the E = 2 eV barrier since they would be immediately involved in N,
excitation. Consequently, the electrons accumulate in the energy range below 2 eV.

Example 6.5. Electron energy distribution in a He-Ne laser In contrast to the results of the previous
example, we show in Fig. 6.26 the situation that applies to a helium discharge under conditions appropriate
to a He-Ne laser. In the figure, the two plots of the electron impact cross section to the 2''S and 23S levels
of He vs electron energy are shown. As in the previous case, in fact, the main pumping mechanism
arises from energy transfer between an excited He atom to the Ne lasing atom. Note, however, that the
peak values of the cross sections are, in this case, about two orders of magnitude smaller than for the
N, molecule. Since the current density and hence the electron density are also much higher, the He-
Ne laser being a rather inefficient laser, the Maxwellian distribution is expected to hold, in this case.
Accordingly, we show in the same figure a Maxwellian distribution with a mean electron energy of 10eV
which is the average electron energy in a He-Ne laser corresponding to the optimum excitation condition
[see sect. 6.4.5]. Note the much higher value of the average electron energy in this case compared to
the previous case, a consequence of the fact that one needs to excite electronic energy levels rather than
vibrational energy levels.

(10'ev-")

(E)

FIG. 6.25. Comparison of the electron energy distribution f(E) for a 1:1:8 CO;:N,:He mixture (redrawn from
Ref.(13)) with a Maxwellian distribution, f’(E), of the same average energy: In the same figure, the electron impact
cross section, o (E), for N, excitation up to the v = 5 vibrational level is also shown (redrawn from Ref.(1D). The
redrawn curves are indicative of the physical situation rather than representing the actual original values shown in the
cited references.
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FIG. 6.26. Electron energy distribution, f(E), and electron impact cross-section forthe 1 'S — 2 'Sand 11§ — 23§
transitions of He.

6.4.4. The lonization Balance Equation

In an electrical discharge, electrons and ions are being continuously created in the dis-
charge volume by electron impact. Ionization is produced by the hot electrons present in the
discharge i.e., those whose energy is larger than the ionization energy of the atom. In the
steady state, this ionization process must be counter-balanced by some electron-ion recom-
bination process. Radiationless electron-ion recombination cannot occur within the discharge
volume, however, because this process cannot conserve both the total momentum and total
energy of the particles. To understand this statement, let us consider, for simplicity, head-on
collisions. Upon invoking momentum conservation, the velocity v of the recombined atom
is obtained as v = (myv; + myvy)/(m; + my) where m; (i = 1,2) are the masses and v;
the velocities of the electron and ion before collision. On the other hand, for energy conser-
vation, we must require [(mlvlz/2) + (mzvzz) /2] = [(ml + my) v2/2] + E, where E, is the
energy released by the electron-ion recombination. For given values of m;, my, vj,and vy,
the momentum and energy conservation relations thus furnish us with two equations for the
one unknown quantity, v, the velocity of the recombined atom. Thus, in general, these two
equations cannot both be satisfied. Radiative ion-electron recombination, on the other hand,
is an unlikely process at the carrier concentrations holding for a gas laser. The recombina-
tion process can thus only occur in the presence of a third partner, M, since momentum and
energy conservation can be conserved in a three-body collision process. In fact, again assum-
ing head-on collisions, one now has a pair of equations in the two unknown v, the velocity
of the recombined atom, and vy, the velocity of the third partner, M, after collision. At the
low pressures of a gas laser (a few Torr) and if the gas mixture is contained in a cylindrical
tube, the necessary third partner M is simply provided by the tube walls. Thus, in a gas laser,
electron-ion recombination only occurs at the tube walls.

One now needs to realize that, although the electron velocity is much larger than the
ion velocity, the movement of electrons and ions to the walls must occur together. In fact,
if electrons were arriving at the walls more rapidly than ions, a radial electric field would
be established, which would accelerate the movement of the ions toward the wall and decel-
erate the electrons. For the usual electron and ion concentrations in a gas discharge, this
space charge effect would be quite substantial, consequently electrons and ions move to the
tube walls at the same rate. The movement can then occur by two different mechanisms,
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Example 6.6. Thermal and drift velocities in He-Ne and
CO; lasers Based on what has been said in the pre-
vious example, we will assume for a He-Ne laser an
average electron energy <E> =~ 10eV. This means
that (mv}/2) = <E> = 10eV and therefore vy, =
1.9 x 10°m/s. Since the electron velocity distribution is
assumed, in this case, to be Maxwellian, then, according
to Eq. (6.4.18), the electron temperature can be obtained
from the relation 7, = 2<E>/3k. We obtain 7, =
7.7 x 10*K. Note the much higher value of the electron
temperature compared to room temperature. To calculate
the drift velocity, we make use of Eq. (6.4.16) and assume
that the dominant cooling process for the electrons is via
elastic collisions with the lighter He atoms. We then get
(Varigr/ vm) ~ (m/Mpe)'/? 2= 1.16 x 1072, where My is
the mass of the Helium, so that vg = 2.2 x 10* m/s.
In the case of a CO, laser, based on the findings of exam-
ple 6.4, we will assume an optimum electron energy value
of <E> = 1.7¢V. From the relation (mvj,/2) = <E>
we then get vy, 2= 0.78 x 10°m/s. The drift velocity can
then be obtained from ref.('¥ assuming an & /p ratio of
~ 8Vem™! Torr™! and a 1:1:8 partial pressure ratio of
the CO,:N;:He mixture. We get vy = 6 X 10* m/s.
Note that, in this case, we cannot talk about an electron
temperature since the electron energy distribution departs
considerably from a Maxwellian distribution. Note also
that, in both cases, the thermal velocity is ~ 10® m/s and
the drift velocity is ~ 100 times smaller.
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depending on the gas pressure p and tube
radius R. If the ion mean free path is
much shorter than R, electrons and ions dif-
fuse together to the walls and recombination
occurs by ambipolar diffusion. If the ion
mean free path becomes comparable to the
tube radius (as happens in the relatively low-
pressure ion gas lasers), electrons and ions
reach the wall by “free flight” rather than by
diffusion. The analytical