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Preface

This book is motivated by the very favorable reception given to the previous editions as well
as by the considerable range of new developments in the laser field since the publication of
the third edition in 1989. These new developments include, among others, Quantum-Well and
Multiple-Quantum Well lasers, diode-pumped solid-state lasers, new concepts for both stable
and unstable resonators, femtosecond lasers, ultra-high-brightness lasers etc. The basic aim
of the book has remained the same, namely to provide a broad and unified description of laser
behavior at the simplest level which is compatible with a correct physical understanding. The
book is therefore intended as a text-book for a senior-level or first-year graduate course and/or
as a reference book.

This edition corrects several errors introduced in the previous edition. The most relevant
additions or changes to since the third edition can be summarized as follows:

1. A much-more detailed description of Amplified Spontaneous Emission has been
given [Chapt. 2] and a novel simplified treatment of this phenomenon both for
homogeneous or inhomogeneous lines has been introduced [Appendix C].

2. A major fraction of a chapter [Chapt. 3] is dedicated to the interaction of radiation
with semiconductor media, either in a bulk form or in a quantum-confined structure
(quantum-well, quantum-wire and quantum dot).

3. A modern theory of stable and unstable resonators is introduced, where a more exten-
sive use is made of the ABCD matrix formalism and where the most recent topics
of dynamically stable resonators as well as unstable resonators, with mirrors having
Gaussian or super-Gaussian transverse reflectivity profiles, are considered [Chapt. 5].

4. Diode-pumping of solid-state lasers, both in longitudinal and transverse pumping
configurations, are introduced in a unified way and a comparison is made with
corresponding lamp-pumping configurations [Chapt. 6].

5. Spatially-dependent rate equations are introduced for both four-level and quasi-three-
level lasers and their implications, for longitudinal and transverse pumping, are also
discussed [Chapt. 7].
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6. Laser mode-locking is considered at much greater length to account for e.g. new
mode-locking methods, such as Kerr-lens mode-locking. The effects produced by
second-order and third-order dispersion of the laser cavity and the problem of disper-
sion compensation to achieve the shortest pulse-durations are also discussed at some
length [Chapt. 8].

7. New tunable solid-state lasers, such as Ti: sapphire and Cr: LISAF, as well as
new rare-earth lasers such as Yb3C, Er3C, and Ho3C are also considered in detail
[Chapt. 9].

8. Semiconductor lasers and their performance are discussed at much greater length
[Chapt. 9].

9. The divergence properties of a multimode laser beam as well as its propagation
through an optical system are considered in terms of the M2-factor and in terms of
the embedded Gaussian beam [Chapt. 11 and 12].

10. The production of ultra-high peak intensity laser beams by the technique of
chirped-pulse-amplification and the related techniques of pulse expansion and pulse
compression are also considered in detail [Chapt. 12].

The book also contains numerous, thoroughly developed, examples, as well as many
tables and appendixes. The examples either refer to real situations, as found in the literature
or encountered through my own laboratory experience, or describe a significative advance
in a particular topic. The tables provide data on optical, spectroscopic and nonlinear-optical
properties of laser materials, the data being useful for developing a more quantitative context
as well as for solving the problems. The appendixes are introduced to consider some specific
topics in more mathematical detail. A great deal of effort has also been devoted to the logical
organization of the book so as to make its content more accessible.

The basic philosophy of the book is to resort, wherever appropriate, to an intuitive picture
rather than to a detailed mathematical description of the phenomena under consideration.
Simple mathematical descriptions, when useful for a better understanding of the physical
picture, are included in the text while the discussion of more elaborate analytical models is
deferred to the appendixes. The basic organization starts from the observation that a laser can
be considered to consists of three elements, namely the active medium, the resonator, and the
pumping system. Accordingly, after an introductory chapter, Chapters 2–3, 4–5 and 6 describe
the most relevant features of these elements, separately. With the combined knowledge about
these constituent elements, chapters 7 and 8 then allow a discussion of continuos-wave and
transient laser behavior, respectively. Chapters 9 and 10 then describe the most relevant types
of laser exploiting high-density and low-density media, respectively. Lastly, chapters 11 and
12 consider a laser beam from the user’s view-point examining the properties of the output
beam as well as some relevant laser beam transformations, such as amplification, frequency
conversion, pulse expansion or compression.

With so many topics, examples, tables and appendixes, it is clear that the entire content
of the book could not be covered in only a one semester-course. However the organization
of the book allows several different learning paths. For instance, one may be more interested
in learning the Principles of Laser Physics. The emphasis of the study should then be mostly
concentrated on the first section of the book [Chapt. 1–5 and Chapt. 7–8]. If, on the other hand,
the reader is more interested in the Principles of Laser Engineering, effort should mostly be
concentrated on the second part of the book Chap. 6 and 9–12. The level of understanding
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of a given topic may also be suitably modulated by e.g. considering, in more or less detail,
the numerous examples, which often represent an extension of a given topic, as well as the
numerous appendixes.

Writing a book, albeit a satisfying cultural experience, represents a heavy intellectual and
physical effort. This effort has, however, been gladly sustained in the hope that this edition
can serve the pressing need for a general introductory course to the laser field.

ACKNOWLEDGMENTS. I wish to acknowledge the following friends and colleagues,
whose suggestions and encouragement have certainly contributed to improving the book in
a number of ways: Christofer Barty, Vittorio De Giorgio, Emilio Gatti, Dennis Hall, Günther
Huber, Gerard Mourou, Colin Webb, Herbert Welling. I wish also to warmly acknowl-
edge the critical editing of David C. Hanna, who has acted as much more than simply a
translator. Lastly I wish to thank, for their useful comments and for their critical reading
of the manuscript, my former students: G. Cerullo, S. Longhi, M. Marangoni, M. Nisoli,
R. Osellame, S. Stagira, C. Svelto, S. Taccheo, and M. Zavelani.

Milano Orazio Svelto
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1

Introductory Concepts

In this introductory chapter, the fundamental processes and the main ideas behind laser oper-
ation are introduced in a very simple way. The properties of laser beams are also briefly
discussed. The main purpose of this chapter is thus to introduce the reader to many of the con-
cepts that will be discussed later on, in the book, and therefore help the reader to appreciate
the logical organization of the book.

1.1. SPONTANEOUS AND STIMULATED EMISSION, ABSORPTION

To describe the phenomenon of spontaneous emission, let us consider two energy lev-
els, 1 and 2, of some atom or molecule of a given material, their energies being E1 and
E2 .E1 < E2/ (Fig. 1.1a). As far as the following discussion is concerned, the two levels could
be any two out of the infinite set of levels possessed by the atom. It is convenient, however, to
take level 1 to be the ground level. Let us now assume that the atom is initially in level 2. Since
E2 > E1, the atom will tend to decay to level 1. The corresponding energy difference, E2 �E1,
must therefore be released by the atom. When this energy is delivered in the form of an elec-
tromagnetic (e.m. from now on) wave, the process will be called spontaneous (or radiative)
emission. The frequency �0 of the radiated wave is then given by the well known expression

�0 D .E2 � E1/=h (1.1.1)

where h is Planck’s constant. Spontaneous emission is therefore characterized by the emis-
sion of a photon of energy h�0 D E2 � E1, when the atom decays from level 2 to level 1
(Fig. 1.1a). Note that radiative emission is just one of the two possible ways for the atom
to decay. The decay can also occur in a nonradiative way. In this case the energy difference
E2 � E1 is delivered in some form of energy other than e.m. radiation (e.g. it may go into
kinetic or internal energy of the surrounding atoms or molecules). This phenomenon is called
non-radiative decay.

O. Svelto, Principles of Lasers,
c

1
DOI: 10.1007/978-1-4419-1302-9 1, � Springer Science+Business Media LLC 2010
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FIG. 1.1. Schematic illustration of the three processes: (a) spontaneous emission; (b) stimulated emission; (c)
absorption.

Let us now suppose that the atom is found initially in level 2 and that an e.m. wave of
frequency � D �o (i.e., equal to that of the spontaneously emitted wave) is incident on the
material (Fig. 1.1b). Since this wave has the same frequency as the atomic frequency, there is
a finite probability that this wave will force the atom to undergo the transition 2 ! 1. In this
case the energy difference E2 � E1 is delivered in the form of an e.m. wave that adds to the
incident one. This is the phenomenon of stimulated emission. There is a fundamental differ-
ence between the spontaneous and stimulated emission processes. In the case of spontaneous
emission, the atoms emits an e.m. wave that has no definite phase relation with that emitted by
another atom. Furthermore, the wave can be emitted in any direction. In the case of stimulated
emission, since the process is forced by the incident e.m. wave, the emission of any atom adds
in phase to that of the incoming wave and along the same direction.

Let us now assume that the atom is initially lying in level 1 (Fig. 1.1c). If this is the
ground level, the atom will remain in this level unless some external stimulus is applied to
it. We shall assume, then, that an e.m. wave of frequency � D �o is incident on the material.
In this case there is a finite probability that the atom will be raised to level 2. The energy
difference E2 � E1 required by the atom to undergo the transition is obtained from the energy
of the incident e.m. wave. This is the absorption process.

To introduce the probabilities for these emission and absorption phenomena, let N be the
number of atoms (or molecules) per unit volume which, at time t, are lying in a given energy
level. From now on the quantity N will be called the population of the level.

For the case of spontaneous emission, the probability for the process to occur can be
defined by stating that the rate of decay of the upper state population, .dN2=dt/sp, must be
proportional to the population N2. We can therefore write

�
dN2

dt

�
sp

D �AN2 (1.1.2)

where the minus sign accounts for the fact that the time derivative is negative. The coefficient
A, introduced in this way, is a positive constant and is called the rate of spontaneous emission
or the Einstein A coefficient (an expression for A was in fact first obtained by Einstein from
thermodynamic considerations). The quantity �sp D 1=A is called the spontaneous emission
(or radiative) lifetime. Similarly, for non-radiative decay, we can often write

�
dN2

dt

�
nr

D � N2

�nr
(1.1.3)
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where �nr is referred to as the non-radiative decay lifetime. Note that, for spontaneous emis-
sion, the numerical value of A (and �sp) depends only on the particular transition considered.
For non-radiative decay, � nr depends not only on the transition but also on the characteristics
of the surrounding medium.

We can now proceed, in a similar way, for the stimulated processes (emission or
absorption). For stimulated emission we can write

�
dN2

dt

�
st

D �W21N2 (1.1.4)

where .dN2=dt/st is the rate at which transitions 2 ! 1 occur as a result of stimulated emission
and W21 is called the rate of stimulated emission. Just as in the case of the A coefficient defined
by Eq. (1.1.2) the coefficient W21 also has the dimension of .time/�1. Unlike A, however, W21

depends not only on the particular transition but also on the intensity of the incident e.m.
wave. More precisely, for a plane wave, it will be shown that we can write

W21 D �21F (1.1.5)

where F is the photon flux of the wave and �21 is a quantity having the dimension of an
area (the stimulated emission cross section) and depending on the characteristics of the given
transition.

In a similar fashion to Eq. (1.1.4), we can define an absorption rate W21 by means of the
equation

�
dN1

dt

�
a

D �W12N1 (1.1.6)

where .dN1=dt/a is the rate of the 1 ! 2 transitions due to absorption and N1 is the population
of level 1. Furthermore, just as in Eq. (1.1.5), we can write

W12 D �12F (1.1.7)

where �12 is some characteristic area (the absorption cross section), which depends only on
the particular transition.

In what has just been said, the stimulated processes have been characterized by the stim-
ulated emission and absorption cross-sections, �21 and �12, respectively. Now, it was shown
by Einstein at the beginning of the twentieth century that, if the two levels are non-degenerate,
one always has W21 D W12 and �21 D �12. If levels 1 and 2 are g1-fold and g2-fold degenerate,
respectively one has instead

g2W21 D g1W12 (1.1.8)

i.e.
g2�21 D g1�12 (1.1.9)

Note also that the fundamental processes of spontaneous emission, stimulated emission
and absorption can readily be described in terms of absorbed or emitted photons as follows
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(see Fig. 1.1). (1) In the spontaneous emission process, the atom decays from level 2 to level 1
through the emission of a photon. (2) In the stimulated emission process, the incident photon
stimulates the 2 ! 1 transition and we then have two photons (the stimulating plus the stim-
ulated one). (3) In the absorption process, the incident photon is simply absorbed to produce
the 1 ! 2 transition. Thus we can say that each stimulated emission process creates while
each absorption process annihilates a photon.

1.2. THE LASER IDEA

Consider two arbitrary energy levels 1 and 2 of a given material and let N1 and N2 be their
respective populations. If a plane wave with a photon flux F is traveling along the z direction in
the material (Fig. 1.2), the elemental change, dF, of this flux along the elemental length, dz, of
the material will be due to both the stimulated and emission processes occurring in the shaded
region of Fig. 1.2. Let S be the cross sectional area of the beam. The change in number between
outgoing and incoming photons, in the shaded volume per unit time, will thus be SdF. Since
each stimulated process creates while each absorption removes a photon, SdF must equal the
difference between stimulated emission and absorption events occurring in the shaded volume
per unit time. From (1.1.4) and (1.1.6) we can thus write SdF D .W21N2 �W12N1/.Sdz/ where
Sdz is, obviously, the volume of the shaded region. With the help of Eqs. (1.1.5), (1.1.7) and
(1.1.9) we obtain

dF D �21F ŒN2 � .g2N1=g1/� dz (1.2.1)

Note that, in deriving Eq. (1.2.1), we have not taken into account the radiative and non-
radiative decays. In fact, non-radiative decay does not add any new photons while the photons
created by the radiative decay are emitted in any direction and do not contribute to the
incoming photon flux F.

Equation (1.2.1) shows that the material behaves as an amplifier (i.e., dF/dz > 0) if N2 >

g2N1=g1, while it behaves as an absorber if N2 < g2N1=g1. Now, at thermal equilibrium, the
populations are described by Boltzmann statistics. So, if Ne

1 and Ne
2 are the thermal equilibrium

FIG. 1.2. Elemental change dF in the photon flux F fro a plane e.m. wave in traveling a distance dz through the
material.
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populations of the two levels, we have

Ne
2

Ne
1

D g2

g1
exp �

�
E2 � E1

kT

�
(1.2.2)

where k is Boltzmann’s constant and T the absolute temperature of the material. In thermal
equilibrium we thus have Ne

2 < g2Ne
1=g1. According to Eq. (1.2.1), the material then acts as

an absorber at frequency �. This is what happens under ordinary conditions. If, however, a
non-equilibrium condition is achieved for which N2 > g2N1=g1 then the material will act as
an amplifier. In this case we will say that there exists a population inversion in the material,
by which we mean that the population difference N2 � .g2N1=g1/ is opposite in sign to that
which exists under thermodynamic equilibrium ŒN2 � .g2N1=g1/ < 0�. A material in which
this population inversion is produced will be called an active material.

If the transition frequency �0 D .E2 � E1/= kT falls in the microwave region, this type
of amplifier is called a maser amplifier. The word maser is an acronym for “microwave
amplification by stimulated emission of radiation.” If the transition frequency falls in the
optical region, the amplifier is called a laser amplifier. The word laser is again an acronym,
with the letter l (light) substituted for the letter m (microwave).

To make an oscillator from an amplifier, it is necessary to introduce a suitable pos-
itive feedback. In the microwave region this is done by placing the active material in a
resonant cavity having a resonance at frequency �0. In the case of a laser, the feedback is
often obtained by placing the active material between two highly reflecting mirrors (e.g.
plane parallel mirrors, see Fig. 1.3). In this case, a plane e.m. wave traveling in the direc-
tion perpendicular to the mirrors will bounce back and forth between the two mirrors and
be amplified on each passage through the active material. If one of the two mirrors is made
partially transparent, a useful output beam is obtained from this mirror. It is important to
realize that, for both masers and lasers, a certain threshold condition must be reached. In
the laser case, for instance, the oscillation will start when the gain of the active material
compensates the losses in the laser (e.g. the losses due to the output coupling). Accord-
ing to Eq. (1.2.1), the gain per pass in the active material (i.e. the ratio between the output
and input photon flux) is exp f�ŒN2 � .g2N1=g1/�lg where we have denoted, for simplic-
ity, � D �21, and where l is the length of the active material. Let R1 and R2 be the power
reflectivity of the two mirrors (Fig. 1.3) and let Li be the internal loss per pass in the laser
cavity. If, at a given time, F is the photon flux in the cavity, leaving mirror 1 and traveling
toward mirror 2, then the photon flux, F0, again leaving mirror 1 after one round trip will be
F0 D F exp f�ŒN2�.g2N1=g1/�lg�.1�Li/R2� exp f�ŒN2�.g2N=g1/�lg�.1�Li/R1. At thresh-
old we must have F0 D F, and therefore R1R2.1 � Li/

2 exp f2�ŒN2 � .g2N1=g1/�lg D 1. This
equation shows that threshold is reached when the population inversion, N D N2 �.g2N1=g1/,
reaches a critical value, known as the critical inversion, given by

Nc D �Œ ln R1R2 C 2 ln .1 � Li/�= 2� l (1.2.3)

FIG. 1.3. Scheme of a laser.
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The previous expression can be put in a somewhat simpler form if we define

�1 D � ln R1 D � ln .1 � T1/ (1.2.4a)

�2 D � ln R2 D � ln .1 � T2/ (1.2.4b)

�i D � ln .1 � Li/ (1.2.4c)

where T1 and T2 are the two mirror transmissions (for simplicity mirror absorption has been
neglected). The substitution of Eq. (1.2.4) in Eq. (1.2.3) gives

Nc D �=� l (1.2.5)

where we have defined

� D �i C .�1 C �2/= 2 (1.2.6)

Note that the quantities �i, defined by Eq. (1.2.4c), may be called the logarithmic internal loss
of the cavity. In fact, when Li � 1 as usually occurs, one has �i Š Li. Similarly, since both T1

and T2 represent a loss for the cavity, �1 and �2, defined by Eq. (1.2.4a and b), may be called
the logarithmic losses of the two cavity mirrors. Thus, the quantity � defined by Eq. (1.2.6)
will be called the single pass loss of the cavity.

Once the critical inversion is reached, oscillation will build up from spontaneous emis-
sion. The photons that are spontaneously emitted along the cavity axis will, in fact, initiate
the amplification process. This is the basis of a laser oscillator, or laser, as it is more simply
called. Note that, according to the meaning of the acronym laser as discussed above, the word
should be reserved for lasers emitting visible radiation. The same word is, however, now com-
monly applied to any device emitting stimulated radiation, whether in the far or near infrared,
ultraviolet, or even in the X-ray region. To be specific about the kind of radiation emitted one
then usually talks about infrared, visible, ultraviolet or X-ray lasers, respectively.

1.3. PUMPING SCHEMES

We will now consider the problem of how a population inversion can be produced in a
given material. At first sight, it might seem that it would be possible to achieve this through
the interaction of the material with a sufficiently strong e.m. wave, perhaps coming from a
sufficiently intense lamp, at the frequency � D �o. Since, at thermal equilibrium, one has
g1N1 > g2N2g1, absorption will in fact predominate over stimulated emission. The incoming
wave would produce more transitions 1 ! 2 than transitions 2 ! 1 and we would hope
in this way to end up with a population inversion. We see immediately, however, that such a
system would not work (at least in the steady state). When in fact the condition is reached such
that g2N2 D g1N1, then the absorption and stimulated emission processes will compensate one
another and, according to Eq. (1.2.1), the material will then become transparent. This situation
is often referred to as two-level saturation.
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FIG. 1.4. (a) Three-level and (b) four-level laser schemes.

With just two levels, 1 and 2, it is therefore impossible to produce a population inversion.
It is then natural to question whether this is possible using more than two levels out of the infi-
nite set of levels of a given atomic system. As we shall see, the answer is in this case positive,
and we will accordingly talk of a three-level laser or four-level laser, depending upon the
number of levels used (Fig. 1.4). In a three-level laser (Fig. 1.4a), the atoms are in some way
raised from the ground level 1 to level 3. If the material is such that, after an atom has been
raised to level 3, it decays rapidly to level 2 (perhaps by a rapid nonradiative decay), then a
population inversion can be obtained between levels 2 and 1. In a four-level laser (Fig. 1.4b),
atoms are again raised from the ground level (for convenience we now call this level 0) to
level 3. If the atom then decays rapidly to level 2 (e.g. again by a fast nonradiative decay), a
population inversion can again be obtained between levels 2 and 1. Once oscillation starts in
such a four-level laser, however, the atoms will then be transferred to level 1, through stim-
ulated emission. For continuos wave (henceforth abbreviated as cw) operation it is therefore
necessary that the transition 1 ! 0 should also be very fast (this again usually occurs by a
fast nonradiative decay).

We have just seen how to make use of a three or four levels of a given material to produce
population inversion. Whether a system will work in a three- or four-level scheme (or whether
it will work at all!) depends on whether the various conditions given above are fulfilled. We
could of course ask why one should bother with a four level scheme when a three-level scheme
already seems to offer a suitable way of producing a population inversion. The answer is that
one can, in general, produce a population inversion much more easily in a four-level than in a
three-level laser. To see this, we begin by noting that the energy difference among the various
levels of Fig. 1.4 are usually much greater than kT. According to Boltzmann statistics [see,
e.g., Eq. (1.2.2)] we can then say that essentially all atoms are initially (i.e., at equilibrium) in
the ground level. If we now let Nt be the atom density in the material, these will initially all
be in level 1 from the three-level case. Let us now begin raising atoms from level 1 to level 3.
They will then decay to level 2 and, if this decay is sufficiently fast, level 3 will remain more
or less empty. Let us now assume, for simplicity, that the two levels are either non-degenerate
(i.e. g1 D g2 D 1) or have the same degeneracy. Then, according to Eq. (1.2.1), the absorption
losses will be compensated by the gain when N2 D N1. From this point on, any further atom
that is raised will then contribute to population inversion. In a four-level laser, however, since
level 1 is also empty, any atom that has been raised to level 2 immediately produces population
inversion. The above discussion shows that, whenever possible, we should look for a material
that can be operated as a four-level rather than a three-level system. The use of more than
four levels is, of course, also possible. It should be noted that the term “four-level laser” has



8 1 � Introductory Concepts

come to be used for any laser in which the lower laser level is essentially empty, by virtue of
being above the ground level by many kT. So if level 2 and level 3 are the same level, then
one has a level scheme which would be described as “four-level” in the sense above, while
only having three levels! Cases based on such a “four-level” scheme do exist. It should also
be noted that, more recently, the so-called quasi-three-level lasers have also become a very
important cathegory of laser. In this case, the ground level consists of many sublevels, the
lower laser level being one of these sublevels. Therefore, the scheme of Fig. 1.4b can still
be applied to a quasi-three-level laser with the understanding that level 1 is a sublevel of the
ground level and level 0 is the lowest sublevel of the ground level. If all ground state sublevels
are strongly coupled, perhaps by some fast non-radiative decay process, then the populations
of these sublevels will always be in thermal equilibrium. Let us further assume that the energy
separation between level 1 and level 0 (see Fig. 1.4b) is comparable to kT. Then, according to
Eq. (1.2.2), there will always be some population present in the lower laser level and the laser
system will behave in a way which is intermediate between a three- and a four-level laser.

The process by which atoms are raised from level 1 to level 3 (in a three-level scheme),
from 0 to 3 (in a four-level scheme), or from the ground level to level 3 (in a quasi-three-level
scheme) is known as pumping. There are several ways in which this process can be realized
in practice, e.g., by some sort of lamp of sufficient intensity or by an electrical discharge in
the active medium. We refer to Chap. 6 for a more detailed discussion of the various pumping
processes. We note here, however, that, if the upper pump level is empty, the rate at which the
upper laser level becomes populated by the pumping, .dN2=dt/p, can in general be written as
.dN2=dt/p D WpNg where Wp is a suitable rate describing the pumping process and Ng is the
population of the ground level for either a three- or four-level laser while, for a quasi-three-
level laser, it can be taken to be the total population of all ground state sublevels. In what
follows, however, we will concentrate our discussion mostly on four level or quasi-three-level
lasers. The most important case of three-level laser, in fact, is the Ruby laser, a historically
important laser (it was the first laser ever made to operate) although no longer so widely used.
For most four-level and quasi-three-level lasers in commun use, the depletion of the ground
level, due to the pumping process, can be neglected.� One can then write Ng D const and the
previous equation can be written, more simply, as

.dN2=dt/p D Rp (1.3.1)

where Rp may be called the pump rate per unit volume or, more briefly, the pump rate. To
achieve the threshold condition, the pump rate must reach a threshold or critical value, Rcp.
Specific expressions for Rcp will be obtained in Chap. 6 and Chap. 7.

1.4. PROPERTIES OF LASER BEAMS

Laser radiation is characterized by an extremely high degree of (1) monochromaticity,
(2) coherence, (3) directionality, and (4) brightness. To these properties a fifth can be added,

� One should note that, as a quasi-3-level laser becomes progressively closer to a pure 3-level laser, the assumption
that the ground state population is changed negligibly by the pumping process will eventually not be justified.
One should also note that in fiber lasers, where very intense pumping is readily achieved, the ground state can be
almost completely emptied.
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viz., (5) short time duration. This refers to the capability for producing very short light pulses,
a property that, although perhaps less fundamental, is nevertheless very important. We shall
now consider these properties in some detail.

1.4.1. Monochromaticity

Briefly, we can say that this property is due to the following two circumstances: (1) Only
an e.m. wave of frequency �0 given by (1.1.1) can be amplified. (2) Since the two-mirror
arrangement forms a resonant cavity, oscillation can occur only at the resonance frequencies
of this cavity. The latter circumstance leads to the laser linewidth being often much narrower
(by as much as to ten orders of magnitude!) than the usual linewidth of the transition 2 ! 1
as observed in spontaneous emission.

1.4.2. Coherence

To first order, for any e.m. wave, one can introduce two concepts of coherence, namely,
spatial and temporal coherence.

To define spatial coherence, let us consider two points P1 and P2 that, at time t D 0, lie
on the same wave-front of some given e.m. wave and let E1.t/ and E2.t/ be the corresponding
electric fields at these two points. By definition, the difference between the phases of the two
field at time t D 0 is zero. Now, if this difference remains zero at any time t > 0, we will
say that there is a perfect coherence between the two points. If this occurs for any two points
of the e.m. wave-front, we will say that the wave has perfect spatial coherence. In practice,
for any point P1, the point P2 must lie within some finite area around P1 if we want to have a
good phase correlation. In this case we will say that the wave has a partial spatial coherence
and, for any point P, we can introduce a suitably defined coherence area Sc.P/.

To define temporal coherence, we now consider the electric field of the e.m. wave at a
given point P, at times t and t C � . If, for a given time delay � , the phase difference between
the two field remains the same for any time t, we will say that there is a temporal coherence
over a time � . If this occurs for any value of � , the e.m. wave will be said to have perfect time
coherence. If this occurs for a time delay � such that 0 < � < �0, the wave will be said to have
partial temporal coherence, with a coherence time equal to �0. An example of an e.m wave
with a coherence time equal to �0 is shown in Fig. 1.5. The figure shows a sinusoidal electric
field undergoing random phase jumps at time intervals equal to �0. We see that the concept of
temporal coherence is, at least in this case, directly connected with that of monochromaticity.
We will show, in fact, in Chap. 11, that any stationary e.m. wave with coherence time �0 has a
bandwidth	� Š 1=�0. In the same chapter it will also be shown that, for a non-stationary but
repetitively reproducing beam (e.g., a repetitively Q-switched or a mode-locked laser beam)
the coherence time is not related to the inverse of the oscillation bandwidth 	� and may
actually be much longer than 1=	�.

It is important to point out that the two concepts of temporal and spatial coherence are
indeed independent of each other. In fact, examples can be given of a wave having perfect spa-
tial coherence but only limited temporal coherence (or vice versa). If, for instance, the wave
shown in Fig. 1.5 were to represent the electric fields at points P1 and P2 considered earlier,
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FIG. 1.5. Example of an e.m. wave with a coherence time of approximately �0.

the spatial coherence between these two points would be complete still the wave having a
limited temporal coherence.

We conclude this section by emphasizing that the concepts of spatial and temporal coher-
ence provide only a first-order description of the laser’s coherence. Higher order coherence
properties will in fact discussed in Chap. 11. Such a discussion is essential for a full apprecia-
tion of the difference between an ordinary light source and a laser. It will be shown in fact that,
by virtue of the differences between the corresponding higher-order coherence properties, a
laser beam is fundamentally different from an ordinary light source.

1.4.3. Directionality

This property is a direct consequence of the fact that the active medium is placed in a
resonant cavity. In the case of the plane parallel one of Fig. 1.3, for example, only a wave
propagating in a direction orthogonal to the mirrors (or in a direction very near to it) can be
sustained in the cavity. To gain a deeper understanding of the directional properties of a laser
beam (or, in general, of any e.m. wave), it is convenient to consider, separately, the case of a
beam with perfect spatial coherence and the case of partial spatial coherence.

Let us first consider the case of perfect spatial coherence. Even for this case, a beam of
finite aperture has unavoidable divergence due to diffraction. This can be understood with the
help of Fig. 1.6, where a monochromatic beam of uniform intensity and plane wave-front is
assumed to be incident on a screen S containing an aperture D. According to Huyghens’ prin-
ciple the wave-front at some plane P behind the screen can be obtained from the superposition
of the elementary waves emitted by each point of the aperture. We thus see that, on account of
the finite size D of the aperture, the beam has a finite divergence 
d. Its value can be obtained
from diffraction theory. For an arbitrary amplitude distribution we get


d D ˇ �=D (1.4.1)
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FIG. 1.6. Divergence of a plane e.m. wave due to diffraction.

where � and D are the wavelength and the diameter of the beam. The factor ˇ is a numerical
coefficient of the order of unity whose value depends on the shape of the amplitude distribu-
tion and on the way in which both the divergence and the beam diameter are defined. A beam
whose divergence can be expressed as in Eq. (1.4.1) is described as being diffraction limited.

If the wave has only a partial spatial coherence, its divergence will be larger than the
minimum value set by diffraction. Indeed, for any point P0 of the wave-front, the Huygens’
argument of Fig. 1.6 can only be applied for points lying within the coherence area Sc around
point P0. The coherence area thus acts as a limiting aperture for the coherent superposition of
the elementary wavelets. The beam divergence will now be given by


 D ˇ�= ŒSc�
1=2 (1.4.2)

where. again, ˇ is a numerical coefficient of the order of unity whose exact value depends on
the way in which both the divergence 
 and the coherence area Sc are defined.

We conclude this general discussion of the directional properties of e.m. waves by point-
ing out that, given suitable operating conditions, the output beam of a laser can be made
diffraction limited.

1.4.4. Brightness

We define the brightness of a given source of e.m. waves as the power emitted per unit
surface area per unit solid angle. To be more precise, let dS be the elemental surface area at
point O of the source (Fig. 1.7a). The power dP emitted by dS into a solid angle d˝ around
direction OO0 can be written as

dP D B cos 
 dS d� (1.4.3)

where 
 is the angle between OO0 and the normal n to the surface. Note that the factor cos 

arises simply from the fact that the physically important quantity for the emission along the
OO0 direction is the projection of dS on a plane orthogonal to the OO0 direction, i.e. cos 
 dS.
The quantity B defined through Eq. (1.4.3) is called the source brightness at the point O in the
direction OO0. This quantity will generally depend on the polar coordinates 
 and � of the
direction OO0 and on the point O. When B is a constant, the source is said to be isotropic (or
a Lambertian source).

Let us now consider a laser beam of power P, with a circular cross section of diameter D
and with a divergence 
 (Fig. 1.7b). Since 
 is usually very small, we have cos 
 Š 1. Since
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FIG. 1.7. (a) Surface brightness at the point O for a general source of e.m. waves. (b) Brightness of a laser beam of
diameter D and divergence 
 .

the area of the beam is equal to 
D2=4 and the emission solid angle is 

2, then, according
to Eq. (1.4.3), we obtain the beam brightness as

B D 4P=.
D
/2 (1.4.4)

Note that, if the beam is diffraction limited, we have 
 D 
d and, with the help of Eq. (1.4.1),
we obtain from Eq. (1.4.4)

B D
�

2

ˇ
�

�2

P (1.4.5)

which is the maximum brightness that a beam of power P can have.
Brightness is the most important parameter of a laser beam and, in general, of any light

source. To illustrate this point we first recall that, if we form an image of any light source
through a given optical system and if we assume that object and image are in the same medium
(e.g. air), then the following property holds: The brightness of the image is always less than
or equal to that of the source, the equality holding when the optical system provides lossless
imaging of the light emitted by the source. To further illustrate the importance of brightness,
let us consider the beam of Fig. 1.7b, having a divergence equal to θ, to be focused by a
lens of focal length f . We are interested in calculating the peak intensity of the beam in the
focal plane of the lens (Fig. 1.8a). To make this calculation we recall that the beam can be
decomposed into a continuous set of plane waves with an angular spread of approximately 

around the propagation direction. Two such waves, making an angle 
 0 are indicated by solid
and dashed lines, respectively, in Fig. 1.8b. The two beams will each be focused to a distinct
spot in the focal plane and, for small angle 
 0, the two spots are transversely separated by a
distance r D f
 0. Since the angular spread of the plane waves which make up the beam of
Fig. 1.8a is equal to the beam divergence 
 , we arrive at the conclusion that the diameter, d, of
the focal spot in Fig. 1.8a is approximately equal to d D 2f 
 . For an ideal, lossless, lens the
overall power in the focal plane equals the power, P, of the incoming wave. The peak intensity
in the focal plane is thus found to be Ip D 4P=
d2 D P=
.f 
/2. In terms of beam brightness,
according to (1.4.4) we then have Ip D .
=4/B.D/f/2. Thus Ip increases with increasing beam



1.4 � Properties of Laser Beams 13

FIG. 1.8. (a) Intensity distribution in the focal plane of a lens for a beam of divergence 
 . (b) Plane-wave decompo-
sition of the beam of a.

diameter D. The maximum value of Ip is then attained when D is made equal to the lens
diameter DL. In this case we obtain

Ip D .
=4/ .N.A./2 B (1.4.6)

where N.A. D sin Œ tan�1.DL=f /� Š .DL=f / is the lens numerical aperture. Equation (1.4.6)
then shows that, for a given numerical aperture, the peak intensity in the focal plane of a lens
depends only on the beam brightness.

A laser beam of even moderate power (e.g. a few milliwatts) has a brightness that is
several orders of magnitude greater than that of the brightest conventional sources (see, e.g.,
problem 1.7). This is mainly due to the highly directional properties of the laser beam. Accord-
ing to Eq. (1.4.6), this means that the peak intensity produced in the focal plane of a lens can be
several order of magnitude larger for a laser beam compared to that of a conventional source.
Thus the focused intensity of a laser beam can reach very large values, a feature which is
exploited in many applications of lasers.

1.4.5. Short Time Duration

Without going into any detail at this stage, we simply mention that by means of a special
technique called mode locking, it is possible to produce light pulses whose duration is roughly
equal to the inverse of the linewidth of the 2 ! 1 transition. Thus, with gas lasers, whose
linewidth is relatively narrow, the pulse-width may be of � 0.1–1 ns. Such pulse durations are
not regarded as particularly short and indeed even some flashlamps can emit light pulses with
a duration of somewhat less than 1 ns. On the other hand, the linewidth of some solid state
and liquid lasers can be 103–105 times larger than that of a gas laser, and, in this case, much
shorter pulses may be generated (down to � 10 fs). This opens up exciting new possibilities
for laser research and applications.

Notice that the property of short time duration, which implies energy concentration in
time, can, in a sense, be considered to be the counterpart of monochromaticity, which implies
energy concentration in wavelength. Short time duration would, however, perhaps be regarded
as a less fundamental property than monochromaticity. While in fact all lasers can, in prin-
ciple, be made extremely monochromatic, only lasers with a broad linewidth, i.e. solid state
and liquid lasers, may produce pulses of very short time duration.
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1.5. TYPES OF LASERS

The various types of laser that have been developed so far, display a very wide range
of physical and operating parameters. Indeed, if lasers are characterized according to the
physical state of the active material, one uses the description of solid state, liquid or gas lasers.
A rather special case is where the active material consists of free electrons, at relativistic
velocities, passing through a spatially periodic magnetic field (free-electron lasers). If lasers
are characterized by the wavelength of the emitted radiation, one refers to infrared lasers,
visible lasers, UV and X-ray lasers. The corresponding wavelength may range from � 1 mm
(i.e. millimeter waves) down to � 1 nm (i.e. to the upper limit of hard X-rays). The span in
wavelength can thus be a factor of � 106 (we recall that the visible range spans less than a
factor 2, roughly from 700 to 400 nm). Output powers cover an even larger range of values.
For cw lasers, typical powers go from a few mW, in lasers used for signal sources (e.g. for
optical communications or for bar-code scanners), to tens of kW in lasers used for material
working, to a few MW (� 5 MW so far) in lasers required for some military applications (e.g.
for directed energy weapons). For pulsed lasers the peak power can be much higher than for
cw lasers and can reach values as high as 1 PW .1015 W/! Again for pulsed lasers, the pulse
duration can vary widely from the ms level typical of lasers operating in the so-called free-
running regime (i.e. without any Q-switching or mode-locking element in the cavity) down to
about 10 fs .1 fs D 10�15 s/ for some mode locked lasers. The physical dimensions can also
vary widely. In terms of cavity length, for instance, the length can be as small as � 1 μm for
the shortest lasers up to some km for the longest (e.g. a laser 6.5 km long, which was set up in
a cave for geodetic studies).

This wide range of physical or operating parameters represent both a strength and a
weakness. As far as applications are concerned, this wide range of parameters offers enormous
potential in several fields of fundamental and applied sciences. On the other hand, in terms
of markets, a very wide spread of different devices and systems can be an obstacle to mass
production and its associated price reduction.

1.6. ORGANIZATION OF THE BOOK

The organization of the book is based on the fact that, as indicated in our discussion
so far, a laser can be considered to consist of three elements: (1) an active material, (2) a
pumping scheme, (3) a resonator. Accordingly, the next two chapters deal with the interaction
of radiation with matter, starting from the simplest cases, i.e. atoms or ions in an essentially
isolated situation, (Chap. 2), and going on to the more complicated cases, i.e. molecules
and semiconductors, (Chap. 3). As an introduction to optical resonators, the next Chapter
(Chap. 4) considers some topics relating to ray and wave propagation in particular optical
elements such as free-space, optical lens-like media, Fabry-Perot interferometers and multi-
layer dielectric coatings. Chapter 5 then deals with the theory of optical resonators while the
next Chapter (Chap. 6) deals with the pumping processes. The concepts introduced in these
chapters are then used in next two chapters (Chap. 7 and 8) where the theory is developed
for continuous wave and transient laser behavior, respectively. The theory is based on the
lowest order approximation, i.e. using the rate equation approach. This treatment is, in fact,
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capable of describing most laser characteristics. Obviously, lasers based upon different types
of active media have significant differences in their characteristics. So, the next two chap-
ters (Chap. 9 and 10) discuss the characteristic properties of a number of types of laser. Thus
Chap. 9 covers ionic crystal, dye and semiconductor lasers, these having a number of com-
mon features, while Chap. 10 considers gas, chemical and free-electron lasers. By this point,
the reader should have acquired sufficient understanding of laser behavior to go on to a study
of the properties of the output beam (coherence, monochromaticity, brightness, noise). These
properties are considered in Chap. 11. Finally, the theme of Chap. 12 is based on the fact that,
before being put to use, a laser beam is generally transformed in some way. This includes:
(1) spatial transformation of the beam due to its propagation through e.g. a lens system; (2)
amplitude transformation as a result of passing through an amplifier; (3) wavelength trans-
formation, or frequency conversion, via a number of nonlinear phenomena (second harmonic
generation, parametric processes); (4) time transformation by e.g. pulse compression.

PROBLEMS

1.1. The part of the e.m. spectrum that is of interest in the laser field starts from the submillimiter
wave region and goes down in wavelength to the X-ray region. This covers the following regions in
succession: (1) far infrared; (2) near infrared; (3) visible; (4) ultraviolet (uv); (5) vacuum ultraviolet
(vuv); (6) soft X-ray; (7) X-ray: From standard textbooks find the wavelength intervals of the above
regions. Memorize or record these intervals since they are frequently used in this book.

1.2. As a particular case of Problem 1.1, memorize or record the wavelengths corresponding to blue,
green, and red light.

1.3. If levels 1 and 2 of Fig. 1.1 are separated by an energy E2�E1 such that the corresponding transition
frequency falls in the middle of the visible range, calculate the ratio of the populations of the two
levels in thermal equilibrium at room temperature.

1.4. When in thermal equilibrium at T D 300 K, the ratio of the level populations N2=N1 for some
particular pair of levels is given by 1=e. Calculate the frequency � for this transition. In what region
of the e.m. spectrum does this frequency fall?

1.5. A laser cavity consists of two mirrors with reflectivities R1 D 1 and R2 D 0.5 while the internal
loss per pass is Li D 1%. Calculate the total logarithmic losses per pass. If the length of the active
material is l D 7.5 cm and the transition cross section is � D 2.8 � 10�19 cm2, calculate then the
threshold inversion.

1.6. The beam from a ruby laser .� Š 694 nm/ is sent to the moon after passing through a telescope
of 1 m diameter. Calculate the approximate value of beam diameter on the moon assuming that
the beam has perfect spatial coherence (the distance between earth and moon is approximately
384,000 km).

1.7. The brightness of probably the brightest lamp so far available (PEK Labs type 107/109, excited
by 100 W of electrical power) is about 95 W/cm2 sr in its most intense green line .λ D 546 nm/.
Compare this brightness with that of a 1 W Argon laser .λ D 514.5 nm/, which can be assumed to
be diffraction limited.
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Interaction of Radiation with Atoms
and Ions

2.1. INTRODUCTION

This chapter deals with the interaction of radiation with atoms and ions which are weakly
interacting with any surrounding species, such as atoms or ions in a gas phase or impurity
ions in an ionic crystal. The somewhat more complicated case of interaction of radiation
with molecules or semiconductors will be considered in the next chapter. Since the subject
of radiation interaction with matter is, of course, very wide, we will limit our discussion
to those phenomena which are relevant for atoms and ions acting as active media. So, after
an introductory section dealing with the theory of blackbody radiation, a milestone for the
whole of modern physics, we will consider the elementary processes of absorption, stimulated
emission, spontaneous emission, and nonradiative decay. They will first be considered within
the simplifying assumptions of a dilute medium and a low intensity. Following this, situations
involving a high beam intensity and a medium that is not dilute (leading, in particular, to the
phenomena of saturation and amplified spontaneous emission) will be considered. A number
of very important, although perhaps less general, topics relating to the photophysics of dye
lasers, free-electron lasers, and X-ray lasers will be briefly considered in Chaps. 9 and 10
immediately preceding the discussion of the corresponding laser.

2.2. SUMMARY OF BLACKBODY RADIATION THEORY.1/

Let us consider a cavity filled with a homogeneous and isotropic medium. If the walls of
the cavity are kept at a constant temperature, T, they will continuously emit and receive power
in the form of electromagnetic (e.m.) radiation. When the rates of absorption and emission
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becomes equal, an equilibrium condition is established at the walls of the cavity as well as at
each point of the dielectric. This situation can be described by introducing the energy density
�, which represents the electromagnetic energy contained in unit volume of the cavity. This
energy density can be expressed as a function of the electric field, E.t/, and magnetic field,
H.t/, according to the formula

� D <
1

2
"E2>C 1

2
�H2> (2.2.1)

where " and � are, respectively, the dielectric constant and the magnetic permeability of the
medium inside the cavity and where the symbol < > indicates a time average over a cycle
of the radiation field. We can then represent the spectral energy distribution of this radiation
by the function �� , which is a function of frequency �. This is defined as follows: ��d�
represents the energy density of radiation in the frequency range from � to � C d�. The
relationship between � and �� is obviously

� D
Z 1

0
��d� (2.2.2)

Suppose now that a hole is made in the wall of the cavity. If we let I� be the spectral intensity
of the light escaping from the hole, one can show that I� is proportional to �� obeying the
simple relation

I� D .c=4n/�� (2.2.3)

where c is the velocity of light in the vacuum and n is the refractive index of the medium
inside the cavity. We can now show that I� and hence �� are universal functions, independent
of either the nature of the walls or the cavity shape, and dependent only on the frequency
� and temperature T of the cavity. This property of �� can be proven through the following
simple thermodynamic argument. Let us suppose we have two cavities of arbitrary shape,
whose walls are at the same temperature T. To ensure that the temperature remains constant,
we may imagine that the walls of the two cavities are in thermal contact with two thermostats
at temperature T. Let us suppose that, at a given frequency �, the energy density �0

� in the
first cavity is greater than the corresponding value �00

� in the second cavity. We now optically
connect the two cavities by making a hole in each and then imaging, with some optical system,
each hole onto the other. We also insert an ideal filter in the optical system, which lets through
only a small frequency range around the frequency�. If �0

� > �
00
� then, according to Eq. (2.2.3),

one will have I0
� > I00

� and there will be a net flow of electromagnetic energy from cavity 1 to
cavity 2. Such a flow of energy, however, would violate the second law of thermodynamics,
since the two cavities are at the same temperature. Therefore one must have �0

� D �00
� for all

frequencies.
The problem of calculating this universal function ��.�, T/ was a very challenging one

for the physicists of the time. Its complete solution was provided by Planck, who, in order to
find a correct solution of the problem, had to introduce the so-called hypothesis of light quanta.
The blackbody theory is therefore one of the fundamental bases of modern physics..1/ Before
going further into it, we first need to consider the electromagnetic modes of a blackbody
cavity. Since the function �� is independent of the cavity shape or the nature of the dielectric
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medium, we choose to consider the relatively simple case of a rectangular cavity uniformly
filled with dielectric and with perfectly conducting walls.

2.2.1. Modes of a Rectangular Cavity

Let us consider the rectangular cavity of Fig. 2.1. To calculate �� , we begin by calculat-
ing the standing e.m. field distributions that can exist in this cavity. According to Maxwell’s
equations, the electric field E.x, y, z, t/ must satisfy the wave equation

r2E � 1

c2
n

@2E
@t2

D 0 (2.2.4)

where r2 is the Laplacian operator and cn is the velocity of light in the medium considered.
In addition, the field must satisfy the following boundary condition at each wall:

E � n D 0 (2.2.5)

where n is the normal to the particular wall under consideration. This condition expresses the
fact that, for perfectly conducting walls, the tangential component of the electric field must
vanish on the walls of the cavity.

It can be easily shown that the problem is soluble by separation of the variable. Thus, if
we put

E D u.x, y, z/E.t/ (2.2.6)

and substitute Eq. (2.2.6) in Eq. (2.2.4), we have

r2u D �k2u (2.2.7a)

d2E

d t2
D �.cnk/2E (2.2.7b)

where k is a constant. Equation (2.2.7b) has the general solution

E D E0 cos.!t C �/ (2.2.8)

FIG. 2.1. Rectangular cavity with perfectly conducting walls kept at temperature T .
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where E0 and � are arbitrary constant and where

! D cnk (2.2.9)

With E.t/ given by Eq. (2.2.8), we see that the solution Eq. (2.2.6) can be written as

E.x, y, z, t/ D E0u.x, y, z/ exp.j!t C �/ (2.2.9a)

and thus corresponds to a standing wave configuration of the e.m. field within the cavity. In
fact the amplitude of oscillation at a given point of the cavity is constant in time. A solution
of this type is referred to as a an e.m. mode of the cavity.

We are now left with the task of solving Eq. (2.2.7a), known as the Helmholtz equation,
subject to the boundary condition given by Eq. (2.2.5). It can readily be verified that the
expressions

ux D ex cos kxx sin kyy sin kzz
uy D ey sin kxx cos kyy sin kzz
uz D ez sin kxx sin kyy cos kzz

(2.2.10)

satisfy Eq. (2.2.7a) for any value of ex, ey, ez, provided that

k2
x C k2

y C k2
z D k2 (2.2.11)

Furthermore, the solution Eq. (2.2.10) already satisfies the boundary condition Eq. (2.2.5) on
the three planes x D 0, y D 0, z D 0. If we now impose the condition that Eq. (2.2.5) should
also be satisfied on the other walls of the cavity, we obtain

kx D l
=2a
ky D m
=2a
kz D n
=L

(2.2.12)

where l, m, and n are positive integers. Their physical significance can be seen immediately:
they represent the number of nodes that the standing wave mode has along the directions x, y,
and z, respectively. For fixed values of l, m, and n it follows that kx, ky, and kz will also be
fixed and, according to Eqs. (2.2.9) and (2.2.11), the angular frequency ! of the mode will
also be fixed and given by

!lmn D cn

"�
l


2a

�2

C
�m


2a

�2 C
�n


L

�2
#1=2

(2.2.13)

where we have explicitly indicated that the frequency of the mode will depend on the indices
l, m, and n. The mode is still not completely determined, however, since ex, ey, and ez are still
arbitrary. However, Maxwell’s equations provide another condition that must be satisfied by
the electric field, i.e., r � u D 0, from which, with the help of Eq. (2.2.10), we get

e � k D 0 (2.2.14)
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In Eq. (2.2.14) we have introduced the two vectors e and k, whose components along x, y,
and z axes are respectively, ex, ey, and ez and kx, ky, and kz. Equation (2.2.14) therefore shows
that, out of the three quantities ex, ey, and ez, only two are independent. In fact, once we fix
l, m, and n (i.e., once k is fixed), the vector e is bound to lie in a plane perpendicular to k.
In this plane, only two degree of freedom are left for the choice of the vectors e, and only
two independent modes are thus present. Any other vector, e, lying in this plane can in fact be
obtained as a linear combination of the previous two vectors.

Let us now calculate the number of resonant modes, N� , whose frequency lies between
0 and �. This will be the same as the number of modes whose wave vector k has a magnitude,
k, between 0 and 2
�=cn. From Eq. (2.2.12) we see that, in a system coordinate kx, ky, kz,
the possible values for k are given by the vectors connecting the origin with the nodal points
of the three-dimensional lattice shown in Fig. 2.2. Since, however, kx, ky, and kz are positive
quantities, we must count only those points lying in the positive octant. It can furthermore be
easily shown that there is a one to one correspondence between these points and the unit cell
of dimensions .
=2a,
=2a,
=L/. The number of points having k between 0 and .2
�=cn/

can thus be calculated as (1/8) times the volume of the sphere, centered at the origin, and
of radius .2
�=cn/ divided by the volume of the unit cell of dimensions .
=2a,
=2a,
=L/.
Since, as previously noted, there are two modes possible for each value of k, we have

Nv D 2

1
8

4
3

�

2�v
cn

�3

�
2a

�
2a

�
L

D 8
v3

3c3
n

V (2.2.15)

FIG. 2.2. Pictorial illustration of the density of modes in the cavity of Fig. 2.1. Each point of the lattice corresponds
to two cavity modes.
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where V is the total volume of the cavity. If we now define p.�/ as the number of modes per
unit volume and per unit frequency range, we have

p.�/ D 1

V

dN

d�
D 8
�2

c3
n

. (2.2.16)

2.2.2. The Rayleigh-Jeans and Planck Radiation Formula

Having calculated the quantity p.�/ we can now proceed to calculate the energy density
�� . We can begin by writing �� as the product of the number of modes per unit volume per unit
frequency range, p.�/, multiplied by the average energy<E> contained in each mode, i.e.

�� D p�<E> (2.2.17)

To calculate <E> we assume that the cavity walls are kept at a constant temperature T.
According to Boltzmann’s statistics, the probability dp that the energy of a given cavity mode
lies between E and E C dE is expressed by dp D C expŒ�.E=kT/�dE, where C is a constant to
be established by the condition

R1
0 C expŒ�.E=kT/dE D 1. The average energy of the mode

<E> is therefore given by

<E> D
R1

0 E expŒ�.E=kT/�dER1
0 expŒ�.E=kT/�dE

D kT (2.2.18)

From Eq. (2.2.16), Eqs. (2.2.17), and (2.2.18) we then get

�� D
�

8
�2

c3
n

�
kT (2.2.19)

This is the well known Rayleigh-Jeans radiation formula. It is, however, in complete disagree-
ment with the experimental results. Indeed, it is immediately obvious that Eq. (2.2.19) must
be wrong since it would imply an infinite total energy density � [see Eq. (2.2.2)]. Equa-
tion (2.2.19) does, however, represent the inevitable conclusion of the previous classical
arguments.

The problem remained unsolved until, at the beginning of this century, Planck introduced
the hypothesis of light quanta. The fundamental hypothesis of Planck was that the energy in a
given mode could not have any arbitrary value between 0 and 1, as was implicitly assumed
in Eq. (2.2.18), but that the allowed values of this energy should be integral multiples of
a fundamental quantity, proportional to the frequency of the mode. In other words, Planck
assumed that the energy of the mode could be written as

E D nh� (2.2.20)

where n is a positive integer and h a constant (which was later called Planck’s constant).
Without entering into too many details, here, on this fundamental hypothesis, we merely wish
to note that this essentially implies that energy exchange between the inside of the cavity
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and its walls must involve a discrete amount of energy h�. This minimum quantity that can
be exchanged is called a light quantum or photon. According to this hypothesis, the average
energy of the mode is now given by

E D

1P
0

nnh� expŒ�.nh�=kT/�

1P
0

n expŒ�.nh�=kT/�
D h�

exp.h�=kT/� 1
(2.2.21)

This formula is quite different from the classical expression Eq. (2.2.18). Obviously, for
h� � kT, Eq. (2.2.21) reduces to Eq. (2.2.18). From Eq. (2.2.16), Eqs. (2.2.17), and (2.2.21)
we now obtain the Planck formula,

�� D 8
�2

c3
n

h�

exp.h�=kT/� 1
(2.2.22)

which is in perfect agreement with the experimental results, provided that we choose for h
the value h D 6.62 � 10�34 J � s. For example, Fig. 2.3 shows the behavior predicted by
Eq. (2.2.22) for �� vs frequency � for two values of temperature T.

Lastly, we may notice that the ratio

<�> D <E>

h�
D 1

exp.h�=kT/� 1
(2.2.23)

gives the average number of photons <�> for each mode. If we now consider a frequency
� in the optical range .� � 4 � 1014 Hz/, we get h� � 1 eV . For T Š 300 K we have
kT Š .1=40/ eV, so that from Eq. (2.2.23) it is <�> Š exp.�40/. We thus see that the
average number of photons per mode, for blackbody radiation at room temperature, is very
much smaller than unity. This value should be compared with the number of photons �0 that
can be obtained in a laser cavity for a single mode (see Chap. 7).

FIG. 2.3. Plot of the function ��.�, T/ as a function of frequency � at two values of the temperature T .
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2.2.3. Planck's Hypothesis and Field Quantization

The fundamental assumption of Planck given by Eq. (2.2.20) was considered with a
degree of caution if not suspicion for some time after the idea was proposed. Someone even
considered it as a mere mathematical trick to transform an integral [Eq. (2.2.18)] into a sum-
mation [Eq. (2.2.21)] to get, by luck, a result in agreement with experiments. However,
the theory of the photoelectric effect, due to Einstein [1904], which was essentially based
upon Planck’s hypothesis, soon provided further evidence that the fundamental assumption of
Planck was indeed correct. It was many years later, however, before this assumption received
its complete conceptual justification by the quantum field theory of Dirac [1927]. Although a
detailed description of field quantization is beyond the scope of this book, it is worth devoting
a little space to indicate how field quantization arises..2/ This will also help provide a deeper
understanding of some topics to be considered later on in the book.

Consider a mode of the e.m. cavity, i.e. characterized by a given standing wave pattern,
and let � be its resonance frequency. If Ex.r, t/ and Hy.r, t/ are the transverse components of
its electric and magnetic fields, the corresponding energy density �will be given by Eq. (2.2.1)
and its energy will be equal to

E D
Z
�dV (2.2.24)

where V is the volume of the cavity. A possible starting point to understand the basis of
quantum field theory is a recognition that, by analogy with the case of a particle, the pair of
quantities Ex.r, t/ and Hy.r, t/ cannot be measured simultaneously with arbitrary precision..2/

In other words, there is a form of Heisenberg uncertainty relation between Ex.r, t/ and Hy.r, t/
analogous to that which exists between the position px and momentum qx of a particle moving
e.g. in the x direction. Note that the Heisenberg uncertainty relation between px and qx can
provide the starting point for the quantum theory of a particle. It indicates, in fact, that the
equations of classical mechanics, which are essentially based on the canonical variables px

and qx, are no longer valid. Likewise, the uncertainty relation between Ex.r, t/ and Hy.r, t/ can
provide for the starting point of the quantum theory of radiation in the sense that they show
that Maxwell’s equations, and thus Eq. (2.2.4), are no longer valid. The analogy between
the quantum theory of a particle and the quantum theory of radiation can be taken further
by considering a particle bound to a given point by an elastic force. This is the case of the
harmonic oscillator, one of the fundamental examples for the quantum theory of a bound
particle. A harmonic oscillator oscillating e.g. along the x direction, is a mechanical oscillator
whose total energy is given by

E D .kp2
x=2/C .q2

x=2m/ (2.2.25)

where k is the elastic constant and m is the mass of the particle. In fact, this oscillator pro-
vides several analogies with a cavity mode. Both of them are, in fact, oscillators in the sense
that they are characterized by a resonance frequency. In the mechanical oscillator, oscillation
occurs because potential energy, represented by the term kp2

x=2, is periodically transformed
into kinetic energy, represented by the term q2

x=2m. In the electromagnetic oscillator rep-
resented by the cavity mode, electric energy represented by the term

R
."<Ex

2>=2/dV , is
periodically transformed into magnetic energy, represented by the term

R
.�<Hy

2>=2/dV .
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Based on this close analogy, one can then look for similar quantization rules. The appropri-
ate quantization procedure leads to the fundamental result that the energy of the given cavity
mode is quantized in exactly the same way as the harmonic oscillator. Namely, the eigenvalues
for the mode energy are given by

E D .1=2/h�C nh� (2.2.26)

where n is an integer value. The first term, the zero point energy, has a similar origin to
that of the harmonic oscillator. In the latter case, in fact, it arises because the energy cannot
be zero since, according to Eq. (2.2.25), this would require that both px and qx are zero,
which is contrary to the Heisenberg uncertainty principle. Likewise, for the cavity mode, the
energy cannot be zero because, according to Eq. (2.2.1), this would require both Ex and Hy

to be zero, which, by the same argument is again impossible. Thus field quantization predicts
that the energy levels of a given cavity mode of frequency � are given by Eq. (2.2.26), a
conclusion which coincides with the Planck’s assumption [Eq. (2.2.20)] apart from the zero
point energy term. The results of field quantization thus provide a framework wherein Planck’s
assumption is given a more fundamental justification. Needless to say, Maxwell’s equations,
as seen in Sect. 2.2.1, do not impose any condition on the total energy density of a cavity
mode. Thus, according to these equations, the mode energy could have any value covering the
range between 0 and 1, continuously.

As a closing comment to this section we note that, according to Eq. (2.2.26), the energy
levels of a cavity mode, just like those of the harmonic oscillator, can be displayed as in
Fig. 2.4. In the lowest, zero-point energy, level both <E2

x> and<H2
y> are different from zero

and are referred to as the zero-point fluctuations of the electric and magnetic field, respec-
tively. Note also that the zero point energy value of .h�=2/ has really no physical significance.
If, instead of Eq. (2.2.24), one were to define the energy of the mode as

E D
�Z

�dV

�
� .hv=2/ (2.2.27)

then one would have a zero value for the lowest energy state. It can be shown, however, that
this state would still include, at the same level as before, the zero-point field fluctuations of
both<E2

x> and<H2
y>, these fluctuations being the quantities which actually characterize the

zero-point energy state.

FIG. 2.4. Energy levels of a cavity mode.
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2.3. SPONTANEOUS EMISSION

As a first attempt at describing spontaneous emission, we will follow a semiclassical
approach where the atoms are treated as quantized (i.e. treated according to quantum mechan-
ics) while the fields are treated classically (i.e. treated through Maxwell’s equations). As we
shall see, this attempt fails to describe the phenomenon of spontaneous emission in a correct
way (i.e. in agreement with experiment). The approach will turn out to be very instructive,
however. The results obtained will then be compared with the correct ones, i.e. those pre-
dicted by a full quantum theory where both atoms and fields are quantized, the former by
quantum mechanics and the latter by quantum field theory. Thus, to correctly describe the
phenomenon of spontaneous emission, a very common phenomenon of every day experience
(the light from the sun or from ordinary lamps arises from spontaneous emission), we will
need to introduce sophisticated concepts of quantum theory.

2.3.1. Semiclassical Approach

Let us assume that a given atom, initially raised to its excited level 2, of energy E2, is
decaying by spontaneous emission to level 1, of energy E1 (Fig. 1.1a). We will assume that
the two levels are non-degenerate and so let

 1.r, t/ D u1.r/ expŒ�j.E1=„/t� (2.3.1a)

and

 2.r, t/ D u2.r/ expŒ�j.E2=„/t� (2.3.1b)

be the corresponding wave functions, where u1,2.r/ are the eigenfunctions of the two station-
ary states, r denotes the co-ordinate of the electron undergoing the transition, the origin being
taken at the nucleus, and „ D h=2π. When the atom is undergoing the 2 ! 1 transition due
to spontaneous emission, its wave function can be expressed as a linear combination of the
wave functions of the two states, i.e.

 D a1.t/ 1 C a2.t/ 2 (2.3.2)

where a1 and a2 are time-dependent complex numbers. Note that, according to quantum
mechanics, we have

ja1j2 C ja2j2 D 1 (2.3.3)

and thus ja1j2 and ja2j2 represent the probabilities that, at time t, the atom is found in state 1
or 2, respectively.

To understand how spontaneous emission arises, let us calculate the electric dipole
moment of the atom μ. According to quantum mechanics we have

μ D �
Z

e j j2rdV (2.3.4)
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where e is the magnitude of the electron charge and the integral is taken over the whole volume
of the atom. The form of Eq. (2.3.4) can be readily understood by noting that ej j2dV is the
elemental charge expected in the volume dV at position r and that this charge produces an
elemental dipole moment dμ D �.ej j2dV/r. The substitution of Eq. (2.3.2) into Eq. (2.3.4)
with the help of Eq. (2.3.1) gives

μ D
Z

erja1j2ju1j2dV C
Z

erja2j2ju2j2dV C

C
Z

er
�
a1a�

2 u1u�
2 exp j.!0t/C a�

1 a2u�
1 u2 exp �j.!0t/

	
dV (2.3.5)

where � stands for complex conjugate and !0 D .E2 � E1/=„. Equation (2.3.5) shows that μ

has a term μosc, oscillating at the frequency !0, which can be written as

μosc D ReŒ2a1=a�
2 μ21 exp j.!0t/� (2.3.6)

where we have defined a time-independent dipole moment μ21 given by

μ21 D
Z

u�
2 er u1dV . (2.3.7)

The vector μ21 is referred to as the matrix element of the electric dipole moment operator or, in
short, the electric dipole moment of the atom. Equation (2.3.6) shows that, during the 2 ! 1
transition, the atom acquires a dipole moment, μosc, which is oscillating at frequency !o and
whose amplitude is proportional to the vector μ21 given by Eq. (2.3.7). Now, from classical
electrodynamics we know that any oscillating dipole moment must radiate power into the
surrounding space. Accordingly, from a semiclassical standpoint, the process of spontaneous
emission can be identified as arising from this radiated power. To be more specific, let us
write the oscillating dipole moment as μ D μ0 cos.!0t C �/ D ReŒμ0

0 exp.i!0t/�, where μ0
is a real vector describing the amplitude of the dipole moment, Re stands for real part and μ0

0
is a complex vector� given by μ0

0 D μ0 exp.j�/. According to classical electrodynamics, we
know that this oscillating dipole moment will radiate into the surrounding space a power Pr

given by.3/

Pr D n�2!0
4

12
"0c0
3

(2.3.8)

where � D jμ0j D jμ0
0j is the amplitude of the electric dipole moment, n is the refractive

index of the medium surrounding the dipole, and c0 is the light velocity in the vacuum. In the
present case we can still use Eq. (2.3.8) provided that � is now taken to be � D 2ja1a�

2 μ21j,
i.e. it is the magnitude of the complex vector 2a1a�

2 μ21. We thus see that the radiated power
can be written as

Pr D P0
rja1j2ja2j2 (2.3.9)

� We recall that a complex vector A, is a vector whose components e.g. Ax, Ay, Az are complex numbers. The
magnitude A of a complex vector is a real quantity given by A D ŒA A��1=2 where A� is the vector conjugate to
A (i.e. with components A�

x, A�
y and A�

z which are the complex conjugated of those for A).
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where P0
r is a time independent quantity given by

P0
r D 16
3nj�j2�4

0

3"0c3
0

(2.3.10)

and where j�j D jμ21j is the magnitude of the complex vector μ21. To calculate the atom’s
rate of decay we use an energy balance argument to write

dE

dt
D �Pr (2.3.11)

where the atom energy is now given by

E D ja1j2E1 C ja2j2E2 (2.3.12)

With the help of Eq. (2.3.3), Eq. (2.3.12) can be readily transformed to

E D E1 C h�0ja2j2 (2.3.13)

where �0 D .E2 � E1/=h is the transition frequency. Equation (2.3.11) with the help of
Eq. (2.3.9), Eqs. (2.3.10) and (2.3.13) can then be written as

dja2j2

dt
D � 1

�sp
ja1j2ja2j2 D � 1

�sp



1 � ja2j2� ja2j2 (2.3.14)

where we have defined a characteristic time �sp D h�0=P0
r as

�sp D 3h"0c3
0

16
3�3
0nj�j2 (2.3.15)

which is called the spontaneous-emission (or radiative) lifetime of level 2. The solution of
Eq. (2.3.14) can be conveniently written in the form

ja2j2 D 1

2

�
1 � tanh

�
t � t0
2�sp

��
(2.3.16)

where t0 is set by the initial condition, i.e. by the value ja2.0/j2 Indeed, from Eq. (2.3.16) one
gets that

ja2.0/j2 D 1

2

�
1 � tanh

�
� t0

2�sp

��
(2.3.17)

which, for a given value of ja2.0/j2 (provided it is smaller than 1) yields a unique value
of t0. As an example, Fig. 2.5 shows the time behavior of ja2.t/j2 for the initial condition
ja2.0/j2 D 0.96. Note that, by choosing a different value of ja2.0/j2 one merely changes the
value of t0 in Eq. (2.3.16), i.e. one only changes the origin of the time axis. Assuming for
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FIG. 2.5. Time behavior of the upper state occupation probability, ja2j2, and of the normalized radiated power,
y D �spPr=h�0. Solid lines: semiclassical theory; dashed line: quantum electrodynamics theory.

instance ja2.0/j2 D 0.8, the curve of ja2.t/j2 is obtained simply by horizontally shifting the
curve of Fig. 2.5 to the left until it crosses the vertical t D 0 axis at the value 0.8. This shows
the advantage of expressing the decay of ja2.t/j2 in the form of Eq. (2.3.16). Once ja2.t/j2 has
been calculated, the radiated power, Pr, according to Eqs. (2.3.11) and (2.3.13), is obtained
as Pr D �h�0dja2j2=dt. The time behavior of the normalized radiated power, y D �spPr=h�0,
is also shown in Fig. 2.5. For the discussion that follows it is important to notice that the time
behavior of ja2.t/j2 can be approximated by an exponential law, i.e.

j a2.t/ j2 D j a2.0/ j2 expŒ�.t=�sp/� (2.3.18)

only when ja2.0/j2 � 1. In this case, in fact, we can put ja1j2 Š 1 into Eq. (2.3.14) thus
readily obtaining Eq. (2.3.18).

A particularly important case occurs when ja2.0/j2 D 1. In this case we find from
Eq. (2.3.17) that t0 D 1, which means that, according to this semiclassical theory, the atom
should not decay. Indeed, when ja2.0/j2 D 1, then ja1.0/j2 D 0, and from Eq. (2.3.14)
one gets dja2j2=dt D 0. Another way of looking at this case is to observe that, when
a1.0/ D 0, μosc given by Eq. (2.3.6) vanishes. Since the atom does not have an oscillat-
ing dipole moment, it cannot radiate power and it is therefore in an equilibrium state. Let us
now investigate the stability of this equilibrium. To do this, we assume the atom to be per-
turbed so that ja2j < 1 at t D 0. Physically, this means that, as a result of this perturbation,
there is a finite probability ja1j2 of finding the atom in level 1. Equation (2.3.6) then shows
that a dipole moment oscillating at frequency !0 is now produced. This moment will radiate
into the surrounding space and the atom will tend to decay to level 1. This implies a decrease
of ja2j2 and the atom moves further away from equilibrium. The atom is therefore in unstable
equilibrium.

Before going further, it is worth summarizing the main results obtained with this semi-
classical approach: (1) The time behavior of ja2j2 can generally be described in terms of an
hyperbolic tangent equation, Eq. (2.3.16), but, for very weak excitation (i.e. for ja2j2 � 1), it
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follows an approximately exponential law [Eq. (2.3.18)]. (2) When the atom is initially in the
upper state (i.e. ja2.0/j2 D 1), the atom is in (unstable) equilibrium and no radiation occurs.

2.3.2. Quantum Electrodynamics Approach

Although a quantum electrodynamics approach is beyond the scope of this book, it is
worthwhile to summarize some of the results obtained from such an approach and comparing
them with the semiclassical results. The most relevant results of the quantum approach can
be summarized as follows:.4,5/ (i) Unlike the semiclassical case, the time behavior of ja2j2 is
now always described, to a good approximation (Wigner-Weisskopf approximation), by an
exponential law. This means that Eq. (2.3.18) is now always true, no matter what the value of
ja2.0/j2. (ii) The expression of the spontaneous emission lifetime, �sp, turns out to be given, in
this case too, by Eq. (2.3.15). (iii) Since the radiated power is given by Pr D �h�0dja2j2=dt,
this power will also decay exponentially with a time constant �sp. We see that the semiclas-
sical and the quantum electrodynamics approaches give completely different predictions for
the phenomenon of spontaneous emission (see Fig. 2.5). All available experimental results�
confirm that the quantum electrodynamics approach gives the correct answer to the problem.
From Eq. (2.3.15) we can then write the rate of spontaneous emission, A D 1=�sp, as

A D 16
3�3
0 nj�j2

3h"0c3
0

(2.3.19)

The above remarks imply that, according to quantum electrodynamics, an atom in the upper
level is not in a state of unstable equilibrium and the physical reason for the disappearance of
this unstable state on passing from the semiclassical to the quantum electrodynamics approach
deserves some further discussion. In the semiclassical case, the atom’s wave function was
generally written as in Eq. (2.3.2) and this implies that the atom is not in a stationary state.
According to quantum mechanics, this can only occur when some sort of perturbation is
already applied to the atom. Furthermore, to remove the unstable equilibrium position dis-
cussed before, we need again to assume that the atom is somewhat perturbed, and we now
look for some cause for this perturbation. At first sight we may be tempted to say that there
will always be enough stray radiation around the material to perturb the atom. To be more
specific, let us suppose that the material is contained in a blackbody cavity whose walls
are kept at temperature T. We might then imagine this stray radiation to be provided by the
blackbody radiation within the cavity. This conclusion would be wrong, however, since the
radiation produced in this way would actually be due to the process of stimulated emission,
i.e., stimulated by the blackbody radiation. The phenomenon of spontaneous emission would
then depend upon the wall temperature and would cease at T D 0. The correct form of per-
turbation needed to describe the phenomenon of spontaneous emission is actually provided
by the quantum electrodynamics approach. In fact, according to the discussion presented in

� Of these, we should like to mention the very accurate measurements of the so-called Lamb shift, another phe-
nomenon that occurs during spontaneous emission. The center frequency of the spontaneously emitted light does
not occur at frequency �0 (the transition frequency) but at slightly different value. Lamb-shift measurements for
hydrogen are among the most careful measurements so far made in physics, and they are always exactly agreed
(within the experimental errors) with the predictions of the quantum electrodynamic approach.
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Sect. 2.2.3, the mean square values <E2> and <H2> of both the electric and magnetic fields
of a given cavity mode are different from zero even at T D 0 (zero-point field fluctuations). We
may therefore consider these fluctuations as the perturbation acting on the atom and which,
in particular, upsets the unstable equilibrium predicted by the semiclassical treatment. Cor-
respondingly we may think of the spontaneous emission process as originating from these
zero-point fluctuations.

2.3.3. Allowed and Forbidden Transitions

Equation (2.3.19) shows that, to have A ¤ 0, we must have j�j ¤ 0. In this case the
spontaneous emission process arises from the power radiated by the electric dipole of the
atom and the transition is said to be electric dipole allowed. By contrast, when j�j D 0, we
have A D 0 and the transition is said to be electric dipole forbidden. In this case the transition
may occur via other multipole radiation processes e.g. through the oscillating magnetic dipole
moment of the atom (magnetic dipole transitions). This is usually a much weaker process,
however.

Let us now consider the situation when the transition is electric dipole forbidden i.e.,
when j�j D 0. Since j�j D jμ21j, Eq. (2.3.7) shows that this occurs when the eigenfunctions
u1 and u2 are either both symmetric or both anti symmetric�. In fact, in this case, the two
contributions from the integrand of Eq. (2.3.7) at points r and �r, respectively, are equal and
opposite. It is therefore of interest to see when the wave functions u.r/ are either symmetric
or anti symmetric. This occurs when the Hamiltonian Ho.r/ of the system is unchanged by
changing r into �r, i.e. when�

Ho.�r/ D Ho.r/ (2.3.20)

In this case, in fact, for any eigenfunction un.r/, one has

Ho.r/un.r/ D Enun.r/ (2.3.21)

From Eq. (2.3.21), changing r into �r and using Eq. (2.3.20), one gets

Ho.r/un.�r/ D Enun.�r/ (2.3.22)

Equations (2.3.21) and (2.3.22) show that un.r/ and un.�r/ are both eigenfunctions of the
Hamiltonian Ho with the same eigenvalue En. For non degenerate energy levels, there is, by
definition only one eigenfunction for each eigenvalue, apart from an arbitrary choice of sign,
so that

un.�r/ D ˙un.r/ (2.3.23)

Therefore, if Ho.r/ is symmetric, the eigenfunctions must be either symmetric or anti-
symmetric. In this case, it is usually said that the eigenfunctions have a well defined
parity.

� It may be recalled here that a function f .r/ is symmetric (or of even parity) if f .�r/ D f .r/, while it is
antisymmetric (or of odd parity) if f .�r/ D �f .r/.

� If the Hamiltonian H0 is a function of more than one coordinate r1, r2, : : : . , the inversion operation must be
simultaneously applied to all these coordinates.
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Example 2.1. Estimate of �sp and A for electric-dipole
allowed and forbidden transitions For an electric-dipole
allowed transition at a frequency corresponding to the
middle of the visible range, an estimate the order of
magnitude of A is obtained from Eq. (2.3.19) by there
substituting the values � D c=� D 500 nm and j�j Š
ea, where a is the atomic radius .a Š 0.1 nm/. We
therefore get A Š 108 s�1 (i.e. �sp Š 10 ns). For mag-
netic dipole transitions A is approximately 105 times
smaller, and therefore �sp Š 1 ms. Note that, according
to Eq. (2.3.19), A increases as the cube of the frequency,
so that the importance of the process of spontaneous
emission increases rapidly with frequency. In fact spon-
taneous emission is often negligible in the middle to far
infrared where nonradiative decay usually dominates. On
the other hand, when one considers the x-ray region (say
� 	 5 nm), �sp becomes very short (10–100 fs) a fea-
ture that constitutes a major problem for achieving a
population inversion in X-ray lasers.

It remains now to see when the Hamil-
tonian satisfies Eq. (2.3.20), i.e., when it
is invariant under inversion. Obviously this
occurs when the system has a center of sym-
metry. Another important case is that of an
isolated atom. In this case, the potential
energy of the k-th electron of the atom is
given by the sum of -the potential energy due
to the nucleus (which is symmetric) and that
of all other electrons. For the i-th electron,
this energy will depend on jri�rkj, i.e., on the
magnitude of the distance between the two
electrons. Therefore, these terms will also be
invariant under inversion. An important case
where Eq. (2.3.20) is not valid is where an
atom is placed in an external electric field
(e.g., a crystal’s electric field) that does not
possess a center of inversion. In this case the
wave functions will not have a definite parity.

To sum up, we can say that electric
dipole transitions only occur between states

of opposite parity, and that the states have a well-defined parity if the Hamiltonian is invariant
under inversion.

2.4. ABSORPTION AND STIMULATED EMISSION

In this section, we will study in some detail the processes of absorption and stimulated
emission induced in a two-level system for a single atom interacting with a monochromatic
electromagnetic (e.m.) wave. In particular, our aim is to calculate the rates of absorption W12

and stimulated emission W21 [see Eqs. (1.1.4) and (1.1.6)]. We will follow the semiclassical
approximation, wherein, as already explained, the atom is quantized while the e.m. radiation is
treated classically. It can be shown, in fact, that the quantum electrodynamics approach gives
the same result as the semiclassical treatment when the number of photons in a given radiation
mode is much greater than unity. Since this applies to any system other than an exceedingly
weak e.m. wave, we can dispense with the complication of the full quantum treatment. We
will at first assume the two levels to be non-degenerate and treat the case of degenerate levels
later in this Chapter.

2.4.1. Rates of Absorption and Stimulated Emission

Let us first consider the case of absorption and assume that, for time t 
 0, a monochro-
matic e.m. wave is incident on the atom so that the atomic wave-function can be described as
in Eq. (2.3.2) where we will assume the initial conditions ja1.0/j2 D 1 and ja2.0/j2 D 0.
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As a result of the interaction with the e.m. wave, the atom will acquire an interaction
energy H0. In the treatment that follows this energy H0 is considered to be due to the interac-
tion of the electric dipole moment of the atom with the electric field E(r,t) of the e.m. wave
(electric dipole interaction), where the origin of the r coordinate is taken at the nucleus. The
electric field at the nuclear position can then be written as

E.0, t/ D E0sin.!t/ (2.4.1)

where ! is the angular frequency of the wave. We will also assume that the wavelength of the
e.m. radiation is much greater than the atom’s dimension so that the phase-shift of the e.m.
wave over an atomic dimension is very small. Then Eq. (2.4.1) can be taken to give the value
of the electric field for any location in the atom (electric dipole approximation). We will also
assume the frequency ! to be close to the resonant frequency,!0, of the transition.

Classically, for a given position r of the electron within the atom, the atom would exhibit
an electric dipole moment μ D �er, where e is the magnitude of the electronic charge. The
interaction energy H0 resulting from the external electric field would then be

H0 D μ � E D �e � E0 sin!t (2.4.2)

In a quantum mechanical treatment, this sinusoidally time-varying interaction energy is
treated as a sinusoidally time-varying interaction Hamiltonian H 0.t/, which is then inserted
into the time-dependent Schrödinger wave equation. Since ! Š !o, this interaction Hamil-
tonian results in the transition of the atom from one level to the other. This implies that, for
t > 0, ja1.t/j2 will decrease from its initial value ja1.0/j2 D 1 and ja2.t/j2 will increase cor-
respondingly. To derive an expression for a2.t/ we will additionally assume that the transition
probability is weak, so that a perturbation analysis can be used (time dependent perturbation
theory), and that the interaction occurs for a long time after t D 0.

Given the above assumptions, the time behaviour of ja2.t/j2 is shown, in Appendix A, to
be given by

ja2.t/j2 D 
2

3h2
j�21j2E2

0ı.� � �0/t (2.4.3)

where � D !=2
 , �0 D !0=2
 , ı is the Dirac delta function, E0 is the amplitude of the vector
E0 and jμ21j is the amplitude of the complex vector μ21 given by Eq. (2.3.7). Equation (2.4.3)
shows that, for t > 0, ja2.t/j2 increases linearly with time. We can then define the transition
rate Wsa

12 as

Wsa
12 D dja2j2=dt (2.4.4)

From Eq. (2.4.3) we then get

Wsa
12 D 
2

3h2
j�21j2 E2

0ı.v � v0/ (2.4.5)

Note that the transition rate defined by Eq. (2.4.4) refers to the case of a single atom interacting
with monochromatic radiation and this situation is denoted by the superscript sa (single atom)
added to W12.
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To gain a more physical understanding of the absorption phenomenon, we begin by notic-
ing that, for t > 0, the wave function can be described as in Eq. (2.3.2). For t > 0 the atom
thus acquires an oscillating dipole moment, μosc, given by Eq. (2.3.6). In contrast to the case
of spontaneous emission, however, since a1.t/ and a2.t/ are now driven by the electric field
of the e.m. wave, the phase of μosc turns out to be correlated to that of the wave. In particular,
for absorption, i.e. when one starts with the initial conditions a1.0/ D 1 and a2.0/ D 0, the
phase of the dipole is such that the dipole absorbs power from the e.m. wave. The interaction
phenomenon is thus seen to be very similar to that of a classical oscillating dipole moment
driven by an external field..6/

Equation (2.4.5) can also be expressed in terms of the energy density of the e.m.
wave. Since

� D n2"0E2
0=2 (2.4.6)

where n is the refractive index of the medium and "o is the vacuum permittivity, we obtain

Wsa
12 D 2
2

3n2"0h2
j�21j2�ı.� � �0/ (2.4.7)

Note that Wsa
12 is proportional to the Dirac ı function. This implies the unphysical result that

W D 0 for � ¤ �0 and W12 D 1 when � D �0, i.e. when the frequency of the e.m. wave is
exactly coincident with the frequency of the atomic transition. The reason for this unphysical
result can be traced back to the assumption that the interaction of the e.m. wave with the
atom could continue undisturbed for an indefinite time. Indeed, from a classical viewpoint,
if a sinusoidal electric field at frequency � drives a (lossless) oscillating dipole moment at
frequency �0, there would only be an interaction, i.e. a net energy transfer, if � D �0. Actually,
there are a number of perturbation phenomena (such as collisions with other atoms or with
lattice phonons) that prevent this interaction from continuing undisturbed indefinitely. These
phenomena will be discussed at some length in a later section, but the general result they
lead to can be expressed in a very simple way: Eq. (2.4.7) remains valid provided the Dirac
ı function – an infinitely sharp function centred at � D �0 and of unit area, i.e., such thatR
ı.� � �0/d� D 1 – be replaced by a new function g.� � �0/, symmetric about � D �0 again

of unit area, i.e. such that
R

g.� � �0/d� D 1, and generally given by

g.� � �0/ D 2


	�0

1

1 C Œ2.� � �0/=	�0�2
(2.4.8)

where	�o depends on the particular broadening mechanism involved. We can therefore write
for Wsa

12 the expression

Wsa
12 D 2
2

3n2"0h2
j�21j2�g.� � �0/ (2.4.9)

The normalized function Œg.� � �0/	�0� is plotted in Fig. 2.6 vs the normalized frequency
difference .� � �0/=.	�0=2/. The full width of the curve between the two points having
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FIG. 2.6. Normalized plot of a Lorentzian line.

half the maximum value (FWHM, from Full Width at Half Maximum) is simply 	�0. The
maximum of g.� � �0/ occurs for � D �0 and its value is given by

g.0/ D 2=
	�0 D 0.637=	�0 (2.4.9a)

A curve of the general form described by Eq. (2.4.8) is called Lorentzian after H.E. Lorentz
who first derived it in his theory of the electron oscillator..6/ For a plane e.m. wave it is often
useful to express Wsa

12 in terms of the intensity, I, of the incident radiation. Since

I D c0�=n (2.4.10)

where n is the refractive index of the medium, we find from Eq. (2.4.9) that

Wso
12 D 2
2

3n"0ch2
j�21j2Ig.� � �0/ (2.4.11)

We consider next the case of stimulated emission. The starting points, namely the wavefunc-
tion of the two-level system [Eq. (2.3.2)] and the interaction energy H0 [Eq. (2.4.2)] remain
unchanged. Thus, the corresponding pair of equations describing the evolution, with time, of
ja2.t/j2 and ja1.t/j2 (see Appendix A) also remain unchanged. The only difference arises from
the fact that the initial condition is now given by ja2.0/j2 D 1 and thus ja1.0/j2 D 0. It can
be readily seen that the new equations for stimulated emission are then obtained from those
corresponding to absorption by simply interchanging the indices 1 and 2. Thus the transition
rate Wsa

21 is obtained from Eq. (2.4.5) by interchanging the two indices. From to Eq. (2.3.7)
one immediately see that μ12 D μ�

21, implying that jμ12j D jμ21j. Therefore we have

Wsa
12 D Wsa

21 (2.4.12)

showing that the probabilities of absorption and stimulated emission are equal in this case
[compare with Eq. (1.1.8)].
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As a conclusion to this section, according to Eqs. (2.4.9) and (2.4.11), the stimulated
transition rate can be written as�

Wsa D 2
2

3n2"0h2
j�j2�g.� � �0/. (2.4.13)

Wsa D 2
2

3n"0ch2
j�j2Ig.� � �0/ (2.4.13a)

where, from Eq. (2.4.12), we have set Wsa D Wsa
12 D Wsa

21. and where we have also set
j�j D jμ12j D jμ21j.

2.4.2. Allowed and Forbidden Transitions

Equations (2.4.13) and (2.3.19) show that the transition rate Wsa, and the spontaneous
emission rate A are proportional to j�j2. This indicates that the two phenomena must obey
the same selection rule. Thus the stimulated transition via electric dipole interaction (electric
dipole transition) only occurs between states, u1 and u2, of opposite parity. The transition
is then said to be electric dipole allowed. Conversely, if the parity of the two states is the
same, then Wsa D 0 and the transition is said to be electric-dipole forbidden. This does
not mean, however, that the atom cannot pass from level 1 to level 2 through the influence
of an incident e.m. wave. In this case, the transition can occur, for instance, as a result of
the interaction of the magnetic field of the e.m. wave with the magnetic dipole moment of
the atom. For the sake of simplicity, we will not consider this case any further (magnetic
dipole interaction), but limit ourselves to observing that the analysis can be carried out in a
similar manner to that used to obtain Eq. (2.4.11). We may also point out that a magnetic
dipole transition is allowed between states of equal parity (even-even or odd-odd transitions).
Therefore, a transition that is forbidden by electric dipole interaction is, however, allowed
for magnetic dipole interaction and vice versa. It is also instructive to calculate the order
of magnitude of the ratio of the electric dipole transition probability, We, to the magnetic
dipole transition probability, Wm. Obviously the calculation refers to two different transitions,
one being allowed for electric dipole and the other for magnetic dipole interaction. We shall
assume that the intensity of the e.m. wave is the same for the two cases. For an allowed
electric dipole transition, according to Eq. (2.4.5), we can write We / .�eE0/

2 � .eaE0/
2,

where E0 is the electric field amplitude and where the electric dipole moment of the atom
�e has been approximated (for an allowed transition) by the product of the electron charge

� It should be noted that the factor 3 appearing in the denominator of Eq. (2.4.3) and, hence, of Eq. (2.4.5),
Eq. (2.4.7), Eq. (2.4.9), Eq. (2.4.11), Eqs. (2.4.13), and (2.4.13a), refers to the case of a linearly polarized wave
interacting with randomly oriented atoms (such as in a gas). In this case, in fact, we have W /< jμ21 � E0j2 >D
j�21j2 D j�21j2E2

0<cos2 
> D j�21j2 E2
0=3, where 
 is the angle between μ21 and E0 and the average is taken

over all atom-field orientations. Indeed, for randomly oriented μ21 vectors, one has < cos2 
> D 1=3 where the
average is taken in the three dimensional space, i.e.< cos2 
> D R

cos2
 d˝=4
 . For different cases of atom/field
orientation, the factor j�21j2 =3 should be changed appropriately. Thus, for aligned ions (such as in ionic crystals)
and a linearly polarized wave, the factor 3 should be dropped and j�21j should represent the magnitude of the
component of μ21 along E0.
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e and the radius a of the atom. For a magnetic dipole interaction, it can likewise be shown
that Wm / .�mB0/

2 � .ˇB0/
2, where B0 is the magnetic field amplitude of the wave and

where the magnetic dipole moment of the atom, �m, has been approximated (for an allowed
transition) by the Bohr magneton ˇ .ˇ D 9.27 � 10�24 A � m2/. Thus we get

.We=Wm/ D .eaE0=ˇB0/
2 D .eac=ˇ/2 Š 105 (2.4.14)

To obtain the numerical result of Eq. (2.4.14) we have made use of the fact that, for a plane
wave it is E0=B0 D c (where c is the light velocity), and we have assumed that a Š 0.5 nm.
The probability of an electric dipole transition is thus much greater than that of a magnetic
dipole.

2.4.3. Transition Cross Section, Absorption and Gain Coefficient

In Sect. 2.4.1, the transition rate has been calculated for the case of a single atom interact-
ing with an incident e.m. wave and whose linewidth is determined by some line-broadening
mechanism. We now consider an ensemble of Nt atoms per unit volume and we want to
calculate the corresponding, average, transition rate.

The first case we will consider is where both the resonance frequency �0 and the line
shape are the same for every atom (the case of homogeneous broadening). The transition rate,
Wh, for this homogeneous case will then be the same for every atom, so that we can simply
write

Wh.� � �0/ D Wsa.� � �0/ (2.4.15)

If we now let all atoms be in the ground state, the power absorbed per unit volume, dPa=dV,
will then be given by

.dPa=dV/ D WhNth� (2.4.16)

Since Wh is proportional to the wave intensity, hence to the photon flux F D I=h�, we can
define an absorption cross section, �h, as

�h D Wh=F (2.4.17)

From Eqs. (2.4.13a) and (2.4.17), �h is seen to be given by

�h D 2
2

3n"0ch
j�j2�g.� � �0/ (2.4.18)

With the help of the same argument used in connection with Fig. 1.2, we obtain from
Eqs. (2.4.16) and (2.4.17) the equation describing the variation of the photon flux along the z
direction as [compare with Eq. (1.2.1)]

dF D �� NtFdz (2.4.19)
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FIG. 2.7. Effective absorption cross section, �a , of atoms in a light beam of cross section S.

Examination of Eq. (2.4.19) leads to a simple physical interpretation of this transition cross
section. First, let us suppose that we can associate with each atom an effective absorption cross
section �a, in the sense that, if a photon enters this cross section, it will be absorbed by the
atom (Fig. 2.7). If we let S be the cross-sectional area of the e.m. wave, the number of atoms
in the element dz of the material (see also Fig. 1.2) is NtSdz, thus giving a total absorption
cross section of �aNtSdz. The fractional change .dF=F/ of photon flux in the element dz of
the material is therefore

.dF=F/ D �.�aNtSd z=S/ (2.4.20)

A comparison of Eq. (2.4.20) with Eq. (2.4.19) shows that �h D �a, so that the meaning we
can attribute to �h is that of an effective absorption cross section as defined above.

A somewhat different case occurs when the resonance frequencies �0
0 of the atoms are

distributed around some central frequency �0 (case of inhomogeneous broadening). This
distribution will be described by the function g� 
�0

0 � �0
�

whose definition is such that
dNt D Ntg� 
�0

0 � �0
�

d �0
0 gives the elemental number of atoms with resonance frequency

between � 0
0 and �0

0 Cd� 0
0. According to Eq. (2.4.16), the elemental power absorbed by this ele-

mental number of atoms, dNt, is given by d.dPa=dV/ D .Nth�/Wh


� � �0

0

�
g� 
�0

0 � �0
�

d�0
0,

where Wh


� � �0

0

�
is the transition rate for those atoms with resonance frequency �0

0. The
total power absorbed per unit volume is then given by

.dPa=dV/ D Nth�
Z

Wh.� � � 0
0/g

�.�0
0 � �0/d�

0
0 (2.4.21)

A comparison of Eq. (2.4.21) with Eq. (2.4.16) shows that we can define an inhomogeneous
transition rate, Win, as

Win D
Z

Wh.� � �0
0/g

�.�0
0 � �0/d�

0
0 (2.4.22)

According to Eq. (2.4.17) we can now define an inhomogeneous cross-section �in as �in D
Win=F. Upon dividing both sides of Eq. (2.4.22) by F and using Eq. (2.4.17) we then get

�in D
Z
�h.� � � 0

0/g
�.�0

0 � �0/d�
0
0 (2.4.23)
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Following the argument presented in connection with Fig. 2.7 one can see that �in is an effec-
tive absorption cross section that one can associate with a single atom, so that a photon will
be absorbed if it enters this cross section. Note, however, that, in this case each atom has,
in reality, a different cross section �h.� � �0

0/ at the frequency of the incoming radiation and
�in is just an effective average cross section. Note also that, according to Eq. (2.4.23), the
line shape and linewidth of �in depend on the function g� 
�0

0 � �0
�

i.e. on the distribution of
the atomic resonance frequencies. The phenomena leading to this frequency distribution will
be discussed at some length in a later section. Here we limit ourselves to pointing out that
g� 
�0

0 � �0
�

is generally described by a function of the form

g�.�0
0 � �0/ D 2

	��
0

�
ln 2




�1=2

exp �
�

4.�0
0 � �0/

2

	��2
0

ln 2

�
(2.4.24)

where 	��
o is the transition linewidth (FWHM), its value depending of the particular

broadening mechanism under consideration.
With the help of Eq. (2.4.18), Eq. (2.4.23) can be transformed to

�in D 2
2

3n"0ch
j�j2�gt.� � �0/ (2.4.25)

In Eq. (2.4.25) we have used the symbol gt.�� �0/ for the total line shape function which can
be expressed as

gt D
Z C1

�1
g�.x/g Œ.� � �0/ � x� dx (2.4.26)

where we have put x D � 0
0 ��0. The expression of the cross section for inhomogeneous broad-

ening, �in, is thus obtained from that for homogeneous broadening, given by Eq. (2.4.18), by
substituting g.� � �0/ with gt.� � �0/. Note that, according to Eq. (2.4.26), gt is the convolu-
tion of the functions g and g�. Since both functions are normalised to unity it can be shown
that gt is also normalised to unity, i.e. that

R
gt.� � �o/d� D 1. Note also that Eq. (2.4.25)

provides a generalisation of Eq. (2.4.18). Indeed, it is immediately seen from Eqs. (2.4.26)
and (2.4.25) that �in reduces to �h when g� 
�0

0 � �0
� D ı



� 0

0 � �0
�
, i.e. when all atoms have

the same resonance frequency. Conversely, if the width of the line shape function, g


� � �0

0

�
,

is much smaller than that due to inhomogeneous broadening, g� 
�0
0 � �0

�
, then g



� � �0

0

�
can be approximated by a Dirac ı function in Eq. (2.4.26) and one gets gt Š g�.� � �0/ (case
of pure inhomogeneous broadening). In this case from Eq. (2.4.24) we get

gt D g�.� � �0/ D 2

	��
0

�
ln 2




�1=2

exp �
�

4.� � �0/
2

	��
0

ln 2

�
(2.4.27)

The normalized function
�
g�.� � �0/	�

�
0

	
is plotted in Fig. 2.8 vs the normalized frequency

difference .� � �0/=


	��

0 =2
�
. According to Eq. (2.4.27), the width of the curve (FWHM) is

simply 	 ��
0 , the maximum of the function occurs for � D �0 and its value is given by

g�.0/ D 2

	��
0

�
ln 2




�1=2

D 0.939

	��
0

(2.4.28)
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FIG. 2.8. Normalized plot of a Gaussian line.

A curve of the general form described by Eq. (2.4.27) is called Gaussian.
Based on the preceding discussion we will, from now on, use the symbol � D �in to

indicate the absorption cross section, for which the general expression can be written as

� D 2
2

3n"0ch
j�j2�gt.� � �0/ (2.4.29)

The corresponding expression for the absorption rate W D �F can then be written as

W D 2
2

3n2"0h2
j�j2�gt.� � �0/ (2.4.30)

where � D .nI=c/ D .nFh�=c/ is the energy density of the e.m. wave.
One could now repeat the same arguments for the case of stimulated emission. According

to Eq. (2.4.12) one readily sees that, for non degenerate levels, the general expressions for the
stimulated emission cross section and for the rate of stimulated emission are again given by
Eqs. (2.4.29) and (2.4.30) respectively.

It should be emphasized that, according to Eq. (2.4.29), � depends only on material
parameters [j�j2 , gt, and �0] and on the frequency of the incident wave. A knowledge of � as
a function of � is therefore all that is needed to describe the interaction process. The transition
cross section � is therefore a very important and widely used parameter of the transition. It
should also be observed that, for the case where the populations of the two levels are N1 and
N2, Eq. (2.4.19) generalises to

dF D ��.N1 � N2/Fdz (2.4.31)

This has the same form as that originally derived in Chap. 1 [see Eq. (1.2.1) with g1 D g2].
The discussion presented in this section, however, provides a deeper understanding of the
meaning of the (effective) cross section � .
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Another way of describing the interaction of radiation with matter involves defining a
quantity ˛ as

˛ D �.N1 � N2/ (2.4.32)

If N1 > N2 then ˛ is positive and is referred to as the absorption coefficient of the material.
Using Eq. (2.4.29) the following expression is obtained for ˛:

˛ D 2
2

3n"0ch
.N1 � N2/j�j2�gt.� � �0/ (2.4.33)

Since ˛ depends on the populations of the two levels, it is not the most suitable parameter
for describing a situation where the level populations are changing, such as, for example, in
a laser. Its usefulness, however, lies in the fact that the absorption coefficient ˛ can often be
directly measured. From Eqs. (2.4.31) and (2.4.32) we get in fact

dF D �˛Fdz (2.4.34)

The ratio between the photon flux after traversing a length l of the material and the incident
flux is therefore ŒF.l/=F.0/� D exp.�˛l/. By experimentally measuring this ratio with a suffi-
ciently monochromatic radiation, we can obtain the value of ˛ for that particular wavelength.
The corresponding value of the transition cross section is then obtained from Eq. (2.4.32)
once N1 and N2 are known. If the medium is in thermodynamic equilibrium, N1 and N2 can be
obtained from Eq. (1.2.2) once the total population Nt D N1 C N2 and the level’s degenera-
cies are known. The instrument used the measure the absorption coefficient ˛ is known as an
absorption spectrophotometer. We note, however, that an absorption measurement obviously
cannot be performed for a transition in which level 1 is empty. This situation, for instance,
occurs when level 1 is not the ground level and its energy above the ground level is much
larger than kT. As a final observation we note that if N2 > N1, the absorption coefficient ˛,
defined by Eq. (2.4.32), becomes negative and, of course, the wave gets amplified rather than
absorbed in the material. In this case it is customary to define the new quantity g, as

g D �.N2 � N1/ (2.4.35)

which is positive and is called the gain coefficient.

2.4.4. Einstein Thermodynamic Treatment

In this section we will describe a treatment, given by Einstein,.7/ of both spontaneous and
stimulated transitions (absorption and emission). In this treatment the concept of stimulated
emission was first clearly established and the correct relationship between spontaneous and
stimulated transition rates was derived well before the formulation of quantum mechanics and
quantum electrodynamics. The calculation makes use of an elegant thermodynamic argument.
To this end, let us assume that the material is placed in a blackbody cavity whose walls
are kept at a constant temperature T. Once thermodynamic equilibrium is reached, an e.m.
energy density with a spectral distribution �� given by Eq. (2.2.22) will be established and
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the material will be immersed in this radiation. In this material, both stimulated-emission and
absorption processes will occur, in addition to the spontaneous-emission process. Since the
system is in thermodynamic equilibrium, the number of transitions per second from level 1 to
level 2 must be equal to the number of transitions from level 2 to level 1. We now set

W21 D B21��0 (2.4.36)

W12 D B12��0 (2.4.37)

where B21 and B12 are constant coefficients (the Einstein B coefficients), and let Ne
1 and Ne

2 be
the equilibrium populations of levels 1 and 2, respectively. We can then write

ANe
2 C B21�v0 Ne

2 D B12�v0 Ne
1 (2.4.38)

From Boltzmann statistics we also know that, for non degenerate levels, one has

Ne
2=Ne

1 D exp.�h�0=kT/ (2.4.39)

From Eqs. (2.4.38) and (2.4.39) it then follows that

��0 D A

B12 exp.h�0=kT/ � B21
(2.4.40)

A comparison of Eq. (2.4.40) with Eq. (2.2.22), when � D �0, leads to the following relations:

B12 D B21 D B (2.4.41)

A

B
D 8
h�3

0n3

c3
(2.4.42)

Equation (2.4.41) shows that the probabilities of absorption and stimulated emission due to
blackbody radiation are equal. This relation is therefore analogous to that established, in a
completely different way, in the case of monochromatic radiation [see Eq. (2.4.12)]. Equa-
tion (2.4.42), on the other hand, allows the calculation of A, once B, i.e., the coefficient
for stimulated emission due to blackbody radiation, is known. This coefficient can easily
be obtained from Eq. (2.4.30) once we remember that this equation was established for
monochromatic radiation. For blackbody radiation, we can write ��d� for the energy den-
sity of radiation whose frequency lies between � and � C d� and simulate this elemental
radiation by a monochromatic wave. The corresponding elemental transition probability dW
is then obtained from Eq. (2.4.30) by substituting ��d� for �. Upon integration of the resulting
equation with the assumption that gt.� � �0/ can be approximated by a Dirac ı function in
comparison with �� (see Fig. 2.3), we get

W D 2
2

3 n2"0 h2
j�j2��0 (2.4.43)

The comparison of Eq. (2.4.43) with Eqs. (2.4.36) or (2.4.37) then gives

B D 2
2j�j2
3 n2"0 h2

(2.4.44)
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so that, from Eq. (2.4.42), we obtain

A D 16
3�3
0 nj�j2

3 h"0 c3
(2.4.45)

It should be noted that the expression for A that we have just obtained is exactly the same
as that obtained by a quantum electrodynamics approach [see Eq. (2.3.19)]. Its calcula-
tion is in fact based on thermodynamics and the use of Planck’s law (which is quantum
electrodynamically correct).

2.5. LINE BROADENING MECHANISMS

In this section we will discuss, in some detail, the various line broadening mechanisms
mentioned in previous sections. According to the earlier discussion, there is an important
distinction to be made from the outset between homogeneous and inhomogeneous line-
broadening. A line-broadening mechanism is referred to as homogeneous when it broadens
the line of each atom in the same way. In this case the line-shape of the single-atom cross
section and that of the overall absorption cross section would be identical. Conversely, a line-
broadening mechanism is said to be inhomogeneous when it distributes the atomic resonance
frequencies over some spectral range. Such a mechanism thus broadens the overall line of the
system (i.e. that of ˛) without broadening the lines of individual atoms.

Before proceeding, it is worth recalling that the shape of the function gt.� � �0/ can
be determined in two ways: (a) By an absorption experiment, with the help of a spectropho-
tometer. In this case one measures the absorption coefficient as a function of frequency �,
using the spectrophotometer to select the light frequency. From Eq. (2.4.33) one sees that
˛ / �gt.� � �0/. Since the linewidth of the function gt.� � �0/ is, typically, much smaller
than �0, we can approximately write ˛ / �0gt.� � �0/. Thus, to a very good approximation,
the shape of the ˛ vs � curve coincides with that of the function gt.� � �0/. (b) By an emis-
sion experiment, in which one passes the spontaneously emitted light trough a spectrometer
of sufficiently high resolution and one determines gt.� � �0/ by measuring the shape of the
spectral emission. It can be shown that, for any transition, the lineshapes obtained by these
two approaches are always the same. So, in the discussion that follows, we will consider the
lineshape function either in absorption or in emission, whichever is the more convenient.

2.5.1. Homogeneous Broadening

The first homogeneous line-broadening mechanism we consider is one due to collisions
and is known as collision broadening. In a gas, it is due to the collision of an atom with
other atoms, ions, free electrons, etc. or with the walls of the container. In a solid it is due
to the interaction of the atom with the phonons of the lattice. After a collision the two level
wavefunctions  1 and  2 of the atom [see Eq. (2.3.1)] will undergo a random phase jump.
This means that the phase of the oscillating dipole moment μosc [see Eq. (2.3.6)] will undergo
a random jump compared to that of the incident e.m. wave. These collisions thus interrupt
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FIG. 2.9. Time behavior of the electric field of an e.m. wave, E.t/, as seen from an atom undergoing collisions. Note
that, in actual cases, there may 107 or more collisions during the collision time � .

the process of coherent interaction between the atom and the incident e.m. wave. Since it is
the relative phase which is important during the interaction process, an equivalent way of
treating this problem is to assume that it is the phase of the electric field rather than that of
μosc that undergoes a jump at each collision. The electric field will therefore no longer appear
sinusoidal but will instead appear as shown in Fig. 2.9, where each phase jump occurs at the
time of a collision. It is therefore clear that, under these conditions, the atom no longer sees a
monochromatic wave. In this case, if we write d� D ��0d�0 for the energy density of the wave
in the frequency interval between �0 and �0 C d�0, we can use this elemental energy density
in the formula valid for monochromatic radiation, i.e., Eq. (2.4.7), which gives

dW12 D 2
2

3 n2"0 h2
j�21j2��0ı.�0 � �0/d�

0 (2.5.1)

The overall transition probability is then obtained by integrating Eq. (2.5.1) over the entire
frequency spectrum of the radiation, thus giving

W12 D 2
2

3 n2"0 h2
j�21j2

C1Z
�1

��0 ı.�0 � �0/d�
0 (2.5.2)

We can now write ��0 as

��0 D � g.�0 � �/ (2.5.3)

where � is the energy density of the wave [see Eq. (2.4.6)], and g.�0 � �/ describes the
spectral distribution of ��0 . Since one obviously has � D R

��0d�0, the integration of both
sides of Eq. (2.5.3) then shows that g.�0 � �/ must satisfy the normalization condition

C1Z
�1

g.�0 � �/d�0 D 1 (2.5.4)

Upon substituting Eq. (2.5.3) into Eq. (2.5.2) and using a well known mathematical property
of the ı function we get

W12 D 2
2

3 n2"0 h2
j�21j2� g.� � �0/ (2.5.5)
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As anticipated in Sect. 2.4.1, it is seen that W12 is indeed obtained by substituting g.� � �0/

to ı.� � �0/ in Eq. (2.4.7). Note that, according to Eq. (2.5.4), we also have

C1Z
�1

g.� � �0/d� D 1 (2.5.6)

There now remains the problem of calculating the normalized spectral density of the incident
radiation g.�0 � �/. This will depend on the time interval, � , between collisions (Fig. 2.9),
which will obviously be different for each collision. We will assume that the distribution of
the values of � can be described by a probability density

p� D Œexp.��=�c/�=�c (2.5.7)

Here p� d� is the probability that the time interval between two successive collisions lies
between � and �Cd� . Note that �c has the physical meaning of the average time<�> between
collisions. It is easy, in fact, to see that

<�> D
1Z

0

� p� d� D �c (2.5.8)

At this point the mathematical problem to be solved is well defined. We need to obtain the
normalized spectral lineshape of a wave as in Fig. 2.9 for which the time � between two
successive collisions has the statistical distribution p� given by Eq. (2.5.7). Referring to the
Appendix B for the mathematical details we merely quote the final result here. The required
normalized spectral lineshape is given by

g.�0 � �/ D 2�c
1�

1 C 4
2�2
c .�

0 � �/2	 (2.5.9)

According to Eq. (2.5.5) the line shape of the transition is obtained from Eq. (2.5.9) by
substituting �0 by �0. We then get

g.� � �0/ D 2�c
1�

1 C 4
2�2
c .� � �0/2

	 (2.5.10)

which is our final result. We thus obtain a function with a Lorentzian lineshape, as generally
described by Eq. (2.4.8) [see also Fig. 2.6], where the peak value is now 2�c and the linewidth
	�0 is

	�0 D 1=
�c (2.5.11)

Example 2.2. Collision broadening of a He-Ne laser As a first example of collision broadening, we
consider the case of a transition for an atom, or ion, in a gas at pressure p. An estimate of �c is, in this
case, given by �c D l=�th where l is the mean free path of the atom in the gas and �th is its average thermal
velocity. Since �th D .3kT=M/1=2 where M is the atomic mass and taking l to be given by the expression
resulting from the hard-sphere model of a gas, we obtain
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�c D
�

2

3

�1=2 1

8


.MkT/1=2

pa2
(2.5.12)

where a is the radius of the atom and p is the gas pressure. For a gas of Neon atoms at room temper-
ature and at a pressure p Š 0.5 Torr (typical pressure in a He-Ne gas laser) using Eq. (2.5.12) with
a Š 0.1 nm and �c Š 0.5�s, we find from Eq. (2.5.11) that 	�o D 0.64 MHz. Note that �c is inversely
proportional, and hence 	�0 directly proportional, to p. As a rough “rule of thumb” we can say that, for
any atom, collisions in a gas contribute to the line broadening by an amount .	�0=p/ Š 1 MHz=Torr, com-
parable to that shown in the example of Ne atoms. Note also that, during the collision time �c the number
of cycles of the e.m. wave is equal to m D ��c For a wave whose wavelength falls in the middle of the vis-
ible range we have � D 5�1014 Hz and thus the number of cycles is 5�108. This emphasizes the fact that
Fig. 2.9 is not to scale since the number of cycles in the time � is much larger than suggested in the figure.

Example 2.3. Linewidth of Ruby and Nd:YAG As a third example of collision broadening, we will con-
sider an impurity ion in an ionic crystal. In this case the collisions of the ion occur with the lattice
phonons. Since the number of phonons in a given lattice vibration is a strong function of the lattice
temperature, we expect the transition linewidth to show a strong dependence on temperature. As a rep-
resentative example, Fig. 2.10 shows the linewidth versus temperature for both Nd:YAG and ruby, the
linewidth being expressed in wavenumbers Œcm�1�, a quantity widely used by spectroscopists rather than
actual frequency.� At 300 K the laser transition linewidths are seen to be 	�0 Š 4 cm�1 Š 120 GHz for
Nd:YAG and 	�0 Š 11 cm�1 D 330 GHz for ruby.

A second homogeneous line-broadening mechanism has its origin in the phenomenon of
spontaneous emission. Since this emission is an inevitable feature of any transition, the cor-
responding broadening is called natural or intrinsic. In the case of natural broadening, it is
easiest to consider the behavior in terms of the spectrum of the emitted radiation. It should be
noted however that, as pointed out in Sect. 2.3.2, spontaneous emission is a purely quantum
phenomenon, i.e. it can only be correctly explained by quantizing both matter and radia-
tion. It follows therefore that a correct description of the lineshape of the emitted radiation
also needs a quantum electrodynamics treatment. We will therefore limit ourselves to quot-
ing the final result, which happens to be very simple, and to justifying it by some simple
arguments. The quantum electrodynamics theory of spontaneous emission.8/ shows that the
spectrum g.� � �0/ is again described by a Lorentzian line whose shape can be obtained from
Eq. (2.5.10) by replacing �c by 2�sp, where �sp is the decay time of the spontaneous emission.
Thus, in particular, the full width of the line (FWHM) is given by

	�0 D 1=2
�sp (2.5.13)

� For a given wave of frequency v, the corresponding frequency in wave numbers (e.g. in cm�1) is given by w D
1=C, where c is the velocity of the wave in a vacuum (in cm/s). The true frequency v is then obtained from the
frequency in wave numbers by the simple relation v D cw while the corresponding wavelenght is simply given
by � D c=v D 1=w (in cm). This illustrates the advantages of the wave number notation. The trem wave number
arises from the fact that w gives the number of wave periods, n, comprised in a given unitary length l (e.g. in 1
cm). The number n is in fact given by n D l=� so that n=l D 1� D w.
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FIG. 2.10. Laser linewidth vs temperature for ruby and Nd:YAG, as determined by phonon broadening.

To justify this result we notice that, since the power emitted by the atom decays in time as
exp.�t=�sp/, the corresponding electric field can be thought as decaying according to the rela-
tionship E.t/ D exp.�t=2�sp/�cos!0t. The decay of emitted intensity [which is proportional
to <E2.t/>] would then show the correct temporal behavior, namely, exp.�t=�sp/. We can
now easily calculate the power spectrum corresponding to such a field E.t/ and verify that the
line shape is Lorentzian and that its width is given by Eq. (2.5.13).

Example 2.4. Natural linewidth of an allowed transition As a representative example we can find an
order of magnitude estimate for 	�nat for an electric-dipole allowed transition. Assuming j�j D ea with
a Š 0.1 nm and � D 500 nm (green light) we already obtained in example 2.1 that �sp Š 10 ns. From
Eq. (2.5.13) we then get 	�nat Š 16 MHz. Note that 	�nat, just as A D 1=�sp, is expected to increase
with frequency as �3

0 . Therefore the natural linewidth increases very rapidly for transitions at shorter
wavelengths (down to the UV or X-ray region).

2.5.2. Inhomogeneous Broadening

We will now consider some mechanisms where the broadening arises from the distribu-
tion of the atomic resonance frequencies (inhomogeneous broadening).

As a first case of inhomogeneous broadening we consider that which occurs for ions
in ionic crystals or glasses. Ions will experience a local electric field produced by the sur-
rounding atoms of the material and, due to material inhomogeneities which are particularly
significant in glass medium, these fields will be different from ion to ion. These local field
variations will then produce, via the Stark effect, local variation of the energy levels and thus
of the transition frequencies of the ions (the term inhomogeneous broadening originates from
this case). For random local field variations, the corresponding distribution of the transition
frequencies g�.�0

0��0/ turns out to be given by a Gaussian function, i.e. by the general expres-
sion Eq. (2.4.27) where the linewidth 	��

0 (FWHM) will depend upon the extent of variation
of transition frequencies in the material and hence upon the amount of field inhomogeneity
within the crystal or glass.
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Example 2.5. Linewidth of a Nd:glass laser As a rep-
resentative example we consider the case of Nd3C ions
doped into a silicate glass. In this case, due to glass
inhomogeneities, the linewidth of the laser transition at
� D 1.05�m is 	��

0 Š 5.4 THz i.e. it is about 40
times broader than that of Nd:YAG at room temperature
(see Example 2.3). It should be noted that these inhomo-
geneities are an unavoidable feature of the glass state.

A second inhomogeneous broadening
mechanism, typical of gas, arises from
atomic motion and is called Doppler broad-
ening. Assume that an incident e.m. wave
of frequency � is propagating in the positive
z direction and let �z be the component of
atomic velocity along this axis. According to
the Doppler effect, the frequency of the wave,
as seen from the rest frame of the atom, is
�0 D �Œ1 � .�z=c/� where c is the velocity of

light in the medium. Notice the well known result that, when �z > 0, we have �0 < � and
vice versa. Of course, absorption by the atom will occur only when the apparent frequency �0
of the e.m. wave, as seen from the atom, is equal to the atomic transition frequency �0, i.e.,
when �Œ1 � .�z=c/� D �0. If we now express this relation as

� D �0=Œ1 � .�z=c/� (2.5.14)

we can arrive at a different interpretation of the process. As far as the interaction of the e.m.
radiation with the atom is concerned, the result would be the same if the atom were not moving
but instead had a resonant frequency �0

0 given by

�0
0 D �0=Œ1 � .�z=c/� (2.5.15)

where �0 is the true transition frequency. Indeed, following this interpretation, absorption
is expected to occur when the frequency � of the e.m. wave is equal to �0

0 i.e. when � D
�0

0, in agreement with Eq. (2.5.14) when the expression Eq. (2.5.15) for �0
0 is used. When

looked at in this way, one can see that this broadening mechanism does indeed belong to the
inhomogeneous category as defined at the beginning of this section.

To calculate the corresponding line shape g�.�0
0 � �0/ it is now sufficient to remember

that, if we let pvd�z be the probability that an atom of mass M in a gas at temperature T has a
velocity component between �z and �z C d�z, then pv is given by the Maxwell distribution

p� D
�

M

2
kT

�1=2

exp �.M�2
z =2kT/ (2.5.16)

From Eq. (2.5.15), since j�zj � c, we get �0
0 Š �0Œ1 C .�z=c/� and thus �z D c.�0

0 � �0/=�0.
From Eq. (2.5.16) one then obtains the desired distribution upon recognizing that one must
have g�.�0

0 � �0/d� 0
0 D p�d�z. One then gets

g�.�0
0 � �0/ D 1

�0

�
Mc2

2
kT

�1=2

exp �
"

Mc2

2kT



� 0

0 � �0
�2

�2
0

#
(2.5.17)

Thus one again obtains a Gaussian function whose FWHM linewidth (Doppler linewidth) is
now readily found from a comparison of Eq. (2.5.17) with Eq. (2.4.24), giving

	��
0 D 2�0

�
2kT ln 2=Mc2	1=2

(2.5.18)

For the purely inhomogeneous case the lineshape will be given by the general expression of
Eq. (2.4.27) where	��

0 is given by Eq. (2.5.18).
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Example 2.6. Doppler linewidth of a He-Ne laser Consider the Ne line at the wavelength � D 632.8 nm
(the red laser line of a He-Ne laser) and assume T D 300 K. Then from Eq. (2.5.18), using the appropriate
mass for Ne, we get 	��

0 Š 1.7 GHz. A comparison of this value with those obtained for collision
broadening, see example 2.2, and natural broadening, see Example 2.4 (the transition is allowed by electric
dipole), shows that Doppler broadening is the predominant line broadening mechanism in this case.

2.5.3. Concluding Remarks

According to the previous discussion, we have seen that the shape of a homogeneous
line is always Lorentzian while that of an inhomogeneous line is always Gaussian. When two
mechanisms contribute to line broadening, the overall line shape turns out to be always given
by the convolution of the corresponding line-shape functions, as indicated in Eq. (2.4.26)
for the case of one line being homogeneously and the other inhomogeneously broadened.
It can now be shown that the convolution of a Lorentzian line, of width 	�1, with another
Lorentzian line, of width 	�2, again gives a Lorentzian line whose width is now 	� D
	�1 C 	�2. The convolution of a Gaussian line, of width 	�1, with another Gaussian line,
of width 	�2, is again a Gaussian line, this time of width 	� D 


	�2
1 C	�2

2

�1=2
. For any

combination of broadening mechanisms, it is therefore always possible, to reduce the problem
to a convolution of a single Lorentzian line with a single Gaussian line and this integral (which
is known as the Voigt integral.9/) is tabulated. Sometimes, however, (e.g. as in the previously
discussed cases for Ne), one mechanism predominates. In this case, it is then possible to talk
of a pure Lorentzian or Gaussian line.

We conclude this section by showing, in Table 2.1, the actual range of linewidths for the
various line-broadening mechanisms considered. Note that, in the middle of the visible range,
we have �sp Š 10 ns and hence 	�nat Š 10 MHz for an electric dipole allowed transition.
For an electric dipole forbidden transition, on the other hand, one has �sp Š 1 ms and hence
	�nat Š 1 kHz. Note also that, in the case of a liquid, collision broadening and local field
inhomogeneous broadening are the predominant broadening mechanisms. In this case, the
average time between two consecutive collisions is indeed much shorter than in the gas phase
Œ�c Š 0.1 ps� and hence we have 	�c D 1=
�c Š 100 cm�1. Inhomogeneous broadening
arises from the local density variations associated with a given temperature and may produce
a value for the linewidth 	��

0 comparable to that of collision broadening. In a solid, inhomo-
geneous broadening due to local field variations may be as high as 300 cm�1 for a glass and
as low as 0.5 cm�1, or even lower, for a good quality crystal such as in presently available
Nd:YAG crystals.

TABLE 2.1. Typical magnitude of frequency broadening for the various line-broadening mechanisms

Type Gas Liquid Solid

Homogeneous Natural 1 kHz � 10 MHz Negligible Negligible
Collisions 5 � 10 MHz=Torr �300 cm�1 –
Phonons – – �10 cm�1

Inhomogeneous Doppler 50 MHz � 1 GHz Negligible –
Local field – �500 cm�1 1 � 500 cm�1
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2.6. NONRADIATIVE DECAY AND ENERGY TRANSFER

Besides decaying via radiative emission, an excited species can also undergo nonradia-
tive decay. There exists a variety of ways by which this can occur and the detailed description
of the various physical phenomena can often be quite complicated. We shall therefore limit
ourselves to a qualitative discussion with the main aim being to elucidate the physical phe-
nomena involved. We will then consider the combined effect of radiative and non-radiative
decay processes.

2.6.1. Mechanisms of Nonradiative Decay.10/

First we consider a nonradiative decay mechanism which arises from collisions, some-
times called collisional deactivation. In this case, for a gas or a liquid, the transition energy is
released as excitation and/or as kinetic energy of the colliding species or given to the walls of
the container. In the case of a solid, such as an ionic crystal or glass, the energy of the excited
ion is taken up by the lattice phonons or by the glass vibrational modes.

The collisional deactivation process, for the case where the energy of an excited species
B� is released as kinetic energy of a colliding species A, can be expressed in the form

B� C A ! B C A C	E (2.6.1)

where	E is equal to the excitation energy. Since	E ends up as kinetic energy of the colliding
partners, the process is also referred to as a superelastic collision or a collision of second kind.
For a process of the form shown in Eq. (2.6.1), the rate of change of B� population, NB� , can
be written as

dNB�

dt
D �kB�ANB� NA (2.6.2)

where NA is the population of species A and kB�A is a coefficient which depends on the transi-
tion of species B and on species A. The process is particularly effective, i.e. kB�A is particularly
large, when A has a very small mass (e.g. the He in the gas of a CO2 laser) so it can more
readily take-up the surplus energy 	E, from the collision process, as kinetic energy. For the
same reason the process can readily occur in a gas discharge when A is a discharge electron
(e.g. deactivation of the 23S state of He in a He-Ne laser). According to Eq. (2.6.2), we can
now define a nonradiative decay rate

Wnr D kB�ANA (2.6.3)

From Eqs. (2.6.2) and (2.6.3) we then get

�
dN2

dt

�
D � N2

�nr
(2.6.4)

where, to conform with previous notations, we have let N2 be the population of the species
undergoing collisional deactivation and where we have defined a nonradiative decay time as
�nr D .1=Wnr/.
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It should be observed that, in writing Eq. (2.6.2), we have neglected the reverse process
of that given by Eq. (2.6.1) i.e.,

B C A ! B� C A �	E (2.6.5)

where species B is excited at the expense of the kinetic energy	E of the two colliding partners
(thermal activation or collision of first kind). If this process were taken into account, one
should write, instead of Eq. (2.6.2), the following equation

.dNB�=dt/ D �kB�ANB� NA C kBANBNA (2.6.6)

where kBA is a coefficient describing the process of thermal activation. To find the relationship
between kBA and kB�A we can consider species B in thermal equilibrium with species A and
then apply the so-called principle of detailed balance. This principle can generally be formu-
lated by requiring that, in thermodynamic equilibrium, the rate of any process must be exactly
balanced by the rate of the corresponding reverse process�. Thus in this case, according to
Eq. (2.6.6), we require

kB�ANB� NA D kBANBNA (2.6.7)

In thermal equilibrium and for nondegenerate levels we have NB� D NB exp.�	E=kT/ where
	E is the excitation energy of species B and T is the temperature of the ensemble of species
B and A. From Eq. (2.6.7) we then get

kB�A D kBA exp.	E=kT/ (2.6.8)

which shows that the rate coefficient k for the exothermic reaction Eq. (2.6.1) is always
larger than that of the endothermic reaction Eq. (2.6.5). Actually, for electronic and for most
vibrational transitions, 	E is much larger than kT. Thus, according to Eq. (2.6.8), we have
kB�A � kBA. It is very important also to realize that, although Eq. (2.6.8) has been derived for
thermal equilibrium conditions, the same relation still holds if the population of species B is
maintained in a non equilibrium state of excitation, e.g. by some pumping process, provided
that the translational degrees of freedom of both species B and A are still in thermal equilib-
rium. In fact, the quantum mechanical calculation of the rate coefficient k does not depend on
the population of B but only upon the eigenfunctions of the two species involved, and on their
relative velocities. For a steady excitation of species B away from the Boltzmann equilibrium,
i.e. when NB� is of the same order of NB, we thus have kB�ANB� � kBANB and Eq. (2.6.6)
reduces to Eq. (2.6.2). Thus, to conclude, collisional deactivation takes the simple form given
by Eq. (2.6.4) only when 	E >> kT so that thermal activation may be neglected, which
is the case for electronic transitions and for most vibrational transitions. For deactivation of
the lowest energy vibrational levels of some molecules [e.g. the (010) state of CO2] and for
rotational transitions, thermal excitation must however be taken into account.

� Note that the equation expressing the balance of processes between a two level atom and the blackbody radiation,
established in Sect. 2.4.4., is another example of the principle of detailed balance.
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FIG. 2.11. (a) Nonradiative decay of a species B by near resonant energy transfer to a species A. (b) Reverse,
back-transfer, process.

When the electronic energy of species B is released in the form of internal energy of
some other species A, we can represent this with an equation of the form (collision of the
second kind�)

B� C A ! B C A� C	E (2.6.9)

where 	E D EB � EA is the difference between the internal energies of the two species
(see Fig. 2.11a). The quantum mechanical calculation of the corresponding transition rate
is beyond the scope of this book and we refer the reader elsewhere for details..11/ Here we
limit ourselves to pointing out that, since 	E must be added to or removed from the kinetic
energy of the two colliding partners, the process turns out to be particularly effective when
	E is appreciably smaller than kT. Therefore, the process is also called near-resonant energy
transfer and often plays an important role as a pumping mechanism in gas lasers (e.g. energy
transfer between excited He and ground state Ne, in a He-Ne laser, or between excited N2 and
ground state CO2 in a CO2 laser). The process also results in an effective deactivation channel
for species B. To consider the dynamics of this deactivation process, we must also take into
account the reverse process (back-transfer, see Fig. 2.11b)

B C A� ! B� C A �	E (2.6.10)

Actually, again applying the principle of detailed balance one can now show that, e.g., for the
case of exact resonance (i.e., 	E D 0), one has kB�A D kBA� , where kB�A and kBA� are the

� Collisions of the first kind involve conversion of the kinetic energy of one species into internal energy of another
species [see Eq. (2.6.5)]. In collisions of the second kind, internal energy is converted into some other form of
energy (other than radiation) such as kinetic energy [see Eq. (2.6.1)], or is transferred into internal energy of
another species (same or different species) [see Eq. (2.6.9)]. Collisions of the second kind thus also include, for
instance, the conversion of excitation energy into chemical energy.
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rate constants of the two processes described by Eqs. (2.6.9) and (2.6.10), respectively. This
indicates that the back-transfer reaction often plays a very important role. This process can
however be neglected when the decay of species A from its excited state is very fast, as it may
occur by the onset of stimulated emission. In this case one has .NA�=NA/ � .NB�=NB/, the
back transfer may be neglected, and the rate of decay of the excited species, B�, can simply
be written as

.dNB�=dt/ D �kB�ANB� NA (2.6.11)

We again obtain an equation of the general form given by Eq. (2.6.4) where now .1=�nr/ D
kB�ANA.

Finally we consider the case where collisional deactivation of species B (e.g. an active ion
in an ionic crystal) occurs through interaction with lattice phonons or with glass vibrational
modes�. In many cases, except for some nonradiative decay processes occurring in tunable
solid state lasers (see Chap. 9), we are dealing with electronic transitions and thus with tran-
sition energies of species B which are many times (typically at least 3 to 4 times) larger than
that of the most energetic phonon. This means that, to conserve energy, the transition energy
must be released in the form of many phonons (multiphonon deactivation). Thus, in this case,
the deactivation process can be represented in the form

B� ! B C
nX
1

i.h�i/ (2.6.12)

where �i are the frequencies of the phonons involved and the sum is extended over all phonons
created in this resonant or near-resonant process. Again we can define a transition rate Wnr

according to the relation

dNB�

dt
D �WnrB

� (2.6.13)

In this case, since many phonons are involved, the quantum mechanical calculation for the
process would involve a higher order perturbation theory. It is therefore not considered here
in any detail. We simply limit ourselves to pointing out that, if only a phonon of frequency � is
involved, Wnr can be written as Wnr D A exp.�B	E=h�/, where A and B are host-dependent
constants and 	E is the transition energy of species B. We thus see that the transition rate
rapidly decreases with the increasing number, n D 	E=h�, of phonons involved i.e. with the
increasing order of the multiphonon process. The dominant contribution to the nonradiative
process thus comes from the lattice phonon of the highest energy, since this means that the
lowest order process is then involved. The large variation in vibrational spectra shown by
different material then makes Wnr extremely host dependent. By contrast, the rate is found
to be relatively independent of the actual electronic state or even the particular active ion
involved.

� The absence of translational invariance in glass means that, strictly speaking, one should not talk in terms of
phonons, in this case, as one does for a crystal. For now on, however, for brevity we will refer to phonons even in
this case.
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As a conclusion to this discussion on collisional deactivation, we note that, while the
process can take a variety of forms, the decay behavior of the excited state can, subjects to
limits that we have discussed, always be described by the general relation Eq. (2.6.4), where
the value of �nr will depend upon the particular process under consideration. It should be
noted explicitly, however, that there is a fundamental difference between the nonradiative
decay time, �nr, discussed here, and the collision time �c discussed in Sect. 2.5.1, although
they both originate from collisions. In fact, a nonradiative decay process requires an inelastic
collision since the decaying species gives up its energy to its surroundings. By contrast, �c is
the average time between two consecutive dephasing collisions and thus arises from elastic
collisions only. Note that, in general, elastic collisions are more likely than inelastic ones and
thus �c is smaller, and often much smaller, than �nr .

A kind of nonradiative decay that does not rely on collisions, arises from dipole-dipole
interaction between an excited species that we shall call the donor, D, and, e.g., a ground
state species that we shall call the acceptor, A. The interaction results in energy being trans-
ferred between donor and acceptor. This process has been extensively studied by Förster for
liquids.12/ and by Dexter for solids..13/ It plays a very important role e.g. for active ions in
crystals or glasses and for mixtures of organic dyes in solution. Consider the donor, undergo-
ing the downward transition, while at a distance R from the acceptor. During the transition,
the donor will develop a dipole moment, μD, oscillating at its transition frequency. From the
theory of electric dipole radiation,.14/ it is known that this moment generates, at a distance R,
a nonradiating electric field (the so called near-zone field) whose magnitude, ED.t/, as for an
electrostatic dipole, is equal to μD=4
"0R3. Under these conditions, nonradiative decay may
occur by energy transfer arising from the interaction of the near-zone field ED.t, R/ at the posi-
tion of the acceptor with the oscillating dipole moment of the acceptor, μA. The interaction
energy, H, can then be written as

H / jED � μAj / jμD � μAj=R3 (2.6.14)

Of course, the interaction will have a significant strength only if the oscillation frequency of
μD is nearby resonant with that of μA. This means that there should be a good overlap between
the emission spectrum of the donor and the absorption spectrum of the acceptor from its initial
state (often not necessarily being the ground state). The detailed calculation shows that, for a
single donor and acceptor separated by a distance R, the rate of energy transfer can be written
as.12/

WDA D
�

3

64
5

��
1

R6

�24 1

�sp

1Z
0

� c

n�

�4
gD.�/�A.�/d�

3
5 (2.6.15)

where �sp is the spontaneous lifetime of the donor, n is the refractive index of the surrounding
medium gD is the line-shape function of the donor and �A is the absorption cross-section of
the acceptor. Note that since, as usual, the dependence of WDA with the interaction energy H
is WDA / jHj2, from Eq. (2.6.14) we expect WDA / j�Dj2j�Aj2=R6. By this relation one can
understand the dependence of WDA not only from R�6 but also from .1=�sp/ [remember that
1=�sp / jμDj2, see Eq. (2.3.15)] and to the cross section �A of the acceptor [remember that
�A / jμAj2, see Eq. (2.4.29)].
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FIG. 2.12. Different forms of energy transfer by dipole-dipole interaction within the same species: (a) Migration of
excitation. (b) Cross relaxation. (c) Cooperative up-conversion.

It should be noted finally that, dipole-dipole interactions may take somewhat different
forms from the classical donor-acceptor situation just considered. For instance, it may occur
between members of a single species (referred to as species D) and thus lead for example to
energy transfer between an excited and an unexcited atom [Fig. 2.12a]. Such a resonant energy
transfer usually can, for example, lead simply to spatial excitation migration within the same
species D. It may also lead, however, to a nonradiative decay if the excitation eventually
reaches a D site which is close to a, nearly resonant, acceptor site which itself has a fast
decay. Energy transfer may also occur into an intermediate level, i, as shown in Fig. 2.12b
(cross relaxation). This process will be particularly effective for near resonant transfer i.e.
when 	E2i Š 	Ei1. Finally, energy transfer may occur throughout an upper level, with both
donor and acceptor initially excited and the acceptor then being excited to a higher level u
(Fig. 2.12c). This process, known as cooperative up-conversion, is particularly effective again
for near resonant energy transfer i.e. when 	E2u Š 	E21.

Example 2.7. Energy transfer in the Yb3C : Er3C: glass laser system.15/ Donor-acceptor type of energy
transfer is very effective in the Yb3C : Er3C:glass laser system (see Chap. 9) in transferring the excitation
from the Yb3 ion, initially excited to its 2F5=2 state, to the 4I11=2 excited level of Er3C (Fig. 2.13a). This
energy transfer, besides being an effective nonradiative decay mechanism for the Yb ion, constitutes a
very effective way of pumping the active Er ion. Note that, at high Yb ion concentrations, this energy
transfer is assisted by energy migration between Yb ions until the excitation reaches a closely spaced
Yb-Er pair.

Example 2.8. Nonradiative decay from the 4F3=2 upper laser level of Nd:YAG Cross relaxation turns out
to be the main nonradiative decay mechanism for the Nd:YAG 4F3=2 upper laser level. In this case the
intermediate level i of Fig. 2.12b is the 4I15=2 level of the Nd ion (Fig. 2.13b). The excitation energy of
this level is then rapidly lost via multiphonon relaxation and the ion passes successively through the 4I13=2

and the 4I11=2 lower levels (not shown in the figure, see however Fig. 2.15) to the 4I9=2 ground level. The
energy difference between these sublevels (e.g. 4I13=2 ! 4I11=2) is, in fact, about 2, 000 cm�1 (the Stark
sublevels are even closer) i.e. only 4 times larger than the highest vibrational frequency of YAG crystal
.�450 cm�1/. This mechanism limits the optimal concentration of Nd ions in a YAG crystal to about 1%.
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FIG. 2.13. Examples of energy transfer by dipole-dipole interaction: (a) Yb3C � Er3C energy transfer in an Yb:Er
laser or amplifier. (b) Nonradiative decay of Nd:YAG by cross relaxation. (c) Cooperative upconversion in an Er3C

laser or amplifier.

Example 2.9. Cooperative upconversion in Er3C lasers and amplifiers.15/ Cooperative up-conversion is
believed to be the major cause of inefficiency for Er3C lasers or amplifiers (Fig. 2.13c). In this case, out
of two neighboring Er ions initially excited to the 4I13=2 laser level, one decays to the ground 4I15=2 level
while the other is raised to the 4I9=2 level. From this level the ion, when in an oxide glass host, then decays
rapidly back to the 4I13=2 level by multiphonon decay. The net result of this cooperative up-conversion is
that one Er ion, initially excited to the laser 4I13=2 level, is effectively quenched to the ground level i.e.,
one looses 50% of the population.

2.6.2. Combined Effects of Radiative and Nonradiative Processes

Let us first consider the case where the nonradiative decay can be described by an equa-
tion of the general form Eq. (2.6.4). The time variation of the upper state population N2 can
then be written as

dN2

dt
D �

�
N2

�r
C N2

�nr

�
(2.6.16)

Equation (2.6.16) can be put in the simpler form

dN2=dt D �.N2=�/ (2.6.17)

provided that one defines an overall decay time � given by

1

�
D 1

�r
C 1

�nr
(2.6.18)

The population N2.t/ at time t is then obtained by integrating Eq. (2.6.17). We get

N2.t/ D N2.0/ exp �.t=�/ (2.6.19)
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where N2.0/ is the population at t D 0. To calculate the time behavior of the spontaneously
emitted light, we notice that, according to Eq. (2.6.16), N2=�r gives the number of atoms
decaying radiatively per unit volume and unit time. Assuming, for simplicity, that radiative
decay occurs to one lower level only, say level 1, and letting �0 be the corresponding transition
frequency, the spontaneously emitted power at time t will then be

P.t/ D N2.t/h�0V=�r (2.6.20)

where V is the volume of the material. With the help of Eq. (2.6.19), Eq. (2.6.20) gives

P.t/ D ŒN2.0/h�0V=�r� exp �.t=�/ (2.6.21)

Note that the time decay of the emitted light is exponential with a time constant � rather
than �r as one, perhaps, might have expected at a first sight. By monitoring the decay of the
spontaneously emitted light from a sample having, at t D 0, an initial upper state population
N2.0/, one thus measures the overall lifetime � . To obtain �r, let us first define the fluorescence
quantum yield � as the ratio of the number of emitted photons to the number of atoms initially
raised to level 2. Using Eq. (2.6.21), we have

� D
R
.P.t/=h�0/dt

N2.0/V
D �

�r
(2.6.22)

Note that one can easily show that the above relation remains true also when the decay is into
a number of lower levels provided that, in defining the quantum efficiency �, one includes the
photons emitted in all of these transitions. The measurement of � thus allows calculation of
�r once � is known from the decay measurement of the emitted radiation. This measurement,
however, is sometimes not an easy one especially when � is very short (picoseconds or even
less), i.e. when � is very small.

We now briefly consider the case in which nonradiative decay occurs via a dipole-
dipole mediated energy transfer. According to Eq. (2.6.15), the transition rate WDA is strongly
dependent upon the donor to acceptor distance, R. For a population of ND donors and NA

acceptors, due to the different distances between donors and acceptors, the decay rate will
be different from each donor to acceptor couple and the resulting overall decay will show
a non-exponential behavior, the initial faster decay corresponding to sites with the smallest
separation R. A particularly important case occurs where there are random values of the donor-
acceptor spacing and where this distance is either fixed, as in a solid, or slowly varying over a
spontaneous decay time, as often occurs for liquids (Förster regime). In this case, when both
radiative and nonradiative decay channels are taken into account, the overall decay is given by

N2.t/ D N2.0/ exp �
h
.t=�r/C Ct1=2

i
(2.6.23)

The time behavior of the radiated power is then obtained by substituting Eq. (2.6.23) into
Eq. (2.6.20) and thus follows the same non-exponential decay as that of the population N2.t/.
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2.7. DEGENERATE OR STRONGLY COUPLED LEVELS

So far we have considered only the simplest case in which both levels 1 and 2 are non-
degenerate. We will now briefly consider the case when the two levels are degenerate or are
made up of a number of strongly coupled levels. The situation is depicted in Fig. 2.14 where
levels 1 and 2 are assumed to consists of g1 and g2 sublevels which are either degenerate (i.e.
have the same energy) or so close in energy to be strongly coupled. We will let N1 and N2

be the total populations of levels 1 and 2 and use N1i and N2j to indicate the population of a
particular sublevel of the lower and upper manifolds respectively.

2.7.1. Degenerate Levels

We first look at the degenerate case and begin by considering the thermal equilibrium
situation. In this case, the population of each sublevel of both upper and lower state will obey
the usual Boltzmann equation, thus

Ne
2j

D Ne
1i

exp Œ� .E2 � E1/ =kT� (2.7.1)

Since, however, the sublevels of e.g. level 1 are also in thermal equilibrium, their population
must all be equal, thus

Ne
1i

D Ne
1=g1 (2.7.2a)

Similarly we have

Ne
2j

D Ne
2=g2 (2.7.2b)

From Eqs. (2.7.1) and (2.7.2b) we then get

Ne
2 D Ne

1.g2=g1/ exp Œ� .E2 � E1/ =kT� (2.7.3)

Let us now see how the expressions for transition cross section, gain, and absorption coeffi-
cient need to be modified in the case of degenerate levels. For this purpose we consider an
e.m. wave passing through a material with given overall populations, N1 and N2, in the two

FIG. 2.14. Two level system in which the two levels comprise many sublevels which are either degenerate or strongly
coupled.
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levels, and we calculate the rate of change of the overall population N2 due to all radiative and
nonradiative transitions between sublevels j and i. We therefore write

�
dN2

dt

�
D �

g1X
1

i

g2X
1

j

�
WjiN2j � WijN1i C N2j

�ji

�
(2.7.4)

where Wji is the rate of stimulated transition between j and i sublevels, Wij is the rate of
absorption and .1=τji/ is the rate of spontaneous decay, radiative and nonradiative, between
the same two sublevels. Note that Wji and Wij are obtained from Eq. (2.4.30) by substituting
the dipole moments between j and i sublevels, j�ijj2 and j�jij2, for j�j2. These dipole moments
can in turn be readily obtained from Eq. (2.3.7). For instance j�ijj is obtained from Eq. (2.3.7)
by substituting ui, the eigenfunction of the i-th lower level, for u1 and uj, the eigenfunction of
the j-th upper level, for u2. It then follows that:

Wji D Wij (2.7.5)

If a rapid relaxation towards thermal equilibrium occurs between the sublevels within each
level, then all sublevels of the upper level will again be equally populated, and the same will
occur to the sublevels of the lower level. Therefore

N2j D N2=g2 (2.7.6a)

N1i D N1=g1 (2.7.6b)

Upon substitution of Eq. (2.7.6) into Eq. (2.7.4) we then get

dN2

dt
D �W

�
N2

g2
� N1

g1

�
� N2

�
(2.7.7)

where, with the help of Eq. (2.7.5), we have defined

W D
g1X
1

i

g2X
1

j Wij D
g1X
1

i

g2X
1

jWji (2.7.8)

and

1

�
D

g1P
1

i

g2P
1

j


1=�ji

�
g2

(2.7.9)

From Eq. (2.7.7) one can observe now that WN2=g2 represents the change in the unit time
of the total upper state population due to all stimulated emissions processes and, likewise,
WN1=g1 represents the population change due to all absorption processes. The change in
photon flux dF when the beam travels a distance dz in the material (see Fig. 1.2) can then be
written as

dF D W

�
N2

g2
� N1

g1

�
dz (2.7.10)
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We can now define a stimulated emission cross section, �21, and absorption cross section,
�12, as

�21 D W=.g2F/ (2.7.11a)

�12 D W=.g1F/ (2.7.11b)

from which we obviously have

g2�21 D g1�12 (2.7.12)

When .N1=g1/ > .N2=g2/ Eq. (2.7.10) with the help of Eq. (2.7.11b) can be put in the familiar
form dF D �˛Fdz provided one defines the absorption coefficient ˛ as

˛ D �12

�
N1 � N2

g1

g2

�
(2.7.13)

Similarly, when .N2=g2/ > .N1=g1/, Eq. (2.7.10) with the help of Eq. (2.7.11a) can be put in
the familiar form dF D gFdz provided one defines the gain coefficient g as

g D �21

�
N2 � N1

g2

g1

�
(2.7.14)

The reasons for defining �21 and �12, respectively, as in Eqs. (2.7.11a) and (2.7.11b) is now
apparent. When in fact N1 � N2 (as usually applies to absorption measurements involving
optical transitions) Eq. (2.7.13) simply reduces to ˛ D �12N1. Conversely, when N2 � N1 (as
applies in a four-level laser), Eq. (2.7.14) simply reduces to g D �21N2.

2.7.2. Strongly Coupled Levels

We now turn to the case where the upper level, 2, and lower level, 1, actually consist of
g2 and g1 sublevels, respectively, with different energies but with very fast relaxation among
the sublevels belonging to each particular level (strongly coupled levels). Each sublevel, of
both upper and lower levels, may also consists, itself, of many degenerate levels. In this
case, thermalization among the sublevels of either lower and upper level will occur rapidly
so that we can assume Boltzmann’s statistics to be always obeyed. Instead of Eq. (2.7.6), we
write now

N2j D f2j N2 (2.7.15a)

N1i D f1i N1 (2.7.15b)
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where f2j .f1i/ is the fraction of total population of level 2 (level 1) that, at thermal equilibrium,
is found in sublevel j.i/. According to Boltzmann’s statistics, we then have

f2j D g2j exp �.E2j=kT/
g2P
1

mg2m exp �.E2m=kT/
(2.7.16a)

f1i D g1i exp �.E1i=kT/
g1P
1

lg1l exp �.E1l=kT/
(2.7.16b)

where E2m and E1l are the energies of the sublevels in the upper and lower level, respectively
and g2m and g1l are the corresponding degeneracies.

Let us now assume that the stimulated transition occurs between a given sublevel (say l)
of level 1 to a given sublevel (say m) of level 2. Equation (2.7.4) then simplifies to

�
dN2

dt

�
D �WmlN2m C WlmN1l �

g1X
1

i

g2X
1

j

�
N2j

�ji

�
(2.7.17)

With the help of Eq. (2.7.15), Eq. (2.7.17) can be written as

.dN2=dt/ D �We
mlN2 C We

lmN1 � .N2=�/ (2.7.18)

where we have defined the effective rates of stimulated emission, We
ml, stimulated absorption,

Wa
lm, and spontaneous decay, .1=�/, respectively as

We
ml D f2m Wml (2.7.19a)

Wa
lm D f1l Wlm (2.7.19b)

.1=�/ D
g1X
1

i

g2X
1

j.f2j=�ji/ (2.7.19c)

According to Eq. (2.7.18), the change in photon flux dF when the beam travels a distance dz
in the material is given now

dF D 

We

mlN2 � Wa
lmN1

�
dz (2.7.20)

We can then define an effective stimulated emission cross section, �e
ml, and an effective

absorption cross section, �a
lm, as

�e
ml D We

ml=F D f2m�lm (2.7.21a)

�a
ml D Wa

ml=F D f1l�lm (2.7.21b)

where Eqs. (2.7.19a) and (2.7.19b) have been used and where �lm D Wlm=F and �ml D Wml=F
are, respectively, the effective cross sections of absorption and stimulated emission for the l
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to m transition. Note that, if the two sub-levels l and m are non-degenerate (or have the same
degeneracy) one has �lm D �ml. Note also that, according to Eqs. (2.7.20) and (2.7.21), the
absorption coefficient for the propagating photon flux, can be written as

˛lm D �a
lmN1 � �e

mlN2 (2.7.22)

This shows the usefulness of the concepts of effective cross sections: the absorption coef-
ficient, or the gain coefficient when N2 > N1, is simply obtained upon multiplying the
effective cross section with the total population of the upper and lower state. In particular,
at thermal equilibrium one has N2 Š 0 and N1 Š Nt where Nt is the total population and
Eq. (2.7.22) gives

˛lm D �a
lmNt (2.7.23)

This equation indicates that �e
lm can readily be obtained from an absorption measurement.

Example 2.10. Effective stimulated emission cross section for the � D 1.064�m laser transition of
Nd:YAG The scheme of the relevant energy levels for the Nd:YAG laser is shown in Fig. 2.15. Laser action
can occur on the 4F3=2 ! 4I11=2 transition .� D 1.064�m/, which is the most popular one, as well as on
4F3=2 ! 4I13=2.� D 1.32�m/ and 4F3=2 ! 4I9=2 transitions .� D 0.94�m/. The 1.064�m transition
occurs between one sublevel, m D 2, of the 4F3=2 level to one sublevel, l D 3, of the 4I11=2 level (R2 ! Y3

transition). We let f22 D N22=N2 D N22=.N21 C N22/ be the fraction of the total population which is found
in the upper laser level, where N22 and N21 are the populations of the two sublevels of the 4F3=2 level
and N2 is the total population of this level. Since the two sub-levels are each two-times degenerate, then,
according to Eq. (2.7.3) one has N22 D N21 exp �.	E=kT/ where 	E is the energy separation between
the two sublevels. Form the previous expression of f22 we then obtain f22 D 1=Œ1 C exp.	E=kT/�. For
	E D 84 cm�1 and kT D 208 cm�1ŒT D 300 K�, we get f22 D 0.4. From measured spectroscopic
data on the R2 ! Y3 transition, the actual peak cross section of the transition has been deduced as
�23 D 6.5�10�19 cm2..20/ The effective cross section of the R2 ! Y3 transition, �e

23, is then obtained from
Eq. (2.7.21a) as �e

23 D f22�23 Š 2.8 � 10�19 cm2.

Example 2.11. Effective stimulated emission cross section and radiative lifetime in Alexandrite The rel-
evant energy levels of Alexandrite are shown in Fig. 2.16. The upper laser level is the 4T2 state and the
laser transition occurs to a vibronic level of the 4A2 ground state .� Š 730 � 800 nm/. Since the 4T2 level
is strongly coupled to the 2E level, the fraction of the total population which is found in the 4T2 state, f2T ,
is given by f2T D N2T=.N2E C N2T / where N2E and N2T are the populations of the two levels. At ther-
mal equilibrium, we also have N2T D N2E exp �.	E=kT/, where 	E is the energy separation between
the two levels. From the previous expressions we obtain f2T D exp �.	E=kT/=Œ1 C exp �.	E=kT/�.
Assuming 	E D 800 cm�1 and kT D 208 cm�1 ŒT D 300 K� we get f2T D 2.1 � 10�2. According to
Eq. (2.7.21a), the effective stimulated emission cross section is given by �e

TA D f2T�TA, where �TA is the
actual cross section. From this last expression, assuming �TA D 4�10�19 cm2 at � D 704 nm,.21/ we obtain
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f2T Š 2.1 � 10�2 and �e
TA Š 0.8 � 10�20 cm2. Note the small value of f2T i.e. the small fractional value of

the upper laser level population, which results in a strong reduction of the effective stimulated emission
cross section. Note also that this cross section increases with increasing temperature as f2T increases with
temperature. To calculate the effective lifetime of the upper laser level, � , we note that the rate of sponta-
neous decay, 1=�T , of the 4T2 !4 A2 laser transition is .1=�T/ D 1.5 � 105 sec�1 .�T Š 6.6�s/ while the
rate of the 2E !4 A2 transition is .1=�E/ D 666.6 sec�1 .�E D 1.5 ms/. From Eq. (2.7.19c) we then get
.1=�/ D .f2E=�E/C.f2T=�T/ where f2E D N2E=.N2E CN2T/ D 1� f2T is the fraction of the total population
which is found in the 2E level. Inserting the appropriate numbers into the previous expression of .1=�/ we
get � D 200�s at T D 300 K. Thus the effective lifetime is considerably lengthened (from 6.6 to 200�s)
due to the presence of the strongly coupled and long lived 2E level which then acts as a storage level or
reservoir. Note that the effective lifetime, likewise the effective cross section, is temperature dependent.

FIG. 2.15. Relevant energy levels for the � D 1.064�m laser transition of Nd:YAG laser.

FIG. 2.16. Relevant energy levels of the Alexandrite laser.
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2.8. SATURATION

The purpose of this section is to examine the absorption and emission behavior of a
transition (of frequency �0) in the presence of a strong monochromatic e.m. wave of intensity
I and frequency � Š �0. For simplicity, we will assume the levels to be non degenerate.
Consider first the case where I is sufficiently weak that the populations of the two levels,
N1 and N2, do not differ significantly from their thermal equilibrium values. One then has
N1 > N2 (often N1 � N2) and the absorption processes, of rate WN1, will dominate the
stimulated emission process, of rate WN2, i.e. more atoms undergo the 1 ! 2 transition than
the 2 ! 1 transition. Consequently, at sufficiently high values of the intensity I, the two
populations will tend to equalize. This phenomenon is referred to as saturation.

2.8.1. Saturation of Absorption: Homogeneous Line

We will consider first an absorbing transition .N1 > N2/ and assume the line to be
homogeneously broadened. The rate of change of the upper state population, N2, due to the
combined effects of absorption, stimulated emission and spontaneous decay (radiative and
nonradiative), Fig. 2.17, can be written as

dN2

dt
D �W.N2 � N1/� N2

�
(2.8.1)

where N1 is the population of level 1. We can also write

N1 C N2 D Nt (2.8.2)

where Nt is the total population. Equation (2.8.1) can be put into a simpler form by defining

	N D N1 � N2 (2.8.3)

Equations (2.8.2) and (2.8.3) then give N1 and N2 as a function of 	N and Nt, and Eq. (2.8.1)
becomes

d	N

dt
D �	N

�
1

�
C 2W

�
C 1

�
Nt (2.8.4)

When .d	N=dt/ D 0, i.e. in the steady state, we get

	N D Nt

1 C 2W�
(2.8.5)

FIG. 2.17. Two-level system interacting with an e.m. wave of high intensity I.
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To maintain a given population difference,	N, the material needs to absorb from the incident
radiation a power per unit volume (dP/dV) given by

dP

dV
D .h�/W	N D .h�/

NtW

1 C 2W�
(2.8.6)

which, at saturation, i.e., for W� � 1, becomes

.dP=dV/s D .h�/Nt=2� (2.8.7)

Equation (2.8.7) shows that the power that must be absorbed by the system to keep it in
saturation, .dP=dV/s, is, as expected, equal to the power lost by the material due to the decay
of the upper state population .Nt=2/.

It is sometimes useful to have Eqs. (2.8.5) and (2.8.6) rewritten in a more convenient
form. To do this we first notice that, according to Eq. (2.4.17), W can be expressed as

W D �I=h� (2.8.8)

where � is the absorption cross section of the transition. Equations (2.8.5) and (2.8.6) with
the help of Eq. (2.8.8) can be recast in the following forms:

	N

Nt
D 1

1 C .I=Is/
(2.8.9)

dP=dV

.dP=dV/s
D I=Is

1 C .I=Is/
(2.8.10)

where

Is D h�=2�� (2.8.11)

is a parameter that depends on the given material and on the frequency of the incident wave.
Its physical meaning is obvious from Eq. (2.8.9). In fact, for I D Is, we get	N D Nt=2. When
� D �0, the quantity Is has a value that depends only on the parameters of the transition. This
quantity is called the saturation intensity.

Let us now see how the shape of an absorption line changes with increasing value of
the intensity, I, of the saturating beam. To do this, consider the idealized experimental situ-
ation shown in Fig. 2.18 where the absorption measurements are made using a probe beam
of variable frequency � 0 and whose intensity I0 is small enough so as not to perturb the sys-
tem appreciably. In practice the beams need to be more or less collinear to ensure that the
probe beam interacts only with the saturated region. Under these conditions, the absorption
coefficient as seen by the probe beam is obtained from Eq. (2.4.33) by substituting the total
lineshape gt.���0/ with the homogeneous lineshape g.�0 ��0/, where � has been substituted
by �0. Since N1 � N2 D 	N is now given by Eq. (2.8.9), we can write

˛ D ˛0

1 C .I=Is/
(2.8.12)
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FIG. 2.18. Measurement of the absorption or gain coefficient at frequency �0, by a probe beam of intensity I0.�0/ in
the presence of a saturating beam, I.�/, of intensity I and frequency �ŒI.�/ � I0.�0/�.

FIG. 2.19. Saturation behavior of the absorption coefficient, ˛, vs frequency, �0, for increasing values of the
intensity, I, of the saturating beam (homogeneous line).

where

˛0 D 2
2

3n"0ch
j�j2 Nt�

0g.�0 � �0/ (2.8.13)

is the absorption coefficient when the saturating wave at frequency � is absent (unsaturated
absorption coefficient). Equations (2.8.12) and (2.8.13) show that, when the intensity I of the
saturating beam is increased, the absorption coefficient is reduced. The line shape, however,
remains the same since it is always described by the function g.�0 � �0/. Figure 2.19 shows
three plots of the absorption coefficient ˛ vs �0 at three different values of I=Is.

We next consider the case where the saturating e.m. wave consists of a light pulse with
intensity I D I.t/, rather than a cw beam. For simplicity, we will confine ourselves to a
comparison between two limiting cases in which the pulse duration is either very long or very
short compared to the upper state lifetime � . If the pulse duration is very long compared to the
lifetime, the time evolution of the resulting population difference 	N, due to saturation, will
occur at very slow rate so that we can assume in Eq. (2.8.4) d	N=dt � Nt=� . Accordingly,
	N turns out to be still given by the steady state Eq. (2.8.9) where now I D I.t/. The saturation
behavior in this case is essentially the same as for a cw beam. If, on the other hand, the light
pulse is very short compared to the lifetime � , then the absorption term �2W	N in Eq. (2.8.4)
dominates the spontaneous decay term .Nt � 	N/=� , i.e. Œ.Nt � 	N/=�� � 2W	N. In this
case Eq. (2.8.4) reduces to

.d	N=dt/ D �2W	N D �.2�=h�/I.t/	N (2.8.14)
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where Eq. (2.8.8) has also been used. Integration of Eq. (2.8.14) with the initial condition
	N.0/ D Nt gives

	N.t/ D Nt exp

2
4�.2�=h�/

tZ
0

I.t/dt

3
5 (2.8.15)

Equation (2.8.15) can be put in a more suggestive form if we define the energy fluence � .t/ as

� .t/ D
tZ

0

I.t/dt (2.8.16)

and the saturation fluence as

�s D h�=2� (2.8.17)

From Eq. (2.8.15) we then get

	N.t/ D Nt exp � Œ� .t/=�s� (2.8.18)

We see that, in this case, it is the beam energy fluence rather than its intensity that determines
the saturation behavior. The population difference 	N1 that is left in the material after the
pulse has passed is, according to Eq. (2.8.18), given by

	N1 D Nt exp �.�t=�s/ (2.8.19)

where �t is the total energy fluence of the light pulse. The material saturation fluence �s can
therefore be looked upon as the fluence that the pulse should have to produce a population dif-
ference 	N1 D Nt=e. Having calculated the population difference resulting from saturation
by a light pulse, the corresponding absorption coefficient of the material can then be obtained,
for a homogeneous line, again from Eq. (2.4.33) by substituting gt.� � �0/ with g.�0 � �0/.
For a light pulse that is, either, slow or fast compared to � , the value of ˛ is respectively given
by Eq. (2.8.12) [with I D I.t/] or by

˛ D ˛0 exp Œ��.t/=�s� (2.8.20)

where ˛0 is the unsaturated absorption coefficient. Note that, in the pulsed regime as in the
cw regime, the shape of the absorption line remains unchanged when saturation occurs.

2.8.2. Gain Saturation: Homogeneous Line

We now consider the case where the transition 2 ! 1 exhibits net gain rather than net
absorption. We assume that the medium behaves as a four-level system (Fig. 2.20) and the
inversion between levels 2 and 1 is produced by some suitable pumping process. We will
further assume that the 3 ! 2 and 1 ! g transitions are so fast that we can take N3 Š
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FIG. 2.20. Energy levels and transitions involved in gain saturation of a four-level laser.

N1 Š 0. With these simplifying assumptions we can write the following rate equation for the
population of level 2:

.dN2=dt/ D Rp � WN2 � .N2=�/ (2.8.21)

where Rp is the pumping rate and Nt is the total population. In the steady state (i.e., for
dN2=dt D 0) we find from Eq. (2.8.21)

N2 D Rp�

1 C W�
(2.8.22)

With the help of Eq. (2.8.8), Eq. (2.8.22) can be rewritten as

N2 D N20

1 C .I=Is/
(2.8.23)

where N20 D Rp� is the population of level 2 in the absence of the saturating beam (i.e. for
I D 0) and

Is D h�=�� (2.8.24)

A comparison of Eq. (2.8.24) with Eq. (2.8.11) shows that the expression for the saturation
intensity Is of a four-level system is twice that of the two-level system of Fig. 2.17. The
difference arises from the fact that, in a two-level system, a change in population of one level
causes an equal and opposite change in population in the other level. Thus 	N is twice the
change in population of each level.

In an experiment such as that shown in Fig. 2.18, the probe beam at frequency �0 will now
measure gain rather than absorption. From Eq. (2.4.35), with N1 D 0, using also Eq. (2.8.23),
the gain coefficient, g, can be written as

g D g0

1 C .I=Is/
(2.8.25)

where g0 D �N20 is the gain coefficient for I D 0, i.e. when the saturating beam is
absent (unsaturated gain coefficient). This gain coefficient, since the line is homogeneously
broadened, can be obtained, using Eq. (2.4.18), as

g0 D 2
2

3n"0ch
j�j2�0N20g.�0 � �0/ (2.8.26)
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Equations (2.8.25) and (2.8.26) show that, just as in the case of absorption, the saturation
again leads to a decrease of g as I increases while the gain profile remains unchanged.

We next consider the case where the saturating e.m. wave consists of a light pulse of
intensity I.t/. If the pulse duration is very long compared to the lifetime � , we can neglect
the time derivative of N2 in Eq. (2.8.21) compared to the other terms. Thus we again get
Eq. (2.8.23) for the upper state population and Eq. (2.8.25) for the gain coefficient, where I is
now function of time. If the light pulse is very short compared to the lifetime � , then, during
the interaction of the light pulse, the pump term Rp and the spontaneous decay term N2=� can
be neglected compared to the stimulated term WN2. Thus we get

.dN2=dt/ D �.�I=h�/N2 (2.8.27)

where Eq. (2.8.8) has been used again. Integration of Eq. (2.8.27) gives

N2.t/ D N2 0 exp f� Œ� .t/=�s�g (2.8.28)

where N20 D Rp� is the population of level 2 before the arrival of the pulse, � .t/ is the energy
fluence of the beam [see Eq. (2.8.16)], and

�s D h�=� (2.8.29)

is the amplifier saturation fluence. A comparison of Eq. (2.8.29) with Eq. (2.8.17) shows that
the saturation fluence of a four-level amplifier is twice that of an absorber. The saturated gain
coefficient is given by

g D g0 exp f� Œ� .t/=�s�g (2.8.30)

where g0 D � N20 is the unsaturated gain coefficient and is again given by Eq. (2.8.26). Thus,
in the pulsed regime, just as for the cw case, the shape of the gain line remains unchanged
when saturation occurs.

2.8.3. Inhomogeneously Broadened Line

When the line is inhomogeneously broadened, the saturation phenomenon is more com-
plicated and we will limit ourselves to just a qualitative discussion (see Problems for further
details). For the sake of generality, we will assume that the line is broadened both by homo-
geneous and inhomogeneous mechanisms so that its shape is expressed as in Eq. (2.4.26): the
overall line gt.���0/ is given by the convolution of the homogeneous contributions g.��� 0

0/

of the various atoms. Thus, in the case of absorption, the resulting absorption coefficient can
be visualized as shown in Fig. 2.21. In this case, for an experiment such as that envisaged
in Fig. 2.18, the saturating beam of intensity I.�/ will interact with only those atoms whose
resonance frequency, �0

0, is in the neighborhood of the frequency, �. Accordingly, only these
atoms will undergo saturation when I.�/ becomes sufficiently large. The modified shape of
the absorption line, for various values of I.�/, will then be as shown in Fig. 2.22. In this case,
as I.�/ is increased, a hole will be produced in the absorption line at frequency �. The width
of this hole is of the same order as the width of each of the dashed absorption profiles of
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FIG. 2.21. Lineshape of a transition broadened by both homogeneous and inhomogeneous mechanisms. The corre-
sponding line-shape function, gt.� � �0/, is obtained from the convolution of the homogeneous lines g.� � �0

0/ of
the individual atoms.

FIG. 2.22. Saturation behavior of the absorption coefficient, ˛, vs frequency, �0, as measured by the test beam of
intensity for increasing values of the intensity, I0.�0/, for increasing values of the intensity, I.�/, of the saturating
beam (inhomogeneous line).

Fig. 2.21, i.e. the width of the homogeneous line. A similar argument applies if a transition
with net gain rather than absorption is considered. The effect of the saturating beam will, in
this case, be to burn holes in the gain profile rather than the absorption profile. Note also that
a similar argument can be applied when absorption or gain saturation is produced by a light
pulse of sufficiently high energy fluence.

2.9. DECAY OF AN OPTICALLY DENSE MEDIUM

In Sect. 2.3 the decay of an essentially isolated atom or ion has been considered. In a
real situation, any atom will be surrounded by many other atoms, some in the ground state
and some in the excited state. In this case new phenomena may occur since the decay may
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be due to the simultaneous occurrence of both spontaneous and stimulated processes. These
phenomena will be briefly discussed in this section.

2.9.1. Radiation Trapping

If the fraction of atoms that is raised to the upper level is very small and if the medium
is optically dense, the phenomenon known as radiation trapping may play a significant role.
In this case, a photon that is spontaneously emitted by one atom, instead of escaping from the
medium, can be absorbed by another atom which thereby ends up in the excited state. The
process therefore has the effect of slowing down the effective rate of spontaneous emission.
A detailed discussion about radiation trapping can be found elsewhere..16/ We merely limit to
point out here that the lifetime increase depends on the atomic density, on the cross section
of the transition involved, and on the geometry of the medium. Radiation trapping may be
particularly important for UV transitions with large cross sections [according to Eq. (2.4.29)
one has � / j�j2 � which increases rapidly in going to the UV through the � term and the
increase of j�j2 with frequency]. This can result in an increase of the effective life-time of
spontaneous emission by as much as a few orders of magnitude.

2.9.2. Amplified Spontaneous Emission

If the fraction of atoms raised to the upper level is very large and if the medium is
optically dense the phenomenon known as Amplified Spontaneous Emission (ASE) may play
a very important role.

Consider a cylindrically shaped active medium and let˝ be the solid angle subtended by
one face of the cylinder as seen from the center O of the other face [Fig. 2.23a]. If the gain of
the active material, G D exp �.N2 � N1/l, is large enough, the fluorescence power, emitted by
atoms around point O into the solid angle˝ , may be strongly amplified by the active medium
by a factor that may, in some cases, be as high as 104 or even higher. Thus, under suitable
conditions, which are considered below, the active medium will preferentially emit its stored
energy into the solid angle ˝ of Fig. 2.23a and, obviously, along the opposite direction as
well. If a totally reflecting mirror .R D 1/ is placed at one end of the medium (Fig. 2.23b),
then an unidirectional output is obtained. This is the basic ASE phenomenon. In contrast to
spontaneous emission, ASE possesses some distinctive features which shows some similarity

FIG. 2.23. Solid angle of emission in the case of amplified spontaneous emission: (a) Active material without end
mirrors. (b) Active material with one end mirror.



72 2 � Interaction of Radiation with Atoms and Ions

to laser action. Indeed ASE has, to some degree, the property of directionality, its bandwidth is
appreciably narrower than that of spontaneous emission, it shows a “soft” threshold behavior,
and the beam of ASE light can be quite intense. We will briefly consider these properties here,
while we refer to Appendix C for further details.

The directionality is immediately apparent from Fig. 2.23. For D � l the emission solid
angle ˝ of Fig. 2.23a is, in fact, readily seen to be given by

˝ D 
 D2=4l2 (2.9.1)

where D is the diameter and l is the length of the active material. Likewise, in the case of
Fig. 2.23b, the emission solid angle is

˝ 0 D 
 D2=16l2 (2.9.2)

Note that, in both cases, due to refraction taking place at the exit face of the active medium,
the external solid angle˝n of both Figs. 2.23a and b is obtained from Eqs. (2.9.1) and (2.9.2)
by multiplying the right hand side by n2 where n is the refractive index of the material. In any
case, if D � l, ASE will occur in a narrow cone as can be perhaps best appreciated from the
following example.

Example 2.12. Directional property of ASE Let us consider the active medium to consists of gaseous
Nitrogen, for which there is a laser transition occurring at λ Š 337 nm (see Chap. 10). We take D D 2 cm
and l D 1 m and assume that a totally reflecting mirror is placed at one end. From Eq. (2.9.2) we get
˝ 0 Š 0.8�10�4 sterad which shows that the emission solid angle is very much smaller than the 4π sterad
angle into which spontaneous emission occurs. On the other hand, the beam divergence is much larger
than would be obtained from the same active medium used in a two-mirror laser resonator. The half-cone
divergence angle of the ASE beam, 
 0, is in fact given by 
 0 D Œ˝ 0=
�1=2 Š 5 mrad. By comparison,
in the case of a laser resonator, the minimum attainable divergence, as set by diffraction, is given by

d Š .�=D/ Š 20� rad, i.e. it is 250 times smaller.

The spectral narrowing of ASE can be understood when we notice that the gain expe-
rienced by the spontaneously emitted beam will be much higher at the peak, i.e. at � D �0,
than in the wings of the gain line. This situation is illustrated in Fig. 2.24 for a Lorentzian
line. The dashed curve shows, in fact, the normalized spectral profile, g.� � �0/=gp, of the
spontaneously emitted light while the solid lines show the normalized profile, I�=I�p, of ASE
spectral emission at two different values of the peak gain G. In the previous expressions, gp

and I�p are the peak values of the functions g and I� , respectively, and G D exp


�pN2l

�
, where

�p is the peak cross section and N2 is the upper state population (we assume N1 Š 0). The ASE
spectral profile has been obtained from the approximate theory of Appendix C. The ratio of
the ASE linewidth,	�ASE, to the spontaneous emission linewidth,	�o (FWHM), as obtained
from the same approximate theory, is plotted vs



�pN2l

�
in Fig. 2.25 as a dashed curve. In

the same figure, three corresponding plots are also shown, as continuous lines, at three values
of .˝=4
/, when gain saturation is also taken into account (after reference.17/).Note that, for
practical values of the unsaturated gain 103 	 G 	 106 i.e. for 7 	 �p N2l 	 14 and for prac-
tical values of the emission solid angle 10�3 	 .˝=4
/ 	 10�5, the reduction in linewidth is
roughly in the range between 3 and 4.
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FIG. 2.24. Normalized ASE spectral emission at two different values of the peak, unsaturated, single pass gain. For
comparison, the dashed curve shows the normalized spectrum of spontaneous emission.

FIG. 2.25. Linewidth of ASE, 	�ASE, normalized to the linewidth of spontaneous emission, 	�0, as a function of
the unsaturated single-pass gain �pN2l.

To calculate the “apparent” threshold we begin by pointing out that, according to the
theory of Appendix C, the intensity of one of the two ASE beams of Fig. 2.23a is given by

I D � Is

�
˝

4
3=2

�
.G � 1/3=2

ŒG ln G�1=2
(2.9.3a)
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for a Lorentzian line and by

I D � Is

�
˝

4


�
.G � 1/3=2

ŒG ln G�1=2
(2.9.3b)

Example 2.13. ASE threshold for a solid-state laser rod
We consider a solid-state laser rod, such as Nd:YAG, with
D D 6 mm, l D 10 cm and n D 1.82 and consider first
the symmetric configuration of Fig. 2.23a, so that, from
Eq. (2.9.1) we get .˝=4
/ D 2.25 � 10�4. Since the
line of Nd:YAG is Lorentzian and one can take � Š 1
for this line, from Eq. (2.9.4a) we obtain G D 2.5 � 104

i.e. �p Nthl D ln G D 10.12. Taking 2.8 � 10�19 cm2 as
the value of the peak stimulated emission cross section
�p for Nd:YAG [see Example 2.10], we then get a thresh-
old inversion for ASE of Nth D 3.6 � 1018 cm�3. For
the single end configuration of Fig. 2.23b we get from
Eq. (2.9.2) .˝ 0=4
/ D 5.62�10�5 and from Eq. (2.9.5a)
G D 6.4 � 102, i.e. a much smaller value for the thresh-
old peak gain. The threshold inversion for ASE is, in this
case, equal to Nth D ln G=�pl D 2.3 � 1018 cm3. Note
that the emission solid angle would be n2 times larger
than the value calculate above. We thus get˝n D n2˝ D
9.36�10�3 sterad and˝ 0

n D n2˝n D 2.33�10�3 sterad,
in the two cases respectively.

for a Gaussian line. In both previous equa-
tions � is the fluorescence quantum yield and
Is D h�0=�p� is the saturation intensity of
the amplifier at the transition peak. We can
define the ASE threshold as the condition
where ASE becomes the dominant mech-
anism depopulating the available inversion.
We thus require that I becomes comparable to
the saturation intensity Is. In this case, in fact,
a sizable fraction of the available energy will
be found in the two ASE cones of Fig. 2.23
rather than in the 4
 solid angle of the spon-
taneously emitted radiation. For G � 1,
Eqs. (2.9.3a) and (2.9.3b) then show that the
threshold peak gain must satisfy the relatively
simple conditions

G D 4
3=2

�˝
Œln G�1=2 (2.9.4a)

for a Lorentzian line and

G D 4


�˝
Œln G�1=2 (2.9.4b)

for a Gaussian line. Note that, if a totally reflecting mirror is placed at one end of the medium
(Fig. 2.23b), the resulting threshold condition can be obtained from Eq. (2.9.4) provided G,
the single-pass peak gain, is replaced by G2 the double-pass peak gain, and ˝ is replaced by
˝ 0. We thus get

G2 D 4
3=2

�˝ 0 Œln G2�
1=2

(2.9.5a)

for a Lorentzian line and

G2 D 4


�˝ 0 Œln G2�
1=2

(2.9.5b)

for a Gaussian line.
The “soft” threshold which is characteristics of ASE is apparent from Fig. 2.26 where

the normalized intensity of one of the two ASE beams of Fig. 2.23a is plotted vs �pN l for
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FIG. 2.26. Intensity of ASE emission, I, normalized with respect to the saturation intensity, Is, as a function of
the single-pass gain, �pN2l, for an emission solid angle � D 4
 	 10�4 sterad. The dashed and dotted lines show
the results of simplified theories which apply for .I=Is/ 
 1 and .I=Is/ � 1, respectively. The solid line shows the
computed behavior when gain saturation has been taken into account exactly.

.˝=4
/ D 10�4 and upon assuming a Lorentzian line and � D 1. The dashed curve is
obtained from Eq. (2.9.3a), which is valid in the limit case I � Is. The dotted line, which
applies in the other limit case I � Is, is obtained from the condition that half of the avail-
able fluorescence power is found in the right-propagating ASE beam, i.e. from the equation
.I=I/s D �pN2l=2. The solid line is obtained by a more accurate calculation in which the
saturation of the upper state population, i.e. gain saturation, has been properly taken into
account..17/

ASE has been used, usually with the configuration of Fig. 2.23b, to obtain directional
and narrow bandwidth radiation of high intensity from high gain materials such as nitrogen,
excimers or plasmas for X-rays (see Chap. 10). Since one either requires only one mirror or no
mirror at all, these systems have been (incongruously) called mirrorless lasers. In fact, ASE
emission, although having some spatial and temporal coherence, just consists of amplified
spontaneous emission noise and should therefore not be confused with laser radiation, whose
coherence properties are conceptually different, as will be explained in Chap. 11. In many
other situations, ASE is generally a nuisance. For instance it limits the maximum inversion
which can be stored in high gain pulsed laser amplifiers. It is also the dominant noise term in
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TABLE 2.2. Emission wavelengths, peak transition cross sections, upper-state lifetime and transition
linewidths for some of the most common gas and solid state lasers.18�21/

Transition � [nm] �p Œcm2� � Œ�s� 	�0 Remarks

He-Ne 632.8 3 	 10�13 150 	 10�3 1.7 GHz
ArC 514.5 2.5 	 10�13 6 	 10�3 3.5 GHz
Nd:YAG 1, 064 2.8 	 10�19 230 120 GHz
Nd:Glass 1, 054 4 	 10�20 300 5.4 THz
Rhod. 6G 570 3.2 	 10�16 5.5 	 10�3 46 THz
Alexandrite 704 0.8 	 10�20 300 60 THz T D 300 K
Ti3C : Al2O3 790 4 	 10�19 3.9 100 THz Ejjc axis
Cr3C : LiSAF 845 5 	 10�20 67 84 THz Ejjc axis

fiber amplifiers, such as the Er3C doped fiber amplifiers (EDFA), now widely used for optical
communications at wavelengths around 1,550 nm.

2.10. CONCLUDING REMARKS

In this Chapter several aspects of the interaction of radiation with matter, mostly relating
to atoms or ions, have been discussed. In particular, it has been shown that the two most
important parameters to describe this interaction are the cross section, � D �.���0/, and the
lifetime, � , of the upper laser level. In the case of a pure Gaussian or Lorentzian lineshape,
one actually needs to know only the peak value, �p, of the cross section and the value of the
linewidth



	�0 or	��

0

�
. Note also that � refers to the overall upper level lifetime and, as such,

it includes all radiative and nonradiative decay processes which depopulate the upper level.
In the case of degenerate or strongly coupled levels, �p and � refer to the effective stimulated
emission cross section and upper state lifetime, respectively, as discussed in Sect. 2.7.

A summary of the values of �p, � and	�0


or 	��

0

�
for many common laser transitions

in gases and ionic crystals are shown in Table 2.2. For comparison, the corresponding values
for Rhodamine 6G, a common dye laser material, are also included. Note the very high values
of �p .�10�13 cm2/ for gas lasers as a result of the rather small values of	��

0 (a few GHz) and
the rather short lifetimes (a few ns). The lifetime is short because the transitions are electric-
dipole allowed. By contrast, for active ions in ionic crystals or glasses such as Nd:YAG or
Nd:phosphate glass, �p is much smaller .10�20 � 10�19 cm2/ and the lifetime is much longer
(several hundredths of �s) indicative of a forbidden electric dipole transition. Note also that
the linewidths are much larger (from hundredths to thousands of GHz) which also results in
a strong reduction of the peak cross section. Dye laser materials, such as Rhodamine 6G, are
intermediate between these two cases, showing a fairly high cross section .�10�16 cm2/ and
also a very short lifetime, a few ns, since, again, the transitions are electric-dipole allowed.
The last three laser materials listed in Table 2.2, namely Alexandrite, Ti3C : Al2O3 and
Cr3C:LISAF, belong to the category of tunable solid state lasers. Indeed, for these materials,
the laser linewidths are extremely wide (tens to more than a hundred THz). The cross sections
are comparable to those of narrower linewidth materials such as Nd:YAG, while the lifetimes
are somewhat shorter.
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PROBLEMS

2.1. For a cavity volume V D 1 cm3 calculate the number of modes that fall within a bandwidth
	� D 10 nm centered at � D 600 nm.

2.2. Instead of �� , a spectral energy density �� can be defined, �� being such that ��d� gives the
energy density for the e.m. waves of wavelength lying between � and �Cd�. Find the relationship
between �� and �� .

2.3. For blackbody radiation find the maximum of �� vs �. Show in this way that the wavelength �M

at which the maximum occurs satisfies the relationship �MT D hc=ky (Wien’s law), where the
quantity y satisfies the equation 5 Œ1 � exp.�y/� D y. From this equation find an approximate
value of y.

2.4. The wavelength �M at which the maximum occurs for the distribution in Fig. 2.3 satisfies the
relation �MT D 2.9�10�3 m�K (Wien’s law). Calculate �M for T D 6, 000 K. What is the color
corresponding to this wavelength?

2.5. The R1 laser transition of ruby has, to a good approximation, a Lorentzian shape of width
(FWHM) 330 GHz at room temperature (see Fig. 2.10). The measured peak transition cross
section in � D 2.5�10�20 cm2. Calculate the radiative lifetime (the refractive index is n D 1.76).
Since the observed room temperature lifetime is 3 ms, what is the fluorescence quantum yield?

2.6. Nd:YAG, a typical active laser material, is a crystal of Y3Al5O12 (yttrium aluminum garnet, YAG)
in which some of the Y3C ions are substituted by Nd3C ions. The typical Nd3C atomic concen-
tration used is 1%, i.e. 1% of Y3C ions are replaced by Nd3C. The YAG density is 4.56 g=cm3.
Calculate the Nd3C concentration in the ground .4I9=2/ level. This level is actually made up of
five (doubly degenerate) levels (see Fig. 2.16), the four higher levels being spaced from the low-
est level by 134, 197, 311,and 848 cm�1, respectively. Calculate the Nd3C concentration in the
lowest level of the 4I9=2 state.

2.7. The neon laser transition at � D 1.15�m is predominantly Doppler broadened to 	�0
� D 9 �

108 Hz. The upper state lifetime is �10�7 s. Calculate the peak cross section assuming that the
laser transition lifetime is equal to the total upper state lifetime.

2.8. The quantum yield of the S1 ! S0 transition (see Chap.9) for Rhodamine 6G is 0.87, and the
corresponding lifetime is �5 ns. Calculate the radiative and nonradiative lifetimes of the S1 level.

2.9. Calculate the total homogeneous linewidth of the 633 nm laser transition of Ne knowing that
	�nat Š 20 MHz and 	�c D 0.64 MHz. What is the shape of the overall line?

2.10. Find the relationship between the intensity, I, and the corresponding energy density, �, for a
plane wave.

2.11. A cylindrical rod of Nd:YAG with diameter of 6.3 mm and length of 7.5 cm is pumped very hard
by a suitable flashlamp. The peak cross section for the 1.06�m laser transition is � D 2.8 �
10�19 cm2 and the refractive index of YAG is n D 1.82. Calculate the critical inversion for the
onset of the amplified spontaneous emission (ASE) process (the two rod end faces are assumed
to be perfectly antireflection coated, i.e., non-reflecting). Also calculate the maximum energy that
can be stored in the rod if the ASE process is to be avoided.

2.12. A solution of cryptocyanine (1,10-diethyl-4,40-carbocyanine iodiode) in methanol has been used
simultaneously to Q-switch and mode-lock (see Chap. 8) a ruby laser. The absorption cross section
of cryptocyanine for ruby laser radiation .� D 694.3 nm/ is 8.1 � 10�16 cm2. The upper state
lifetime is � Š 22 ps. Calculate the saturation intensity at this wavelength.
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2.13. Upon applying the principle of detailed balance to the two near-resonant transfer processes of
Eqs. (2.6.9) and (2.6.10), show that, at exact resonance i.e., for 	 E D 0, one has kB�A D kBA� ,
where kB�A and kBA� are the rate constant of the two processes, respectively

2.14. Instead of observing saturation as in Fig. 2.19, we can also do this by using just the beam I.�/ and
measuring the absorption coefficient for this beam at sufficiently high values of the intensity I.�/.
For a homogeneous line, show that the absorption coefficient is, in this case,

˛.� � �0/ D ˛0.0/

1 C Œ2.� � �0/=	�0�
2 C .I=Is0/

where ˛0.0/ is the unsaturated .I � Is0/ absorption coefficient at � D �0 and Is0 is the saturation
intensity, as defined by Eq. (2.8.11), at � D �0. Hint: begin by showing that

˛.� � �0/ D ˛0.0/

1 C Œ2.� � �0/=	�0�
2

1

1 C .I=Is/

where Is is the saturation intensity at frequency �. Continue by expressing Is in terms of Is0.

2.15. From the expression derived above, find the behavior of the peak absorption coefficient and the
linewidth versus I. How would you then measure the saturation intensity Is0?

2.16. Show that, for an inhomogeneous line with line shape function g, the saturated absorption
coefficient for an experiment as in Fig. 2.20 can be written as

˛ D
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where the homogeneous contribution is accounted for by a Lorentzian line. [Hint: begin by cal-
culating the elemental contribution, d˛, of the saturated absorption coefficient due to the fraction
g�.�0

0 � �0/d�0
0 of atoms whose resonant frequencies lie between �0

0 and �0
0 C d�0

0]

2.17. Under the assumptions that (1) the homogeneous linewidth is much smaller than the inhomoge-
neous linewidth and (2) I � Is0, show that the expression for ˛ given in the previous problem can
be approximated as
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Since the integral is now the convolution of two Lorentzian lines, what is the width of the hole in
Fig. 2.22?
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3

Energy Levels, Radiative
and Nonradiative Transitions
in Molecules and Semiconductors

The purpose of this chapter is to specialize some of the results and considerations of the
previous chapter to the somewhat more complicated case of molecules and semiconductors.
Particular emphasis will be given to semiconductors, either in bulk or quantum well form,
since they play an increasingly important role as laser media.

3.1. MOLECULES

We will first consider the energy levels, and the radiative and nonradiative transitions
in molecules. The considerations will be limited to a qualitative description of those features
which are particularly relevant for a correct understanding of laser action in active media such
as molecular gases or organic dyes. For a more extensive treatment of the wider subject of
molecular physics the reader is referred to specialized texts..1/

3.1.1. Energy Levels

The total energy of a molecule consists generally of the sum of four contributions: (1)
electronic energy, Ee due to the motion of electrons about the nuclei; (2) vibrational energy
Ev, due to the vibrational motion of the nuclei; (3) rotational energy Er, due to the rotational
motion of the molecule; and (4) translational energy. We will not consider the translational
energy any further since it is not usually quantized. The other types of energy, however, are
quantized and it is instructive to derive, from simple arguments, the order of magnitude of the

O. Svelto, Principles of Lasers,
c
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FIG. 3.1. Potential energy curves and vibrational levels of a diatomic molecule.

energy difference between electronic levels .�Ee/, vibrational levels .�Ev/, and rotational
levels .�Er/. The order of magnitude of �Ee is given by

�Ee Š „2

ma2
(3.1.1)

where „ D h = 2
 , m is the mass of the electron, and a is the size of molecule. In fact, if we
consider an outer electron of the molecule, the uncertainty in its position is of the order of a,
then the uncertainty in momentum, via the uncertainty principle, is „ = a, and the minimum
kinetic energy is therefore „2 = 2ma2. For a diatomic molecule consisting of masses M1 and M2

we assume that the corresponding potential energy, Up, vs internuclear distance R, around the
equilibrium distance R0, can be approximated by the parabolic expression Up D k0.R�R0/

2=2
(see Fig. 3.1). Then, the energy difference�Ev between two consecutive vibrational levels is
given by the well known harmonic oscillator expression

�Ev D h�0 D „
�

k0

�

�1=2

(3.1.2)

where � D M1M2 = .M1 C M2/ is the reduced mass. For a homonuclear molecule made of
two atoms of mass M, the energy difference between two vibrational levels is then

�Ev D „
�

2k0

M

�1=2

(3.1.3)

We also expect that a displacement of the two atoms from equilibrium by an amount equal to
the size of the molecule would produce an energy change of about �Ee since this separation
would result in a considerable distortion of the electronic wavefunctions. We can thus write

�Ee D k0a2 = 2 (3.1.4)
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From Eqs. (3.1.1), (3.1.3) and (3.1.4) one can eliminate a2 and k0 to obtain

�Ev D 2.m =M/1=2�Ee (3.1.5)

For a homonuclear diatomic molecule, the rotational energy is then given by Er D „2J.J C
1/ =Ma2, where J is the rotational quantum number. Therefore, the difference �Er in
rotational energy between e.g. the J D 0 and J D 1 levels is given by �Er D 2„2 =Ma2 D
.m =M/�Ee, where Eq. (3.1.1) has been used. From Eq. (3.1.5) we then obtain

�Er D .m =M/1=2�Ev (3.1.6)

Since m =M Š 10�4, it follows that the separation of rotational levels is about one-hundredth
that of the vibrational levels. The spacing of the vibrational levels is, in turn, about one-
hundredth of �Ee. In fact, as indicated in earlier discussion, the actual frequency ranges,
.�Ee = h/, for electronic, .�Ev = h/, for vibrational and, .�Er = h/, for rotational transitions
are found to be roughly 25 – 50 � 103 cm�1, 500 – 3000 cm�1 and 1 – 20 cm�1, respectively.

After these preliminary considerations, we will first consider the simplest case of a
molecule consisting of two identical atoms. Since, as already stated, rotations and vibrations
occur on a much slower time scale than electronic motion, we can use the Born–Oppenheimer
approximation in which the two atoms are first considered to be at a fixed nuclear separation
R and non-rotating. By solving Schrödinger’s equation for this situation it is then possible to
find the dependence of the electronic energy levels on the separation R. Even without actu-
ally solving the equation (which is usually very complicated), it is easy to appreciate that, for
bound states, the dependence of energy on R must have the form shown in Fig. 3.1, where the
ground state, 1, and first excited state, 2, are shown as examples. If the atomic separation is
very large .R ! 1/, the levels will obviously be the same as those of the single atom. If the
separation R is finite, then, as a result of the interaction between the atoms, the energy levels
will be displaced. To understand the shape of these curves we note that, with the inclusion
of a suitable constant, they can be shown to represent the potential energy of the molecule as
a function of the internuclear distance R. In particular, since the minimum energy for curve
1 has been set equal to zero in Fig. 3.1, this curve just represents the potential energy of the
ground electronic state. Since the derivative of the potential energy with respect to R gives
the force exerted by the atoms on each other, the force is seen to be attractive at large sepa-
rations and then to become repulsive for small separations. The force is zero for the position
corresponding to the minimum of each curve (e.g. R0), which is, therefore, the separation
that the atoms tend to take up (in the absence of oscillation). One notes that the minimum of
the curve for the excited state is generally shifted to larger values of R relative to that of the
ground-state, owing to the larger orbit occupied by the excited electrons.

So far our discussion has referred to the case in which the two atoms are held fixed at
some nuclear separation R. If we now suppose that the molecule is e.g. in its electronic state, 1,
and that the two atoms are released at some value R, with R ¤ R0, the internuclear force will
cause the atoms to oscillate around the equilibrium position R0. The total energy will then be
the sum of the potential energy already discussed, plus the vibrational energy. For small oscil-
lations about the position R0, curve 1 can be approximated by a parabola and the restoring
force between the two atoms is elastic, i.e. is proportional to the displacement from equilib-
rium. In this case the problem has well-known solutions i.e. those of the harmonic oscillator.
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FIG. 3.2. Vibrational energy levels belonging to two consecutive electronic states of a molecule. The arrows indicate
allowed transitions starting from the �00 D 0 and �00 D 1 levels.

The energy levels are thus equally spaced by an amount hv0 given by Eq. (3.1.2) where the
elastic force constant k0 is equal to the curvature of the parabola. Therefore, when vibrations
are taken into account, it is seen that the energy levels (for each of the two electronic states)
are given by levels 1,2,3, etc., of Fig. 3.1. We note that the � D 0 level does not coincide
with the minimum of the curve because of the well-known zero-point energy, .hv0 = 2/, of a
harmonic oscillator. Curves 1 and 2 now no longer represent the energy of the system since
the atoms are no longer fixed and, instead of Fig. 3.1, the simpler representation of Fig. 3.2
is sometimes used. However, the representation of Fig. 3.1 is, in fact, more meaningful than
that of Fig. 3.2. Suppose, for example, that the system is in the � 00 D 3 vibrational level
of the ground level 1. From Fig. 3.1 one readily sees that the nuclear distance R oscillates
between values corresponding to the points P and P0 shown in the figure. At these two points,
in fact, the vibrational energy coincides with the potential energy, which means that the kinetic
energy must be zero. For large oscillations about the equilibrium position R0, the curve for
the potential energy cannot be approximated adequately by a parabola and, in fact, the higher
vibrational levels are no longer equally spaced. One can show that the level spacing decreases
with increasing energy because the restoring force becomes smaller than that predicted by the
parabolic approximation.

We next briefly consider the case of a polyatomic molecule. In this case, the representa-
tion given by Fig. 3.1 can still be used provided R is intepreted as some suitable coordinate
that can describe the given mode of vibration. Consider for example the SF6 molecule, which
has an octahedral shape (see Fig. 3.3) with the sulfur atom at the center of the octahedron
and each of the six fluorine atoms at an apex. For the symmetric mode of vibration shown
in the same figure (mode A1g) the coordinate R may be taken as the distance between the
sulfur atom and each of the fluorine atoms. Actually SF6 is seen from Fig. 3.1 to have six
independent, nondegenerate modes of vibration. The potential energy U for a general state of
the molecule will thus depend upon all six vibrational coordinates of the molecule and should
therefore be represented in a seven-dimensional space. So, the representation of Fig. 3.1 can
now be regarded as a section of this seven-dimensional function when only one vibrational
coordinate is undergoing change.
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FIG. 3.3. Normal modes of vibration of an octahedral molecule (e.g. SF6) The sulfur atom occupies the center of
the octahedron and the six fluorine atoms are at the corners of the octahedron (after ref..2/ by permission).

The description given so far does not give a complete picture of the molecular system
since we have ignored the fact that molecule can also rotate. According to quantum mechanics
the rotational energy is also quantized, and, for a linear rigid rotator (e.g. a rigid diatomic or
linear triatomic molecule), it can be expressed as

Er D BJ.J C 1/ (3.1.7)

where the rotational constant B is given by „2 = 2I with I being the moment of inertia about
an axis perpendicular to the internuclear axis and through the center of mass. Thus, the total
energy of the system is given by the sum of the electronic, vibrational, and rotational energies.
Accordingly the energy levels of, say, the � 00 D 0 and � 0 D 1 vibrational levels of the ground
state will be as indicated in Fig. 3.4. Note that, unlike tha case for vibrational levels, the
spacing between consecutive rotational levels is not constant. In fact it increases linearly with
the rotational quantum number J, i.e. ŒEr.J/� Er.J � 1/� D 2BJ.

3.1.2. Level Occupation at Thermal Equilibrium

At thermodynamic equilibrium the population, N.Ee, Ev, Er/, of a rotational-vibrational
level belonging to a given electronic state can be written as

N.Ee, Ev, Er/ / gegvgr exp � Œ.Ee C Ev C Er/ = kT� (3.1.8)

where Ee, Ev, and Er are the electronic, vibrational, and rotational energies of the level and
ge, gv, and gr are the corresponding level degeneracies [see Eq. (2.7.3)]. According to the
estimates of the previous section, the order of magnitude of Ev = hc is 1,000 cm�1 while Ee = hc
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FIG. 3.4. Rotational energy levels belonging to two consecutive vibrational states of a molecule. The arrows indicate
allowed transitions belonging to the P – branch and R – branch.

is more than an order of magnitude larger. Since kT = hc Š 209 cm�1 (at T D 300 K), it then
follows that both Ee and Ev are appreciably larger than kT. Accordingly we can say as a “rule
of thumb” that, at thermal equilibrium at room temperature, a molecule lies in the lowest
vibrational level� of the ground electronic state. The probability of occupation of a given
rotational level of this lowest vibrational state can then be written, according to Eqs. (3.1.7)
and (3.1.8), as

p.J/ / .2J C 1/ exp Œ�BJ.J C 1/ = kT� (3.1.9)

The factor .2J C1/ in front of the exponential accounts for level degeneracy: a rotational level
of quantum number J is in fact .2JC1/-fold degenerate. Taking, as an example, B D 0.5 cm�1

and assuming kT D 209 cm�1 (room temperature) we show in Fig. 3.5 the population distri-
bution among the various rotational levels of a given vibrational state (e.g. the ground state).
Note that, as a result of the factor .2J C 1/ in Eq. (3.1.9), the most heavily populated level
is not the ground (i.e. J D 0) level but rather the one whose rotational quantum number J
satisfies the relation

.2J C 1/m D .2kT =B/1=2 (3.1.10)

A conclusion that can be drawn from this section is that for simple molecules at room tem-
perature, the molecular population will be distributed among several rotational levels of the
ground vibrational state.

� While this statement is true for diatomic molecules, it is generally not true for polyatomic molecules. In the latter
case (e.g., the SF6 molecule) the spacing between vibrational levels is often appreciably smaller than 1000 cm�1

(down to � 100 cm�1) and many excited vibrational levels of the ground electronic state may have a significant
population at room temperature.
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FIG. 3.5. Population distribution among the rotational levels of a given vibrational state.

3.1.3. Stimulated Transitions

According to the earlier discussion, transitions between energy levels of a molecule can
be divided into three types:

� Transitions between two rotational-vibrational levels of different electronic states-
these are called vibronic transitions, a contraction from the words vibrational and
electronic. They generally fall in the near-UV spectral region.

� Transitions between two rotational-vibrational levels of the same electronic state
(rotational-vibrational transitions). They generally fall in the near- to middle-infrared
spectral region.

� Transitions between two rotational levels of the same vibrational state, e.g. � 00 D 0,
of the ground electronic state (pure rotational transistions). They generally fall in the
far-infrared spectral region.

In the discussion that follows, we briefly consider vibronic and rotational-vibrational tran-
sitions, since the most widely used molecular gas lasers are based on these two types of
transitions. Lasers based on pure rotational transitions, thus oscillating in the far-IR, also
exist, but their use is relatively limited so far (e.g. for spectroscopic applications). In what
follows, the quantum mechanical selection rules for these three types of transitions will be
briefly considered (see Appendix D for more details).

Consider first a vibronic transition and assume that the symmetry of the electronic wave-
functions in the lower and upper electronic states allows an electric dipole transition. Since
the electronic motion occurs at much faster speed than nuclear motion we readily appreci-
ate the so-called Franck–Condon principle which states that the nuclear separations do not
change during the process of a radiative transition. If we now also assume that all molecules
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FIG. 3.6. Allowed vibronic transitions for a diatomic molecule.

are in the � 00 D 0 level of the ground electronic state,� then, referring to Fig. 3.6, the tran-
sition must occur vertically i.e. somewhere between the transitions A � A0 and B � B0. The
Franck–Condon principle can be rephrased in a more precise way by saying that the transition
probability between a given vibrational level, � 00, of the ground state and some vibrational
level, � 0, of the upper electronic state can be written as

W12 /
ˇ̌
ˇ̌Z uv00 uv0 d R

ˇ̌
ˇ̌2 (3.1.11)

where uv00.R/ and uv0.R/ are the vibrational wave functions of the two levels. Within the
harmonic approximation these functions are know to be given by the product of a Gaus-
sian function and a Hermite polynominal. Since the � 00 D 0 wavefunction is known to be
a Gaussian function., the transition probability, according to Eq. (3.1.11), will be greatest
to the vibrational state whose wavefunctions u�0 ensures the best overlap with the function
u�00 . In the example of Fig. 3.6 the most probable transition will therefore be to the � 0 D 2
level. Another, simple minded, way of understanding this circumstance follows from noticing
that, neglecting zero-point energy, the molecule in the ground state may be considered at rest
with a nuclear distance midway between points A and B. Upon absorption, the molecule will
pass to an upper vibrational level with the same nuclear separation and still remains at rest
(nuclear motion, i.e. position and velocity, cannot change during an electronic transition). This
requires the transition to occur toward point C0 of level 2. Since the minimum of the potential
energy curve for the excited state is shifted toward larger values of the internuclear distance
R, the two atoms of the molecule, after absorption, will experience a repulsive force and the
molecule will be left in the excited, � 00 D 2, vibrational state. As a conclusion, we can say

� When many vibrational levels of the ground electronic state are occupied, transitions may start from any of these
levels. Absorption bands originating from v00 > 0 are referred to as hot bands.
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that the transition probability for an electric-dipole allowed vibronic transition is proportional
to
ˇ̌R

uv00uv0d R
ˇ̌2

, this quantity being called the Franck–Condon factor.
Let us now consider a transition between two vibrational levels of the same electronic

state (rotational-vibrational transitions) and assume that the symmetry of the molecule allows
for this transition to occur. In this case the transition is said to be infrared active.� For such
a transition, the quantum mechanical selection rule requires that �� D ˙1, where �� is
the change in vibrational quantum number. Thus, if we start from the ground state � 00 D 0,
a transition can only occur to the � 00 D 1 state, see Fig. 3.2. If, however, we start from the
� 00 D 1 level, then the transition may occur to the � 00 D 2 (absorption) or to the � 00 D 0
level (emission). This result should be contrasted with that for vibronic transitions for which
the transition may occur to several vibrational levels, with a probability proportional to the
corresponding Franck–Condon factor. It should also be pointed out that the �� D ˙1 selec-
tion rule holds rigorously within the harmonic potential approximation. Since the electronic
energy curves of Fig. 3.6 are not exactly parabolic, then it can be shown that transitions obey-
ing the selection rules �� D ˙2, ˙3, etc., may also occur as a result of this anharmonicity
although with much lower probability (overtone transitions).

For both vibronic and vibrational-rotational transitions, we have so far ignored the fact
that, corresponding to each vibrational level, there actually exists a whole set of closely spaced
rotational levels and these are occupied, at thermal equilibrium, according to Eq. (3.1.9)
(see also Fig. 3.5). We thus realize that e.g. the absorption takes place between a given
rotational level of the lower vibrational state to some rotational level of the upper vibra-
tional state. For diatomic or linear triatomic molecules the selection rules usually require that
�J D ˙1, .�J D J00 � J0, where J00 and J0 are the rotational numbers of the lower and upper
vibrational states). In the case of a rotational-vibrational transition, for instance, a given vibra-
tional transition (e.g. � 00 D 0 ! � 00 D 1 of Fig. 3.2), which, in the absence of rotation, would
consist of just a single frequency v0, is in fact made up of two sets of lines (Fig. 3.7). The
first set, having the lower frequencies, is called the P branch and corresponds to the �J D 1
transition. The transition frequencies of this branch are lower than v0 because the rotational
energy of the upper level is smaller than that of the lower level (see Fig. 3.4). The second set,
having the higher frequencies, is called the R branch and corresponds to �J D �1. With the
help of Eq. (3.1.7), it can be readily shown that the lines are evenly spaced in frequency by
the amount 2B = h. One also observes from Fig. 3.7 that the amplitudes of the lines are not
the same, as a result of the different populations in the rotational levels of the ground state
(see Fig. 3.5). Note also that each line is assumed to be broadened by some line-broadening
mechanism (e.g. Doppler or collision broadening). For more complex molecules, the selec-
tion rule �J D 0 also holds and, in this case, the transitions from all the rotational levels of
a given vibrational state give a single line centered at frequency �0 (Q branch). Finally we
observe that, when a population inversion is present between the vibrational levels (such as
the � 0 D 1 and � 00 D 0 levels of Fig. 3.4) the same spectrum of Fig. 3.7 can be observed in
emission rather than in absorption.

� A simple example of infrared inactive transition is that of homonuclear diatomic molecules (e.g. H2).
Ro-vibrational transitions are not allowed in this case, because, on account of symmetry, the molecule cannot
develop an electric dipole moment when it vibrates.
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FIG. 3.7. Transitions between two vibrational levels, taking account of the rotational splitting. This transition, which,
in the absence of rotational energy, would consist of a single line centered at v0, actually consists of two groups of
lines: the so-called P – branch, which corresponds to a jump in rotational quantum number of �J D C1 and the
so-called R – branch, which corresponds to a jump in rotational quantum number of �J D �1.

Example 3.1. Emission spectrum of the CO2 laser transition at � D 10.6�m. Here we will consider the
00ı1 ! 10ı0 transition (see the section on CO2 lasers in Chap. 10), whose fundamental frequency, �0, in
wavenumbers is at �0 D 960.8 cm�1..20/ The rotational constant of the CO2 molecule is B Š 0.387 cm�1.20/

and this value will be taken to be the same for upper .00ı1/ and lower .10ı0/ vibrational levels. From
previous considerations, the transition energies of the P-branch transitions are given by

E D h �0 C BJ0.J0 C 1/� BJ00.J00 C 1/ D h �0 � 2BJ00 (3.1.12)

where J00 is the rotational quantum number of the lower vibrational state. The rotational number J0
m of

the most populated rotational level of the upper vibrational state is given by Eq. (3.1.10). Assuming a
rather hot CO2 molecule, i.e. T D 450 K, we get Jmax � 19.6. For the CO2 molecule, symmetry dictates
that only J0.odd/ ! J00.even/ transitions can occur. Thus the most populated rotational level in the upper
state which is available for the transition is either the J0 D 19 or the J0 D 21 level. Assuming that the
J0 D 21 level is the most populated, this level will decay, for a P-branch transition, to the J00 D 22
level [P(22) transition]. The corresponding transition frequency, according to Eq. (3.1.12), will then be
� D �0 �.2BJ00=h/ D 943.8 cm�1, corresponding to a wavelength of � D .1=943.8/ cm Š 10.6�m. Note
that the wavelength corresponding to the fundamental frequency �0 is � D c=�0 Š 10.4�m. Since only
even J00 numbers are involved, the separation between two consecutive P-branch transitions, according to
Eq. (3.1.12), will given by �� D 2B�J00 D 4B D 1.55 cm�1.

Example 3.2. Doppler linewidth of a CO2 laser. Consider a CO2 laser oscillating on the P.22/ line at
� D 10.6�m and assume T D 450 K [see example 3.1]. Then from Eq. (2.5.18), using the appropriate
mass of CO2 we get ���

0 Š 50 MHz. Note that, since according to Eq. (2.5.18) one has ���
0 / �0, the

calculated linewidth for a CO2 molecule is much smaller than that of the He-Ne laser in example 2.7 of
Chap. 2, essentially because the oscillation frequency �0 is now approximately 17 times smaller. Note also
that the gas is assumed hotter in this case because, to obtain the high output powers typical of CO2 lasers,
higher pump power are used than in the He–Ne case.
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Example 3.3. Collision broadening of a CO2 laser. We will consider a CO2 laser containing a gas mixture
of the H2, N2, and CO2. In this case, the laser linewidth due to collision broadening is found experi-
mentally to be given by � � D 77.58 . CO2 C 0.73 N2 C 0.6 He/ � p .300=T/1=2 MHz [compare with
Eqs. (2.5.12) and (2.5.11)] where  are the fractional partial pressures of the gas mixture, T is the gas
temperature and p is the total pressure (in Torr). Taking, as an example, a typical low pressure gas mixture
(p Š 15 Torr in a 1:1:8 CO2 : N2 : He mixture) at T D 450 K we get� �c Š 40 MHz. A comparison with
the result of example 3.2 then shows that, for a low pressure CO2 laser, collision broadening is compara-
ble to Doppler broadening. However, for higher pressure CO2 lasers, e.g. atmospheric pressure lasers (see
Chap. 10), collision broadening becomes the dominant line broadening mechanism.

Finally, for pure rotational transitions, the selection rule requires that the molecule pos-
sess a permanent dipole moment. In fact, considering e.g. the phenomenon of spontaneous
emission, the emitted radiation can be looked upon as originating from the rotation of this
dipole moment. For a diatomic or linear triatomic molecule the selection rule further requires
that �J D ˙1. Thus, in the case of stimulated emission from a given rotational level J,
transitions can only occur to the rotational level with quantum number J � 1.

Before continuing, it is worth summarizing the selection rules which apply for vibronic,
rotational-vibrational, and rotational transitions. For an electric dipole allowed vibronic tran-
sition one has �J D ˙1 for the change of rotational quantum number while the change in
the vibrational quantum number is not strictly established by a precise selection rule. In fact,
starting from a given vibrational level � 00 of the lower electronic state the transition may occur
to several vibrational levels of the upper electronic state with probabilities proportional to the
corresponding Franck–Condon factors. For an infrared-active rotational-vibrational transition,
one must have, within the harmonic approximation, �� D ˙1 for the change of vibrational
quantum number and again�J D ˙1 for the change of rotational quantum number. For pure
rotational transitions in molecules with a permanent dipole moment one again has�J D ˙1.

3.1.4. Radiative and Nonradiative Decay

Let us first consider spontaneous emission and assume that the molecule is raised to
some vibrational level of an excited electronic state (Fig. 3.6). From this state the molecule
often decays rapidly by some nonradiative process (e.g. by collision) to the � 0 D 0 vibra-
tional level.� This is particularly the case for molecules in the liquid phase where collisions
occur very frequently. From there the molecule may decay radiatively to a vibrational level
of the ground state (fluorescence see Fig. 3.6). This transition again occurs vertically and the
transition probability from the � 0 D 0 level to some level of the ground state will again be
proportional to the corresponding Franck–Condon factor. Again roughly speaking, the ground
state vibrational levels involved will be those nearby the CD level of Fig. 3.6. Finally, by non-
radiative decay (e.g. by collisions), the molecule rapidly returns to the � 00 D 0 level of the
ground electronic state (or, more precisely, thermal equilibrium is again established in the
ground electronic state). It is now clear from Fig. 3.6 why the fluorescence wavelength is

� Actually, this rapid decay results in a thermalization of the molecules in the upper electronic state. The probability
of occupation of a given vibrational level of this state is thus given by (3.2.8). For simple molecules, therefore, the
lowest vibrational level has the predominant populatation.
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longer than that of absorption, a phenomenon referred to as Stoke’s law. Spontaneous emis-
sion may also occur between two ro-vibrational levels of e.g. the ground electronic state and
again, for an infrared active transition, the selection rules �� D ˙1 and �J D ˙1 apply.
For pure rotational transitions, spontaneous emission may only occur in molecules having a
permanent dipole moment (as explained in the previous section) and the �J D ˙1 selection
rule again applies. It should be noted however that, for ro-vibrational transitions and more
so for pure rotational transitions, the small value of the transition frequency means that the
spontaneous emission lifetime becomes very long i.e. from milliseconds even to seconds (one
should remember that �sp / 1 = �3

0). The spontaneous decay of the molecule is then usually
dominated by nonradiative processes.

We next briefly consider the phenomena which may cause nonradiative decay. With ref-
erence to the more general discussion presented in Sect. 2.6.1, we point out that the main
mechanisms are as follows: (a) Collisional deactivation with another like or unlike species.
As pointed out before, this occurs particularly for molecules in the liquid phase. In the gas
phase, this decay route is particularly effective when the transition energy is small (e.g. for
a rotational transition) and when the colliding species have small mass [e.g. deactivation of
the CO2.0, 1, 0/ level by He atoms, see Chap. 10]. Collisional deactivation results in a rapid
thermalization among the rotational levels of a given vibrational state. (b) By a near-resonant
energy transfer to another like or unlike species [see Eq. (2.6.9)]. The phenomenon is par-
ticularly effective when the energy imbalance �E is appreciably smaller than kT. A notable
example of this nonradiative decay process is again found in a CO2 molecule for the relaxation
of the CO2.0, 2, 0/ level to the CO2.0, 1, 0/ level [see Chap. 10]. (c) By internal conversion
to some other vibrational-rotational level of the same molecule (Fig. 3.8). The process is
also called unimolecular decay since it occurs within the same molecule and it is particularly
effective when there is a large number of vibrational-rotational modes which are near reso-
nant with the given transition. These modes may also belong to a different electronic state.
Thus, for instance, referring again to Fig. 3.6, we note that the molecule, once it is in the
lowest vibrational level of the upper electronic state (� 0 D 1 level of Fig. 3.6), can decay
nonradiatively to a nearly isoenergetic vibrational level of the ground electronic state (dotted
level in Fig. 3.6). Internal conversion may be particularly effective for large molecules, e.g.
dye molecules, which have many modes of vibration. In this case, in fact, the numbers of
vibrational modes belonging to the ground electronic level that are in near resonance with the
� 0 D 0 level of Fig. 3.6 can be quite large and the corresponding nonradiative lifetime may
even be as short as a few tens of picoseconds.

FIG. 3.8. Internal conversion between near-resonant rotational-vibrational modes of the same molecule.
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3.2. BULK SEMICONDUCTORS

In this section we will consider the problem of interaction of radiation with matter in
the case of a bulk semiconductor, i.e. whose physical dimensions are much larger than the
de Broglie wavelength of the electrons under consideration. The case of quantum-confined
semiconductors [quantum wells, quantum wires and quantum dots], wherein one, two, or all
three physical dimensions, respectively, are comparable to the De Broglie wavelength and
which play an increasingly important role in laser physics, will be considered in the next two
sections. Again we will limit our description to the most prominent features of the complex
phenomena that occur. For a more extensive treatment of this subject the reader is referred to
a specialized text..3/

3.2.1. Electronic States

The outer electrons of the atom of a semiconductor material are delocalized over the
whole crystal and the corresponding wave functions can then be written as Bloch wave
functions.4/

 .r/ D uk.r/Œexp j.k � r/� (3.2.1)

where uk.r/ has the periodicity of the crystalline lattice. The substitution of Eq. (3.2.1) into
the Schrödinger wave equation shows that the corresponding eigenvalues of the electron
energy, E, are a function of k and that these values fall within allowed bands. From now
on we will limit our considerations to the highest filled band, known as the valence band,
and the next higher one, known as the conduction band. Within the parabolic band approx-
imation, the E vs k relations can be approximated by a parabola and we then arrive at the
picture of Fig. 3.9 for the valence and conduction bands. The energy Ec in the conduction
band, measured from the bottom of the band upwards (Fig. 3.9a), can then be written as

Ec D „2 k2

2mc
(3.2.2a)

where mc D „2=Œd2 Ec = d k2�kD0 is the effective mass of the electron at the bottom of the
conduction band. Likewise, the energy in the valence band, measured from the top of the
band downwards (Fig. 3.9a), can be written as

Ev D „2 k2

2mv
(3.2.2b)

where mv D „2=.d2Ev = d k2/kD0 is the effective mass of the electron at the top of the valence
band. In some cases, particularly when dealing with a given transition, it may be more con-
venient to refer the energy to the same reference level e.g. from the top of the valence band
upwards (Fig. 3.9b). If we call E0 the energy in this coordinate system, the energies in the
conduction and valence bands are now obviously given by

E0
c D Eg C Ec (3.2.3a)

E0
v D �Ev (3.2.3b)

where Eg is the energy gap.
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FIG. 3.9. Energy vs k relation for a bulk semiconductor: (a) Energy scale starting from the bottom of the conduction
band, upwards, for the conduction band and from the top of the valence band, downwards, for the valence band. (b)
Energy scale starting from the top of the valence band, upwards, for both conduction and valence bands.

The above simple one-dimensional model can be readily generalized to the three-
dimensional case. If we let kx, ky and kz be the components of the electron’s k vector, and
if we assume that the effective mass, i.e. the band curvature, is the same along x, y, and z
directions, we again obtain Eqs. (3.2.2) and (3.2.3) where now k2 D k2

x C k2
y C k2

z .
So far we have assumed the semiconductors crystal to be of infinite extent. For a finite

sized crystal in the form of a rectangular parallelepiped with dimensions Lx, Ly, and Lz we
need to impose the boundary condition that the total phase shift k �r across the crystal be some
multiple integer of 2π. Thus we get

ki D .2
 l = Li/ (3.2.4)

where i D x, y, z and l is an integer. So, in the one dimensional case, the available states can
be indicated as dots, in the valence band, or open circles, in the conduction band, as shown in
Fig. 3.9.

The existence of a valence and conduction band can also be explained by a simple phys-
ical argument. Consider for simplicity the case of sodium, where each atom contains 11
electrons. Ten of these electrons are tightly bound to the nucleus to form an ion of overall
positive charge e. The eleventh electron moves in an orbit around this ion. Let E1 and E2 be
the energies of this electron in its ground and first excited state, respectively, and  1,  2 the
corresponding wave functions. Consider now two sodium atoms at some distance d apart. If
d is much larger than the atomic dimensions, the two atoms will not interact with each other
and the energy of the two states will remain unchanged. Another way of expressing this is to
say that, considering, e. g., the two atoms in their energy state E1, the one-electron energy
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FIG. 3.10. (a) Symmetric and (b) antisymmetric linear combination of the atomic wave functions �1A and �1B of
two identical atoms at separation d.

FIG. 3.11. N – fold splitting of the atomic energy levels as a function of the atomic separation d for an N – atom
system.

level of the two-atom system is still E1 and that this level is doubly degenerate. The overall
wave function can in fact be expressed as a combination of the two wave functions  1A and
 1B in which the two functions combine either in phase or 180ı out of phase (Fig. 3.10).
In the absence of an interaction potential, these two states have the same energy E1. When,
however, the atomic separation d becomes sufficiently small, the energies of these two states
become slightly different owing to the interaction, and the doubly degenerate level is split
into two levels. Likewise, for an N-atom system where the atoms are close enough to interact
with each other, the N-fold degenerate level of the state of energy E1 is split into N closely
spaced levels. The state of energy E1 will thus give rise to the valence band while the state of
energy E2 gives rise, likewise, to the conduction band (Fig. 3.11). From the previous argu-
ment it is apparent that each band actually consists of N closely spaced levels, where N
is the total number of atoms in the semiconductor crystal. Since N is usually a very large
number, the individual energy levels of a semiconductor, in each band, are generally not
resolvable.



96 3 � Energy Levels, Radiative and Nonradiative Transitions

To sum up the previous discussion, we can say that, within the parabolic band approxi-
mation, Eqs. (3.2.2) and (3.2.3) together with the boundary conditions (3.2.4) provide a very
simple description of the allowed energy values in a semiconductor. Note that, within this
approximation, the electron is considered as if it were a free particle of momentum p D „k
(indeed E D p2 = 2m for a free particle) and the details of the actual quantum system have
been reduced to appearing in the values of the energy gap Eg and of the effective masses mc

and m� . Thus, for the three-dimensional case, we will write

p D „ k (3.2.5)

as the equation relating the momentum p of the electron to the k-vector of the wavefunction.
Note also that, in writing Eqs. (3.2.2) and (3.2.3), we have been considering only direct gap
semiconductors, where the top of the valence band and the bottom of the conduction band
occur at the same k value. Indirect gap semiconductors, such as Si or Ge, are not considered
here since they are not relevant as laser materials. Of the various direct gap semiconductors,
we will limit our considerations to the III–V compounds such as GaAs, InGaAs, AlGaAs or
InGaAsP. In particular, for GaAs, one has mc D 0.067 m0 where m0 is the rest mass of a free
electron. It should also be noted that, for all III–V semiconductors, there are three different
types of valence band, namely the heavy hole, hh, .mhh D 0.46 m0 for GaAs), the light hole,
lh, (mlh D 0.08 m0 for GaAs), and the split-off band (see Fig. 3.12). This circumstance can be
understood when, based on the previous discussion about sodium atoms, we view the energy
bands as originating from the discrete atomic energy levels of the isolated atoms which made
up the crystal. Accordingly, one can show that there is only one conduction band because the
excited state of the corresponding isolated atoms has spherical symmetry like that of the s-
state atomic orbitals. Likewise, since the lower state (state 1 of energy E1 in Fig. 3.11) can be
shown to have p-symmetry, the three valence bands originate from a suitable combination of

FIG. 3.12. Heavy-hole, light-hole and split-off valence bands for unstrained III–V semiconductors.
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the px, py and pz orbitals of this state, account being taken of the crystal’s symmetry. Actually
in a crystal of cubic symmetry such as in all unstrained III–V compounds, the three bands
are expected to have the same energy at k D 0. However, spin-orbit interactions lower one
of these bands, the split-off band, by an amount corresponding to �E D 0.34 eV for GaAs.
Since this value is much larger than kTŒŠ0.028 eV�, the split-off band will always be filled
with electrons and will not participate in radiative and non-radiative transitions. For reasons
which will be explained in the next section, the light hole band also makes little contribution
to these transitions. Thus, to first order, the valence band of a III–V semiconductor can be
thought to be made of only the heavy hole band.

3.2.2. Density of States

Following what was done for the cavity modes in Sect. 2.2.1, we can now proceed to
calculating the number of energy states, p.k/, whose k value ranges from 0 to k. With ref-
erence to Fig. 2.2, since now both positive and negative values of ki are allowed, p.k/ is
given by the volume of the sphere of radius k, 4
 k3 = 3, divided by the volume of the unit
cell, .2
/3 = LxLyLz, times a factor 2 to account for the two states arising from the electron
spin. Thus

p .k/ D .k3V = 3
2/ (3.2.6)

where V D Lx Ly Lz is the crystal volume. Since the number of states is very large, we can
calculate the density of states per unit volume, � .k/, as

�c,v D d p

V d k
D k2


2
(3.2.7)

where Eq. (3.2.6) has been used. Note that this expression is valid for both the valence and
conduction bands and, to indicate this, the density of states has been denoted with both indices
c and v. We are also interested in calculating the density of states, � .E/, in terms of the
electron energy. Since �c,v .E/ dE D �c,v .k/ dk, from Eq. (3.2.2) we obtain

�c .Ec/ D 1

2
2

�
2 mc

„2

�3=2

E1=2
c (3.2.8a)

�v .Ev/ D 1

2
2

�
2 mv

„2

�3=2

E1=2
v (3.2.8b)

We recall that Ec and Ev are measured from the bottom of the conduction and the top of
the valence bands, upwards and downwards, respectively (Fig. 3.9a). One notes that, since
for III–V compounds, one has mc << mv D mhh, then it follows that �c << �v. One
also notes that, since mlh << mhh, the density of states of light holes is only a small frac-
tion of that of heavy holes. Accordingly, the light holes are very much in a minority for a
III–V semiconductor, and their presence can normally be neglected in comparison with heavy
holes.
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3.2.3. Level Occupation at Thermal Equilibrium

We will first assume that the semiconductor is in overall thermal equilibrium. Since
electrons are fermions, i.e. must comply with the Pauli exclusion principle, they must
obey Fermi–Dirac statistics rather than Boltzmann statistics. The probability for the elec-
tron to occupy a given level of energy E0, either in the valence or conduction band, is then
given by

f


E0� D 1

1 C exp
�


E0 � E0
F

�
= kT

	 (3.2.9)

where E0
F is the Fermi level. In this case, the energy of both valence and conduction bands

has been referred to the same reference energy level as in Fig. 3.9b. An interpretation of E0
F is

obtained from Eq. (3.2.9) by setting E0 D E0
F. We get f



E0

F

� D 1=2. Another interpretation of
the significance of E0

F is also obtained from Eq. (3.2.9) by letting T ! 0. We get f .E0/ D 1
for E0 < E0

F and f .E0/ D 0 for E0 > E0
F. Thus, at T D 0, the Fermi level separates the

filled region from the empty region in a semiconductor. One should now remember that, for
undoped semiconductors, E0

F is situated approximately in the middle of the energy gap. Thus,
for T > 0, the relation f .E0/ vs E0 will be as shown in Fig. 3.13b. This means that, since
Eg >> kT , the level occupancy in the conduction band is very small i.e. very few electrons
are thermally activated to the conduction band. As a consequence of this circumstance, in both
Fig. 3.13a and Fig. 3.9a, the available states in the valence band are denoted by a full circle to
indicate the presence of an electron. Conversely, the available states in the conduction band are
denoted by an open circle to indicate the absence of an electron i.e. the presence of a hole. For
n-type-doping, on the other hand, EF must be displaced toward the conduction band in order

FIG. 3.13. Energy E0 vs k relation, (a) and level occupation probability f .E0/, (b) for both conduction and valence
bands under thermal equilibrium.
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to accomodate the electrons in this band arising from the dopant ions. Similarly, for p-type-
doping, the EF is displaced toward the valence band. Finally, for very heavy doping (doping
level of �1018 cm�3/, EF is displaced so much that it actually enters the conduction or the
valence band, respectively. The semiconductor is then called degenerate since its conductivity
becomes similar to that of a metal.

Suppose now that electrons are raised from the valence to the conduction band by some
suitable pumping mechanism. The intraband relaxation (whose typical relaxation time � , as
established by electron–phonon collisions, is �1 ps) is usually much faster than interband
relaxation (whose typical relaxation time � is �1 ns, due to electron-hole recombination).
Thus, a thermal equilibrium will rapidly be established within each band even though there is
no overall equilibrium in the semiconductor. One can therefore talk of occupation probabilities
fv and fc for the valence and conduction band separately. This means that fc and fv will be given
by expressions of the general form of Eq. (3.2.9) in each band, respectively. More precisely,
referring now to the energy coordinate system of Fig. 3.9a, one can write

fc.Ec/ D 1

1 C exp Œ.Ec � EFc/ =kT�
(3.2.10a)

and

fv.Ev/ D 1

1 C exp Œ.EFv � Ev/ =kT�
(3.2.10b)

where EFc and EFv are now the energies of the so-called quasi-Fermi levels of the valence
and conduction bands, respectively. Thus, for given values of EFc and EFv , the plots of fc.Ec/

vs Ec and of fv.Ev/ vs Ev will be as shown in Fig. 3.14b. Note that, following the previous
discussion about the Fermi level, the quasi-Fermi levels indicate, in each band, the boundaries
between the zones of fully occupied and completely empty states at T D 0 K. Accordingly, for
T D 0 K, the states occupied by an electron (full circle) and the states occupied by a hole (open
circle) will be as shown in Fig. 3.14a. In the same figure, the hatched area thus correspond
to states filled with an electron. Sometimes, it is more convenient to express Eq. (3.2.10)
using the energy coordinate of Fig. 3.9b. According to Eqs. (3.2.3a) and (3.2.3b) we then
obtain

fc


E0

c

� D 1

1 C exp
�


E0
c � E0

Fc

�
= kT

	 (3.2.11a)

and

fv


E0

v

� D 1

1 C exp
�


E0
v � E0

Fv

�
= kT

	 (3.2.11b)

As observed above, the quasi-Fermi levels indicate, in each band, the boundaries between
occupied and empty states. Consequently, the values of E0

Fc
and E0

Fv
in Eq. (3.2.11) must

depend of the number of electrons raised to the conduction band. To obtain this dependence,
we calculate the electron density in the conduction band, Ne, as

Ne D
1Z

0

�c .Ec/ fc .Ec/ dEc (3.2.12)
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FIG. 3.14. Energy E vs k relation, (a) and level occupation probability fc,v.E/, (b) for conduction and valence bands
under thermal equilibrium within each band.

To calculate the corresponding hole density, Nh, in the valence band, we notice that Nfv.Ev/ D
1�fv.Ev/ is the probability that a given state in the valence band is not occupied by an electron
and thus filled by a hole. From Eq. (3.2.10b) we then get

Nfv.Ev/ D 1

1 C exp Œ.Ev � EFv/ = kT�
(3.2.13)

Equation (3.2.13) shows that, in the energy coordinate system of Fig. 3.9a, the probability of
hole occupation in the valence band takes on the same functional forme as that of electron
occupation in the conduction band [compare Eq. (3.2.13) with Eq. (3.2.10a)]. This makes
the calculation for the valence band completely symmetrical to that of the conduction band.
Thus, for a given value of the quasi-Fermi level in the valence band, the hole density, Nh, is
obtained as

Nh D
1Z

0

�v.Ev/fv.Ev/dEv (3.2.14)

Suppose now that a given density of electrons, N, is raised by a suitable pumping process
from the valence to the conduction band. The hole density left in the valence band will also
be equal to N and the quasi-Fermi levels of both the valence and conduction bands can be
obtained from Eqs. (3.2.12) and (3.2.14) by setting the condition Ne D Nh D N. In fact, from
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FIG. 3.15. (a) Normalized plot of the quasi-Fermi energy of the conduction band, EFc , vs the normalized concen-
tration of injected electrons density, Ne. The same normalized relation also holds for holes in the valence band. (b)
Normalized plots of the quasi-Fermi levels of both valence and conduction bands, EF = kT , vs the concentration of
injected carriers, N, for GaAs.

Eq. (3.2.12) with the help of Eqs. (3.2.8a) and (3.2.10a), we get

N D Nc
2


1=2

1Z
0

"1=2 d "

1 C exp Œ" � "F�
(3.2.15)

where Nc D 2
�

2
 mc kT=h2
�3=2

, " D Ec = kT and "F D EFc = kT. From Eq. (3.2.14),

with the help of Eqs. (3.2.8b) and (3.2.13), we obtain an expression which is the same
as Eq. (3.2.15), provided we interchange suffixes c and v. Equation (3.2.15) then shows
that EFc = kT is a function of only N =Nc and this function is plotted vs N =Nc in
Fig. 3.15a. The same figure also holds for the valence band provided we interchange suffix c
with � .

3.2.4. Stimulated Transitions

Let us consider the interaction of a monochromatic e.m. wave of frequency � with a bulk
semiconductor. As for the case of an atomic system, the interaction Hamiltonian, within the
electric dipole approximation, can be written as,� [see Eq. (2.4.2)],

H0 D �e E � r (3.2.16)

� To conform with the treatment of Chapt. 2, the interaction Hamiltonian is written in terms of an electric dipole
interaction rather than in terms of the interaction of the vector potential with the electron momentum p, as com-
monly done in many textbooks on semiconductors. The two Hamiltonians can be shown however to lead to the
same final results.
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Example 3.4. Calculation of the quasi-Fermi energies for
GaAs. We take mc D 0.067m0 and mv D mhh D 0.46m0

and assume T D 300 K. We get Nc D 4.12 � 1017 cm�3

and Nv D .mv =mc/
3=2Nc D 7.41 � 1018 cm�3, where Nc

is the electron concentration defined in connection with
Eq. (3.2.15) and Nv is the corresponding quantity for the
holes. At each electron concentration, N, one can now
obtain the quantity N =Nc and, from the general plot of
Fig. 3.15a, deduce the corresponding quantity EFc = kT. A
similar calculation can be made for the holes. The values
of EF = kT, calculated in this way for both electrons and
holes in GaAs, are plotted in Fig. 3.15b vs the carrier
concentration, N.

where E D E.r, t/ is the electric field of the
e.m. wave at position r and time t. For a plane
wave, its expression can be written as

E D E0 exp j.kopt � r � ! t/ (3.2.17)

where kopt is the field wave vector and ! D
2
�. If � 
 Eg = h a transition may occur
from a state in the valence band to a state in
the conduction band. If we let E0

2 and E0
1 be

the corresponding energies of the two states,
the transition rate W, according to Eq. (A. 23)
of Appendix A, is

W D 
2

„2

ˇ̌
H0o

12

ˇ̌2
ı .� � �o/ (3.2.18)

where �0 D .E0
2 � E0

1/ = h and

ˇ̌
H0o

12

ˇ̌2 D
ˇ̌
ˇ̌ Z  �

c


�er � E0 ej kopt�r� vdV

ˇ̌
ˇ̌2 (3.2.19)

Note that  v and  c in Eq. (3.2.19) are the Bloch wave functions of levels 1 and 2 as given by
Eq. (3.2.1).

From Eqs. (3.2.18) and (3.2.19) we can now obtain the selection rules for the interaction.
From Eq. (3.2.18), noting the ı-Dirac function on the right hand side, one sees that � D �0.
This means that



E0

2 � E0� D h � (3.2.20)

which is often referred to as the energy conservation rule for the interaction. Similarly, from
Eq. (3.2.19), since  v / exp.jkv � r/ and  c / exp.ikc � r/ one can show that the integral is
non-vanishing only when

kc D kopt C kv (3.2.21)

The proof of Eq. (3.2.21) is somewhat involved and requires that the periodic properties of
uc.r/ and uv.r/ appearing in Eq. (3.2.1) be properly taken into account..15/ The selection rule
Eq. (3.3.21) can however be physically understood when we notice that an exponential factor
of the form exp j

�

kv C kopt � kc

� � r
	

is present in the integrand of Eq. (3.3.19) and this
term, since it oscillates rapidly with r, makes the value of the integral zero unless kv C kopt �
kc D 0. Since „kc,v is the electron momentum in the conduction or valence band and „kopt

is the photon momentum, Eq. (3.2.21) shows that the total momentum must be conserved in
the transition. One should note that one has kopt D 2
n = � where n is the semiconductor
refractive index and � is the transition wavelength. Thus, with e.g. n D 3.5 and � Š 1�m,
one has kopt Š 105 cm�1. On the other hand one typically has kc,v D 106 � 107 cm�1 for
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an electron or hole of average thermal energy (see Example 3.5). Thus kopt << kc,v and
Eq. (3.2.21) simplifies to

kc D kv (3.2.22)

Equation (3.2.22) is often referred to as the k-selection or k-conservation rule and indicates
that stimulated transitions must occur vertically in the E vs k diagram (see Fig. 3.13a). Note
finally that the e.m. wave does not interact with the electron’s spin or, in other words, that spin
is not involved in the interaction Hamiltonian Eq. (3.2.16). The spin, therefore, cannot change
in the transition i.e. the selection rule for the change of the electron spin, � S, is simply

� S D 0 (3.2.23)

Example 3.5. Calculation of typical values of k for a
thermal electron. For an electron in the conduction band
having average thermal velocity �th, one has mc�

2
th D

3 k T where T is the electron temperature. We also have
p D „ kc D mc�th. Combining the two previous expres-
sions, we get kc D Œ3mckT�1=2 =„. If we take mc D
0.067 m0, as for GaAs, and kT D 0.028 eV .T Š 300 K/
we thus get kc D 2.7 � 106 cm�1. Similarly one has
kv D Œ3mvkT�1=2 =„ and thus kv D .mv = mc/

1=2 kc Š
7 � 106 cm�1 if we take mc D mhh D 0.46 m0 for GaAs.

As for the case of atomic transitions consid-
ered in the previous Chapter, Eq. (3.2.18)
needs to be modified when line broaden-
ing mechanisms are taken into account. For
semiconductors, the main broadening mech-
anism arises from electron-phonon dephas-
ing collisions. Thus the ı-Dirac function in
Eq. (3.2.18) must be replaced by a Lorentzian
function g.���0/, whose width, according to
Eq. (2.5.11) is given by ��0 D 1=
�c where
�c is the average electron-phonon dephasing
collision time (�c Š 0.1 ps for GaAs). Pro-
ceeding as in Sect. 2.4.4, we can arrive at a definition of a transition cross section which has
the same form as for atomic transitions,� namely [see also Eq. (2.4.18)]

� D 2
2 �

n"0ch

�2

3
g .� � �0/ (3.2.24)

where � D jμj and

μ D
Z

uceruvdV (3.2.25)

where uc D uck amd uv D uvk are the Bloch wavefunctions, appearing in Eq. (3.2.1). Note the
factor 3 in the term �2 = 3 of Eq. (3.3.24) which arises from averaging the matrix element μ

over all electron k vector directions, for a fixed electric field polarization [in this regard, see
footnote appearing in connection with Eqs. (2.4.13).

� Note that the concept of cross section as discussed in connection with Fig. 2.7 loses its meaning for a delocalized
wavefunction such as the Bloch wavefunction. We nevertheless retain the same symbol � for a semiconductor to
make an easier comparison with the case of isolated atoms or ions. Here � has the only meaning that the transition
rate for a plane wave is W D �F, where F is the photon flux of the wave or, alternatively, W D �� c=h�, where �
is the energy density and � is the frequency of the wave.
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3.2.5. Absorption and Gain Coefficients

Consider first two energy levels, E0
2 and E0

1, in the conduction and valence band, respec-
tively, whose energy difference is equal to E0 D h�0, where �0 is the frequency of the
transition. Under the k-selection rule given by Eq. (3.2.22), the energies E0

2 and E0
1 are

uniquely established for a given value of �0. In fact, from Eqs. (3.2.3) and (3.2.2), one writes

E0
2 D Eg C .„2k2 = 2mc/ (3.2.26a)

E0
1 D �„2k2 = 2mv (3.2.26b)

where we have set k D kc D kv. From Eq. (3.2.26), since E0
2 � E0

1 D E0 D h�0, we obtain

h�0 D Eg C .„2k2 = 2mr/ (3.2.26c)

where mr is the reduced mass of the semiconductor, given by the relation m�1
r D m�1

c C m�1
v .

Equation (3.2.26) constitute a set of three equations in the three unknowns E0
2, E0

1 and k.
As a next step, we define the joint density of states with respect to the energy variable

E0 D E0
2�E0

1 so that �jdE0 gives the density of transitions with transition energy lying between
E0 and E0 C dE0. Under the k-selection and spin selection rules given by Eqs. (3.2.22) and
(3.2.23), any state in e.g. the valence band, with a given spin, is coupled to only one state in the
conduction band with the same spin. The number of transitions is thus equal to the number of
corresponding states in either valence or conduction bands. We thus write �jdE0 D � .k/ dk,
where � .k/ D �c,v .k/ is given by Eq. (3.2.7), so that we obtain

� j .E0/ D 

k2 = 
2

�
.dk = d E0/ (3.2.27)

With the help of Eq. (3.2.26c), Eq. (3.2.27) gives

� j .E0/ D 1

2
2

�
2mr

„2

�3=2 

E0 � Eg

�1=2
(3.2.28)

For our purposes it is better to introduce the joint density of states, �j .�0/, with respect to the
transition frequency �0 D E0 = h. Since �j .�0/ d �0 D �j .E0/ dE0, we get from Eq. (3.2.28)

� j.� 0/ D 4


h2
.2mr/

3=2 �h�0 � Eg
	1=2

(3.2.29)

Consider now the elemental number of transitions dN D �j .�0/ d�0 whose transition
frequency lies between �0 and �0 C d�0. For absorption to occur, the lower level, of energy
E0

1, must be occupied by an electron while the upper level, of energy E0
2, must be empty. The

number of transitions available for absorption will thus be

dNa D .dN/ fv


E0

1

��
1 � fc



E0

2

�	
(3.2.30)

where fv


E0

1

�
is the probability that the lower level is full while

�
1 � fc



E0

2

�	
is the probability

that the upper level is empty. Note that a general case of equilibrium within each band is
assumed so that fv



E0

1

�
and fc



E0

2

�
are obtained by Eqs. (3.2.11b) and (3.2.11a) with E0

v and
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E0
c being substituted by E0

1 and E0
2 respectively. To calculate the net absorption, we must also

take into account the process of stimulated emission between the same two levels. This will
occur when the upper state is full while the lower state is empty. The number of transitions
available for stimulated emission will then be

dNse D .dN/ fc


E0

2

��
1 � fv



E0

1

�	
(3.2.31)

Once the elemental numbers of available transitions for absorption and stimulated emission
are calculated, the absorption coefficient at frequency � is obtained, via (2.4.32), as d˛ D
� .� � �0/ .dNa � dNse/, where � D �h is the homogeneous cross section for the E0

1 ! E0
2

transition. From Eq. (3.2.24) we then get

d˛ D
�

2
2�

n"0ch

�
�2

3
g .� � �0/ �j .�0/

�
fv


E0

1

� � fc


E0

2

�	
d�0 (3.2.32)

The overall absorption coefficient at frequency � is obtained from Eq. (3.2.32) by integrating
over all transition frequencies �0. If we assume that g .� � �0/ vs �0 is a much narrower
function than both �j .�0/ and .fc � fv/, than g .� � �0/ can be approximated by a ı function,
ı D ı .� � �0/. We then get

˛ D
�

2
2�

n"0ch

�
�2

3
�j .�/

�
fv


E0

1

� � fc


E0

2

�	
(3.2.33)

where E0
2 and E0

1 are now the energies of the two levels whose energy difference is h�. They
can be readily calculated from Eq. (3.2.36) by substituting h�0 with h�.

According to Eq. (3.2.33), the absorption coefficient ˛ D ˛.�/ can be written as

˛ D ˛0
�
fv.E

0
1/ � fc.E

0
2/
	

(3.2.34)

where

˛0 D
�

2
2�

n"0ch

�
�2

3
�j.�/ (3.2.35)

The meaning of ˛0 D ˛0.�/ is understood when we consider a semiconductor in overall
thermal equilibrium at T D 0 K. The quasi-Fermi levels coincide in this case with the Fermi-
level and, if this level is within the energy gap, one has fv



E0

1

� D 1 and fc


E0

2

� D 1. One then
has ˛.�/ D ˛0.�/ which is the maximum absorption coefficient that the semiconductor can
have at frequency �. Note that, for an intrinsic semiconductor and assuming Eg >> kT as is
the case for all III–V semiconductors, we still have fv



E0

1

� Š 1 and fc


E0

2

� Š 0 i.e. ˛ Š ˛0

even at room temperature. From Eq. (3.2.35), with the help of Eq. (3.2.29) with �0 substituted
by �, we then get

˛ Š ˛0 D 
3 �

n"0ch3

�2

3
.2mr/

3=2 �h� � Eg
	1=2

(3.2.36)

The frequency behaviour of ˛.�/ is then determined, to a good approximation, simply by the

frequency behaviour of


h� � Eg

�1=2
.



106 3 � Energy Levels, Radiative and Nonradiative Transitions

Example 3.6. Calculation of the absorption coefficient for GaAs. As an approximation, we will assume
the frequency �, appearing in the first term of the right hand side of Eq. (3.2.36), to have the value
� Š Eg = h D 3.43 � 1014 Hz, where the energy gap Eg is taken to be 1.424 eV. We will also take
mv D 0.46 m0 and mc D 0.067 m0, so that mr D 0.059 m0 D 5.37 � 10�32 Kg. To calculate the average

dipole moment�av D �
�2 = 3

	1=2
we note that the accurate value of the average electron moment Mav was

recently shown to be such that M2
av D 3.38 moEg..5/ Since the relation between average dipole moment

and electron momentum is Mav D m0! j�avj = e,.5/ we get �av D e
�
3.38Eg =m0

	1=2
= 2
� Š 0.68 �

10�25 C � m. We see that, if we write rav D �av = e, then rav Š 0.426 nm. Substitution into Eq. (3.2.36) of
the values for � and �av given above together with the value n D 3.64 for the refractive index, gives ˛0 D
19, 760

�
h� � Eg

	1=2
, where ˛0 is expressed in cm�1 and the energy in eV. The absorption coefficient, as

calculated from the latter expression, is plotted vs h��Eg in Fig. 3.16. One notes that, when h� exceeds the
energy gap by only 10 meV, the absorption coefficient already reaches very large value .�2, 000 cm�1/.

FIG. 3.16. Idealized plot of the absorption coefficient, ˛, vs the difference between the photon, E, and gap energy, Eg, for an
intrinsic GaAs bulk semiconductor.

Consider next the case of the gain coefficient of an “inverted” semiconductor. One can readily
see that the previous considerations remain valid provided we interchange the suffices v and
c. Thus, from Eq. (3.2.34), the gain coefficient is seen to be given by

g D ˛0
�
fc


E0

2

� � fv


E0

1

�	
(3.2.37)

It then follows that, at any transition frequency, the maximun gain coefficient is attained at
T D 0 K and equals ˛0. Note from Eq. (3.2.37) that, for any temperature, the condition for net
gain is fc



E0

2

�
> fv



E0

1

�
. With the help of Eqs. (3.2.11a) and (3.2.11b) one can readily show

that this implies

E0
2 � E0

1 < E0
Fc

� E0
Fv

(3.2.38)

This is a necessary condition for net gain and was originally derived by Bernard and Duraf-
fourg..6/ One can see that the factor fc



E0

2

� � fv


E0

1

�
in Eq. (3.2.37) originates from the term
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fc


E0

2

� �
1 � fv



E0

1

�	 � fv


E0

1

� �
1 � fc



E0

2

�	
which gives the difference in probability between

stimulated emission and absorption. Thus the Bernard–Duraffourg condition states that the
stimulated events must exceed the absorption events and, in this respect, is seen to be equiva-
lent to the N2 > N1 condition for a simple two-level atomic system. The relation Eq. (3.2.38)
can also be understood graphically if we consider the simple case of T D 0 K. For a given
level of electron-hole injection the position of the quasi-Fermi levels will be as shown in
Fig. 3.17, where the dashed zones are filled with electrons and the clear zones are unoccu-
pied by electrons (i.e. full of holes). The condition Eq. (3.2.38) then simply implies that level
2 must belong to the full zone while level 1 must belong to the empty zone in Fig. 3.17.
The actual derivation of the Bernard–Duraffourg condition shows however that Eq. (3.2.38)
is valid at any temperature.

It is worthwhile remembering, at this point, that E0
2 � E0

1 D h� and that one must also
have h� > Eg. Then from Eq. (3.2.38) we get

Eg 	 h� 	 E0
Fc

� E0
Fv

(3.2.39)

which establishes the gain bandwidth of the semiconductor. According to Eq. (3.2.39), to have
gain at any frequency, one must have E0

Fc
� E0

Fv

 Eg and the limiting case

E0
Fc

� E0
Fv

D Eg (3.2.40)

is called the transparency condition. In this case one has g D 0 at � D Eg = h. To achieve
this condition we must inject a density of electrons in the conduction band (and holes in
the valence band) which is called the transparency density and which will be indicated
as Ntr .

FIG. 3.17. Graphical illustration of the Bernard–Duraffourg condition for achieving net gain in a bulk
semiconductor at T D 0 K.
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Example 3.7. Calculation of the transparency density for GaAs. It is first convenient to transform
Eq. (3.2.40) into the unprimed energy axes of Fig. 3.9a. According to Eq. (3.2.3) one can write E0

Fc
D

Eg C EFc and E0
Fv

D �EFv , and Eq. (3.2.40) transforms to EFc C EFv D 0. From Fig. 3.15a one sees
that EFc = kT is a function of .N=Nc/ i.e. one can write EFc = kT D f .N =Nc/. Similarly, one can write
EFv = kT D f .N =Nv/ and the transparency condition becomes

f .Ntr =Nc/C f .Ntr =Nv/ D 0 (3.2.41)

To obtain Ntr from Eq. (3.2.41) for GaAs, we have plotted in Fig. 3.15b, as a dashed line, the function
.EFc = kT/ C .EFv = kT/ vs N. The curve is obtained as the sum, at each carrier concentration N, of the
values given by the two continuous curves of the figure. According to Eq. (3.2.41) we can now say that
the transparency density, Ntr , is the carrier concentration at which the dashed line of Fig. 3.15b crosses
the .EFc = kT/C .EFv = kT/ D 0 horizontal line. From Fig. 3.15b we get Ntr D 1.2 � 1018 cm�3.

When the density of injected electrons, N, exceeds the transparency density, we have
E0

Fc
�E0

Fv
> Eg, and, according to Eq. (3.2.39), net gain will occur for a photon energy between

Eg and E0
Fc

� E0
Fv

. The gain coefficient vs photon energy, as calculated using Eq. (3.2.37), is
shown in Fig. 3.18 for GaAs, using the injected carrier density, N, as a parameter. One notes
that, upon increasing the carrier density, the difference in quasi-Fermi energies, E0

Fc
� E0

Fv
,

increases and this results in a corresponding increase of the gain bandwidth. This bandwidth,

FIG. 3.18. Plot of the gain coefficient vs photon energy with the injected carrier density, N, as a parameter (in units
of 1018 cm�3) as expected according to Eq. (3.2.37) for GaAs at T D 300 K (after ref.,.15/ by permission).
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FIG. 3.19. Plot of the peak gain coefficient vs the injected carrier density for GaAs (after ref.,.15/ by permission).

even at the highest carrier injections considered in the figure is, however, smaller than 0.07 eV
i.e. it is a small fraction of the energy gap. One can also observe from Fig. 3.18 that the peak
gain of each curve increases with increasing N. Again for GaAs, Fig. 3.19 shows the plot
of this peak gain coefficient vs the density of injected electrons. For typical gain coefficients
of interest for semiconductors lasers .20 	 g 	 80 cm�1/, the plot of Fig. 3.19 can be
approximated by a linear relation i.e. one can write

g D � .N � Ntr/ (3.2.42)

where � Š 1.5 � 10�6 cm2 for GaAs. It should be noted that � has some analogy to the gain
cross section defined for atomic systems [compare Eqs. (3.2.42) with (2.4.35)]. As already
mentioned, however, the concept of cross section is not appropriate for a delocalized wave-
function such as that of an electron in a semiconductor. For this reason, since from Eq. (3.2.42)
one has � D dg = dN, � is often referred to as the differential gain of the semiconductor. We
will still retain the notation of � for this differential gain, however, as a reminder of the fact
that � has the dimension of an area.

Most of the examples which have been discussed in this section refer to the partic-
ular case of a GaAs semiconductor. However, many other materials are also of interest
as laser materials, a notable example being the quaternary alloy In1�xGaxAsyP1�y which,
depending upon the composition indices x and y, covers the so-called second and third
communication windows of optical fibers .1,300 nm 	 � 	 1,600 nm/. For the pur-
pose of comparison, Table 3.1 shows the values of Eg, mc =m0, mhh =m0, Ntr and � ,
for In0.75Ga0.25As0.55P0.45.� Š 1, 300 nm/ and for In0.6Ga0.4As0.88P0.12 .� Š 1,550 nm/,.7/
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TABLE 3.1. Values of emission wavelength, �, energy gap, Eg, conduction band electron mass, mc,
heavy-hole, mhh, carrier density at transparency, Ntr, material differential gain, � , and lifetime � , for

GaAs .� Š 850 nm/, and InGaAsP (� D 1,300 and � D 1,550 nm) bulk semiconductors

GaAs In0.73Ga0.27As0.6P0.4 In0.58Ga0.42As0.9P0.1

� [nm] 840 1,310 1,550
Eg [eV] 1.424 0.96 0.81
mc=m0 0.067 0.058 0.046
mhh=m0 0.46 0.467 0.44
Ntr Œ1018 cm�3� 1.2 1 1
�Œ10�16 cm2� 1.5 1.2 � 2.5 1.2 � 2.5
� [ns] 3 4.5 4.5

as well as the corresponding values for GaAs, as discussed in this section. It should be
noted that the reported values for Ntr and � fall in a range of values reported for these
semiconductors and are included in Table 3.1 just as indicative numbers. It does seem, how-
ever, that both Ntr and � for InGaAsP are somewhat smaller than the corresponding values
for GaAs.

3.2.6. Spontaneous Emission and Nonradiative Decay

Let us first consider the spontaneous emission process and define the spectral rate
R� so that R�d� represents the number of spontaneous emission events per unit time and
volume which result in light emitted with frequency between � and � C d�. To calcu-
late R� consider first the transitions, �j .�0/ d�0, whose transition frequencies lie between
�0 and �0 C d�0. They will give an elemental contribution, d R� , to R� given by dR� D
A21g .� � �0/ � ˚fc 
E0

20

� �
1 � fv



E0

10

�	�
�j .�0/ d�0 where A21 D A21 .�0/ is the rate of spon-

taneous emission between the two levels and g .� � �0/ is the lineshape function of the
transition. It should be noted that �j .�0/ has been multiplied by fc



E0

20

� �
1 � fv



E0

10

�	
since,

as for stimulated emission, spontaneous emission can only occur between an occupied upper
state and an empty lower state. The total spectral rate R� is then obtained by integrating the
above expression over all transition frequencies �0. Thus

R� D
Z

A21g .� � �0/
˚
fc


E0

2

� �
1 � fv



E0

1

�	�
�j.�0/d�0 (3.2.43)

In the limit where g .� � �0/ can be considered a much narrower function of �0 than all other
functions in the integrand, g .� � �0/ can be approximated by a ı function ı .� � �0/ and
Eq. (3.2.43) reduces to

R� D A21
˚
fc


E0

2

� �
1 � fv



E0

1

�	�
�j.�/ (3.2.44)

where A21 is the spontaneous emission rate for �0 D � and E0
2 and E0

1 are now the energy levels
corresponding to a transition frequency �. As an example, Fig. 3.20 shows the qualitative
behaviour of R� vs the photon energy h� for an electron injection rate exceeding the rate for
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FIG. 3.20. Qualitative behaviour of the spontaneous emission spectra, Rv, and of optical gain, g, at a given value of
the injected carrier density (after ref..11/ by permission).

transparency and by assuming A21 independent of �. In the same figure the gain coefficient,
as calculated by Eq. (3.2.37), is also indicated for comparison. One can observe that the
emission spectrum, unlike the case for atomic systems, is now different from and generally
wider than the gain spectrum. This is because R� is proportional to fc



E0

2

� �
1 � fv



E0

1

�	
while

˛g is proportional to fc


E0

2

� � fv


E0

1

�
.

Once the spectral rate, R� , of spontaneous emission is calculated, the total rate R is
obtained by integrating R� over all emission frequencies. Thus

R D
Z

A21fc


E0

2

� �
1 � fv



E0

1

�	
�j .�/ d� (3.2.45)

In practice, however, one often makes use of the phenomenological relation

R D BNe Nh Š BN2
e (3.2.46)

where B is a suitable constant. A justification of Eq. (3.2.46) can be given by assuming that any
electron can recombine with any hole, which implies that the k-selection rule does not strictly
hold..9/ We will not give any further discussion of this question which has to do with the so
called band tails in a semiconductor,.10/ and we will take Eq. (3.2.46) as a phenomenological
relation which holds well at the electron and hole densities of interest. We note that, according
to the definition of R, one has .d Ne = dt/ D �R. We can therefore define a radiative lifetime
�r such that R D Ne = �r and thus write

�r D .B Ne/
�1 (3.2.47)

Let us next consider nonradiative transitions. They generally occur at deep impurity cen-
ters in which a carrier, electron or hole, is trapped (deep trap recombination). Consider for
instance an n-type semiconductor. At sufficiently high doping values, the Fermi level will be
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close enough to the conduction band that these traps will be filled with electrons. A nonra-
diative transition then occurs by recombination of a free hole with this trapped electron, the
excess energy being given to the lattice. A similar argument applies for p-type-doping. For
small gap semiconductors, nonradiative transitions can also occur by direct recombination
of untrapped electrons and holes, the excess energy being given to another electron (or hole)
which gets excited to a higher energy state in the band (Auger recombination.12/). Since Auger
recombination is a three-body process, the decay of electron density due to this procees can
be written phenomenologically as .dNe = dt/ D �CNeNhNe D �CN3

e , where C is a suitable
constant. Accordingly, we can define a nonradiative lifetime due to Auger recombination,
�A, as

�A D �
C N2

e

	�1
(3.2.48)

The dominant nonradiative mechanism seems to be deep-trap recombination for GaAs and
Auger recombination in long wavelength semiconductor laser materials such as InGaAsP.

Example 3.8. Radiative and nonradiative lifetimes in GaAs and InGaAsP. For GaAs, we will take B Š
1.8 � 10�10 cm3 s

�1
and Ne Š Ntr D 1.2 � 1018 cm�3. We then get �r D 1 =B Ntr Š 4.6 ns, to be

compared with the measured overall lifetime, at transparency, of � Š 3 ns .T D 300 K/. Since ��1 D
��1

r C ��1
nr , where �nr is the lifetime due to the nonradiative process, we can infer a nonradiative lifetime

�nr, in this case due to deep-trap recombination, of about 9 ns. For InGaAsP at � D 1, 300 nm we take
B D 2 � 10�10 cm3 s

�1
, Ne Š Ntr Š 1 � 1018 cm3 and C Š 3 � 10�29 cm6 s

�1
. We get from Eq. (3.2.47)

�r Š 5 ns and from Eq. (3.2.48) �A Š 33.3 ns which gives an overall lifetime, � , in agreement with the
measured value [� Š 5 ns at T D 300 K].

3.2.7. Concluding Remarks

We have seen in this section that the phenomena leading to radiative and nonradiative
transitions in a bulk semiconductor are notably more complicated than those occurring for
isolated atoms or ions, which were considered in the previous Chapter. From a practical view-
point, however, the most important physical parameters which are needed to predict laser
behaviour are the differential gain � , the transparency density Ntr , and the overall lifetime �
for spontaneous decay (resulting from both radiative and non radiative processes). For GaAs
and for the InGaAs alloys considered here, these quantities can be obtained from Table 3.1.
It should be reminded that the lifetime depends on the carrier concentration and the values
reported in the table refer to a concentration equal to the transparency density.

In concluding this section we also recall that the gain value given by Eq. (3.2.37) refers
to a semiconductor of large dimensions (bulk semiconductor). For this reason, the gain values
quoted in Table 3.1 are often referred to as the material gain. The actual gain in a double-
heterostructure laser is smaller than this and it is determined by the ratio of the transverse
dimension of the active layer to that of the cavity mode. This gain, often called the modal
gain, thus depends on details of the laser configuration and will be considered in the relevant
section of Chap. 9 dealing with semiconductor lasers.
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3.3. SEMICONDUCTOR QUANTUM WELLS

In a quantum well (QW) semiconductor, a very thin layer .Lz Š 5 � 20 nm/ of a smaller
bandgap material, Eg1 , is sandwiched between two layers of larger bandgap material, Eg2 ,
(Fig. 3.21a). Technically, this is done by the sophisticated techniques of Molecular Beam
Epitaxy (MBE) or Metallo-Organic Chemical Vapor Deposition (MOCVD). Since Eg1 < Eg2 ,
potential wells will be established for the electrons at the top of the valence band, � .b., and,
for the holes, at the bottom of the conduction band, c.b., (Fig. 3.21b). Due to the electron
and hole confinment in these potential wells and since the semiconductor dimension is now
comparable to the electron and hole DeBroglie wavelength, the energy levels of electrons
and holes show very marked quantum size effects. Furthermore, due to the small thickness
of the layer, one can allow the lattice constants for the two materials to differ significantly,
resulting in strain being developed within the thin quantum layer. The strain changes the
quantum properties of the QW semiconductor considerably and, in particular, it changes the
effective masses. The quantum size effects and, for a strained QW, the change in effective
masses, result in the optical properties of semiconductor’s QW being markedly different from
those of the corresponding bulk material. In particular, the material differential gain increases
considerably. The transparency electron density remains comparable, for an unstrained QW,
while it shows a sizeable decrease for a strained QW. The advantages that these improved
properties imply in terms of lowering the laser threshold and increasing the modal gain will
be discussed in the relevant section on semiconductor lasers in Chap. 9. Here we merely limit
ourselves to pointing out that semiconductor quantum wells, of either strained or unstrained
type, have become the most widely used semiconductor laser materials.

3.3.1. Electronic States

To calculate the energy levels of the electrons and holes in the potential wells of
Fig. 3.21.b, one needs to know how the difference in bandgap energy �Eg D Eg2 � Eg1

is partitioned between the well in the conduction band .�Ec/ and that in the valence band
.�Ev/. This problem (the so-called band offset) involves complicated details of physics of

FIG. 3.21. (a) Schematic representation of a Quantum Well semiconductor; (b) Corresponding plot of the energy of
the bottom of the conduction band, c.b., and of the top of valence band, v.b., as a function of the z-coordinate of (a).
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semicondutors. Experimentally, for two of the most important types of QW system, one
finds: (1) �Ec D 0.67 �Eg and �Ev D 0.33 �Eg. for an AlGaAs/GaAs/AlGaAs QW. (2)
�Ec D 0.39�Eg and�Ev D 0.61�Eg for a InP/InGaAsP/InP QW.

To calculate the energy levels of both electrons and holes in the corresponding QW, we
will make the much simplified assumption of infinite well depth [i.e. .�Ec,�Ev/ ! 1]. The
potential wells will then appear as in Fig. 3.22. We take the z-axis orthogonal to the well with
the origin at one well interface. According to Eq. (3.2.1), the Bloch wavefunctions, both in
the conduction and valence bands, can be written as

 c,v.r/ D u .r?/ ej k?�r? sin.n
 z= Lz/ (3.3.1)

where r? and k? are the components of r and k in the well plane (the x,y plane) and where n is
a positive integer. Note that, written in this way,  c,v already satisfies the boundary conditions
 c,v D 0 for z D 0 and z D Lz i.e. at the two well boundaries. If we set similar periodic
conditions along the x and y axes, we get

kx D .l
 = Lx/ (3.3.2a)

ky D .m
 = Lx/ (3.3.2b)

where l and m are also positive integers. Note the difference between Eqs. (3.3.2) and (3.2.4)
which essentially reflects the fact that we are limiting ourselves, in this case, to positive num-
bers. Of course, one can also write the boundary condition as in Eq. (3.2.4) i.e. allowing for

FIG. 3.22. Plots of the n D 1 and n D 2 energy levels (continuous horizontal lines) and of the corresponding
eigenfunctions (dashed lines) in both conduction and valence bands, for infinite well depths.
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both positive and negative integers, and still obtain the same final results. Within the parabolic
band approximation, the energy eigenvalues for either valence or conduction bands are

Ec,v D „2k2
?

2mc,v
C n2„2
2

2mc,vL2
z

D „2k2
?

2mc,v
C n2E1c,v (3.3.3)

where k2
? D k2

x C k2
g, mc,v, is the electron mass in the conduction band or the hole mass in

the valence band (only the heavy hole mass is considered, for simplicity) and where we have
indicated by E1c,v the energy of the first quantum-well state .n D 1/ for either conduction or
valence bands, as given by

E1c,v D „2
2

2mc,vL2
z

(3.3.4)

One should note that, for both Eqs. (3.3.3) and (3.3.4), the energy is measured from the
bottom of the conduction band upwards, for the electrons, and from the top of the valence
band, downwards, for the holes. One should also note that, for finite depth of the potential
wells, the electrons are not totally reflected at the well interfaces, i.e. the wavefunction is not
zero at the interfaces, as assumed in Eq. (3.3.1). The wavefunction will then penetrate into the
barrier layer and the expressions for the wavefunctions and energy eigenvalues become more
complicated..14/ We will not consider this case any further, since it only produces quantitative
rather than qualitative changes to the results which follow.

To discuss Eqs. (3.3.3) and (3.3.4) let us first consider the case of electrons with zero
transverse momentum Œk? D 0�. The first two energy levels (n D 1 and n D 2) for both the
conduction and valence bands are shown as solid horizontal lines in Fig. 3.22 while the corre-
sponding eigenfunctions are shown as dashed lines. One can see that, according to Eq. (3.3.3),
one has E2c D 4E1c, the same relation holding also for the valence band. If we now consider
electrons with k? > 0, the energy E vs k? relations, for each of the n D 1, n D 2, etc.,
states considered before, will be as shown in Fig. 3.23a. One sees that individual sub-bands
are now introduced in the conduction and valence bands. In the same figure, the available
states, as obtained via Eq. (3.3.2), are shown as dots in the valence band and open circles
in the conduction band. Note finally that, when dealing with transitions between valence and
conduction sub-bands, an alternative energy scale, that we shall call E0, starting e.g. from the
top of the valence band and increasing upwards may, sometimes, be more convenient (see
Fig. 3.23b). The transformation between the primed, E0, and unprimed, E, energy scales will
again be given by Eq. (3.2.3), where Ec and Ev are now expressed by Eq. (3.3.3).

Example 3.9. Calculation of the first energy levels in a GaAs / AlGaAs quantum well. Let us take Lz D
10 nm and assume that the electron and hole (heavy hole) masses in the GaAs well are the same as those of
the bulk material, i.e. mc D 0.067 m0 and mv D mhh D 0.46 m0. From Eq. (3.3.4) we get E1c D 56.2 meV
and E1v D 8 meV. If the confinment layer, at both sides, is Al0.2Ga0.8As then Eg2 D 1.674 eV. Since the
bandgap of GaAs is Eg1 D 1.424 eV, we obtain �Eg D 250 meV and thus �Ec D 0.65 Eg D 162.5 meV
and �Ev D 0.35 �Eg D 87.5 meV. Since E1c is comparable to �Ec, the assumption of an infinite well
is not a good approximation in this case. Taking barrier penetration into account, the actual values can be
obtained from e.g. Fig. 9.1 in ref.3/ as E1c Š 28 meV and E1v Š 5 meV.
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FIG. 3.23. Energy vs k? relations of the n D 1 and n D 2 subbands of both valence and conduction bands for a
quantum well semiconductor. In (a) the origin of the energy axis for the conduction subbands is taken at the bottom
of the conduction band of the bulk material and increases upwards. The origin of the energy axis for the valence
subbands is taken at the top of the valence band and it increases downwards. In (b) the energy axis is the same for all
subbands, the origin is taken at the top of the valence band and energy increases upwards.

3.3.2. Density of States

Let us refer to Fig. 3.24 where the allowed states, as obtained via Eq. (3.3.2), are indi-
cated as dots in the .kx, ky/ plane (compare with Fig. 2.2). One can see that only the allowed
states of the n D 1 level are indicated. Indeed, note that one typically has Lz D 10 nm while
Lx and Ly may range between 10 and 100�m, i.e. they are 103 to 104 times larger than Lz.
Thus the separation in �kz between two successive states along the kz-axis .�kz D 
 = Lz/ is
about 103 to 104 times larger than the separation between successive states along the kx or ky

direction. The allowed states are now lying in well-separated planes orthogonal to the kz-axis
so it is appropriate now to calculate the density of states in each of these planes. Thus, let
N .k?/ be the number of states, in each plane e.g. in the n D 1 plane of Fig. 3.24, whose
transverse vector is between 0 and k?. According to the discussion relating to Fig. 2.2, it is
readily seen that N .k?/ is given by (1/4) the area of the circle of radius k? divided by the area,
�kx�ky, of the unit cell, and then multiplied by a factor 2 to account for the two possible spin
orientations in each state. We thus get

N .k?/ D 2 .1=4/ 
 k2?
�kx�ky

D k2?
2


A? (3.3.5)
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FIG. 3.24. Representation in kx, ky, kz space of the allowed states for the n D 1 subband.

where A? D LxLy is the transverse area of the quantum well. The number of states per unit
k? and per unit area is then obtained as

�2D
k D d N .k?/

A?dk?
D k?



(3.3.6)

One can see that, compared to the case of a bulk semiconductor, �k now gives the number of
states per unit area rather than per unit volume. As a reminder of this feature, we have used
the superscript 2D to draw attention to the fact that we are now in a two-dimensional rather
than in a three-dimensional situation. One should also note that Eq. (3.3.6) holds both for the
valence and conduction bands.

To obtain the density of states in energy coordinates, we write, e.g. for the conduction
band, �2D

c dEc D �2D
k dk?. From Eq. (3.3.6) we then get

�2D
c D k?dk? = 
dEc (3.3.7)

From (3.3.3), for the example of the n D 1 subband, we have

k2? D 

2mc = „2� .Ec � E1c/ (3.3.8)

The quantity k?dk? in Eq. (3.3.7) is readily obtained by differentiating both sides of
Eq. (3.3.8). Equation (3.3.7) then gives

�2D
c D mc = 
 „2 (3.3.9)

One observes that �2D
c is independent of the value of k? i.e. of the transverse part of the

energy „2k2? = 2mc [see Eq. (3.3.3)]. This is shown graphically in Fig. 3.25a where the quantity
�2D

c = Lz is plotted vs the electron energy Ec (continuous line). Energy is measured from the
bottom of the conduction band and the function is plotted for E1c 	 Ec 	 E2c, where E2c is the
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FIG. 3.25. (a) Plot of the quantum well density of states in the conduction band, �2D
c , normalized to the well

thickness, Lz, as a function of the state energy Ec [staircase, solid line]. In the same figure, the plot of the density of
states for the corresponding bulk semiconductor, �c, is also shown as a dashed line. (b) Plots of the Ec vs k? relations
for the n D 1 and n D 2 conduction subbands.

energy of the n D 2 subband. In fact, for Ec 
 E2c, one must also take into account the states
lying in the plane kz D 2
= Lz (not shown in Fig. 3.24). The density of these states, however,
is the same as that for the n D 1 plane i.e. it is again given by Eq. (3.3.9). For Ec 
 E2c the
overall density will then be the sum of the densities of both n D 1 and n D 2 subbands. The
corresponding curve is given by the solid-line step function labelled n D 1 C 2 in Fig. 3.25a.
For the sake of comparison we also show in Fig. 3.25a, as a dashed curve, the density of
states for the same semiconductor material in bulk form, �c, as given by Eq. (3.2.8a). One can
readily show that the �c curve touches the �2D

c = Lz staircase plot at Ec D E1c, Ec D E2c and
so on. For completeness, we also show in Fig. 3.25b a plot of Ec vs k? [see Fig. 3.23]. Thus,
for any value of energy E1c 	 Ec 	 E2c, Fig. 3.25b gives directly the corresponding value of
the k? component of the electron k vector. Similar considerations can also be made for the
density of states in the valence band. The corresponding density, �2D

v , is simply obtained from
Eq. (3.3.9) by substituting mc with mv and similar plots to those of Fig. 3.25 can then be made
for the valence band. Since for GaAs one has mv D mhh Š 5mc, the steps of the staircase in
Fig. 3.25a for the valence band are 5 times larger in state density, �2D

v , and 5 times smaller in
energy, Ev.

3.3.3. Level Occupation at Thermal Equilibrium

Let us first consider the case of overall thermal equilibrium. The probability of occupa-
tion of a given state of energy E0 (see Fig. 3.23b), either in the conduction or valence subbands,
is again given by Fermi–Dirac statistics as in Eq. (3.2.9) where E0

F is the Fermi energy. Sup-
pose now that some electrons are raised to the conduction subbands n D 1, n D 2, etc., and
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assume a fast relaxation among these subbands (typically � Š 0.1 ps) both in the conduction
and in the valence band. The equilibrium situation can then be described by again introducing
two quasi-Fermi levels. The probability of occupation of a given level in the conduction or
valence subbands will be given by Eqs. (3.2.10a) and (3.2.10b) for the unprimed energy axes
of Fig. 3.23a or by Eqs. (3.2.11a) and (3.2.11b) for the primed energy axes of Fig. 3.23b.

Just as for a bulk semiconductor, the values of EFc and EFv are established by the number
of electrons, Ne, and holes, Nh, which are injected in the corresponding bands. One can indeed
calculate Ne and Nh by the relations

Ne D
Z 


�2D
c

ı
Lz
�

fc dEc (3.3.10a)

Nh D
Z 


�2D
v

ı
Lz
� Nfv dEv (3.3.10b)

In Eq. (3.3.10a) �2D
c is the surface density of states, and it is given, for each subband, by

Eq. (3.3.9) (see also Fig. 3.25a). In Eq. (3.3.10b) �2D
v is the surface density of states for the

valence subbands and Nfv is the occupation probability of the holes as given by Eq. (3.2.13).
Since �2D is constant in each subband, the integrals in Eq. (3.3.10) can be calculated
analytically and the final result can be written as

Ne D kT
X

i

�
mci


 „2Lz

�
ln

�
1 C exp

�
EFc � Eic

kT

��
(3.3.11a)

Nh D kT
X

i

�
mvi


 „2Lz

�
ln

�
1 C exp

�
EFv � Eiv

kT

��
(3.3.11b)

where the sum is taken over all subbands, mci and mvi are the electron and hole masses in each
subband, and Eic and Eiv are the minimum energies of each subband. One should note that, by
choosing the unprimed energy axes of Fig. 3.23a, the expressions for Ne and Nh take exactly
the same functional form.

3.3.4. Stimulated Transitions

Consider a stimulated transition (absorption or stimulated emission) between two given
levels, 1 and 2, belonging to a valence and a conduction subband, respectively. Within the
electric dipole approximation, the corresponding transition probability, W, will again be

proportional to
ˇ̌̌
H00

12

ˇ̌̌2
given by

ˇ̌̌
H00

12

ˇ̌̌2 D
ˇ̌̌
ˇ
Z
 �

c Œ�er � E .r/�  vdV

ˇ̌̌
ˇ
2

(3.3.12)

where  c and  v are now given by Eq. (3.3.1) and E(r) is the electric field of the e.m. wave at
the position r in the quantum well [compare with Eq. (3.2.19)]. To simplify our considerations,
we will take the case of E-field polarization in the plane of the well. Then er�E .r/ D er?�E .r/
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Example 3.10. Calculation of the Quasi-Fermi energies
for a GaAs/AlGaAs quantum well. We will take mci D
mc D 0.067 m0 and mvi D 0.46 m0, i.e. we will assume
that the masses are the same as those of the bulk material
and we will neglect the contribution of the light holes.
We will also assume Lz D 10 nm and T D 300 K. From
Eq. (3.3.11) one readily obtains the two plots of concen-
tration N vs .EF � E1/=kT, both for electrons and holes,
shown in Fig. 3.26. From this figure, the position of the
quasi-Fermi levels for a given injection, N, of electrons
and holes, can be readily obtained.

where r? is the component of the r vector
in the well plane. We further notice that the
well thickness is much smaller than the wave-
length of light. Hence E(r) can be taken to be
constant along the direction z orthogonal to
the well and we can thus write E D E.r?/
i.e. a function of only the transverse coordi-
nate r?. It then follows that er?�E .r/ reduces
to er? � E .r?/ and Eq. (3.3.12) can be split
into two integrals, one over the orthogonal
coordinates, x and y, and the other over the
longitudinal one z, viz

ˇ̌
ˇH00

12

ˇ̌
ˇ2 D

ˇ̌̌
ˇ
Z

u�
c .r?/ e�jkc? �r?

��er? � Eoejkopt�r?
	

uv.r?/ejkv?�r? dxdy

ˇ̌̌
ˇ
2

� (3.3.13)

�
ˇ̌̌
ˇ
Z

sin .nc
z=Lz/ sin .nv
z=Lz/dz

ˇ̌̌
ˇ
2

As in the case of a bulk semiconductor, the integral over the transverse coordinates can be
shown to vanish unless kv? C kopt D kc?. Since again

ˇ̌
kopt

ˇ̌
<< .jkv?j , jkc?j/ we obtain the

selection rule [compare with Eq. (3.2.22)]

kc? D kv? (3.3.14)

Thus the k-conservation rule still holds for the transverse component, k?, and this implies
that transitions must occur vertically in Fig. 3.23. From the second integral of the right hand

FIG. 3.26. Plots of the normalized difference between the quasi-Fermi energy, EF , and the energy of the n D 1
subband, E1, vs density of injected carriers, for both electrons and holes, in a 10 nm GaAs/AlGaAs quantum well.



3.3 � Semiconductor Quantum Wells 121

side of Eq. (3.3.13), since nc and nv are positive integers we get the selection rule for the
quantum number n as

�n D nc � nv D 0 (3.3.15)

which shows that transitions can only occur between two subbands, one in the conduction and
the other in the valence band, with the same quantum number n. One should finally note that
spin is not involved in the interaction Hamiltonian e r � E, i.e. the e.m. wave does not interact
with spin. This implies that spin cannot change in the transition i.e. that

�S D 0 (3.3.16)

where S is the spin quantum number of the electron involved.
It should be noted that the selection rules Eqs. (3.3.14), (3.3.15), and (3.3.16) have been

derived subject to the simplifying assumptions that the E-field be polarized in the plane of the
well. It can be shown however.13/ that the same rules hold in general and, from now on, these
rules will be used extensively.

3.3.5. Absorption and Gain Coefficients

To calculate absorption obeying k?-conservation rule it is appropriate to first introduce
the joint density of transitions or joint density of states, �2D

Jk , such that �2D
Jk dk? gives the

number of available transitions or the number of coupled states per unit area, with k? ranging
between k? and k? C dk?. Since transitions can only occur vertically in Fig. 3.23 and since
�S D 0, this number is also equal to the number of states in either the valence or conduction
bands within the same elemental interval dk?. Thus we get

�2D
Jk D �2D

k D k? = 
 (3.3.17)

where Eq. (3.3.6) has been used. Consider now two given energy levels of energy E0
2 and E0

1

belonging to e.g. the n D 1 subbands of the conduction and valence band respectively. From
Fig. 3.23b and Eq. (3.3.3), the energy difference, E0 D h�0 D E0

2 � E0, is seen to be given by

E0 D Eg C „2k2
?

2 mr
C�E1 (3.3.18)

where mr is the reduced mass and�E1 D E1c C E1v. If we now introduce the density of states
in the E0 coordinate, �2D

JE0
, we can write

�2D
JE0

dE0 D �2D
Jk dk? D k?dk? = 
 (3.3.19)

where Eq. (3.3.17) has been used. The quantity k?dk? is then obtained by differentiating both
sides of Eq. (3.3.18). From Eq. (3.3.19) we then get

�2D
JE0

D mr = 
 „2 (3.3.20)
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If we now define the density of states with respect to the transition frequency coordinate
�0, �J�0 , then, since we must have again �2D

J�0
d�0 D �2D

JE0
dE0, we get from Eq. (3.3.20)

�2D
J�0

D 4
mr = h (3.3.21)

The calculation of the overall absorption at the frequency � of the incoming e.m. wave
can be made in the same way as the calculation performed for bulk material, i.e. through
Eqs. (3.2.30)–(3.2.32), provided we substitute �J .�0/with



�2D

J�0

ı
Lz
�

which is the joint density
of states for our case. Again assuming infinitely narrow transitions between any two states,
the absorption coefficient for the n D 1 ! n D 1 quantum well transition is readily obtained
from Eqs. (3.2.34) and (3.2.35) as

˛QW D
�

2
2�

n"0ch

�
�2

3

�
�2D

J�

Lz

� �
fv


E0

1

� � fc


E0

2

�	
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where E0
1 and E0

2 are now the energies of the two levels whose transition frequency is equal to
�. Under the k?-conservation rule, E0

2 and E0
1 can readily be obtained from Fig. 3.23a,b with

the help of Eq. (3.3.3), by letting �0 D �.

Example 3.11. Calculation of the absorption coefficient in a GaAs/AlGaAs quantum well. We will first
consider the case of T D 0 K. In this case all valence subbands are full, all conduction subbands are empty
and we have fv



E0

1

� D 1 and fc


E0

2

� D 0. The absorption coefficient then has its maximum value, given by

˛max
QW D

�
2
2�

n"0ch

�
�2

3

�2D
J�

Lz
(3.3.23)

whose dependence upon the photon energy is essentially determined by �2D
J� . The absorption coefficient vs

the difference,


E � Eg

�
, between the photon energy and the gap energy as calculated from Eq. (3.3.23)

for a Lz D 10 nm quantum well is shown in Fig. 3.27. According to Fig. 3.25a, �2D
J� is seen to be zero for

a photon energy E < Eg C E1c C E1v D Eg C�E1. No absorption is thus expected for


E � Eg

�
< �E1.

Assuming again mc D 0.067 m0 and mv D 0.46 m0, from example 3.8 we get�E1 D E1cCE1v Š 65 meV.
For�E1 	 .E � Eg/ 	 �E2, where�E2 D E2c C E2v, �2D

J� is given by Eq. (3.3.21), with �0 D �, and the
absorption coefficient has a constant value given by

˛QW D 8
3

n"0�h2

�
�2

3

�
mr

Lz
(3.3.24)

where � D c=� According to example 3.5, we will take
�
�2
ı

3
	1=2 D 0.68 � 10�25 C � m, mr D

5.37 � 10�32 Kg, n D 3.64 and � D 833 nm. From Eq. (3.3.24) we then get ˛QW D 5, 250 cm�1. For

E � Eg

� 
 �E2, transitions between the n D 2 subbands also occur, the joint density of states doubles
(see also Fig. 3.25a) and the absorption coefficient will also double. Note that, since E2c D 4E1c and
E2v D 4E1v, one has �E2 D 4�E1 D 260 meV D 260 meV (one can now compare Fig. 3.27 with
Fig. 3.16).
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FIG. 3.27. Idealized plot of the absorption coefficient, ˛, vs the difference between photon energy and gap energy
in a 10 nm GaAs/AlGaAs quantum well.

We can proceed in a similar way for the case of stimulated emission. It can readily be
seen that the corresponding formula for gain coefficient can be obtained from Eq. (3.3.22) by
interchanging the indices c and v and the indices 1 with 2. We then get

gQW D
�

2
2�

n"0ch

�
�2
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�
�2D
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� �
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2

� � fv
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1

�	
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The necessary condition for positive net gain is again that fc


E0

2

� 
 fv


E0

1

�
, which again

implies the Bernard–Duraffourg condition h� D E0
2 � E0

1 	 E0
Fc

� E0
Fv

. On the other hand, h�
must be larger than Eg C�E1 so that

Eg C�E1 	 h� 	 E0
Fc

� E0
Fv

(3.3.26)

which establishes the gain bandwidth. From Eq. (3.3.26), the transparency condition is
obtained as

E0
Fc � E0

Fv D Eg C�E1 (3.3.27)

Example 3.12. Calculation of the transparency density in a GaAs quantum well. From Fig. 3.23 [see also
Eq. (3.2.3)] we have E0

Fc
D EFc C Eg and E0

Fv
D �EFv . Equation (3.3.27), in the new variables EFc and

EFv , transforms to the simpler expression

.EFc � E1c/C .EFv � E1v/ D 0 (3.3.28)

where we have used the relation �E1 D E1c C E1v. To obtain from Eq. (3.3.28) the corresponding value
of the transparency density, Ntr , we have plotted in Fig. 3.26 the quantity Œ.EFc � E1c/C .EFv � E1v/� =kT
as a dashed curve. The curve is obtained by taking, for each carrier concentration N, the sum of the values
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given by the two continuous curves of Fig. 3.26. According to Eq. (3.3.28) the transparency density
corresponds to the point where the dashed curve crosses the zero value of the ordinate. From Fig. 3.26 we
thus obtain Ntr Š 1.25 � 1018 electrons=cm3.

For N > Ntr, the quantum well will exhibit gain and its value can be obtained from
Eq. (3.3.25) once, for a given injection N, the quasi-Fermi levels are calculated (in our
example from Fig. 3.26). Typical plots of the gain, as obtained by this procedure for a
8 nm GaAs=Al0.2Ga0.8As QW, vs the photon energy E, are shown in Fig. 3.28 as solid curves
for several values of N (in units of 1018 cm�3). The case labelled N D 0 corresponds to
quantum-well absorption and should be compared with Fig. 3.27. The steps are not sharps here
because spectral broadening of individual transitions has also been included. One should also
note that all possible transitions to the heavy-hole (HH) and light-hole (LH) subbands have
been taken into account, in this case, and that transparency occurs for Ntr Š 2 � 1018 cm�3.
For N 
 Ntr, the peak gain coefficient can again be approximated by an expression similar to
Eq. (3.2.42), namely

gp D �QW .N � Ntr/ (3.3.29)

with �QW Š 7 � 10�16 cm2. Comparing these results with those of the bulk material shows
that, while Ntr is almost the same for the two cases, the differential gain �QW for a quantum
well is considerably larger (about twice) than that of the bulk semiconductor. The same situ-
ation also occurs for In1�xGaxAsyP1�y=InP quantum well lasers,.14/ and is basically related to
the different form for the density of states for the two cases (see Fig. 3.25a)..16/ We note how-
ever that, both for GaAs/AlGaAs and In1�xGaxAsyP1�y=InP quantum wells, a linear relation
between ˛gp and N holds less accurately than for the corresponding bulk materials. In fact, a
plot of ˛gp vs N, at a given temperature, shows that a saturation of ˛gp occurs at sufficiently

FIG. 3.28. Plots of the gain (or absorption) coefficient vs photon energy with the injected carrier density, N, as a
parameter (in units of 1018 cm�3) for a 8 nm GaAs=Al0.2Ga0.8As quantum well, in the parabolic band approximation
(after ref..8/ by permission).
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high values of N,.14/ this effect also being basically related to the different form for the density
of states for the two cases. Lastly, we recall that the expression in Eq. (3.3.29) gives the mate-
rial gain coefficient of the quantum-well. How this translates into the modal gain coefficient
in a quantum well semiconductor laser and the real advantages of quantum-well lasers will be
discussed in Sect. 9.4.4.

3.3.6. Strained Quantum Wells

In a GaAs=Al0.2Ga0.8As quantum well, the lattice constant of GaAs is, to within better
than 0.1%, equal to that of Al0.2Ga0.8As (all III–V materials have cubic symmetry). The same
situation occurs for the In1�xGaxAsyP1�y=InP quantum well if we choose x Š 0.45 y. Consider
now, for example, the case of a InxGa1�xAs=Al0.2Ga0.8As quantum well where, since the
substitution of Al with In lowers the bandgap, InxGa1�xAs is the well material. For 0 	
x 	 0.5 one then has 1.424 eV 
 Eg 
 0.9 eV and the emitted light covers the important
wavelength range 840 nm 	 � 	 1,330 nm. The lattice constant of InGaAs is now larger
than that of AlGaAs [by as much as 3.6% at x D 0.5], and, before the well is formed, the
situation of the two materials will be as shown in Fig. 3.29a. In forming the quantum well,
the two lattice constants must become equal in the QW well plane and this produces a biaxial
compression of InGaAs in this plane and a uniaxial tension along the direction orthogonal to
the plane (Fig. 3.29b). The InGaAs QW then looses its cubic symmetry and this changes the
values of the valence band effective masses and of the band gap.�

What needs to concern us mostly is the heavy hole mass in the plane of the QW as
it enters into the expression for the density of states in the valence band (see Sect. 3.3.2).
Under compressive strain this mass is greatly reduced (by as much as a factor 2 for x D 0.2)
becoming closer in value to that of the electron mass in the conduction band. This makes
the density of states in the valence band, �2D

v , comparable to that, �2D
c , in the conduction

band. The reduction of heavy hole mass and the corresponding reduction in state density,

FIG. 3.29. Crystal lattice deformation resulting from the epitaxial growth of a thin quantum-well layer of III–V
material with original lattice constant a0 (e.g. InxGa1�xAs) between two thick layers of a material with a lattice
constant a1 < a0 (e.g. Al0.2Ga0.8As).

� We recall that, in the parabolic band approximation, all the quantum details are essentially hidden in the values of
the effective masses and energy gap.
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�2D
v , results in two very important advantages compared to typical unstrained QW: (1) The

transparency density, Ntr , is greatly reduced by an amount as large as a factor 2 [down to
Ntr Š .0.5–1/ � 1018 cm�3]. (2) The differential gain d˛g=dN is greatly increased by an
amount as large as a factor 2 [up to .15–30/ � 10�16 cm2]. The reasons for both circum-
stances are fundamentally related to the reduced value of �2D

v and to the shift in position of
the quasi-Fermi levels, at transparency, upon reducing the hole mass..17/ Indeed, the lowest
value of Ntr and the highest value of dg/dN are attained in the completely symmetrical case
mv D mc.

In concluding this section we can say that there are three main beneficial effects of
strained QW lasers: (1) A considerable reduction of Ntr. This effect results in a consis-
tent reduction of the threshold current density, Jth, since it will be shown in Chap. 9 (see
Sect. 9.4.4) that Jth is fundamentally related to Ntr. (2) An increase of electron-hole recom-
bination time, � , because both the radiative decay rate, .1=�r/ D BN, and the Auger rate,
.1=�A/ D CN2, are reduced as a consequence of the reduction of Ntr. This effect also results
in a further decrease of Jth since Jtr / 1=� . (see Sect. 9.4.4 again). (3) A considerable increase
of the differential material gain and, hence, of the differential modal gain. It will be shown in
Chap. 9, that this effect not only decreases the threshold current density but also increases the
laser efficiency. For these reasons, strained QW lasers are becoming increasingly important as
laser media.

3.4. QUANTUM WIRES AND QUANTUM DOTS

We have seen in the previous section that the improvement in optical properties obtained
on going from bulk material to the corresponding QW material is essentially due to a quantum
confinment effect arising from the fact that one dimension of the semiconductor has become
comparable to the DeBroglie wavelength. It is therefore natural to expand this idea to con-
sider the other two possible cases of quantum confinment, namely quantum wires, QWR,
and quantum dots, QD, wherein two or all three dimensions are made comparable with the
DeBroglie wavelength (Fig. 3.30a). As for a QW, the fundamental difference between these
quantum confined structures and the bulk material relies on the different forms of the density

FIG. 3.30. Different configurations, (a), and corresponding forms of the density of states, (b), for bulk, quantum
well, quantum wire and quantum dot semiconductors (after ref.,.19/ by permission).
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of states. Without entering into detail here (for more detail see ref..18/) we show in Fig. 3.30b
the qualitative behavior of the density of states for QWR and QD as compared to bulk and QW
materials. Using these different forms of state density, one can proceed in a similar way as
for a QW to calculate the expected gain. We do not pursue this here and, as a representative
example, we limit ourselves to showing in Fig. 3.31 the expected material gain vs photon
energy for a Ga0.47In0.51As=InP system (Ga0.47In0.51As now constitutes the quantum confin-
ment material). In the figure, the curves of predicted material gain vs photon energy for the
bulk case, for a 10 nm QW, 10 nm � 10 nm QWR, and 10 nm � 10 nm � 10 nm QD are plotted
at the same electron injection N D 3 � 1018 cm�3..19/ The calculated transparency density is
about the same for bulk, QW and QWR

�
Ntr Š 1.3 � 1018 cm�3

	
while it is somewhat higher

for QD
�
Ntr Š 1.8 � 1018 cm�3

	
. In agreement with our earlier discussion of QW structures,

the gain is seen to increase on going from bulk to QW, from QW to QWR, and from QWR
to QD. The gain bandwidth, on the other hand, decreases from QW to QWR and from QWR
to QD.

As a laser material, quantum wires and dots will perhaps be used in the form of an
array, such as the planar ones of Fig. 3.32a, b. Considerable technological difficulties (such
as high packing density, low size fluctuations, and low defect density) are still preventing
the fabrication of quantum wires and quantum dots having good optical properties. If these
difficulties can be solved, semiconductor laser materials of still lower threshold, much higher
differential gain and narrower bandwidth will become available.

FIG. 3.31. Plot of calculated gain coefficient vs emission wavelenght, at N D 3 	 1018 cm�3 electron injection, for
a Ga0.47In0.53As bulk semiconductor and for Ga0.47In0.53As=InP 10 nm quantum well, 10 nm 	 10 nm quantum wire
and 10 nm 	 10 nm 	 10 nm quantum dot. (after ref..19/ by permission).
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FIG. 3.32. Planar array of multiple quantum wires, (a), and multiple quantum dots, (b).

3.5. CONCLUDING REMARKS

In this chapter, as compared to the previous one, we have progressed from the simple
case of atoms to the more complicated cases of molecules and semiconductors and have ana-
lyzed these in some detail. As our discussion showed, a physical understanding of the optical
properties of these materials requires a rather detailed description of their physical behavior.
In doing this we have limited ourselves to the most elementary aspects. From a phenomeno-
logical viewpoint, however, as we shall see in Chaps. 7 and 8, only a few physical parameters
are needed to predict laser behaviour, namely: (1) The wavelengths and bandwidths of the
gain transitions. (2) The transition cross section or, for a semiconductor, the differential gain
and the transparency density. (3) The lifetime of the upper state or, for a semiconductor, the
electron-hole recombination time. These are in fact the most important physical parameters to
come out of the present as well as of the previous chapter.

PROBLEMS

3.1. Show that the vibrational frequency of a homonuclear diatomic molecules is � D .1=2
/
.2k0 =M/1=2 where M is the mass of each atom and k0 is the constant of the elastic restoring
force.

3.2. The vibrational frequency of a N2 molecule is about Q� D 2, 360 cm�1. Calculate the value of the
elastic constant k0. Then calculate the potential energy for a nuclear distance away from equilib-
rium of R�R0 D 0.3 Å.(Compare this energy with that shown in Chap. 10 for the potential energy
curve of a N2 molecule).

3.3. The equilibrium internuclear distance of a N2 molecule is R0 Š 0.11 nm. Calculate the rotational
constant, B, the transition frequency and corresponding transition wavelength for the J D 0 !
J D 1 rotational transition.

3.4. Using the result obtained from the previous problem for the rotational constant, B, of the N2
molecule, calculate the frequency separation between two consecutive lines of the P-branch of the
� 00 D 0 ! � 0 D 1 transition. Also calculate the quantum number of the most populated rotational
level of the � 00 D 0 state.
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3.5. The rotational constant of a CO2 molecule in its 00ı1 vibrational level is B D 0.37 cm�1. Assum-
ing the same value for the rotational constant of the 10ı0 level, calculate the P-branch and
R-branch spectrum at T D 450 K of the 00ı1 ! 10ı0 transition [remember that only rotational
levels of the 00ı1 upper state of even J number can partecipate in the transition].

3.6. Assuming that the rotational constant of the ground vibrational state of a CO2 molecule is B D
0.37 cm�1, i.e. it is equal to that of the .00ı1/ state, calculate the equilibrium distance R0 between
the carbon and oxygen atoms.

3.7. From the condition fc


E0

2
� 
 fv



E0

1
�

prove the Bernard–Duraffourg relation E0
Fc � E0

Fv 
 h�.

3.8. With the help of Fig. 3.15b calculate for GaAs: (a) The values of EFc and EFv at N D 1.6 �
1018 cm�3 carrier injection. (a) The overall gain bandwidth at the same injection.

3.9. In the energy reference system of Fig. 3.9a calculate, for GaAs, the energies, E2 and E1, of the
upper and lower laser levels for a transition energy exceeding the bandgap energy by 0.45 kT.

3.10. For a bulk GaAs semiconductor, with the help of Fig. 3.16, calculate the expected gain at a photon
energy exceeding the badgap energy by 0.45 kT and for a carrier injection of N D 1.6�1018 cm�3.

3.11. Assuming that the peak gain in a bulk GaAs semiconductor at a carrier injection N D 1.6 �
1018 cm�3 occurs at a photon energy exceeding the gap energy by 0.45 kT and using some of the
results obtained in problems 3.9, 3.10 and 3.11, calculate the differential gain � D d˛g=dN.

3.12. With the help of Fig. 3.15a, plot on the same figure the quantities EFc=kT , EFv=kT , and

EFc C EFv

�
=kT vs the concentration, N, of electrons and holes for bulk InGaAsP at � D

1, 300 nm. From these plots then calculate the transparency density Ntr and, from a compari-
son of this figure with Fig. 3.15b, explain why Ntr is, in this case, somewhat smaller than in the
GaAs case. From the same plots calculate also the overall gain bandwidth and the values of EFc

and EFv at N D 1.6 � 1018 cm�3 carrier injection. On assuming that the maximum gain occurs at
an energy of �E D 0.65 kT above band gap energy, calculate the corresponding wavelength.

3.13. For a 10 nm GaAs quantum well calculate from Fig. 3.26 the overall bandwidth of the gain curve
and the values of the quasi-Fermi levels for an injected carrier density of N D 2 � 1018 cm�3. In
the .E-Eg/ reference axis of Fig. 3.27 find the energy interval in which positive gain occurs.

3.14. Calculate how the first step of Fig. 3.27 at .E-Eg/ Š 65 meV needs to be modified if a Lorentzian
lineshape with a dephasing time �c D 0.1 ps is assumed for each transition from an upper level in
the first conduction subband to a lower level in the first valence subband.
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4

Ray and Wave Propagation
Through Optical Media

4.1. INTRODUCTION

Before beginning a detailed discussion on optical resonators, which is to be the subject
of the next Chapter, we introduce in this Chapter a few topics from geometrical and wave
optics. The aim is to introduce some subjects that are not usually covered in elementary optics
texts and that constitute a very useful background for the topics to be considered in next
chapter. Thus, in particular, the matrix formulation of geometrical optics within the paraxial-
ray approximation and wave propagation within the paraxial-wave approximation, leading to
the ideas of Gaussian beam propagation, will be discussed here. Situations involving multiple
interference such as in a multilayer dielectric coating or in a Fabry-Perot interferometer will
also be considered.

4.2. MATRIX FORMULATION OF GEOMETRICAL OPTICS.1/

Consider a ray of light that is either transmitted by or reflected from an optical element
which has reciprocal and polarization-independent behavior (e.g. a lens or a mirror). Let z be
the optical axis of this element (e.g. the line passing through the centers of curvature of the
two spherical surfaces of the lens). Assume that the ray is traveling approximately along the z
direction in a plane containing the optical axis. The ray vector r1 at a given input plane z D z1

of the optical element (Fig. 4.1) can be characterized by two parameters, namely, its radial
displacement r.z1/ from the z axis and its angular displacement 
1. Likewise, the ray-vector
r2 at a given output plane z D z2 can be characterized by its radial, r2.z2/, and angular 
2,
displacements. Note that the r-axis is taken to be the same for both input and output rays
and oriented as in Fig. 4.1. The sign convention for the angles is that the angle is positive if
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c
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FIG. 4.1. Matrix formulation for the propagation of a ray through a general optical element.

the r-vector must be rotated clockwise to make it coincide with the positive direction of the
z-axis. Thus, for example, 
1 is positive while 
2 is negative in Fig. 4.1.

Within the paraxial-ray approximation the angular displacements 
 are assumed to be
small enough to allow the approximation to be made, sin 
 Š tan 
 Š 
 . In this case the
output, .r2, 
2/, and input, .r1, 
1/ variables are related by a linear transformation. If we
therefore put 
1 Š .dr1=dz1/z1 D r0

1 and 
2 Š .dr2=dz2/z2 D r0
2 we can write

r2 D Ar1 C Br0
1 (4.2.1a)

r0
2 D Cr1 C Dr0

1 (4.2.1b)

where A, B, C, and D are constants characteristic of the given optical element. In a matrix
formulation it is therefore natural to write (4.2.1) as

ˇ̌
ˇ̌ r2

r0
2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ A B

C D

ˇ̌
ˇ̌
ˇ̌
ˇ̌ r1

r0
1

ˇ̌
ˇ̌ (4.2.2)

where the ABCD matrix completely characterizes the given optical element within the paraxial
ray approximation.

As a first and simplest example we will consider the free-space propagation of a ray
along a length	z D L of a material with refractive index n (Fig. 4.2a). If the input and output
planes lie just outside the medium, in a medium of refractive index equal to unity, we have,
using Snell’s law in the paraxial approximation

r2 D r1 C Lr0
1=n (4.2.3a)

r0
2 D r0

1 (4.2.3b)

and the corresponding ABCD matrix is therefore

ˇ̌̌
ˇ 1 L=n

0 1

ˇ̌̌
ˇ (4.2.4)

As a next example we consider ray propagation through a lens of focal length f ( f is
taken to be positive for a converging lens). For a thin lens we obviously have (Fig. 4.2b).

r2 D r1 (4.2.5a)
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FIG. 4.2. Calculation of the ABCD matrix for: (a) free-space propagation, (b) propagation through a thin lens, (c)
reflection from a spherical mirror.

The second relation is obtained from the well-known law of geometrical optics, viz., .1=p/C
.1=q/D .1=f /, and using the fact that p D r1=r0

1 and q D � r2=r0
2. By also using Eq. (4.2.5a)

we get

r0
2 D �.1=f /r1 C r0

1 (4.2.5b)

According to Eqs. (4.2.5) the ABCD matrix is, in this case,

ˇ̌̌
ˇ 1 0

�1=f 1

ˇ̌̌
ˇ (4.2.6)

As a third example we consider reflection of a ray by a spherical mirror of radius of
curvature R (R is taken to be positive for a concave mirror). In this case the z1 and z2 planes
are taken to be coincident and to be placed just in front of the mirror and the positive direction
of the r-axis is taken to be the same for incident and reflected rays (Fig. 4.2c). The positive
direction of the z axis is taken to be that from left to right for the incident vector and from
right to left for the reflected vector. The angle for the incident ray is positive if the r1 vector
must be rotated clockwise to make it coincide with the positive z1 direction while the angle for
the reflected ray is positive if the r2-vector must be rotated anticlockwise to make it coincide
with the positive z2 rection of the z-axis. Thus, for example, r0

1 is positive while r0
2 is negative

in Fig. 4.2c. Given these conventions, the ray matrix of a concave mirror of curvature R and,
hence, focal length f D R=2 can be shown to become identical to that of a positive lens of
focal length f D R=2. The ray matrix is therefore equal to

ˇ̌̌
ˇ 1 0

�2=R 1

ˇ̌̌
ˇ (4.2.7)

In Table 4.1 we have collected together the ray matrices for the optical elements consid-
ered so far as well as for a spherical dielectric interface. We draw attention to the fact that the
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TABLE 4.1. Ray matrices for some common cases

FIG. 4.3. Ray propagation through three distinct planes when the two matrices between planes z D z1 and z D zi and
between z D zi and z D z2 are known.

determinant of the ABCD matrix is unitary i.e.

AD � BC D 1 (4.2.8)

provided that the input and output planes lye in media of the same refractive index. In fact,
this situation holds for the first three cases considered in the table.

Once the matrices of the elementary optical elements are known, one can readily obtain
the overall matrix of a more complex optical element by subdividing it into these elementary
components. Suppose in fact that, within a given optical element, we can consider an interme-
diate plane of coordinate zi (Fig. 4.3) such that the two ABCD matrices between planes z D z1

and z D zi and planes z D zi and z D z2 are known. If we now call ri and r0
i the coordinates of
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the ray vector at plane z D zi, we can obviously write

ˇ̌̌
ˇ ri

r0
i

ˇ̌̌
ˇ D

ˇ̌̌
ˇ A1 B1

C1 D1

ˇ̌̌
ˇ
ˇ̌̌
ˇ r1

r0
1

ˇ̌̌
ˇ (4.2.9)

ˇ̌
ˇ̌ r2

r0
2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ A2 B2

C2 D2

ˇ̌
ˇ̌
ˇ̌
ˇ̌ ri

r0
i

ˇ̌
ˇ̌ (4.2.10)

If Eq. (4.2.9) is substituted for the vector ri on the right-hand side of Eq. (4.2.10) we obtain

ˇ̌
ˇ̌ r2

r0
2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ A2 B2

C2 D2

ˇ̌
ˇ̌
ˇ̌
ˇ̌ A1 B1

C1 D1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ r1

r0
1

ˇ̌
ˇ̌ (4.2.11)

The overall ABCD matrix can thus be obtained by the multiplication of the ABCD matrices of
the elementary components. Note that the order in which the matrices appear in the product
is the opposite to the order in which the corresponding optical elements are traversed by the
light ray.

As a first and perhaps somewhat trivial example of using the above result, we will con-
sider free-space propagation through a length L1 followed again by free-space propagation
through a second length L2, in a medium with refractive index n. According to Eq. (4.2.4) the
overall matrix equation can be written as

ˇ̌
ˇ̌ r2

r0
2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ 1 L2=n

0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ 1 L1=n

0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ r1

r0
1

ˇ̌
ˇ̌ (4.2.12)

Using well-known rules of matrix multiplication it can readily be shown that the product of
the two square matrices gives an overall matrix

ˇ̌̌
ˇ 1 .L1 C L2/=n

0 1

ˇ̌̌
ˇ (4.2.13)

This calculation confirms the obvious result that the overall propagation is equivalent to a
free-space propagation over a total length L D L1 C L2.

As a less trivial and more useful example, we will consider free propagation over a length
L (in a medium with refractive index n D 1) followed by reflection from a mirror of radius
of curvature R. According to Eqs. (4.2.4), (4.2.7), and (4.2.11) the overall ABCD matrix is
given by

ˇ̌̌
ˇ A B

C D

ˇ̌̌
ˇ D

ˇ̌̌
ˇ 1 0

�.2=R/ 1

ˇ̌̌
ˇ
ˇ̌̌
ˇ 1 L

0 1

ˇ̌̌
ˇ D

ˇ̌̌
ˇ 1 L

�.2=R/ 1 � .2L=R/

ˇ̌̌
ˇ (4.2.14)

Note that the determinant of the matrix of Eq. (4.2.13) as well as that of Eq. (4.2.14) are
again unitary, and this result holds for any arbitrary cascade of optical elements since the
determinant of a matrix product is the product of the determinants.

We now address the question of finding the ray-matrix elements A0, B0, C0, D0 for reverse
propagation through an optical system, in terms of the given matrix elements A,B,C,D for
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forward propagation. So, referring to Fig. 4.1, one can see that if we take �r2 as the input
vector, i.e. if we reverse the propagation direction of the r2 vector, then the output vector must
be �r1. For backward propagation we take the same sign conventions as those used for the ray
reflected from a spherical mirror (Fig. 4.2c) namely: (a) The z-axis is reversed while the r-axis
remains unchanged. (b) The angle between the r-vector and the z-axis is positive if the r-vector
be must rotated anticlockwise to coincide with the z-axis. Given these conventions, it is seen
that the rays �r1 and �r2 are described by coordinates .r1, �r0

1/ and .r2, �r0
2/, respectively.

Thus one must have ˇ̌̌
ˇ r1

�r0
1

ˇ̌̌
ˇ D

ˇ̌̌
ˇ A0 B0

C0 D0

ˇ̌̌
ˇ
ˇ̌̌
ˇ r2

�r0
2

ˇ̌̌
ˇ (4.2.15)

From Eq. (4.2.15) we can obtain r2 and r0
2 as a function of r1 and r0

1. Since the determinant of
the A0B0C0D0 matrix is also unitary, we get

r2 D D0r1 C B0r0
1 (4.2.16a)

r0
2 D C0r1 C A0r0

1 (4.2.16b)

A comparison of Eqs. (4.2.16) with Eqs. (4.2.1) then shows that A0 D D, B0 D B, C0 D C, and
D0 D A so that the overall A0B0C0D0 matrix isˇ̌

ˇ̌ A0 B0
C0 D0

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ D B

C A

ˇ̌
ˇ̌ (4.2.17)

Equation (4.2.17) then shows that the matrix for backward propagation is obtained from that
of forward propagation by simply interchanging the matrix elements A and D.

The matrix formulation is not only useful to describe the behavior of a ray as it passes
through an optical system, but it can also be used to describe the propagation of a spherical
wave. Consider in fact a spherical wave originating from point P1 of Fig. 4.4 and propagating
along the positive z direction. After traversing an optical element described by a given ABCD
matrix, this wave will be transformed into a new spherical wave whose center is the point P2.
Consider now two conjugate rays r1 and r2 of the two waves, which means that the optical
element transforms the incident (or input) ray r1 into the output ray r2. The radii of curvature
R1 and R2 of the two waves at the input plane, z1, and output plane, z2, of the optical element
are readily obtained as

R1 D r1=r0
1 (4.2.18a)

R2 D r2=r0
2 (4.2.18b)

FIG. 4.4. Propagation of a spherical wave emitted from point P1 through a general optical element described by a
given ABCD matrix.



4.3 � Wave Reflection and Transmission at a Dielectric Interface 137

FIG. 4.5. Propagation of a spherical wave: (a) through free space; (b) through a thin lens.

Note that in (4.2.18) we have used the sign convention that R is positive if the center of
curvature is to the left of the wave front. From Eqs. (4.2.1) and (4.2.18) we get

R2 D AR1 C B

CR1 C D
(4.2.19)

Equation (4.2.19) is a very important result since it relates, in simple terms, the radius
of curvature, R2, of the output wave to the radius of curvature, R1, of the input wave via the
ABCD matrix elements of the given optical component.

As a first and elementary example using this result, consider the free-space propagation
of a spherical wave between points having coordinates z1 and z2 in Fig. 4.5a. From Eq. (4.2.4),
with n D 1 and L D z2 � z1, and Eq. (4.2.19) we get R2 D R1 C .z2 � z1/ which of course
is an obvious result. Consider next the propagation of a spherical wave through a thin lens
(Fig. 4.5b). From Eqs. (4.2.6) and (4.2.19) we get

1

R2
D 1

R1
� 1

f
(4.2.20)

which is simply the familiar law of geometrical optics p�1 C q�1 D f �1.
Although the two examples of Fig. 4.5 are both rather elementary applications of

Eq. (4.2.19), the usefulness of this equation can really be appreciated when dealing with a
more complicated optical system made up, e.g., of a sequence of lenses and spaces between
them. In this case, the overall ABCD matrix will be given by the product of the matrices of
each optical component and the radius of curvature of the output wave will again be given by
Eq. (4.2.19).

4.3. WAVE REFLECTION AND TRANSMISSION AT A DIELECTRIC
INTERFACE.2/

Consider a wave which is incident on the plane interface between two media of refractive
indices n1 and n2. If the wave is initially in the medium of refractive index n1 and it is normally
incident on the surface, the electric field reflectivity is

r12 D .n1 � n2/ = .n1 C n2/ (4.3.1)
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while the field transmission is

t12 D 2n1= .n1 C n2/ (4.3.2)

Note that, if n1< n2, one has r12 < 0 and this means that the reflected field has a 
 phase-shift
compared to the incident field. Of course, if n1> n2 one has r12> 0 and there is no phase-shift
upon reflection. One can also observe that, according to Eq. (4.3.2), one always has t12> 0
i.e. there is no phase-shift upon transmission.

For non-normal incidence, the expressions for electric field reflectivity and transmission
are more complicated and depend also on the field polarization. As a representative example
Fig. 4.6 shows the plots of the intensity reflectivity, or reflectance, R D .r12/

2 vs the incidence
angle 
 for a p-polarized wave (E-field in the plane of incidence) and a s-polarized wave
(E-field orthogonal to the plane of incidence), and for n1 D 1 and n2 D 1.52. One can see that,
for 
 D 0, the two reflectances are obviously equal and, according to Eq. (4.3.1), have the
value R D 4.26%. One also notices that, for a p-polarized wave, there is a particular angle
(
B D 56.7ı in the figure) at which R D 0. The situation occurring in this case can be described
with the help of Fig. 4.7. Suppose that the incidence angle 
B is such that the refracted beam
is orthogonal to the direction of the reflected beam. The E field in the optical material and
hence its polarization vector will therefore be parallel to the direction of reflection. Since the
reflected beam may be considered to be produced by radiation emitted by the polarization
vector of the medium where refraction occurs, this reflected beam will in this case be zero
since an electric dipole does not radiate along its own direction. A straightforward calculation
based on geometrical optics can now give the value of the incidence angle 
B, which is called
the Brewster angle or polarizing angle. According to the previous discussion we have


 0
B C 
B D 
=2 (4.3.3)

FIG. 4.6. Power reflectivity, R, vs angle of incidence, 
 , at an interface between air and a medium of refractive
index n D 1.5. The two curves refer to the cases of E-field polarization in the plane of incidence (p-polarization) and
orthogonal to this plane (s-polarization).
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FIG. 4.7. Reflected and refracted beams for incidence at Brewster’s angle: (a) incidence from the less dense medium;
(b) incidence from the more dense medium.

where 
 0
B is the angle of the refracted beam. From Snell’s law we also have

n sin 
 0
B D sin 
B (4.3.4)

Since according to Eq. (4.3.3) one has sin 
 0
B D cos 
B, from Eq. (4.3.4) we get the following

expression for the Brewster angle:

tan 
B D n (4.3.5)

Note that, if the direction of the rays is reversed (Fig. 4.7), the reflected beam will again
be zero since the refracted and reflected beams are again orthogonal. So, if a plane parallel
plate of a given optical material is inserted at Brewster’s angle into a beam polarized in the
plane of the figure, no reflection will occur at the two surfaces of the plate. Let us now assume
that a plane parallel plate of e.g. refractive index n D 1.52 is inserted, at the Brewster angle,
within an optical cavity. According to Fig. 4.6, the reflectance of an s-polarized beam at each
of the two interfaces will be R Š 15%. Thus, an s-polarized beam would suffer around 30%
loss, due to the reflection at the two interfaces. If the laser gain per pass is smaller than 30%,
the s-polarization will not oscillate and the laser beam will be found to be linearly polarized
in the plane of incidence to the plate.

4.4. MULTILAYER DIELECTRIC COATINGS.3,4/

The mirror surfaces, used as high-reflectivity laser mirrors or beam splitters, are com-
monly fabricated by the technique of deposition of a multilayer dielectric stack on the optical
surface, plane or curved, of a substrate material, such as glass. The same technique can also
be used to greatly reduce the surface reflectivity of optical components (antireflection coating)
or to produce optical elements such as interference filters or polarizers. The coating is usually
produced in a vacuum chamber by evaporation of the required dielectric materials, which then
condense in a layer on the substrate. The widespread use of multilayer dielectric coatings for
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laser optical components arises from the fact that the layers are made of transparent materi-
als and can thus withstand the high intensity of a laser beam. This is to be contrasted to the
behavior of thin metal layers (of, e.g., Ag or Au), also produced by vacuum deposition and
often used for conventional optical components. In fact, metals and metal layers have a large
absorption .5 � 10%/ in the near-infrared to the ultraviolet region and they are not communly
used as materials for laser mirrors. It should be noted however that absorption losses, for
these materials, are much less in the middle to far infrared, e.g., at the 10.6-μm wavelength
of a CO2 laser. Thus, high-reflectivity gold-coated copper mirrors or, more simply, polished
copper mirrors are often used in this wavelength range.

Consider an optical substrate, such as glass, coated with a number of layers having alter-
nately high, nH, and low, nL, refractive indices compared to that, ns, of the substrate. If the
thickness of the layers lH and lL are such that nH lH D nL lL D�0=4 where �0 is a specified
wavelength, the electric field reflections at all layer interfaces, for an incident beam of wave-
length �D�0, will add in phase. Consider, for instance, the two interfaces of a high-index
layer (Fig. 4.8a). According to Eq. (4.3.1), the electric field reflectivity at the low-to-high
index interface has a negative sign and the electric field undergoes a phase shift of �1 D


upon reflection. Conversely, the reflectivity at the high-to-low index interface is positive and
no phase shift of the reflected wave will occur there. If now the optical thickness, nH lH , of
the layer is equal to �0=4, the phase shift after the round trip in the high refractive index layer
will be �2 D 2klH D .4πnH=�/lH D π. This means that the two reflected waves have the same
phase and the corresponding fields will add. One can easily show that the same conclusion
applies for the two interfaces of a low-index layer. It then follows that all reflected beams in a
multilayer dielectric coating, as well as their multiple reflections, add in phase. If therefore a
sufficient number of .�=4/ layers of alternating low and high indices are deposited, the overall
reflectivity, due to all of the multiple reflections, can reach a very high value. If the multilayer
stack starts and ends with a high-index layer, so that there is an odd number, J, of layers, the
resulting power reflectivity (at �D�0) turns out to be

R.�0/ D
 

nJC1
H � nJ�1

L ns

nJC1
H C nJ�1

L ns

!2

(4.4.1)

FIG. 4.8. (a) First two reflections at the two interfaces of a high index layer in a multilayer dielectric coating. (b) First
two reflections at the two interfaces of a low index layer in a single layer antireflection coating. Multiple reflections
also occur [see e.g. the case of a Fabry-Perot interferometer], but are not shown in the figures.
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FIG. 4.9. Reflectivity versus wavelength curves of a �=4 multilayer dielectric stack made of TiO2 and SiO2 for a
total number of layer of 3, dashed curved, and 15, continuous curve (substrate material BK7-glass).

Example 4.1. Peak reflectivity calculation in multilayer
dielectric coatings. We will consider TiO2 and SiO2

for the high and low index materials, respectively. At
the Nd:YAG laser wavelength of �0 D 1.06 μm, one has
nH D 2.28 and nL D 1.45. Taking BK-7 glass as substrate
material one has ns Š 1.54. From Eq. (4.4.1) we obtain
R Š 61.8% for J D 3 and R D 99.8% for J D 15. We also
note that, the reflectance at a single interface, accord-
ing to Eq. (4.3.1) is, in our example, Œ.nH � nL/=.nH C
nL/�

2 D 4.9%.

If the wavelength � of the incident
wave is different from �0, the reflectivity
will of course be lower than the value given
by Eq. (4.4.1). As representative examples,
Fig. 4.17 shows curves of reflectivity ver-
sus wavelength for J D 15 and J D 3. One
notices that the peak reflectivity value obvi-
ously increases with the number of layers and
that the high reflectivity region gets wider
and has steeper edges as the number of layers
is increased. One can also observe that, for
the high reflectivity curve, high reflectivity is
maintained over a wavelength range	�D� � �0 Š ˙.10%/�0.

To reduce the reflectivity of a given optical surface, a single layer coating of a material
with refractive index lower than that of the substrate can be used. As one can easily see from
Fig. 4.8b, since nL< ns, the first two reflections now have opposite phases if nLlL D�0=4. The
overall reflectivity is thus reduced and, after taking account of all multiple reflections, one can
show that the reflectivity at �D�0 is given by

R D �

ns � n2

L

�
=


ns C n2

L

�	2
(4.4.2)

From this one notes that zero reflection would be obtained when nL D .ns/
1=2, a condition

which is difficult to achieve, in practice, due to the limited number of available materials with
low enough refractive index.
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Example 4.2. Single layer antireflection coating of laser materials. Consider a BK-7 glass substrate for
which, at �D 1.06 μm one has ns D 1.54. To achieve zero reflectivity with a single layer, the refractive
index of the layer material should be nL D Œns�

1=2 Š 1.24. The lowest refractive index material available
as a stable film is provided by MgF2 (Fluorite) with nL D 1.38. From Eq. (4.4.2) we get R Š 1.1% which,
although not zero, is still significantly smaller than the reflectivity of the bare surface, which, according
to Eq. (4.3.1), is given by R D Œ.ns � 1/=.ns C 1/�2 D 4.5%. Fluorite is a rather soft material, however, and
it can easily be scratched. Consider next a Nd:YAG rod .ns D 1.82/ and consider a �=4 layer of SiO2, a
rather hard and durable material .nL D 1.45/, for antireflection coating. From Eq. (4.4.2) we get in this
case R D 3.4% which while far from perfect is significantly less than the reflectivity of the bare surface
.R Š 8.5%/. One notes that Fluorite would provide an almost perfect match, in this case, the reflectivity
according to Eq. (4.4.2) being reduced to R Š 4 � 10�4.

The minimum reflectivity value given by Eq. (4.4.2) applies, of course, for �D�0. The
width of the low reflectivity region, for a single layer coating, is however very large. For exam-
ple, if �0 corresponds to the center of the visible range, the reflectivity is reduced below that
of the bare surface for the whole visible range. Quite often, for laser applications, even lower
reflectivities than those considered in example 4.2 may be required (down to perhaps 0.1%).
This can be achieved using more than one layer in the antireflection coating. A coating consist-
ing of two, �=4, layers of low and high refractive index material, with the sequence ns=nL=nH,
is often used for glass. A very hard and durable two-layer coating, which is often used is
ZrO2 .nH D 2.1/-MgF2 .nL D 1.38/. The region of low reflectivity is reduced, for this type of
coating, with the reflectivity versus wavelength curve having a sharp, V-shaped, minimum.
Such a coating is commonly referred to as a V-coating.

4.5. THE FABRY-PEROT INTERFEROMETER.5/

We now go on to consider a second example of multiple interference, the case of a
Fabry-Perot (FP) interferometer. This interferometer, a common spectroscopic tool since its
introduction in 1899, plays a very important role in laser physics for at least three different
reasons: (1) On a fundamental level its physical behavior forms a basis to the behavior of
optical resonators. (2) It is often used as a frequency selective element in a laser cavity. (3) It
is often used as a spectrometer for analyzing the spectrum of the light emitted by a laser.

4.5.1. Properties of a Fabry-Perot Interferometer

The FP interferometer consists of two plane or spherical mirrors with power reflectivities
R1 and R2, separated by a distance L and containing a medium of refractive index nr. Although,
for the ultimate performance, interferometers make use of spherical mirrors, we will, for
simplicity, consider here the case of two plane and parallel mirrors. In this case, consider a
plane wave of frequency � incident on the interferometer in a direction making an angle 
 0
with the normal to the two mirrors (Fig. 4.10). This wave is indicated schematically by the ray
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FIG. 4.10. Multiple-beam interference in a Fabry-Perot interferometer.

0 in Fig. 4.10. The output beam, leaving the interferometer, will consist of the superposition
of the beam resulting from a single pass through the two mirrors (ray 1 in Fig. 4.10) with the
beams arising from all multiple reflections, two of which are indicated by rays 2 and 3 in the
figure. Thus, the electric field amplitude of the output beam Et is obtained by summing the
amplitudes El of all these beams, taking proper account of their corresponding phase-shifts.
To illustrate this, the electric fields of the first three beams are also indicated in the figure. If
all multiple reflections are taken into account, we get

Et D
1X
1

lEl D �
E0t1t2 exp.j�0/

	 1X
0

m.r1r2/
m exp.2mj�/ (4.5.1)

In both Eq. (4.5.1) and Fig. 4.10, E0 is the amplitude of the beam incident on the interfer-
ometer; t1 and t2 are the electric field transmissions of the two mirrors and r1 and r2 are the cor-
responding electric field reflectivities; �0 is the phase shift for a single pass and it also includes
any phase shift due to passage through the two mirrors; 2� is the phase difference between
successive multiple reflections and is given by 2�D kLs D 2kL cos 
 D .4πnr�=c/L cos 
 ,
where Ls is the sum of the lengths of the two segments AB and BC of Fig. 4.10, and where
the angle 
 is related to the incidence angle 
 0 by Snell’s law .nr sin 
 D sin 
 0/. Note that the
previous expression can, for simplicity, be transformed to

� D 2
L0�=c (4.5.2)

where
L0 D nrL cos 
 (4.5.3)

The geometrical series appearing in Eq. (4.5.1) can be readily summed to give

Et D E0 ej	0 t1t2
1 � .r1r2/ exp.2j�/

(4.5.4)

The power transmission TFP of the Fabry-Perot interferometer is simply given by
TFP D jEtj2=jE0j2 and from Eq. (4.5.4) we get

TFP D t2
1 t2

2

1 � 2r1r2 cos.2�/C r2
1r2

2

(4.5.5)
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FIG. 4.11. Intensity transmission of a Fabry-Perot interferometer versus the frequency of the incident wave.

Since R1 D r2
1, R2 D r2

2, and, for a lossless mirror, t2
1 D 1�r2

1 D 1�R1 and t2
2 D 1�r2

2 D 1�R2,
Eq. (4.5.5) transforms to

TFP D .1 � R1/.1 � R2/�
1 � .R1R2/1=2

	2 C 4.R1R2/1=2 sin2 �
(4.5.6)

which is the final result of our calculation.
To illustrate the properties of the FP interferometer, Fig. 4.11 shows a plot of transmis-

sion T versus frequency of the incident wave for R1 D R2 D 64%. This plot is obtained from
Eq. (4.5.6), with Eq. (4.5.2) used for �. One sees that the curve consists of a series of evenly
spaced maxima. These maxima occur when sin2 �D 0 in Eq. (4.5.2), i.e. when �D m
 , where
m is a positive integer. With the help of Eq. (4.5.2) the frequencies �n of these maxima are
seen to be given by

�n D mc=2L0 (4.5.7)

The frequency difference between two consecutive maxima, for reasons which will become
clear at the end of this section, is called the free-spectral range of the interferometer, 	�fsr.
From Eq. (4.5.7) we immediately get

	�fsr D c=2L0 (4.5.8)

At a transmission maximum one has sin�D 0 and the value of the transmission is seen from
Eq. (4.5.6) to be

Tmax D .1 � R1/.1 � R2/�
1 � .R1R2/1=2

	2 (4.5.9)

Note that if R1 D R2 D R then Tmax D 1 irrespective of the value of the mirror reflectivity R.
This result only holds if the mirrors have no absorption, as assumed in our analysis here.
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The transmission minima occur when sin2 �D 1, i.e., midway between maxima. The
transmission at this minimum point is obtained from Eq. (4.5.6) as

Tmin D .1 � R1/.1 � R2/�
1 C .R1R2/1=2

	2 (4.5.10)

Note that, under usual circumstances, the value of Tmin is very small (see example 4.3).
To calculate the width, 	�c, of a transmission peak, we notice that, according to

Eq. (4.5.6), the transmission will fall to 1=2 of its maximum value for a displacement
	� from the value �D n
 such that 4.R1R2/

1=2 sin2	�D Œ1 � .R1R2/
1=2�2. Assuming that

	� is much smaller than 
 we can make the approximation sin	� Š 	�, which gives
	�D ˙ Œ1 � .R1R2/

1=2�=2ŒR1R2�
1=4. This last equation shows that the two “half-intensity”

points, corresponding to 	�C and 	��, are symmetrically situated at either side of the
maximum. If we let 	�c D	�C �	��, then we get

	�c D 1 � .R1R2/
1=2

.R1R2/1=4
(4.5.11)

and, from (4.5.2)

	�c D c

2L0
1 � .R1R2/

1=2


.R1R2/1=4
(4.5.12)

We now define the “finesse,” F, of the interferometer as

F D 	�fsr=	�c (4.5.13)

Example 4.3. Free-spectral range, finesse and transmis-
sion of a Fabry-Perot etalon. Consider a F–P interferometer
made of a piece of glass with two plane-parallel surfaces
coated for high reflectivity (often called a F–P etalon).
If we assume L D 1 cm and nr D 1.54, the free-spectral
range for near normal incidence, i.e. for 
 Š 0, is
	�fsr D c=2nrL D 9.7 GHz. If we now take R1 D R2 D 0.98,
we get from Eq. (4.5.14) a finesse F Š 150, so that
	�c D	�fsr=F D 65 MHz. For a lossless coating, the peak
transmission, according to Eq. (4.5.9) is Tmax D 1, while the
minimum transmission, from Eq. (4.5.10), is Tmin Š 10�4.
Note the very small value of Tmin.

From Eq. (4.5.8) and Eq. (4.5.12) we then get

F D 
.R1R2/
1=4

1 � .R1R2/1=2
(4.5.14)

The finesse indicates how narrower the
transmission peak is compared to the free
spectral range: typically it is much greater
than 1.

The previous expressions and consid-
erations hold for perfectly lossless mir-
rors. For finite mirror absorbance we will
assume, for simplicity, the same reflectiv-
ity and the same transmission for the two
mirrors, i.e. we will take R1 D R2 D R and t2

1 D t2
2 D T, where T is the mirror transmission.

From Eq. (4.5.5) one then readily gets that the transmission of the Fabry-Perot interferometer,
TFP, can now be written as

TFP D
�

T

1 � R

�2
.1 � R/2

.1 � R/2 C 4R sin2 �
(4.5.14a)
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Note tha T is now given by T D 1 � R � A where A is the fraction of the incident power
absorbed by the mirror (mirror absorption). For finite absorption, one therefore has T < 1 � R.
The comparison of Eq. (4.5.14a) with Eq. (4.5.6), when R1 D R2 D R, then shows that mirror
absorption reduces the overall transmission of the interferometer by a factor Œ.T=.1 � R/�2.

4.5.2. The Fabry-Perot Interferometer as a Spectrometer

After this general description of the properties of a FP interferometer we now describe its
use as a spectrum analyzer. We consider the simplest case where the direction of the incident
light is normal to the interferometer mirrors (i.e., cos 
 D 1) and the medium inside the inter-
ferometer is air .nr Š 1/. We assume that the length L can be changed by a few wavelengths
by, e.g., attaching one of the two FP plates to a piezoelectric transducer (scanning FP interfer-
ometer). To understand what happens in this case let us first consider a monochromatic wave
at frequency � (wavelength �). According to the previous discussion, the transmitted light
will exhibit peaks when �D m
 , i.e., when the interferometer length is equal to L D m�=2
(see Fig. 4.12a), where m is a positive integer. The change in L needed to shift from one
transmission peak to the next one is then

	Lfsr D �=2 (4.5.15)

The width of each transmission peak, 	Lc, will be such that .2
�=co/	Lc D	�c where
	�c is given by Eq. (4.5.11). With the help of Eq. (4.5.14) we then get 	Lc D�=2F. We
therefore have

	Lc D 	Lfsr=F (4.5.16)

i.e. the analogous relation to Eq. (4.5.13).

FIG. 4.12. Intensity transmission of a scanning Fabry-Perot interferometer when the incident wave is: (a)
monochromatic, (b) made up of two, closely spaced, frequencies.
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We now consider the case where two waves at frequencies � and � C 	� are incident
on the interferometer. The wave at frequency .� C 	�/ will produce a set of transmission
peaks displaced by a quantity	L from those corresponding to frequency � (Fig. 4.12b). Since
2
Lv=c D nπ, the displacement 	L must be such that 2
.L C 	L/.� C 	�/=c D n
 , i.e.
such that 	L D � .	�=�/L. The two frequencies � and � C 	� will be resolved by the
spectrometer if j	Lj 
 	Lc. The equality sign in this expression corresponds to the minimum
frequency interval 	�m which can be resolved, which gives .	�m=�/L D	Lc. With the help
of Eq. (4.5.16) and Eq. (4.5.15) we then get .	�m=�/L D�=2F. Using Eq. (4.5.8) with L0 D L
we obtain

	�m D 	�fsr=F (4.5.17)

Example 4.4. Spectral measurement of an ArC-laser
output beam. We will consider an Ar-ion laser oscillat-
ing on its green line at �D 514.5 nm wavelength. We
will assume the laser to be oscillating on many lon-
gitudinal modes encompassing the full Doppler width
of the laser line .	��

0 D 3.5 GHz/. We will thus have
	�osc D	��

0 D 3.5 GHz. To avoid frequency ambiguity,
we must have 	�fsr D .c=2L/ 
 3.5 GHz i.e. L 	
4.28 cm. If we now assume a finesse F D 150 and
take L D 4.28 cm, according to Eq. (4.5.18) we have,
for the interferometer resolution, 	�m D	�osc=F Š
23 MHz. If, for example, the length of the laser cavity
is L1 D 1.5 m, consecutive longitudinal modes are sep-
arated (see next Chapter) by 	�D c=2L1 D 100 MHz.
Thus, since 	�m<	�, the FP interferometer is able to
resolve these longitudinal modes. One can also observe
that, since the frequency of the laser light is �D c=� Š
5.83 � 1014 Hz, the corresponding resolving power of the
interferometer is �=	�m D 2.54 �107. This is a very high
resolving power compared, e.g., to the best that can be
obtained with a grating spectrometer .�=	� < 106/.

Thus the finesse of the interferometer
specifies its resolving power in terms of the
free spectral range.

It must be noted that when j	Lj D	Lfsr,
i.e. when 	�D	�fsr D c=2L, the transmis-
sion peaks at frequencies � C 	� and �

will be coincident, although shifted by one
order relative to each other. Therefore, when
	� >	�fsr, an ambiguity by a multiple of
	�fsr occurs in the measurement of 	�.
Thus, when using the interferometer to pro-
vide a measurement of frequency difference,
a simple and unambiguous result is only
obtained when 	� <	�fsr, which explains
why 	�fsr is called the free spectral range of
the interferometer. We can readily generalize
the above result and say that if 	�osc is the
spectral bandwidth of the incident light, then
to avoid frequency ambiguity, we must have
	�osc 	 	�fsr. If the equality is assumed to
hold in this relation, then from Eq. (4.5.17)
we get

	�m D 	�osc=F (4.5.18)

Thus the finesse F also provides a measure of how finely we can discriminate frequencies
within the total spectral bandwidth	�osc.

4.6. DIFFRACTION OPTICS IN THE PARAXIAL APPROXIMATION.6/

We shall consider a monochromatic wave under the so-called scalar approximation where
the e.m. fields are uniformly (e.g. linearly or circularly) polarized. The electric field of the
wave can then be described by a scalar quantity viz

E.x, y, z, t/ D QE.x, y, z/ exp.j!t/ (4.6.1)
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where the complex amplitude QE must satisfy the wave equation in scalar form i.e.


r2 C k2
� QE.x, y, z/ D 0 (4.6.2)

with k D!=c. An integral solution for the field amplitude can be obtained using the Fresnel-
Kirchoff integral. For a given field distribution QE.x1, y1, z1/ in the z D z1 plane, the resulting
field distribution QE.x, y, z/, at a general plane at coordinate z along the propagation direction,
turns out to be given by

QE.x, y, z/ D J

�

“
s

QE .x1, y1, z1/
exp �.jkr/

r
cos 
 dx1 dy1 (4.6.3)

In Eq. (4.6.3) r is the distance between point P1, of coordinates .x1, y1/, and point P, of
coordinates .x, y/, (see Fig. 4.13), 
 is the angle that the segment P1P makes with the normal
to the plane z D z1, the double integral is taken over the coordinates x1, y1 in the z D z1 plane,
and the limits are defined by some general aperture S located in the plane. One can see that
Eq. (4.6.3) is really the expression of the Huygens principle in mathematical form. Indeed� QE .x1, y1, z1/ dx1dy1

	
Œexp �.jkr/� =r represents the Huygens’ wavelet originating from the

elemental area dx1dy1 around P1 and the field at point P is obtained by summing the wavelets
coming from all points in the plane z D z1. The term cos 
 is the so-called obliquity factor,
the need for which was recognized by Fresnel. The .j=�/ term in front of the integral is a
normalization factor which arises from a detailed treatment of the theory. It indicates that
the Huygens wavelets have a 
=2 phase-shift compared to the beam which is incident at
z D z1 plane.

We will now consider the E-field solutions either in differential [Eq. (4.6.2)] or integral
forms [Eq. (4.6.3)], within the paraxial wave approximation where the wave is assumed to be
propagating at a small angle, 
 , to the z-direction. In this case we can write

QE.x, y, z/ D u.x, y, z/ exp �.jkz/ (4.6.4)

FIG. 4.13. Field calculation u.P/ at plane z> z1, when the field profile u.P1/, at plane z D z1, is known.
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where u is a slowly varying function, i.e., varying little on a wavelength scale, in z coordinate.
Under the paraxial approximation, the substitution of Eq. (4.6.4) into Eq. (4.6.2) gives

r2?u � 2jk
@u

@z
D 0 (4.6.5)

where r2
? D .@2=@ x2/C .@2=@ y2/. Equation (4.6.5) is the paraxial wave equation.

To obtain an approximate form of Eq. (4.6.3), under the paraxial wave approximation,
we write cos 
 Š 1 and r D z � z1 in the amplitude factor of the spherical wavelet. In con-
sidering approximation of the phase factor, �kr, we must be more careful, however. In fact,
consider, for instance, a distance r Š 1 m and assume that this distance is evaluated with
an accuracy of 	r D 1 μm. For the amplitude factor, this would give the very good relative
accuracy of	r=r D 10�6. The phase accuracy, however, would be 	�D k	r D 2
	r=� and
for �D 1 μm, it would give 	�D 2
 , an unacceptable level of accuracy as, for example, a
phase change 	�D
 changes the sign of the entire phase term in the integral. Thus a better
accuracy is needed for the phase term in Eq. (4.6.3). To this purpose we write the distance r

between points P1 and P of Fig. 4.13 as r D �
.z � z1/

2 C .x � x1/
2 C .y � y1/

2
	1=2

. Under the
paraxial wave approximation one has Œjx � x1j, jy � y1j�� jz � z1j. We can therefore write

r D .z � z1/

�
1 C .x � x1/

2 C .y � y1/
2

.z � z1/2

� 1=2

Š .z � z1/C .x � x1/
2 C .y � y1/

2

2.z � z1/

(4.6.6)

The substitution of Eq. (4.6.6) into the phase term of Eq. (4.6.3) then gives

QE.x, y, z/ D j exp �jk.z � z1/

�.z � z1/

“
QE .x1, y1, z1/ exp �jk

�
.x � x1/

2 C .y � y1/
2

2.z � z1/

�
dx1dy1

(4.6.7)

which is the Huygens-Fresnel-Kirchoff integral in the so-called Fresnel approximation. The
substitution of Eq. (4.6.4) into Eq. (4.6.7) then gives

u.x, y, z/ D j

�L

“
s

u.x1, y1, z1/ exp �jk

"
.x � x1/

2 C .y � y1/
2

2L

#
dx1dy1 (4.6.8)

where we have put L D z � z1. Equation (4.6.8) provides a solution for the E-field in inte-
gral form within the paraxial wave approximation while (4.6.5) gives the same solution in
differential form. It can be shown, however, that the two forms are completely equivalent.

We next consider wave propagation, within the paraxial approximation, through a general
optical system described by the ABCD matrix of sect. 4.2. With reference to Fig. 4.14, we let
u.x1, y1, z1/ and u.x, y, z/ be the field amplitudes at planes z D z1 and z D z just before and
after the optical system, respectively. We also assume that the Huygens principle applies to a
general optical system of Fig. 4.14 provided that no field-limiting apertures are present in the
optical system. This would for instance imply that any lens or mirror within the optical system
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FIG. 4.14. Field calculation, u.x, y, z/, at plane z after an optical system described by the ABCD matrix, when the
field profile, u.x1, y1, z1/ at plane z D z1 is known.

has an “infinite” aperture i.e. an aperture much wider than the transverse dimensions of the
field�. According to this extension of the Huygens principle to a general optical system, the
field u.x, y, z/ is obtained by the superposition of the individual wavelets emitted from plane
z D z1 and transmitted through this system. One then obtains.7/

u.x, y, z/ D 1

B�

“
s

u.x1, y1, z1/ exp �jk

"
A


x2

1 C y2
1

�C D


x2 C y2

�� 2x1x � 2yy1

2B

#
dx1dy1

(4.6.9)

which constitutes a generalization of Eq. (4.6.8). Obviously, for free space we have (see
Table 4.1) A D D D 1 and B D L and Eq. (4.6.9) reduces to Eq. (4.6.8).

4.7. GAUSSIAN BEAMS

We now go on to discuss a very important class of E-field solutions, commonly called
Gaussian beams. The properties of these beams, in the paraxial wave approximation, could be
derived either via the paraxial wave equation Eq. (4.6.5) or via the Fresnel-Kirchoff integral in
the Fresnel approximation [see Eqs. (4.6.8) and (4.6.9)]. We will follow the integral approach
since it proves to be more useful also for describing the properties of optical resonators, to be
discussed in the next Chapter.

4.7.1. Lowest-Order Mode

Consider a general optical system described by its corresponding (ABCD) matrix (see
Fig. 4.14). We may ask the following question: is there any solution of Eq. (4.6.9) that retains
its functional form as it propagates? In other words, is there any eigensolution of Eq. (4.6.9)?
An answer is readily obtained if we assume that there is no limiting aperture in the z D z1

� For “finite” apertures of the optical system, diffraction effects would be produced at these apertures thus sizeably
changing the transmitted field.
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plane so that the double integral of Eq. (4.6.9) can be taken between �1 and C1 for both
x1 and y1 variables. In this case we can readily show by direct substitution in Eq. (4.6.9) that

u.x, y, z/ / exp �jk
�


x2 C y2
�
=2q

	
(4.7.1)

where q D q.z/ is a complex parameter (often called the complex beam parameter of a
Gaussian beam), is an eigensolution of Eq. (4.6.9). If we write, in fact,

u .x1, y1, z1/ / exp �jk
�


x2
1 C y2

1

�
=2q1

	
(4.7.2)

we get from Eq. (4.6.9)

u.x, y, z/ D 1

A C .B=q1/
exp �jk

x2 C y2

2q
(4.7.3)

where q is related to q1 by the very simple law

q D A q1 C B

C q1 C D
(4.7.4)

Equation (4.7.4) is a very important relation, known as the ABCD law of Gaussian beam
propagation. It bears an obvious similarity to Eq. (4.2.19) which shows how the radius of
curvature of a spherical wave is transformed by an optical system. We will come back to this
equation in sect. 4.7.3. for a deeper discussion.

We now go on to discuss a physical interpretation of the Gaussian solution of Eq. (4.7.1).
For this we use Eqs. (4.7.1) and (4.6.4) and write

QE / exp �jk

�
z C x2 C y2

2q

�
(4.7.5)

Consider now a spherical wave with center at coordinates x D y D z D 0. Its field at point
P.x, y, z/ can be written as QE / Œexp �jk R� =R, where R is the wave’s radius of curva-
ture. Within the paraxial approximation, following a similar argument to that in Eq. (4.6.6),
we write

R Š z C x2 C y2

2 R
(4.7.6)

and the field of the spherical wave transforms to

QE / exp �jk

�
z C x2 C y2

2 R

�
(4.7.7)

A comparison of Eq. (4.7.7) with Eq. (4.7.5) then shows that the Gaussian beam can be looked
upon as a spherical wave of complex radius of curvature, q. To understand the meaning of this
complex beam parameter we separate the real and imaginary part of 1=q, i.e. we write

1

q
D 1

R
� j

�


 w2
(4.7.8)
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FIG. 4.15. Field profile of, (a), the lowest order and, (b), next order Gaussian mode.

The substitution of Eq. (4.7.8) into Eq. (4.7.5) then gives

QE.x, y, z/ / exp �x2 C y2

w2
� exp �jk

�
z C x2 C y2

2R

�
(4.7.9)

The amplitude factor on the right hand side of Eq. (4.7.9) i.e. u0 D exp �Œ.x2 C y2/=w2�

is plotted in Fig. 4.15a vs r=w, where r D Œx2 C y2�1=2 is the radial beam coordinate. One sees
that the maximum value is reached at r D 0 and that, for r D w, one has u0 D 1=e. The quantity
w therefore defines the transverse scale of the beam and is called the beam spot size (at the
z-position considered). One can also notice that, since the beam intensity is given by I / j QEj2,
we have I D Imax exp �Œ2.x2 C y2/=w2�. If we define the spot size of the intensity profile, wI

as the value at which I D Imax=e, we then have wI D w=
p

2. Generally, when referring to a
beam spot size, it is the field spot size, w, that is implied rather than the intensity spot size.
Note that the intensity I reduces to 1=e2 of its maximum at a radial distance of one field’s
spot size. We now turn our attention to the phase factor in Eq. (4.7.9). A comparison with
Eq. (4.7.7), which applies to a spherical wave, shows that the two expressions are identical.
This leads us to identify R, in Eq. (4.7.8), as the radius of curvature of the spherical wavefront
of the Gaussian beam. To see this better, consider the equiphase surface of the Gaussian beam
which intercepts the z axis at a given position z0. The x, y, z coordinates of this surface must
then satisfy the relation kz C k.x2 C y2/=2R D kz0, which gives

z D z0 � x2 C y2

2 R
(4.7.10)

Equation (4.7.10) thus shows that the equiphase surface is a paraboloid of revolution around
the z-axis. It can be shown further that the radius of curvature of this paraboloid at x D y D 0,
i.e. on the beam axis, is just equal to R. This demonstrates rather clearly why, within the
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paraxial wave approximation, the phase terms of the spherical wave, Eq. (4.7.7), and Gaussian
beam, Eq. (4.7.9), are the same.

4.7.2. Free Space Propagation

Consider the propagation of the Gaussian beam of Eq. (4.7.1) along the positive z-
direction without any restricting aperture in the x or y direction (i.e. in free-space). From
Eq. (4.7.4) with A D D D 1 and B D z we get

q D q1 C z (4.7.11)

Assume that at z D 0 one has R D 1. We then write

.1=q1/ D �j


�=
w2

0

�
(4.7.12)

where w0 is the spot size at z D 0. We now write Eq. (4.7.11) as .1=q/D 1=.q1 C z/, substitute
1=q from Eq. (4.7.8), and 1=q1 from Eq. (4.7.12), and separate the real and imaginary parts
of the resulting equation. After some straightforward algebraic manipulation one arrives at
the expressions for the spot size, w, and radius of curvature, R, of the equiphase surfaces, at
z-coordinate, as

w2.z/ D w2
0

"
1 C

�
� z


 w2
0

�2
#

(4.7.13a)

R.z/ D z

"
1 C

�

 w2

0

� z

�2
#

(4.7.13b)

From Eqs. (4.7.3) and (4.7.12) we also write

u.x, y, z/ D
"

1

1 � j


�z =
 w2

0

�
#

exp �jk
x2 C y2

2 q
(4.7.14)

The complex factor in brackets in Eq. (4.7.14) can now be expressed in terms of its
amplitude and phase. Using also the expression Eq. (4.7.8) for .1=q/, we get the expression
for the field amplitude as

u.x, y, z/ D w0

w
exp �x2 C y2

w2
exp �jk

x2 C y2

2 R
exp j� (4.7.15)

where

� D tan�1

�
�z


 w2
0

�
(4.7.15a)

Equation (4.7.15) together with the expression for w.z/, R.z/, and �.z/ given by
Eqs. (4.7.13) and (4.7.15a), solve our problem completely. One can see from Eq. (4.7.13)



154 4 � Ray and Wave Propagation Through Optical Media

that w, R, and � (and hence the field distribution) depend only on w0 (for given � and z). This
can be readily understood when we notice that, once w0 is known, the field distribution at
z D 0 is known. In fact we know its amplitude, since the field distribution is a Gaussian func-
tion with spot size w0, and its phase, since we have assumed R D 1 for z D 0. Once the field at
z D 0 is known, the corresponding field at z> 0 is uniquely established as it can be calculated
by means, for instance, of the Fresnel-Kirchoff integral Eq. (4.6.8). Again using Eq. (4.7.11),
one can show that Eq. (4.7.13) holds also for negative z-values i.e. for forward propagation
toward rather than from the z D 0 plane. It should finally be noted that, if we define

zR D 
 w2
0 = � (4.7.16)

where zR is called the Rayleigh range (whose significance will be discussed later), Eq. (4.7.13)
can be put in the more suggestive form

w2.z/ D w2
0

�
1 C .z=zR/

2
	

(4.7.17a)

R.z/ D z
�
1 C .zR=z/2

	
(4.7.17b)

�.z/ D tan�1 .z=zR/ (4.7.17c)

Equation (4.7.15) together with Eq. (4.7.17) are the final results of our calculations. One sees
that u.x, y, z/ is made up of a the product of an amplitude factor, .w0=w/ exp � �.x2 C y2/=w2

	
,

with a transverse phase factor, exp �jk
�
.x2 C y2/=2 R

	
, and a longitudinal phase factor exp i�.

The physical meaning of these factors will now be discussed in some detail.
The amplitude factor in Eq. (4.7.15) shows that the beam, while propagating (both for

z> 0 and z< 0), retains its Gaussian shape but its spot size changes according to Eq. (4.7.17a).
One thus sees that w2.z/ can be written as the sum of w2

0 and .�z=
w0/
2, a term arising from

beam diffraction. A plot of the normalized spot size, w=w00 vs the normalized propagation
length, z=zR, is shown as a solid line in Fig. 4.16a for z> 0. For z< 0, the spot size is readily
obtained from the same figure since w.z/ is a symmetric function of z. Thus the minimum spot
size occurs at z D 0 (hence referred to as the beam waist) and, for z D zR, one has w D p

2w0.
The Rayleigh range is thus the distance from the beam waist to where the spot has increased

FIG. 4.16. Normalized values of the beam spot size, w, (a) and radius of curvature of the equiphase surface, R, (b),
vs normalized values of the propagation length, z.
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FIG. 4.17. Beam profile, continuous curves, and equiphase surfaces, dashead curves, for a TEM00 Gaussian mode.

by a factor
p

2. One can also observe that, for z ! 1 (i.e., for z � zR), one can write

w � w0 z=zR D � z =
 w0 (4.7.18)

Equation (4.7.18) is also plotted as dashed line in Fig. 4.16a. At large distances, w increases
linearly with z, hence one can define a beam divergence, due to diffraction, as 
d D w=z and
thus get


d D �=
 w0 (4.7.19)

The physical reason for the presence of the quantity w0=w in the amplitude factor of
Eq. (4.7.15) is also readily understood when one observes that, since the medium is assumed
to be lossless, the total beam power must be the same at any plane z. This requires thatR R juj2dxdy be independent of z. Now, it is just the presence of the quantity w0=w.z/ that
ensures that this condition holds. In fact, using Eq. (4.7.15), we can write

“
j u j2 dxdy D 


w2
0=2

� Z C1

�1
exp


��2
�

d�
Z C1

�1
exp


��2
�

d� (4.7.20)

where �D p
2x=w and �D p

2 y=w. By inspection, one can confirm that
R R juj2dxdy is

independent of z.
Let us now consider the transverse phase factor of Eq. (4.7.15). According to the discus-

sion of the previous section, it indicates that for z> 0 the beam acquires, due to propagation,
an approximately spherical wavefront with a radius of curvature R. A plot of the normalized
radius of curvature, R=zR vs the normalized variable, z=zR, is shown in Fig. 4.16b for z> 0.
For z< 0, the radius of curvature is readily obtained from the same figure since R.z/ is an
antisymmetric function of z. One sees that R ! 1 for z D 0, while R reaches its minimum
value for z D zR. For z � zR one has R � z and the equation R D z is also plotted as dashed line
in Fig. 4.16b. Thus the wavefront is plane at z D 0 and, at large distances, increases linearly
with z, just as for a spherical wave, being plane again at z D ˙ 1.

Lastly, we consider the longitudinal phase factor of Eq. (4.7.15). Using Eq. (4.6.4) one
sees that the Gaussian beam has, besides the phase shift �k z of a plane wave, an additional
term �.z/ which changes from �.
=2/ to .
=2/ on going from z � � zR to z � zR.

The results of Fig. 4.16 can be put together in a suggestive form as in Fig. 4.17, where the
dimensions of the beam profile 2w.z/, are shown as solid curves and the equiphase surfaces
as dashed lines. The beam is seen to have a minimum dimension in the form of a “waist” at
z D 0. Therefore, the corresponding spot size, w0, is usually called the spot size at the beam
waist or waist spot size. It should also be noted that, according to the convention used for the
sign of wavefront curvature, since R> 0 for z> 0 and R< 0 for z< 0, the center of curvature
is to the left of the wavefront for z> 0 and to the right of the wavefront for z< 0.
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4.7.3. Gaussian Beams and the ABCD Law.8/

The propagation of a Gaussian beam through a general medium described by an ABCD
matrix is given by Eq. (4.7.3). The solution, for a given ABCD matrix, then depends only on
the complex beam parameter q whose expression, in terms of the matrix elements, is given
by Eq. (4.7.4). This is a very important law of Gaussian beam propagation and it is often
referred to as the ABCD – law of Gaussian beams. Its usefulness was already proved for
the case of free-space propagation considered in the previous section. In this section we will
further illustrate the importance of this law in some other examples which are somewhat more
complex.

Example 4.5. Gaussian beam propagation through a thin lens. Consider a thin lens of focal length f .
According to Eq. (4.7.4), the complex beam parameters just before, q1, and just after the lens, q2, are seen
to be related by

1

q2
D C C .D=q1/

A C .B=q1/
(4.7.21)

With the help of the matrix elements of a lens given in Table 4.1, we then get

1

q2
D �1

f
C 1

q1
(4.7.22)

Using Eq. (4.7.8) to express both 1=q1 and 1=q2, we can separately equate the real and imaginary parts of
Eq. (4.7.22) to obtain the following relations between the spot sizes and the radii of curvature before and
after the lens:

w2 D w1 (4.7.23a)

1

R2
D 1

R1
� 1

f
(4.7.23b)

The physical relevance of Eq. (4.7.23) can now be discussed in connection with Fig. 4.18. Considering
first Eq. (4.7.23a), one immediately see that its physical meaning is obvious since, for a thin lens, the
beam amplitude distributions immediately before and after the lens must be the same i.e., there cannot
be a discontinuous change of spot size (see Fig. 4.18a). To understand the meaning of Eq. (4.7.23b),
consider first the propagation of a spherical wave through the same lens (Fig. 4.18b). Here a spherical
wave originating from a point source P1 is focused by the lens to the image point P2. The radii of curvature
R1 and R2 just before and after the lens will, in this case, be related by Eq. (4.2.20). A spherical lens can
then be seen to transform the radius of curvature R1 of an incoming wave to a radius R2 of the outgoing
wave according to Eq. (4.2.20). Since this is expected to occur irrespective of the transverse amplitude
distribution, Eq. (4.2.20) is expected to hold also for a Gaussian beam, as indeed Eq. (4.7.23b) indicates.
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FIG. 4.18. Propagation through a lens of: (a) a Gaussian beam; (b) a spherical wave.

Example 4.6. Gaussian beam focusing by a thin lens. Consider now a Gaussian beam, with spot size w01

and with plane wavefront, entering a lens of focal length f (i.e., the beam waist is located at the lens). We
are interested in calculating the beam waist position after the lens and its spot-size value w02. According to
Eq. (4.2.4) and Eq. (4.2.6), the transmission matrix for a lens of focal length, f , followed by a free-space
length, z, is given by

ˇ̌̌
ˇ 1 � z=f z

�1=f 1

ˇ̌̌
ˇ (4.7.24)

The complex beam parameter, q2, after this combination of lens plus free-space can again be obtained from
Eq. (4.7.21) where the A,B,C,D elements are obtained from Eq. (4.7.24) and where .1=q1/ is given by

.1=q1/ D �j�=
 w2
01 D �j=zR1 (4.7.25)

with zR1 being the Rayleigh range corresponding to the spot-size w01. If now the coordinate zm after the
lens corresponds to the position where the beam waist occurs, then, according to Eq. (4.7.8), 1=q2 must
also be purely imaginary. This means that the real part of the right hand side of Eq. (4.7.21) must be zero.
With the help of Eq. (4.7.24) and Eq. (4.7.25) we then readily find that zm is given by

zm D f=
h
1 C .f=zR1/

2
i

(4.7.26)

Thus one sees, perhaps with some surprise, that the distance zm from the lens, at which the minimum spot
size occurs, is always smaller than the focal distance f . It should be noted, however, that, under typical
conditions one usually has zR1 � f , so that zm � f . By equating the imaginary parts of both sides of
Eq. (4.7.21) and using Eqs. (4.7.24) and (4.7.25) again, the spot size at the focal plane, w02, is obtained as

w02 D � f=
 w01

h
1 C .f=zR1/

2
i1=2

(4.7.27)

Again for zR1 � f we obtain from (4.7.27)

w02 � � f =
 w01 (4.7.28)
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4.7.4. Higher-Order Modes

We now return to the problem considered in sect. 4.7.1 and ask ourselves whether there
are other eigensolutions of Eq. (4.6.8), for free-space, or of Eq. (4.6.9) for a general optical
system. The answer is again positive and one can show that a particularly useful set of eigen-
solutions can be written as the product of a Hermite polynomial with a Gaussian function. In
fact, with reference to Fig. 4.14, let us assume that

u.x1, y1, z1/ D Hl

hp
2x1=w1

i
Hm

hp
2y1=w1

i
exp

��jk


x2

1 C y2
1

�
=2q1

	
(4.7.29)

where Hl and Hm are Hermite polynomials of order l and m, q1 is the complex beam parameter
at z D z1 and w1 is the corresponding spot size. Substitution of Eq. (4.7.29) in the right hand
side of Eq. (4.6.9) gives

u.x, y, z/ D
�

1

A C .B=q1/

� 1ClCm

Hl

 p
2x

w

!
Hm

 p
2y

w

!
� exp �jk



x2 C y2

�
2q

(4.7.30)

where q is the complex beam parameter after the optical system of Fig. 4.14 as given by
Eq. (4.7.4), and w is the corresponding spot size.

For free space propagation, if we let the z1 plane be the waist plane then one has
q1 D j
w2

0=�, where w0 is the spot size at the beam waist. On substituting the previous
expression for q1 into Eq. (4.7.30) and using Eq. (4.7.8) we obtain

ul,m.x, y, z/ D .w=w0/Hl
�
21=2x=w

	
Hm

�
21=2y=w

	
exp

�� 
x2 C y2
�
=w2

	
� exp

˚�j
�
k


x2 C y2

�
=2R

	C j.1 C l C m/�
� (4.7.31)

where � is again given by Eq. (4.7.15a) and where, using Eq. (4.7.11) to obtain q D q.z/, it is
seen that w and R are again given by Eqs. (4.7.13a) and (4.7.13b).

The lowest order mode is obtained from Eq. (4.7.31) on setting l D m D 0. Since the
Hermite polynomial of zeroth order is a constant, Eq. (4.7.31) reduces to the Gaussian solution
already discussed in sect. 4.7.1. [see Eq. (4.7.15)]. This solution is called the TEM00 mode,
where TEM stands for Transverse Electric and Magnetic (within the paraxial approximation
both the electric and magnetic fields of the e.m. wave are approximately transverse to the
z-direction) and where the indices 00 indicate zeroth order polynomials for both Hl and Hm

in Eq. (4.7.31). The radial intensity profile of a TEM00 Gaussian mode, at any z-coordinate,
will then be I00.x, y/ / ju00j2 / exp

��2.x2 C y2/=w2
	

and will only depend on the radial
coordinate r D .x2 C y2/1=2. The mode thus corresponds to a circular spot [Fig. 4.19].

The next higher order mode is obtained from Eq. (4.7.31) by setting l D 1 and m D 0
(or l D 0 and m D 1). Since H1 .x/ / x, the field amplitude is now given by ju10j / x �
exp � �.x2 C y2/=w2

	
. Thus, at a given x, the field profile will be described by a Gaussian

function [see Fig. 4.15a] along the y-coordinate while, at a given y, it is described by the
function x exp � 
x2=w2

�
along the x-coordinate. This function, normalized to its peak value,

is plotted vs x/w in Fig. 4.15b. This mode is called TEM10 and a picture of the corresponding
intensity profile is shown in Fig. 4.19. The TEM01 Œl D 0 and m D 1�, is obtained simply by
rotating the picture of the TEM10 mode in Fig. 4.19 by 90ı.
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FIG. 4.19. Intensity patterns of some low-order Gaussian modes.

Two pictures of still higher order modes are also indicated in the figure. We note here
the general result that the indices l and m give the number of zeros of the field (other than the
zeros occurring at x D ˙ 1 and y D ˙ 1) along the x and y axes, respectively.

4.8. CONCLUSIONS

In this chapter a few topics from geometrical and wave optics which constitute a very
useful background to the topics on optical resonators considered in next chapter, have been
discussed. We have found, in particular, that the transformation effected on a ray of an optical
element (such as an isotropic material, a thin lens, a spherical mirror etc.) can be described
by a simple 2 � 2 matrix. The same matrix has also been found to describe the propagation of
a Gaussian beam. A rather basic description of multilayer dielectric coatings and a somewhat
more detailed discussion of a Fabry-Perot interferometer have also been presented.

PROBLEMS

4.1. Show that the ABCD matrix for a ray entering a spherical dielectric interface from a medium of
refractive index n1 to a medium of refractive index n2 is

ˇ̌̌
ˇ̌
ˇ

1 0
n2 � n1

n2

1

R

n1

n2

ˇ̌̌
ˇ̌
ˇ

where R is the radius of curvature of the spherical surface (R> 0 if the center is to the left of the
surface).
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4.2. Considering a thin lens of refractive index n2 as a sequence of two, closely spaced, spherical
dielectric interfaces of radii R1 and R2 and using the result of Problem 4.1, show that its focal
length is given by the relation

1

f
D n2 � n1

n1

�
� 1

R1
C 1

R2

�

where n1 is the refractive index of the medium surrounding the lens.

4.3. A Fabry-Perot interferometer is made up of two identical mirrors with the same power reflectivity,
R D 0.99, and same fractional internal power loss, A D 0.005. Calculate the peak transmission and
the finesse of the interferometer.

4.4. A Fabry-Perot interferometer, made up of two identical mirrors, air-spaced by a distance L, is
illuminated by a monochromatic e.m. wave of tunable-frequency. From the measurement of the
transmitted intensity versus the frequency of the input wave one finds that the free spectral range
of the interferometer is 3 � 109 Hz and its resolution is 60 MHz. Calculate the spacing L of the
interferometer, its finesse and the mirror reflectivity. If the peak transmission is 50%, calculate
also the mirror loss.

4.5. A Fabry-Perot interferometer, made up of two identical mirrors air-spaced by a distance L, is
illuminated by a 1-ps pulse from an external source at the wavelength λ Š 600 nm. The output
beam is observed to be made of a regular sequence of 1-ps pulses spaced by 10 ns. The energy of
the pulses decreases exponentially with time with a time constant of 100 ns. Calculate the cavity
length and the mirror reflectivity.

4.6. By direct substitution of Eq. (4.7.2) into the right hand side of Eq. (4.6.9) show that the double
integral appearing in Eq. (4.6.9), when taken between �1 and C1, gives Eq. (4.7.3) where q is
related to q0 by Eq. (4.7.4).

4.7. A positive lens of focal length f is placed at a distance d from the waist of a TEM00 beam, of waist
spot size w0. Derive the expression for the focal length f (in terms of w0 and d) that is required in
order that the beam, leaving the lens, has a plane wavefront.

4.8. Show that the power contained in a TEM00 Gaussian beam of spot size w is given by
P D �

� w2=2
�

Ip where Ip is the peak .r D 0/ intensity of the beam.

4.9. A given He-Ne laser, oscillating in a pure Gaussian TEM00 mode at λ D 632.8 nm with an output
power of P D 5 mW is advertised as having a far-field divergence angle of 1 mrad. Calculate the
spot size, the peak intensity and the peak electric field at the waist position.

4.10. The beam of an Ar laser, oscillating in a pure Gaussian TEM00 mode at λ D 514.5 nm with an
output power of 1 W, is sent to a target at a distance of 100 m from the beam waist. If the spot
size at the beam waist is w0 D 2 mm, calculate, at the target position, the spot size, the radius of
curvature of the phase front and the peak intensity.

4.11. Consider a TEM00 Gaussian beam of spot size w1 entering a lens of diameter D and focal length f .
To avoid excessive diffraction effects at the lens edge, due to truncation of the Gaussian field by the
lens, one usually chooses the lens diameter according to the criterion D � 2.25 w1. Assume that:
(i) the equality holds in the previous expression; (ii) the waist of the incident beam is located at the
lens, i.e. w1 D w01; (iii) f � zR1 D�w2

01=�; (iv) Eq. (4.7.27) is still valid. Under these conditions,
express the minimum spot size after the lens as a function of the lens numerical aperture N.A.
[N.A. D sin � , where � D tan�1.D=f /, so that, for small � , N.A. Š .D=f /].
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4.12. Suppose that a TEM00 Gaussian beam from a Ruby laser .�D 694.3 nm/ is transmitted through a
1 m diameter diffraction-limited telescope to illuminate a spot on the face of the moon. Assuming
an earth-moon distance of z Š 348,000 km and using the relation D D 2.25 w01 between telescope
objective diameter and beam spot size (see previous problem) calculate the beam spot size on the
moon (distortion effects from the atmosphere can be important, but are neglected here).

4.13. A Gaussian beam of waist spot size w0 is passed through a solid plate of transparent material of
length, L, and refractive index n. The plate is placed just in front of the beam waist. Using the
ABCD law of Gaussian beam propagation, show that the spot size and radius of curvature of the
phase front after the plate are the same as for propagation, in a vacuum, over a distance L0 D L=n.
According to this result, is the far-field divergence angle affected by the insertion of the plate?

4.14. From Eq. (4.7.26) show that a Gaussian beam of waist spot size w01 cannot be focused at a distance
larger than zR1=2, where zR1 D� w2

01=�. What is the focal length corresponding to this maximum
focusing condition?
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5

Passive Optical Resonators

5.1. INTRODUCTION

This chapter deals with the theory of passive optical resonators i.e. where no active
medium is present within the cavity. The most widely used laser resonators have either plane
or spherical mirrors of rectangular (or, more often, circular) shape, separated by some dis-
tance L. Typically, L may range from a few centimeters to a few tens of centimeters, while
the mirror dimensions range from a fraction of a centimeter to a few centimeters. Laser res-
onators thus differ from those used in the microwave field (see e.g. Sect. 2.2.1) in two main
respects: (1) The resonator dimensions are much greater than the laser wavelength. (2) Res-
onators are usually open, i.e. no lateral surfaces are used. The resonator length is usually much
greater than the laser wavelength because this wavelength usually ranges from a fraction of a
micrometer to a few tens of micrometers. A laser cavity with length comparable to the wave-
length would then generally have too low a gain to allow laser oscillation. Laser resonators
are usually open because this drastically reduces the number of modes which can oscillate
with low loss. In fact, with reference to example 5.1 to be considered below, it is seen that
even a narrow linewidth laser such as a He-Ne laser would have a very large number of modes
.�109/ if the resonator were closed. By contrast, on removing the lateral surfaces, the number
of low-loss modes reduces to just a few (�6 in the example). In these open resonators, in fact,
only the very few modes corresponding to a superposition of waves traveling nearly parallel
to the resonator axis will have low enough losses to allow laser oscillation.

According to the previous discussion, it is seen that open resonators have inevitably some
losses due to diffraction of the e.m. field, which leads to some fraction of the energy leaving
the sides of the cavity (diffraction losses). Strictly speaking, therefore, the mode definition
given in Sect. 2.2.1 cannot be applied to an open resonator and true modes (i.e. stationary
configurations) do not exist for such a resonator. In what follows, however, we shall see that
standing-wave configurations having very small losses do exist in open resonators. We will
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therefore define, as a mode, an e.m. configuration whose electric field can be written as

E.r, t/ D E0u.r/ exp Œ.�t=2� c/C j! t� (5.1.1)

Here �c (the decay time of the square of the electric field amplitude) is called the cavity photon
decay time.

Of the various possible resonators we make particular mention of the following types:

a. Plane – Parallel (or Fabry–Perot) Resonator. This consists of two plane mirrors set parallel
to one another. To a first approximation the modes of this resonator can be thought of as
the superposition of two plane e.m. waves propagating in opposite directions along the
cavity axis, as shown schematically in Fig. 5.1a. Within this approximation, the resonant
frequencies can be readily obtained by imposing the condition that the cavity length L must
be an integral number of half-wavelengths, i.e. L D n�=2, where n is a positive integer.
This is a necessary condition for the electric field of the e.m. standing wave to be zero on
the two mirrors. It then follows that the resonant frequencies are given by

� D n.c=2L/ (5.1.2)

It is interesting to note that the same expression Eq. (5.1.2) can also be obtained by impos-
ing the condition that the phase shift of a plane wave due to one round-trip through the
cavity must equal an integral number times 2
 , i.e. 2kL D 2n
 . This condition is read-
ily obtained by a self-consistency argument. If the frequency of the plane wave is equal
to that of a cavity mode, the phase shift after one round trip must be zero (apart from an
integral number of 2
) since only in this case will the amplitudes at any arbitrary point,
due to successive reflections, add up in phase so as to give an appreciable total field. Note
that, according to Eq. (5.1.2), the frequency difference between two consecutive modes,
i.e. modes whose integers differ by one, is given by

	� D c=2L (5.1.3)

This difference is called the frequency difference between two consecutive longitudinal
modes with the word longitudinal used because the number n indicates the number of
half-wavelengths of the mode along the laser resonator, i.e. longitudinally.

FIG. 5.1. (a) Plane-parallel resonator; (b) concentric resonator.
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FIG. 5.2. Confocal resonator.

b. Concentric (or Spherical) Resonator. This consists of two spherical mirrors having the
same radius R and separated by a distance L such that the mirror centers of curvature
C1 and C2 are coincident (i.e. L D 2R) (Fig. 5.1b). The geometrical-optics picture of the
modes of this resonator is also shown in the figure. In this case the modes are approximated
by a superposition of two oppositly traveling spherical waves originating from the point C.
The application of the above self-consistency argument again leads to Eq. (5.1.2) as the
expression for the resonant frequencies and to Eq. (5.1.3) for the frequency difference
between consecutive longitudinal modes.

c. Confocal Resonator (Fig. 5.2). This consists of two spherical mirrors of the same radius
of curvature R and separated by a distance L such that the mirror foci F1 and F2 are coin-
cident. It then follows that the center of curvature C of one mirror lies on the surface of
the second mirror (i.e. L D R). From a geometrical-optics point of view, we can draw any
number of closed optical paths of the type shown in Fig. 5.2 by changing the distance of
the two parallel rays from the resonator axis C1C2. Note also that the direction of the rays
can be reversed in Fig. 5.2. This geometrical optics description, however, does not give any
indication of what the mode configuration will be, and we shall see that in fact this con-
figuration cannot be described either by a purely plane or a purely spherical wave. For the
same reason, the resonant frequencies cannot be readily obtained from geometrical-optics
considerations.

Resonators formed by two spherical mirrors of the same radius of curvature R and sep-
arated by a distance L such that R < L < 2R (i.e. somewhere between the confocal and
concentric conditions) are also often used. In addition, we can have L > R. For these cases it
is not generally possible to use a ray description in which a ray retraces itself after one or a
few passes.

All of these resonators can be considered as particular examples of a general resonator
consisting of two either concave .R > 0/ or convex .R < 0/ spherical mirrors, of different
radius of curvature, spaced by some arbitrary distance L. These various resonators can be
divided into two categories, namely, stable resonators and unstable resonators. A resonator
will be described as unstable when an arbitrary ray, in bouncing back and forth between the
two mirrors, will diverge indefinitely away from the resonator axis. An obvious example of
an unstable resonator is shown in Fig. 5.3. Conversely, a resonator for which the ray remains
bounded will be described as a stable resonator.
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FIG. 5.3. Example of an unstable resonator.

FIG. 5.4. (a) Simplest three-mirror ring resonator. (b) Folded ring resonator.

A particularly important class of laser resonator is the ring resonator where the path
of the optical rays is arranged in a ring configuration (Fig. 5.4a) or in a more complicated
configuration such as the folded configuration of Fig. 5.4b. In both cases the resonance
frequencies can be obtained by imposing the condition that the total phase shift along the
ring path of Fig. 5.4a or along the closed-loop path of Fig. 5.4b (continuous paths) be
equal to an integral number of 2
 . We then readily obtain the expression for the resonance
frequencies as

� D nc=Lp (5.1.4)

where Lp is the perimeter of the ring or the length of the closed-loop path of Fig. 5.4b,
and n is an integer. Note that the arrows of the continuous paths of Fig. 5.4 can in general
be reversed which means that e.g. in Fig. 5.4a the beam can propagate either clockwise or
anticlockwise. Thus, in general, a standing wave pattern will be formed in a ring resonator.
One can see, however, that, if a unidirectional device is used, allowing the passage of e.g.
only the right to left beam in Fig. 5.4a (optical diode, see Sect. 7.8.2.2. for more details),
then only the clockwise propagating beam can exist in the cavity. So the concepts of a cav-
ity mode and cavity resonance frequency are not confined to standing-wave configurations.
Note also that ring resonators can be either of the stable (such as in Fig. 5.4) or unstable
configuration.
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5.2. EIGENMODES AND EIGENVALUES.1/

Example 5.1. Number of modes in closed and open res-
onators. Consider a He-Ne laser oscillating at the wave-
length of � D 633 nm, with a Doppler-broadened gain
linewidth of 	��

0 D 1.7 � 109 Hz. Assume a resonator
length L D 50 cm and consider first an open resonator.
According to Eq. (5.1.3) the number of longitudinal
modes which fall within the laser linewidth is Nopen D
2L	��

0 =c Š 6. Assume now that the resonator is closed
by a cylindrical lateral surface with a cylinder diameter
of 2a D 3 mm. According to Eq. (2.2.16) the number
of modes of this closed resonator which fall within the
laser linewidth 	��

0 is Nclosed D 8
�2V	��
0 =c3, where

� D c=� is the laser frequency and V D 
 a2L is the res-
onator volume. From the previous expressions and data
we readily obtain Nclosed D .2
 a=�/2 Nopen Š 1.2 �
109 modes.

Consider a general two-mirror res-
onator, (Fig. 5.5a), consisting of two spher-
ical mirrors of different radius of curvature
(either positive or negative) spaced by a dis-
tance L and which may be either stable or
unstable. Assume that a beam of general
shape is launched in the cavity starting from
e.g. mirror 1 and consider its propagation
back and forth in the cavity. This propagation
can be regarded as equivalent to that occur-
ring in the periodic lens-guide structure of
Fig. 5.5b with the same beam traveling in
one direction, e.g. along the positive direction
of the z-axis. One should note that the focal
lengths f1 and f2 in Fig. 5.5b are related to
the radii of curvature R1 and R2 of Fig. 5.5a
by the well known relations f1 D R1=2 and
f2 D R2=2. It should also be noted that the
two diaphragms, 1 and 2, of diameter 2a1 and 2a2 situated after the corresponding lenses in
Fig. 5.5b, simulate the apertures of the two mirrors of Fig. 5.5a. Now let QE.x1, y1, 0/ be the
complex field amplitude of the beam at some given point having transverse co-ordinates x1

and y1 at diaphragm 1, whose longitudinal co-ordinate is taken to be z D 0. The field ampli-
tude QE.x, y, 2L/ after one lens-guide period, i.e. at z D 2L, can be calculated, once QE.x1, y1, 0/
and the lens-guide geometry (i.e. the quantities f1, f2, a1, a2 and L) are specified. For this cal-
culation one can use e.g. the Huyghens–Fresnel propagation equation (see Sect. 4.6). The
calculation can become somewhat involved for finite values of the apertures 2a1 and 2a2, as
we shall see in Sect. 5.5.2. The calculation can be even more involved if one needs to con-
sider the case of some additional optical elements (e.g. a lens or a sequence of lenses) being
located within the cavity of Fig. 5.5a. In general, as a consequence of the linearity of the

FIG. 5.5. (a) General two-mirror resonator. (b) Lens-guide structure equivalent to the resonator of (a).
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Huyghens–Fresnel equation with respect to the field amplitudes, one can write

QE.x, y, 2L/ D .exp �2jkL/
“
1

K.x, y, x1, y1/ QE .x1, y1, 0/ dx1dy1 (5.2.1)

where the double integral is taken over the aperture 1 at the input plane .z D 0/ and where K
is a function of the transverse co-ordinates of both input .z D 0/ and output .z D 2L/ planes,
being known as the propagation kernel. A few examples of this kernel will be considered in
Sect. 5.5.2. One can see however that, if QE.x1, y1, 0/ were a bidimensional Dirac ı-function
centered at co-ordinates x0

1, y0
1 i.e. if QE .x1, y1, 0/ D ı



x1 � x0

1, y1 � y0
1

�
, then from Eq. (5.2.1)

one would have QE.x, y, 2L/ D exp.�2jkL/ k


x, y; x0

1, y0�. Thus, apart from the phase factor
exp.�2jkL/, the kernel K.x, y, x1, y1/ represents the field at the output plane generated by a
point-like source located at co-ordinates x1, y1 in the input plane.

Instead of considering a general beam propagating in the lens-guide structure of Fig. 5.5b
let us now consider a beam whose transverse structure corresponds to that of a cavity mode
of Fig. 5.5a. In this case, for self-consistency, the field must reproduce its shape after one
lens-guide period. More precisely we require

QE.x, y, 2L/ D Q� exp .�2jkL/ QE .x, y, 0/ (5.2.2)

where the constant Q� is generally complex since the propagation kernel K is itself a complex
function. We can therefore write

Q� D j Q� j exp j� (5.2.3)

where the amplitude j Q� j is expected to be smaller than one as a result of beam attenuation, due
to diffraction losses. The phase � then gives the additional contribution to the round trip (or
single-period of the lens-guide) phase-shift besides the obvious one, i.e. �2 kL, arising from
the free-space propagation of a plane wave over the distance 2L. According to Eqs. (5.2.2)
and (5.2.3) the total single-period phase shift is

�� D �2kL C � (5.2.4)

If the left hand side of Eq. (5.2.1) is now replaced by the right hand side of Eq. (5.2.2) one
obtains

Q� QE.x, y, 0/ D
“

K.x, y, x1, y1/ QE.x1, y1, 0/ dx1 dy1 (5.2.5)

which represents a Fredholm homogeneous integral equation of the second kind. Its eigenso-
lutions, QElm.x, y, 0/, if any exists, will give the field distributions which are self-reproducing
after each period of the lens-guide structure of Fig. 5.5b. Therefore, they will also describe
the field distributions over the mirror aperture for the cavity modes of Fig. 5.5a. Each solution
in the infinite set of eigenstates is distinguished by a pair of integers, l and m. Accordingly,
the corresponding eigenvalue will be indicated as Q�lm.
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From the above discussion, the eigenvalues Q�lm are seen to be such that j Q�lmj2 gives the
factor by which the beam intensity is changed as a result of one round trip. Since this change
is due to diffraction losses, we must then have j Q�lmj2 < 1j thus the quantity

�l m D 1 � j Q�l m j 2 (5.2.6)

gives the round-trip fractional power loss due to diffraction. One can also see that, according
to Eq. (5.2.4), ��lm D �2 kL C �lm is the corresponding round-trip phase shift. For the field
to be self-reproducing, we must then require that 	�lm D �2
 n, where n is an integer. We
thus get �2kL C �lm D �2πn, and, with the substitution k D 2π�=c, we obtain the cavity
resonance frequencies as

�lmn D c

2L

�
n C �lm

2


�
(5.2.7)

Note that we have indicated explicitly that these frequencies are dependent on the values of
the three numbers l, m, and n. The integers l and m represent the order of the eigensolution
in Eq. (5.2.5) while the integer number n specifies the total phase shift of the beam, after one
round trip, in units of 2π (i.e. n D ���lm=2
).

As a conclusion of this section we can say that the eigenmodes and the eigenvalues
of our problem can be obtained upon solving the integral equation Eq. (5.2.5). In fact, its
eigensolutions, QElm, give the field of the eigenmodes at all point in a given plane. For each
mode QElm, the corresponding eigenvalue Q�lm then gives: (a) The round-trip diffraction loss,
�lm, through its magnitude j Q�lmj [see Eq. (5.2.6)]. (b) The resonance frequency, �lmn, through
its phase, �lm [see Eq. (5.2.7)].

5.3. PHOTON LIFETIME AND CAVITY Q

Consider a given mode of a stable or unstable cavity and assume, for generality, that
some losses other than diffraction losses are also present. For instance one may have mirror
losses as a result of mirror reflectivity being smaller than unity. One may also have scattering
losses in some optical element within the cavity. Under these conditions we want to calculate
the rate of energy decay in the given cavity mode. To this purpose, let I0 be the initial intensity
corresponding to the field amplitude QE.x1, y1, 0/ at a given transverse coordinate x1, y1. Let
R1 and R2 be the (power) reflectivities of the two mirrors and Ti the fractional internal loss
per pass due to diffraction and any other internal losses. The intensity I.t1/ at the same point
x1, y1 at a time t1 D 2L=c, i.e. after one cavity round trip, will be

I.t1/ D R1 R2.1 � Ti/
2 I0 (5.3.1)

Note that, since Ti is defined here as the fractional internal loss per pass, the intensity is
reduced by a factor .1 � Ti/ in a single pass and hence by a factor .1 � Ti/

2 in a double pass
(round trip). The intensity, at the same transverse co-ordinate, after m round trips, i.e. at time

tm D 2mL=c (5.3.2)
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is then

I.tm/ D ŒR1R2.1 � Ti/
2�m I0 (5.3.3)

Let now �.t/ be the total number of photons in the given cavity mode at time t. Since the
mode retains its shape after each round trip, we can set �.t/ / I.t/. From Eq. (5.3.3) we can
then write

�.tm/ D �
R1 R2 .1 � Ti/

2	m
� 0 (5.3.4)

where �0 is the number of photons initially present in the cavity. We can also set

�.tm/ D Œexp.�t=�c/��0 (5.3.5)

where �c is a suitable constant. In fact, a comparison of Eqs. (5.3.5) with (5.3.4) with the help
of Eq. (5.3.2) shows that

exp .� 2mL=c �c/ D �
R1 R2 .1 � Ti/

2	m
(5.3.6)

from which one finds that �c is independent of the number of round trips, m, and is given by

�c D �2 L=c ln
�
R1 R2.1 � Ti/

2
	

(5.3.7)

If we now assume that Eq. (5.3.5) holds, not only at times tm, but also at any time t .>0/, we
can then write

�.t/ Š exp .�t=�c/ �0 (5.3.8)

Example 5.2. Calculation of the cavity photon lifetime.
We will assume R1 D R2 D R D 0.98 and Ti Š 0. From
Eq. (5.3.7) we obtain �c D �T=Œ� ln R� D 49.5 �T , where
�T is the transit time of the photons for a single-pass in
the cavity. From this example we note that the photon life-
time is much longer than the transit time, a result which is
typical of low loss cavities. If we now assume L D 90 cm,
we get �T D 3 ns and �c Š 150 ns.

In this way, we justify the assumption
Eq. (5.1.1) for the mode field and iden-
tify Eq. (5.3.7) as the expression for the
cavity photon lifetime. One can notice that
Eq. (5.3.7), with the help of Eqs. (1.2.4)
and (1.2.6), can readily be transformed to

�c D L=c� (5.3.9)

We thus see that the cavity photon lifetime
is just equal to the transit time �T D L=c of the beam in the laser cavity divided by the
(logarithmic) cavity loss � .

Having calculated the photon lifetime, the time behavior of the electric field, at any point
inside the resonator can, according to Eq. (5.1.1) and within the scalar approximation, be
written as E.t/ D QE exp Œ.�t=2�c/C j!t�, where ! is the angular resonance frequency of
the mode. The same time behavior then applies for the field of the output wave leaving the
cavity through one mirror as a result of finite mirror transmission. If we now take the Fourier
transform of this field, we find that the power spectrum of the emitted light has a Lorentzian
line shape with linewidth (FWHM) given by

��c D 1=2
 �c (5.3.10)
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Example 5.3. Linewidth of a cavity resonance. If we take
again R1 D R2 D 0.98 and Ti D 0, from Eqs. (5.3.10) and
(5.3.7) we get	�c Š 6.4307�10�3�.c=2L/, while from
Eq. (4.5.12) we get 	�c Š 6.4308 � 10�3 � .c=2L/. For
the particular case L D 90 cm, we then obtain 	�c Š
1.1 MHz. Even at the relatively low reflectivity values of
R1 D R2 D 0.5, the discrepancy is not large. In fact from
Eqs. (5.3.10) and (5.3.7) we get 	�c Š 0.221 � .c=2L/,
while from Eq. (4.5.12) 	�c Š 0.225 � .c=2L/. Again
for L D 90 cm we then obtain 	�c Š 37.5 MHz. Thus,
in typical cases, 	�c may range from a few to a few tens
of MHz.

It should be noted that the spectrum of the
emitted light, obtained in this way, does not
exactly agree with the transmission spectrum
shown for a Fabry–Perot interferometer in
Sect. 4.5, whose shape is not Lorentzian [see
Eq. (4.5.6)]. In particular, the expression for
	�c obtained here [see Eq. (5.3.10)], when
combined with Eq. (5.3.7) with Ti Š 0, does
not coincide with that obtained in Sect. 4.5
[see Eq. (4.5.12) with L0 D L]. This discrep-
ancy can be traced back to the approximation
made in writing Eq. (5.3.8). In numerical
terms, however, the discrepancy between the
two results is quite small, especially at high
values of reflectivity, as can be seen from the following example. From now on we will there-
fore assume that the cavity line shape is Lorentzian with width given by Eq. (5.3.10) and that
the cavity photon lifetime is given by Eq. (5.3.7).

Having discussed the cavity photon lifetime, we can now introduce the cavity quality
factor, or Q factor, and derive its relation to the photon lifetime. For any resonant system, and
in particular for a resonant optical cavity, one defines the cavity Q factor (usually abbreviated
to cavity Q) as Q D 2
(energy stored)/(energy lost in one cycle of oscillation). Thus a high
value of cavity Q implies low losses of the resonant system. Since, in our case, the energy
stored is �hv and the energy lost in one cycle is h�.�d�=dt/.1=�/ D �hd�=dt, we have

Q D �2
��=.d�=dt/ (5.3.11)

From Eq. (5.3.8) we then get

Q D 2
��c (5.3.12)

Example 5.4. Q-factor of a laser cavity According to
example 5.2 we will again take �c Š 150 ns and assume
� Š 5 � 1014 Hz (i.e. � Š 630 nm). From Eq. (5.3.12) we
obtain Q D 4.7 � 108. Thus, very high Q-values can be
achieved in a laser cavity and this means that a very small
fraction of the energy is lost during one oscillation cycle

which, with the help of Eq. (5.3.10), can be
transformed to the more suggestive form

Q D �=��c (5.3.13)

Thus the cavity Q factor can be interpreted as
the ratio between the resonance frequency, �,
of the given mode and its linewidth, ��c.

5.4. STABILITY CONDITION

Consider first a general two-mirror resonator (Fig. 5.6a) and a ray leaving point P0 of a
plane ˇ inside the resonator e.g. just in front of mirror 1. This ray, after reflection from mirrors
2 and 1, will intersect the plane ˇ at some point P1. If we let r0 and r1 be the transverse
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FIG. 5.6. (a) Stability analysis of a two-mirror resonator. (b) Stability analysis of a general resonator described by
the ABCD matrix.

coordinates of P0 and P1 with respect the resonator axis and r0
0 and r0

1 the angles that the
corresponding rays make with the axis, then according to Eq. (4.2.2) we can write

ˇ̌
ˇ̌ r1

r0
1

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ A B

C D

ˇ̌
ˇ̌
ˇ̌
ˇ̌ r0

r0
0

ˇ̌
ˇ̌ (5.4.1)

where the ABCD matrix is the cavity round trip matrix. The ray leaving point P1


r1, r0

1

�
will,

after one round trip, intersect the plane ˇ at point P2


r2, r0

2

�
given by

ˇ̌̌
ˇ r2

r0
2

ˇ̌̌
ˇ D

ˇ̌̌
ˇ A B

C D

ˇ̌̌
ˇ
ˇ̌̌
ˇ r1

r0
1

ˇ̌̌
ˇ D

ˇ̌̌
ˇ A B

C D

ˇ̌̌
ˇ

2 ˇ̌̌
ˇ r0

r0
0

ˇ̌̌
ˇ (5.4.2)

Therefore, after n round trips, the point Pn.rn, r0
n/ is given by

ˇ̌
ˇ̌ rn

r0
n

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ A B

C D

ˇ̌
ˇ̌ n ˇ̌ˇ̌ r0

r0
0

ˇ̌
ˇ̌ (5.4.3)

For the resonator to be stable, we require that, for any initial point .r0, r0
0/, the point .rn, r0

n/

should not diverge as n increases. This means that the matrix

ˇ̌
ˇ̌ A B

C D

ˇ̌
ˇ̌ n

must not diverge as n increases.
The previous considerations can be readily extended to a general resonator whose round

trip ray transformation is described by a general ABCD matrix e.g. a two-mirror resonator
containing some other optical elements such as lenses, telescopes etc. (see Fig. 5.6b). In
this case we again require that the n-th power of the ABCD matrix does not diverge as n
increases.
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For both resonators shown in Fig. 5.6a, b the ray starts from and arrives at the same plane
ˇ, which means that the refractive index is the same for both rays, input, r0, and output, r1. It
then follows that the determinant of the matrix, AD-BC, has unit value. A theorem of matrix
calculus,.2/ sometimes referred to as Sylvester’s theorem, then shows that, if we define an
angle 
 by the relation

cos 
 D .A C D/=2 (5.4.4)

one has

ˇ̌
ˇ̌ A B

C D

ˇ̌
ˇ̌ n

D 1

sin 


ˇ̌
ˇ̌ A sin n
 � sin.n � 1/
 B sin n


C sin n
 D sin n
 � sin.n � 1/


ˇ̌
ˇ̌ (5.4.5)

Equation (5.4.5) shows that the n-th power matrix does not diverge if 
 is a real quan-
tity. Indeed, if 
 were complex, say 
 D a C ib, the terms proportional to e.g. sin n
 in
Eq. (5.4.5) could be written as sin n
 D Œexp.jn
/ C exp.�jn
/�=2j D Œexp.jna � nb/ C
exp.�jna C nb/�=2j. The quantity sin n
 would then contain a term growing exponentially
with n, e.g. Œexp.�jna C nb/�=2j for b > 0, and the overall n-th power matrix would thus
diverge as n increases. So, for the resonator to be stable, we require 
 to be real and, according
to Eq. (5.4.4), this implies that

�1 <

�
A C D

2

�
< 1 (5.4.6)

Equation (5.4.6) establishes the stability condition for the general resonator of Fig. 5.6b.
In the case of the two-mirror resonator of Fig. 5.6a we can go one step further by explic-
itly calculating the corresponding ABCD matrix. We recall that a given overall matrix can be
obtained by the product of matrices of the individual optical elements traversed by the beam,
with the matrices written down in the reverse of the order in which the ray propagates through
the corresponding elements. Thus, in this case, the ABCD matrix is given by the ordered prod-
uct of the following four matrices: (1) Reflection from mirror 1, (2) free-space propagation
from mirror 1 to 2, (3) reflection from mirror 2, (4) free-space propagation from mirror 2 to
1. With the help of Table 4.1 we then have

ˇ̌
ˇ̌ A B

C D

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ 1 0

�2=R1 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ 1 L

0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ 1 0

�2=R2 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ 1 L

0 1

ˇ̌
ˇ̌ (5.4.7)

After performing the matrix multiplication of Eq. (5.4.7), we obtain

A C D

2
D 1 � 2 L

R1
� 2 L

R2
C 2 L2

R1 R2
(5.4.8)

Equation (5.4.8) can be readily transformed to

A C D

2
D 2

�
1 � L

R1

��
1 � L

R2

�
� 1 (5.4.9)
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FIG. 5.7. g1, g2 stability diagram for a general spherical resonator. The stable region corresponds to the shaded parts
of the figure. The dashed curves correspond to the possible confocal resonators.

It is now customary to define two dimensionless quantities for the cavity, called the g1 and g2

parameters, and defined as

g1 D 1 � .L=R1/ (5.4.10a)

g2 D 1 � .L=R2/ (5.4.10b)

In terms of these parameters, the stability condition of Eq. (5.4.6), with the help of Eq. (5.4.9),
readily transforms to the very simple relation

0 < g1g2 < 1 (5.4.11)

The stability condition Eq. (5.4.11) can be conveniently displayed in the g1, g2 plane
[Fig. 5.7]. For this purpose we have plotted in Fig. 5.7, as heavy lines, the two branches of
the hyperbola corresponding to the equation g1g2 D 1. Since the other limiting condition in
Eq. (5.4.11), namely g1g2 D 0, implies either g1 D 0 or g2 D 0, one can readily see that the
stable regions in the g1, g2 plane correspond to the shaded area of the figure. A particularly
interesting class of two mirror resonators is that corresponding to points on the straight line AC
making an angle of 45ı with the g1 and g2 axes. This line corresponds to resonators having
mirrors of the same radius of curvature (symmetric resonators). As particular examples of
these symmetric resonators, we notice that those corresponding to points A, B and C of the
figure are the concentric, confocal, and plane resonators, respectively. Therefore all three
of these resonators lie on the boundary between the stable and unstable regions. For these
resonators, only some particular rays, e.g. rays normal to the plane mirrors in Fig. 5.1a, do not
diverge during propagation. For this reason, these resonators are also said to be marginally
stable and, in general, the conditions g1g2 D 0 or g1g2 D 1 are described as being of marginal
stability.
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5.5. STABLE RESONATORS

To greatly simplify our analysis we will first consider a resonator with no limiting
aperture. We will then briefly consider the effects of a finite aperture.

5.5.1. Resonators with Infinite Aperture.3,4/

With reference to Fig. 5.6b for a general resonator and to 5.5a for a two-mirror resonator
we will assume no limiting aperture i.e. we will take a1 D a2 D 1 in Fig. 5.5a. The field
distribution u.x, y, z/ after one cavity round trip of Fig. 5.5a or after one period of the lens-
guide system of Fig. 5.5b i.e. at z D 2L, can be obtained from Eq. (4.6.9) with z1 D 0,
where the ABCD matrix is the one-round-trip (or one-period) matrix. If we now take, at the
z1 D 0 plane, QE .x1, y1, 0/ D u .x1, y1, 0/, then, within the paraxial wave approximation and
according to Eq. (4.6.4), we can write QE.x, y, 2L/ D u.x, y, 2L/ exp .�2jkL/. On inserting, into
this relation, the expression for u.x, y, z/ given by Eq. (4.6.9) we get

QE.x, y, 2L/ D exp .�2 jkL/

C1Z
�1

C1Z
�1

�
i

B�

�
exp

� jK

"
A


x1

2 C y1
2
�C D.x2 C y2/� 2 x1 x � 2 y1 y

2 B

#

� QE.x1, y1, 0/dx1dy1 (5.5.1)

A comparison of Eqs. (5.5.1) with (5.2.1) then shows that the propagation kernel
K.x, y; x1, y1/, is given, in this case, by

K D
�

j

B�

�
exp �jk

"
A


x1

2 C y1
2
�C D



x2 C y2

� � 2 x1 x � 2 y1 y

2 B

#
(5.5.1a)

As explained in Sect. 4.7, the lowest order Gaussian solution, Eq. (4.7.1), and the gen-
eral solution for higher order, Eq. (4.7.30), are eigensolutions of the propagation equation,
Eq. (4.6.9), when no aperture is present within the optical system described by the given
ABCD matrix. For these Hermite–Gaussian eigensolutions to describe the field distribution of
the cavity eigenmodes, we must now require that the beam reproduces itself after one round
trip. This means that if we let q1 be the complex beam parameter of the Gaussian beam leaving
plane ˇ in front of e.g. mirror 1 of Fig. 5.8a, the complex beam parameter q after one round-
trip must be equal to q1. From the ABCD law of Gaussian beam propagation Eq. (4.7.4), if we
set q1 D q, we obtain

q D Aq C B

Cq C D
(5.5.2)

The q parameter must then satisfy the quadratic equation

Cq2 C .D � A/q � B D 0 (5.5.3)
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FIG. 5.8. (a) Calculation of the q-parameter for a two-mirror resonator. (b) Spot size and equiphase surfaces in a two
mirror-resonator. (c) Transformation of a two-mirror resonator into a resonator with plane end-mirrors. (d) General
resonator with two plane end-mirrors.

Since q must be a complex quantity one can see from the standard solution of a quadratic
equation that the discriminant of Eq. (5.5.3) must be negative i.e.

.D � A/2 C 4BC < 0 (5.5.4)

Since however AD � BC D 1, Eq. (5.5.4) readily gives .D C A/2 < 4, i.e. the same condi-
tion given by Eq. (5.4.6). This means that a Gaussian beam solution can only be found for
stable resonators or, alternatively, that all stable resonators with infinite aperture have modes
described by the general Hermite–Gaussian solution of Eq. (4.7.30).

5.5.1.1. Eigenmodes

Consider first the two-mirror resonator of Fig. 5.8b. To obtain an expression for the com-
plex amplitude distribution, u.x, y, z/, at e.g. mirror 1 one just needs to calculate the complex
beam parameter q, obtained as a solution of Eq. (5.5.3), for given values of the matrix elements
A,B,C, and D. Having calculated the q-parameter, one obtains the real and imaginary parts of
1=q from which, in accordance with Eq. (4.7.8), the spot size, w and the radius of curvature
of the wavefront, R, at the given position, are obtained. One can proceed in a similar way for
calculating w and R at any position within the resonator including mirror 2 (Fig. 5.8b). For
these calculations it is convenient to transform the resonator of Fig. 5.8b into that of Fig. 5.8c
where e.g. the spherical mirror of radius R1 is substituted by a combination of a plane mirror
plus a thin lens of focal length f1 D R1.� The resonator of Fig. 5.8c is then seen to belong to a

� The fact that we are considering here an equivalent lens of focal length f1 D R1 while the focal length of the
equivalent lens-guide structure was f1 D R1=2 (see Fig. 5.5b) may generate some confusion. One should note,
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general class of resonators consisting of two plane mirrors and containing an optical element
whose single-pass propagation matrix from mirror 1 to mirror 2 will be represented by the
matrix elements A1, B1, C1 and D1 (Fig. 5.8d).

To obtain q from Eq. (5.5.3) we need to calculate the round-trip matrix for the general
resonator of Fig. 5.8d. To this purpose we see that, according to Eq. (4.2.17), the matrix
for a single-pass backwards, i.e. propagation from mirror 2 to mirror 1, is simply obtained
from the A1B1C1D1 matrix by interchanging the elements A1 and D1. We also notice that the
matrix of a plane mirror is readily obtained from that of a spherical mirror (see Table 4.1)
by letting R ! 1. One then sees that the matrix of a plane mirror is simply the unit
matrix ˇ̌

ˇ̌ 1 0
0 1

ˇ̌
ˇ̌

The round trip matrix, starting from mirror 1, is then simply given by

ˇ̌
ˇ̌ A B

C D

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ D1 B1

C1 A1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ A1 B1

C1 D1

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ 2A1D1 � 1 2B1D1

2A1C1 2A1D1 � 1

ˇ̌
ˇ̌ (5.5.5)

From Eq. (5.5.5) one sees immediately that A D D and from Eq. (5.5.3) one then gets

q D q1 D j

r
� B

C
D j

s
�B1D1

A1C1
(5.5.6a)

It should be noted that one can readily show that the stability condition Eq. (5.4.6) implies
B1D1=A1C1 < 0. This means that q1 is purely imaginary i.e. that the equiphase surface just in
front of mirror 1 (see Fig. 5.8c, d) is plane. One could repeat the same argument starting from
mirror 2 and shows that

q2 D j

s
� A1B1

C1D1
(5.5.6b)

Since again A1B1=C1D1 D .A1=B1/
2.B1D1=A1C1/ < 0, q2 is also purely imaginary and

the wavefront at mirror 2 is again plane. This means that the wavefront radius of curvature,
after e.g. lens f1 in Fig. 5.8c or in front of mirror 1 in Fig. 5.8b, is equal to R1 and a similar
argument applies for mirror 2. So, we reach the general conclusion that the equiphase surface
on a cavity mirror always coincides with the mirror surface. This result can be understood
from e.g. Fig. 5.8b where the field corresponding to the given eigenmode is considered in
terms of a superposition of traveling waves. Then e.g. the right-traveling wave in Fig. 5.8b
(indicated by left-to-right arrows) must transfer, upon reflection at mirror 2, into the left-
traveling wave (indicated by right-to-left arrows). In geometrical optics terms, this implies
that the propagating rays at mirror 2 must be orthogonal to the mirror surface. This means
that the wavefront, being always orthogonal to these rays, must be coincident with the mirror
surface at the mirror location.

however, that, due to the reflection at the plane mirror of Fig. 5.8c, the lens f1 in the figure is traversed twice by
the beam and its effect is thus equivalent to a single lens of overall focal length f1=2.
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The general results of Eqs. (5.5.6) can now be specialized to the two-mirror resonator.
With reference to Fig. 5.8c we notice that, in propagating from mirror 1 to mirror 2, the
beam passes through lens f1, then through a free-space of length L and then a lens f2. The
A1, B1C1, D1 matrix is then simply obtained from the product of the corresponding three matri-
ces with written order inverse to the propagation order. Using the matrices of Table 4.1, it is
then a simple matter to show that

ˇ̌
ˇ̌ A1 B1

C1 D1

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ g1 L

� .1 � g1g2/ =L g2

ˇ̌
ˇ̌ (5.5.7)

where g1 and g2 are given by Eqs. (5.4.10). From Eq. (5.5.6a) with the help of Eqs. (4.7.8)
and (5.5.7) we then get

w1 D
�

L�




�1=2 � g2

g1 .1 � g1g2/

�1=4

(5.5.8a)

Similarly, starting from Eq. (5.5.6b), we obtain

w2 D
�

L�




�1=2 � g1

g2 .1 � g1g2/

�1=4

(5.5.8b)

which can be obtained straightforwardly from Eq. (5.5.8a) by interchanging the indices 1
and 2. Starting from the spot size w01 D w1 of Fig. 5.8c, one can then calculate the spot size,
w0, at the beam waist using Eq. (4.7.27) with f D f1 and w02 D w0. We obtain

w0 D
�

L�




�1=2 � g1 g2 .1 � g1g2/

.g1 C g2 � 2g1g2/
2

�1=4

(5.5.9)

Again, knowing the spot size, w1, on mirror 1, one can obtain the waist distance from that
mirror upon using the expression for zm given by Eq. (4.7.26) with the substitutions f D f1 D
R1 and zR1 D 
 w2

01=�.
For a symmetric resonator one has R1 D R2 D R and g1 D g2 D g D 1 � .L=R/ and

both Eqs. (5.5.8a) and (5.5.8b) reduces to

w D
�

L�




�1=2 � 1

1 � g2

�1=4

(5.5.10a)

while Eq. (5.5.9) gives

w0 D
�

L�




�1=2 � 1 C g

4 .1 � g/

�1=4

(5.5.10b)
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Example 5.5. Spot sizes for symmetric resonators The first case we shall consider is that of a confocal
resonator, for which one has g D 0. From Eqs. (5.5.10 a and b) we get, respectively,

wc D .L�=
/1=2 , w0c D .L�=2
/1=2 (5.5.11)

where the suffix c stands for confocal. Equation (5.5.11) show that the spot size at the beam waist is, in
this case,

p
2 smaller than that at the mirrors (Fig. 5.9a). For the case of a near-plane resonator, i.e. when

R � L, we can write g D 1 � " where " is a small, positive quantity. Neglecting higher order terms in ",
we get from Eq. (5.5.10)



wnp=wc

� Š 

w0np=wc

� Š .1=2"/1=4 (5.5.12)

where the suffix np stands for near-plane and where the spot sizes have been normalized to the mirror
spot size of a confocal resonator. Equation (5.5.12) show that, to first order, the two spot sizes are equal
and thus the spot size is nearly constant over the length of the resonator (Fig. 5.9b). For the case of a near
concentric resonator, i.e. when L Š 2R, we can write g D �1 C " where again " is a small, positive
quantity. Neglecting terms of higher order in " we get from Eq. (5.5.10)

.wnc=wc/ D .1=2"/1=4 .w0nc=wc/ D ."=8/1=4 (5.5.13)

where the suffix nc stands for near-concentric. Equation (5.5.13) show that the mirror spot size is given
by the same expression, as a function of ", as that for a near-plane resonator. The spot size at the beam
waist, however, is now much smaller and it decreases with decreasing values of ". The spot size behavior
along the resonator is then as shown in Fig. 5.9c. Numerically, if we take L D 1 m and � D 514 nm (an
Argon laser wavelength) we get wc Š 0.4 mm for a confocal resonator. If we now consider a near plane
resonator, still with L D 1 m and � D 514 nm and with R D 10 m, we get g D 0.9 and, from Eq. (5.5.10)
we obtain wo Š 0.59 mm and w Š 0.61 mm. One should note the small values of beam spot size obtained
in each case.

FIG. 5.9. Spot-size behavior in symmetric resonators: (a) confocal; (b) near-plane; (c) near-concentric.
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5.5.1.2. Eigenvalues

A comparison of Eqs. (4.7.29) with (4.7.30) shows that, if the ABCD matrix corresponds
to the cavity round-trip matrix and if q D q1, the field amplitude u.x, y, 2L/ after one round
trip is equal to the initial field u.x1 D x, y1 D y, z1 D 0/ except for the amplitude factor
1= ŒA C .B=q/�1ClCm. According to Eq. (5.2.2) it then follows that

Q�lm D 1

ŒA C .B=q/�1ClCm
(5.5.14)

From Eq. (5.5.3) we see that, since A D D, one has

q D j
p�B=C (5.5.15)

If we now write

� D A C .B=q/ (5.5.16)

from Eq. (5.5.16), with the help of Eq. (5.5.15), we get j� j2 D A2 � BC D AD � BC D 1.
From Eq. (5.5.14) it then follows that the magnitude of Q�lm is also unity and, according to
Eq. (5.2.6), the diffraction loss, �lm, vanishes. This result is actually to be expected from our
analysis since we stipulated at the outset that there were no limiting aperture (Fig. 5.8d) and
considered, in particular, a two-mirror resonator with infinite mirror size (Fig. 5.8c).

To obtain an expression for the phase of the eigenvalue, Q�lm, we write

� D exp �j� (5.5.17)

From Eqs. (5.5.17) and (5.5.16), with the help of Eqs. (5.5.15) and (5.5.5) we get

cos� D A D 2A1D1 � 1 (5.5.18a)

sin � D B
p�C=B D 2B1D1

p�A1C1=B1D1 (5.5.18b)

From Eq. (5.5.18b) we see that 0 < � < 
 for B1D1 > 0 and �
 < � < 0 for B1D1 < 0.
From Eq. (5.5.18a) we get cos2.�=2/ D .1 C cos�/=2 D A1D1 and hence

� D 2 cos�1 ˙
p

A1D1 (5.5.19)

where the positive or negative signs hold depending on weather B1D1 is positive or negative.
From Eqs. (5.5.14), (5.5.16), and (5.5.17) we obtain Q�lm D exp j.1 C l C m/φ D exp j�lm

where �lm D .1 C l C m/�. From Eqs. (5.5.19) and (5.2.7) we then obtain

�lmn D c

2L

�
n C .1 C l C m/



cos�1 ˙

p
A1D1

�
(5.5.20)

the C or � signs again depending on whether B1D1 is positive or negative.
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For the particular case of a two-mirror resonator, the matrix elements A1 and D1 are
obtained from Eq. (5.5.7). Equation (5.5.20) then transforms to

�lmn D c

2L

�
n C 1 C l C m



cos�1 ˙ p

g1g2

�
(5.5.21)

and, according to Eq. (5.5.7), the C or � sign is chosen according to whether g2 (and hence
g1) is positive or negative.

Example 5.6. Frequency spectrum of a confocal resonator For a confocal resonator one has g1 D g2 D 0
and from Eq. (5.5.21) we get

�lmn D c

4L
Œ2n C .1 C l C m/� (5.5.22)

The corresponding frequency spectrum is shown in Fig. 5.10a. One can observe that modes having the
same value of 2n C l C m have the same resonance frequency although they correspond to different spa-
tial configurations. These modes are said to be frequency-degenerate. It is also seen that, instead of the
simple expression given by Eq. (5.1.2) for a plane parallel resonator, the frequency spacing between
consecutive modes is now c=4L. The two consecutive modes, however, need to have different .l, m/
values and c=4L is seen to correspond to the frequency difference between two consecutive transverse
modes [e.g. .n, 0, 0/ ! .n, 0, 1/]. On the other hand, the frequency spacing between two modes with the
same .l, m/ values (e.g. TEM00) and with n differing by 1 (i.e. the frequency spacing between adjacent
longitudinal modes) is still c=2L, the same as for the plane parallel resonator.�

Example 5.7. Frequency spectrum of a near-planar and symmetric resonator In this case one has g1 D
g2 D g D 1 � .L=R/, with L=R � 1. Thus g is positive and slightly less than unity. Accordingly one has
cos�1 g D cos�1Œ1 � .L=R/� Š .2L=R/1=2 and Eq. (5.5.21) becomes

�lmn D c

2L

"
n C .1 C l C m/




�
2L

R

�1=2
#

(5.5.23)

The corresponding frequency spectrum is shown in Fig. 5.10b. One can see that the frequency spac-
ing between consecutive longitudinal modes is again c=2L, while the frequency difference between two
consecutive transverse modes is .c=2L/ .2L=
2R/1=2.

* The usage of the terms “longitudinal mode” and “transverse mode” in the laser literature has sometimes been
rather confusing, and can convey the (mistaken) impression that there are two distinct types of modes, viz.,
longitudinal modes (sometimes called axial modes) and transverse modes. In fact any mode is specified by three
numbers, e.g., n, m, l of (5.5.24). The electric and magnetic fields of the modes are nearly perpendicular to the
resonator axis. The variation of these fields in a transverse direction is specified by l, m while field variation in a
longitudinal (i.e., axial) direction is specified by n. When one refers, rather loosely, to a (given) transverse mode,
it means that one is considering a mode with given values for the transverse indices .l, m/, regardless of the value
of n. Accordingly a single transverse mode means a mode with a single value of the transverse indexes .l, m/. A
similar interpretation can be applied to the “longitudinal modes”. Thus two consecutive longitudinal modes mean
two modes with consecutive values of the longitudinal index n [i.e., n and .n C 1/ or .n � 1/.
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FIG. 5.10. (a): Mode spectrum of a confocal resonator. (b): Mode spectrum of a near-plane resonator.

5.5.1.3. Standing- and Traveling-Waves in a Two-Mirror Resonator

Following the discussion presented in the previous two sections about spot sizes and
resonance frequencies in a general resonator, we are now ready to present a description of the
corresponding behavior of the mode along the laser cavity. We will limit our discussion to a
two-mirror resonator. The field inside this resonator, according to Eqs. (4.7.31) and (4.6.4),
can be written as:

QElmn.x, y, z/ D wo

w
Hl

"p
2 x

w

#
Hm

"p
2 y

w

#
exp

�
�x2 C y2

w2

�
(5.5.24a)

� exp Œ�jkz C j.1 C l C m/�� (5.5.24b)

� exp
��jk.x2 C y2/=2R

	
(5.5.24c)

where w.z/, R.z/, and φ.z/ are given by Eqs. (4.7.17) and can be calculated once the waist
position and the corresponding spot size, w0, are known. One should observe that the field
eigenmode QE has been explicitly indicated to be dependent of the three subscripts l, m and
n. The subscripts l and m come from the order of the Hermite polynomials involved in
Eq. (5.5.24a). The subscript n is also explicitly indicated since k D 2
�=c and the reso-
nant frequency depends on the three indices l, m and n [see Eq. (5.5.21)]. An interesting
interpretation of these indices is as follows: (1) The indices l and m give the field nulls along
the x and y axis, respectively, as already pointed out in Sect. 4.7.4. (2) The index n, following
the discussion in Sect. 5.1, gives the number of half-wavelengths of the standing wave mode
along the resonator, i.e. it gives the number of field nulls along the z-direction.

To conclude this section, we consider the question of whether Eq. (5.5.24) represents
a traveling or standing wave pattern for the field eigenmode. The answer depends on the
form of the time behavior of the mode. If, according to Eq. (4.6.1) we write E D QE exp.j!t/
where ! D !lmn D 2
�lmn is the angular frequency of the mode resonance, then, from
the longitudinal phase factor of Eq. (5.5.24b) we get, taking the example of a TEM00 mode,
E / exp jŒ�kz C�C!t� which corresponds to a wave propagating in the positive z-direction.
If, on the other hand, we write E D QE exp.�j!t/, we obtain a wave propagating in the negative
z-direction. The standing-wave eigenmode is then obtained by the sum of these two waves, i.e.
upon writing E D QE cos!t. Following the above argument one then realizes that, apart from a
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proportionality factor given by the mirror’s transmission, E D QE exp.j!t/ also represents the
wave escaping through mirror 2 and propagating in the positive z-direction.

5.5.2. Effects of a Finite Aperture

In Sect. 5.5.1.2 it was shown that, for a general resonator with no limiting aperture such
as that of Fig. 5.8d, the diffraction loss vanishes. Indeed, to calculate these losses, one must
take into account the actual size of any apertures present in the resonator (often a diaphragm
is inserted in the resonator or the aperture is set by the transverse dimension of the active
medium). The loss introduced by a finite aperture can, in fact, be appreciated with the help of
Fig. 5.11 where a TEM00 mode is considered and where we indicate the transverse profile of
this mode over the plane containing the aperture of diameter 2a. The Gaussian TEM00 mode
is seen to be truncated by this aperture and the dashed wings of the beam are therefore lost
each time the beam passes through the aperture. This description is, however, an approximate
one because, in fact, the introduction of a limiting aperture significantly modifies the field
distribution, which would then no longer be precisely Gaussian.

To perform a correct and accurate calculation, we must return to the original integral
equation, Eq. (5.2.5), and take into account there the finite size of the aperture. In the discus-
sion that follows, we will limit ourselves to considering a two-mirror resonator, assuming the
limiting aperture to be set by the finite mirror size.

Consider first a symmetric resonator (R1 D R2 D R and a1 D a2 D a, see Fig. 5.12a)
and its equivalent lens-guide structure (Fig. 5.12b). By virtue of the symmetry of the problem,
we can limit our considerations to one period of length L and require that the field reproduces

FIG. 5.11. Diffraction losses arising from beam truncation by an aperture of radius a.

FIG. 5.12. (a) Mode and diffraction loss calculation in a symmetric resonator. (b) Equivalent lens-guide configura-
tion.
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its shape after this period. We then arrive at an integral equation similar to Eq. (5.2.5), namely

Q� QE.x, y, 0/ D
CaZ

�a

CaZ
�a

K.x, y, x1, y1/ QE.x1, y1, 0/dx1dy1 (5.5.25)

where the double integral is taken over the limiting aperture and K is the single pass propa-
gation kernel. Since the beam encounters no other limiting apertures when propagating from
the diaphragm at z D 0 to that at z D L (Fig. 5.12b), the kernel can be expressed as in
Eq. (5.5.1a), where the ABCD matrix refers now to one period of length L. The matrix is then
given by the product of the matrix of free-space propagation over a length L with the matrix
of a lens of focal length f D R=2. One should note, however, that, since the double integral
in Eq. (5.5.25) does not extend between �1 and C1, the eigensolutions no longer have the
form of a product of a Hermite polynomial with a Gaussian function. To solve Eq. (5.5.25) one
usually adopts some iterative procedure, generally with the help of a computer. An approach,
often used, is the so-called Fox-Li iterative procedure, after Fox and Li.5/ who first applied
this procedure to obtain the eigenmodes of a plane-parallel resonator. One starts by assuming
some field expression QE.x, y, 0/ in the right hand side of Eq. (5.5.25) and then one calculates,
by performing the double integral, the field QE.x, y, L/ after one lens-guide period. This field is
then inserted back into the right hand side of Eq. (5.5.25) and a new field QE.x, y, 2L/ is then
calculated by performing the double integration again, and so on. The procedure, although
rather slow (it usually converges in a few hundred iterations), eventually leads to a field which
does not change any more on each successive iteration, except for an overall amplitude reduc-
tion due to diffraction loss and a phase factor which accounts for the single-pass phase shift. In
this way one can compute the field amplitude distribution of the lowest order mode and also of
higher order modes, as well as the corresponding diffraction losses and resonance frequencies.

Example 5.8. Diffraction loss of a symmetric resonator..6/ The diffraction loss, per pass, for a symmetric
two-mirror resonator of finite mirror aperture, as calculated according to the Fox and Li iterative procedure
is plotted in Fig. 5.13a (for a TEM00 mode) and b (for a TEM01 mode) vs the Fresnel number

N D a2=L� (5.5.26)

The calculation has been performed for a range of symmetric resonators, which are characterized by their
corresponding g values. Note that, for a given g value and for a given mode (e.g. the TEM00 mode),
the loss rapidly decreases with increasing Fresnel number. This is easily understood when, according
to Eq. (5.5.11), one writes the Fresnel number as N D a2=
w2

c , where wc is the mirror spot size for a
confocal resonator of the same length and of infinite aperture. Since the mirror spot size does not change
strongly upon changing the g-value (see example 5.5) the Fresnel number can be interpreted as a number
proportional to the ratio of the mirror cross section (
a2 for a circular mirror) and the mode cross-sectional
areas .
w2/ on the mirror. The reason why the loss decreases rapidly when increasing the latter ratio is
now readily appreciated with the help of Fig. 5.11. Note also from Fig. 5.13 that, for a given Fresnel
number and g value, the TEM00 mode has lower losses than the TEM01 mode. The TEM00 mode actually
turns out to have the loss lower than for any of the higher order modes. So the lowest order mode is
identified as the lowest loss mode.
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FIG. 5.13. Diffraction loss per transit versus Fresnel number for, (a), the TEM00 mode and, (b), for the TEM01

mode, for several symmetric resonators (after Li,.6/ copyright 1965, American Telephone and Telegraph Company,
reprinted with permission.)

Example 5.9. Limitation on the Fresnel number and resonator aperture in stable resonators To obtain
oscillation on the TEM00 mode only, we must provide a sufficiently high value of diffraction losses, �01,
for the TEM01 mode. On the other hand, to obtain a large value of the spot size we must design the
resonator to operate near the instability boundary g D 1 or g D �1 (see example 5.5). Furthermore,
if we consider e.g. a near-planar resonator, we cannot operate too close to the instability boundary or
the resonator would become too sensitive to external perturbation (e.g. mirror tilt due to vibrations or
temperature changes). We choose then, as an example, �01 D 10% and g < 0.95 .R < 20L/. From
Fig. 5.13b we then get N < 2, which can be considered a typical result. Thus, for L D 2 m and � D
1.06�m (a Nd:YAG laser wavelength) we obtain a < 2 mm while for L D 2 m and � D 10.6�m (typical
wavelength of a CO2 laser) we get a < 6.3 mm.

Let us now consider the general two-mirror resonator of Fig. 5.5a and its equivalent lens-
guide structure of Fig. 5.5b. If we let QE.x1, y1, 0/ be the field at a general point .x1, y1/ of the
z D 0 plane in Fig. 5.5b, the field at point .x2, y2/ of the z D L plane is readily obtained as
QE.x2, y2, L/ D .exp �jkL/

’
1 K12 .x2, y2; x1, y1/ � QE.x1, y1, 0/dx1dy1 where K12 is the kernel

for beam propagation from the z D 0 to the z D L planes and where the double integral
is taken over aperture 1. Similarly, the field at point .x3, y3/ at z D 2L plane is obtained as
QE.x3, y3, 2L/ D .exp �jkL/

’
2 K21 .x3, y3; x2, y2/ QE.x2, y2, L/dx2dy2 where K21 is the kernel

for beam propagation from the z D L to z D 2L plane and where the double integral is taken
over aperture 2. The combination of the last two equations leads to

QE.x3, y3, 2L/ D .exp �2jkL/
“
2

K21.x3, y3; x2, y2/dx2dy2

�
“
1

K12.x2, y2; x1, y1/ QE.x1, y1, 0/dx1dy1

(5.5.27)
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On interchanging the order of integration in Eq. (5.5.27) we readily see that we can write

QE .x3, y3, 2L/ D .exp �2jkL/
“
1

K .x3, y3; x1, y1/ QE.x1, y1, 0/dx1dy1 (5.5.28)

provided we define an overall kernel K, (one-period in Fig. 5.5b i.e. one round trip in
Fig. 5.5.a), as

K .x3, y3; x1, y1/ D
“
2

K21 .x3, y3; x2, y2/ K12 .x2, y2, x1, y1/ dx2dy2 (5.5.29)

This would be the appropriate kernel to use in Eq. (5.2.5) in order to calculate the field
eigenmodes and the corresponding eigenvalues.

5.5.3. Dynamically and Mechanically Stable Resonators

A very important problem which arises with stable resonators is to increase the beam
spot size within the active medium to a size comparable to the transverse dimensions of the
medium. In fact, considering for simplicity a symmetric two-mirror resonator, one can see
from Eq. (5.5.10) that, to significantly increase the spot size within the laser cavity beyond
the value established for a confocal cavity, one should choose a resonator much closer to the
g D ˙1 point (near-plane or near-concentric resonator). The cavity would then be too close to
an instability boundary and would generally be very sensitive to any cavity perturbations such
as those arising from variation of the pump power. We shall now consider a laser design which
allows large spot sizes to be achieved within the active medium, the design being particularly
insensitive to cavity perturbations arising either from changes of pump power or from mirror
tilting (dynamically and mechanically stable resonator)..7/

We first consider a laser resonator consisting of two spherical mirrors of radii R1 and R2

and containing an active medium whose pump-induced thermal effects can be simulated by
a thin lens whose dioptric power, 1=f , is proportional to the pump power (Fig. 5.14a). This
model corresponds well with the situation for solid-state lasers. In fact, some of the ideas
which follow can also be applied to the more complex perturbations induced by the pump in
a gas medium.

A first constraint for the design of the laser cavity of Fig. 5.14a can be obtained by the
condition that the spot size in the active medium, wa, be insensitive to the change of the lens
diopric power. We thus write

dwa=d.1=f / D 0 (5.5.30)

A resonator for which this condition is satisfied is often referred to as dynamically stable.
A second constraint can be obtained by the condition that the spot size, wa, be comparable to
the radius a of the active medium. So as not to introduce excessive diffraction losses due to
beam truncation by this finite aperture, we can e.g. require that.8/

2a Š 
wa (5.5.31)
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FIG. 5.14. (a) General two-mirror spherical resonator which includes a lens, of focal length f , simulating the thermal
lens of the active medium. (b) Generalization of the resonator of (a), where the A1, B1, C1, and D1 elements of the
one-way matrix include the matrix of the thermal lens.

FIG. 5.15. Spot size in the active medium, wa , and combined misalignment sensitivity, Sc, vs dioptric power, 1=f ,
for the cavity of Fig. 5.14a.

For given values of a and 1=f , Eqs. (5.5.30) and (5.5.31) provide a pair of equations for the
cavity parameters R1, R2, L1, and L.

One may now ask the question whether a dynamically stable point actually exists for
the cavity of Fig. 5.14a. To answer this, we show in Fig. 5.15 the general behavior of wa

vs dioptric power 1=f , for the above cavity for given values of the other cavity parameters.
From this figure one notices the following general characteristic features: (1) Two dynamically
stable points, i.e. satisfying Eq. (5.5.30), are found when the lens dioptric power is changed.
(2) Both points correspond to a minimum of wa, the minimum value, wam, being the same
for the two points. (3) The minima belong to two different stability zones, with the spot size
actually diverging at each zone boundary. (4) The width,	.1=f /, of the two zones is the same
and satisfies a fundamental relationship with the minimum spot size given by the equation


 w2
am

�
	.1=f / D 2 (5.5.32)

independently of the values of the other cavity parameters.



188 5 � Passive Optical Resonators

FIG. 5.16. Stability diagram for the general resonator of Fig. 5.14b. In the same figure, the two stability zones
discussed in Fig. 5.15 and the corresponding geometrical-optics description of the cavities corresponding to the
stability boundaries are also shown.

The existence of two stability zones can generally be understood with reference to
Fig. 5.14b (see also Fig. 5.8d) which represents a generalization of Fig. 5.14a and where
the elements A1, B1, C1, D1 of the one-way matrix turn out to be linear functions of 1=f .
From Eqs. (5.4.6) and (5.5.5) one can then see that, in terms of the one-way matrix elements,
the cavity stability condition can simply be written as 0 	 A1D1 	 1. This stability condi-
tion is represented in Fig. 5.16, where the horizontal and vertical axes represent A1 and D1,
respectively. Now, since A1 and D1 are linear functions of 1=f , a plot of the values for A1

vs the corresponding values of D1, obtained by changing 1=f , will show a linear relationship
in the A1 � D1 plane (see Fig. 5.16). This straight line then generally intersects the stability
boundaries at four distinct points which define two distinct stable zones. The laser beam con-
figurations corresponding to these four limit points can be described by geometrical optics
and are also shown in the same figure.

Having understood the origin of the two stability zones, it may be worth observing that
the dioptric power of an optically pumped rod turns out to be given by.9/

1

f
D k


a2
Pa (5.5.33)

where Pa is the pump power absorbed in the rod and k is a constant characteristic of the given
material. If the expression for 1=f given by Eq. (5.5.33) is substituted in Eq. (5.5.32) and if,
according to Eq. (5.5.31), one takes .wam=a/ D .2=
/ in the resulting expression, one can
readily see that the range of acceptable absorbed power,	Pa, corresponding to each stability
zone, is a constant for a given laser material (e.g.	Pa Š 10 W for a diode-pumped Nd:YAG).

From the above discussion, it would appear that the optical properties of the two stabil-
ity zones are identical. A strong distinction between these zones is however revealed when
one considers the misalignment properties of the laser cavity. We first define misalignment
sensitivities, S1 and S2, for mirrors 1 and 2 according to the relations S1 D ırc1=waı
1 and
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S2 D ırc2=waı
2, where, e.g. for mirror 1, ırc1 is the displacement of the beam center in
the laser rod arising from a tilt ı
1 of mirror 1, and similarly for mirror 2. One can now

define a combined misalignment sensitivity of the two mirrors as Sc D �
S2

1 C S2
2

	1=2
. A plot

of this combined sensitivity vs lens dioptric power is also shown in Fig. 5.15. One can then
see that one of the two zones, henceforth referred to as zone 1, is much less sensitive to mir-
ror misalignment than the other, henceforth referred to as zone 2. The reason for the reduced
sensitivity to misalignment for zone 1 can be understood by noting that the spot sizes at the
mirrors are much smaller in zone 1 than in zone 2. Indeed, according to geometrical optics,
one of the two stability boundaries of zone 1 corresponds to the beam being focused on both
mirrors (see Fig. 5.16). Thus, when close to this boundary, the mirror spot size, wm, is very
small and the beam divergence, 
 � 
d D �=
wm, very large. Consequently, the mirror tilt,
needed to produce a beam axis rotation comparable to the beam divergence, must also be large.

As a conclusion we can say that a dynamically and mechanically stable resonator can
be designed for a general laser cavity describable as in Fig. 5.14b and comprising a variable
element such as the thermally induced lens in the laser rod. The resonator should be chosen to
belong to the more stable zone, zone 1, and must satisfy conditions Eqs. (5.5.30) and (5.5.31).
In practice, instead of satisfying Eq. (5.5.30), the resonator can be designed to correspond to
the center of zone 1. So, if the distance L1, shown in Fig. 5.14a, is assumed to be the variable
parameter, its value can be taken as the mean of its limiting values, L0

1 and L00
1 , in zone 1.

From the geometrical optics description shown in Fig. 5.16, one then finds that L0
1 and L00

1

must satisfy the conditions L0�1
1 C L�1

2 D f �1 and


L00

1 � R1
��1 C L�1

2 D f �1, respectively,
where L2 is also shown in Fig. 5.14a. Once designed for a given focal length, f , and hence a
given absorbed power, Pa, the resonator can then work for a range of absorbed pump power,
	Pa, which is the same for a given active medium, independently of the cavity parameters.

5.6. UNSTABLE RESONATORS.10/

The stability condition for a generalized spherical resonator was discussed in Sect. 5.4
and the unstable regions were shown to correspond to the unshaded regions of the g1 � g2

plane in Fig. 5.7. Unstable resonators can be separated into two classes: (1) positive branch
resonators, which correspond to the case g1g2 > 1, and (2) negative branch resonators, which
correspond to the case g1g2 < 0.

Before going on to a quantitative discussion of unstable resonators, it is worth pointing
out here the reasons why these resonators are of interest in the laser field. First we note that,
according to the results obtained in example 5.5, for a stable resonator corresponding to a
point in the g1 � g2 plane that is not close to an instability boundary, the spot size w is
typically of the order of that given for the case of a confocal resonator and, for a wavelength
of �1�m, is usually smaller than 1 mm. We also note that, according to the discussion in
example 5.9, a resonator aperture with radius a < 2 mm needs to be inserted in the laser
resonator if oscillation is to be limited to the TEM00 mode. When oscillation is confined to a
TEM00 mode of such a small cross section, the power (or energy) available in the output beam
is necessarily limited. For unstable resonators, on the contrary, the field does not tend to be
confined to the axis (see, for example, Fig. 5.3), and a large mode volume in a single transverse



190 5 � Passive Optical Resonators

mode is possible. With unstable resonators, however, there is the problem that rays tend to
walk off out of the cavity. The corresponding modes, therefore, have substantially greater
(geometrical) losses than those of a stable cavity (where the losses are due to diffraction).
This fact can, however, be used to advantage if these walk-off losses are turned into useful
output coupling.

5.6.1. Geometrical-Optics Description

To establish the mode configurations of an unstable resonator, we can start by using a
geometrical-optics approximation, as first done by Siegman..11/ To do this, we begin by recall-
ing the two main results that were obtained for the eigensolutions of a stable resonator [see
Eq. (5.5.24)]: (1)The amplitude is given by the product of a Hermite polynomial with a Gaus-
sian function. (2)The phase distribution is such as to give a spherical wave front. The presence
of the Gaussian function limits the transverse size of the beam and essentially arises from the
focusing properties of a stable spherical resonator. The fact that the wave-front is spherical
is, on the other hand, connected with the boundary conditions set by a spherical mirror. In
the unstable case there are no Hermite–Gaussian solutions, as indeed discussed in connection
with the solution of Eq. (5.5.4). Since the beam is no longer focused toward the resonator
axis, but rather spread out over the whole resonator cross section, it is natural to assume, as a
first approximation, that the solution has a constant amplitude over the resonator cross section
while the wave front is still spherical, i.e. the solution is represented by a spherical wave.
More precisely, since the mode can always be considered as being due to the superposition of
two counter-propagating waves, we will assume that these consist of two counter-propagating
spherical waves. It should be noted that one reaches the same conclusion by considering the
solution of Eq. (5.5.3) in the unstable region. In this case, the discriminant of the quadratic
equation in Eq. (5.5.3) is positive and one generally gets two real solutions for the parameter
q and these will correspond to two spherical waves.

To calculate the mode field, we let P1 and P2 be the centers of curvature of the two spher-
ical waves in the general two-mirror unstable resonator of Fig. 5.17a. By symmetry, P1 and
P2 must lie on the resonator axis and their position are easily calculated by a self-consistency
argument: the spherical wave originating from point P1, after reflection at mirror 2, must give
a spherical wave originating from P2 and, vice-versa, the spherical wave originating from P2,
after reflection at mirror 1, must give a spherical wave originating from P1. These two condi-
tions lead to two equations, which can readily be established by a straightforward calculation
based on geometrical optics, in the two unknowns, namely the positions of points P1 and P2.
If these positions are expressed in terms of the dimensionless quantities r1 and r2 indicated in
Fig. 5.17a, these last quantities turn out to be functions only of the resonator g1, g2 parameters.
In fact, after some lengthy but straightforward calculations, one arrives at the relations

r�1
1 D g1

h
1 � .g1g2/

�1
i1=2 C g1 � 1 (5.6.1a)

r�1
2 D g2

h
1 � .g1g2/

�1
i1=2 C g2 � 1 (5.6.1b)
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FIG. 5.17. (a) General, convex mirror, unstable resonator; (b) single-ended unstable resonator.

Having calculated r1 and r2 one can easily obtain from Fig. 5.17a the so-called single-pass
magnification factor on going from mirror 1 to mirror 2, M12, or from mirror 2 to mir-
ror 1, M21. For instance, M12 is defined as the increase in diameter of the spherical wave
when propagating from mirror 1 to mirror 2. From simple geometrical considerations one
gets from Fig. 5.17a

M12 D .1 C r1/=r1 (5.6.2a)

Similarly one gets

M12 D .1 C r2/=r2 (5.6.2b)

Usually, for laser applications, a single-ended resonator such as that of Fig. 5.17b, is of inter-
est. In this case, the diameter of mirror 1, 2a1, must be larger than the transverse extent, at
mirror 1, of the spherical wave originating from point P2. We thus require a1 > M21a2. With
this condition, the only wave that emerges from the cavity is the spherical wave emitted by
point P1 escaping around mirror 2 (mirrors 1 and 2 are assumed to be 100% reflecting). This
spherical wave starts from mirror 2 with a diameter 2a2 (see Fig. 5.17b) and returns to mirror
2, after one round trip, magnified by a factor M given by

M D M21 M12 D 

1 C r�1

1

� 

1 C r�1

2

�
(5.6.3)

where Eqs. (5.6.2) have been used. With the help of Eqs. (5.6.1), (5.6.3) readily gives

M D .2 g1g2 � 1/� 2 g1g2

h
1 � .g1g2/

�1
i1=2

(5.6.4)

which shows that M, the round trip magnification factor, depends only on the cavity g parame-
ters. Note that, when g1g2 < 0, M becomes negative and then it is the magnitude of this value
that must be considered. Having calculated the round trip magnification factor, one can easily
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FIG. 5.18. Confocal unstable resonators: (a) Negative-branch and (b) positive-branch.

obtain the expression for the round trip cavity loss, Li, arising from transmission around the
output mirror. In fact, since we have assumed uniform illumination, the fraction of the beam
power that is coupled out of mirror 2, after a round trip, is seen to be

Li D S0
2 � S2

S0
2

D M2 � 1

M2
(5.6.5)

where S2 D 
a2
2 and S0

2 D 
 M2a2
2 are, respectively, the cross section for the beam originating

from mirror 2 and that after one round trip. Note that, according to Eq. (1.2.4c) the round-trip
logarithmic loss �i is given by �i D � ln.1 � Li/. Note also that �i, like M, is independent of
mirror diameter 2a2.

Example 5.10. Unstable confocal resonators A particularly important class of unstable resonator is the
confocal resonator, which can be of negative-branch or positive-branch. These are shown in Fig. 5.18a, b,
respectively. In both cases, the two mirror foci F1 and F2 are coincident, and one can readily show that the
resonators are represented, in the g1 � g2 plane, by the two branches of the hyperbola indicated as dashed
curves in Fig. 5.7 [the equation of the hyperbola is .2g1 � 1/.2g2 � 1/ D 1]. Of these various resonators,
only the (symmetric) confocal one .g1 D g2 D 0/ and the plane-parallel one .g1 D g2 D 1/ lie on the
boundary between the stable and unstable regions. All other confocal resonators are unstable and may
either belong to the negative or positive branch of the instability region. As shown in Fig. 5.18 and as one
can also show from Eq. (5.6.1), the mode consists of a superposition of a plane wave with a spherical
wave originating from the common focus F1 D F2. The round-trip magnification factor M is simply given
by M D jR1j=jR2j, where R1 and R2 are the two curvature radii of the two mirrors .jR1j > jR2j/. If the
aperture of diameter 2a1 at mirror 1 is made sufficiently large .2a1 > 2Ma2/, only the plane beam will
escape out of the cavity. Thus the beam escaping from a single-ended confocal resonator is a plane wave
and this constitutes one of the main advantages of unstable confocal resonators. The round trip loss, or
fractional output coupling, of this single-ended resonator is then given by Eq. (5.6.5).

5.6.2. Wave-Optics Description

The discussion so far has been based on a geometrical-optics approximation. To get a
more realistic picture of the modes of an unstable resonator one must use a wave approach,
e.g. use the integral equation Eq. (5.2.5), which arises from the Huyghens–Fresnel diffraction



5.6 � Unstable Resonators 193

FIG. 5.19. Typical example of the radial behavior of mode intensity distribution in an unstable cavity obtained using
a wave-optics calculation (after Rensch and Chester,.12/ by permission).

equation Eq. (5.2.1). For unstable resonators, the limited aperture size of the output mirror
constitutes an essential feature, since the beam must exit around this mirror. Consequently,
the kernel K to be used in Eq. (5.2.5) can be obtained, in principle, by essentially the same
procedures as those developed, for a stable cavity, in Sect. 5.5.2. Thus the solution of the inte-
gral equation can be obtained by an iterative approach such as the Fox-Li procedure discussed
in that section. These calculations will not be discussed at any length here and we will limit
ourselves to pointing out and commenting on a few relevant results.

A first important result is that the wave-optics description does indeed show that eigen-
solutions, i.e. field profiles which are self-reproducing after one round trip, do exist also
for unstable resonators. To shows this in some detail, we will limit our discussion to a
single-ended unstable confocal resonator and define an equivalent Fresnel number as Neq D
Œ.M � 1/=2� � .a2

2=L�/, for the positive branch, and as Neq D Œ.M C 1/=2�.a2
2=L�/, for the

negative-branch, with 2a2 being the diameter of the output mirror. A typical example of a
computed plot of the radial intensity profile, which is self-reproducing after one round trip,
is shown in Fig. 5.19. The calculation relates to a positive branch confocal resonator with
M D 2.5 and Neq D 0.6, and the intensity profile refers to the field just in front of mirror
2 (Fig. 5.18b) of a beam propagating to the right inside the resonator. The intensity profile
in Fig. 5.19 is plotted vs the x (or y) transverse coordinate normalized to the radius, a1, of
mirror 1. To ensure a single-ended output, the condition a1 D 2.5 a2 is assumed. Conse-
quently, the vertical lines in the figure, occurring at .x=a1/ D ˙0.4, mark the edge of the
output mirror. Note the peculiar meaning of a round-trip self-reproducing profile for unstable
resonators. Starting in fact from mirror 2, the left propagating spherical wave (see Fig. 5.18b),
will arise only from that part of the beam of Fig. 5.19 for which �0.4 	 .x=a1/ 	 0.4. In fact,
the remaining part of the beam escapes around mirror 2 to form the output beam. The part
remaining in the resonator, after propagation over a round trip, will produce again, through
the combined effect of spherical divergence and beam diffraction, the whole intensity pro-
file of Fig. 5.19. The amplitude of the beam profile after one round trip will of course be
smaller than the original value due to the loss represented by that part of the beam which has
been coupled out of mirror 2. One should note that the beam intensity profile in Fig. 5.19 is
quite different from the constant value assumed in the geometrical-optic theory, the differ-
ence being due to field diffraction, in particular from the edges of mirror 2. Indeed, one sees
from Fig. 5.19 that, if x is interpreted as the radial distance from the mirror’s center, several
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FIG. 5.20. Intensity profiles of the three lowest-order eigenmodes for a strip unstable resonator with M D 25 and
Neq D 0.6 (after Siegman,.10/ by permission).

diffraction ring arising from the sharp edges of mirror 2 are present in the beam. Despite this
significant difference between the intensity profile predicted by wave optics and that predicted
by geometrical optics, the phase variation turns out to be remarkably similar in the two cases.
Thus the wavefront turns out to be close to spherical, with radius almost equal to that predicted
by geometrical optics (i.e. plane in this case).

A second relevant result of the wave-optics calculation is that for unstable resonator
also, just as for stable, there exist different transverse modes, i.e. different self-reproducing
spatial patterns. These modes generally differ from each other in the location and strength of
the diffraction rings. An example of three such modes, again for a positive branch confocal
unstable resonator, is shown in Fig. 5.20. Unlike the case of stable resonators, it is not possible,
in this case, to make a clear distinction in terms of these field distribution between the lowest
order and higher order modes. It should be noted, however, that the mode labeled l D 0 in
the figure shows a field amplitude distribution which is more concentrated toward the beam
axis. Thus, in this case, this mode will have the lowest loss i.e. it will be the “fundamental”
mode.

A third characteristic result is found when one changes the equivalent Fresnel number,
i.e. one changes either M or a2, or L. In fact, at each integer value of the equivalent Fresnel
number a different and distinct mode becomes the “lowest-order” i.e. the lowest-loss mode.
This circumstance can be understood with the help of Fig. 5.21, where the magnitude of
the eigenvalue � is plotted vs Neq for the three modes indicated in Fig. 5.20. One notes in
particular that, since � D 1 � j� j2, the l D 1 mode becomes the lowest order mode when
Neq becomes larger than one (and smaller than two). The reason for this circumstance arises
from the fact that as Neq increases, starting from e.g. the value Neq D 0.6 of Fig. 5.20, the
mode l D 1 contracts inwards while the mode l D 0 spreads outwards so that, at Neq Š 1,
the role of the two modes is interchanged. One can also notice from Fig. 5.21 that, at each
half-integer values of Neq, there is a large difference between the losses of the “lowest order”
mode and those of other modes. This might seem to suggest that a large transverse-mode
discrimination can only be obtained under these conditions. It should be noted, however, that
when the loss curves of two modes cross each other (i.e. for integer values of Neq in Fig. 5.21),
the intensity patterns of these two modes happen to become identical. Thus, at e.g. Neq D 1, a
large difference in loss exists between the l D 2 mode and the l D 0, l D 1 modes, which, in



5.6 � Unstable Resonators 195

FIG. 5.21. Typical example of the oscillatory behavior of eigenvalue magnitude, � , vs equivalent Fresnel number,
Neq , for the three consecutive modes of Fig. 5.20.

FIG. 5.22. Coupling losses of an unstable resonator vs magnification factor M; dashed curve: geometrical optics
result; solid-lines: wave-optics results (after Siegman,.13/ by permission).

terms of transverse beam profile, can be considered as effectively corresponding to the same
mode.� As a conclusion one can say that unstable resonators always have a large transverse-
mode discrimination, the discrimination being perhaps strongest at half-integer values of Neq.
One can also point out that, from the wave-optics calculation and for half-integer values of
Neq, one obtains a loss of the lowest order mode which is considerably smaller than the value
predicted by geometrical optics. This result is apparent from Fig. 5.22 where the loss � is
plotted vs the round trip magnification factor M. In the figure the solid curves (which apply

� The two modes still differ with respect to the total round trip phase shift, i.e., they still differ in the field variation
along the longitudinal z axis and thus in their resonance frequencies.
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to successive half-integer values of Neq/ are obtained by wave-optics, while the dashed curve
corresponds to the geometrical-optics result given by Eq. (5.6.5). The reason why the loss
of the “lowest-order” mode, according to wave optics, is smaller than the value predicted
by geometrical optics stems from the fact that the intensity distribution of the lowest order
mode, rather than having the constant value predicted by geometrical optics, tends to be more
concentrated toward the beam axis (see Fig. 5.20).

5.6.3. Advantages and Disadvantages of Hard-Edge Unstable
Resonators

The main advantages of hard-edge unstable resonators compared to stable resonators can
be summarized as follows: (1) Large, controllable mode volume; (2) good transverse-mode
discrimination; (3) all reflective optics (which is particularly attractive in the infrared, where
metallic mirrors can be used). The main disadvantages are as follows: (1) The output beam
cross-section is in the form of a ring (i.e. it has a dark hole at its center). For example, in a
confocal resonator (Fig. 5.18), the inner diameter of the ring is 2a2 while its outer diameter
is 2Ma2. Although this hole disappears in the focal plane of a lens used to focus the beam
(far-field pattern), the peak intensity in this focal plane turns out to decrease with decreasing
ring thickness. In fact, for a given total power, the peak intensity for an annular beam is
reduced by .M2 � 1/=M2 from that of a uniform-intensity beam with a diameter equal to
the large diameter of the annular beam. (2) The intensity distribution in the beam does not
follow a smooth curve, but exhibits diffraction rings. (3) An unstable resonator has greater
sensitivity to cavity perturbations compared to a stable resonator. The above advantages and
disadvantages mean that unstable resonators find their applications in high-gain lasers (so that
M can be relatively large), especially in the infrared, and when high-power (or high-energy)
diffraction-limited beams are required.

5.6.4. Variable-Reflectivity Unstable Resonators

Some, if not all, of the disadvantages of hard-edge unstable resonators can be overcome
by using a variable reflectivity unstable resonator. In this case the reflectivity of the output
mirror, rather than being equal to one for r < a2 and equal to zero for r > a2, as in the
hard edge case, decreases radially from a peak value R0 down to zero over a radial distance
comparable to that of the active medium..14/ We will let �.r/ be the field reflectivity of mirror
2 and assume a single-ended resonator with round-trip magnification M. For simplicity we
will follow an approach based on geometrical optics. In terms of the radial coordinate, r, we
can then say that the field u0

2.Mr/, incident, after one round trip, at coordinate Mr of mirror
2, comes from the field u2.r/ of the beam incident at coordinate r of mirror 2 at the start of the
round trip. After taking into account the field reflectivity profile of mirror 2 and the round-trip
magnification M, we can then write

u0
2.Mr/ D �.r/ u2.r/

M
(5.6.6)
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Note the quantity M appearing at the denominator of the right hand side of Eq. (5.6.6). This
is a consequence of the fact that, after a magnification by a factor M, the beam area increases
by a factor M2. To conserve the power of the beam, the intensity must therefore decrease by a
factor M2 and the field by a factor M. If u2 corresponds to a cavity mode, then it follows that
u0

2.r/ D �u2.r/ where � is now a real quantity, with magnitude smaller than unity, in order
to account for cavity losses. From Eq. (5.6.6) we then get

� u2.Mr/ D �.r/ u2.r/

M
(5.6.7)

The eigensolutions u2.r/ D u2l.r/ of Eq. (5.6.7) will give the field distributions inside the
cavity, in front of mirror 2, while the eigenvalues of Eq. (5.6.7) will give the round-trip losses,
due to the output coupling, according to the familiar relation (see Eq. (5.2.6))

� D 1 � �2 (5.6.8)

The first case that we shall consider is that of a Gaussian reflectivity profile..11,12/ We
therefore write

� D �0 exp

�r2=w2

m

�
(5.6.9)

where �0 is the peak field reflectivity and wm sets the transverse scale of the mirror reflectivity
profile. One should note that, according to Eq. (5.6.9), the intensity reflectivity profile, which
is the quantity usually measured experimentally, will be given by

R D R0 exp.�2r2=w2
m/ (5.6.10)

where R0 D �2
0 is the peak reflectivity. With the help of Eq. (5.6.9), the lowest order solution

of Eq. (5.6.7) can be shown, by direct substitution, to be given by

u20.r/ D u20.0/ exp.�r2=w2/ (5.6.11)

where

w2 D .M2 � 1/w2
m (5.6.12)

The corresponding eigenvalue � is

� D �0=M (5.6.13)

so that, according to Eq. (5.6.8), the output coupling losses are given by

� D 1 � .R0=M2/ (5.6.14)

The radial intensity distribution for the beam incident on mirror 2 is then given by

Iin.r/ D Iin.0/ exp.�2r2=w2/ (5.6.15)
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One notes that the radial profiles of both the field amplitude, u20, and beam intensity, Iin, are
described by Gaussian functions. On the other hand, the intensity of the output beam, Iout, is
given by

Iout.r/ D Iin.r/Œ1 � R.r/�
D Iin.0/Œexp.�2r2=w2/ � R0 exp.�2M2r2=w2/�

(5.6.16)

where Eqs. (5.6.15), (5.6.10) and (5.6.12) have been used. Note that Iout is not described
by a Gaussian function and that, under appropriate conditions, one can expect an intensity
profile that has a flat top for r D 0, a feature that is of interest for some applications. This
circumstance occurs in fact when .d2Iout=dr2/rD0 D 0. In this case, we find from Eq. (5.6.16)
that the central reflectivity, R0, and the cavity magnification, M, must satisfy the condition

R0M2 D 1 (5.6.17)

For this resonator, the round trip cavity losses will, according to Eqs. (5.6.14) and (5.6.17), be
given by

� D 1 � .1=M4/ (5.6.18)

The above equations give the salient results for unstable resonators with mirrors of Gaussian
reflectivity profile. Although these results are based on a simple geometrical optics approach,
they are in good agreement with results based on a wave-optics approach for sufficiently large
values of the equivalent Fresnel number .Neq 
 5/..15/ For Gaussian reflectivity mirrors one
can also use an elegant wave optics analysis based on a suitable ABCD matrix with complex
matrix elements..16/

Example 5.11. Design of an unstable resonator with an output mirror having a Gaussian radial reflectivity
profile We will assume � D 0.5 as the value which optimizes the output coupling of a given laser (see
Chap. 7) and we will consider the case where the output beam has its flattest profile. From Eq. (5.6.18)
we get M2 D p

2, from Eq. (5.6.17) R0 D 1=M2 D 1=
p

2 D 0.71 and from Eq. (5.6.12) w2 D 0.41 w2
m.

The reflectivity profile and the corresponding intensity profiles inside and outside the resonator are all
shown in Fig. 5.23. If we now let a be the radius of the active medium and if the medium is placed in
front of mirror 2, the beam intensity profile within the medium will be given by Iin.r/. To avoid excessive
beam truncation by the active medium aperture, i.e. to avoid excessively pronounced diffraction rings
arising from this truncation, we can, e.g. impose the condition Iin.a/=Iin.0/ D 2 � 10�2. We then obtain
a Š 0.9 wm which, for a given aperture a, establishes the spot size wm of the Gaussian reflectivity profile.
As an example, if we take a D 3.2 mm we get wm D 3.5 mm. Thus, to conclude, the Gaussian mirror
must have a peak reflectivity of R0 Š 71%, a spot size wm D 3.5 mm and it must be used in an unstable
cavity (e.g. a confocal cavity) with a round trip magnification of M D Œ2�1=4 D 1.19.

The second case that we shall consider is that of a super-Gaussian reflectivity profile..17/

Instead of Eqs. (5.6.9) and (5.6.10) we will now write

� D �0 exp

�rn=wn

m

�
(5.6.19a)

R D R0 exp

�2rn=wn

m

�
(5.6.19b)
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FIG. 5.23. Radial intensity profiles inside, Iin, and outside, Iout , an unstable cavity with a Gaussian reflectivity output
coupler, R.r/ (case of the flattest profile for Iout).

and, for n > 2, Eqs. (5.6.19) describe curves with super-Gaussian reflectivity profile. The
substitution Eqs. (5.6.19a) into (5.6.7) then gives

u2.r/ D u2.0/ exp.�rn=wn/ (5.6.20)

where

w D wm.M
n � 1/1=n (5.6.21)

Again we have � D �0=M and � D 1 � �2 D 1 � .R0=M2/. From Eq. (5.6.20) we now obtain

Iin.r/ D Iin.0/ exp.�2rn=wn/ (5.6.22)

and the radial profiles of both u2 and Iin are described by super-Gaussian functions of the
same order, n, as that of the reflectivity profile. The intensity of the output beam, Iout, is readily
obtained from Iout D Iin.r/Œ1�R.r/� and one notes that it is not described by a super-Gaussian
function.

To make a comparison between the performance of unstable resonators with Gaussian
and super-Gaussian reflectivity profiles, we show in Fig. 5.24a the intensity profiles, Iin, for
n D 2 (Gaussian) and n D 5, 10 (super-Gaussian). The curves have all been normalized to
their peak values and the corresponding spot size w in Eqs. (5.6.22) and (5.6.15) have been
chosen so that exp-.2an=wn/ D 2 � 10�2, where a is the radius of the active medium. The
comparison is therefore made for the same degree of beam truncation by the active medium.
The main advantage of a super-Gaussian mirror compared to a Gaussian mirror is apparent
from Fig. 5.24a: super-Gaussian mirrors of increasing super-Gaussian order, n, allow better
exploitation of the active medium (i.e. the area of the mode, Am, increases as n is increased).
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FIG. 5.24. Comparison between a Gaussian and super-Gaussian .n D 5, n D 10/ reflectivity profile: (a) Radial
intensity profile inside the resonator. (b) Radial intensity profile outside the resonator (after G. Cerullo et al.,.18/ by
permission).

On the other hand, the diffraction angle, 
d, increases with increasing n, as can be understood
from Fig. 5.24b. In this figure the corresponding radial intensity profiles, as predicted by the
previous equations for Iout.r/ and for R0 D 0.45 and M D 1.8, are shown. One sees that, as n
increases, a hole of increasing depth appears in the output beam and this results in an increased
beam divergence. As a consequence of these two conflicting tendencies, the beam brightness,
which may be taken to be proportional to Am=


2
d , has an optimum value as a function of n.

It turns out that this optimum value depends on the cavity round trip magnification, M, and
on peak mirror reflectivity R0 but, for all practical cases, it ranges between 5 and 8..18/ Thus,
in terms of beam brightness, super-Gaussian mirrors with super-Gaussian order n D 5 � 8
provide the best choice for a variable-reflectivity unstable resonator.

5.7. CONCLUDING REMARKS

In this chapter a few of the most relevant features of stable and unstable resonators have
been considered. It is shown, in particular, that, to obtain single transverse mode oscilla-
tion, one can use stable resonators provided that the Fresnel number is typically smaller than
two. This usually means that the radius of the limiting aperture (e.g. the radius of the active
medium) must typically be smaller than 2 mm at � D 1.06�m and �6.5 mm at � D 10.6�m.
For larger values of the active medium dimensions, unstable resonators need to be used. In
this case, radially-variable reflectivity output mirrors of Gaussian or, better, super-Gaussian
profile provide the best solution.

PROBLEMS

5.1. A two-mirror resonator is formed by a convex mirror of radius R1 D �1 m and a concave mirror
of radius R2 D 1.5 m. What is the maximum possible mirror separation if this is to remain a stable
resonator?
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5.2. Consider a confocal resonator of length L D 1 m used for an ArC laser at wavelength � D
514.5 nm. Calculate: (a) the spot size at the resonator center and on the mirrors; (b) the frequency
difference between consecutive longitudinal modes; (c) the number of non-degenerate modes
falling within the Doppler-broadened width of the ArC line (	��

0 D 3.5 GHz, see Table 2.2)

5.3. Consider a hemiconfocal resonator (plane-spherical resonator with L D R=2) of length L D 2 m
used for a CO2 laser at a wavelength of � D 10.6�m. Calculate: (a) the location of the beam
waist; (b) the spot size on each mirror; (c) the frequency difference between two consecutive
TEM00 modes; (d) the number of TEM00 modes falling within the laser linewidth (consider a
typical low pressure CO2 laser and thus take 	� ' 50 MHz).

5.4. Consider a resonator consisting of two concave spherical mirrors both with radius of curvature 4 m
and separated by a distance of 1 m. Calculate the spot size of the TEM00 mode at the resonator
center and on the mirrors when the laser oscillation is at the ArC laser wavelength � D 514.5 nm.

5.5. How is the spot size modified at each mirror if one of the mirrors of the above problem is replaced
by a plane mirror?

5.6. Using Eqs. (4.7.26) and (5.5.8a), show that the beam waist for the two-mirror resonator of
Fig. 5.8b occurs at a distance, z1, from mirror 1 given by z1 D .1 � g1/g2L=.g1 C g2 � 2g1g2/.

5.7. One of the mirrors in the resonator of Problem 5.4 is replaced by a concave mirror of 1.5 m radius
of curvature. Using the result of Problem 5.6, calculate: (1) the position of the beam waist; (2) the
spot size at the beam waist and on each mirror.

5.8. A resonator consists of two plane mirrors with a positive lens inserted between the two mirrors. If
the focal length of the lens is f , and L1 and L2 are the distances of the lens from the two mirrors,
calculate: (1) the spot size at the lens position, and the spot sizes at each mirror; (2) the conditions
under which the cavity is stable.

5.9. A triangular ring cavity is made up of three plane mirrors (Fig. 5.4a) with a positive lens inserted
between two of the mirrors. If p is the length of the ring perimeter, calculate the position of
minimum spot size, its value, and the spot size at the lens position. Also find the stability condition
for this cavity.

5.10. A laser operating at � D 630 nm has a power gain of 2 � 10�2 per pass and is provided with a
symmetric resonator consisting of two mirrors each of radius R D 10 m and spaced by L D 1 m.
Choose an appropriate size of mirror aperture in order to suppress TEM01 mode operation while
allowing TEM00 mode operation.

5.11. On account of its relatively small sensitivity to mirror misalignment (see problem 5.16), a nearly
hemispherical resonator (i.e. a plane-spherical resonator with R D L C 	 and 	 � L) is often
used for a He-Ne laser at � D 630 nm wavelength. If the cavity length is L D 30 cm, calculate: (1)
the radius of curvature of the spherical mirror so that the spot size at this mirror is wm D 0.5 mm;
(2) the location in the g1–g2 plane corresponding to this resonator; (3) the spot size at the plane
mirror.

5.12. Consider the nearly hemispherical He-Ne resonator of the previous problem and assume that the
aperturing effect produced by the bore of the capillary containing the He-Ne gas mixture (see
Chap. 10) can be simulated by a diaphragm of radius, a, in front of the spherical mirror. If the
power gain per pass of the He-Ne laser is taken to be 2 � 10�2, calculate the diaphragm radius
needed to suppress the TEM01 mode (Hint: Show that the round-trip loss of this resonator is the
same as the single pass loss of a near concentric symmetric resonator of length Lnc D 2L and
R1 D R2 D R. To calculate diffraction loss, then use Fig. 5.13, assuming the loss for a resonator
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of negative g-value to be the same as that of the corresponding resonator with corresponding
positive g-value).

5.13. Consider the A1B1C1D1 matrix of Fig. 5.8d and show that, for a stable cavity, one must have
0 < A1D1 < 1 and �1 < B1C1 < 0. From these results, then show that B1D1=A1C1 < 0 so that
q1 in Eq. (5.5.6a) is purely imaginary.

5.14. For a stable two-mirror resonator one can define a misalignment sensitivity, ı, as the transverse
shift of the intersection of the optical axis with a given mirror, normalized to the spot size on
that mirror, for a unit angular tilt of one of the two mirrors. In particular, for mirror 1, one can
define two misalignment sensitivity factors ı11 and ı12 as ı11 D .1=w1/.dr1=d
1/ and ı12 D
.1=w1/.dr1=d
2/, where dr1=d
i .i D 1, 2/ is the transverse change of beam center at mirror 1
for unit angular tilt of either mirror 1 or 2. Show that, for a confocal resonator, .ı11/c D 0 and
.ı12/c D .
ws=�/.

5.15. Using the definitions given in the previous problem, show that, for a near-plane symmetric res-
onator, the misalignment sensitivity is such that ı11 D ı12 D ı21 D ı22 D .ı12/c4w3=w2

s , where
.ı12/c is the misalignment sensitivity of the confocal resonator, w is the spot size on the mirror
for the actual resonator and ws is the mirror spot size of a confocal resonator of the same length.
According to the above equation which of the two resonators is the less sensitive to mirror tilt?

5.16. Consider a nearly hemispherical resonator (R D LC	with	 � L) in which mirror 1 is the plane
mirror. Show that we have in this case ı12 D .ı12/c.w2=ws/ and ı21 D .ı12/c.ws=w2/. Comparing
this resonator with the long radius resonator of the previous problem, for the same value of mirror
spot-size, i.e. w D w2, what conclusion can be drawn with regard to the misalignment sensitivity
of a nearly hemispherical resonator compared to that of a nearly flat resonator?

5.17. An unstable resonator consists of a plane mirror (mirror 1) and a convex mirror (mirror 2) of radius
of curvature R2 D 2 m, spaced by a distance L D 50 cm. Calculate: (1) The resonator location in
the g1, g2 plane. (2) The location of points P1 and P2 of Fig. 5.17. (3) The condition under which
the resonator is single-ended with beam output only occurring around mirror 2. (4) The round-trip
magnification factor and the round trip losses.

5.18. A confocal unstable resonator is to be used for a CO2 laser at a wavelength of � D 10.6�m.
The resonator length is chosen to be L D 1 m. Which branch would you choose for this resonator
if the mode volume is to be maximized? Calculate the mirror apertures 2a1 and 2a2 so that: (1)
Neq D 7.5, (2) single-ended output is achieved, and (3) a 20% round-trip output coupling is
obtained. Then find the radii of the two mirrors R1 and R2.

5.19. Using a geometrical-optics approach (and assuming lowest-order mode oscillation), calculate the
round-trip loss of the resonator designed in the above problem. What are the shape and dimensions
of the output beam?

5.20. Consider an unstable resonator consisting of a convex mirror, mirror 1, of radius R1 and a plane
mirror (mirror 2) spaced by a distance L D 50 cm. Assume that the plane mirror has a super-
Gaussian reflectivity profile with a super-Gaussian order n D 6 and peak power reflectivity
R0 D 0.5. Assume also that the active medium consists of a cylindrical rod (e.g. a Nd:YAG
rod) with radius a Š 3.2 mm, placed just in front of mirror 2. To limit the round-trip losses to
an acceptable value, assume also a round trip magnification M D 1.4. Calculate: (1) The spot
size w of the field intensity, Iin, for a 2 � 10�2 intensity truncation by the active medium. (2) The
corresponding mirror spot size wm. (3) The cavity round trip losses. (4) The radius of curvature of
the convex mirror.
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6

Pumping Processes

6.1. INTRODUCTION

We have seen in Chap. 1 that the process by which atoms are raised from level 1 to level
3 (for a three-level laser, Fig. 1.4a) or from level 0 to level 3 (for a four-level or a quasi-three-
level laser, Fig. 1.4b) is called the pumping process. Usually it is performed in one of the
following two ways: (i) Optically, i.e. by the cw or pulsed light emitted by a powerful lamp
or by a laser beam. (ii) Electrically, i.e. by a cw, radio-frequency, or pulsed current flowing in
a conductive medium such as an ionized gas or a semiconductor.

In optical pumping by an incoherent source, the light from a powerful lamp is absorbed
by the active medium and the atoms are thereby pumped into the upper laser level. This
method is particularly suited to solid-state or liquid lasers (i.e. dye lasers). The line-
broadening mechanisms in solids and liquids produce in fact very considerable broadening,
so that one is usually dealing with pump bands rather than sharp levels. These bands can,
therefore, absorb a sizable fraction of the, usually broad-band, light emitted by the lamp. The
availability of efficient and powerful, cw or pulsed, laser sources at many wavelengths has
recently made laser pumping both attractive and practical. In this case, the narrow line emis-
sion from a suitable laser source is absorbed by the active medium. This requires that the laser
wavelength fall within one of the absorption bands of the medium. It should be noted, how-
ever, that laser’s monochromaticity implies that laser pumping needs not to be limited to just
solid-state and liquid lasers but can also be applied to gas lasers, provided that one can ensure
that the line emitted by the pumping laser coincides with an absorption line of the medium
to be pumped. This situation occurs, for instance, in most far-infrared gas lasers (e.g., methyl
alcohol or CH3OH, in the vapor state) which are usually pumped by a suitable rotational-
vibrational line of a CO2 laser. For solid-state or liquid lasers, on the other hand, Argon ion
lasers, for cw excitation, Nitrogen or Excimer lasers, for pulsed excitation, and Nd:YAG lasers
and their second and third harmonics, either cw or pulsed, are often used. Whenever possi-
ble, however, semiconductor-diode lasers, due to the inherently high efficiency of these laser
sources (overall optical to electrical efficiencies larger than 60% have been demonstrated),
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are now commonly used (diode-laser pumping). Actually one can foresee that, in a not too far
future, diode-laser pumping will become the dominant means of optical pumping, replacing
even high power lamps.

Electrical pumping is usually accomplished by means of a sufficiently intense electrical
discharge and it is particularly suited to gas and semiconductor lasers. Gas lasers, in particular,
do not usually lend themselves so readily to lamp pumping because their absorption lines are
typically much narrower than the usual broad-band emission of the pumping lamp. A notable
exception that should be mentioned is the case of the optically pumped Cs laser, in which
Cs vapor is pumped by a lamp containing low-pressure He. In this case the situation was
quite favorable for optical pumping since the strong � 390 nm He emission line (which is
rather sharp owing to the low pressure used) happens to coincide with an absorption line of
Cs. This laser, however, is no longer in use and its importance resides mostly in its historical
significance as the most notable lamp-pumped gas laser and, particularly, as it was the earliest
proposed laser scheme. Electrical pumping of gas lasers, on the other hand, can be a fairly
efficient process (e.g. for pumping the CO2 laser) because the linewidth of the excitation cross-
section of a given transition by electron impact is usually quite large (from a few to a few tens
of eV, see Figs. 6.25 and 6.27). This circumstance occurs because electron impact excitation,
namely e C A ! A� C e where A is the species to be excited, is a non-resonant process.
The surplus energy, above that needed to excite species A, is in fact left as kinetic energy of
the scattered electron. By contrast, the process of optical excitation by an incoming photon of
energy h�, namely h�C A ! A�, is a resonant process because the photon energy must equal
the excitation energy of species A. Actually, as discussed in Chap. 2, some line-broadening
processes occur in this case on account of some energy, arising e.g. from thermal movement
of species A (as in Doppler broadening), which can be added to the process. The resulting
width of the absorption line, however, turns out to be quite small (e.g. � 10�5 eV for Doppler
broadening of Ne atoms) and this is the fundamental reason why optical pumping by a broad-
band source would be so inefficient for a gas laser. In the case of semiconductor lasers, on the
other hand, optical pumping could be used very effectively, since the semiconductor medium
has a strong and broad absorption band. Indeed, a number of optically pumped semiconductor
lasers (particularly by laser pumping) have been made to operate. Electrical pumping proves
to be more convenient, however, since a sufficiently large current density can be made to flow
through a semiconductor, usually in the form of a p-n or p-i-n diode.

The two pumping processes considered above, optical pumping and electrical pumping,
are not the only ones available for pumping lasers. A form of pumping which is somewhat
similar to optical pumping is involved when the medium is excited by a beam from an X-ray
source (X-ray pumping). Likewise, a pumping process somewhat similar to electrical pumping
is involved when the medium is excited by a beam of electrons from an electron-beam machine
(e-beam pumping). Although both X-ray and e-beam pumping are able to deliver high pump
powers or energies in a large volume of active medium (generally in gaseous form), these
pumping mechanisms are not widely used, in practice, due to the complexity of the X-ray or
e-beam apparatus. It should also be noted, in this contest, that possibly the shortest wavelength
so far achieved in a laser (� Š 1.4 nm i.e. around the boundary between soft and hard X-ray
region) has been achieved using the intense X-rays produced by a small nuclear detonation.
The details of this laser are still classified but one can readily appreciate that this pumping
configuration is not easily duplicated in the typical laboratory!
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A conceptually different and rather interesting type of pumping is involved when the
required inversion is produced as a direct result of an exothermic chemical reaction (chemical
pumping). There are two general kinds of these reactions which can be used, namely: (i)
Associative reactions, i.e. ACB ! .AB/�, resulting in the molecule AB being left in an excited
vibrational state. (ii) Dissociative reactions, e.g. where the dissociation is induced by a photon
i.e. AB C h� ! A C B�, resulting in species B (atom or molecule) being left in an excited
state. Chemical pumping usually applies to materials in the gas phase and generally requires
highly reactive and often explosive gas mixtures. On the other hand, the energy available in
an exothermic reaction is often quite large and high powers, for cw operation, or energies, for
pulsed operation, can be available for laser action if a good fraction of the available energy
is converted into laser energy. These features have enabled chemical lasers to produce the
largest cw laser powers so far available (2.2 MW for the so-called MIRACL laser, an acronym
for Mid Infrared Advanced Chemical Laser). In view of the handling problems associated
with reactive and hazardous materials, the use of these lasers has been confined to the military
field, for use as directed energy weapons.

Another conceptually different type of pumping mechanism for gas molecules is by
supersonic expansion of a gas mixture containing the particular molecule (gas-dynamic pump-
ing). In this case, a suitable mixture, usually involving the CO2 molecule as the active species
(e.g. CO2:N2:H2O in the 6:76:1 ratio), is used. The mixture is raised, in a suitable container,
to a high pressure (e.g. � 17 atm) and temperature (e.g. � 1,400 K) by combustion of appro-
priate fuels (e.g. combustion of benzene, C6H6, and nitrous oxide, N2O, thus automatically
supplying hot CO2 with a CO2=H2O ratio of 2:1). The CO2 molecule in this mixture is, of
course, not inverted but, due to the high temperature, a substantial fraction of molecules is
found in the lower laser level .� 25%/ while a lower but still substantial fraction is found
in the upper laser level .� 10%/. It should be noted, in fact, that the CO2 laser is a roto-
vibrational laser and the lower and upper laser levels of the ground electronic state can be
significantly excited thermally, i.e., by having the mixture at a high temperature. The gas mix-
ture is then made to expand, adiabatically, to a very low pressure (e.g. � 0.09 atm) trough a
row of expansion nozzles (an example of this expansion system can be found in the chemi-
cal laser section of Chap. 10). Due to expansion, the translational temperature of the mixture
will be reduced to a much lower value (e.g. � 300 K). Consequently, during the expansion
process, upper and lower state populations will tend to relax to the, much lower, equilibrium
values appropriate to this lower temperature. For a CO2 laser, however, the lifetime of the
upper state is appreciably longer than that of the lower state. This means that relaxation of the
lower level will occur at an earlier stage, downstream in the expanding beam. Thus there will
be a fairly extensive region, downstream from the expansion nozzle, where the population
of the lower laser level has decayed, while that of the upper level has persisted at its initial
value in the container. Thus a population inversion is created in this region via the expan-
sion process. Gas-dynamic pumping has been mainly applied to CO2 lasers and has yielded
high cw powers .� 100 kW/. The complications of the system have been an obstacle to its
use for civilian applications while its lower power, compared to chemical lasers, has put it at
disadvantage for military applications.

As for the case of radiation-matter interaction, considered in Chaps. 2 and 3, where
the ultimate goal was the calculation of both stimulated and spontaneous transition rates, so
the ultimate goal here would be to calculate the pump rate per unit volume, Rp, as defined
by Eq. (1.3.1). When pumping with a broad-band light source, i.e. a lamp, the calculation
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of Rp becomes rather involved..1/ This is also the case when pumping via electrons in a gas
discharge, where a distribution of electron-velocities is involved..2/ So, we will limit ourselves
here to a description of various pumping schemes with some discussion of the underlying
physical mechanisms involved in the processes.

6.2. OPTICAL PUMPING BY AN INCOHERENT LIGHT SOURCE

In the case of optical pumping by a powerful incoherent source, i.e. a lamp, the pump
light is emitted in all directions and, generally, over a broad spectrum. This light then needs
to be transferred into the active medium. The object of the next section is to describe how this
transfer can be achieved by a suitable optical system.

6.2.1. Pumping Systems.3/

The lamps used for laser pumping are, often, of cylindrical shape. Figure 6.1 shows two
of the most commonly used pumping configurations when a single lamp is used. In both cases
the active medium is taken to be in the form of a cylindrical rod with length and diameter about
equal to those of the lamp. The diameter usually ranges from a few millimeters to some tens
of millimeters and the length from a few centimeters to a few tens of centimeters. In Fig. 6.1a
the lamp is placed along one of the two focal axes, F1, of a specularly reflecting cylinder of
elliptical cross-section (labeled 1 in the figure and usually referred to as the pumping cham-
ber). The rod is placed along the second focal axis F2. A well-known property of an ellipse
is that a ray F1P, leaving the first focus F1, passes, after reflection by the elliptical surface,
through the second focus F2 (ray PF2). This means that a large fraction of the light emitted
by the lamp is conveyed, by the pumping chamber, to the active rod. High reflectivity of this
chamber is achieved by vacuum deposition of a gold or silver layer on the inside surface of the
cylinder. Figure 6.1b shows an example of what is known as a close-coupled configuration.
The rod and the lamp are placed as close as possible and are closely surrounded by cylindrical
reflector (labeled 1 in the figure). In this case, pumping chambers made of diffusely reflecting

FIG. 6.1. Pump configurations using one lamp: (a) elliptical cylinder; (b) close-coupling.
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FIG. 6.2. Pump configurations using two lamps: (a) double-ellipse; (b) close-coupling.

FIG. 6.3. Pumping configuration using many lamps: (a) Active medium in the form of a single slab with the laser
beam traversing the slab in a zig-zag path. (b) Active medium made of many slabs inclined at Brewster’s angle to the
laser beam.

materials are often used instead of specular reflectors. For highly diffusing materials such
as compressed BaSO4 powders or white ceramic, which are very efficient scattering media,
the efficiency for close-coupled configuration is usually not much less than that of specularly
reflecting cylinders. The pump light distribution within the laser rod is much more uniform,
however. Figure 6.2 shows two common examples of pumping chambers involving the use of
two lamps. In Fig. 6.2a, the specularly reflecting cylinder consists of a double-ellipse sharing a
common focal axis. The laser rod is placed along this axis while the two lamps lie on the other
two focal axes of the ellipses. Figure 6.2b shows two lamps placed as close as possible to the
laser rod (close-coupled configuration) the reflecting cylinder again being usually of diffusive
material. The efficiencies of these two-lamp configurations are lower than for the correspond-
ing single-lamp configurations of Fig. 6.1. The pump uniformity is however better and higher
pump energies, for a given lamp loading, can be obtained from a two-lamp, compared to a
single-lamp, configuration. For high-power or high-energy systems, multiple-lamp configura-
tions have also been used. A widely-used configuration involves the active medium arranged
in the form of a slab (Fig. 6.3a) or multiple slabs (Fig. 6.3b). In both cases each lamp is placed
along e.g. the focal line of a parabolic reflecting cylinder so as to ensure uniform illumination
of the slab(s). In Fig. 6.3a, laser action occurs by total internal reflections at the two slab
faces. The advantage of this zig-zag beam path is that it averages out the stress-birefringence
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and thermal focusing induced in the medium by the pump light. This configuration, despite
its greater complexity compared to schemes using a rod-shaped laser medium is particularly
advantageous when a laser beam of very high optical quality is required. In Fig. 6.3b, laser
action takes place along the beam direction indicated in the figure and the slabs are oriented
so that the beam is incident at Brewster’s angle. The main advantage of this configuration
stems from the fact that the transverse dimension of the laser medium can be made very large.
Furthermore the slabs can be individually cooled by e.g. a gas refrigerant. This configuration
finds application in large aperture (up to 40 cm diameter) Nd:glass amplifiers used for laser
fusion experiments.

For pulsed lasers, medium-to-high pressure .500 � 1500 Torr/ Xe or Kr flashlamps are
used and the pump light pulse is produced by discharging, through the lamp, the electrical
energy stored in a capacitor bank, charged by a suitable power supply (Fig. 6.4). A series
inductance L is often used in the electrical circuit to limit the current rise-time. The discharge
may be initiated by ionizing the gas in the lamp through a high-voltage trigger pulse applied
to an auxiliary electrode around the lamp (parallel trigger, see Fig. 6.3a). Alternatively, the
preionization may be produced by a voltage pulse directly applied between the two main elec-
trodes of the lamp (series trigger, see Fig. 6.3b). Once ionized, the lamp produces an intense
flash of light whose duration is determined by the circuit capacitance and inductance as well
as by the lamp electrical characteristics (usually the duration ranges from a few microseconds

FIG. 6.4. Pulsed electrical excitation of a flashlamp using either an external trigger, (a), or series trigger
configuration, (b).

FIG. 6.5. Electrical excitation of a cw lamp.
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to a few milliseconds). For cw lasers, high-pressure (1–8 atm) Kr lamps are most often used
and the cw current may be delivered by a current regulated power supply, see Fig. 6.5 where
the L=C filter network is used for ripple suppression. In this case, also, an electrical trigger
pulse, usually from a series trigger, is needed to provide the required initial ionization. For
reliable lamp starting, the voltage of the power supply must be boosted to a sufficiently high
value and for a sufficiently long time, during the trigger phase, so as to ensure a high enough
density of ions and electrons in the lamp to stabilize the discharge. This is conveniently done
by impulsively exciting the trigger transformer through a low-current booster power supply.

6.2.2. Absorption of Pump Light

To understand the process of light emission by a lamp, we begin by showing in Fig. 6.6a
the emission spectra, for pulsed excitation, of a Xe flashlamp at two typical current densities.
For the case of cw excitation, Fig. 6.6b shows the emission spectrum of a cw Kr lamp at a
current density of J D 80 A=cm2. Actually the typical operating current density of a Kr lamp
is somewhat higher than this, i.e. J Š 150 A=cm2, but this difference does not influence the
discussion that follows. Note that, at the relatively low current density of a cw lamp, the emis-
sion is concentrated mostly in various Kr emission lines which are considerably broadened
by the high gas pressure. By contrast, at the much higher current densities of a flashlamp, the
spectrum also contains a broad continuous component arising from electron-ion recombina-
tion (recombination radiation) as well as from electrons deflected by ions during collisions
(bremsstralung radiation). For both these phenomena, the emission arises from electron-ion
interaction. Accordingly, the intensity of the emitted light is expected to be proportional to the
product NeNi, where Ne and Ni are the electron and ion densities in the discharge. In a neu-
tral gas discharge one has Ne Š Ni while the two densities are proportional to the discharge
current density, J, by the well known relation Ne D J=e�drift, where �drift is the electron drift
velocity. It then follows that, to a first approximation, the continuous component of the spec-
trum is expected to grow as J2. By contrast, to a first approximation, the intensity of the line
spectrum of Fig. 6.6b can be taken as proportional to Ne and hence to J. This is the reason

FIG. 6.6. Comparison of the emission spectra of a Xe flashlamp, at 500 Torr pressure (a), and of a cw-pumped Kr
arc lamp, at 4 atm pressure (b).
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FIG. 6.7. Absorption cross section of Nd3C ion in YAG (solid line) and of Cr3C ion in Alexandrite (dashed line).
The left-hand scale refers to the cross-section of Nd:YAG and the right-hand scale to alexandrite. For alexandrite, the
average of the three values measured for polarization parallel to the a, b, and c axes has been taken.

why the continuous spectrum becomes dominant over the line spectrum at higher values of
the current density (Fig. 6.6a) while it is not apparent at the much lower current densities of a
cw lamp (Fig. 6.6b).

To understand the details of how the light emitted by the lamp is absorbed by the active
medium, we begin by showing in Fig. 6.7, as a solid line, the absorption spectrum of Nd:YAG
(Nd3C in Y3Al5O12 crystal) and, as a dashed line, the absorption spectrum of Alexandrite
(Cr3C in a BeAl2O4 crystal). In both cases, it is the dopant ion, present in the crystal as
a trivalent ion impurity, which is responsible for the absorption and which also acts as the
active element. A comparison of Fig. 6.7 with 6.6a indicates that the relatively broad spec-
tra of both Nd3C and Cr3C ions allow a reasonably good utilization of the light emitted by
a flashlamp. The situation is even more favorable for cw excitation of a Nd:YAG by a Kr
lamp. A comparison of Fig. 6.7 with 6.6b shows, in fact, that some strong emission lines
of Kr, in the 750 � 900 nm range, happen to coincide with the strongest absorption lines of
Nd3C ions. Note that the absorption spectrum of a rare-earth element, such as Nd3C, does
not vary much from one host material to another, since the absorption arises from electron
transitions between inner shells of the ion. So the spectrum of Nd:YAG can be taken, to
first order, as representative of other Nd-doped materials such as Nd:YLiF4, Nd:YVO4 and
Nd:glass (Nd3C ions in a glass matrix). For a transition metal dopant such as Cr3C, where
the spectrum arises from the outermost electrons, the host material has a larger influence on
the spectrum. However, the spectrum for alexandrite is similar to that of ruby (Cr3C in Al2O3

crystal), a historically important and still widely used material, and to those of more recently
developed and now very important laser materials such as Cr:LiSrAlF6 (LISAF for short) or
Cr:LiCaAlF6 (LICAF).
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6.2.3. Pump Efficiency and Pump Rate

Consider first a cw laser pumped by a pump rate, Rp, which is assumed uniform troughout
the volume of the pumped region, V . We can ask ourselves what would be the minimum pump
power, Pm, needed to obtain a given pump rate Rp. With reference to Fig. 6.17, this would
correspond to the case where the upper laser level were directly pumped from the ground state
by, e.g. monochromatic pump photons of energy h�mp, where �mp is the frequency difference
between the ground level and the upper laser level. The minimum pump power, Pm, is then
given by

Pm D .dN2=dt/pV h�mp D RpV h�mp (6.2.1a)

where V is the pumped volume of the active medium. We can now define a pump efficiency,
�p, as the ratio between this minimum pump power, Pm, and the actual electrical pump power,
Pp, entering the lamp i.e.

�p D Pm=Pp (6.2.1)

For non-uniform pumping, we can then write

Pm D h �mp
R
a

RpdV D
D h �mp<Rp>V

(6.2.2)

where the integral is taken over the whole volume of the medium and <Rp> is the average of
Rp in the medium. From Eqs. (6.2.1) and (6.2.2) we then get

�p D .h �mp<Rp>V/=Pp (6.2.3)

For a pulsed pumping system, we can, likewise, define �p as

�p D .h�mp

Z
RpdVdt/=Ep (6.2.4)

where the integral is also taken over the whole duration of the pump pulse and Ep is the
electrical pump energy given to the lamp.

To calculate or simply estimate the pumping efficiency, the pump process can be divided
into four distinct steps: (i) the emission of radiation by the lamp; (ii) the transfer of this radia-
tion to the active medium; (iii) the absorption in the medium; (iv) the transfer of the absorbed
radiation to the upper laser level. Consequently, the pumping efficiency can be written as the
product of four terms, namely,

�p D Pr

Pp

Pt

Pr

Pa

Pt

Pm

Pa
D �r�t�a�pq (6.2.5)

where: (i) �r D Pr=Pp is the ratio between the radiated power of the lamp in the wavelength
range corresponding to the pump bands of the laser medium, Pr, and the total electrical pump
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power to the lamp, Pp. The efficiency �r is referred to as the lamp radiative efficiency and
is smaller than one because some of the electrical input power is emitted into not useful
wavelength ranges or transformed as heath. (ii) �t D Pt=Pr is the ratio between the power
actually transmitted to the the medium by the pumping system and the radiated power, Pr.
The efficiency �t is referred to as the transfer efficiency of the pump system and is smaller
than one because not all radiative power emitted by the lamp, Pr, is conveyed into the active
medium. (iii) �a D Pa=Pt is the ratio between the power actually absorbed by the medium, Pa,
and the power entering into it, Pt. The efficiency �a is referred to as the absorption efficiency
and is smaller than one because not all power entering into the medium is there absorbed.
(iv) �pq D Pm=Pa is the ratio between the minimum pump power considered above and the
absorbed power Pa. The efficiency �pq is referred to as the power quantum efficiency and is
smaller than one because the absorbed power raises atoms to generally a few pump bands with
energy larger than h�mp, and because not all excited atoms then decay to the upper laser level.

Specific expressions for the above four efficiency terms can be obtained when the lamp
spectral emission, pump geometry, medium absorption coefficient and geometry are known..1/

We will not undertake an in-depth consideration of this topic here, so we will limit ourselves
to a discussion of a few typical results in the example that follows.

Example 6.1. Pump efficiency in lamp-pumped solid state lasers We will take as the active medium a
cylindrical rod with 6.3 mm diameter pumped in a silvered elliptical pumping chamber with major axis of
2a D 34 mm and minor axis 2b D 31.2 mm. For each laser medium, the lamp current density is assumed to
have the appropriate value for that laser configuration, ranging generally between 2,000 and 3, 000 A=cm2.
Under these pumping conditions, the calculated values for the four efficiency terms �r, �t, �a, �pq and for
the overall pump efficiency, �p, for ruby, alexandrite, Nd:YAG and Nd:glass are listed in Table 6.1. From
this table we may notice, in particular, that: (i) The lamp radiative efficiency is typically less than 50%
in all cases considered. (ii) In view of the larger Nd content in a glass and broader absorption bands of
Nd:glass material, the overall efficiency of Nd:glass is almost twice that of Nd:YAG. (iii) The overall
efficiency of Alexandrite is almost 3 times higher than for the other Cr3C -doped materials, i.e. ruby.
This is due mainly to the stronger absorption bands of Alexandrite owing to the higher Cr3C content.
Still higher pump efficiency, above the 10% level, are then expected for other Cr3C -doped media such as
Cr:LISAF and Cr:LICAF on account of the even higher (by more than an order of magnitude) Cr content.
(iv) In all cases considered, the overall efficiency, being the product of four efficiency terms, turns out to
be quite small .3 � 8%/.

In concluding this section we note that, once the overall pump efficiency is calculated
or, perhaps, simply estimated, the pump rate can be readily obtained from Eqs. (6.2.1a)

TABLE 6.1. Comparison between computed pumping efficiency terms for different laser materials.1/

Active Medium �r (%) �t (%) �a (%) �pq (%) �p (%)

Ruby 27 78 31 46 3.0
Alexandrite 36 65 52 66 8.0
Nd:YAG 43 82 17 59 3.5
Nd:Glass (Q-88) 43 82 28 59 5.8
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and (6.2.1) as

Rp D �p

�
P

Al h�mp

�
(6.2.6)

where A is the cross-sectional area of the pumped volume of the active medium and l is its
length. This is the simple basic expression for the pump rate often used in the laser literature.4/

and which will be used frequently in the following chapters. Note however that, to obtain Rp

from Eq. (6.2.6), one needs to know �p, implying that the detailed calculations, such as those
discussed in,.1/ need to have been performed by someone!

6.3. LASER PUMPING

Laser beams have often been used to pump other lasers since the early days of lasers,
being used for example in the first demonstration of laser action in a dye medium..5,6/ In partic-
ular, Ar ion lasers are widely used to pump cw dye and Ti3C:Al2O3 lasers, Excimer, Nitrogen
and Copper Vapor lasers are used for pulsed pumping of dye lasers, Nd:YAG and its second
harmonic beam are used as pumps for cw and pulsed dye and solid-state lasers (including
color-center lasers). Laser pumping has become a very much more important pumping tech-
nique, however, since efficient and high power diode lasers have been developed and become
widely available. A particularly interesting case is the use of diode lasers to pump other
solid-state laser materials thus providing an all-solid-state laser. The most relevant examples
include: (i) Nd:YAG, Nd:YLF, Nd:YVO4 or Nd:glass pumped by GaAs/AlGaAs� Quantum
Well(QW) lasers at � 800 nm (typical oscillation wavelengths are around 1 μm, 1.3 μm and
0.95 μm). (ii) Yb:YAG, Er:glass or Yb:Er:glass pumped by InGaAs/GaAs strained QW lasers
in the 950 � 980 nm range (oscillation wavelength is around 1 μm for Yb and 1.54 μm for Er
lasers). Note that, in the case of Er:Yb codoping, the pump light is absorbed by Yb3C ions
and then transferred to Er3C lasing ions. (iii) Alexandrite, Cr:LISAF or Cr:LICAF pumped by
GaInP/AlGaInP QW lasers in the 640 � 680 nm range and oscillating in a � 130 nm range
at � 840 nm. (iv) The Tm:Ho:YAG laser pumped by AlGaAs QW lasers at 785 nm and oscil-
lating around 2.08 μm. Note that, in this case, the pump light is absorbed by Tm3C ions and
transferred to the Ho3C lasing ions.

As a representative example of Nd ion lasers, we show in Fig. 6.8a the relevant plots
of the absorption coefficient vs wavelength for both Nd:YAG, continuous line, and Nd:glass,
dashed line. Note that Nd:YAG is most effectively pumped at a wavelength of � D 808 nm
and this is obtained by a Ga0.91Al0.09As=Ga0.7Al0.3As QW laser whose emission bandwidth
is typically 1 � 2 nm wide. Nd:glass, on the other hand, due to its broader and featureless
absorption profile, can be pumped over a broader range around the 800 nm peak. For the case
of Yb-ion lasers, we show in Fig. 6.8b the relevant plots of the absorption coefficient vs wave-
length for Yb:YAG (solid line) and Yb:glass (dashed line). Again the absorption coefficient for
glass appears broader and featureless compared to that of YAG. The best pumping wavelength

� In all double-compound (A/B) semiconductor lasers, considered in this section, the first compound (A) refers to
the active layer while the second one (B) is the so called cladding layer (see Chapt. 9, Sect. 9.4)
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FIG. 6.8. Absorption coefficient vs wavelength in the wavelength range of interest for diode laser pumping: (a)
Nd:YAG, solid line, and Nd:glass, dashed line. Neodymium concentration is 1.52 	 1020 cm�3 for Nd:YAG (1.1
atomic % doping) and 3.2 	 1020 cm�3 for Nd:glass (3.8% by weight of Nd2O3) (after ref..16/ by permission). (b)
Yb:YAG, solid line, and Er:Yb:glass, dashed line. Ytterbium concentration is 8.98 	 1020 cm�3 for Yb:YAG (6.5
atomic %) and 1 	 1021 cm�3 for Yb:glass. The curves of Yb:YAG and Yb:glass are based on the corresponding
plots of ref..17/ and,.18/ respectively.

TABLE 6.2. Comparison between pumping parameters and laser wavelengths for different laser
materials

Nd:YAG Yb:YAG Yb:Er:glass Cr:LISAF Tm:Ho:YAG

Concentr. 1 at. % 6.5 at.% 1 mol.% 6.5 at.% Tm 0.36 at. %Ho
Pumping Diode AlGaAs InGaAs InGaAs GaInP AlGaAs
Wav. (nm) 808 950 980 670 785
Active-ion conc.
Œ1020 cm�3�

1.38 9 10 [Yb] 0.9 8 [Tm]

1 [Er] 0.5 [Ho]
Pump abs. coeff.
.cm�1/

4 5 16 4.5 6

Oscillation Wav.
.μm/

1.06 1.03 1.53 0.72 � 0.84 2.08

1.32, 1.34
0.947

is 960 nm for Yb:YAG and 980 nm for glass and these wavelengths can be obtained from a
InGaAs/GaAs QW laser (e.g. In0.2Ga0.8As=GaAs for � D 980 nm). The plots of the absorp-
tion coefficient vs wavelength for Cr3C ion lasers (Alexandrite, Cr:LISAF, Cr:LICAF) show
the general structureless shape of the dashed curve of Fig. 6.7. The peak absorption coefficient
at 600 nm wavelength is � 0.5 cm�1 for Alexandrite and up to 50 cm�1 cm�1 for Cr:LISAF.
Note that the higher absorption coefficient in Cr:LISAF is due to the higher Cr concentration
which can be used (� 100 times higher than for Alexandrite) without incurring the problem
of concentration quenching of the upper state lifetime. Due to the lack of suitable diode lasers
at shorter wavelengths, pumping is achieved in the 640 � 680 nm wavelength range, obtained
from GaInP/AlGaInP QW lasers (e.g. Ga0.5In0.5P=Al0.25Ga0.25In0.5P for 670 nm wavelength)
with GaInP being the active QW layer. Table 6.2 summarizes the most relevant pumping data
for some of the active media considered above.
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6.3.1. Laser Diode Pumps

There are essentially four types of pumping laser diodes, listed in order of increasing
output power as: (i) Single-stripe; (ii) diode-array; (iii) diode-bar; (iv) stacked-bars.

At the lower end of the output power range .P < 100 mW/ one has the single-stripe
semiconductor laser such as the index-guided laser of Fig. 6.9a. By means of a suitable insu-
lating oxide layer, the diode current is confined to a 3 � 5 μm wide stripe which extends over
the whole length of the diode. The emitted beam has an elliptical shape with a diameter in
the direction perpendicular to the laser junction of d? D 1 � 3 μm and a diameter in the
junction plane of djj Š 3 � 6 μm. With such small spot-sizes, the beam is spatially coherent
i.e. it is diffraction limited. In fact, in a typical situation, the divergence half-angle-cone at
1=e2 intensity point is 
? D 20ı D 0.35 rad, perpendicular to the junction. One then gets

? D 2�=
d? provided one takes, at � D 800 nm, d? Š 1.4 μm. In the junction plane one
typically has 
jj D 5ı D 0.09 rad and again one gets 
jj DŠ 2�=
djj by taking djj D 5.8 μm.
[Gaussian distributions in the two planes, with spot sizes w0? Š d?=2 and w0jj Š djj=2, are
assumed so that beam divergence is calculated according to Eq. (4.7.19)]. Note that, in view
of this strong difference between the beam divergences in the two directions, the beam has its
major axis direction rotated by 90ı after beam propagation just a few micrometers away from
the diode exit face.

FIG. 6.9. (a) Single-stripe index-guided semiconductor diode laser. (b) Monolithic array of many stripes on a single
semiconductors chip.
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FIG. 6.10. (a) Monolithic 1-cm bar for cw operation. (b) Stacked bars for quasi cw operation.

To obtain larger output power values, one uses a monolithic array of diode-laser stripes,
fabricated on the same semiconductor substrate (Fig. 6.9b). In typical cases the array may
contain twenty stripes, each 5 μm wide, with their centers spaced by � 10 μm. The overall
dimensions of the emitted beam are djj Š 200 μm � d? Š 1 μm and, for arrays having
uncorrelated phases, the beam divergences are 
? Š 20ı and 
jj Š 5ı i.e. the same as for a
single stripe. The beam divergence parallel to the junction plane, 
jj, is now about 40 times
more than the diffraction limit .
jj
djj=2� Š 34/. Actually, for lower power devices, some
phase correlation among the various emitters may develop leading to a characteristic two-
lobed angular emission pattern, the two lobes being spaced by � 10ı and each � 1ı wide.
Output power from such array may be up to � 2 W.

To obtain still larger output powers, the array described above may be serially repeated
in a single substrate to form a monolithic bar structure (Fig. 6.10a). The device shown in the
figure is seen to consist of 20 arrays, whose centers are spaced by 500 μm, each array being
100 μm long and containing 10 laser stripes. The overall length of the bar is thus � 1 cm, the
limit being set by considerations of processing practicality. Again all the stripe emitters may
be considered to be phase uncorrelated and output powers up to 10 � 20 W are usual.

The bar concept can be extended to the case of a stack of bars which form a two-
dimensional structure (Fig. 6.10b). In the figure, six, 1 cm long, bars are shown stacked so
as to form an overall, 2 mm � 1 cm, emitting area. These stacked bars are so far intended for
quasi-cw operation with a duty cycle up to 2%. Peak power density may be up to 1 kW=cm2

and average power up to 100 W=cm2.
To pump laser materials such as Nd:YAG, having narrow absorption lines, the width

of the diode’s spectral emission is an important parameter to be considered. The spectral
emission bandwidth of a single stripe may be as narrow as 1 nm, which compares favorably
with the � 2 nm bandwidth of the 808 nm absorption peak of Nd:YAG. For the case of arrays
and, even more so, for bars or stacked bars, spectral emission may be substantially larger than
this value due to compositional variation between stripes and temperature gradients, both
leading to different stripe emission wavelength. Currently, the best results for a bar may be
a spectral width as low as � 2 nm. To tune and to stabilize the emission wavelength, diode
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lasers are normally cooled by a thermoelectric cooler, for low power devices, and by liquid
cooling for the highest powers. A temperature stability and accuracy of less than 1 C is usually
required.

6.3.2. Pump Transfer Systems

For efficient pumping, the light emitted by the diode laser systems described above must
be properly transferred to the active medium. There are, basically, two types of pump system
geometry: (i) Longitudinal (or axial) pumping, where the pump beam enters the laser medium
along the resonator axis. (ii) Transverse pumping, where the beam is conveyed to the active
medium generally from one or more directions, transverse to the resonator axis. We shall
consider the two cases separately because the diode lasers and pump transfer systems are
somewhat different for the two cases.

6.3.2.1. Longitudinal Pumping

For longitudinal pumping, the beam emitted by the diode laser generally needs to be
concentrated into a small (100 μm � 1 mm diameter) and usually not so necessarily circular
spot into the active medium. Three of the most common laser configurations are shown in
Fig. 6.11a, b and c, respectively. In Fig. 6.11a, the laser rod is shown in a plane-concave
resonator, the plane mirror being directly deposited to one rod face, and the pump beam
focused on this face. In Fig. 6.11b and c two pump beams, from two different diode systems,
are focused into the rod center from the two sides of the rod. The laser resonator may then
consist either of a folded ring configuration (Fig. 6.11b) or a z-shaped folded linear cavity

FIG. 6.11. Typical configurations for longitudinal diode laser pumping: (a) Single-ended pumping in a simple plane-
concave resonator. (b) Double-ended pumping for a ring laser in a folded configuration. (c) Double-ended pumping
for a z-shaped folded linear cavity.
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FIG. 6.12. (a) Pump-transfer system for compensating the astigmatism of a single-stripe diode laser. (b) Simple
cylindrical lens combination to realize an anamorphic system. (c) Anamorphic prism-pair configuration.

(Fig. 6.11c). For these last two resonators, the resonator axis is also indicated by a dashed
line. Given these resonators, we now address the question of how to transform the pump
beam into a circular shape, of the appropriate size, within the laser rod.

Let us first consider the single-stripe configuration of Fig. 6.9a, which is still used as a
pump source for low power devices (output powers up to a few tens of mW may be achieved
with single stripe pumping). The ellipticity of the strongly diverging beam of the diode stripe
can be compensated by a combination of two spherical lenses and by an anamorphic opti-
cal system, which is indicated schematically as a box in Fig. 6.12a. In the figure, the beam
indicated by a continuous line corresponds to the beam behavior in the plane parallel to the
laser diode junction while the beam indicated by dashed lines corresponds to the plane per-
pendicular to the junction. Lens L1, of focal length f1, is a spherical lens of short focal length
and high numerical aperture to collimate the highly divergent beam from the laser diode.
Since 
? Š 4
jj, the beam, after the lens, will have an elliptical shape with a dimension
d? D f1 tg
? perpendicular to the junction (the so-called fast-axis) and djj D f1 tg
jj parallel
to the junction (the slow axis). Thus, in a typical case, we may have d?=djj D tg
?=tg
jj Š 4.
This elliptical beam is then passed through an anamorphic expansion system i.e. a system
which provides different beam expansions along the two axes. If, for instance, the system
provides a 4:1 expansion of beam along the slow axis and no expansion along the fast axis,
then a circular spot will result after this expansion. The simplest configuration for such an
anamorphic expander could perhaps be provided by the combination of two cylindrical lenses,
L3 and L4, in a confocal (or telescopic) arrangement (Fig. 6.12b). If the two lenses have their
focusing action in the plane containing the slow axis, there will be a beam expansion of f4=f3,
where f4 and f3 are the focal lengths of the two lenses, for the beam in this plane (solid-line).



6.3 � Laser Pumping 221

For the other plane, however, the two cylindrical lenses behave simply as plane parallel plates
and the beam will thus be unaffected, in the fast-axis direction, by the beam expander. The
anamorphic system of Fig. 6.12b is seldom used in practice, however, because, to save space,
the system would require cylindrical lenses of short focal length and such lenses, if they are
to be aberration free, are rather expensive. Thus, the anamorphic prism pair of Fig. 6.12c is
usually employed..7/ In the figure we again consider the beam behavior only in the slow-axis
plane (solid line). By simple geometrical considerations one can show that, after refraction at
the front surface of the first prism, the incident beam, of diameter Di, is enlarged to a diameter
Dr such that Dr=Di D cos 
r= cos 
i, where 
i and 
r are, respectively, the angles of incidence
and refraction at the prism surface. Then, if the exit face of the first prism is made near nor-
mal to the beam direction, no refraction will occur at this face and the beam will pass through
it unchanged. Under these conditions the beam magnification, M, after the first prism, will
simply be given by

M D Dr

Di
D cos 
r

cos 
i
(6.3.1)

Let us now consider the passage of the beam through the second prism. If the prism is
identical to the first one, is oriented as in Fig. 6.12c and if the angle of incidence at the entrance
face is again equal to 
i, then the beam will again be magnified by a factor M on traversing
the second prism. The overall beam magnification is then equal to M2 and the direction of
the output beam is parallel to that of the input beam, although shifted laterally. In the fast
axis plane, on the other hand, the two prisms behave as simple plates and so there is no beam
magnification. Thus, for the example considered in Fig. 6.12a, if one chooses an anamorphic
prism pair with appropriate values for 
i and for the prism refraction index, n, one can readily
arrange to have M D 2 i.e. an overall magnification of M2 D 4. The beam, after the prism-
pair, will thus have a circular shape. If the collimating lens L1 in Fig. 6.12a has a sufficiently
high numerical aperture to accept the highly diverging beam along the fast axis, and if the
lens is, ideally, aberration free, the beam after this lens and, hence, after the prism-pair will
still retain the diffraction limited quality of the original beam from the diode. Since the beam
leaving the prism pair has a circular shape, the beam divergence will now be equal along the
two axes. A spherical lens L2, of appropriate focal length f2, can then be used to focus the
beam to a round spot of appropriate size in its focal plane (Fig. 6.11a) i.e. where the active
medium is placed. If lens L2 is also aberration free, the beam in the focal plane will again be
of circular symmetry and diffraction limited.

Example 6.2. Calculation of an anamorphic prism-pair system to focus the light of a single-stripe diode
laser We will consider the system configuration of Fig. 6.12 and a single-stripe laser with 
? D 20ı
and 
jj D 5ı, so that, assuming diffraction limited Gaussian distributions, we can take d? D 1.4 μm
and djj D 5.8 μm. We will consider a collimating lens, L1, of focal length f1 D 6.5 mm. After lens L1,
the beam diameters along the fast and slow axes, will be respectively D? D 2f1tg
? D 4.73 mm and
Djj D 2f1 tg
jj D 1.14 mm. Each prism must then provide a magnification of M D ŒD?=Djj�1=2 Š 2.
Assuming the prisms to be made of fused silica, so that the refractive index at 800 nm wavelength is
n D 1.463, then 
i and 
r are found from Eq. (6.3.1) and from Snell’s law sin 
i D n sin 
r. The solution
can be readily obtained either graphically or by a fast iterative procedure. For this procedure, we first



222 6 � Pumping Processes

assume a tentative value of 
i and use Snell’s law, with n D 1.463, to calculate a first value of 
r. This
value is then inserted into Eq. (6.3.1), with M D 2, to calculate a new value of 
i corresponding to
the first iteration, and so on. Starting from e.g. 
i D 70ı, this iterative calculation rapidly converges,
in a few iterations, to 
i D 67.15ı and 
r Š 39ı. Since the beam is assumed to exit normal to the
second face of the prism, a simple geometrical argument shows that the apex angle of the prism must be
˛ D 
r Š 39ı. In this way, after the second prism, a circular beam with diameter Djj D D? D 4.73 mm
is obtained. Let us now take the focal length of lens L2 to be f2 D 26 mm and assume that the beam
is still diffraction limited after this lens. The beam spot size in the focal plane of this second lens will
then be d Š 4�f2=
D Š 5.52 μm [the expression which applies for Gaussian beam focusing is again
used here, see Eq. (4.7.28)]. Note the very small value of the pump diameter which can, in principle, be
achieved. Indeed one readily sees that the effect of the optical system in the fast axis plane (Fig. 6.12a)
is to make a f2=f1 Š 4 magnified image of the field distribution at the diode exit face. Since one has
d? D 1.4 μm, we then expect d D .f2=f1/ d? Š 5.6 μm. To obtain such a small spot, however, lenses
which are well corrected for spherical aberration must be used, in particular for the collimator lens, L1.
In a typical situation, account being taken of the finite resolving powers of lenses L1 and L2, the beam
diameter in the focal plane of lens L2 may be 5 � 10 times larger In any case, the beam divergence in
the focal plane of lens L2 is given by 
 Š D=2f2, where D is the beam diameter at the lens position. If
a rod of refractive index nR is placed in the focal plane, then, due to beam refraction, the divergence is
approximately reduced by a factor nR. If we then take nR D 1.82, as appropriate for YAG crystals, we
then get 
n Š D=2f2nR D 0.05 rad Š 3ı.

In the case of e.g. a 200 μm wide array, since the divergence angles 
? and 
jj are approx-
imately the same as for a single-stripe, the configuration of Fig. 6.12a and c can still be used to
produce a circular spot after the anamorphic prism-pair. Since the slow-axis beam divergence
is however � 40 times larger than the diffraction limit, the spot in the focal plane of lens L2

would be elliptical with a 40:1 ratio between the two axes. Following the previous example
and for a well corrected collimating lens L1, the elliptical beam should have a 2.8 μm�112 μm
dimensions. In practice, the aberrations of the optical system, which are more pronounced for
the fast-axis direction, will tend to produce a more circular spot with a spot size of perhaps
150 μm. Another way, widely used for a diode arrays, for transferring the pump beam to the
active medium is by means of a multimode optical fiber. For a 200 μm stripe, a fiber with a
200 μm core diameter can be used and the fiber may be butt-coupled to the diode. With this
configuration, however, the fiber numerical aperture (N.A. D sin 
f , where 
f is the accep-
tance angle of the fiber) needs to have a sufficiently high value to accept the highly diverging
beam of the diode, i.e. sin 
f > sin 
? Š 0.4. The output beam after propagation in the fiber
is circular but its divergence is established by the fiber N.A., i.e. 
out D 
f . In doing so, there-
fore, one worsen the slow axis divergence from 
in D 
jj to 
out D 
f Š 
?. To reduce the
beam divergence, one can use a cylindrical lens of very short focal length to collimate the
beam in the fast-axis direction to a diameter equal to the fiber diameter and then use a fiber
of numerical aperture approximately equal to the slow-axis divergence, i.e. take 
f Š 
jj. In
this case, as shown in more details in the example which follows, the beam of a 200 μm wide
array can be focused into a fiber of perhaps 250 � 300 μm core diameter and N.A. of 0.1.

In the case of a 1 cm bar, a single 1 cm long cylindrical microlens can be used to focus
each array of the bar into a single multimode fiber. Since each array is now typically 100 μm
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Example 6.3. Diode-array beam focusing into a multimode optical fiber We will consider the simple
configuration of Fig. 6.13, where a cylindrical lens of sufficiently short focal lens, f , is used to collimate
the beam along the fast axis (dashed lines). The beam diameter, after the lens and along this axis, will
then be given by D? D 2f tg
?. Along the slow-axis, the cylindrical lens behaves like a plane-parallel
plate and the beam (continuous line) will be essentially unaffected by the lens. (To draw attention to
this in the figure, the cylindrical lens is drawn as a dashed line to indicate that it only focuses in the
fast axis plane). The beam diameter in the slow axis plane, after the lens, will then be approximately
Djj � La C2f tg
jj where La is the length of the array. If one now sets the condition Djj D D? one obtains
f D La=2.tg
? � tg
jj/. Taking La D 200 μm, 
? D 20ı and 
jj D 5ı, we get f D 350 μm, a focal length
which can be obtained with fiber microlenses. With such a small value of focal length, the beam diameter
after the lens will be D D Djj D D? D 2f tg
? D 254 μm which can easily be accepted into e.g. a
300 μm diameter, multimode fiber, but coupled to the microlens. For a well corrected fiber microlens, the
beam divergence, after the lens, will mostly arise from the uncompensated divergence of the slow-axis
beam. The fiber numerical aperture must then be N.A. D sin 
f 
 sin 
jj Š 0.09. The beam divergence of
the light leaving the fiber, for a sufficiently long fiber, will then have circular symmetry and be equal to
the fiber’s N.A.

long (see Fig. 6.10a) fibers with 200 μm core diameter and 0.1 N.A. can be used for each array
(see Fig. 6.13). In this way, one can convey the whole beam of the bar into 20 fibers, whose
ends can be arranged into a circular fiber bundle of 1�1.5 mm diameter and overall divergence
equal to the N.A., 0.1, of the fiber. The beam emitted by this bundle is then imaged into
the rod along one (Fig. 6.11a) or two longitudinal directions (Fig. 6.11b, c). With this pump
configuration, an overall transmission of the transfer system up to 85% has been demonstrated.
Output powers up to � 15 W in a TEM00 mode with an optical-to-optical efficiency of � 50%
have been obtained using a Nd:YVO4 rod pumped by two such fiber-coupled diode bars.

A quite interesting and alternative approach has been demonstrated which allows the
very asymmetric output beam from a diode bar or array to be reshaped so as to produce the
same beam dimensions and divergences along the original fast-axis (vertical) and slow-axis
(horizontal) directions. The technique involves sending the beam from a diode bar or array,
after collimation in the fast direction by a fiber lens, to a tilted pair of parallel mirrors which,
by multiple reflections of the beam, effectively chop it into several segments in the horizontal

FIG. 6.13. Use of a cylindrical micro-lens to couple the output of a diode array to a multimode optical fiber.
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direction and then stack these segments above each other, resulting in a rectangular shape..8/ In
equalizing the beam parameters in the horizontal and vertical directions, the decrease in beam
brightness in the vertical direction is compensated by increase in brightness in the horizontal
direction so that overall brightness can be maintained. This shaped beam allows very intense
longitudinal pumping, which is particularly effective for the otherwise difficult cases of low
gain and quasi-three-level lasers.

6.3.2.2. Transverse Pumping

In the case of transverse pumping, active media in the shape of either slabs or rods can be
used. Figure 6.14 shows a particularly interesting, transversely pumped, slab configuration..9/

Pumping is achieved through 25 individual laser arrays, each coupled to a 600 μm core diam-
eter 0.4 N.A. fiber. The power of the beam exiting each fiber is � 9.5 W and the total power is
235 W. The fibers ends are spaced along the two sides of a 1.7 mm thick, 1.8 mm wide, minia-
ture slab. The center line length of the slab is � 58.9 mm and this corresponds to 22 total
internal reflections at the two slab faces (see Fig. 6.3a). Due to the averaging properties of
the resulting zigzag pattern, the optical quality of the active medium, as seen by the beam, is
excellent and an output power of 40 W in a TEM00 mode with an optical-to-optical efficiency
of � 22% have been achieved. A particularly interesting configuration using a Nd:YAG rod
is shown in Fig. 6.15..10/ The 4 mm diameter rod, cooled by water flowing in a surrounding

FIG. 6.14. Transverse pumping configuration for a Nd:YAG slab (after ref.,.9/ by permission).
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FIG. 6.15. Transverse pumping configuration for a Nd:YAG rod (after ref.,.10/ by permission).

FIG. 6.16. Pump light distribution in the Nd:YAG rod for the transverse pump distribution of Fig. 6.15 (after ref.,.10/

by permission).

tube, is radially pumped by either 3 or 5 pump modules placed in a circularly symmetric
arrangement. Each pump module consists of sixteen, 800 μm core diameter 0.22 N.A., fibers,
mounted side by side in a linear row with 2 mm center-to-center spacing. Into each fiber, the
beam of a diode array with a nominal output power of 10 W is injected. The output beam
from each fiber directly irradiates the laser rod without any additional focusing optics. A
pump transfer efficiency of � 80% is estimated for this transverse pump configuration. To
help achieve sufficient absorption of the diode-laser radiation, pump light reflectors, facing
each pump module, are mounted around the rod. For large enough fiber-to-rod distances the
pump light distribution within the rod, achieved in this way, turns out to be rather uniform.
As an example, Fig. 6.16 shows this pumping light distribution for a 13 mm fiber-to-flow-tube
distance. Using both configurations of Fig. 6.15 an output power of � 60 W in a TEM00 mode
has been achieved with an optical-to-optical efficiency of 25%.

6.3.3. Pump Rate and Pump Efficiency

In the case of longitudinal pumping, if we let Ip.r, z/ be the pump intensity at the location
inside the laser medium specified by radial coordinate r and longitudinal coordinate z, the
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pump rate is readily obtained as

Rp.r, z/ D ˛ Ip.r, z/

h�p
(6.3.2)

where ˛ is the absorption coefficient of the laser medium at the frequency �p of the pump. We
will now assume a Gaussian distribution of the pump beam, i.e. we take

Ip.r, z/ D Ip.0, 0/ exp � 
2r2=w2
p

�
exp.�˛ z/ (6.3.3)

where Ip.0, 0/ is the peak intensity at the entrance face of the rod, wp is the pump spot-
size which is taken, for simplicity, to be independent of z. Note that ˛ is the absorption
coefficient under the laser operating conditions and, to a good approximation, it coincides
with the unpumped absorption coefficient since the population raised to the upper levels by
the pumping process is usually only a small fraction of the total population. The intensity
Ip.0, 0/ is related to the incident pump power, Ppi, by

Ppi D
1Z

0

Ip.r, 0/2
 rdr (6.3.4)

From Eqs. (6.3.3) and (6.3.4) we obtain

Ip.0, 0/ D 2Ppi


 w2
p

(6.3.5)

The incident pump power, Ppi, is then related to the diode laser electrical power, Pp, by

Ppi D �r�tPp (6.3.6)

where �r is the diode radiative efficiency and �t is the efficiency of the pump transfer system.
From Eq. (6.3.2), with the help of Eqs. (6.3.3), (6.3.5) and (6.3.6), we obtain

Rp.r, z/ D �r�t

�
Pp

h�p

�  
2˛


 w2
p

!
exp �

 
2r2

w2
p

!
exp .�˛ z/ (6.3.7)

It is shown in Appendix E that, as far as the threshold condition is concerned, the pump-
rate which is effective for a given cavity mode is the average, <Rp>, of Rp taken over the
field distribution of the mode. More precisely, if we let u.r, z/ be the complex field amplitude
normalized to its peak value, <Rp> is given by

<Rp> D
0
@Z

a

Rpjuj2dV

1
A.Z

a

juj2dV (6.3.8)

where the integrals are taken over the whole of the active medium. Let us consider a TEM00

single-longitudinal mode. If the spot size at the beam waist, w0, is located in the laser rod
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and if the spot size is assumed constant along the rod, then, according to Eq. (5.5.24), with
R ! 1 and � Š 0, one has

juj2 / exp � 
2r2=w2
0

�
cos2 kz (6.3.9)

Equation (6.3.8) with the help of Eqs. (6.3.7) and (6.3.9) gives

<Rp> D �r�t

�
Pp

h�p

�
2 f1 � exp Œ�.˛l/�g




w2

0 C w2
p

�
l

(6.3.10)

where l is the length of the laser rod. It should be noted that, in performing the integral along
the z coordinate in Eq. (6.3.8), we have made the approximation

R l
0 exp �.˛z/ cos2 kzdz Š

.1=2/
R l

0 exp �.˛z/dz, using the fact that, since cos2.kz/ changes much more rapidly with z
then the exp �.˛z/ term, we can substitute cos2.kz/ with its average value < cos2.kz/> D
.1=2/. If we now define the absorption efficiency, �a, as

�a D 1 � exp �.˛ l/ (6.3.11)

equation (6.3.10) can then be put in the more suggestive form

<Rp> D �p

�
Pp

h�p

�
2





w2

0 C w2
p

�
l

(6.3.12)

where we have defined �p D �r�t�a. Equation (6.3.12) constitutes the final result of our
calculation for the effective pump rate in the case of longitudinal pumping. Note that, for a
given value of Pp, <Rp> increases as wp decreases so that the maximum value of<Rp>would
be attained for wp ! 0. For very small values of pump spot-size, however, divergence of the
pump beam in the active rod cannot be neglected with the result that the beam may actually
become larger than the laser beam at the end of the rod. For this reason and to optimize the
optical efficiency, the condition wp Š w0 is often taken as a rough guide to the optimum case.

In the case of transverse pumping, we begin by writing the following obvious relation
between pump rate and power, Ppi, incident on the rod

Z
a

h�p Rp dV D �a Ppi (6.3.13)

where �a is the fraction of the incident power which is absorbed in the active medium. Note
that, according to Eq. (6.3.11), the absorption efficiency �a can be written as �a Š .1 �
exp �˛D/ where D is the relevant transverse dimension of the rod (D Š DR, where DR is
the rod diameter, for a single pass or D Š 2DR, for a double pass of the pump beam in
the rod). Equation (6.3.13) allows the pump rate to be calculated once its spatial variation
is known. If we take, as a simple case, Rp D const, we obviously obtain from Eq. (6.3.13)
Rp D �r�t�aPp=h�pAl where A is the cross-sectional area of the rod and where Eq. (6.3.6)
has been used. To calculate <Rp> we consider a conceptually simpler model of the laser rod,
where the active species is assumed to be confined to the central region of the rod, 0 	 r 	 a,
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while the rod is undoped, for r > a (cladded rod). In this case, Eq. (6.3.9) can be taken to
hold for any value of r while one has Rp D const for 0 	 r 	 a and Rp D 0 for r > 0. Then,
from Eqs. (6.3.8) and (6.3.9), we obtain

<Rp> D �p

�
Pp

h�p

�
Œ1 � exp � 
2a2=w2

0

�
�


 a2l
(6.3.14)

where again we have written �p D �r�t�a. This equation constitutes the final result for our
calculation of the effective pump rate in the case of transverse pumping.

For the comparison to be performed in sect. 6.3.5, it is appropriate to also calculate
here the effective pump rate that applies for lamp pumping. Assuming the cladded rod model
considered above and again taking Rp to be constant in the active medium, i.e., for 0 	 r 	 a,
we obtain from Eqs. (6.2.6) and (6.3.8)

<Rp> D �pl

�
Pp

h�mp

�
Œ1 � exp � 
2a2=w2

0

�
�


 a2l
(6.3.15)

where �pl is the pumping efficiency for lamp pumping given, according to Eq. (6.2.5), by
�pl D �r�t�a�pq.

6.3.4. Threshold Pump Power for Four-Level
and Quasi-Three-Level Lasers

With the results obtained in the previous section for the effective pump rate, we can now
go on to calculate the expected threshold pump rate and threshold pump power for a given
laser. We will limit our considerations to two very important cases: (i) An ideal four-level
laser, where pumped atoms are immediately transferred to the upper laser level, 2, and where
the lower laser level, 1, is empty [see Fig. 1.4b]. (ii) An ideal quasi-three-level laser, where
pumped atoms are again transferred immediately to the upper laser level, 2, and where the
lower laser level is a sublevel of the ground level 1. The first case includes lasers such as
Nd:YAG at � D 1.06 μm or � D 1.32 μm, Ti:Al2O3, and Cr:LISAF or LICAF. The most
important lasers belonging to the second category are Nd:YAG at � D 0.946 μm, Er:glass or
Yb:Er:glass at � Š 1.45 μm, Yb:YAG or Yb:glass, and Tm:Ho:YAG.

Let us first consider an ideal four-level laser and let us assume that the upper laser level
actually consists of many strongly coupled sublevels whose total combined population will be
called N2. According to Eq. (1.2.5), the threshold value of this population, N2c, can be written
as N2c D �=�e l, where �e now indicates the effective stimulated emission cross-section [see
sect. 2.7.2]. Actually, this previous expression only holds for a spatially uniform model i.e.,
when both Rp and the mode configuration, juj2, are considered to be spatially independent.
When spatial dependency is taken into account, the previous expression for the threshold
upper state population gets modified as follows (see Appendix E)

<N2>c D �=�e l (6.3.16)
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where <N2> is the effective value of population, given by

<N2> D
0
@Z

a

N2juj2dV

1
A.Z

a

juj2dV (6.3.17)

The critical, or threshold, pump rate can then be obtained from the condition that the
number of atoms raised by the pumping process must equal the number of atoms decaying
spontaneously. Thus we get Rp D N2c=� , where � is the effective lifetime of the upper laser
level, taking account of the decay of all the sublevels [see again sect. 2.7.2]. It then follows that

<Rp>c D <N2>c=� (6.3.18)

From Eqs. (6.3.16) and (6.3.18) we get

<Rp>c D �

�e l�
(6.3.19)

Once the threshold value of the pump rate is calculated, we can readily obtain the corre-
sponding threshold pump power. Using Eq. (6.3.19) into Eqs. (6.3.12) and (6.3.14), we get in
fact the following expressions

Pth D
�
�

�p

� �
h�p

�

� "




w2

0 C w2
p

�
2�e

#
(6.3.20)

Pth D
�
�

�p

� �
h�p

�

� (

a2

�e
�
1 � exp � 
2a2=w2

0

�	
)

(6.3.21)

which hold for longitudinal and transverse pumping, respectively. The expression of the
threshold pump power for longitudinal pumping given by Eq. (6.3.20) agrees with that given
by Kubodera, Otsuka, and Miyazawa..19/ Note that, again for longitudinal pumping, the
threshold pump power increases as w0 is increased because, as w0 increases, the wings of
the mode extend further into the less strongly pumped regions of the active medium. Like-
wise, for transverse pumping and for the cladded rod model considered above, the threshold
pump power increases as w0 is increased because, as w0 increases, the wings of the mode
extend further into the cladding, i.e., into the unpumped part of the medium. Similar consid-
erations could be applied to the more realistic case of a rod without cladding. In this case,
however, the calculation would be more involved because, in general, Eq. (6.3.9) would no
longer apply and the true field distribution, account being taken of the aperturing effects estab-
lished by the finite rod diameter, would have to be used. When w0 is appreciably smaller than
a (say w0 	 0.7a), however, the field distribution is not greatly affected by the presence of
this aperture and Eq. (6.3.21) can be assumed to hold also for a rod without cladding. In this
case, of course,

�
1 � exp � 
2a2=w2

0

�	
is very much closer to unity and, in calculating the

threshold pump power, this term could even be omitted from Eq. (6.3.21). As we will show
in the next Chapter, however, it is important to keep this term in Eq. (6.3.21) to obtain the
correct expression for the slope efficiency.
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For the comparison to be made in next section, it is also appropriate to calculate the
threshold pump rate for lamp pumping. From Eqs. (6.3.15) and (6.3.19) we get

Pth D
�
�

�pl

� �
h�mp

�

� (

 a2

�e
�
1 � exp � 
2a2=w2

0

�	
)

(6.3.22)

Let us now consider a quasi-three-level laser where the lower laser level, 1, is a sublevel
of the ground level and assume that the population raised, from the pumping process, to the
pump level(s) is immediately transferred to the upper laser level (ideal quasi-three-level laser).
We will assume that all ground state sub-levels are strongly coupled and hence in thermal
equilibrium and call N1 the total combined population of level 1. We will also assume that the
upper laser level, level 2, consists of a number of strongly coupled sublevels and call N2

the total combined population of the upper level. The threshold values for the population
of the two levels is again established by the condition that the total net gain equals the losses.
For the space-dependent case and according to Eq. (6.3.16) we now obtain (see Appendix E)

Œ�e<N2>c � �a<N1>c� l D � (6.3.23)

Where <N2> and <N1> again indicate spatially averaged values as in Eq. (6.3.17) and �e

and �a are, respectively, the effective values of the stimulated emission and absorption cross
sections. Since, for an ideal quasi-three-level laser, one has N1 C N2 D Nt it follows that
<N1> C <N2> D Nt and using this expression in Eq. (6.3.23) we can readily calculate
<N2>c. The effective value of the threshold pump rate must again satisfy Eq. (6.3.18) and,
using the value of <N2>c in this way calculated, we obtain

<Rp>c D Œ�aNt l C ��

.�e C �a/ l�
(6.3.24)

Note that Eq. (6.3.24) obviously reduces to Eq. (6.3.19) if we let �a ! 0.
In our calculation of the corresponding threshold pump power, we limit our considera-

tions to longitudinal pumping, since this is the only configuration which has allowed operation
with a reasonably low threshold, in this case. From Eqs. (6.3.24) and (6.3.12) we obtain

Pth D
�
�aNt l C �

�p

� �
h�p
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which agrees with the expression given by Fan and Byer..20/ Note again that Eq. (6.3.25)
reduces to Eq. (6.3.20) if we let �a ! 0.

6.3.5. Comparison Between Diode-pumping and Lamp-pumping

Following the discussion presented in the previous sections, we are now ready to per-
form a general comparison between lamp pumping and diode pumping. The comparison can
only be made for four-level lasers, since quasi-three-level lasers have mostly been operated
by means of longitudinal pumping by diodes. To compare Eq. (6.3.22) with Eqs. (6.3.20)
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FIG. 6.17. Actual pump frequency, �p, and ideal minimum pump frequency, �mp, in a 4-level laser.

TABLE 6.3. Comparison between pumping efficiencies of lamp pumping and diode pumping

Pump Configuration �r (%) �t (%) �a (%) �pq (%) �p (%)

Lamp 43 82 17 59 3.5
Diode (longitudinal) 50 80 98 82 32
Diode (transverse) 50 80 90 82 30

and (6.3.21), it is convenient, for diode pumping, to define a pump quantum efficiency �pq as
h�mp=h�p, where �p is the actual pump frequency and �mp is the minimum pump frequency,
i.e., the pump frequency that would have been required for direct pumping to the upper laser
level (see Fig. 6.17). Equations (6.3.20) and (6.3.21) then readily transform to

Pth D
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�pd
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where we have defined �pd D �p�pq D �r�t�a�pq as the overall pump efficiency for
diode pumping. Equations (6.3.23), (6.3.26) and (6.3.27) allow us now to make a general
comparison between lamp pumping and diode pumping.

A first comparison can be made in terms of the four efficiency factors �r, �t, �a, �pq

and hence of the overall pump efficiency �p D �r�t�a�pq. Limiting ourselves to the case of
Nd:YAG, Table 6.3 shows the estimated values of these efficiency factors where the values
for lamp pumping have been taken from Table 6.1. In the case of longitudinal pumping by a
diode laser, a 1 cm long crystal is considered while, for transverse pumping, a 4 mm diameter
rod is assumed. Note that, despite the great diversity of the various pumping systems which
have been considered so far, the comparison in terms of these four efficiency factors become
very simple and instructive. One can see, in fact, that the radiative and transfer efficiencies are
approximately the same for lamp and diode pumping and that the almost ten times increase in
overall pump efficiency for diode pumping comes from the very large increase in absorption
efficiency (by almost a factor 6) and a consistent increase of the pump quantum efficiency (by
a factor of � 1.5). Note also that, in terms of pump efficiency, longitudinal and transverse
pumping are roughly equivalent with a slightly smaller value of the absorption efficiency for
transverse pumping.

A second comparison can be made with respect to threshold pump powers. According to
Eqs. (6.3.24) and (6.3.31) and for the same value of rod cross-sectional area, the main differ-
ence in pump thresholds between lamp pumping and transverse pumping arises for the almost
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ten-fold increase in pump efficiency for diode pumping. Comparing longitudinal diode pump-
ing to lamp pumping, one sees from Eqs. (6.3.24) and (6.3.30) that the pump threshold for
diode-pumping, besides being reduced by the increase of pump efficiency, is further reduced
by a factor



w2

0 C w2
p

� � �
1 � exp � 
2a2=w2

0l

�	
=2a2, where w0l is the laser spot size for the

case of lamp pumping. It is this factor that accounts for most of the reduction in threshold
pump power when w0 and wp are very small. A dramatic case of this type occurs for fiber
lasers where, for single mode fibers, the value of w0 as well as that of wp may be as small
as 2 � 3 μm. If, for example, we take w0 D wp D 2 μm, for the case of a fiber laser, and
a D 2 mm and w0l D 0.5 a, in the case of lamp pumping, the expected reduction aris-
ing from the previous geometrical factor is by almost six orders of magnitude! This is the
essential reason why fiber lasers exhibit such small pump thresholds. Comparing longitu-
dinal and transverse pumping, we may note from Eqs. (6.3.22) and (6.3.23) that the pump
threshold is lower for longitudinal compared to transverse pumping essentially by the ratio

w2

0 C w2
p

�
l

�
1 � exp � 
2a2=w2

0t

�	
=2a2, where the suffices l and t stand for longitudinal and

transverse pumping, respectively. For the very small values of spot sizes, w0 and wp, that
can be used in longitudinal pumping, this ratio may again have very small values. However,
to achieve comparable outputs for the two cases, the TEM00 spot-size of the two cases will
need to be more comparable. It is instructive, therefore, to make this comparison for the same
value of spot size in each case i.e., for .w0/l D .w0/t. To avoid excessive diffraction effects
arising from beam truncation at the aperture formed by the rod diameter, the spot size for
transverse pumping must then be somewhat smaller than the rod radius, a. In practice, a value
of .w0/t Š 0.7a may be chosen. Assuming best overlapping condition, i.e. w0 D wp, for
longitudinal pumping, it then follows that
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and, under these conditions, the threshold pump power for longitudinal pumping may be only
a factor � 0.5 smaller than that for transverse pumping.

Compared to lamp pumping, besides having much higher pump efficiency and very
much lower pump threshold, diode pumping has the additional advantage of inducing a
reduced thermal load in the active medium. In fact, for a given absorbed power Pa in the
medium, the fraction �pqPa is available in the upper laser level and, consequently, the frac-
tion �pq.h�=h�mp/Pa is available as laser power, h� being the energy of the laser photon. The
power dissipated as heat is thus Œ1-�pq.h�=h�mp/� Pa. From Table 6.2 one then sees that the
thermal load for lamp pumping is � 2 larger than for diode pumping. This reduced thermal
load has two beneficial effects: (i) Reduced thermal lensing and thermally-induced birefrin-
gence in the rod. (ii) Reduced thermal fluctuations of the refraction index of the medium for a
given pump power fluctuation. Both these effects are important for obtaining solid-state laser
operation on a single transverse and longitudinal mode of high quality.

6.4. ELECTRICAL PUMPING

We recall that this type of pumping is used for gas and semiconductor lasers. We will
limit our considerations here to the case of gas lasers and defer discussion of the more
straightforward case of semiconductor laser pumping to the semiconductor laser section of
Chap. 9.
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FIG. 6.18. Most frequently used pumping configurations for gas-discharge lasers: (a) Longitudinal discharge. (b)
Transverse discharge.

Electrical pumping of a gas laser is achieved by allowing a current, which may be con-
tinuous (d.c. current) or at radio-frequency (r.f. current) or pulsed, to pass through the gas
mixture. Generally, the current through the gas passes either along the laser axis direction
(longitudinal discharge, Fig. 6.18a) or transversely to it (transverse discharge, Fig. 6.18b).
Since the transverse dimension of a laser medium is usually much smaller than its longitudi-
nal dimension, then, for the same gas mixture, the voltage needed in a transverse configuration
is significantly less than for a longitudinal configuration. On the other hand a longitudinal dis-
charge, when confined in a dielectric (e.g. a glass) tube, as in Fig. 6.18a, often provides a more
uniform and stable pumping configuration. In fact. in the discussion that follows we will con-
centrate on the so-called glow discharge, where, due to the uniformity of the current density,
a uniform bluish glow of light is observed from the discharge. The situation that needs to be
avoided is that of an arc discharge where current is observed to flow in one or more streamers,
emitting white light of high intensity (as in a lightning).

One requires the presence of a series resistance, RB, often called the ballast resistance,
as shown in both Fig. 6.18a and b, to stabilize the discharge at the desired operating point.
To understand this feature, we show in Fig. 6.19, as a solid line, the voltage vs current
characteristic of a gas discharge. Note that, in the operating region, the voltage across the
discharge remains nearly constant as discharge current increases. A peak voltage, Vp, about
an order of magnitude larger than this constant operating voltage is needed to induce gas
break-down. Thus, the behavior of a discharge tube is very different from that of a simple
resistor! In the same figure we also show, as a dashed line, the voltage vs current character-
istic of a power supply giving a voltage, V0, in series with a ballast resistance, RB. One notes
that the current will stabilize at either of the intersections A and C of the two curves (the
intersection B corresponds to an unstable equilibrium situation). Thus, starting with a lamp
that is initially unenergized and then applying the voltage from the power supply, the lamp
will stabilize itself at point C with very little current flowing in the discharge. To reach the
other stable point, A, the desired operating point, one can briefly raise the applied voltage so
as to overcome the voltage barrier Vp. This is usually achieved by applying an over-voltage
to the high voltage electrode for a long enough time to produce sufficient gas ionization (see
also Fig. 6.4b and 6.5). Alternatively, a high voltage pulse may be applied to some auxiliary
electrode (see also Fig. 6.4a).

Various different electrode structures are used for both longitudinal and transverse dis-
charges. For a longitudinal discharge, the electrodes often have an annular structure with the
cathode surface usually much larger than that of the anode to help reduce degradation due
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FIG. 6.19. Voltage, V , vs current, I, characteristic of a gas discharge (solid line) and of a power supply with a series
resistance (dashed line).

FIG. 6.20. Radio-frequency transverse excitation of a gas in a quartz tube.

to impact of the heavy ions. In a transverse discharge, the electrodes extend over the whole
length of the laser material and the opposing surface of each electrode must have a very
smooth curvature. In fact, if there is any sharp corner, the high electric field produced there
may easily result in an arc formation rather than in a uniform discharge. Usually, longitudinal
discharge arrangements are only used for cw lasers while transverse discharges are used with
cw, pulsed, or rf lasers. A particularly interesting case of a transverse discharge, using rf
excitation, is shown in Fig. 6.20, where the rf electrodes are applied to the outside of the dis-
charge tube, usually made of glass. The presence of a finite thickness of the glass tube presents
several advantages: (i) It acts as a series capacitor for the discharge whose impedance, at the
frequency of the rf voltage, acts as an effective, capacitive, ballast for stabilizing the discharge.
The loss of pump power in the resistive ballast, RB, of Fig. 6.18 is thus avoided. (ii) Since the
glass dielectric medium extends over the whole of the electrode structure, the problem of arc
formation is greatly reduced. (iii) Since the gas mixture is not in contact with the electrodes,
the plasma-chemical effects, occurring at the electrode surface and leading to dissociation of
the mixture, are eliminated. When this configuration is applied to a CO2 laser, for instance,
an order of magnitude reduction in the electrode maintenance time can be gained and a factor
of two decrease in the gas consumption rate.
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FIG. 6.21. Laser pumping by near-resonant energy transfer.

We now go on to present a general description of the physical phenomena leading to
excitation in the gas. First we recall that, in an electrical discharge, both ions and free electrons
are produced and, since these charged particles acquire additional kinetic energy from the
applied electric field, they are able to excite a neutral atom by collision. The positive ions,
owing to their much greater mass, are accelerated to much lower velocities than the electrons
and therefore do not play any significant part in the excitation process. Therefore, electrical
pumping of a gas usually occurs via one, or both, of the following two processes: (i) For a
gas consisting of only one species, the excitation is only produced by electron impact, i.e., the
process

e C X ! X� C e (6.4.1)

where X and X� represent the atom in the ground and excited state, respectively. Such a pro-
cess is called a collision of the first kind. (ii) For a gas consisting of two species (say A and B),
excitation can also occur as a result of collisions between atoms of different species through
a process known as resonant energy transfer (see also Sect. 2.6.1). Referring to Fig. 6.21,
let us assume that species B is in the ground state and species A is in the excited state, as a
result of electron impact. We will also assume that the energy difference	E between the two
transitions is less than kT. In this case, there is an appreciable probability that, after collision,
species A will be found in its ground state and species B in its excited state. The process can
be denoted by

A� C B ! A C B� �	E (6.4.2)

where the energy difference 	E will be added to or subtracted from the translational energy
of the colliding partners, depending on its sign. This is the reason why 	E must be smaller
than kT. This process provides a particularly effective way of pumping species B, if the upper
state of A is metastable (forbidden transition). In this case, once A is excited to its upper
level, it will remain there for a long time, thus constituting an energy reservoir for excitation
of species B. A process of the type indicate in Eq. (6.4.2) is called a collision of second kind�.

� Collisions of the first kind involve conversion of the kinetic energy of one species into potential energy of another
species. In collisions of the second kind, potential energy is converted into some other form of energy (other than
radiation) such as kinetic energy, or is transformed into potential energy (in the from of electronic, vibrational, or
rotational energy) of another like or unlike species. Collisions of the second kind therefore include not only the
reverse of collisions of the first kind (e.g., e C X� ! e C X) but also, for instance, the conversion of excitation
energy into chemical energy.



236 6 � Pumping Processes

In the discussion that follows we will limit our considerations to just the electron impact
excitation process since it is both the most common and the simplest excitation mechanism.
Also, electron impact excitation constitutes the first step for the near-resonant energy transfer
process.

6.4.1. Electron Impact Excitation

Electron impacts involve both elastic and inelastic collisions. In an inelastic collision, the
atom may either be excited to a higher state or be ionized. Of the various possible excitations
the one we are usually interested in is that which excites the atomic species to the desired
upper laser level. In order to describe the above excitation phenomena by means of appropri-
ate collision cross-sections, we will first consider the simple case of impact excitation by a
collimated beam of mono-energetic electrons. If Fe is the electron flux (number of electrons
per unit area per unit time), a total cross section �e can be defined in a similar way to the case
of a photon flux [see Eq. (2.4.20)]. Thus, if we let dFe be the change of flux that results from
the beam traveling a distance dz in the material, we can write

dFe D ��eNtFedz (6.4.3)

where Nt is the total population of the atomic species. Collisions that produce electronic exci-
tation will only account for some fraction of the total cross section. In fact, the cross section
for elastic collisions, �el, is usually the largest, its order of magnitude being � 10�16 cm2. If
we now let �e2 be the cross section for electronic excitation from the ground level to the upper
laser level, then, according to Eq. (6.4.3), the rate of population of the upper state due to the
pumping process is

.dN2=dt/p D �e2NtFe D NtNe��e2 (6.4.4)

where � is the electron velocity and Ne is the electron density. A calculation of the pump rate
requires a knowledge of the value of �e2, which is expected to depend on the energy E of the
incident electron, i.e. �e2 D �e2.E/. In a gas discharge the electrons have a distribution of
energies which can be described by the distribution f .E/; its meaning is that dp D f .E/dE
represents the elemental probability that the electron energy ranges between E and E C dE.
In this case the rate of population of the upper state is obtained from Eq. (6.4.4) by averaging
over this distribution, viz.

.dN2=dt/p D NtNe<��e2> (6.4.5)

where

<��> D
Z
�� .E/f .E/dE (6.4.6)

According to Eqs. (1.3.1) and (6.4.5) the pump rate is then given by

Rp D NtNe<��e2> (6.4.7)
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Where <��> is given by Eq. (6.4.6). The calculation of Rp thus requires the knowledge of
the energy dependence of both � and f . This dependence will be considered in the following
sections.

6.4.1.1. Electron Impact Cross Section

The qualitative behavior of � vs the electron energy E is indicated in Fig. 6.22 for the
three cases: (1) optically allowed transition, (2) optically forbidden transition involving no
change of multiplicity, (3) optically forbidden transition involving a change of multiplicity.
In all three cases, the peak value of � has been normalized to unity. Note that, in each case,
there is a distinct threshold Eth for the cross section. As expected, the value of Eth turns out
to be close to the energy of the transition involved. The cross section rises very sharply above
threshold, reaches a maximum value, and thereafter decrease slowly. The peak value of �
and the width of the curve depend on the type of transition involved: (1) For an optically
allowed transition, the peak value of � can be typically 10�16 cm2 and the width of the curve
may be typically 10 times greater than the threshold energy (curve a of Fig. 6.22). (2) For an
optically forbidden transition involving no change of multiplicity, the peak cross section is
drastically reduced by nearly three orders of magnitude (to about 10�19 cm2) and the width
of the curve may be only 3 � 4 times the threshold energy (curve b of Fig. 6.22). (3) When
a change of multiplicity is involved, the peak cross section may actually be larger than for
an optically forbidden transition and the width of the curve may now be typically equal to
or somewhat smaller than the threshold energy Eth (curve c of Fig. 6.22). It should be noted
that, in any case, the width of the curve is roughly comparable to the threshold energy, i.e.
to the transition energy. By contrast, the transition linewidths for photon absorption are much
sharper (typically 10�4 � 10�6 of the transition frequency). This very important circumstance

FIG. 6.22. Qualitative behavior of electron-impact excitation cross section vs the energy of the incident electron: (a)
Optically allowed transitions. (b) Optically forbidden transitions involving no change of multiplicity. (c) Optically
forbidden transitions involving a change of multiplicity.
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arises from the fact that, as explained in Sect. 6.1, the electron impact excitation is basically
a non-resonant phenomenon. This is the basic reason why excitation of a gaseous medium is
performed much more effectively by a “polychromatic” source of electrons (such as in a gas
discharge) than by a polychromatic light source (such as a lamp).

To provide a deeper insight into the mechanism involved in electron impact excitation,
we now give a sketch of the procedure for a quantum mechanical calculation of the cross
section � . For optically allowed transitions or for optically forbidden transitions involving no
change of multiplicity, the simplest, and often the most accurate, calculation uses the Born
approximation. Before collision, the atom is described by the ground state wave-function u1

and the incident electron by the plane wave function exp.jk0 � r/, where k0 is the electron
wave vector and r is the vector describing the position of the incident electron with respect to
a center situated e.g. at the nuclear position. After collision, the atom is described by the upper
state wave-function u2 and the scattered electron by the plane wave exp.jkn � r/, where kn is
the wave-vector of the scattered electron. For the discussion that follows, one needs to recall
that k D 2
=�, where � is the deBroglie wavelength of the electron which can be expressed
as � D .1.23=

p
V/ nm, where V is the electron energy in electron volts. The interaction

has its origin in the electrostatic repulsion between the incident electron and the electrons
of the atom. This interaction is assumed to be weak enough for there be only a very small
probability of a transition occurring in the atom during the impact and for the chance of two
such transitions to be negligible. In this case the Schrödinger equation for the problem can be
linearized. It then turns out that the transition rate and hence the transition cross section can
be expressed as

�e /
ˇ̌̌
ˇ
Z
Œu2 exp.jkn � r/��Œu1 exp.jk0 � r/� dV

ˇ̌̌
ˇ
2

(6.4.8)

From the above expression for the deBroglie wavelength and assuming an electron
energy of only a few eV, the wavelength �0 D 2
=jk0 � knj D 2
=j�kj is seen to be appre-
ciably larger than the atomic dimensions. This means that .�k � r/ � 1 for jrj 	 a, where
a is the atomic radius. In this case the factor exp jŒ.k0 � kn/ � r� D exp j.�k � r/ appearing
in Eq. (6.4.8) can be expanded as a power series of .�k � r/. Since u1 and u2 are orthogonal
functions, the first term in this expansion which gives a non-vanishing term for �e, is j.�k � r/
and one gets

�e /
ˇ̌̌
ˇ
Z

u�
2 ru1dV

ˇ̌̌
ˇ
2

/ jμ21j2 (6.4.9)

where μ21 is the matrix element of the electric dipole moment of the atom [see Eq. (2.3.7)].
It then follows that, when μ21 ¤ 0, i.e. when the transition is optically allowed, the electron
impact cross section turns out to be proportional to the photon absorption cross section. Thus
strong optically allowed transitions are expected to also show a large cross section for electron
impact. For optically forbidden transitions involving no change of multiplicity (	S D 0, e.g.
the 11S ! 21S transition in He, see Chap. 10), Eq. (6.4.8) gives a non-vanishing value for
the next-higher-order term in the expansion of exp j.�k � r/ namely �.	k � r/2=2. This means
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FIG. 6.23. Illustration of the phenomenon of electron exchange in the case of the 1 1S ! 2 3S transition in a
He atom.

that �e can now be written as �e / ˇ̌R
u�

2 .	k � r/2u1dV
ˇ̌2

. This relation is completely different
from the corresponding one that would apply in the case of a photon interaction, i.e., that
due to a magnetic dipole interaction. It is therefore no surprise to find that the ratio between
the two peak cross sections �forbidden=�allowed is typically, in this case, about 10�3 while the
same ratio was shown to be � 10�5 for photon absorption [see (2.4.14)]. So one can make
the assertion that optically forbidden transitions are relatively more easily excited by electron
impact than by “photon impact,” and this has some profound consequences for the operating
principles of most gas lasers, since pumping is often achieved through optically forbidden
transitions.

When a change of multiplicity is involved (e.g., the 11S ! 23S transition in He, see
Capt. 10) the Born approximation gives a zero cross section in any order of the expansion
of exp j.�k � r/. In fact, such a transition involves a spin change, while, within the Born
approximation, the incoming electron, through its electrostatic interaction, can only couple
to the orbital motion of the atom rather to its spin�. The theory, in this case is largely due
to Wigner and its starting point is the observation that, in a collision, it is the total spin of
the atom plus that of the incident electron that must be conserved, not necessarily that of
the atom alone. Transitions may, therefore, occur via an electron exchange collision, where
the incoming electron replaces the electron of the atom involved in the transition and this
electron is in turn ejected by the atom. To conserve the total spin, the incoming electron must
have its spin opposite to that of the ejected one. To clarify this exchange process we show
in Fig. 6.23 the electron impact excitation of the 11S ! 23S transition in He. Note that the
process can be visualized as the incident electron, labeled 1, is captured in the 2s state of He
while the electron of the atom with opposite spin, labeled 2, is actually ejected. It should be
pointed out, however, that this constitutes a very naive way of describing the phenomenon
because, during the collision, the two electrons are quantum mechanically indistinguishable.
From this simple description, however, one readily understands that this exchange mechanism
must be of a more resonant nature than that considered in the Born approximation: there will
be a high probability for this exchange to occur only if the energy of the incoming electron
closely matches the transition energy. In this case, in fact, the electron energy is just what
is needed to leave the electron 1, after collision, in the upper level, 2s, while the second
electron, electron 2, is ejected with zero velocity. For higher energies of the incident electron,
the exchange process would leave electron 1 in the 2s orbital, while electron 2, ejected from

� This assumes a negligible spin-orbit coupling, which is true for light atoms (e.g., He, Ne), while it would not be
true for heavy atoms like Hg.
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the atom, would carry off the corresponding surplus energy. This would definitely be a less
likely process to occur. Having established that this process is somewhat resonant, we can
now understand why the peak cross section, in this resonant case, can be even higher than for
optically forbidden transitions involving no change of spin.

6.4.2. Thermal and Drift Velocities

As already mentioned in previous sections, it is the electrons that are responsible for
the phenomena occurring in a gas discharge. They acquire energy from the applied electric
field and lose or exchange energy through three processes: (1) Inelastic collisions with the
atoms, or molecules, of the gas mixture, which either raise the atom to one of its excited
states or ionize it. These electron-impact excitation or ionization phenomena are perhaps the
most important processes for laser pumping, hence the extended discussion in these sections.
(2) Elastic collisions with the atoms. If we assume that the atoms are at rest before collision
(the mean velocity for an atom is indeed much smaller than for an electron), the electron
will lose energy upon collision. It can be shown by a straightforward analysis of the elastic
collision process that, for random direction of the scattered electron, the electron loses, on
average, a fraction 2.m=M/ of its energy, where m is the mass of electron and M is the mass
of the atom. Note that this loss is very small since m=M is small (e.g., m=M D 1.3 � 10�5 for
Ar atoms). (3) Electron-electron collisions. For a gas which is ionized to a moderate degree,
the frequency of such collisions is usually high since both particles are charged and exert
forces on one another over a considerable distance. Moreover, since both colliding particles
have the same mass, the energy exchange in the collision is considerable. As a result of the
collision phenomena mentioned above and as a consequence of the electrons being accelerated
by the electric field of the discharge, the electron “gas” in the plasma acquires a distribution of
velocities. We can describe this by introducing the distribution f .�x, �y, �z/ with the meaning
that f .�x, �y, �z/d�xd�yd�z, gives the elemental probability that the electron is found with
velocity components in a range d�x, d�y, d�z, around �x, �y, �z. Given this distribution we can
define a thermal velocity �th so that

�2
th D <�2> (6.4.10)

where the average is taken over the velocity distribution. Similarly, we can define a drift
velocity, �drift, as the average velocity along the field direction i.e.

�drift D <�z> (6.4.11)

where the z-axis is taken along the field direction and where, again, the average is taken over
the electron velocity distribution.

To make a rough calculation of both �th and �drift we make the simplifying assumption
that, at each collision, some constant fraction ı of the kinetic energy of the electron is lost.
A first equation can then be obtained from a power balance consideration: the average power
lost by the electron must equal the average power delivered to the electron by the external field.
To proceed with this, we note that the average kinetic energy of the electron is mv2

th=2 while
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FIG. 6.24. Calculation of the drift velocity resulting from acceleration of an electron by the external electric field in
between two consecutive collisions.

�th=l, where l is the electron mean free path, is the average collision rate. The average power
lost by the electron is therefore ı.�th=l/



m�2

th=2
�
, and this must equal the power supplied by

the electric field, E , namely, eE�drift. Hence

eE�drift D ı.�th=l/.m�2
th=2/ (6.4.12)

The second equation is obtained from the requirement of an average momentum bal-
ance between two consecutive collisions. We assume that, after each collision, the electron
is scattered in a random direction and hence it loses its preferential drift velocity. With ref-
erence to Fig. 6.24, the electron velocity at point 1, after the first collision, is thus assumed
to have a magnitude equal to the thermal velocity �th and a direction making a general angle

 to the field direction. During its free flight between points 1 and 2, the electron will be
accelerated by the electric field and, at point 2, just before the next collision, it will have
acquired an additional velocity, �drift, along the field direction, with a direction opposite to
the field. The impulse produced by the corresponding force will be �eE l=�th,, where l is the
distance between points 1 and 2 (which is assumed, on the average, to be equal to the elec-
tron mean free path). This impulse can now be equated to the change of momentum, i.e.,
.mυ0 � mυth/ D mυdrift. In terms of their magnitudes we can then write

eE l D m�th�drift (6.4.13)

which, together with Eq. (6.4.12), provides the two required equations. From these equations
we get

�th D .2=ı/1=4.eE l=m/1=2 (6.4.14)

and

�drift.ı=2/1=4.eE l=m/1=2 (6.4.15)

Note that, on taking the ratio between Eqs. (6.4.15) and (6.4.14), we obtain

.�drift=�th/ D .ı=2/1=2 (6.4.16)

We have already mentioned earlier that an electron, after undergoing elastic scattering
with an atom, loses a fraction of its kinetic energy equal, on the average, to 2 m=M. If we then
assume ı Š 2 m=M, we get from Eq. (6.4.16), .�drift=�th/ Š .m=M/1=2 Š 10�2. This show
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that the drift velocity is a very small fraction of the thermal velocity, so that we can consider
the movement of electrons in a gas as a slowly drifting swarm of randomly moving particles
rather than a stream of particles.

The calculation given above is a rather crude one since it is based on the assumption
that the electron loses a constant fraction, ı, of its energy in each collision. Although this is
true for elastic collisions with atoms, this is not obviously true for inelastic collisions, where
the energy lost equals the excitation energy of the atom. It should be noted that, although
elastic collisions are actually more frequent than inelastic collisions, the energy lost in an
elastic collision is, however, very small. Thus, if elastic collisions are the dominant process,
the discharge would not provide a particularly efficient means for pumping a laser. Indeed, if
elastic collisions were the predominant mechanism of electron cooling, most of the discharge
energy would be used to heat up rather than to excite the atoms. It should also be noted that
electron-electron collision does not play any role in the energy balance equation expressed by
Eq. (6.4.12), since this process simply redistributes the electron velocities without changing
their average energy.

6.4.3. Electron Energy Distribution

We now proceed to a consideration of the distribution of electron velocities or of electron
energies in a gas discharge. If the energy redistribution due to electron-electron collisions is
fast enough compared to the energy loss due to both elastic and inelastic collision with the
atoms, then the prediction of statistical mechanics is that the distribution of electron veloc-
ities (or energies) is given by the Maxwell-Boltzmann (MB) distribution function. This can
be described, for instance, by the energy distribution function f .E/, where f .E/dE is the ele-
mental probability for an electron to have its kinetic energy lying between E and E C dE. We
then obtain

f .E/ D
�

2


1=2kTe

� �
E

kTe

�1=2

exp �.E=kTe/ (6.4.17)

where Te is the electron temperature. One thus sees that, when the distribution can be
described by the MB law, the electron temperature is the only parameter that needs to be
specified for characterizing the distribution.

Once Te is known, one can calculate �th from Eq. (4.10) using the electron energy distri-
bution given by Eq. (6.4.17). Using the standard relation �2 D 2E=m, we readily obtain from
Eq. (6.4.10)

�th D Œ3kTe=m�1=2 (6.4.18)

which relates �th to Te. From Eqs. (6.4.18) and (6.4.14) we then obtain

Te D
"�

2

ı

�1=2 e

3k

#
.E l/ (6.4.19)

Since the electron mean free path l is inversely proportional to the gas pressure p,
Eq. (6.4.19) shows that, for a given gas mixture, Te is proportional to the ratio E=p. A more
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detailed treatment than the simple one leading to (6.4.14) shows that Te is a function of E=p
rather then being simply proportional to this ratio i.e.

Te D f .E=p/ (6.4.20)

The E=p ratio is thus the fundamental quantity involved in establishing a given electron
temperature and it is often used in practice for specifying the discharge conditions.

We now address the question as to whether the electron energy distribution can actu-
ally be described by MB statistics. Indeed, one obvious reason for the distribution not being
Maxwellian is that the MB distribution implies that the velocity distribution in space is
isotropic. Actually, if this were the case, the drift velocity, as defined by Eq. (6.4.11), would
be zero and hence there could be no current flowing in the discharge! We have seen, however,
that the drift velocity is a very small fraction of the thermal velocity and, consequently, the
effect of the drift velocity in altering the MB distribution may be considered to be negligi-
ble. An important case, however, where MB statistics constitutes only a crude approximation,
occurs for a weakly ionized gas with high values for the electron impact cross sections e.g.
for CO2 or CO gas laser mixtures. In this case, in fact, due to the low electron concentration,
the energy redistribution process arising from electron-electron collisions does not proceed at
a sufficiently fast rate compared to that for inelastic collisions. As we shall discuss in more
depth in the following example, one thus expects, in this case, to find dips in the energy
distribution function at energies corresponding to specific transitions of the molecules. By
contrast, for neutral atom or ion gas lasers, the electron density is much higher because these
lasers are relatively inefficient, and, as discussed further in the second example that follows,
the departure from a Maxwellian distribution is expected to be less significant.

Example 6.4. Electron energy distribution in a CO2 laser We show in Fig. 6.25 the situation occurring
for a CO2:N2:He gas mixture with a 1:1:8 ratio between the corresponding partial pressures. In the figure,
the electron impact cross section for N2 excitation up to the � D 5 vibrational level is shown.11/ (the
main pumping mechanism is, in fact, via energy transfer from an excited N2 molecule to the lasing CO2

molecule). As a result of the very high value of the peak cross section .� 3 � 10�16 cm2/ for the N2

molecule and, also, as a result of the low value of the current density required in a CO2 laser (the CO2

laser is one of the most efficient lasers), the assumption of a Maxwellian distribution is expected to be
inadequate, in this case. To calculate the correct electron energy distribution, one then needs to perform an
ab initio calculation using the appropriate electron transport equation (the Boltzmann transport equation)
where all possible electron collision processes leading to excitation (or de-excitation) of the vibrational
and electronic levels of all gas species are taken into account..12/ The electron distribution, f .E/, computed
in this way for an E=p ratio of � 8 V cm�1 Torr�1 and corresponding to an average electron energy� of
� 1.7 eV is indicated as a solid line in the same figure..13/ For comparison, the Maxwellian distribution,
f 0.E/, for the same average energy is also shown as a dashed line. One should note in the figure that the

� Although for a non-Maxwellian distribution the concept of temperature loses its meaning, one can still define an
average electron energy and, as in the case of a Maxwellian distribution, this energy turns out to be a function of
the E=p ratio.
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depression of the f .E/ curve, compared to the Maxwellian curve, for E > 2eV is due to the very high
value of the electron impact cross section for N2. In fact, when accelerated by the electric field of the
discharge, few electrons go beyond the E D 2 eV barrier since they would be immediately involved in N2

excitation. Consequently, the electrons accumulate in the energy range below 2 eV.

Example 6.5. Electron energy distribution in a He-Ne laser In contrast to the results of the previous
example, we show in Fig. 6.26 the situation that applies to a helium discharge under conditions appropriate
to a He-Ne laser. In the figure, the two plots of the electron impact cross section to the 21S and 23S levels
of He vs electron energy are shown. As in the previous case, in fact, the main pumping mechanism
arises from energy transfer between an excited He atom to the Ne lasing atom. Note, however, that the
peak values of the cross sections are, in this case, about two orders of magnitude smaller than for the
N2 molecule. Since the current density and hence the electron density are also much higher, the He-
Ne laser being a rather inefficient laser, the Maxwellian distribution is expected to hold, in this case.
Accordingly, we show in the same figure a Maxwellian distribution with a mean electron energy of 10 eV
which is the average electron energy in a He-Ne laser corresponding to the optimum excitation condition
[see sect. 6.4.5]. Note the much higher value of the average electron energy in this case compared to
the previous case, a consequence of the fact that one needs to excite electronic energy levels rather than
vibrational energy levels.

FIG. 6.25. Comparison of the electron energy distribution f .E/ for a 1:1:8 CO2:N2:He mixture (redrawn from
Ref..13/) with a Maxwellian distribution, f 0.E/, of the same average energy: In the same figure, the electron impact
cross section, �.E/, for N2 excitation up to the � D 5 vibrational level is also shown (redrawn from Ref..11/). The
redrawn curves are indicative of the physical situation rather than representing the actual original values shown in the
cited references.
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FIG. 6.26. Electron energy distribution, f .E/, and electron impact cross-section for the 1 1S ! 2 1S and 1 1S ! 2 3S
transitions of He.

6.4.4. The Ionization Balance Equation

In an electrical discharge, electrons and ions are being continuously created in the dis-
charge volume by electron impact. Ionization is produced by the hot electrons present in the
discharge i.e., those whose energy is larger than the ionization energy of the atom. In the
steady state, this ionization process must be counter-balanced by some electron-ion recom-
bination process. Radiationless electron-ion recombination cannot occur within the discharge
volume, however, because this process cannot conserve both the total momentum and total
energy of the particles. To understand this statement, let us consider, for simplicity, head-on
collisions. Upon invoking momentum conservation, the velocity � of the recombined atom
is obtained as � D .m1�1 C m2�2/=.m1 C m2/ where mi .i D 1, 2/ are the masses and �i

the velocities of the electron and ion before collision. On the other hand, for energy conser-
vation, we must require

�
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2
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.m1 C m2/ �
2=2

	C Er where Er is the
energy released by the electron-ion recombination. For given values of m1, m2, �1,and �2,
the momentum and energy conservation relations thus furnish us with two equations for the
one unknown quantity, � , the velocity of the recombined atom. Thus, in general, these two
equations cannot both be satisfied. Radiative ion-electron recombination, on the other hand,
is an unlikely process at the carrier concentrations holding for a gas laser. The recombina-
tion process can thus only occur in the presence of a third partner, M, since momentum and
energy conservation can be conserved in a three-body collision process. In fact, again assum-
ing head-on collisions, one now has a pair of equations in the two unknown � , the velocity
of the recombined atom, and �M , the velocity of the third partner, M, after collision. At the
low pressures of a gas laser (a few Torr) and if the gas mixture is contained in a cylindrical
tube, the necessary third partner M is simply provided by the tube walls. Thus, in a gas laser,
electron-ion recombination only occurs at the tube walls.

One now needs to realize that, although the electron velocity is much larger than the
ion velocity, the movement of electrons and ions to the walls must occur together. In fact,
if electrons were arriving at the walls more rapidly than ions, a radial electric field would
be established, which would accelerate the movement of the ions toward the wall and decel-
erate the electrons. For the usual electron and ion concentrations in a gas discharge, this
space charge effect would be quite substantial, consequently electrons and ions move to the
tube walls at the same rate. The movement can then occur by two different mechanisms,
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Example 6.6. Thermal and drift velocities in He-Ne and
CO2 lasers Based on what has been said in the pre-
vious example, we will assume for a He-Ne laser an
average electron energy <E> Š 10 eV. This means
that



m�2

th=2
� D <E> D 10 eV and therefore �th Š

1.9 � 106 m=s. Since the electron velocity distribution is
assumed, in this case, to be Maxwellian, then, according
to Eq. (6.4.18), the electron temperature can be obtained
from the relation Te D 2<E>=3k. We obtain Te Š
7.7 � 104 K. Note the much higher value of the electron
temperature compared to room temperature. To calculate
the drift velocity, we make use of Eq. (6.4.16) and assume
that the dominant cooling process for the electrons is via
elastic collisions with the lighter He atoms. We then get
.�drift=�th/ � .m=MHe/

1=2 Š 1.16 � 10�2, where MHe is
the mass of the Helium, so that �drift Š 2.2 � 104 m=s.
In the case of a CO2 laser, based on the findings of exam-
ple 6.4, we will assume an optimum electron energy value
of <E> Š 1.7 eV. From the relation



m�2

th=2
� D <E>

we then get �th Š 0.78 � 106 m=s. The drift velocity can
then be obtained from ref..13/ assuming an E=p ratio of
� 8 V cm�1 Torr�1 and a 1:1:8 partial pressure ratio of
the CO2:N2:He mixture. We get �drift Š 6 � 104 m=s.
Note that, in this case, we cannot talk about an electron
temperature since the electron energy distribution departs
considerably from a Maxwellian distribution. Note also
that, in both cases, the thermal velocity is � 106 m=s and
the drift velocity is � 100 times smaller.

depending on the gas pressure p and tube
radius R. If the ion mean free path is
much shorter than R, electrons and ions dif-
fuse together to the walls and recombination
occurs by ambipolar diffusion. If the ion
mean free path becomes comparable to the
tube radius (as happens in the relatively low-
pressure ion gas lasers), electrons and ions
reach the wall by “free flight” rather than by
diffusion. The analytical theory of ambipolar
diffusion can be obtained.14/ from the Schot-
tky theory of a discharge in the so called
positive column. In the low pressure limit, on
the other hand, the free fall model of Tonks-
Langmuir for the plasma discharge should be
used..15/ The two theories are rather compli-
cated and their description goes beyond the
scope of this book. In both theories, however,
a balance equation must always hold between
the number of electron-ion pairs produced
and the number of electron-ion pairs recom-
bining at the walls (ionization balance equa-
tion). So, in the case of Schottky theory,
the balance equation can be written, in our
notations, as

<��i>Ng D kTe

e
�C

�
2.405

R

�2

(6.4.21)

where �i is the ionization cross section, �C is
the ion mobility and R is the tube radius. One can now see that, for a given atomic species i.e.,
with a given expression for �i D �i.E/, the average value <v�i> appearing in Eq. (6.4.21)
will only depend on the electron temperature, Te. Ionization is in fact produced by the most
energetic electrons in the energy distribution and their number depends on the temperature Te.
One can also see that Ng is proportional to the gas pressure while the ion mobility is inversely
proportional to it. Equation (6.4.21) can then be rearranged as

f .Te/ D C=.pR/2 (6.4.22)

where we have written <��i>=kTe D f .Te/ and where C is a suitable constant. Thus, for
a given atomic species, the ionization balance equation leads to a relation between Te and
pR in much the same way as the energy and momentum balance equation leads to a relation
between Te and E=p [see (6.4.20)]. The functional relation f D f .Te/ in Eq. (6.4.22) is such
that Te increases as pR decreases. In fact, if for a given tube radius one decreases the gas
pressure, the electron-ion recombination due to diffusion to the walls increases. The electron
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temperature has therefore to increase in order to maintain the balance between ionization and
recombination. In the case of Tonks-Langmuir theory a similar functional relation again exists
between Te and the pR product.

6.4.5. Scaling Laws for Electrical Discharge Lasers

Equations (6.4.20) and (6.4.22) provide two fundamental relations which can be used to
understand a number of aspects of the physical behavior of any gas discharge. For example,
we can now explain why, in a stable glow discharge, the voltage across a discharge tube is
essentially independent of the current which is flowing (see Fig. 6.19). In fact, if we consider
some given gas tube i.e. with given values of tube radius and gas pressure, then, according to
Eq. (6.4.22), the electron temperature is fixed. We then see from Eq. (6.4.20) that the electric
field must also be fixed and thus independent of the discharge current.

Let us now see the consequences of Eqs. (6.4.20) and (6.4.22) for a gas laser discharge.
First we should note that, for a given gas medium, an optimum value of electron temperature,
Topt, exists if we want to maximize the pump rate to the upper laser level. Too low a values
of the electron temperature, in fact, would result in insufficient electron energy to excite the
upper laser level. The electron energy will then be lost mostly through excitation of lower
levels of the medium, including the lower laser level. Too high a value of the electron temper-
ature, on the other hand, would lead to strong excitation of higher levels of the gas mixture
(which may not be coupled to the upper laser level) or might produce excessive ionization of
the gas mixture (which could result in a discharge instability, i.e., a transition from a glow
discharge to an arc). If we then set Te D Topt on the left hand side of both Eqs. (6.4.20)
and (6.4.22), we obtain

.E=p/ D .E=p/opt (6.4.23a)

.pD/ D .pD/opt (6.4.23b)

Thus, for a given gas mixture, some optimum values exist for both pD and E=p if the mix-
ture is to be used as the active medium of a gas laser. Equations (6.4.23) establish the scaling
laws for any gas laser. As an example of applying these laws, let us assume that we start with
the best operating conditions and that, for some reason, we want to decrease the tube diameter
by e.g. a factor 2. Then, Eq. (6.4.23b) shows that we must increase the pressure of the gas
mixture by the same factor if we want the laser to be still operating with optimum efficiency.
If the pressure is doubled, then, according to Eq. (6.4.23a) the electric field, E , in the gas
discharge and hence the total voltage, V , across the laser tube, must also double. This means
that the V versus I characteristic of the given laser tube (see solid line of Fig. 6.19) will scale
up by a factor 2 in voltage, at any given current. The open circuit voltage of the power supply,
V0, and the ballast resistance, RB, must then be designed so as to have the desired current
flowing in the discharge tube.
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6.4.6. Pump Rate and Pump Efficiency

To calculate the pump rate, we first recall the standard equation J D e�driftNe which
relates the current density, J, to the electron density, Ne, of a discharge. From Eq. (6.4.7) we
then obtain

Rp D Nt
J

e

�
<��>

�drift

�
(6.4.24)

If a Maxwellian electron energy distribution is taken, the term <��> in Eq. (6.4.24)
will depend only on the electron temperature, Te. According to Eqs. (6.4.15) and (6.4.19) one
readily sees that �drift also depends only on Te. For given values of the gas pressure, p, and tube
radius, R, the electron temperature remains constant, ideally at the optimum operating value. It
then follows that the term in the square brackets of Eq. (6.4.24) is a constant, i.e. independent
of the current density and one sees that Rp, in this simple model, increases linearly with the
current density. Just as for optical pumping we can now define a pumping efficiency, �p, as the
ratio between the minimum pump power which would ideally be needed to achieve a given
pump rate, Rp, and the actual electrical pump power, Pp, to the discharge. We thus write

�p D RpVah�mp

Pp
(6.4.25)

where Va is the volume of the active medium and �mp is the frequency difference between the
ground level and the upper laser level. Note that, to a first approximation, �p can be taken to
be independent of the discharge current density since both Rp and Pp are proportional to J.

It should be noted that the expression for Rp given by Eq. (6.4.24) can only be taken as a
qualitative guide to the complex phenomena occurring in gas laser pumping rather than as an
accurate quantitative expression for the actual value of the pump rate. As already mentioned
earlier, particularly for the most efficient gas lasers, the electron energy distribution is sig-
nificantly different from a Maxwell-Boltzmann distribution and its calculation requires an ab
initio treatment of the Boltzmann transport equation with knowledge of all possible electron
collision processes leading to excitation (or de-excitation) of the rotational, vibrational, and
electronic levels of all the gas species present in the discharge. Furthermore, the number of
gas species may be much larger than the number of species initially introduced into the tube.
For instance, for a CO2:N2:He mixture, various amounts are also found, in the discharge, of
CO, O2, N2O etc. depending on the complicated plasma-chemical reactions occurring in the
volume of the gas and at the electrodes. The calculation therefore gets quite involved, requir-
ing the use of a computer and sometimes proving impractical due to lack of appropriate data
on electron collision cross sections for all of the components in the gas mixture..12/ Detailed
computer calculation have therefore only been performed for gas mixtures of particular impor-
tance such as the CO2:N2:He mixture used in high power CO2 lasers. One (apparent) way to
circumvent the problem is to assume that �p is known or that it can be estimated. In this case
we obviously obtain from Eq. (6.4.25)

Rp D �p
Pp

Alh�mp
(6.4.26)
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where A is the cross-sectional area of the active medium and l its length. This is the sim-
ple pump rate expression often used in the laser literature and which we ourselves shall
use in the following chapters. As in the case of optical pumping, however, the usefulness
of Eq. (6.4.26) relies on somebody having already performed the necessary calculations or on
reliable estimates for the value of �p being available.

Example 6.7. Pumping efficiency in a CO2 laser As a particularly relevant example of the calculation of
�p, we show in Fig. 6.27 the computed results both for a 1:2:3 and 1:0.25:3 CO2:N2:He gas mixture..13/ The
figure gives the percentage of total pump power going into the various excitation channels as a function
of either the E=p ratio or the E=N ratio, where N is the total concentration of all species in the mixture.
Curve I indicates the power going into elastic collisions, excitation of the ground state rotational levels of
N2 and CO2, and excitation of the lower vibrational levels of the CO2 molecule. Curves III and IV give,
respectively, the power going into electronic excitation and ionization. Curve II gives the power going into
excitation of the upper, (001), laser level of the CO2 molecule and of the first five vibrational levels of N2.
Assuming a very efficient energy transfer between N2 and CO2, all this power will be available as useful
pump power. Curve II therefore gives the pump efficiency of a CO2 laser under the stated conditions. Note
that, as discussed in sect. 6.4.5 for the electron temperature (which in this case is a meaningless concept,
since the electron distribution is far from being Maxwellian), an optimum value of E=p exists. For too low
a value of E=p, the pump power is mostly lost in elastic collisions and excitation of the lower vibrational
levels of CO2. For too high a value of E=p, electronic excitation becomes the dominant excitation channel.
Note also that, at the optimum E=p value, a very high value of �p can be obtained (� 85% for the 1:2:3
mixture).

FIG. 6.27. Percentage of total pump powers that goes into the various excitation channels of a CO2 laser (after
ref.,.13/ by permission).
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6.5. CONCLUSIONS

In this chapter optical pumping and electrical pumping have been considered in par-
ticular detail. We have seen that, for both cases, the mechanisms underlying the pumping
processes involve a variety of physical phenomena. This has given us the opportunity to
acquire a reasonably in-depth knowledge of e.g. plasma emission from a lamp, coherent and
incoherent emission of diode lasers used for laser pumping, and physical properties of electri-
cal discharges. The system configurations used are also quite diverse and consideration of the
analogies and similarities between these various configurations should help to devise other
workable systems. Despite all this diversity, a unified treatment in term of pump efficiency
allows effectiveness for laser pumping of the various configurations to be easily compared.

PROBLEMS

6.1. If pump light entering a laser rod is assumed to propagate in a radial direction within the rod,
show that the absorption efficiency can be written as

�a D
Z
Œ1 � exp �.2˛R/�Ie� d�=

Z
Ie� d�

where R is the radius of the rod, ˛ is the absorption coefficient, and Ie� is the spectral intensity of
the light entering the rod.

6.2. Consider a 6 mm diameter Cr:LISAF laser rod pumped by a 500 Torr Xe flashlamp driven at
2400 A=cm2 current density. Assume, for simplicity, that the absorption coefficient of Cr:LISAF
vs wavelength can be considered to consist of two flat bands, each of which having a peak value
of 4 cm�1, the two bands being centered at 420 and 650 nm and having a 80 nm and 120 nm
bandwidth respectively. Using the expression for �a given in the previous problem, calculate the
absorption efficiency of the rod for lamp emission in the 400–800 nm band.

6.3. The density of a YAG .Y3Al5O12/ crystal is 4.56 g � cm�3. Calculate the density of Nd ions in
the crystal when 1% of Yttrium ions are substituted by Neodymium ions (1 atom.% Nd).

6.4. A Nd:YAG rod, 6 mm in diameter, 7.5 cm long, with 1 atom.% Nd, is cw pumped by a high pres-
sure Kr lamp in a close coupled diffusively reflecting pumping chamber. The energy separation
between the upper laser level and the ground level corresponds to a wavelength of 940 nm. The
measured threshold pump power when the rod is inserted in some given laser cavity is Pth D 2 kW.
Assuming, for this pump configuration, that the rod is uniformly pumped with an overall pump
efficiency of �p D 4.5%, calculate the corresponding critical pump rate.

6.5. For a Nd:YAG with 1% atom. Nd, the upper state lifetime is not significantly quenched by the
mechanism discussed in example 2.8 and it can thus be taken to be equal to � D 250 μs. From the
value of pump rate calculated in the previous problem, now find the value for the critical inversion.
According to the discussion of example 2.10, the effective stimulated emission cross section for
the Nd:YAG transition at 1.064 μm, taking account of the partition of population between the
upper sublevels, can be taken to be � Š 2.8 � 10�19 cm2 at T D 300 K. From the knowledge of
the critical inversion, calculate the single-pass cavity loss.

6.6. The laser of problem 6.4 is to be pumped by sun light. The average day-time intensity of the sun, at
the surface of the earth, may be taken to be � 1 kW=cm2. Assume that a suitable optical system is
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used to allow transverse pumping of the laser rod. Assume also that: (i) 10% of the sun’s spectrum
is absorbed by the rod. (ii) The pump quantum efficiency is the same as for flashlamp pumping
(see Table 6.1). (iii) The transmission of the light focusing optics is 90%. (iv) The pump light
distribution within the rod is uniform. Given these assumptions, calculate the required area of the
collecting optics to allow the laser to be pumped 2 times above threshold. The focusing system
could be made by the, admittedly expensive, combination of two cylindrical lenses, with crossed
axes, so as to make a 6 mm � 7, 5 cm image of the sun (i.e. suitable to transversely pump the rod).
Knowing that the sun’s disc as seen from the earth has a full angle of � 9.3 mrad, calculate the
focal lengths of the two cylindrical lenses. Could you device a cheaper focusing scheme?

6.7. A Nd:YAG rod of 5 mm diameter, 5 cm long, with 1 atomic % Nd, is pumped by a Xe flashlamp in
a close coupled diffusely reflecting pumping chamber. The measured threshold pump energy when
the rod is placed in some given laser cavity is Eth D 3.4 J. Assume that: (i) The overall pumping
efficiency is 3.5% (see Table 6.1). (ii) The emitted power from the flashlamp lasts for 100 μs and
is constant during this time. Given these assumptions calculate the threshold pump rate Rcp. By
solving the time-dependent rate equation which includes the effects of both pumping and sponta-
neous decay, calculate the threshold inversion. If the flash duration is increased to 300 μs, while
still remaining constant in time, calculate the new pump rate and pump energy to reach threshold.

6.8. A 1 cm long Ti3C:Al2O3 rod is longitudinally pumped by an Argon laser at 514.5 nm wavelength
in a configuration similar to that of Fig. 6.11c. The absorption coefficient at the pump wavelength
for the rod can, for this case, be taken to be ˛p Š 2 cm�1. The transmission, at the pump wave-
length of the cavity mirror, through which the pump beam enters the cavity, can be taken to be
�t D 0.95. The wavelength corresponding to the minimum pump frequency �mp (see Fig. 6.17)
for Ti:sapphire is �mp D 616 nm. Calculate the overall pumping efficiency. If the pump beam is
focused to a spot size of wp D 50 μm in the laser rod, if the laser mode spot size is equal to pump
spot size and if a single-pass cavity loss � D 5% is assumed, calculate the optical pump power
required from the Ar laser at threshold.

6.9. A 2 mm long Nd:glass rod, made of LHG-5 glass and with a Nd3C concentration of 3.2 �
1020 cm�3, is longitudinally pumped by a single-stripe AlGaAs Quantum Well laser at 803 nm
wavelength in a configuration similar to that of Fig. 6.11a. The pump beam is made circular by
e.g. the anamorphic system of Fig. 6.12 and focused into the rod to a spot size closely matching
the laser mode spot size, w0 D 35 μm. The pump transfer efficiency, including the transmis-
sion loss at the first cavity mirror of Fig. 6.11a can be taken to be 80%. Assuming an absorption
coefficient at the pump wavelength of 9 cm�1, an effective stimulated emission cross section
�e D 4.1 � 10�20 cm2, an upper state lifetime of 290 μs and a total loss per pass of 0.35%, calcu-
late the threshold pump power. Note the large difference in pump threshold between this case and
that considered in the previous problem and explain the difference.

6.10. A Yb:YAG laser rod, 1.5 mm long, with 6.5 atomic % Yb doping, is longitudinally pumped
in a laser configuration such as that of Fig. 6.11a by the output of an InGaAs/GaAs Quantum
Well array at 940 nm wavelength focused to a spot size approximately matching the laser mode
spot size, w0 D 45 μm. The effective cross sections for stimulated emission and absorption, at
the � D 1.03 μm lasing wavelength and at room temperature, can be taken to be, respectively,
�e Š 1.9 � 10�20 cm2 and �a Š 0.11 � 10�20 cm2 while the effective upper state lifetime is
� Š 1.5 ms. The transmission of the output coupling mirror is 3.5% so that, including other inter-
nal losses, the single pass loss may be estimated to be � Š 2%. Calculate the threshold pump
power under the stated conditions.

6.11. A Nd:YAG rod, 4 mm diameter, 6.5 cm long, with 1 atom. % Nd is transversely pumped, at 808 nm
wavelength, in e.g. the pump configuration of Fig. 6.15. Assume that 90% of the optical power
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emitted from the fibers is absorbed, in a uniform way, in the rod. To obtain high power from the
laser, an output mirror of 15% transmission is used. Including other internal losses, a loss per
single pass of � D 10% is estimated. If the effective stimulated emission cross section is taken
to be �e D 2.8 � 10�19 cm2, calculate the optical power required from the fibers to reach laser
threshold. Compare this value with that obtained in problem 6.9 and explain the difference.

6.12. Assuming a Maxwell-Boltzmann distribution for the electron energy, calculate the electron
temperature, in eV, for a gas of electrons with average kinetic energy of 10 eV.

6.13. Suppose that an electron of mass m collides elastically with an atom of mass M. Assuming the
atom to be at rest before the collision and that electrons are scattered isotropically, show that, as a
result of the collision, the electron loses, on average, a fraction 2 m=M of its energy.

6.14. A pulsed nitrogen laser operating in the ultraviolet .� D 337.1 nm/ requires an optimum electric
field of � 10 kV=cm at its typical operating pressure of p Š 30 Torr (for a tube cross section
of 5 � 10 mm). A typical length for the nitrogen laser is � 1 m. Which of the two pumping
configurations shown in Fig. 6.18 would you use for this laser?

6.15. Consider a 1-cm-radius discharge tube filled uniformly with both ions and electrons at a density
Ni D Ne D 1013 cm�3. If all electrons then disappeared leaving behind the positive ion charge,
what would be the potential of the tube wall V relative to the tube center? Hence provide an
explanation for the phenomenon of ambipolar diffusion.

6.16. Assume that the ionization cross section is a step function starting at an energy equal to the ion-
ization energy Ei and having a constant value �i for higher energies. Assuming a Maxwellian
distribution for the electron energy, show that the ionization rate can be written as

Wi D Ne�i

�
8kTe


m

�1=2 �
1 C Ei

kTe

�
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�
� Ei

kTe

�

6.17. The theory of ambipolar diffusion leads to the following relation between the electron temperature
Te and the product pD [compare with (6.4.22)]:

ex

x1=2
D 1.2 � 107.CpD/2

where C is a constant, for a given gas, and x D .Ei=kTe/, where Ei is the ionization energy of the
gas. Taking values appropriate for helium, C D 3.2 � 10�4.Torr � mm/�1 and Ei D 24.46 eV,
calculate the required value of pD for an electron temperature of Te D 80,000 K.

6.18. The electron mean free path l can be obtained from the relation l D 1=N� , where N is the atomic
density and � is the total electron-impact cross section of the atom. Assuming � to be given by
the elastic cross section �el and taking �el D 5 � 10�16 cm2 for He, calculate �th and �drift for an
average electron energy of E D 10 eV, a He pressure of p D 1.3 Torr and temperature T D 400 K,
and an applied electric field in the discharge of E D 30 V=cm.

6.19. A fluorescent lamp consists of a tube filled with about 3 Torr of Ar and a droplet of Hg, which
provides a vapor pressure of � 3 mTorr at the normal operating temperature of T D 300 K. Thus,
as far as the discharge parameters are concerned, the tube can be assumed to be filled only with
Ar gas. The voltage required across the lamp for a tube length of 1 m is about 74 V. Assuming that
the fraction lost by the electrons, per collision, is ı D 1.4 � 10�4, assuming that the elastic colli-
sions dominate all other collision processes and that �el D 2 � 10�16 cm2, calculate the electron
temperature in the discharge.
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by Fiber-coupled Diode Lasers, Opt. Lett. 21, 210 (1996).
11. G.J. Shultz, Vibrational Excitation of N2, CO and H2 by Electron Impact, Phys. Rev. 135A, 988 (1964)
12. Ref. [2] Sect. 3.2.2.
13. J.J. Lowke, A.V. Phelps, and B.W. Irwin, Predicted Electron Transport Coefficients and Operating Characteristics

of CO2-N2-He Laser Mixtures, J. Appl. Phys. 44, 4664 (1973).
14. Ref. [2], Sect. 3.2.2.
15. C.C. Davis and T.A. King, Gaseous Ion Lasers, in Advances in Quantum Electronics, ed. by D.W. Goodwin

(Academic Press, New York, 1975) Vol. 3, pp. 170–437.
16. T.Y. Fan and R.L. Byer, Diode Laser-Pumped Solid-State Lasers, IEEE J. Quantum Electr. QE-24, pp. 895–

912 (1988)
17. T.Y. Fan, Diode-Pumped Solid-State Lasers, in Laser Sources and Applications, (SUSSP Publications and IOP

Publications, 1996) pp. 163–193.
18. S.J. Hamlin, J.D. Myers, and M.J. Myers, Proc. SPIE 1419,100 (1991).
19. K. Kubodera, K. Otsuka, and S. Miyazawa, Stable LiNdP4O12 Miniature Laser, Appl. Opt. 18, pp. 884–

890 (1979).
20. T.Y. Fan and R.L. Byer, Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser, IEEE J.

Quantum Electr. QE-23, pp. 605–612 (1987).



7

Continuous Wave Laser Behavior

7.1. INTRODUCTION

In previous chapters, we have discussed several features of the components that make up
a laser. These are the laser medium itself, whose interaction with an e.m. wave was considered
in Chaps. 2 and 3, the passive optical resonator (Chap. 5) and the pumping system (Chap. 6).
In this chapter we will make use of results from these earlier chapters to develop the theoret-
ical background required to describe the continuous wave, c.w., laser behavior. The case of
transient laser behavior will be considered in the next chapter. The theory developed here uses
the so-called rate-equation approximation and the laser equations are derived on the basis of
a simple notion that there should be a balance between the total atoms undergoing a transition
and total number of photons which are being created or annihilated..1,2/ This theory has the
advantage of providing a rather simple and intuitive picture of laser behavior. Furthermore,
it gives sufficiently accurate results for most practical purposes. For a more refined treatment
one should use either the semiclassical approach (in which the matter is quantized while the
e.m. radiation is treated classically, i.e., through Maxwell’s equations) or the full quantum
electrodynamics approach (in which both matter and radiation are quantized). We refer the
reader elsewhere for these more advanced treatments..3/

7.2. RATE EQUATIONS

We will consider the rate equations for both a four-level laser (Fig 1.4b) and a quasi-
three-level laser, where the lower laser level is a sublevel of the ground state. These two
categories of laser include, in fact, the most important lasers currently in use. In the cate-
gory of four level lasers one could mention, for instance: (i) Ionic crystal lasers, such as
Neodymium lasers, in various hosts, for most of its many possible transitions, Chromium and
Titanium doped lasers [with the exception of Ruby, Cr3C:Al2O3, the first laser to operate,
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c
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256 7 � Continuous Wave Laser Behavior

which involves a pure three-level scheme]. (ii) Gas lasers, such as CO2, ArC, He-Ne, He-Cd,
Cu vapor, HF, N2. In the category of quasi-three-level lasers one could mention many rare-
earth ions in various crystal or glass hosts such as Yb, Er and Yb:Er, Ho, Tm and Tm:Ho,
and, for its shortest wavelength transition, Nd again.

7.2.1. Four-Level Laser

We will consider an idealized four level scheme in which we assume that there is only
one pump level or band (band 3 of Fig. 7.1) and that the relaxation from the pump band to
the upper laser level, 2, as well as the relaxation from the lower laser level, 1, to the ground
level proceed very rapidly. The following analysis remains unchanged, however, even if more
than one pump band (or level) is involved provided that the decay from these bands to the
upper laser level is still very fast. Under these conditions we can make the approximation
N1 Š N3 Š 0 for the populations of the lower laser level and pump level(s). Thus we need
only deal with two populations, namely the population N2 of the upper laser level and the
population Ng of the ground level. We will assume the laser to be oscillating on only one
cavity mode and we let � be the corresponding total number of photons in the cavity.

In a first treatment, we will consider the case of space independent rate equation i.e. we
will assume that the laser is oscillating on a single mode and that pumping and mode energy
densities are uniform within the laser material. As far as the mode energy density is concerned
this means that the mode transverse profile must be uniform and that we are neglecting the
effects of the standing wave character of the mode. Strictly speaking, the treatment that fol-
lows would then only apply for a unidirectional ring resonator with uniform transverse profile
and where pumping is uniformly distributed in the active medium, clearly a rather special and
simplified case. This case, although perhaps oversimplified, will help us to understand many
basic properties of laser behavior. Features arising from space-dependency of both pump and
mode patterns, will be discussed at some length later on in this chapter.

For the space-independent case, we can readily write the following three equations:

.dN2=dt/ D Rp � B�N2 � .N2=�/ (7.2.1a)

.d�=dt/ D VaB�N2 � .�=�c/ (7.2.1b)

In Eq. (7.2.1a) the pumping term Rp [see Eq. (1.3.1)] is based on the assumption of negligible
depopulation of the ground state. Explicit expressions for the pumping rate, Rp, have already

FIG. 7.1. Four-level laser scheme.
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been derived in the previous Chapter both for optical and electrical pumping. The term B�N2

in Eq. (7.2.1a) accounts for stimulated emission. It was shown in Chaps. 2 and 3 that the
stimulated emission rate W is in fact proportional to the square of the magnitude of the electric
field of the e.m. wave, and hence W can also be taken to be proportional to �. The coefficient
B will therefore be referred to as the stimulated transition rate per photon per mode. The
quantity � is the lifetime of the upper laser level, and, in general must take into account both
radiative and non-radiative processes [see Eq. (2.6.18)]. It must also be noted that the upper
laser level often consists of a combination of many strongly coupled sublevels. In this case
the lifetime � is intended to be the effective upper level lifetime, account being taken of the
lifetimes of all upper state sublevels with a weight proportional to the corresponding sublevel
population [see Eq. (2.7.19c)]. In Eq. (7.2.1b) the term VaB�N2 represents the growth rate of
photon population due to stimulated emission and is obtained by a simple balance argument.
In Eq. (7.2.1a), in fact, the term B�N2 gives the rate of population decrease due to stimulated
emission. Since each stimulated-emission process creates a photon, B�N2 also represents
the number of photons created in the unit time and in the unit volume of the medium. The
photon growth rate must then be VaB�N2, where Va is the volume of the mode in the active
medium. Finally, the term �=�c, where �c is the photon lifetime (see Sect. 5.3), accounts for
the disappearance of photons due to cavity losses.

Before proceeding it is worth pointing out that, in Eq. (7.2.1b), a term accounting for
spontaneous emission has not been included. Since, as already mentioned in Chap. 1, laser
action is actually initiated by spontaneous emission, we would not expect Eq. (7.2.1) to
account for the onset of laser oscillation. Indeed, if, at time t D 0, we put � D 0 on the
right hand side of Eq. (7.2.1b), we get .d�=dt/ D 0 implying that laser action does not start.
To try to account for spontaneous emission one might be tempted to apply simple considera-
tions of balance, starting with the term N2=�r, �r being the radiative lifetime of level 2, which
is included in the term N2=� of (7.2.1a). It might then be thought that the appropriate term
in Eq. (7.2.1b), to account for spontaneous emission, would be Va.N2=�r/. This is wrong,
however. In fact, as seen in Chaps. 2 and 3, the spontaneously emitted light is distributed over
the entire frequency range corresponding to the gain bandwidth and, furthermore, emission
occurs into a 4
 solid angle. The spontaneous emission term which is needed in Eq. (7.2.1b)
must, however, only include the fraction of the spontaneously emitted light that contributes
to the given mode (i.e., that is emitted in the same angular direction and in the same spec-
tral bandwidth of the mode). The correct expression for this term can only be obtained by
a quantized treatment of radiation-matter interaction. The result is particularly simple and
instructive:.4/ in a quantum electrodynamics treatment, Eq. (7.2.1b) transforms to

.d�=dt/ D VaB.� C 1/N2 � .�=�c/ (7.2.2)

Thus everything behaves as if there were an extra photon in the term describing stimulated
emission. When the laser is oscillating, however, and unless very close to threshold, the num-
ber of photons in the laser cavity may easily range between 1010 � 1016 for a cw laser, see
example 7.1, and much more than this value for pulsed lasers. In the following analysis we
will therefore not consider this extra term arising from spontaneous emission, and instead
assume that an arbitrarily small number of photons �i, say �i D 1, is initially present in the
cavity just to allow laser action to start.
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We are now interested in deriving an explicit expression for the quantity B, the stimulated
emission coefficient per photon per mode, which is present in both Eqs. (7.2.1a) and (7.2.1b).
So, we consider a resonator of length L in which an active medium of length l and refractive
index n is inserted. Since, for the time being, we are considering a traveling wave beam, we
let I be the intensity of this beam at a given cavity position and at time t D 0. Following
the argument considered in Sect. 1.2, the intensity I0 after one cavity round trip is I0 D I �
R1R2.1�Li/

2 exp.2�N2l/, where R1 and R2 are the power reflectivities of the two mirrors, Li is
the single pass internal loss of the cavity so that .1 �Li/

2 is the round trip cavity transmission,
and exp.2�N2l/ is the round trip gain of the active medium. Note that, if the upper laser level
is either degenerate or consists of many strongly coupled sublevels, one should use here the
effective value of the cross section, as discussed in Sect. 2.7. We now write R1 D 1 � a1 � T1

and R2 D 1 � a2 � T2, where T1 and T2 are the power transmissions of the two mirrors and
a1 and a2 are the corresponding fractional mirror losses. The change of intensity,	I D I0 � I,
for a cavity round trip will then be

	I D Œ.1 � a1 � T1/.1 � a2 � T2/.1 � Li/
2 exp.2� N2l/ � 1�I (7.2.3)

We will now assume that the mirror losses are equal .a1 D a2 D a/ and so small that we can
put .1 � a � T1/ Š .1 � a/.1 � T1/ and .1 � a � T2/ Š .1 � a/.1 � T2/. Then (7.2.3) obviously
transforms to

	I D Œ.1 � T1/.1 � T2/.1 � a2/.1 � Li/
2 exp.2� N2l/� 1�I (7.2.4)

Before proceeding it is convenient to introduce some new quantities, � (see Sect. 1.2),
which can be described as the logarithmic loss per pass, namely, [compare with (1.2.4)]:

�1 D � ln.1 � T1/ (7.2.5)

�2 D � ln.1 � T2/ (7.2.6)

�i D �Œln.1 � a/C ln.1 � Li/� (7.2.7)

As already pointed out in Sect. 1.2, �1 and �2 are the logarithmic losses per pass due to the
mirror transmission and �i is the logarithmic internal loss per pass. For brevity, however, we
will simply call �1 and �2 the mirror losses and �i the internal loss. The logarithmic loss nota-
tion proves to be the most convenient way of representing laser losses, given the exponential
character of the laser gain. It should be noted, however, that, for small transmission values,
one has � D � ln.1 � T/ Š T. Likewise, for very small values of a and Li one has from
Eq. (7.2.7) �i Š a C Li, so that the quantities � really represent loss terms for the cavity.
Obviously, one can see that the above approximations only hold for small values of cavity
loss or mirror transmission. As an example, if we take T D 0.1 we get � D 0.104, i.e., � Š T
while if we take T D 0.5 we get � D 0.695.

With the help of this logarithmic loss notation, we can also define a total (logarithmic)
loss per pass � as

� D �i C Œ.�1 C �2/=2� (7.2.8)
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and proceed by substituting Eqs. (7.2.5)–(7.2.8) into Eq. (7.2.4). Upon making the additional
assumption

Œ�N2l � �� � 1 (7.2.9)

then the exponential function resulting from Eq. (7.2.4) can be expanded as a power series
to yield

	I D 2Œ�N2l � ��I (7.2.10)

We now divide both sides of Eq. (7.2.10) by the time	t taken for the light to make one cavity
round trip, i.e., 	t D 2Le=c, where Le is the optical length of the resonator, given by

Le D L C .n � 1/l (7.2.11)

If the approximation	I=	t Š dI=dt is used, we get

dI

dt
D
�
� lc

Le
N2 � �c

Le

�
I (7.2.12)

Since the number � of photons in the cavity is proportional to I, a comparison of Eq. (7.2.12)
with Eq. (7.2.1b) gives

B D � lc

VaLe
D �c

V
(7.2.13)

�c D Le

� c
(7.2.14)

where

V D .Le=l/Va (7.2.15)

will be referred to as the mode volume within the laser cavity (the mode diameter is taken
to be independent of the cavity longitudinal coordinate). Note that Eq. (7.2.14) generalizes
the expression for photon lifetime given in Sect. 5.3. Note also that, if the upper laser level is
actually made of several strongly coupled sub-levels and if N2 is the total population of the
upper laser level, then, according to the discussion in Sect. 2.7.2, the cross section � to be used
in Eq. (7.2.13) is the effective cross section, i.e., the true cross section times the fraction of
the upper state population which is found in the sub-level from which laser action originates.

Once the explicit expressions for B and �c are obtained, then Eq. (7.2.1) provides, within
the previous limitations and approximations, a description of both static and dynamic behavior
of a four level laser. To simplify notations, we will write N � N2 �N1 Š N2 as the population
inversion. From Eq. (7.2.1) we then get

dN

dt
D Rp � B� N � N

�
(7.2.16a)

d�

dt
D
�

BVaN � 1

�c

�
� (7.2.16b)
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These equations together with the expressions for B, �c and Va, given by Eqs. (7.2.13),
(7.2.14) and (7.2.15) respectively, describe, for a four level-laser, the laser behavior both
in the c.w. and transient cases.

Before proceeding it is worth pointing out some caveats that apply to our considera-
tions above. One such critical comment has already been made right at the beginning, namely
that the results strictly hold only for a laser oscillating with uniform pump and mode energy
distributions in the active medium. This important point would seem to indicate a severe lim-
itation to the usefulness of the above equations. However, the results obtained below, using
this simple model, will be seen to be very useful for understanding some basic aspects of laser
behavior. Furthermore, at least for c.w. behavior, the much more complicated space-dependent
case leads, as we shall see, to rather similar results, whose relevance can then better under-
stood by comparison with the space-independent model. A second critical remark relates to
the fact that these rate equations strictly apply only for single mode oscillation. For n oscillat-
ing modes, in fact, one generally needs to write 2n differential equations for the amplitude and
phase of the field modes to properly account for the beating terms among the various modes.
In fact, under appropriate conditions of locking between the phases of the modes, this leads
to the phenomenon of mode-locking, to be described in next Chapter and which obviously
cannot be described within a rate equation treatment. However, when many modes with ran-
dom phases are oscillating, the overall beam intensity can, to a first approximation, be taken
as the sum of the intensities of all modes. For a uniform transverse pump profile, the superpo-
sition of the mode transverse profiles will thus tend to produce a fairly uniform profile for the
overall beam. Furthermore, with the oscillation of many modes having different longitudinal
patterns, the corresponding total energy density will not show any pronounced standing wave
pattern. In this case the picture can be greatly simplified by considering just one rate equation
for the total number of photons, �, i.e., summed over all modes, and Eqs. (7.2.16) can still be
applied in an approximate fashion. A third critical remark relates to the fact that, in writing
e.g. Eq. (7.2.3), we have implicitly assumed that the population inversion, during laser action,
is independent of the longitudinal z coordinate. Actually, for large values of laser gain, both
counter-propagating beams show strong dependence on the z coordinate and similarly for the
inversion. Under such conditions, the laser behavior should be treated on a pass-by-pass basis
as first done by Rigrod (the so-called Rigrod analysis.5/). At least for the c.w. case where
Eq. (7.2.9) can be taken to hold, however, the expression for the output power as obtained
by the Rigrod analysis coincides with that obtained via this far simpler treatment provided
that one makes use of the � notation, as indeed adopted here. For a pulsed laser, on the other
hand, Eq. (7.2.9) will hold only when the laser is not driven far above threshold. Otherwise,
Eqs. (7.2.16) can no longer be applied and the dynamic behavior of the laser must be analyzed
on a pass-by-pass basis, as in the Rigrod analysis..5/ A fourth and perhaps more serious remark
is that Eqs. (7.2.16) really do not apply to an inhomogeneously broadened line. To understand
this point, let us consider, for simplicity, a non-Doppler inhomogeneously-broadened transi-
tion and assume the laser to be oscillating on a single frequency. The beam will then interact
only with that fraction of population whose resonance frequency coincides with the laser fre-
quency and, at sufficiently high intensity, the saturated gain profile, likewise what shown in
Fig. 2.22 for an absorption profile, will show a hole located at this frequency. Clearly, in this
case, the starting point of our analysis on beam amplification, namely Eq. (7.2.3) where N2

is the total upper state population, is no longer valid. The situation is even more complicated
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for a Doppler-broadened inhomogeneous transition, where, if the laser is oscillating at a fre-
quency sufficiently far from the central frequency of the transition, the right traveling beam
and the left traveling beam interact with different sets of atoms or molecules. The c.w. behav-
ior of an inhomogeneously broadened transition has been considered, notably by Casperson,.6/

and shown to give results considerably different from those obtained via Eqs. (7.2.16).

Example 7.1. Calculation of the number of cavity pho-
tons in typical c.w. lasers We will first consider, as a low
power example, a 50 cm long He-Ne laser, oscillating at
� D 630 nm with an output power of 10 mW. The trans-
mission of the output mirror, for this low gain laser, may
typically be T2 D 1% so that �2 D � ln.1 � T2/ Š 0.01.
From Eq. (7.2.18) we then get � Š 1.06 � 1010 pho-
tons. As a high power example, we consider a 10 kW
CO2 laser oscillating at the wavelength of 10.6�m. We
take a cavity length of Le D 150 cm and an output mirror
transmission, for this higher gain laser, of T2 D 45%. We
get �2 D � ln.1 � T2/ Š 0.598 and from Eq. (7.2.18)
� Š 0.9 � 1016 photons.

Within the limitations discussed in the
previous paragraph, we now take Eqs. (7.2.16)
as valid for a first order description of laser
behavior. Equations (7.2.16) then need to be
solved under the appropriate conditions for
the case under examination. So, to describe
c.w. laser behavior, the case pertinent to this
Chapter, we merely set the time derivative
on the left hand side of both equations equal
to zero. To describe transient laser behavior,
we need Rp D Rp.t/ to be specified and we
also need to know the initial conditions. For
instance, if pumping is initiated at t D 0,
the initial conditions will be N.0/ D 0 and
�.0/ D �i where �i is a very small number
of initial photons simulating the effect of spontaneous emission (e.g., �i D 1). This will be
discussed in the next Chapter. For both c.w. and transient laser behavior, however, once � or
�.t/ is known, the calculation of the output power through one of the cavity mirrors become
straightforward. In fact, according to Eqs. (7.2.14) and (7.2.8) we can write

1

�c
D �ic

Le
C �1c

2Le
C �2c

2Le
(7.2.17)

If we now substitute Eq. (7.2.17) into the right hand side of Eq. (7.2.16b) we recognize that
e.g., the term .�2c=2Le/� gives the rate of photon loss due to transmission through mirror 2.
The output power through this mirror will therefore be given by

Pout D
�
�2c

2Le

�
.h�/� (7.2.18)

Thus the solution of Eqs. (7.2.16) allows not only to calculate the internal laser behavior
but also, through the simple relation Eq. (7.2.18), one of the most important laser parameter
i.e., the output power. Viceversa, if the output power is known, Eq. (7.2.18) can be used to
calculate the total number of cavity photons as shown in the following example.

7.2.2. Quasi-Three-Level Laser

In a quasi-three-level laser, the lower laser level, level 1 in Fig. 7.2, is a sub-level of the
ground level and all ground state sub-levels are assumed to be strongly coupled and hence in
thermal equilibrium. Likewise, the upper laser level, level 2 in Fig. 7.2, is a sublevel of a set of
upper state sublevels which are also assumed to be in thermal equilibrium. In this case, we let
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FIG. 7.2. Quasi-three-level laser scheme.

N1 and N2 be the total population of all ground state and all upper state sub-levels, respectively.
We again assume a very fast decay from the pump level(s) to the upper state sub-levels, so that
we will only be concerned with the populations N1, and N2 (ideal quasi-three-level case). Now
let 0 represent the lowest sublevel of the ground state and assume that the energy separation
between sub-levels 1 and 0 is comparable to kT. Then a non-negligible fraction of ground state
population, N1, will be present in the lower laser level (see Sect. 2.7.2), and this will result
in absorption of laser photons. Following the discussion of Sect. 2.7.2, the rate equations for
both upper and lower state laser sublevels can be written in terms of the total populations N1

and N2. The rate equations for a quasi-three-level laser can then be written in a similar way
to that for the four-level case, taking account of the fact that absorption as well as stimulated
emission of laser photons now occurs. We thus write

N1 C N2 D Nt (7.2.19a)

.dN2=dt/ D Rp � �.BeN2 � BaN1/ � .N2=�/ (7.2.19b)

.d�=dt/ D Va�.BeN2 � BaN1/ � .�=�c/ (7.2.19c)

Where: Nt is the total population; � is, again, the effective lifetime of level 2; Be and Ba are
now given by [compare with Eq. (7.2.13)]

Be D �ec=V (7.2.20a)

Ba D �ac=V (7.2.20b)

where �e and �a are the effective cross sections for stimulated emission and absorption (see
Sect. 2.7.2). The substitution of Eqs. (7.2.20) into Eqs. (7.2.19) gives

N1 C N2 D Nt (7.2.21a)

dN2

dt
D Rp � �ec

V
�.N2 � f N1/� N2

�
(7.2.21b)

dq

dt
D
�

Va�ec

V
.N2 � f N1/ � 1

�c

�
� (7.2.21c)

where we have put

f D �a=�e (7.2.22)
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Equations (7.2.21b) and (7.2.21c) suggest that we may now define a population inversion N as

N D N2 � fN1 (7.2.23)

Using the pair of Eqs. (7.2.21a) and (7.2.23) one can obtain N1 and N2 in terms of N and Nt.
The three Eqs. (7.2.21) can then be reduced to just two equations in the variables � and N.
After some straightforward manipulation one obtains

dN

dt
D Rp.1 C f / � .�e C �a/c

V
� N � f Nt C N

�
(7.2.24a)

d�

dt
D
�

Va�ec

V
N � 1

�c

�
� (7.2.24b)

Within the limits discussed for the validity of Eqs. (7.2.16) and (7.2.24) describe the static
and dynamic behavior of a quasi-three-level laser�. In the case of transient laser behavior and
if pumping is initiated at t D 0, Eqs. (7.2.24) must be solved with the initial conditions N.0/ D
�fN1 and �.0/ D �i Š 1. Note that the photon rate equations for four-level, Eq. (7.2.16b),
and quasi-three-level, Eq. (7.2.24b), lasers are the same. The rate equation for the population
inversion is somewhat different, however. In particular, the stimulated term for a quasi-three-
level laser is a factor .�e C �a/=�e larger than that of a four-level laser. To understand this
result, consider a unit volume, Va D 1, and assume that, in a given time 	t, one photon
has been created, by the stimulated processes, in this volume. According to Eq. (7.2.24b),
this implies that .�ec0N�=V/	t D 1. Using this result in Eq. (7.2.24a) one then sees that,
correspondingly, the inversion N decreases by an amount equal to 	N D .�e C �a/=�e. One
thus has	N > 1, and this is understood when one notices that, due to this stimulated process,
N2 has decreased by 1 while N1 has been increased by 1, so that, according to Eq. (7.2.23), the
decrease of N must indeed be larger than 1. By contrast, for a four-level laser, the emission of
a photon implies that N2 decreases by 1 while N1 remains essentially unchanged (i.e., zero)
on account of the fast 1 ! 0 decay. Thus, in this case, the decrease of N is simply equal to 1.
Note also that, as expected, Eqs. (7.2.24) reduce to (7.2.16) when �a and hence f are set equal
to zero.

Within the limits of a space-independent rate equation treatment, Eqs. (7.2.24) thus
represent the final result of our calculation for a quasi-three-level level laser. For both c.w.
and transient case, once N and � are obtained by solving these equations with the appro-
priate boundary conditions, the output power through e.g. mirror 2 is again obtained from
Eq. (7.2.18).

7.3. THRESHOLD CONDITIONS AND OUTPUT POWER:
FOUR-LEVEL LASER

In this section we will investigate, for a four-level laser, the threshold conditions and the
output power for a c.w. laser i.e. when Rp is time-independent. We first consider the behav-
ior corresponding to the space-independent rate equations described previously. The results

� One should note that, as a quasi-3-level laser becomes progressively closer to a pure 3-level laser, the assumption
that the ground state population is changed negligibly by the pumping process will eventually not be justified and
the pump rate Rp could not be taken to be constant any more.
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predicted from the space-dependent model will then be discussed and a comparison made
between the two models.

7.3.1. Space-Independent Model

In the previous section, the rate equations of a four-level laser have been derived under
the simplifying assumption of a very short lifetime of the lower laser level. Before going into a
detailed calculation of the c.w. laser behavior under these conditions, it is worth deriving
a necessary condition for c.w. oscillation when the lifetime of the lower laser level, �1, has
a finite value. To do this we first note that the steady-state population of level 1 is of course
established by a balance between populations entering and leaving that level. In the absence
of oscillation, we thus write .N1=�1/ D .N2=�21/, where �21 is the lifetime of the 2 ! 1
transition. If, for simplicity, we consider the case where the two levels are actually single-
levels having the same degeneracy, then, to get laser action, we require N2 > N1. From the
expression above, this implies

�1 < �21 (7.3.1)

If this inequality is not satisfied, then laser action is only possible on a pulsed basis provided
that the pumping pulse is shorter than or comparable to the lifetime of the upper laser level.
Laser action, having begun, will continue until the number of atoms accumulated in the lower
level, as a result of stimulated emission, is sufficient to wipe out the population inversion.
These lasers are therefore referred to as self-terminating. If, on the other hand, Eq. (7.3.1) is
satisfied and if Rp is sufficiently strong, then a steady-state oscillation condition will eventu-
ally be reached. In what follows we now examine this condition subject to the assumption that
�1 � �21 so that Eqs. (7.2.16) can be considered to apply.

We begin by considering the threshold condition for laser action. Suppose that, at time
t D 0, an arbitrarily small number �i of photons (e.g. �i D 1) is present in the cavity due to
spontaneous emission. From Eq. (7.2.16b) we then see that, to have .d�=dt/ > 0, one must
have BVaN > 1=�c. Laser action therefore initiates when the population inversion N reaches
a critical value Nc given by (see also Sect. 1.2)

Nc D .1=BVa�c/ D .�=� l/ (7.3.2)

where use has been made of Eqs. (7.2.13) and (7.2.14). The corresponding critical pump rate
Rcp is then obtained from Eq. (7.2.16a) by letting .dN=dt/ D 0, since we are at steady state,
with N D Nc, and � D 0. The critical pump rate is then seen to correspond to the situation
where the rate of pump transitions, Rcp, equals the spontaneous transition rate from level 2,
Nc=� . We thus get

Rcp D Nc=� D .�=� l�/ (7.3.3)

where use has been made of (7.3.2).
If Rp > Rcp, the photon number � will grow from the initial value determined by

spontaneous emission, and, if Rp is independent of time, � will eventually reach some steady-
state value �0. This value and the corresponding steady-state value, N0, for the inversion are



7.3 � Threshold Conditions and Output Power: Four-Level Laser 265

FIG. 7.3. Qualitative behavior of the population inversion N and total number of cavity photons � as a function of
the pump rate Rp.

obtained from Eqs. (7.2.16) by setting .dN=dt/ D .d�=dt/ D 0. This gives

N0 D .1=BVa�c/ D .�=� l/ (7.3.4a)

�0 D Va�cŒRp � .N0=�/� (7.3.4b)

Note that, to obtain Eq. (7.3.4b), use has been made of Eqs. (7.3.4a), (7.2.15) and (7.2.14).
Equations (7.3.4) describe the c.w. behavior of a four level laser. We will now examine

these equations in some detail. Comparing Eq. (7.3.4a) with Eq. (7.3.2) one can first observe
that, even when Rp > Rcp, one has N0 D Nc, i.e., the steady-state inversion always equals the
critical or threshold inversion. To get a better understanding of this result, we show in Fig. 7.3
a plot of both N and � vs the pump rate Rp. When Rp < Rcp, then �0 D 0 and the inversion,
N, increases linearly with Rp. When Rp D Rcp, one obviously has N D Nc and �0 D 0 still
applies. If now Rp is increased above Rcp, Eqs. (7.3.4) show that, while N0 remains fixed at
the critical inversion, �0 increases linearly with Rp. In other words, the pump rate increases
the inversion (i.e. the energy stored in the material), below threshold, while it increases the
number of photons (i.e., the e.m energy stored in the cavity), above threshold.

We can now recast Eq. (7.3.4b) in a somewhat simpler form if we take the term .N0=�/ D
.Nc=�/ D Rcp outside the square brackets. We obtain

�0 D .VaN0/
�c

�
.x � 1/ (7.3.5)

where

x D Rp=Rcp (7.3.6)

is the amount by which the pump rate exceeds the threshold pump rate. One can now see that,
both for optical and electrical pumping, one can write

x D Pp=Pth (7.3.7)

where Pp is the pumping power and Pth is its threshold value. Using Eqs. (7.3.7) and (7.3.4a)
in Eq. (7.3.5), this equation can be transformed to a somewhat more useful form:

�0 D Ab�

�

�c

�

�
Pp

Pth
� 1

�
(7.3.8)
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where Ab D .Va=l/ is the cross-sectional area of the mode (the beam area) which is assumed
to be smaller than or equal to the cross-sectional area, A D .V=l/, of the active medium.

We now go on to derive an expression for the output power. From Eqs. (7.2.18)
and (7.3.8) we obtain

Pout D .AbIs/
��2

2

� � Pp

Pth
� 1

�
(7.3.9)

where Is D h�=�� is the saturation intensity for a four-level system [see Eq. (2.8.24)]. If
mirror 1 is totally reflecting, this expression agrees with that of Rigrod,.5/ obtained using a
pass-by-pass analysis. Since a plot of Pout versus Pp yields a straight line intercepting the Pp

axis at Pp D Pth, one can define the laser slope efficiency as

�s D dPout=dPp (7.3.10)

and �s turns out to be constant for a given laser configuration. With the help of the previous
expressions and of the equations derived in Chap. 6, we can get a very useful and instructive
expression for �s. Thus, inserting Pout from Eq. (7.3.9) into Eq. (7.3.10), we begin by writing

�s D Ab h�

��

�2

2

1

Pth
(7.3.11)

For both lamp pumping and electrical pumping, using Eq. (6.2.6) or (6.4.26) in Eq. (7.3.3),
we obtain

Pth D �

�p

�
h�mp

�

� �
A

�

�
(7.3.12)

where we recall that �mp is the frequency difference between the upper laser level and the
ground level and A is the area of the active medium. From Eqs. (7.3.11) and (7.3.12) one
obtains

�s D �p

�
�2

2�

� �
h�

h�mp

� �
Ab

A

�
(7.3.13)

One can then write

�s D �p �c �q �t (7.3.14)

where: (1) �p is the pump efficiency. (2) �c D �2=2� represents the fraction of gener-
ated photons coupled out of the cavity, which one can call the output coupling efficiency.
Note that �c is always smaller than 1 and it reaches the value 1 when �1 D �i D 0. (3)
�q D h�=h�mp gives the fraction of the minimum pump energy which is transformed into
laser energy, referred to as the laser quantum efficiency. (4) �t D Ab=A, gives the frac-
tion of the active medium cross-section which is utilized by the beam cross section and
may be called the transverse utilization factor of the active medium or the transverse effi-
ciency. Note that the whole of the active medium is assumed to be pumped uniformly, in
our case.
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Example 7.2. CW laser behavior of a lamp pumped high-power Nd:YAG laser We consider the laser
system of Fig. 7.4, where a 6.35 mm diameter, 7.5 cm long Nd:YAG rod, with 1% atomic concentration
of the active Nd ions, is pumped in an elliptical pump chamber by a high-pressure Kr lamp. The laser
cavity consists of two plane mirrors spaced by 50 cm. The reflectivity of one mirror is R1 D 100% while
that of the output coupling mirror is R2 D 85%. A typical curve of the output power, Pout, through mirror
2 (in multimode operation) vs electrical pump power, Pp, to the Kr lamp is shown in Fig. 7.5..7/ Note
that one is dealing with a reasonably high power c.w. Nd:YAG laser with an output power exceeding
200 W. One may also observe that, since the laser is oscillating on many transverse and longitudinal
modes then, according to the discussion in Sect. 7.2.1, it is reasonable to compare the experimental results
with the theoretical predictions given by the preceding space-independent rate equation treatment. In fact,
except for input powers just above threshold, the experimental points of Fig. 7.5 indeed show a linear
relationship between output and input powers as predicted by Eq. (7.3.9). From the linear part of the
curve, an extrapolated threshold of Pth D 2.2 kW is obtained. Above threshold, the output vs input power
relation can be fitted by the equation

Pout D 53Œ.Pp=Pth/ � 1� (7.3.15)

where Pout is expressed in watts. The slope efficiency is then easily obtained from Eq. (7.3.15) as
�s D .dPout=dPp/D 53=Pth D 2.4%. Equation (7.3.15) can be readily compared to Eq. (7.3.9) once we
remember that, as discussed in example 2.10, the effective values of cross section and upper level life-
time for the �D 1.06�m transition in Nd:YAG can be taken to be � D 2.8 � 10�19 cm2 and � D 230�s,
respectively. The energy of the photon, at this wavelength, is obtained as h�D 3.973 � 10�19 �
.0.5=1.06/D1.87 � 10�19 J, where 3.973 � 10�19 J is the energy of a photon with a wavelength of 0.5�m
(see Appendix H). We then obtain the value of the saturation intensity as Is D h�=�� D 2.9 kW=cm2. We
now take R2 D .1 � a2 � T2/ Š .1 � T2/ since, for a good multilayer coating, mirror absorption, a2, may
be less than 0.1%. We then get �2 D � ln R2 D 0.162. Comparison of Eq. (7.3.15) with Eq. (7.3.9) then
gives Ab Š 0.23 cm2, to be compared with the cross-sectional area of the rod A Š 0.317 cm2.

To compare the measured slope efficiency and the extrapolated threshold with the values predicted
by calculation, we need to know � , i.e., �i. Now, since �1 D 0, (7.3.12) with the help of (7.2.8) can be
rearranged as

� ln R2

2
C �i D �p

��
A

� � Pth�

h�mp

�
(7.3.16)

Thus, if several measurements are made of the threshold pump power at different mirror reflectivities R2,
a plot of �2 D � lnR2 vs Pth should yield a straight line. In fact, this is what is found experimentally, as
shown in Fig. 7.6. The intercept of this straight line with the �2 axis gives, according to Eq. (7.3.16), the
value of the internal losses (Findlay and Clay analysis.9/). From Fig. 7.6 we get �i Š 0.038, which gives
a total loss � D .�2=2/C �i Š 0.12.

Once the total losses are known, we can use Eq. (7.3.14) to compare the measured slope effi-
ciency, �s D 2.4%, with the theoretical predictions. We take, in fact, �c D �2=2� Š 0.68. We also take
�q D�mp=�D 0.89, where �mp D 0.94�m is the wavelength corresponding to the transition from the
upper laser level to the ground level (see Fig. 2.15) in Nd:YAG, and, according to the previous calculation,
�t D Ab=A. Š 0.72. From Eq. (7.3.14) we get �p D 5.5%, which appears to be a reasonable value of pump
efficiency for Kr pumping (see also Table 6.1). The predicted value of Pth can now be readily obtained
from Eq. (7.3.12) once we take into account that h�mp Š 2.11 � 10�19 J. We obtain Pth Š 2.26 kW, in
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good agreement with the experimental result. A knowledge of the total losses also allows one to calculate
the threshold inversion. From Eq. (7.3.2) one finds Nc Š 5.7 � 1016 ions=cm3. For a 1% atomic doping,
the total Nd concentration is Nt D 1.38 � 1020 ions=cm3. Thus Nc=Nt D 4.1 � 10�4, which shows that the
population inversion is a very small fraction of the total population.

FIG. 7.4. Possible cavity configuration for a, lamp-pumped, cw Nd:YAG Laser.

FIG. 7.5. Output power vs lamp input power for a powerful Nd:YAG laser (after Koechner,.7/ by permission).

Example 7.3. CW laser behavior of a high-power CO2 laser. We will consider the laser system indicated
schematically in Fig. 7.7 where a positive branch unstable resonator is used to obtain a large mode volume
and hence high values of output power. The length of the resonator is L D 175 cm while the length of
the laser medium is l D 140 cm. The active medium is made of a CO2 : N2 : He gas mixture with a
1:1:8 partial pressure ratio and with a total pressure of 100 Torr. For cooling reasons, the mixture flows
transversely to the resonator axis. Gas excitation is provided by a d.c. electric discharge between two
electrodes as indicated schematically in the figure (transverse discharge, see also Fig. 10.16). Typical
performance data for the output power, Pout, vs input electrical pump power, Pp, are shown in Fig. 7.8..10/

The data points can be fitted by the equation

Pout D 6.66Œ.Pp=Pth/ � 1� (7.3.17)
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where Pout is given in kW and Pth is the extrapolated threshold input power .Pth Š 44 kW/. Note that we
are dealing here with a high power CO2 laser giving an output power which exceeds 10 kW.

At 100 Torr pressure, the CO2 laser line is predominantly broadened by collisions. From example 3.3,
in fact, assuming a gas temperature of T D 400 K, we find for this case 	�c Š 430 MHz, while Doppler
broadening only amounts to � 50 MHz (see example 3.2). For the given cavity length, the frequency
separation between consecutive longitudinal modes is	� D c=2L D 107 MHz and, sufficiently far above
threshold, a few longitudinal modes are expected to oscillate. Furthermore a few transverse modes are also
expected to oscillate. In fact, the equivalent Fresnel number (see Sect. 5.6.2) is rather large in our case
.Neq D 7.4/, so that a few transverse modes are expected to have comparable losses (see also Fig. 5.21).
Consequently, the transverse beam profile within the laser cavity is expected to be rather uniform. We
are thus dealing with conditions where the previous rate-equation treatment should provide a reasonable
approximation and, since the CO2 laser operates on a four-level scheme, Eq. (7.3.9) can be used for
the comparison with Eq. (7.3.17). For this purpose we need to know the transmission T2 of the output
mirror. Since the transverse beam profile is assumed to be rather uniform, we will use the geometrical-
optics approximation. One thus finds that T2, which is equal to the round trip cavity loss of the unstable
resonator, is given by [see Eq. (5.6.5)] T2 D .M2 � 1/=M2 D 0.45. In the previous expression M is the
round-trip magnification factor of the resonator and is given by M D R1=jR2j D 1.35, where R1 and R2

are the radii of the two mirrors (R2 < 0, since mirror 2 is a concave mirror). A comparison of Eq. (7.3.17)
with Eq. (7.3.9), using �2 D � ln.1 � T2/ Š 0.6, then yields AbIs D 22.3 kW. The beam diameter in
the laser cavity is (see also Fig. 5.18b) D D 2Ma2 D 7.6 cm, where 2a2 D 5.7 cm is the diameter of the
output coupling mirror (see Fig. 7.7). One thus gets Ab D 
 D2=4 Š 45 cm2 and hence Is Š 500 W=cm2.
This value is in agreement with the best theoretical estimates of the saturation intensity for a CO2 laser of
this kind..11/

From the data of Fig. 7.8 we can now go on to evaluate the unsaturated (i.e. when laser action is
prevented) gain coefficient g expected for the laser medium at an input power P Š 140 kW. In fact
we have

g D N2 � D Pp

Pth
N20 � D Pp

Pth

�

l
(7.3.18)

where N2 and N20 are the, unsaturated, upper state populations at Pp D 140 kW and Pp D Pth, respectively.
Note that the expression Eq. (7.3.4) has been used for N20 so that the saturated gain coefficient, g0 D N20� ,
turns out to be simply given by g0 D �=l. To calculate either g or g0, we thus need to know the single-pass
cavity loss � . So, we assume mirror absorption and scattering losses of 2%. In fact, for this high power
laser oscillating at the 10.6�m wavelength, polished, water cooled Copper mirrors are used, which have
substantially higher losses than multilayer dielectric mirrors. We then have �i Š 0.02 and, since �1 D 0 and
�2 D 0.6, we obtain � Š 0.32. Substitution of this last value into Eq. (7.3.18) gives g D 6.3 � 10�3 cm�1.
The unsaturated gain coefficient can easily be obtained experimentally by measuring the gain coefficient
of the laser medium with both mirrors removed. The measured values of gain coefficient, for this type of
laser, are in fairly good agreement with the values calculated here..12/

We now compare the experimental value of slope efficiency of Fig. 7.8 with the theoretical predic-
tions. We will assume �p Š 0.8 (see Fig. 6.28), �c D �2=2� D 0.94, �t Š 1 and �q D h�=h�mp D 0.4
(see the CO2 laser energy levels in Chap. 10). From Eq. (7.3.14) we then obtain �s D 0.3, which is
appreciably higher than the experimental value obtained from Fig. 7.8 .�s Š 0.21/. This discrepancy can
be attributed to at least two separate causes: (1) The transverse utilization factor �t may be appreciably
smaller than 1. Perhaps by coincidence, if we were using the same value of �t found in the previous
problem, �t D 0.73, the theoretical result would be in almost exact agreement with the experimental
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one. (2) The data of Fig. 7.7 refer to a partially closed-cycle system and, in this case, the products of
the electric discharge (mostly CO and O2) are likely to accumulate in the gas mixture, thus reducing the
pumping efficiency below the theoretical value of 80%. Actually, it is a matter of fact that slope efficien-
cies larger than � 20% are seldom found in practice for any CO2 laser. The discussion presented above
thus helps ones understanding of how the slope efficiency is further reduced from the already reduced
value established by the quantum efficiency .�q D 40%/.

FIG. 7.6. Threshold pump power as a function of mirror reflectivity (after Koechner,.8/ by permission).

FIG. 7.7. Possible cavity configuration for a powerful cw CO2 laser.

7.3.2. Space-Dependent Model

We shall consider now the case where the mode distribution and the pump rate are
spatially dependent. In this case the inversion will also be spatially dependent and the rate
equation treatment becomes more complicated. We will therefore limit ourselves, here, to
a discussion of the most relevant results and refer to Appendix E for a detailed treatment.
We assume a cylindrical symmetry and let u be the field amplitude of the given mode,
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FIG. 7.8. Output power, P, versus electrical discharge power, Pp, for a powerful cw CO2 laser.

normalized to its peak value. For simplicity, we will take u to be independent of the lon-
gitudinal coordinate, z, along the resonator while we will generally take the pump rate to be
dependent on both radial and longitudinal coordinates, i.e. Rp D Rp.r, z/.

As far as the threshold conditions are concerned, it will be shown in the Appendix E that
Eq. (7.3.2) still holds for the average value of N i.e.,

<N>c D .�=� l/ (7.3.19)

where the average is taken over the squared amplitude of the field distribution, viz [see also
Eq. (6.3.17)]

<N> D
0
@Z

a

Njuj2dV

1
A =

Z
a

juj2dV (7.3.20)

and the integrals are taken over the volume of the active medium. At each point of the active
medium, below or at threshold, an equilibrium must exist between the number of atoms
raised by the pumping process and those decaying spontaneously i.e. Rp.r, z/ D N.r, z/=� .
At threshold, we then have

<Rp>c D <N>c

�
D �

� l�
(7.3.21)

where<Rp> is the average of Rp.r, z/ over the squared amplitude of the field distribution [see
Eq. (6.3.8)] and where Eq. (7.3.19) has been used.

Above threshold, from the condition d�=dt D 0, one now finds that the average gain
must equal total losses i.e.

� l<N>0 D � D � l<N>c (7.3.22)
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Thus, according to this last equation, it is the average value of the inversion, <N>0, which
gets clamped at its threshold value when threshold is exceeded (see Fig. 7.3).

To calculate the threshold pump power, Pth, and the output power, Pout, we need to
specify the spatial variation of both juj2 and Rp. We will assume oscillation on a TEM00 mode
and take

juj2 D exp
�� 
2r2 =w2

0

�	
(7.3.23)

This means that: (i) The spot size is assumed to be independent of z and equal to the spot size,
w0, at the beam waist. (ii) The standing wave pattern of the mode is neglected [see, for compar-
ison, Eq. (6.3.9)]. Regarding Rp.r, z/, we will consider two separate cases: (i) Uniform pump-
ing, i.e. Rp D cons. (ii) Gaussian pump distribution, as appropriate for longitudinal pumping,
e.g., by diode-lasers. In this case we will take Rp.r, z/ D C exp

�
-2


r2=w2

p

�	
exp -.˛z/, where

C is a constant proportional to the total input pump power [see Eq. (6.3.7)].
Let us first consider uniform pumping as it may be provided either by electrical or lamp-

pumping. Then, from either Eq. (6.2.6) or (6.4.26) we obtain

Rp D �p
Pp


 a2l h�mp
(7.3.24)

where a cylindrical medium of radius a has been considered. We will now consider the cladded
rod geometry (see Sect. 6.3.3), where the active species is assumed to be confined to the cen-
tral region of the rod, 0 	 r 	 a, while the rod is undoped for r > a. In this case we don’t have
to be concerned with the effects of beam truncation due to the finite aperture of the medium.
Thus Eq. (7.3.23) can be taken to hold for 0 	 r 	 1 while one has Rp D cons. for 0 	 r 	 a
and Rp D 0 for r > 0. One can now substitute Eq. (7.3.24) into Eq. (7.3.21) and then use
Eq. (7.3.23) to calculate the average value of Rp. One obtains, in this way, an expression for
Pth, which is the same as that in (6.3.22) provided one replaces �pl there by �p. The calcula-
tion of the output power then proceeds as discussed in Appendix E and we limit ourselves to
quoting and discussing the final result. So, we define a normalized pump power, x, as

x D Pp=Pmth (7.3.25)

where Pmth is the minimum threshold which occurs when w0 � a and, according to (6.3.22),
is given by

Pmth D
�
�

�p

� �
h�mp

�

� �

a2

�e

�
(7.3.26)

We also define a normalized value of the output power y as

y D Pout=Ps (7.3.27)

where Ps is a saturation power given by

Ps D �2

2


w2
0

2
Is (7.3.28)
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The resulting relation between x and y is then

x D y

ln
�

1Cy
1Cˇy

� (7.3.29)

where
ˇ D exp

�� 
2a2 =w2
0

�	
(7.3.30)

We see that the relation between normalized output power, y, and amount by which thresh-
old is exceeded, x, is a little complicated and quite different from the simple one predicted
by the space-independent rate-equations [see Eq. (7.3.9)]�. For comparison, we have plot-
ted as solid lines in Fig. 7.9 the normalized output power, y, vs the normalized pump
power, x, for w0 � a, w0 D 0.7a, and w0 D p

2a. One can see that, particularly when
w0 � a, the relation between y and x is no longer linear, with the derivative, dy/dx, increas-
ing with x. To understand this behavior it is appropriate to calculate the slope efficiency
�s D dPout=dPp D .Ps=Pmth/.dy=dx/, where Eqs. (7.3.25) and (7.3.27) have been used. With
the help of Eqs. (7.3.26) and (7.3.28) one readily sees that �s can be expressed again as in
Eq. (7.3.14), with �q D h�=h�mp, provided that the transverse efficiency is now defined as

�t D
"


w2

0 = 2
�


a2

dy

dx

#
(7.3.31)

FIG. 7.9. Normalized output power, y, vs normalized pump power, x, for a laser oscillating on a TEM00 mode.
The continuous curves refer to the case of uniform pumping, in a rod of radius a, at several values of the mode spot
size w0. The dashed curve refers to the case of a Gaussian distribution of pump light with a spot size wp such that
w0 D wp.

� If we take Ps D AbIs�2=2 in (7.3.9), this equation simply gives y D .x � 1/, where y and x are again given by
(7.3.27) and (7.3.25).
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FIG. 7.10. Plot of the transverse efficiency, �t , versus normalized pump power, x. The continuous and dashed curves
refer to the case of uniform pumping and Gaussian-beam pumping, respectively.

In the case of transverse pumping by diode lasers and again for uniform pumping, one obtains
the same expression for the slope efficiency with the only difference that now �q D h�=h�p.
Note that when ˇ ! 0 i.e. when w0 � a, one has .dy=dx/ D 2 for y ! 0.x ! 1/, and the
transverse efficiency becomes �t D 



w2
0=
a2

�
. It should also be noted that, since (dy/dx)

increases with x, the transverse efficiency will also increase with x. To understand this point
we will consider, as an example, the case w0 D 0.7a. The plot of �t vs x for this case is shown
as a solid line in Fig. 7.10. One sees that, starting from the value �t Š 0.97.w0=a/2 Š 0.473,
at low powers, �t increases to unity when x � 1. The increase of transverse efficiency, �t,
with increase in the factor, x, by which threshold is exceeded can be understood by noting
that the energy of an excited atom may be removed either by a stimulated emission process or
by a spontaneous decay. Thus, at low powers i.e., for x ! 1, stimulated emission will prevail
near the beam axis where beam intensity is high while spontaneous decay will prevail in the
wings of the beam. For larger values of x, on the other hand, i.e., with increased beam power,
stimulated emission dominates spontaneous decay over a larger portion of the pump profile
and hence for a larger fraction of the atoms. Ultimately, at very large powers, all excited atoms
decay by stimulated emission, so one has �t D 1, and the whole of the pump profile is utilized
by the laser beam..6/

For diode pumping, one can generally reach pump powers well above threshold and it is
instructive to consider the behavior of �t vs .w0 = a/2 for large values of x. The behavior of �t

vs .w0 = a/2 at x D 10 is shown, as an example, in Fig. 7.11a. The figure shows that, to get e.g.
�t > 90%, one needs to have w0 > 0.66a and that, for w0 D 0.7a, one obtains the rather high
value of 94%. However, for the usual case of a medium without cladding, it is generally not
beneficial to increase the spot size even further since this would lead to excessive diffraction
losses arising from the rod aperture.

For a Gaussian distribution of the pump beam, the calculation, also presented in
Appendix E, proceeds in a similar way. We again define a normalized output power, y, as
in Eq. (7.3.27), where Ps is again given by Eq. (7.3.28), and a normalized pump power, x, as
in Eq. (7.3.25) where now Pmth is the minimum threshold for Gaussian-beam pumping and is
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FIG. 7.11. (a) Plot of the transverse efficiency, �t, versus .w0=a/2, at a normalized pump power x D 10, in the case
of uniform pumping (w0 is the mode spot-size and a is the rod radius). (b) Plot of the transverse efficiency, �t, versus
.w0=wp/

2, at a normalized pump power x D 10, in the case of Gaussian-beam pumping (w0 is the mode spot-size and
wp is the spot-size of the pump distribution). The closed circles refer to a four-level laser while the closed triangles
refer to a quasi-three-level laser with B D �aNtl=� D 1.

obtained from Eq. (6.3.20) when w0 � wp. We get

Pmth D
�
�

�p

� �
h�p

�

�  

w2

p

2�e

!
(7.3.32)

The relation between y and x then turns out to be given by the following expression

1

x
D

1Z
0

tı dt

1 C yt
(7.3.33)

where ı D .w0=wp/
2. This equation, while differing in notation, agrees with that originally

given by Moulton..13/ For w0 � wp, one has ı ! 0 and Eq. (7.3.33) gives the same result as
that obtainable from Eq. (7.3.29) when w0 � a.ˇ ! 0/. Thus the plot of y vs x for this case is
the same as that for uniform pumping (see Fig. 7.9). For very small values of spot size, in fact,
the beam sees no distinction between uniform or Gaussian pump distributions. For w0 D wp,
one has ı D 1 and the integration of Eq. (7.3.33) gives

x D yh
1 � ln.1Cy/

y

i (7.3.34)

This expression is also plotted in Fig. 7.9 as a dashed line. We again can calculate the slope
efficiency as �s D dPout=dPp D .Ps=Pmth/.dy=dx/ and we again find that �s can be expressed
as in Eq. (7.3.14) where, as for transverse diode pumping �q D h�=h�p, and where now

�t D 
w2
0


w2
p

dy

dx
(7.3.35)
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The behavior of �t vs x for w0 D wp, as calculated by Eq. (7.3.34), is also plotted in
Fig. 7.10 as a dashed line. The increase of �t with x has the same physical explanation as
for uniform pumping. Note also that, for sufficiently high values of x.x > 7/, the transverse
efficiency for the two cases is about the same. The behavior of �t vs



w0=wp

�2
, for x D 10,

is then shown in Fig. 7.11b. The four data points, indicated by solid dots, have been obtained
from ref..13/ and the continuous line represents a suitable interpolation of these points. Com-
parison of Fig. 7.11b with 7.11a shows that the increase of �t with .w0=wp/

2 is now slower
than for uniform pumping. This is due to the lower pump rate available in the wings of a Gaus-
sian function compared to a uniform distribution. Note also that, to reach the relatively high
value of e.g. 94%, one must now have w0 Š wp. It is then less advantageous to increase the
laser spot size beyond this point because, while �t could increase by only a very small further
amount, the threshold pump power Pth, being proportional to



w2

0 C w2
p

�
[see Eq. (6.3.20)],

would increase significantly. Thus, at large values of x, the condition w0 D wp, sometimes
also called the mode-matching condition, may be taken as more or less the optimum situation.
The dashed line in Fig. 7.9 then gives the output power, at a given pump power, for this case.
It is perhaps worth to noticing that, by comparing this curve with that shown in the same
figure for w0 D 0.7a, one may get the mistaken impression that, for a given value of x and
for the same spot size w0, the output power available with Gaussian-beam pumping is smaller
than that with uniform pumping. The two cases of Gaussian and uniform pumping should be
compared, however, not only with the same beam spot size but also with the same pumped
area i.e., with




w2

p=2
� D 
a2. If we now consider, for Gaussian-beam pumping, the case

w0 D wp and if we further assume equal values of mode spot-size for the two cases, one then
has




w2

0=2
� D 
a2. It follows that, for uniform pumping, the curve to be considered for

the comparison is that for which w0 D p
2a. This curve is also shown in Fig. 7.9 and one

sees that the dashed (Gaussian pumping) and continuous (uniform pumping) curves are now
almost coincident. Note that the curve w0 D p

2a is only shown for the sake of compari-
son because, for an actual active medium without any cladding, this situation would produce
excessive diffraction losses due to the aperture of the active medium.

So far, the standing wave character of a mode has been neglected i.e., juj2 has been writ-
ten as in Eq. (7.3.23) rather than as in (6.3.9). This would be correct for a unidirectional ring
resonator (see Fig. 5.4a) while, for most other cases e.g., using a two-mirror resonator, a well
defined standing wave pattern is formed when the laser is oscillating on a single longitudinal
mode�. The effect on the output power of a standing wave pattern, for a mode with uniform
profile, has been considered by Casperson..6/ As far as the slope efficiency is concerned, the
results obtained can be represented in terms of a fifth efficiency factor, to be introduced in the
right hand side of Eq. (7.3.14), which one can refer to as the longitudinal utilization factor of
the pump distribution, �l, or longitudinal efficiency. The value of �l is �l D .2=3/ D 0.666
at threshold and it increases to e.g. �l D .8=9/ D 0.89 when ten times above threshold. The
physical origin of �l is similar to that discussed for �t, namely that, at threshold, only atoms
around the peaks of the standing wave decay predominantly by stimulated emission, while,
for atoms near the zeros of the pattern, spontaneous decay prevails. At increasing values of

� A notable exception occurs for the twisted-mode technique,.14/ where the two oppositely traveling beams in the
active medium consist of a right and left circularly polarized waves, respectively, and no standing wave pattern is
thus produced.
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x i.e., at increasing energy densities, more atoms around the field nodes will then undergo
stimulated rather than spontaneous decay and the longitudinal efficiency therefore increases.

As a conclusion to this section we can say that, when space dependence is taken into
account, the problem becomes somewhat more complicated. The expressions for threshold
inversion and threshold pump rate, however, remain identical to those obtained in a space-
independent treatment provided that appropriate average values <N>c and <Rp>c are used.
Note that, as shown in Sect. 6.3.3, this result also holds when the standing wave pattern of the
mode is taken into account. The expression for the output power as a function of the amount
by which threshold is exceeded, becomes more complicated. In terms of slope efficiency, how-
ever, the results are very simple and suggestive and can be directly related to those obtained
for the space-independent case.

Example 7.4. Threshold and Output Powers in a Longitudinally Diode-Pumped Nd:YAG Laser As a
representative example of longitudinal diode pumping we will consider the laser configuration of Fig. 7.12
where a 1 cm long Nd:YAG rod is pumped by a 100�m wide laser array at 805–808 nm wavelength..15/

The coupling optics consists of a 6.5 mm focal length, 0.615 N.A., collecting lens, a�4 anamorphic prism
pair, and a 25 mm lens to focus the pump light into the rod (see Fig. 6.12). The Nd:YAG resonant cavity is
formed by a plane mirror directly coated on one face of the rod and a 10 cm-radius, 95% reflecting, mirror
spaced by approximately 5.5 cm from the plane mirror. About 93% of the pump power is transmitted into
the rod through the plane mirror. In this geometry, the TEM00 mode waist occurs at the planar reflector
and its spot size can be calculated to be w0 Š 130�m (thermally induced lensing in the rod is neglected).
The spot size of the pump beam provides good mode matching with this TEM00 laser mode. The laser
operating characteristics are indicated in Fig. 7.13. The threshold pump power is Pth Š 75 mW and, at an
optical pump power of Pp D 1.14 W, an output power of Pout D 370 mW is obtained. At this output power,
the measured optical to optical slope efficiency is �s Š 40%.

To compare the threshold pump power with the expected value, we assume that the transverse pump
beam distribution can be approximated by a Gaussian function and take wp Š w0 D 130�m. From
(6.3.20), with h�p D 2.45�10�19 J, �e D 2.8�10�19 cm2 and � D 230�s, we obtain .�=�p/ Š 3.7�10�2.
For a 5% transmission of the output mirror we have �2 Š 5 �10�2 and, assuming an internal loss per pass
�i D 0.5 � 10�2, we obtain � D �i C .�2=2/D 3 � 10�2. From the previously obtained value of �=�p we
then get �p Š 81%, which includes the overall transmission of the coupling optics and the transmission
of the plane mirror at the pump wavelength. Note that the absorption efficiency of the pump radiation
in the laser rod, �a D Œ1- exp -.˛l/� in a single pass, can be taken to be unity for an average absorption
coefficient of � 6 cm�1 in the 805–808 nm band (see Fig. 6.8a) and for a rod length of l D 1 cm. We
can now compare the measured slope efficiency with the expected value. Since the threshold power for
w0 Š wp is 75 mW, the minimum threshold power, which occurs when w0 ! 0, is expected to be
half this value i.e. Pmth Š 38 mW. Thus, at 1.14 W input pump power one has x Š 30. At this value
of x, from Eq. (7.3.34) one obtains y D 26 and, from Eq. (7.3.35), one gets �t Š 0.97. We then have
�c D .�2=�/D 0.83 and �q D .807=1060/D0.76. The expected overall optical to optical slope efficiency
is thus �s D �p�c�t�q D 0.49 in fair agreement with the measured one. Note that the longitudinal effi-
ciency has not been taken into account because the laser is oscillating on many longitudinal modes whose
different standing wave patterns add to produce a fairly uniform energy density distribution along the
laser rod. According to Eqs. (7.3.27) and (7.3.28) the expected output power at 1.14 W input power is
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Pout D yPs D 500 mW, i.e., somewhat larger than the experimental one. Some of the discrepancy can per-
haps be attributed to thermal effects in the laser rod, which, at the highest pump powers, increase the
losses and decrease the spot size w0.

It should be noted that the quoted 40% efficiency refers to the optical-to-optical efficiency. To obtain
the overall electrical-to-optical slope efficiency we need to multiply the optical efficiency by the radiative
efficiency, �r, of the array. Again from Fig. 7.13 one obtains �r Š 29% so that the overall electrical to
optical slope efficiency is about 11.6%.

FIG. 7.12. Schematic illustration of the experimental set-up of a Nd:YAG laser, longitudinally pumped by a diode
array (after ref.,.15/ by permission).

FIG. 7.13. Output power vs diode current for the Nd:YAG laser of Fig. 7.12. In the same figure the output power vs
current of the laser diode array is also shown (after ref.,.15/ by permission).
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7.4. THRESHOLD CONDITION AND OUTPUT POWER:
QUASI-THREE-LEVEL LASER

We shall now investigate the threshold condition and output power for a quasi-three-level
laser. The laser behavior will first be considered within the space-independent rate-equation
model of Sect. 7.2.2. The results predicted from the space-dependent model will then be
discussed and a comparison made between the two models.

7.4.1. Space-Independent Model

The analysis for a quasi-three-level laser proceeds in a similar way to that for a four-level
case, starting now from Eqs. (7.2.24).

The threshold inversion is obtained by putting .d�=dt/ D 0 in Eq. (7.2.24b), thus giving

Nc D V

Va�ec�c
D �

�el
(7.4.1)

i.e., the same expression as for a four-level laser. The critical pump rate is then obtained from
Eq. (7.2.24a) by setting .dN=dt/ D 0, � D 0, and N D Nc. We obtain

Rcp D fNt C Nc

.1 C f / �
(7.4.2)

Since in most cases one has f � 1, one can write .1Cf / Š 1 in the denominator of Eq. (7.4.2).
Comparison of Eq. (7.4.2) with Eq. (7.3.3) then shows that the critical pump rate for a quasi-
three-level is increased over that for a four-level laser by the presence of the additional term
fNt in the numerator of Eq. (7.4.2). In typical situations, this term may perhaps be � 5 times
larger than Nc. For the case of uniform pumping by a diode laser, according to the discussion
in Sect. 6.3.3, we can write Rp D �pPp=h�pAl where A is the cross sectional area of the active
medium and l its length. Using this expression in Eq. (7.4.2) we obtain the threshold pump
power as

Pth D h�p

�p�

.f Nt C Nc/Al

.1 C f /
(7.4.3)

With the help of Eqs. (7.2.22) and (7.4.1), one can put Eq. (7.4.3) in the more suggestive form
[compare with Eq. (7.3.12)]

Pth D �.1 C B/

�p

�
h�p

�

� �
A

�e C �a

�
(7.4.4)

where we have set

B D �aNtl=� (7.4.5)

Above threshold, the c.w. inversion, N0, and the cw photon number, �0, are obtained from
Eq. (7.2.24) by letting .dN=dt/ D .d�=dt/ D 0. Just as for the four-level laser, N0 is again
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seen to be equal to Nc while �0, as obtained from Eq. (7.2.24a) with the help of Eq. (7.4.2), is
given by

�0 D V

N0.�e C �a/c

f Nt C N0

�
.x � 1/ (7.4.6)

where x D Rp=Rcp D Pp=Pth and again represents the amount by which threshold is exceeded.
Equation (7.4.6), using Eq. (7.4.1) for N0 and with the help of Eqs. (7.2.14), (7.2.15)
and (7.2.22), transforms to

�0 D
�

Ab�.1 C B/

�e C �a

� ��c

�

�
.x � 1/ (7.4.7)

where we have set Va D Abl, Ab being the beam area in the medium, which is assumed to be
smaller than or equal to the cross-sectional area of the active medium.

The output power through e.g. mirror 2, is obtained from Eq. (7.2.18), using Eqs. (7.4.7)
and (7.2.14), as [compare with Eq. (7.3.9)]

Pout D
�

Ab.1 C B/

�e C �a

� �
h�

�
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� � Pp

Pth
� 1
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(7.4.8)

The laser slope efficiency, �s D .dPout=dPp/, is then readily obtained from Eq. (7.4.8) as
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�
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With the help of Eqs. (7.4.4), (7.4.9) gives

�s D �p
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Thus, given the same parameters, the slope efficiency of a quasi-three-level laser is predicted
to be the same as that of a four level laser. At first sight this result might seem unexpected
owing to the increased loss, in a quasi-three-level laser, arising from ground state absorption.
However, the energy removed via ground-state absorption actually raises atoms to the upper
laser level and these atoms are then available for producing stimulated emission.

7.4.2. Space-Dependent Model.16,17/

We now consider the case where the mode distribution and pump rate are assumed to be
spatially dependent. We limit ourselves to a discussion of the most relevant results correspond-
ing to the active medium being longitudinally pumped by a beam with Gaussian transverse
profile. We again refer to Appendix E for a more detailed treatment of this case as well as of
the case of uniform pumping. We assume that the field intensity profile is again described by
Eq. (7.3.23) and the spatial distribution of the pump rate by (6.3.7) which is repeated here for
convenience

Rp.r, z/ D �r�t

�
Pp

h�p

�  
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!#
exp .�˛ z/ (7.4.11)
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As far as the threshold condition is concerned, one again finds that Eq. (7.4.1) still holds for
the average value of N i.e.,

<N>c D .�=�el/ (7.4.12)

where the average value is calculated according to Eq. (7.3.20). To obtain the threshold
pump rate we notice that, at each point of the active medium, below or at threshold, an
equilibrium must exist between the number of atoms raised by the pumping process and
the number of atoms decaying spontaneously. Thus, from Eq. (7.2.24a), we obtain Rp D
ŒfNt C N.r, z/�=.1 C f /� . Upon averaging this expression over the mode intensity distribution
and using the expression for threshold inversion given by Eq. (7.4.12) we obtain

<Rp>c D �aNtl C �

.�e C �a/l�
(7.4.13)

If the pump rate expression Eq. (7.4.11) is substituted into the left hand side of Eq. (7.4.13)
and if the average of Rp over the field intensity profile is calculated, we end up with the
threshold pump power expression of given by Eq. (6.3.25) which is repeated here in a slightly
different form [compare with Eq. (7.4.4)]

Pth D �.1 C B/
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(7.4.14)

where B is again given by Eq. (7.4.5).
Above threshold, using the condition .d�=dt/ D 0, one again finds that the average gain

must equal losses, thus giving

<N>0 D<N>c D �=�el (7.4.15)

The calculation of output power is considered in some detail in Appendix E and we limit
ourselves here to quoting and discussing the final result. First, we define x as the factor by
which threshold is exceeded as in Eq. (7.3.25) and a minimum threshold power Pmth as the
threshold value which holds for w0 � wp and B � 1 Œ�aNtl � ��. From Eq. (7.4.14) we get
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We also define a normalized output power as in Eq. (7.3.27) where now

Ps D �2
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The relation between y and x then turns out to be

x D
1 C B ln.1Cy/

yR 1
0

t˛dt
1Cyt

(7.4.18)
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where ˛ D .w0 =wp/
2. Note that Eq. (7.4.18) reduces to Eq. (7.3.33) when B ) 0 Œ�aNtl � ��

i.e., for negligible absorption arising from the lower laser level. Apart from the difference in
notations, Eq. (7.4.18) is the same as Eq. (25) of ref..16/

We can again calculate the slope efficiency as �s D .dPout=dPp/ D .Ps=Pmth/.dy=dx/.
With the help of Eqs. (7.4.16) and (7.4.17) we obtain

�s D �p

�
�2

2�

� �
h�

h�p

�  

w2

0


w2
p

dy

dx

!
(7.4.19)

i.e. the same expression as for a 4-level laser. The behavior of the transverse efficiency,
�t D 



w2
0 = 
w2

p

�
.dy = dx/, for x D 10 and B D 1 is also shown in Fig. 7.11b. The three

data points indicated by closed triangles have been obtained from the computed results of
ref..16/ while the dashed line is a suitable interpolation. Note that, when .w0 =wp/

2 � 1, the
value of �t tends to coincide with the corresponding value for a four-level laser. In this case,
in fact, the population raised to the upper laser level via ground state absorption is mostly
useful for a stimulated emission process and ground state absorption does not degrade the
laser efficiency. At higher values of .w0 =wp/

2, however, e.g. .w0 =wp/
2 D 1, ground state

absorption in the wings of the inversion profile leads predominantly to spontaneous rather
than stimulated decay. Accordingly, the value of �t becomes smaller than the correspond-
ing value for a four level laser. It can be shown, however, that, on further increasing the
pump power, i.e., the value of x, �t tends to equality with the corresponding value for a four-
level laser. At sufficiently high values of x, in fact, the normalized output power y becomes
large enough that BŒln.1 C y/�=y � 1. Under this condition Eq. (7.4.18) becomes identical to
Eq. (7.3.33).

Example 7.5. Threshold and Output Powers in a Longitudinally Pumped Yb:YAG Laser As a represen-
tative example we will consider a l D 2.5 mm thick 6.5 atomic % Yb:YAG laser disc longitudinally
pumped, at �p D 941 nm, by a Ti3C:Al2O3 laser..18/ One face of the disc is plane and coated for high
reflectivity at the laser wavelength .� D 1.03�m/. The other face is concave with a 1 cm radius of curva-
ture and coated to give a power reflectivity, R2 D 90%, at the laser wavelength. Under these conditions,
the calculated spot size at the beam waist, i.e., at the plane mirror, is w0 D 28�m and the spot size
can be taken as approximately constant along the resonator. The measured pump spot size in the laser
disc is wp D 31�m. The measured values of output power vs absorbed pump power, at T D 300 K,
are indicated by triangles in Fig. 7.14. To compare these results with theoretical predictions we note
that the total Yb concentration is Nt Š 9 � 1020 cm�3 and that, from the measured absorption coeffi-
cient at � D 1.03�m [Fig. 6.8b], one gets �a Š 1.2 � 10�21 cm2. The effective value of the stimulated
emission cross section is then evaluated in ref..18/ to be �e Š 18 � 10�21 cm2. Assuming that there are
no other losses except the output coupling loss, we get � D �2=2 Š .1 � R2/=2 D 5 � 10�2. From
Eq. (7.4.14) we then obtain Pth Š 83 mW to be compared with the experimental value of 70 mW in
Fig. 7.14. We now calculate the predicted slope efficiency at the maximum pump power of 180 mW. We
first note that one has � D �2=2 and that, since the data in Fig. 7.14 are expresses with respect to absorbed
pump power, we must set �p D 1 in Eq. (7.4.19). The expression for the slope efficiency then reduces
to �s D .h�=h�p/ � 


w2
0dy=w2

pdx
�
. To calculate the transverse efficiency �t D 


w2
0dy=w2

pdx
�
, we first

observe that, according to Eq. (7.4.16), one has Pmth D 6.5 mW so that, at Pp D 180 mW, one gets x D
.Pp=Pmth/ D 27.7. The transverse efficiency can then be estimated from Fig. 4e of ref..18/ by taking into
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account that �t D dS=dF, B D �aNtl=� Š 5, a D wp=w0 Š 1.1, .F=Fth/ D xa2=.1Ca2/.1CB/ Š 2.16,
where the quantities S, F, and Fth are defined in the cited reference. We obtain �t D dS=dF Š 70% so
that �s D .h�=h�p/�t Š 63%. A more exact calculation of the output power vs pump power, as obtained
directly from Eq. (7.4.18), is also plotted as a solid line in Fig. 7.14. From this calculation one gets a
more exact value of the predicted slope efficiency of �s D 59% at Pp D 180 mW, to be compared with
the value of 56% obtained from the four points in the figure corresponding to the highest experimental
powers.

FIG. 7.14. Plots of the output power vs absorbed pump power for a Ti:sapphire-pumped Yb:YAG laser, for liquid
nitrogen cooled operation (77 K) and at room temperature operation (300 K) (after ref.,.18/ by permission).

7.5. OPTIMUM OUTPUT COUPLING

For a fixed pump rate, there is some value for the transmission, T2, of the output mirror
that maximizes the output power..19/ Physically, the reason for this optimum arises from the
fact that, as T2 is increased, we have the following two contrasting circumstances: (1) The
output power tends to increase due to the increased mirror transmission. (2) The output power
tends to decrease since the increased cavity losses cause the number of cavity photons, �0, to
decrease

To find the optimum output coupling condition, we will limit ourselves to a four-level
laser and consider the space-independent model. The optimum transmission is then obtained
from Eq. (7.3.9) by imposing the condition dPout=d�2 D 0 for a fixed value of pump power
Pp. We must obviously take into account the fact that, according to Eq. (7.3.12), Pth is also a
function of �2. From Eq. (7.3.12) one can then write

Pth D Pmth
�

�i C .�1 = 2/
(7.5.1)

where Pmth, the minimum threshold pump power, is the threshold pump power for zero output
coupling, �2 D 0. Equation (7.3.9) can then be transformed to

Pout D
h
AbIs

�
�i C �1

2

�i
S

�
xm

S C 1
� 1

�
(7.5.2)
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where

S D .�2 = 2/

�i C .�1 = 2/
(7.5.3)

and

xm D Pp=Pmth (7.5.4)

The only term in Eq. (7.5.2) that depends on �2 is the quantity S, which, according to
Eq. (7.5.3), is proportional to �2. The optimum coupling condition can then be obtained by
setting dPout=dS D 0 and the optimum value of S is readily obtained as

Sop D .xm/
1=2 � 1 (7.5.5)

The corresponding expression for the output power is obtained from Eq. (7.5.2) as

Pop D
h
AbIs

�
�i C �1

2

�i h
.xm/

1=2 � 1
i2

(7.5.6)

The reduction in output power as a result of non-optimum operating conditions becomes par-
ticularly important when working very close to threshold (i.e., when xm Š 1). Well above
threshold, however, the output power becomes rather insensitive to a change of output power
around the optimum value. As an example, Fig. 7.15 shows a normalized plot of Pout vs S,
for xm D 10. According to Eq. (7.5.2), one has Pout D 0 for S D 0 (i.e., �2 D 0) and S D 9,
while, according to Eq. (7.5.5) one gets Sop Š 2.16. From Fig. 7.15 one can now see that
changes of, S, i.e., of the output coupling, around the optimum value by as much as 50% only
result in � 5% reduction of the output power.

In the case of a space-dependent model, similar considerations could be developed
starting from Eq. (7.3.29) (uniform pumping) or from Eq. (7.3.34) (Gaussian pumping). How-
ever, at pump powers well above threshold, the relation between output power and pump

FIG. 7.15. Plot of the normalized output power, Pout, vs normalized transmission of the output mirror, �2, for a
pump power, Pp, ten times larger than the minimum threshold pump power, Pmth.
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power tends to become linear (see Fig. 7.9), as predicted by Eq. (7.3.9). Upon also taking
into account the relative insensitivity of Pout to variation around the optimum output coupling,
one can then make the approximation of using the optimum coupling expression given by
Eq. (7.5.5) for this case also, where Pmth is obtained from Eq. (7.3.26) (uniform pumping) or
Eq. (7.3.32) (Gaussian pumping) by letting � D �i C .�1=2/.

Example 7.6. Optimum output coupling for a lamp-pumped Nd:YAG laser We consider the laser con-
figuration discussed in example 7.2 (see Fig. 7.4 and 7.5) and calculate the optimum transmission of
the output mirror when the laser is pumped by a lamp input power of Pp D 7 kW. Since the threshold
power, Pth, in Fig. 7.5 was measured to be 2.2 kW, then, according to Eq. (7.5.1) with �1 D 0, we obtain
Pmth D Pth.�i=�/ Š 697 W, where the values �i D 0.038 and � D 0.12, as obtained in example 7.2, have
been used for the internal loss and the total loss, respectively. We then obtain xm D Pp=Pmth Š 10 so that,
from Eq. (7.5.5), we find Sop Š 2.17. From Eq. (7.5.3) we finally get .γ2/op Š 0.165, which corresponds
to an optimum transmission of .T2/op D 1 � exp

��.γ2/op
	 Š 15% i.e., agreeing with the value actually

used in Fig. 7.4.

7.6. LASER TUNING

The gain linewidth of some lasers (e.g., dye lasers or vibronic solid-state lasers) is very
wide and for various applications one has a requirement of tuning the laser output wavelength
away from line center and across the entire available linewidth. In other cases, lasers may
exhibit gain on more than one transition (e.g., CO2 laser or Ar laser), the strongest of which
would usually oscillate, whereas one may need to tune the laser wavelength away from the
strongest line. In both the above circumstances one usually employs of a wavelength selective
element within the laser cavity.

In the middle infrared, such as for the CO2 laser, one generally uses, as one of the cavity
mirrors, a diffraction grating aligned in the so-called Littrow configuration (Fig. 7.16a). In
this configuration, for a given angular setting of the grating there is a particular wavelength
(labeled �1 in the figure) that is reflected exactly back into the resonator and wavelength
tuning is thus achieved by grating rotation.

FIG. 7.16. Laser tuning using the wavelength dispersive behavior of a diffraction grating in the Littrow configuration,
(a), or a prism, (b).
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FIG. 7.17. Use of a birefringent filter as a wavelength-selective element.

In the visible or near IR spectral region, it is more common to use a dispersive prism with
faces close to Brewster’s angle with respect to the laser beam (Fig. 7.16b). Again, for a given
angular setting of the prism, a particular wavelength (labeled �1 in the figure) is reflected from
mirror 2 exactly back into the resonator. Tuning is thus achieved by prism rotation.

A third wavelength-selective element, which is becoming increasingly popular in the
visible or near IR spectral region, makes use of a birefringent filter inserted within the laser
cavity. The filter simply consists of a plate of a suitable birefringent crystal (e.g., quartz or
KDP) inclined at Brewster’s angle, 
B, to the beam direction (Fig. 7.17). The optical axis,
A, of the crystal is assumed to be in a plane parallel to the surface of the plate. Let us first
suppose that the birefringent plate is placed between two polarizers with parallel orientation.
This orientation is assumed to be such as to transmit the E-field in the plane of incidence
of the plate. Then, the input beam will not suffer any reflection loss upon entering the plate,
since this is inclined at Brewster’s angle. Provided the optic axis is neither perpendicular nor
parallel to the plane of incidence, the input beam will contain both ordinary and extraordinary
components. These components will experience a difference in phase shifts 	� D 2
.ne �
no/Le, where no and ne are the refractive indices for the ordinary and extraordinary beams,
respectively, and Le is the plate thickness along the beam direction within the plate. After
passing through the plates, unless 	� is an integer number of 2
 , the two components will
combine to form a resultant beam with elliptical polarization and the presence of second
polarizer will then lead to loss for this elliptically polarized light. On the other hand, if 	� is
an integral number of 2
 , i.e., if

2


�
.ne � no/Le D 2l
 (7.6.1)

where l is an integer, the beam polarization will remain unchanged after passing through
the plate. For ideal polarizers the beam will then suffer no loss through the entire system of
Fig. 7.17. For a general value of 	� one can then easily calculate the transmission, T, of
the system of Fig. 7.17. Assuming, for simplicity, that the E-field makes an angle of 45ı to
the optical A-axis, one easily obtain T D cos2.	� = 2/. Consecutive transmission maxima
have their values of l differing by unity, and their frequency separation can be found from
Eq. (7.6.1). Assuming that .ne �no/ does not change appreciably over the wavelength range of
interest, one has the result that the frequency difference separating two consecutive maxima,
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Example 7.7. Free spectral range and resolving power
of a birefringent filter Consider a dye laser operating at
the wavelength �D 600 nm in which a birefringent filter
consisting of a L D 1.5 mm thick potassium dihydrogen
phosphate (KDP) crystal is inserted for laser tuning. The
ordinary and extraordinary refractive indices, at the laser
wavelength, are no D 1.47 and ne D 1.51. The Brewster
angle for this plate is 
B Š tan�1 n Š 56.13ı, where n
has been taken as the average of no and ne. The Brew-
ster angle inside the crystal is then given by Snell’s
law as 
 0

B D 33.9ı so that Le D L= cos 
 0
B Š 1.81 mm. If

the orientation of the optic axis A in Fig. 7.17 is near
orthogonal to the beam direction, the refractive index
of the extraordinary beam to be used in Eq. (7.6.2) is
just ne D 1.51, and from Eq. (7.6.2) one gets 	�fsr Š
4.14 � 1012 Hz. The corresponding wavelength interval
between two consecutive peaks is 	�D�.	�fsr=�/ Š
5 nm, where �D c=�D 5�1014 Hz is the frequency of the
radiation. Since the transmission of the birefringent filter
of Fig. 7.17 is equal to T D cos2.	�=2/, one can readily
show that the width of the transmission curve (full width
between half-maximum points) is just equal to 	�=2 i.e.
it is equal to � 2.5 nm.

i.e., the free spectral range,	�fsr, isgiven by

	�fsr D c0

.ne � no/Le
(7.6.2)

Accordingly, the plate thickness, which
usually ranges between 0.3 and 1.5 mm,
determines the width of the tuning curve and
thus the resolving power. The thinner the
plate, the greater the available tuning range
and the lower the resolving power. Tuning of
one transmission peak can then be achieved
upon rotating the plate around the normal
to the surface. By doing so, in fact, one
changes the value of ne, which depends on
the angle between the optical axis and the
electric field vector, and hence changes the
plate birefringence	n D ne�no. Note finally
that, in low gain lasers such as cw gas or dye
lasers, one can dispense with the two polar-
izers if other polarizing element, such as the
active medium or indeed the Brewster’s angle
surfaces of the birefringent plate itself, pro-
vide sufficient loss discrimination between
the two polarizations.

7.7. REASONS FOR MULTIMODE OSCILLATION

Lasers generally tend to oscillate on many modes. The reason for this behavior arises
essentially from the fact that the frequency separation of the modes is usually smaller, and
often very much smaller, than the width of the gain profile. If, for example, we take L D 1 m,
the frequency difference between two consecutive longitudinal modes will be 	� D c=2L D
150 MHz. The laser linewidth, on the other hand, may range from � 1 GHz, for a Doppler
broadened transition of a visible or near IR gas laser, up to 300 GHz or more for a transition
of a crystal ion in a solid state material. The number of modes within the laser linewidth
may thus range from a few to a few thousands and the gain difference between these modes,
particularly when a few thousand modes are considered, becomes very small. At first sight
one would therefore expect a significant fraction of these modes to be excited at a sufficiently
high pump rate.

The above, seemingly straightforward, conclusion needs to be examined more carefully,
however. In fact, in the early days of laser development, it was argued that in principle lasers
should always tend to oscillate on a single mode, provided the gain line was homogeneously
broadened. The argument can be followed with the help of Fig. 7.18, in which the laser
gain profile is plotted vs frequency for increasing values of the pump rate. For simplicity,



288 7 � Continuous Wave Laser Behavior

FIG. 7.18. Frequency dependence of laser gain coefficient versus pump rate, Rp, under saturation condition
(homogeneous line).

FIG. 7.19. Frequency dependence of laser gain coefficient versus pump rate, Rp, under saturation conditions
(inhomogeneous line): frequency hole-burning behavior.

one cavity mode is assumed to be coincident with the peak of the gain curve. It is further
assumed that oscillation occurs on the TEM00 mode, so that the mode frequencies are all
separated by c=2L (see Fig. 5.10). The laser gain coefficient is given by (2.4.35), where,
for a homogeneous line, the cross section is given by (2.4.18). Oscillation will start on the
central mode when the inversion N D N2 � N1, or the average inversion for the space-
dependent model, reaches a critical value Nc giving a gain equal to the cavity losses [see
Eq. (7.3.2), or (7.3.18)]. However, even when Rp is increased above the threshold value,
in the steady state the inversion remains fixed at the critical value Nc. The peak gain, rep-
resented by the length OP in Fig. 7.18, will therefore remain fixed at the value OPc when
Rp 
 Rcp. Since the line is homogeneously broadened, its shape cannot change and the
whole gain curve will remain the same for Rp 
 Rcp, as indicated in Fig. 7.18. The gain
of other modes, represented by the lengths O0P0, O00P00, etc., will always remain smaller
than the value, OPc, for the central mode. If all modes have the same losses, then, in the
steady state, only the central mode should oscillate. The situation is quite different for an
inhomogeneous line (Fig. 7.19). In this case the cross section to be used into (2.4.35) is
given by (2.4.23), i.e., it is given by the superposition of the cross sections for the indi-
vidual atoms, whose transition frequencies are distributed in a given spectrum described by
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the function g� 
�0
0 � �0

�
. Accordingly, it is possible to “burn holes” in the gain curve as

was discussed, for an absorption curve, in Sect. 2.8.3 [see Fig. 2.22]. Therefore, when Rp is
increased above Rcp, the gain of the central mode remain fixed at the critical value OPc, while
the gain of the other modes O0P0, O00P00, etc., can keep on increasing up to the corresponding
threshold value. In this case, if the laser is operating somewhat above threshold, then more
than one mode can be expected to oscillate.

Shortly after the invention of the laser it was actually observed experimentally that mul-
timode oscillation occurred both for inhomogeneous (e.g., gas laser) and homogeneous (e.g.,
ruby laser) lines. This last result appeared to be in conflict with the argument given above.
This inconsistency was later removed.20/ by taking into account the fact that each mode has a
well-defined standing-wave pattern in the active medium. For the sake of simplicity, we will
consider two modes whose standing-wave patterns are shifted by �=4 in the active medium
(Fig. 7.20a)�. We will assume that mode 1 in Fig. 7.20 is the center mode of Fig. 7.18, so
that it is the first to reach threshold. However, when oscillation on mode 1 sets in, the inver-
sion around those points where the electric field is zero (points A, B, etc.) will mostly be left
undepleted and the inversion can continue growing there even when the laser is above thresh-
old. This situation is illustrated in Fig. 7.20b, where the spatial distribution of the population
inversion in the laser medium is indicated�. Accordingly, mode 2, which initially had a lower
gain, will experience a gain growing with pump rate since it uses inversion from those regions
that have not been depleted by mode 1. Therefore, sufficiently far above threshold, mode 2

FIG. 7.20. Explanation of multimode oscillation for a homogeneous line: (a) Standing-wave mode-field configura-
tions, in the medium, for the oscillating mode (continuous line) and for a mode which may oscillate above threshold
(dashed line). (b) Spatial-hole-burning pattern for the population inversion in the laser medium produced by the
oscillating mode.

� We recall that, according to what was discussed in Sect. 5.1, the resonant frequencies can be obtained via the
condition that the cavity length L must be an integral number of half-wavelengths, i.e., L D n.�=2/, where n is
a positive integer. Two consecutive longitudinal modes, having their number n differing by 1, are thus shifted by
.�=2/ upon going from one mirror to the other. If the active medium is just placed at the resonator center, these
two modes have their spatial patterns shifted by just .�=4/ in the medium, corresponding to the two modes of
Fig. 7.20.

� According to the discussion presented in Sections 7.3.2 and 7.4.2, it is the average value, < N >, of the inversion,
as defined by (7.3.20), which, above threshold, remains clamped to the threshold value.
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can also be set into oscillation and this will obviously occur when its gain equals its losses.
Thus, for a homogeneous line, the multimode oscillation is not due to holes burned in the
gain curve (spectral hole burning) but to holes burned in the spatial distribution of inversion
within the active medium (spatial hole burning, Fig. 7.20b). It should also be noticed that the
phenomenon of spatial hole burning does not play any significant role for an inhomogeneous
line, because, in this case, different modes (with large enough frequency separation) interact
with different sets of atoms and the hole-burning pattern of one set of atoms is ineffective for
the other mode.

The conclusion of this section is that a laser always tend to oscillate on many modes.
For a homogeneous line this is due to spatial hole burning while, for an inhomogeneous
line, this is due to spectral hole burning. It should be noted, however, that, in the case of
a homogeneous line, when a few modes are oscillating with frequencies around the center
of the gain line, the spatial variation of inversion will be essentially smeared out due to the
presence of the corresponding, spatially-shifted, standing-wave patterns of these modes. In
this case, the homogeneous character of the line prevents other modes, further away from
the center of the gain line, from oscillating. So, compared with an inhomogeneous line, a
homogeneous line restricts oscillation to a smaller number of modes centered around the peak
of the gain line.

7.8. SINGLE-MODE SELECTION

For either a homogeneous or inhomogeneous line, there are several methods for con-
straining a laser to oscillate on a single transverse and/or longitudinal mode, and these will be
discussed at some length in this section.

7.8.1. Single-Transverse-Mode Selection

In the case of a stable resonator and for not too a large value of laser spot size (e.g.
less then 0.5 mm for a Nd:YAG or less than 1 cm for a CO2 laser), it is relatively easy to
make the laser oscillate on some particular transverse mode, i.e., one with prescribed values
of the transverse mode indexes l and m (see Chap. 5). For most applications, oscillation on a
TEM00 mode is desired and, to achieve this, a diaphragm of suitable aperture size is inserted
at some point on the axis of the resonator. If the radius a of this aperture is sufficiently small,
it will dictate the value of the Fresnel number of the cavity, N D a2=L�. As a is decreased,
the difference in loss between the TEM00 mode and the next higher order modes (TEM01 or
TEM10) will increase, as can be seen by a comparison between Fig. 5.13a and Fig. 5.13b at
the same value of the g parameter. So, by an appropriate choice of the aperture size, one can
enforce oscillation on the TEM00 mode. It should be noted that this mode-selecting scheme
inevitably introduces some loss for the TEM00 mode itself.

For large diameters of the active medium, as discussed in Sect. 5.5.2, it is not possible
to obtain a mode spot size comparable to this diameter without incurring serious problems of
instability in the size of the transverse mode profile. With reference to example 5.9, one can in
fact show that the Fresnel number, N D a2=L� where a in this case would be the radius of the
active medium, should not exceed a value of about 2. For larger values of this radius one then
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need to resort to unstable resonators. In particular, as discussed in Sect. 5.6.2, if the equivalent
Fresnel number is chosen to have a half-integer value, a large loss discrimination will occur
between the lowest-order and the higher-order modes (see Fig. 5.20). In this case, the output
beam is in the form of a ring, a shape which is not always convenient. The best way to obtain
oscillation on the lowest-order mode, for this case, would then be to use an unstable cavity
with a radially variable output coupler of Gaussian or, even better, super-Gaussian profile
(Sect. 5.6.4).

7.8.2. Single-Longitudinal-Mode Selection

Even when a laser is oscillating on a single transverse mode, it can still oscillate on
several longitudinal modes (i.e., modes differing in their value of the longitudinal mode index
n). These modes are separated in frequency by 	� D c=2L. Isolation of a single longitudinal
mode can be achieved, in some cases, by using such a short cavity length that 	� > 	�0=2,
where 	� is the width of the gain curve�. In this case, if a mode is tuned to coincide with the
center of the gain curve, the two adjacent longitudinal modes are far enough away from line
center that, for a laser not too far above threshold, they cannot oscillate. The requirement for
this mode-selecting scheme can then be written as

L 	 c=	 �0 (7.8.1)

So, for example, if the equality applies in Eq. (7.8.1) and if one mode is coincident with
the peak of the gain profile, the two adjacent modes will see an unsaturated gain coefficient
that, both for a Gaussian or Lorentzian line, is half that of the peak gain. In particular, for a
Gaussian line, one can easily understand from Fig. 7.19 that single longitudinal mode opera-
tion is achieved for Rcp 	 Rp 	 2Rcp. It should be noted that, to tune one mode to coincidence
with the line center, one needs to mount one cavity mirror on e.g. a piezo-electric transducer.
Upon applying a voltage to this transducer, one can thereby produce a small controllable
change of the cavity length [one can show that the cavity length needs to be changed by �=2
to shift the comb (Fig. 5.10 with l D m D 0) of the longitudinal modes by one mode spacing].

The method discussed above can be used effectively with a gas laser, notably with a
He-Ne laser, where gain linewidths are relatively small (a few GHz or smaller). For instance,
in the case of a He-Ne laser oscillating on its red transition one has	��

0 Š 1.7 GHz and from
Eq. (7.8.1) we obtain L 	 17.5 cm. For solid-state-lasers, on the other hand, the gain linewidth
is usually much larger (a few hundreds GHz) and, to fulfill Eq. (7.8.1), the equivalent cavity
length must typically be appreciably smaller than 1 mm (microchip-lasers). For lasers with
much larger bandwidths (e.g., dye lasers or tunable solid-state lasers) the cavity length to
fulfill Eq. (7.8.1) becomes too small to be practical. In this case and also when longer lengths
of the active medium are needed (e.g. for high power lasers), longitudinal mode selection can
be achieved by a variety of other techniques which are the subject of next two sections.

� If a tuning element, such as those in Figs. 7.16 and 7.17, is inserted in the laser cavity and if the corresponding
linewidth, ranging in actual cases between 0.1 nm 1 nm, is smaller than that of the gain medium, the linewidth 	�0

to be considered in this section is that of the tuning element rather than that of the active medium. Notably, this
case occurs for dye lasers or for tunable solid-state lasers.
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7.8.2.1. Fabry-Perot Etalons as Mode-Selective Elements

A common way to achieve single-longitudinal-mode oscillation for both homogeneous
or inhomogeneous lines is to insert, within the cavity, one or more Fabry-Perot (FP) etalons.
These consist of a plane-parallel plate of transparent material (fused quartz or glass for visible
or near IR wavelengths) whose two plane surfaces are coated to a suitably high reflectivity
value R.

We first consider the case where a single FP etalon is used, inclined at an angle 
 to the
resonator axis (Fig. 7.21). According to the discussion in Sect. 4.5.1, the transmission maxima
of the etalon will occur at frequencies �n given by

�n D nc0

2nrL0 cos 
 0 (7.8.2)

where n is an integer, 
 0 is the refraction angle of the beam within the etalon, nr is the etalon
refractive index, and L0 is its length. Since L0 is much smaller than the cavity length L, only a
very small tilt of the angle 
 (and hence of 
 0), away from the 
 D 
 0 D 0 position, is needed
to tune a transmission maximum of the etalon to coincide with the mode nearest the peak of
the laser gain profile (Fig. 7.22). If now the frequency separation, 	� D c=2L, between two
adjacent longitudinal modes is 
 	�c=2, where	�c is the linewidth of an etalon transmission
peak, the etalon will select the mode nearest to line center from its neighbors�. According to
(4.5.13), the discrimination between adjacent longitudinal modes requires that

	�c

2
D 	�0

fsr

2F
	 	� (7.8.3)

where 	�0
fsr is the free-spectral range and F is the finesse of the etalon. To ensure single

longitudinal mode operation we also require the etalon free-spectral range 	�0
fsr to be larger

than or equal to half of the gain linewidth 	�0, otherwise the two neighboring transmission
peaks of the etalon will allow the corresponding cavity modes to oscillate. The discrimination
between adjacent transmission maxima of the etalon then requires that

�� 0
fsr 
 	�0=2 (7.8.4)

FIG. 7.21. Configuration for longitudinal mode selection using a transmission Fabry-Perot etalon.

� More precisely, the single-pass etalon transmission losses of the two neighboring modes will, in this case, be �
50%.
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FIG. 7.22. Longitudinal mode selection using a transmission Fabry-Perot etalon.

From Eqs. (7.8.3) and (7.8.4) we then find that .	�0=2/ 	 	�0
fsr 	 2F	�, which requires, as

a necessary condition, that .	�0=2/ 	 2F	� i.e., that

L 	 .c=	�0/2F (7.8.5)

Comparing this equation with Eq. (7.8.1) we can see that, compared to a resonator without
any etalon, the cavity length can now be increased by a factor 2F. Assuming, for example,
F D 30 (there are various factors, such as flatness of the etalon surfaces and beam walk-off in
the etalon, which limit the value of the finesse achievable in this case), one then sees that, the
use of a Fabry-Perot etalon allows a substantial increase in cavity length, while still ensuring
single-longitudinal-mode operation.

If the cavity length does not satisfy condition Eq. (7.8.5), then single-longitudinal-mode
operation cannot be achieved using one FP etalon and two or more etalons are then needed.
In the case of two etalons, the thicker etalon is required to discriminate against adjacent
longitudinal modes of the cavity. Its free spectral range, 	� 0

fsr, must then satisfy condition
Eq. (7.8.3). A second thinner etalon must then discriminate against the adjacent transmission
maxima of the first etalon and, at the same time, its free spectral range, 	�00

fsr, must be larger
than or equal to the half-width of the gain curve (i.e., 	�00

fsr 
 	�0=2). To achieve both these
conditions, it can be shown that the cavity length needs now to satisfy the following relation

L 	 .c=	�0/.2F/2 (7.8.6)

A comparison between Eqs. (7.8.1), (7.8.5), and (7.8.6) then shows that, to achieve single-
longitudinal mode operation without an etalon, with one etalon, or with two etalons the cavity
length must satisfy the respective conditions L 	 c=	�0, c=	�0 	 L 	 .c=	�0/2F, or
.c=	�0/2F 	 L 	 .c=	�0/.2F/2.
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Example 7.8. Single-longitudinal-mode selection in an Ar and a Nd:YAG laser Consider first an Ar laser
oscillating on its � D 514.5 nm line whose gain line-width has been experimentally measured to be
	��

0 D 3.5 GHz. To achieve single longitudinal mode selection without any etalon one would require a
cavity length L 	 c=	��

0 Š 8.6 cm; with one etalon, the cavity length needs to be L 	 .c=	��
0 /.2F/ Š

5.14 m, where a finesse F D 30 has been used. Since the length of an Ar laser is usually smaller than
2 m but larger than a few tens of cm, one FP etalon is required. According to Eq. (7.8.2), for cos 
 0 Š 1
one has 	�0

fsr Š c=2nrL0, and, taking nr D 1.5, we get from Eq. (7.8.3) L0 
 L=2Fnr D 1.66 cm, where
a cavity length of L D 1.5 m has been considered. From Eq. (7.8.4), on the other hand, we obtain L0 	
.c=	��

0 nr/ D 5.71 cm. The thickness of the etalon can then be chosen somewhere between these two
values e.g. L0 D 3.7 cm. Consider now the case of a Nd:YAG laser for which one has 	�0 D 120 GHz
(at T D 300 K). Single-longitudinal-mode oscillation without any etalon requires, in this case, a cavity
length L 	 .c=	�0n/ D 1.4 mm, where the refractive index of YAG is n D 1.82 (the two end mirrors
are assumed, in this case, to be directly coated on the two faces of the YAG plate so that the separation
between two consecutive longitudinal modes is now given by 	� D c=2nL). Indeed, diode pumped
Nd:YAG platelets with thickness of the order of a few hundred micrometers are now commonly used
and even commercially available (microchip lasers). When a single FP etalon is used, then, according to
Eq. (7.8.5) the cavity length can be increased up to L Š 9.5 cm (assuming again F D 30).

7.8.2.2. Single Mode Selection via Unidirectional Ring Resonators

For a homogeneously broadened transition, single-longitudinal mode operation can auto-
matically be achieved, or at least greatly facilitated, if the laser cavity is in the form of a ring
and oscillation is constrained to be unidirectional (see Fig. 5.4a). In this case, in fact, the phe-
nomenon of spatial hole burning within the active medium does not occur and, as discussed
in Sect. 7.7, the laser tends to oscillate on a single mode. Actually, if the transition is only
partly homogeneously broadened and particularly when the gain profile is very broad, some
further bandwidth selecting elements such as birefringent filters and/or Fabry-Perot etalons
may also be needed. An additional advantage of this unidirectional ring configuration is that
higher output power is available since the whole of the active material rather than just those
regions around the maxima of the standing-wave pattern contributes to the laser output.

To achieve unidirectional ring operation, a unidirectional device or optical diode, giving
preferential transmission for one direction of beam propagation, needs to be inserted within
the cavity. In principle the device can be made as shown in Fig. 7.23. Here the wave going
in one direction, e.g., from left to right, passes first through an input polarizer (polarizer 1),
then through a rod of suitable transparent material (e.g., glass) to which a longitudinal dc
magnetic field is applied (Faraday rotator), and then through an output polarizer (polarizer 2)
which has the same orientation as the first polarizer�. When a linearly polarized optical beam
passes through the Faraday rotator with beam axis along the magnetic field direction, the out-
put beam still consists of a linearly polarized wave whose plane of polarization is however
rotated about the beam axis. The sense of rotation, seen by an observer facing the oncoming
beam, depends on the relative direction of magnetic field and beam propagation direction.

� To avoid confusion and have a consistent way of describing the sense of a rotation of polarization, we will always
assume that the observer is facing the oncoming light beam.
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FIG. 7.23. Unidirectional device using a Faraday rotator (optical-diode).

FIG. 7.24. Polarization rotation for a combination of a Faraday-rotator and a �=2 birefringent plate for beam
propagation from left-to right, (a), and from right-to-left, (b).

This means that, if polarization rotation, is seen by an observer facing the incoming beam
to occur e.g. anti-clockwise for left to right propagating beam (Fig. 7.24a), the polarization
rotation will be seen (the observer again facing the oncoming beam) to occur clockwise for
right to left propagating beam (Fig. 7.24b). For this reason, the Faraday rotator is said to rep-
resent a non-reciprocal element. The beam is then passed through a birefringent plate having
a �=2 optical path difference between the two polarizations. The phase shift between the two
polarizations will then be equal to 
 , i.e. 2
.no � ne/l=� D 
 , where l is the plate length,
and, if the polarization of the input beam makes an angle ˛=2 to the extraordinary axis, the
plate will rotate the polarization, clockwise (seen by the observer facing the beam) by an
angle ˛ (Fig. 7.24a). Thus, if the Faraday rotator rotates the polarization, anti-clockwise, by
an angle ˛, the two rotations exactly cancel and no attenuation is suffered by the beam on
passing through the output polarizer (polarizer 2 of Fig. 7.23). In the case of a beam travel-
ing in the opposite direction right to left as in Fig. 7.24b, however, polarization rotation will
again have a clockwise sense on passing through the birefringent plate (Fig. 7.24b), the two
rotations will add to each other and the beam experiences a loss in passing through the sec-
ond polarizer (polarizer 1 in Fig. 7.23). Note that this loss may even reach 100% if the total
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FIG. 7.25. High-power single-longitudinal mode dye laser using a unidirectional ring cavity.

rotation is through an angle of 
=2. For a low gain laser, however, a total rotation of only
about a few degrees typically introduces enough loss discrimination to ensure unidirectional
operation. One should also note that, on passing through the birefringent plate, polarization
rotation sense is clockwise independently of the propagation direction, as can be seen from
Fig. 7.24a and b. The birefringent plate thus represents a reciprocal optical element.

A typical example of a folded ring configuration including a unidirectional device, used
in a commercially available c.w. dye laser, is shown in Fig. 7.25. Pumping is, in this case,
provided by an ion laser and the dye solution is made to flow transversely to the beam in
the form of a liquid jet. Single-transverse mode operation is automatically achieved owing
to the transverse gain distribution arising from the focused pumping. Laser tuning and gain
bandwidth reduction are obtained by the combination of a birefringent filter with two Fabry-
Perot etalons, a thin etalon and a scanning etalon, of different free spectral ranges. The optical
path length of the cavity is conveniently tuned by rotating a tilted, plane-parallel, glass plate
inside the resonator (the galvoplate). Single longitudinal mode operation is then ensured by
an unidirectional device consisting of a Faraday rotator and a birefringent plate. Note that no
polarizers are used because enough polarization loss is provided, in this case, by the faces of
various optical elements inclined at Brewster’s angle.

A more recent and rather interesting example of a unidirectional ring resonator using a
non-planar cavity, used in a commercially available Nd:YAG laser, is shown in Fig 7.26..21/

The resonator is made from a small slab (e.g. 3 �6 �8 mm) of Nd:YAG, whose faces B and D
are cut at such an angle that the beam follows the non-planar path, BCD, shown in the figure,
where point C is on the upper surface of the slab. Permanent magnets provide a magnetic field
in the direction shown in the figure. The beam undergoes total internal reflection at surfaces
B, C and D, and is reflected at surface A by a multilayer dielectric coating that acts as the
output coupler. The Nd:YAG slab provides both the active material and Faraday rotator and is
longitudinally pumped by the beam from a semiconductor laser (not shown in the figure). The
non-planarity of the laser path creates an effect that is analogous to rotation by a half-wave
plate. Assume that the planes of incidence at the corner faces B (plane ABC) and D (plane
CDA) are at an angle ˇ to the plane of incidence at the front face A (plane DAB). Assume also
that the plane of incidence at the top face C (plane BCD) is perpendicular to those at the corner
faces. The rotations of the planes of incidence then result in a net polarization-rotation, and
image-rotation of 2ˇ after the three reflections at points B, C, and D. Finally, the polarization
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FIG. 7.26. Single-longitudinal-mode Nd:YAG laser using a unidirectional and non-planar ring cavity (non-planar
ring oscillator, NPRO, after Kane and Byer,.21/ by permission).

selective element is simply the multilayer dielectric coating at surface A, whose reflectivity
depends on beam polarization. Since the homogeneously broadened linewidth of Nd:YAG is
much smaller than that of a dye laser and since the frequency separation between longitudinal
modes in Fig. 7.26, owing to the small cavity dimensions, is much larger than that of Fig. 7.25,
no further frequency selective elements (such as birefringent filters or Fabry-Perot etalons)
are needed in this case. Single-transverse-mode operation is again automatically achieved
owing to the transverse gain distribution arising from the focused pumping. A compact and
monolithic single-mode device is thus achieved.

7.9. FREQUENCY-PULLING AND LIMIT TO MONOCHROMATICITY

Let us assume that oscillation occurs on a cavity mode of frequency �c which is different
from the center frequency �0 of the transition. We let	�c and	�0 be the widths of the cavity
mode resonance and of the laser transition, respectively, and address ourselves to the question
of finding the laser frequency �L and the width of the output spectrum 	�L (Fig. 7.27).

The calculation of �L can be carried out within the semiclassical approximation. It can be
shown.3,22/ that �L will be in some intermediate position between �0 and �c i.e., the oscillation

FIG. 7.27. Frequency pulling and spectral output of a single mode laser.
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frequency is pulled toward the transition frequency �0. To a good approximation for an inho-
mogeneous line and rigorously for a homogeneous line, the oscillation frequency turns out
to be given by the weighted average of the two frequencies �c and �0, the weighting factors
being proportional to the inverse of the corresponding linewidths. Thus we have

�L D .�0 =	�0/C .�c =	�c/

.1 =	�0/C .1 ==	�c/
(7.9.1)

The effect of frequency pulling is generally very small. The value of 	�0 may range from �
1 GHz, for Doppler-broadened transitions in the visible, to as much as 300 GHz for solid-state
lasers (see Table 2.1). On the other hand, for a 1-m-long cavity, 	�c D 1=2
�c D �c=2
Le

[see Eqs. (7.2.14) and (5.3.10)] may range from � 1 MHz to a few tens of MHz (for � ranging
from � 1%, typical of a low-gain laser medium such as He-Ne, to values of the order of 50%
for high-gain materials). We thus see that the weighting factor .1=	�c/ is more than three
order of magnitude larger than .1=	�0/.

We now turn our attention to the calculation of the width	�L of the laser output spectrum
when oscillation occurs on this single mode. Its ultimate limit is established by spontaneous
emission noise or, more precisely, by the zero-point fluctuations of the laser mode field. Since
these fluctuations can only be treated correctly via a full quantum electrodynamics approach to
the problem (see Sect. 2.3.2), derivation of the expression for this limit is beyond the scope of
our present treatment. It can be shown that, although both the amplitude and phase of the zero-
point field fluctuate randomly, the spectral broadening of the output arises predominantly from
random phase fluctuations while very small field fluctuations are induced by the amplitude
fluctuations of the zero-point field. This can be traced back to the fact that, as discussed
earlier in this chapter, the laser cavity photon population, and hence the output power, is
quite insensitive to the number qi of photons considered to be initially present in the cavity to
simulate the effect of spontaneous emission. To be more precise, we can note that, according
to Eq. (7.2.2), the rate of increase of cavity photons due to the “extra-photon” arising from
spontaneous emission, is given, in the steady state, by .d�=dt/se D VaBN0 and this term
must be compared with the stimulated one which, again according to Eq. (7.2.2), is given by
VaBN0�0. Since �0 may range from 1010 to 1016 (see example 7.1), it is apparent that the
spontaneous emission term has a negligible effect on the number of cavity photons, i.e., to the
field amplitude.

According to the above discussion, the electric field of the output beam can be written
as E.t/ D E0 sinŒ2
�Lt C 'n.t/�, where 'n.t/ is a random variable accounting for zero-
point field fluctuations. It can then be shown that the time behavior of 'n.t/ is typical of
a diffusion process, i.e., the root-mean-square phase deviation after a time t, 	'.t/ D<
Œ'n.t/ � 'n.0/�2 >1=2, is proportional to

p
t. The spectral shape of the emitted light, i.e., the

power spectrum of E.t/, is then Lorentzian and, neglecting internal losses, the spectral width
(FWHM) is given by.23/

	�L D N2

N2 � N1

2
 h�L.	�c/
2

P
(7.9.2)

where P is the output power. This is the well known formula of Schawlow-Townes, introduced
by these two authors in their original proposal of the laser,.24/ which establishes the quantum
limit to laser linewidth.
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Example 7.9. Limit to laser linewidth in He-Ne and
GaAs semiconductor lasers Consider first the case of
a single-mode He-Ne laser oscillating on its red tran-
sition .�D 632.8 nm, �0 Š 4.7 � 1014 Hz/. We will
take Le D 1 m, � D 1% and we also assume an output
power of P D 1 mW. From Eqs. (7.2.14) and (5.3.10)
we get respectively �c D 3.3 � 10�7 s and 	�c Š 4.7 �
105 Hz. From Eq. (7.9.2), taking N2=.N2 � N1/ Š 1,
we obtain 	�L Š 0.43 mHz. Consider next the case of
a single-mode GaAs semiconductor laser .�D 850 nm/
with a cavity length L D l D 300�m and with a power
reflectivity at the two end faces of R D 0.3 (i.e. equal
to the Fresnel losses of the uncoated semiconductor
surfaces). Neglecting all other cavity losses we get
� D � ln.R/ Š 1.03 and hence �c D nL=c� D 3.4 ps,
where n D 3.5 is the refractive index of GaAs. We then
get ��c D 1=2
�c Š 4.7 � 1010 Hz and, from Eq. (7.9.2)
assuming N2=.N2 � N1/D 3 and P D 3 mW, we obtain
	�L Š 3.2 MHz. Note that the laser linewidth is, in this
case, almost 10 orders of magnitude larger than in the
case of a He-Ne laser on account of the much shorter
cavity decay time and hence of the much larger cavity
linewidth.

Typically, the linewidth predicted by
Eq. (7.9.2) turns out to be negligibly small
compared to that produced by various other
cavity disturbances, to be discussed later
on, except for the very important case of
a semiconductor laser. The reasons for this
exception are that, as shown in the follow-
ing example,	�c for a semiconductor laser is
typically about 5 orders of magnitude larger
than that of e.g. a He-Ne laser. In fact, careful
experiments done with GaAs lasers showed
the actual linewidth to be about 50–100 times
larger than the value predicted by Eq. (7.9.2).
This observation was later on understood
in terms of a new phenomenon peculiar of
a semiconductor laser. The fluctuations of
electron-hole density caused by spontaneous
emission produce, in fact, a measurable fluc-
tuation of the refractive index of the laser
medium. The resulting fluctuation in optical
cavity length thereby produces a fluctuation
of the cavity frequency and hence of the
oscillation frequency. Thus, in a semiconduc-
tor laser, the right hand side of Eq. (7.9.2)
must be multiplied by a factor that we shall
denote as ˛2 and which is considerably larger than 1. The factor ˛ is called the Henry-factor,
named after the scientist who first provided an explanation of this phenomenon..25/

According to the above example, the linewidth of a typical semiconductor laser arises
from quantum noise and, in practice, is difficult to reducing below 1 MHz. In the case of a
He-Ne laser and for all other lasers of relevance for obtaining small oscillation linewidths
(such as Nd:YAG, CO2 or Ar lasers), the linewidth determined by the Schawlow-Townes
formula, even for modest powers of a few mW, is always well below 1 Hz and down to the
mHz. Since �L D c=� Š 4.7 � 1014 Hz, the relative monochromaticity of this laser, set by
zero-point fluctuations, would be .	�L=�L/ Š 2.7 � 10�18. Now, let us examine the cavity
length stability requirement to keep the resonator frequency stable to the same degree. From
Eq. (5.1.2) with n D const., we find .	L=L/ Š �.	�c=�c/ Š 2.7 � 10�18 so that, e.g., with
L D 1 m, we have j	Lj Š 2.7 � 10�9 nm. This means that a cavity length variation by a
quantity � 10�8 smaller than a typical atomic dimension is already enough to induce a shift
of the cavity frequency �c and hence of the oscillation frequency �L that is comparable to the
oscillation linewidth given by Eq. (7.9.2). Thus, the limit to monochromaticity is, in practice,
set by changes of cavity length induced by vibrations or thermal drifts, as we shall see in next
section. These changes, arising from noise disturbances of perhaps less fundamental nature
than those considered above, are often said to be due to technical noise.
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7.10. LASER FREQUENCY FLUCTUATIONS AND FREQUENCY
STABILIZATION

To consider laser frequency fluctuations, let us consider an active medium of refractive
index nm and length l in a laser cavity of length L in air. The effective cavity length is then
given by Le D na.L � l/ C nml, where na is the refractive index of air. We can then separate
the mode frequency changes into two parts: (i) Long-term drifts, i.e. occurring in a time
longer than, say, 1 s, of either L or na which are mainly caused by temperature drifts or slow
pressure changes of the ambient air surrounding the laser. (ii) Short-term fluctuations caused
e.g. by acoustic vibrations of mirrors leading to cavity-length changes, by acoustic pressure
waves which modulate na, or by short-term fluctuations of nm, due e.g., to fluctuations of the
discharge current in a gas laser or to air bubbles in the jet flow of a dye laser. In optically
pumped solid-state lasers, fluctuations in pump power cause temperature fluctuations which
in turn change the refractive index and therefore the optical length of the cavity.

Example 7.10. Long term drift of a laser cavity Taking,
for invar, ˛ D 1 � 10�6 K�1 and considering a frequency
in the central part of the visible spectrum, i.e. �L Š
5 �1014 Hz, from the previous expressions we obtain that
the frequency drift, 	�L, due to a thermal change, 	T,
amounts to j	�Lj D �L˛	T D .5 � 108 	T/ Hz. This
shows that a change of 	T of, e.g., only 0.1 K would
produce a frequency drift of � 50 MHz. To calculate the
frequency drift due to a slow pressure change, we note
that, for a gas laser, one typically has .L � l/=Le Š 0.2
while for air one has na Š 1.00027. Again for �L Š 5 �
1014 Hz, we can then write j	�Lj Š 2.7 � 1010j	p=pjHz.
Thus, for a relative pressure change j	p=pj Š 3 � 10�3,
which can readily occur during one hour time, one has
j	�Lj Š 80 MHz.

To illustrate the influence of long-term
drifts on cavity length, let ˛ be the ther-
mal expansion coefficient of the elements
(e.g. invar rods) which determine the mir-
ror separation. We then have j	�L=�Lj Š
j	L=Lj D ˛	T, where 	T is the tempera-
ture change of the laser environment. Slow
pressure changes, on the other hand, con-
tribute to the frequency drift by an amount
j	�Lj D �Lj	naj.L � l/=Le D �L.na �
1/j	p=pj.L � l/=Le, where	na is the change
of refractive index of the air as arising from
the the slow change, 	p, of the ambient
pressure, p.

According to the previous example, to
reduce long-term frequency drifts below e.g.,
1 MHz one needs to use very low expansion

materials for the spacer elements, down to an expansion coefficient perhaps smaller than
1 � 10�7 K�1 and to stabilize the ambient temperature below 0.01 ıC. One also needs to
enclose the laser in a pressure stabilized chamber. The reduction of short-term frequency
fluctuations is an even more difficult problem and one needs to rely on good vibration isolation
optical tables and efficient covers of the whole laser path. It is therefore generally difficult to
reduce short term frequency fluctuations below the 1 MHz level, except for monolithic and
compact solid-state lasers, such as the NPRO laser considered in Fig. 7.26, where short-term
frequency fluctuations of about 10 kHz have been measured.

To characterize the spectrum of laser frequency fluctuations, let us write the electric field
of the output beam as E.t/D E0 sinŒ2
�Lt C'n.t/� where �L is the central laser frequency and
'n.t/ describes the noise phase fluctuations. The instantaneous frequency can then be writ-
ten as �.t/ D �L C d'n.t/=2
dt D �L C �n.t/, where �n.t/ is the frequency noise. It is this
frequency noise that is fundamentally related to linewidth or frequency stability, and, conse-
quently, it is the term that needs to be characterized. The measure that is used to characterize
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FIG. 7.28. Frequency noise spectra from a free-running diode-pumped Nd:YAG laser (after ref.,.26/ by permission).

frequency fluctuations is the spectral power density of frequency noise (see Appendix G), rep-
resented by S�.�m/ and having units of Hz2=Hz. Here, �m is called the offset frequency, which
can be thought of as the frequency at which the phase 'n.t/ is being modulated by the noise.
The way S�.�m/ is measured in practice is to transform �n.t/ into e.g., a voltage signal Vn.t/
by a frequency to voltage converter and then measure the power spectrum of Vn.t/ by an elec-
tronic spectrum analyzer. As a representative example Fig. 7.28 shows the square root of the
frequency noise spectrum,

p
S�.�m/, from a free-running diode-pumped monolithic Nd:YAG

laser..26/ In the same figure the Schawlow-Townes limit for
p

S�.�m/ is also indicated. In fact,
for a Lorentzian line as that predicted by the Schawlow-Townes theory, it can be shown that
the spectral power density of frequency fluctuations is white, i.e., S�.�m/ is a constant given
by.27/

S�.�m/ D 	�L=
 (7.10.1)

where 	�L the linewidth [given by Eq. (7.9.2) for the Schawlow-Townes theory]. Note the
large increase of the noise spectrum for offset frequencies smaller than 100 kHz as due, in this
case, to acoustic disturbances and pump power fluctuations.

For the most sophisticated applications, e.g. for gravitational wave detection, the laser
noise spectrum needs to be strongly reduced and, to this purpose, one needs to use tech-
niques for active stabilization of the cavity length. To achieve this, one of the cavity mirrors
is mounted on a piezoelectric transducer and frequency stabilization is achieved by applying
a feedback voltage, via a suitable electronic circuit, to the transducer. By sending a fraction
of the laser radiation to a frequency discriminator of sufficient high resolution and stability,
the voltage fluctuations at the output yield the required error signal. The sharp transmission
(or reflection) lines of a high finesse Fabry-Perot (FP) interferometer or a sharp absorption
line of an atomic or molecular gas kept in a low pressure cell are often used as frequency
discriminators. Fabry-Perot interferometers with finesse larger than 105, using mirrors with
absorption and scattering losses of a few parts per million, have been used. For a 1 m long
FP interferometer, sharp transmission lines with width in the range of a few kHz have been
obtained. To reduce the frequency fluctuations of the FP cavity, the mirrors must be mounted
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using very low expansion elements (such as a tube made of super-invar or of very-low expan-
sion ceramic) and the interferometer must be placed in a container providing pressure and
temperature control. Long term and absolute frequency stabilization can, however, only be
achieved by using an atomic or molecular absorption line as a frequency reference. A good
reference wavelength should be reproducible and essentially independent of external pertur-
bations such as electric or magnetic fields and temperature or pressure changes. Therefore
transitions in atoms or molecules without permanent dipole moments, such as CH4 for the
3.39�m transition or 129I2 for the 633 nm transition of the He-Ne laser, are the most suitable.
For a low pressure gas or vapor, the absorption line is limited, by Doppler broadening, to a
width of � 1 GHz (in the visible range). To obtain much narrower linewidths down perhaps
to the kHz range, some kind of Doppler-free non-linear spectroscopy needs to be used..28/

A common method of frequency stabilization relies on the Pound-Drever technique.29/

where a small fraction of the output beam is frequency modulated and then passed through
the frequency discriminator, i.e. the FP interferometer or the absorption cell. To understand the
principle of operation of this technique, we need first to point out that, any element exhibiting
a transmission which changes with frequency will also induce, on the incident wave, a phase-
shift which depends on the wave frequency. For a FP interferometer used in transmission, the
phase shift can be obtained from (4.5.4). For an absorption line, on the other hand, the phase
shift can be written as � D 2
nl=�, where l is the length of the absorption cell and n is the
refractive index of the medium. For a Lorentzian line, the refractive index n can be related to
the absorption coefficient, ˛, of the medium by the dispersion relation

n.� � �0/ D 1 C c

2
�

�0 � �
	�0

˛.� � �0/ (7.10.2)

where n0 is the refractive index sufficiently far away from the resonance line, � is the
frequency of the e.m. wave, �0 is the transition frequency, and 	�0 is the transition width.
Note that, for � D �0, one has n D n0, and the transition makes no contribution to the refrac-
tive index. For an inhomogeneous line, one must add, at frequency �, the phase shifts induced
from all atoms, with their transition frequencies, � 0

0, being now distributed according to the
function g� 
�0

0 � �0
�
. The refractive index of the medium is then obtained from (7.10.2),

averaging over the frequency distribution g� 
�0
0 � �0

�
. We get

neff D n0 C cNt

2
�

Z
�0

0 � �

	�0
�h


� � �0

0

�
g� 
�0

0 � �0
�

d�0
0 (7.10.3)

where Nt is the total ground-state population and �h is the homogeneous cross-section.
According to Eq. (7.10.2) or (7.10.3), for a given profile of the absorption coefficient ˛ D
˛.! �!0/ (see Fig. 7.29a), the corresponding frequency shift generally takes the form shown
in Fig. 7.29b. For simplicity, the phase shift at the line central frequency, �0 D 2
n0l=�,
is taken to be zero. A rather similar curve applies for a FP interferometer and, so, Fig. 7.29
provides a general representation of the phase-shift of our frequency discriminator (i.e., the
absorption cell or the FP interferometer).

We now consider a frequency-modulated beam and write its electric field as E.t/ D
E0 exp Œ j!t C j� sin .!mt/�, where � is the phase modulation index and !m is the modulation
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frequency. We can then expand this beam in terms of Bessel functions and write

E.t/ D E0ej!t
C1X
�1

nJn.� /e
jn!nt (7.10.4)

where Jn is the Bessel function of order n. If we limit our considerations to the first two
side-bands at frequency ˙!m, we obtain from (7.10.4)

E.t/ D E0ej!t
��J1.� /e

�j!mt C J0.� /C J1.� /e
j!mt

	
(7.10.5)

where we have used the property J�1.� / D �J1.� /. The electric field of the wave after
leaving the frequency discriminator will be given by

E.t/ D E0ej!t
��J1.� /e

�j!mt�j	�1 C J0.� /e
�j	0 C J1.� /e

j!mt�j	1
	

(7.10.6)

where �0, ��1, and �1 are the phase shifts associated with the carrier wave and with the two
sidebands, respectively (Fig. 7.29b). If the beam transmitted by the discriminator is sent to
a quadratic detector, the detected photocurrent will be proportional to EE�, where E� is the
complex conjugate of E. The component of the photocurrent at frequency !m will then be
proportional to

.EE�/!m D 2jE0j2Re
n
J0J1ej!mt

h
ej.	0�	1/ � ej.	�1�	0/

io
(7.10.7)

where Re stands for real part. If now the carrier frequency ! of the wave coincides with the
discriminator central frequency !0 D 2
�0, one has �0 D 0 and ��1 D ��1 (see Fig. 7.29).

FIG. 7.29. Pound-Drever technique for frequency stabilization to the transmission minimum of an absorption cell
(or to the transmission peak of a Fabry-Perot interferometer).
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One then gets from (7.10.7) .EE�/!m D 0. If, on the other hand, ! ¤ !0 and if we assume
!m � 2
	�0, then we can write ��1 Š ��1 and from (7.10.7) we get

.EE�/!m D �4jE0j2J0J1sin.�0/sin.!mt � �1/ (7.10.8)

The sign of the component of the photocurrent at frequency !m will therefore depend on the
sign of �0 i.e., on weather ! is above or below !0. This component can then be used as the
error signal for the electronic feed-back loop, to force the carrier frequency of the wave to
coincide with the central frequency of the discriminator. The precision by which this can be
achieved depends on the gain of the feedback loop and on its bandwidth. With very sharply
defined frequency discriminators .	�0 Š 30 kHz/ short-term frequency drifts in the 100 mHz
range have been achieved, in this way..30/

7.11. INTENSITY NOISE AND INTENSITY NOISE REDUCTION

In the previous sections, we have seen that spontaneous emission and cavity length fluc-
tuations induce only a frequency noise and, under these conditions, the field amplitude of the
output beam can be taken to be independent of time. There are, however, other perturbations
of a laser which result in amplitude fluctuations i.e., produce an intensity noise. The most com-
mon perturbations of this type can be listed as follows: (i) For a gas laser: fluctuations of the
power supply current, instability of the discharge process, and mirror misalignments owing
to resonator vibrations. (ii) For dye lasers: density fluctuations of the dye jet solution and the
presence of air bubbles in the solution. (iii) For solid-state lasers: pump fluctuations (both
for lamp pumping and diode pumping), and cavity misalignments. (iv) For semiconductor
lasers: fluctuations of the bias current, amplitude fluctuations due to spontaneous emission
and electron-hole recombination noise. Besides these short-term fluctuations, long term drift
of the output power is also present and it generally arises from thermal misalignment of the
laser cavity and from degradation of the mirrors, windows and other optical components,
including the active medium itself. For well-designed and well-engineered lasers, however,
this power degradation should only occur over a time of at least a few thousands hours.

If we let ıP.t/ be the fluctuation of the output power around its average value < P >,
one can first define an intensity autocorrelation function CPP.�/ as

CPP.�/ D< ıP.t/ıP.t C �/>=<P>2 (7.11.1)

where <> stands for (ensemble) average. The Fourier transform of CPP.�/ is called the
relative intensity noise (RIN) of the given laser source and it is given by

RIN(!)=

+1Z
-1

CPP.�/ exp.j!�/d� (7.11.2)
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Obviously, CPP.�/ is obtained from (7.11.2) by taking the inverse Fourier transform, i.e.,

CPP.�/ D 1

2


C1Z
�1

RIN.!/ exp.�j!�/d! (7.11.3)

A typical RIN spectrum as obtained from a single mode, diode-pumped, NPRO oscillator is
shown in Fig. 7.30a (curve 1). Note that the vertical scale is expressed in dB/Hz, a notation
which may create some confusion and whose meaning is as follows

RIN.dB=Hz/ �	� D 10 logŒRIN.�/�	�� (7.11.4)

FIG. 7.30. (a): Typical relative intensity noise spectra for a diode-pumped Nd:YAG laser using the NPRO configu-
ration (see Fig. 7.26) without (curve 1) and with (curve 2) active noise reduction. (b) Corresponding plots of typical
relative fluctuations of the output power (after ref..31/ by permission).
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where RIN.�/ D 2
RIN.!/ and 	� D 1 Hz. One can see that the RIN spectrum is strongly
peaked at a frequency (� Š 300 kHz in the figure) corresponding to the laser relaxation
oscillation frequency (see next Chapter). The corresponding relative fluctuation of the output
power, ıP.t/=<P>, is shown in Fig. 7.30b (curve 1). From this figure one can observe that
the root-mean-square variation of ıP.t/, i.e.,

p
< ıP2.t/=<P>2, is � 2 � 10�3. The same

result can be obtained from Fig. 7.30a if one takes into account that the (3 dB) width, 	�,
of the relaxation oscillation peak is roughly 2 kHz while the RIN value at the peak is �
�85 dB=Hz. In fact, according to (7.11.4), we have RIN.�/ D 10�8.5 Š 3.16 � 10�9 Hz�1.
From Eqs. (7.11.1) and (7.11.3) with � D 0, we then obtain CPP.0/ D< ıP2.t/=<P>2 Š
RIN.�/ �	� Š 6.32 � 10�6 and so

p
< ıP2.t/= < P >2 Š 2.5 � 10�3.

To reduce the intensity noise, a negative feedback is often applied to the pump power
supply. The time needed to establish this feedback is limited by the discharge response time
(pump-rate response time). Accordingly, for a gas laser, this feedback scheme cannot be used
to e.g. reduce the intensity noise arising from discharge instabilities. For a diode-pumped
solid-state laser, on the other hand, the pump-rate response time is much shorter than the
inverse of the relaxation oscillation frequency of the solid state laser. In this case a negative
feedback loop can effectively reduce the intensity noise up to a frequency larger than the
oscillation relaxation frequency. This is demonstrated in Fig. 7.30a (curve 2) where the use
of a feedback loop is shown to reduce the peak value of the RIN by more than 35 dB. The
corresponding curve of Fig. 7.30b (curve 2) shows, in fact, that

p
< ıP2.t/=<P>2 is reduced

by more than one order of magnitude.
So far, the intensity noise of a single mode laser has been considered. For multimode

oscillation the situation is much more complicated because, even if the total power is kept
constant, the power in each mode can fluctuate in time. This phenomenon is known as mode-
partition-noise and can often pose a severe problem for the intensity noise in each mode.
Assume for instance that, besides a main mode, a side-mode, with power 20 dB below the
main mode, is oscillating. The non-linearity of the corresponding rate equations provides a
mechanism which can lead to anti-correlation between the powers of the two modes..20/ This
may result in the power of the side mode varying, in time, between its full value and zero
while the power of the main mode shows corresponding fluctuations so as to keep a con-
stant total power (a phenomenon also called antiphase dynamic)..32/ The spectral frequency of
this mode-partition-noise is then determined by the time behavior of the antiphase-dynamics
process. As an example, Fig. 7.31 shows the measured RIN spectra of an AlGaAs Fabry-Perot-
type (see Chap. 9) semiconductor laser when the power in all modes (solid curve) or in the
dominant mode (dashed curve) is detected..33/ Note the large increase of RIN which occurs,
in the dominant mode, at frequencies below the relaxation oscillation peak (Š 2.5 GHz, the
high value, in this case, being due to the laser’s short cavity length) due to the presence of
other oscillating modes.

7.12. CONCLUSIONS

In this chapter, a few topics related to the cw behavior of both a four-level and quasi-
three-level laser has been considered in some detail. The space-independent rate-equations,
under the simplest decay-rate conditions, have been developed first (ideal four-level and
quasi-three-level laser) and the cw behavior predicted by these equations, including optimum
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FIG. 7.31. Experimental observation of mode partition noise in a multimode semiconductor laser (after ref..33/ by
permission).

coupling conditions, has been considered. The results obtained from the space-dependent
equations have then been discussed at some length. It should be recalled that the rate-equation
formulation represents the simplest way to describe cw, and transient, laser behavior. In
order of increasing accuracy, and complexity, one should consider the semiclassical and the
quantum electrodynamics treatments. For the cw case, however, the equations for the semi-
classical treatment reduce to the rate equations. The full quantum treatment, on the other
hand, is required to correctly describe the start of laser oscillation as well as the fundamen-
tal limit to laser frequency noise. When, however, the number of photons in a given cavity
mode is much larger than one, the (average) results of the quantum treatment coincide with
those of the semiclassical treatment. It should also be noted that the rate equations, in their
simplest form as given here, only apply to relatively few cases. In most cases, there are more
than just four levels involved, and the rate equation treatment becomes correspondingly more
complicated. In fact it could be said that, in general, each laser has its own particular set of
rate equations. The equations considered in this chapter, however, provide a model that can
be readily extended to handle more complicated situations.

Besides topics which can be directly discussed in terms of rate equations, other sub-
jects of fundamental importance for cw laser behavior have also been discussed, namely:
(i) Reasons for multimode oscillation, methods of single mode selection, and laser tuning.
(ii) Limit to monochromaticity, for single mode lasers, as well as field fluctuations of the
output beam, both in frequency and amplitude. (iii) Methods to actively reduce both fre-
quency and amplitude fluctuations. The ensemble of these topics constitute the minimum set
of knowledge required for a balanced and up-to-date understanding of cw laser behavior.
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PROBLEMS

7.1. Calculate the logarithmic loss, � , of a mirror with transmission T D 80% and negligible
internal loss.

7.2. Prove Eq. (7.2.11)

7.3. With reference to Fig. 7.4 and to example 7.2, taking the value n D 1.82 for the refractive index of
Nd:YAG, calculate the equivalent resonator length, Le, and the cavity photon decay time.

7.4. Consider a 4-level laser just at threshold and assume the branching ratio of the 2 ! 1 transition
compared to the overall spontaneous transition rate is ˇ D 0.51 and assume that the overall upper-
state lifetime is purely radiative and equal to � D 230�s (the data refer to the 1.064�m transition
of Nd:YAG, see example 2.13). How short must the lifetime of the lower laser level, 1, be to ensure
that, in the steady state, .N1=N2/ < 1%? Now consider the same laser above threshold and, with
reference to example 7.2, assume that the laser is oscillating with an output power Pout D 200 W.
How short must the lifetime of the lower laser level be to ensure that, under these conditions,
.N1=N2/ < 1%?

7.5. With reference to Fig. 7.4 and to example 7.2, suppose that the Nd:YAG rod is replaced by
a Nd:YLF rod of the same dimensions .YLF � YLiF4/. Oscillation can then occur at either
� D 1.047�m (extraordinary wave or 
-transition) or at � D 1.053�m (ordinary wave or
�-transition). The largest value of the effective stimulated emission cross section is for the

-transition, equal to �e Š 1.8 � 10�19 cm2. The upper state lifetime is the same for the two
transitions, i.e., � D 480�s. Assuming that the internal loss of the cavity and the lamp pump-
ing efficiency remain the same as for Nd:YAG, calculate the threshold inversion and the threshold
pump power and compare the results with those of Nd:YAG. Assuming that the energy separation
between the 4F3=2 upper laser level and the ground level remains the same as for Nd:YAG and
taking the same value of the beam area Ab, calculate the slope efficiency.

7.6. In the case of the previous problem, calculate the optimum output mirror transmission and
the corresponding optimum output power when the laser is pumped by a lamp input power
Pp D 7 kW.

7.7. For the high power CO2 laser of Figs 7.7 and 7.8, and with reference to the data considered in
example 7.3, calculate the optimum output coupling and the optimum power for an input pump
power Pp D 140 kW. The resulting optimum value of �2 turns out to be substantially smaller than
that considered in example 7.3., i.e., the unstable resonator of Fig. 7.7 is substantially overcoupled.
This overcoupling is intentional, to increase the peak intensity of the output beam when focused
by a lens. With reference to the focusing properties of the annular beam of an unstable resonator
discussed in Sect. 5.6.3., show in fact that the � 12 kW beam of Fig. 7.8 (at Pp D 140 kW) produce
a higher intensity at the focus of a lens compared to that of the optimum beam considered in this
problem.

7.8. Consider the lamp-pumped Nd:YAG laser of Fig. 7.4. The pumping beam induces a thermal lens
of focal length f in the rod whose dioptric power 1=f is proportional to the pump power, Pp. At
a pump power of Pp D 7 kW and for the rod dimensions of Fig. 7.4, the thermal induced focal
length is f Š 25 cm..34/ Now assume that, to calculate the cavity mode, the rod of Fig. 7.4 can be
simulated by a this lens, of focal length f Š 25 cm, placed at the resonator center. In this case,
calculate the TEM00 mode spot size at the lens and at the mirror location.

7.9. One can show that the radial extension of a TEMlm mode of higher order (i.e., for l Š m � 1) is
approximately given by wlm Š p

l w, where w is the spot size of the corresponding TEM00 mode.
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The maximum number of Hermite-Gaussian modes that can fit within a rod of radius a will be such
that wlm Š a..35/ Using this argument and the results obtained in the previous problem, calculate
the approximate number of transverse modes which oscillate in the configuration of Fig. 7.4. The
beam divergence of a TEMlm mode .l Š m � 1/, 
lm, is then approximately given by 
lm Šp

l�=
w0, where w0 is the spot size of the TEM00 mode at the beam waist..35/ Calculate then the
beam divergence for the case of Fig. 7.4 assuming that it is equal to the divergence of the highest
order mode which is oscillating.

7.10. Consider the Nd:YAG laser of example 7.4 and assume that the optimum output coupling can
be calculated by the formula established via the space-dependent case of Sect. 7.5. Calculate the
optimum output coupling and, using this value of �2, calculate, with the help of Eq. (7.3.34), the
expected value of the output power at a diode-laser pump power of Pp D 1.14 W.

7.11. Consider a 4 mm diameter 56 mm long 0.9 at. % Nd:YAG rod side-pumped at 807 nm wavelength
by fiber-coupled diode lasers..36/ Assume that the laser is oscillating on a TEM00 mode with a
constant spot-size within the active medium of wa Š 1.4 mm. Let the transmission of the output
mirror be T2 D 15% and assume a total internal loss of �i D 3.8% (see example 7.2). Calculate the
output power at a laser-diode optical pump power of Pp D 370 W, corresponding to an absorbed
power of Pap D 340 W, and the corresponding slope efficiency. Compare the calculated values
with the experimental values of ref..36/ and try to explain the discrepancy.

7.12. Consider again the diode-pumped laser of the previous problem, assume that, at the stated pump
power, the thermally-induced lens in the rod has focal length f D 21 cm, and take a symmetric
flat-flat resonator as in Fig. 7.4. Under the simplifying assumption that the rod can be simulated by
a thin lens of focal length f , calculate the distance of the two plane mirrors from this lens to obtain
a spot-size, at the lens position, of wa D 1.4 mm. Calculate also the corresponding spot-size at the
two mirrors.

7.13. Prove Eq. (7.4.7)

7.14. Consider a He-Ne laser oscillating on its red, � D 632.8 nm in air, transition and assume a length
of the gas tube of l D 20 cm, a tube radius of 1 mm, a 0.1 Torr partial pressure of Ne atoms, an
output coupler transmission of 1% and a single pass internal loss of 0.5%. According to exam-
ple 2.12, the effective cross section and the overall lifetime of the laser transition can be taken to
be �e D 3 � 10�13 cm2 and � D 150 ns, respectively. Assume, for simplicity, that the lifetime of
the lower state is much shorter than that of the upper state. Calculate the threshold inversion, the
ratio of this inversion to the total Ne population, and the critical pump rate. The upper laser level is
predominantly pumped through the 21S state of He which lies � 20.5 eV above the ground state.
Assuming unit quantum efficiency in this near-resonant energy-transfer process, calculate the min-
imum threshold pump power. For an output power of 3 mW, calculate also the ratio of the number
of photons emitted by stimulated emission to the number of atoms that decay spontaneously.

7.15. An Ar ion laser oscillating on its green, � D 514.5 nm, transition has a 10% unsaturated gain per
pass. The resonator consists of two concave spherical mirrors both of radius of curvature R D 5 m
and spaced by L D 100 cm. The output mirror has a T2 D 5% transmission while the other mirror
is nominally 100% reflecting. Identical apertures are inserted at both ends of the resonator to
obtain TEM00 mode operation. Neglecting all other types of losses, calculate the required aperture
diameter.

7.16. The linewidth, 	��
0 D 50 MHz, of a low-pressure CO2 laser is predominantly established by

Doppler broadening. The laser is operating with a pump power twice the threshold value. Assum-
ing that one mode coincides with the transition peak and equal losses for all modes, calculate the
maximum mirror spacing that would still allow single longitudinal mode operation.
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7.17. Consider an Ar ion laser oscillating on its green, � D 514.5 nm, transition and assume this transi-
tion to be Doppler broadened to a width 	��

0 D 3.5 GHz. Assume a cavity length Le D 120 cm,
a length of the Ar tube of 100 cm, and take a single pass cavity loss of � D 10%. According to
example 2.12., we can take an effective value of the stimulated emission cross section and upper
state lifetime of �e D 2.5 � 10�13 cm2 and � D 5 ns, respectively. Assume the lifetime of the
lower laser level much shorter than that of the upper laser level and that one cavity mode coincides
with the transition peak. Calculate the threshold inversion for this central mode and the threshold
pump rate. At how great a pump rate above threshold does oscillation start on the two adjacent
longitudinal modes?

7.18. A He-Ne laser is oscillating on three adjacent longitudinal modes, the central one being coincident
with the center of the laser transition. The cavity length is 50 cm and the output coupling 2%.
Knowing that the laser linewidth is 	��

0 D 1.7 GHz, calculate the mode spacing.

7.19. Assume that one cavity mirror is mounted on a piezoelectric transducer. Show that the comb
of longitudinal modes shifts by approximately one comb spacing for a �=2 translation of the
transducer.

7.20. Consider a single longitudinal mode He-Ne laser and assume that the oscillating frequency is
made to coincide with the frequency of the transition peak by the use of a piezoelectric transducer
attached to a cavity mirror. How far can the mirror be translated before a mode-hop (i.e., a switch
of oscillation to the next mode) occurs?

7.21. An Ar ion laser oscillating on its green, � D 514.5 nm, transition has a total loss per pass of 4%,
an unsaturated peak gain, Gp D exp.�pNl/, of 1.3, and a cavity length of 100 cm. To select a single
longitudinal mode, a tilted and coated quartz .nr D 1.45/ Fabry-Perot etalon with a 2 cm thickness
is used inside the resonator. Assuming, for simplicity, that one cavity mode is coincident with the
peak of the transition (whose linewidth is 	��

0 D 3.5 GHz), calculate the etalon finesse and the
reflectivity of the two etalon faces to ensure single longitudinal mode operation.

7.22. With reference to Fig. 7.31, evaluate the relative root-mean-square fluctuation of the output power
of the semiconductor laser for the dominant mode and for all modes.
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8

Transient Laser Behavior

8.1. INTRODUCTION

In this chapter, we will consider a few cases where the pump rate and/or cavity losses are
time dependent. We will also consider situations in which a nonlinear optical element, such as
a saturable absorber, is inserted in the laser cavity, where the non-linearity leads to the laser
departing from stable cw operation. For these various cases we are thus dealing with transient
laser behavior. The transient cases to be considered can be separated into two categories:
(i) Cases, such as relaxation oscillations, Q-switching, gain switching and cavity dumping,
where, ideally, a single mode laser is involved and which can be described by a rate equation
treatment. (ii) Cases where many modes are involved, e.g. mode-locking, and for which a
different treatment needs to be considered. This requires a description in terms of either the
fields of all oscillating modes (frequency domain description) or in terms of a self-consistent
circulating pulse within the cavity (time domain description).

8.2. RELAXATION OSCILLATIONS

We will first consider the case of a step-function pump rate. Thus we assume that Rp D 0
for t < 0 and Rp.t/ D Rp (independent of time) for t > 0. We will also assume the laser to be
oscillating in a single mode so that a simple rate-equation treatment can be properly applied.
As seen in the previous chapter, the rate equations are nonlinear in the variables N.t/ and �.t/
since they involve products of the form �N. Consequently, analytical solutions for this case
or for other cases about to be considered, are generally not possible and one often needs to
resort to numerical computation..1,2/

As a representative example, Fig. 8.1 shows one of the first computed plots of N.t/ and
�.t/ as carried out for a three level laser such as a ruby laser..2/ In this case the initial condition
for the population inversion is N.0/ D �Nt, where Nt is the total population, because, at
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FIG. 8.1. Example of the temporal behavior of the total inversion, VaN.t/, and photon number, �.t/, for a three-level
laser (after reference,.2/ by permission).

time t D 0, the entire population is in the lower laser level, 1 (see Fig. 1.4a). The initial
condition for the total number of cavity photons is then �.0/ D �i, where �i can be taken
to be some small integer (e.g. �i D 1) which must just needed to allow laser action start. It
should also be noted that a similar behavior to that of Fig. 8.1 is also expected for a four-level
laser, one of the main differences being that, in this case, the initial condition is N.0/ D 0.
Thus, if the time origin of Fig. 8.1 is shifted approximately to the time t D 2 μs, where
the population inversion become zero in the figure, the curves of Fig. 8.1 can be used to
provide a qualitative description for the case of a four level laser, as well. Several features
of this figure are now worth pointing out: (i) After a time t D 2 μs, the population inversion
keeps growing due to the pumping process while the photon number remains at its initial low
value, as determined by quantum field fluctuations, until the inversion crosses the threshold
value (N0Va D 6.66 � 1015 in the figure). From this time on, roughly for t > 4 μs, the
population exceeds the threshold value and the number of cavity photons can begin to grow.
From either Eq. (7.2.16b) (four level laser) or Eq. (7.2.24b) (quasi-three level laser) one finds
in fact that d�=dt > 0 when N > Nc, where Nc is the critical or threshold inversion. (ii)
After threshold is exceeded, the photon number requires some time to grow, from its initial
value �i D 1, to a value e.g. equal to the steady state value (�0 D 5.8 � 1014 in the figure)
and, meanwhile, the population can continue growing due to the pumping process. (iii) When
the photon number becomes large enough (roughly when � > �0), the stimulated emission
process becomes dominant over the pumping process. The population then begins to decrease
and, at the time corresponding to the maximum of �.t/, N.t/ has dropped back to Nc. This
can be readily shown from either Eq. (7.2.16b) or Eq. (7.2.24b) since, when d�=dt D 0, one
has N D Nc. (iv) After this photon peak, the population inversion is then driven below Nc

by the continuing high rate of stimulated emission. Thus the laser goes below threshold and
the photon number also decreases. (v) When this photon number decreases to a sufficiently
low value (roughly when � < �0) the pumping process again becomes dominant over the
stimulated emission process. The population inversion can now begin growing again and the
whole series of events considered at points (i)–(iv) repeats itself. The photon number, �.t/, is



8.2 � Relaxation Oscillations 315

then seen to display a regular sequence of peaks (or “laser spikes”) of decreasing amplitude
with consecutive peaks being, approximately, equally spaced in time. The output power would
therefore show a similar time behavior. This aspect of regular oscillation for the output power
is usually referred to as a damped relaxation oscillation. The time behavior of the population
inversion then undergoes a similar oscillatory behavior, the oscillation of N.t/ leading that
of �.t/ by about half the oscillation period since one must first produce a population rise of
N.t/ to then have a corresponding rise of the photon number, �.t/. It should also be noted
that, since a steady state solution is eventually reached, this solution corresponding to that
given by Eqs. (7.3.4a) and (7.3.4b) for a four level-laser or by Eqs. (7.4.1) and (7.4.6) for a
quasi-three-level laser, the computer calculation confirms that these solutions correspond to a
stable operating condition.

8.2.1. Linearized Analysis

For small oscillations about the steady-state values (e.g., roughly for t > 14 μs in
Fig. 8.1), the dynamical behavior can be described analytically. In fact, if we write

N.t/ D N0 C ıN.t/ (8.2.1)

�.t/ D �0 C ı�.t/ (8.2.2)

and assume ıN � N0 and ı� � �0, we can neglect the product ıNı� in the expression N�
appearing in the rate equations, and these equations become linear in the variables ıN and ı�.
Limiting ourselves to the case of a four-level laser, we can substitute Eqs. (8.2.1) and (8.2.2)
into Eqs. (7.2.16a) and (7.2.16b). Since N0 and �0 must satisfy the same equations with the
time derivatives being set to zero, we readily obtain from Eq. (7.2.16)

.dıN=dt/ D �ıNŒB�0 C .1=τ/�� BN0ı� (8.2.3)

.dı�=dt/ D BVa�0ıN (8.2.4)

Note in particular that Eq. (8.2.4) has been obtained from Eq. (7.2.16b) using the fact
that BVaN0 � .1=�c/ D 0. Substitution of Eq. (8.2.4) into Eq. (8.2.3) gives

d2ı�

dt2
C ŒB�0 C .1=�/�

dı�

dt
C .B2VaN0�0/ ı� D 0 (8.2.5)

We now look for a solution of the form

ı� D ı�0 exp.pt/ (8.2.6)

The substitution of Eq. (8.2.6) into Eq. (8.2.5) then shows that p must obey the equation

p2 C 2

t0
p C !2 D 0 (8.2.7)

where we have put

.2=t0/ D ŒB�0 C .1=�/� (8.2.8)
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and

!2 D B2VaN0�0 (8.2.9)

The solution of Eq. (8.2.7) is obviously given by

p D � 1

t0
˙
�

1

t2
0

� !2

� 1=2

(8.2.10)

The first case we consider is where .1=t0/ < !. In this case the square root in Eq. (8.2.10)
gives an imaginary number so that we can write p D �.1=t0/˙ j!0 where

!0 D �
!2 � .1=t0/

2
	 1=2

(8.2.11)

In this case, from Eq. (8.2.6) ı� is seen to correspond to a damped sinusoidal
oscillation, i.e.,

ı� D C exp.�t=t0/ sin.!0t C ˇ/ (8.2.12)

where C and ˇ are established by the initial conditions. If Eq. (8.2.12) is then substituted into
Eq. (8.2.4) we find that ıN is also described by a damped sinusoidal oscillation. Assuming
.1=t0/ � !0, we get

ıN Š !0C
BVa�0

exp.�t=t0/ cos.!0t C ˇ/ (8.2.13)

Note that ıN.t/ leads ı�.t/ by half an oscillation period as already discussed previously
since one must first have a growth of inversion ıN.t/ before one can have a growth of ı�.t/.

Equations (8.2.8) and (8.2.9) can be recast in a form more amenable to calculation if the
explicit expressions for N0 and �0 given by Eqs. (7.3.4a) and (7.3.4b) are used. We readily
obtain

t0 D 2�=x (8.2.14)

! D Œ.x � 1/=�c� �
1=2 (8.2.15)

where x D Rp=Rcp, is the amount by which threshold is exceeded. Note that, while the damp-
ing time t0 of the oscillation is determined by the upper state lifetime, the oscillation period
T D 2π=!0 Š 2π=! is determined by the geometrical mean of � and the photon lifetime �c.

Example 8.1. Damped oscillation in a Nd:YAG and a GaAs laser We first consider the single mode
Nd:YAG laser of Fig. 7.26 and assume that the above space-independent relaxation oscillation theory can
be applied to this diode-pumped NPRO laser. Assuming the laser to be x D 5 times above threshold, we
obtain from Eq. (8.2.14) t0 D 92 μs, where we have taken � D 230 μs. We will also take l D 11.5 mm
as the round trip path length of the NPRO resonator, assume a T D 0.4% output coupling transmission of
the laser and a round trip cavity loss of L D 0.5%. The round trip loss will then be � Š .T C L/ D 0.9%
and the cavity photon decay time �c D nl=c� Š 7.8 ns, where n D 1.82 is the refractive index of the YAG
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material. From Eq. (8.2.15) we then obtain � D !=2
 Š 238 kHz for the frequency of the relaxation
oscillation. Note that, in this case, we have t0 � 1=!, thus the approximation !0 Š ! is justified. Note
also that the spectrum of this damped oscillation is Lorentzian with a width 	�0 D 1=2
 t0 D 1.73 kHz,
and this will also be the 3-dB width of the relaxation oscillation peak of the RIN spectrum for this laser
(see Fig. 7.30a). Consider next a typical GaAs injection laser with a cavity length L D l D 300 μm, in
which the two end faces are cleaved and act as the cavity mirrors. According to Eq. (4.3.1) the power
reflectivity of both mirrors will, in this case, be equal to R D Œ.n � 1/=.n C 1/�2 Š 0.3, where n D 3.35
is the refractive index of GaAs. We thus have �1 D �2 D � ln R D 1.2. We will also assume a distributed
loss coefficient of ˛0 D 60 cm�1 along the semiconductor length, so that we can write �i D ˛0L D 1.8.
We thus get � D �i C Œ.�1 C�2/=2� D 3 and �c D Le=c� D nL=c� D 1.1 ps. The upper state lifetime may
be taken to be � Š 3 ns. Assuming x D 1.5 we get from Eq. (8.2.14), t0 D 4 ns, and from Eq. (8.2.15),
� D !=2
 Š 2 GHz. In this case also we have t0 � 1=! and the approximation!0 Š ! is again justified.
Note also that, according to this calculation, the relaxation oscillation peak of the RIN spectrum of this
laser is expected to be in the range of some GHz (see Fig. 7.31).

If the condition t0 > 1=! is not satisfied, the two solutions for p given by Eq. (8.2.10)
are both real and negative. In this case the time behavior of ı�.t/ consists of a superposition
of two exponentially damped decays. To have t0 < 1=! we must, according to Eqs. (8.2.14)
and (8.2.15), have

.�c=�/ > 4.x � 1/=x2 (8.2.16)

The right hand side of this equation has a maximum value of 1 when x D 2. This means
that, if �c > � , Eq. (8.2.16) is satisfied for any value of x. This situation usually occurs in gas
lasers, which therefore generally do not exhibit spiking behavior.

Example 8.2. Transient behavior of a He-Ne laser Consider a He-Ne laser oscillating on its red transition
.� D 632.8 nm/. In this case one has � D 50 ns. Assuming a cavity length of L D 50 cm, an output
coupling of 1% and neglecting all other losses, we obtain � D �2=2 D 5�10�3, and �c D L=c� D 322 ns.
We thus get �c > � and Eq. (8.2.16) is satisfied for any value of x. From Eqs. (8.2.14) and (8.2.15) with
x D 1.5, we obtain t0 D 66.6 ns and ! Š 5.6 � 106 Hz. From Eq. (8.2.10) we then see that the two
lifetimes describing the decay are 1 μs and 33.3 ns.

Before ending this section it is worth noting that the linearized analysis we have just
considered also applies to a slightly different case, i.e., when one needs to test the stability
of a given steady-state solution by a linear stability analysis. We assume, in this case, that
the laser is already operating in the steady state and that a small step-perturbation is applied
(i.e., ıN D ıN0 and ı� D ı�0 at t D 0, where ıN0 and ı�0 are two known quantities).
According to the discussion given above the perturbation introduced at time t D 0 will decay
with time either by a damped sinusoidal oscillation or by a biexponential law. The steady state
solutions N0 and �0, which were discussed in the previous Chapter, therefore correspond to a
stable equilibrium.
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8.3. DYNAMICAL INSTABILITIES AND PULSATIONS IN LASERS

The simple results obtained in the previous section appear to conflict with many exper-
imental results, observed from the earliest days of lasers, which indicated that, many lasers,
even when operating cw, tend to exhibit a continuous pulsating behavior, sometimes irregular
and sometimes regular in character. A classical example of this type is shown in Fig. 8.2,
where pulsations observed in the first cw-excited ruby laser are indicated..3/ It can be seen that
the output consists of a train of pulses irregularly spaced in time and of random amplitude
(irregular spiking). Furthermore, these pulsations do not tend to a steady state value as in
Fig. 8.1. This kind of unstable behavior has been the subject of more than 25 years of theoret-
ical and experimental investigations, revealing that this behavior can be attributed to a variety
of reasons that are briefly summarized below..4/

In single mode lasers, one of the main causes of instability arises from external and
usually accidental modulation of laser parameters such as pump rate or cavity losses. For ran-
dom modulation, this simply leads to the laser intensity noise already discussed in Sect. 7.11.
For sinusoidal modulation, the time behavior can be described in terms of rate equations
by writing, e.g. for pump modulation, Rp D Rp0 C ıRp exp.j!t/, with ıRp � Rp0.
According to Eqs. (8.2.1) and (8.2.2), we can then write N.t/ D N0 C ıN0 exp.j!t/ and
�.t/ D �0 C ı�0 exp.j!t/, with ıN0 � N0 and ı�0 � �0, and solve the corresponding
linearized equations. As seen in the previous section, a single mode laser presents a natural
resonance at its relaxation oscillation frequency !R, given by e.g. Eq. (8.2.11) for a 4-level
laser. A sinusoidal pump modulation thus forces the laser to exhibit small oscillations at the
modulation frequency,!, and the oscillation amplitude will be a maximum when ! coincides
with !R. For a white spectrum of pump modulation, an intensity noise spectrum peaking at
!R will therefore be observed (see Fig. 7.30a). Besides this instability of a technical origin,
single mode lasers, under special circumstances, can also show a natural dynamical instability
leading to pulsations and even chaotic behavior. For instance, in the case of a homogeneously
broadened transition, the laser must be driven sufficiently far above threshold (typically more
than ten times) and the cavity linewidth, 	�c, must be sufficiently larger than the transition
linewidth 	�0 (so-called bad-cavity case). Conditions of this sort have been experimentally
realized in, specially prepared, optically pumped far infrared lasers. Dynamical instabilities
of this type can only be accounted for by a semiclassical treatment of laser behavior, i.e. by
means of the Maxwell-Bloch equations..5/

In multimode lasers, a new type of instability may easily set in, due to e.g. a pump-
modulation-induced switching in time between one mode and another or from one set of
modes to another set..6/ This instability leads to a kind of antiphase motion (antiphase dynam-
ics) among the modes and it can be adequately described by a rate equation treatment in

FIG. 8.2. Typical time behavior of early cw-pumped solid-state lasers. Time scale is 50 μs=div. (after reference,.3/

by permission).
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which, for a homogeneous line, the cross saturation effect due to spatial hole burning is taken
into account..7/

To summarize, we can say that single mode lasers do not usually exhibit dynamical insta-
bility but instead show some, possibly quite pronounced, intensity noise due to unavoidable
perturbations of laser parameters. On the other hand, multimode lasers may also present addi-
tional instabilities due to a kind of antiphase motion among the oscillating modes. Depending
on the amplitude of modulation of the laser parameters, the type of laser, and whether the line
is homogeneously or inhomogeneously broadened, this instability may lead either to a mode
partition noise (see Sect. 7.11) or, even, to strong laser pulsations.

8.4. Q-SWITCHING

We have seen in the previous chapter that, under cw operation, the population inversion
gets clamped to its threshold value when oscillation starts. Even under the pulsed operating
conditions considered in Sect. 8.2, the population inversion can only exceed the threshold
value by a relatively small amount (see Fig. 8.1) due to the onset of stimulated emission.
Suppose now that a shutter is introduced into the laser cavity. If the shutter is closed, laser
action is prevented and the population inversion can then reach a value far in excess of the
threshold population for the case where the shutter is absent. If the shutter is now opened
suddenly, the laser will exhibit a gain that greatly exceeds losses and the stored energy will
be released in the form of a short and intense light pulse..8/ Since this operation involves
switching the cavity Q factor from a low to a high value, the technique is usually called
Q-switching. The technique allows the generation of laser pulses of duration comparable to
the photon decay time (i.e. from a few nanoseconds to a few tens of nanoseconds) and high
peak power (in the megawatt range).

8.4.1. Dynamics of the Q-Switching Process

To describe the Q-switching dynamical behavior, we assume that a step pump pulse is
applied to the laser starting at time t D 0, i.e., Rp.t/ D 0 for t < 0 and Rp.t/ D Rp D const.
for 0 < t < tP and that, meanwhile, the shutter is closed (Fig. 8.3a). For 0 < t < tP, the time
behavior of the population inversion can then be calculated from Eq. (7.2.16a), for a 4-level
laser, or Eq. (7.2.24a), for a quasi-3-level laser, with � set to zero. For instance, for a 4-level
laser, we obtain

N.t/ D N1Œ1 � exp.�t=�/� (8.4.1)

where the asymptotic value N1 is given by

N1 D Rp� (8.4.2)

as one can readily obtain from Eq. (7.2.16a) by putting dN=dt D 0. The time behavior of
N.t/ is also shown in Fig. 8.3a. From Eq. (8.4.1) and from Fig. 8.3a we see that the dura-
tion tP of the pump pulse should ideally be comparable to or shorter than the upper state



320 8 � Transient Laser Behavior

FIG. 8.3. Sequence of events in a Q-switched laser: (a) Idealized time behavior of the pump rate, Rp, and of the
population inversion, N, before Q-switching. (b) Time behavior of population inversion, N, and photon number, �,
after Q-switching (fast switching case).

lifetime � . In fact, for tP � � , N.t/ would not undergo any appreciable increase and the
pump power, rather than being accumulated as inversion energy, would be wasted through
spontaneous decay. From Eq. (8.4.2) we also see that, to achieve a sufficiently large inversion,
one needs a long lifetime � . Thus Q-switching can be used effectively with electric-dipole-
forbidden laser transitions where � generally falls in the millisecond range. This is the case
of most solid-state lasers (e.g., Nd, Yb, Er, Ho in different host materials, Cr doped mate-
rials such as alexandrite, Cr:LISAF, and ruby) and some gas lasers (e.g. CO2 or iodine). On
the other hand, for semiconductor lasers, dye lasers, and a number of important gas lasers
(e.g., He-Ne, Ar, Excimers) the laser transition is electric-dipole allowed and the lifetime
is of the order of a few to a few tens of nanoseconds. In this case, with the usual values
of pump rates, Rp, available, the achievable inversion N1 is too low to be of interest for
Q-switching.

Let us now assume that the shutter is suddenly opened at time t D tP so that the cavity
loss, �.t/, is switched from a very high value, corresponding to the shutter closed, to the
value, � , of the same cavity with the shutter open (fast-switching). We will now take the time
origin at the instant when switching occurs (Fig. 8.3b). The time behavior of the population
inversion, N.t/, and of the number of photons, �.t/, can be obtained through the rate equations
with the simplifying assumption that, during the short time of the Q-switching process, the
effect of the decay term N=� can be neglected. The qualitative behavior of N.t/ and �.t/
will then be as depicted in Fig. 8.3b. The population inversion starts from the initial value
Ni, which can be obtained from Eq. (8.4.1) for t D tP, then remains constant for some time
and finally begins to be depleted when the cavity photon number reaches a sufficiently high
value. When N.t/ eventually falls to the threshold inversion Nc, the photon number reaches
its peak value, as discussed earlier, for the case of relaxation oscillations, in Sect. 8.2. From
this time on, the laser exhibits net loss rather than net gain and, as a consequence, the photon
number decreases to zero. During the same time, the population inversion decreases to a final
value Nf , which is left in the active medium, its value being established by the dynamics of
the Q-switching process (see Sect. 8.4.4). Note that the time scales in Fig. 8.3a, b are very
different. In fact, the time scale of Fig. 8.3a is set by the value of the upper state lifetime and
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FIG. 8.4. Sequence of events in the slow switching case demonstrating the occurrence of multiple pulses. In the
figure, g.t/ D �N.t/l, where l is the length of the active medium, represents the laser gain.

thus corresponds to the ms range (usually, 100 μs � 1 ms). The time scale of Fig. 8.3b turns
out to be of the order of the cavity photon decay time (see Sect. 8.4.4) and hence falls in the
ns range (usually, 5 � 50 ns).

So far we have been considering the dynamical behavior corresponding to fast switching,
where the switching of cavity losses is treated as instantaneous. In practice fast switching
requires that the switching time be appreciably shorter than the time taken for photons to
build up to their peak value (several photon decay times i.e., typically, from a few tens to
a few hundredths of a nanosecond). In the case of slow-switching, the dynamical behavior
is somewhat more complicated and multiple pulses may result. This behavior is depicted in
Fig. 8.4 where the cavity loss �.t/ is assumed to decay from its high value to its final value in a
relatively long time. In the same figure we also show the time behavior of the single pass gain,
g.t/ D �Nl, and of the cavity photon number �.t/. We see that the first pulse starts at time
t1, at the instant when the decreasing loss �.t/ becomes equal to the instantaneous gain g.t/.
The pulse then reaches its peak value at the time when the gain, due to saturation, becomes
equal to the loss. After this first pulse, the gain is driven below the loss and further oscillation
cannot occur until the switch opens further, thus decreasing the loss below the gain. A second
pulse can then be produced (occurring at time t2 in the figure) whose peak again occurs at a
time where gain saturation makes the gain equal to loss.

8.4.2. Methods of Q-Switching.9/

There are several methods that have been developed to achieve switching of the cavity
Q and, in this section, we will limit ourselves to a discussion of the most commonly used,
namely: (i) Electro-optical shutters. (ii) Rotating prisms. (iii) Acousto-optical switches. (iv)
Saturable absorbers. These devices are generally grouped into two categories, active and
passive Q-switches. In an active Q-switching device, one must apply some external active
operation to this device (e.g. change the voltage applied to the electro-optical shutter) to pro-
duce Q-switching. In a passive Q-switch, the switching operation is automatically produced
by the optical nonlinearity of the element used (e.g. saturable absorber).
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8.4.2.1. Electro-Optical Q-Switching

These devices make use of a cell exploiting an electro-optical effect, usually the Pockels
effect, to induce the Q-switching. A cell based on the Pockels effect (Pockels cell) consists of
a suitable nonlinear crystal, such as KD�P or lithium niobate for the visible-to-near-infrared
region, or cadmium telluride for the middle-infrared, in which an applied dc voltage induces
a change in the crystal’s refractive indices. This induced birefringence is proportional to the
applied voltage. Figure 8.5a shows a Q-switched laser using a suitable combination of polar-
izer and Pockels cell. The Pockels cell is oriented and biased in such a way that the axes x and
y of the induced birefringence are lying in the plane orthogonal to the axis of the resonator.
The polarizer axis makes an angle of 45ı to the birefringence axes.

Consider now a laser beam propagating from the active medium toward the polarizer-
Pockels-cell combination with a polarization parallel to the polarizer axis. Ideally, this beam
will be totally transmitted by the polarizer and then incident on the Pockels cell. The E-field
of the incoming wave will thus be at 45ı to the birefringence axes x and y of the Pockels cell
and can be resolved into components Ex and Ey (Fig. 8.5b) with their oscillations in phase.
After passing through the Pockels cell, these two components will have experienced different
phase shifts, giving rise to a phase difference

	' D k	nL0 (8.4.3)

where k D 2
=�, 	n D nx � ny is the value of the induced birefringence, and L0 is the
crystal length. If the voltage applied to the Pockels cell is such that 	' D 
=2, then the two
field components leaving the Pockels cell will differ in phase by 
=2. This means that, when
Ex is maximum, Ey will be zero and vice versa, i.e., the wave becomes circularly polarized
(Fig. 8.5c). After reflection at the mirror, the wave passes once more through the Pockels cell
and its x and y components acquire an additional, 	' D 
=2, phase difference. So the total

FIG. 8.5. (a) Possible polarizer-Pockels-cell combination for Q-switching. Figures (b), (c), and (d) show the E-field
components along the birefringence axes of the Pockels cell in a plane orthogonal to the resonator axis.
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phase difference now becomes 
 , so that, when e.g., Ex is at its maximum (positive) value, Ey

will be at its maximum (negative) value as shown in Fig. 8.5d. As a result, the overall field,
E, is again linearly polarized but with a polarization axis at 90ı to that of the original wave
of Fig. 8.5b. This beam is therefore not transmitted by the polarizer and is instead reflected
out of the cavity (see Fig. 8.5a). This condition corresponds to the Q-switch being closed. The
switch is then opened by removing the bias voltage to the Pockels cell. In this case the induced
birefringence disappears and the incoming light is transmitted without change of polarization.
Note that the required voltage for operation in this arrangement is called the �=4 voltage or
the “quarter-wave voltage,” since the quantity 	nL0 i.e., the difference in optical path lengths
for the two polarizations, is �=4, as can be seen from Eq. (8.4.3).

Pockels cell Q-switches are very widely used. Depending upon the particular nonlinear
crystal used in the cell, the particular arrangement of applied field, the crystal dimensions,
and the value of the wavelength involved, the �=4 voltage may range between 1 and 5 kV.
This voltage must then be switched off in a time, ts, smaller than the build-up time of the
Q-switched pulse (typically ts < 20 ns).

8.4.2.2. Rotating Prisms

The most common mechanical means of Q-switching involves rotating one of the end
mirrors of the laser resonator about an axis perpendicular to the resonator axis. In this case,
the high-Q condition is reached when the rotating mirror passes through a position parallel to
the other cavity mirror. To simplify the alignment requirements, a 90ı roof-top prism with roof
edge perpendicular to the rotation axis is often used instead of an ordinary mirror (Fig. 8.6).
Such a prism has the property that, for light propagating orthogonal to the roof edge (see
Fig. 8.6), the reflected beam is always parallel to the incident beam regardless of any rotation
of the prism about its roof edge. This ensures that the alignment between the prism and the
other cavity mirror is always achieved in the plane orthogonal to the roof. The effect of rotation
is then to bring the prism into alignment in the other direction.

Rotating-prism Q-switches are simple and inexpensive devices and can be made for use
at any wavelength. They are rather noisy, however, and, due to the limited speed of the rotating
motor, they generally result in slow Q-switching. For a typical multi-transverse-mode solid

FIG. 8.6. Mechanical Q-switching system using a rotating 90ı roof-top prism.
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state laser, for instance, the beam divergence is around a few mrad. The high-Q situation then
corresponds to an angular range of �1 mrad around the perfect alignment condition. Thus,
even for a motor rotating at the fast speed of 24,000 rpm (400 Hz), the duration of the high
Q-switching condition is about 400 ns. This slow switching time can sometimes result in the
production of multiple pulses.

8.4.2.3. Acousto-Optic Q-Switches

An acousto-optic modulator consists of a block of transparent optical material (e.g., fused
quartz in the visible to near infrared and germanium or cadmium selenide in the middle-far
infrared) in which an ultrasonic wave is launched by a piezoelectric transducer bonded to one
side of the block and driven by a radiofrequency oscillator (Fig. 8.7a). The side of the block
opposite to the transducer side is cut at an angle and has an absorber for the acoustic wave
placed on its surface (see Fig. 8.7b). With back reflection of the acoustic wave thus suppressed,
only a traveling acoustic wave is present in the medium. The strain induced by the ultrasonic
wave results in local changes of the material refractive index through the photoelastic effect.
This periodic change of refractive index acts then as a phase grating with period equal to the
acoustic wavelength, amplitude proportional to the sound amplitude, and which is traveling
at the sound velocity in the medium (traveling-wave phase grating). Its effect is to diffract a
fraction of the incident beam out of the incident beam direction..10/ Thus, if an acousto-optic
cell is inserted in a laser cavity (Fig. 8.7b), an additional loss will be present, due to beam
diffraction, while the driving voltage to the transducer is applied. If the driving voltage is high
enough, this additional loss will be sufficient to prevent the laser from oscillating. The laser is
then returned to its high-Q condition by switching off the transducer voltage.

To gain a more detailed understanding of the operation of an acousto-optic modulator,
we now consider the case where the length L0 of the optical medium is sufficiently large that
the grating acts as a thick phase grating. For this to be the case, the following condition must
be satisfied

2
�L0

n�2
a

� 1 (8.4.4)

FIG. 8.7. (a) Incident, transmitted, and diffracted beams in an acousto-optic modulator (Bragg regime). (b) Q-
switched laser arrangement incorporating an acousto-optic modulator.
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where � is the wavelength of the incident beam, n is the material refractive index, and �a is
the wavelength of the acoustic wave. In typical cases, condition given by Eq. (8.4.4) requires
that L0 be larger than 1 cm. In this case, known as the Bragg regime, a single beam is diffracted
out of the cavity at an angle 
 0 D �=�a. Note that this angle is equal to the divergence angle
of a beam of wavelength � diffracting out of an “aperture” of size �a. Maximum diffraction
efficiency is then achieved when the angle of the incident light, 
B, satisfies the condition 
B D
�=2�a (Fig. 8.7a), originally derived by Bragg for X-ray diffraction from crystallographic
planes. In such a case, the diffracted beam can be thought of as arising from specular reflection
of the incident beam at the phase planes produced by the acoustic wave. For sufficiently
high values of the rf drive power to the piezoelectric transducer, a relatively large fraction �

Example 8.3. Condition for Bragg regime in a quartz
acousto-optic modulator We will consider an acousto-
optic cell driven at a frequency of �a D 50 MHz and take
� D 3.76�105 cm=s as the shear-wave velocity in quartz.
The acoustic wavelength is then �a D �=�a D 75 μm.
Taking n D 1.45 for the refractive index of quartz at
� D 1.06 μm, from Eq. (8.4.4) we obtain L0 � 1.3 mm.
Thus, for a crystal length of about 5 cm, the condition
to be in the Bragg diffraction regime is amply satisfied.
Note that, in this example, the beam is diffracted at an
angle 
 0 D �=�a Š 0.8ı to the incident beam direc-
tion and the angle of incidence at the modulator must be

B D �=2�a Š 0.4ı.

of the incident beam can be diffracted out
of the cavity (typical diffraction efficiencies
are about 1 � 2% per watt of rf power).
Note that condition given by Eq. (8.4.4) can
be approximated as .�L0=n�a/ � �a which
can be interpreted as saying that a “wavelet”
diffracted by an aperture �a, at the crys-
tal entrance, spreads out, at the crystal exit,
by an amount �L0=n�a which must be much
larger than each aperture �a. Under this con-
dition, in fact, each wavelet diffracted at
the crystal entrance will be summed, before
exiting the crystal, with wavelets produced
by other apertures �a of the crystal, thus
resulting in volume diffraction�.

Acousto-optic modulators have the advantage of low optical insertion losses, and, for
repetitive Q-switching, they can readily be driven at high repetition rates (kHz). The loss
introduced in the low-Q situation is rather limited, however, and the Q-switching time is
rather long (being mainly established by the time taken for an acoustic wavefront to traverse
the laser beam). These modulators are therefore used, primarily, for repetitive Q-switching of
low-gain cw-pumped lasers (e.g. Nd:YAG).

8.4.2.4. Saturable-Absorber Q-Switch

The three Q-switching devices considered so far fall in the category of active Q-switches
since they must be driven by an appropriate driving source (Pockel cell voltage power supply,
rotating motor or rf oscillator). We now consider a case of passive Q-switching exploiting the
non-linearity of a saturable absorber, this being by far the most common passive Q-switch in
use so far.

A saturable absorber consists of a material which absorbs at the laser wavelength and
which has a low value of saturation intensity. It is often in the form of a cell containing a

� When .2
�L0/ 
 n�2
a, the acoustic grating behaves like a thin phase-grating and the cell is said to be operat-

ing in the Raman-Nath regime. This regime is seldom used for acousto-optic Q-switching owing to the higher
requirement for rf power per unit volume of the cell.
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solution of a saturable dye in an appropriate solvent (e.g., the dye known as BDN, bis 4-
dimethyl-aminodithiobenzil-nickel, dissolved in 1,2-dichloroethane for the case of Nd:YAG).
Solid state (e.g., BDN in a cellulose acetate, F2:LiF, or Cr4C:YAG, again for a Nd:YAG laser)
or gaseous saturable absorbers (e.g., SF6 for CO2 lasers) are also used. To a first approx-
imation, a saturable absorber can be treated as a two-level system with a very large peak
cross section (10�16 cm2 is typical for a saturable dye). It then follows from Eq. (2.8.11) that
the corresponding saturation intensity Is is comparatively small .1 � 10 MW=cm2/, and the
absorber becomes almost transparent, due to saturation, for a comparatively low incident-light
intensity.

To understand the dynamical behavior of a saturable-absorber Q-switch, let us assume
that a cell containing this absorber, having a peak absorption wavelength coincident with the
laser wavelength, is introduced in the laser cavity. As a typical case, assume that the initial,
i.e., unsaturated, absorption of the cell is 50%. Then, laser action will start only when the
gain of the active medium compensates the loss of the saturable absorber plus the unsaturable
cavity losses. Owing to the large value of cell absorption, the required critical population
inversion is thus very high. When laser action eventually starts, the beam intensity inside the
laser cavity, I.t/, will build up from the starting noise, In, arising from spontaneous emission.
To appreciate the full time evolution of I.t/ we show in Fig. 8.8a a logarithmic plot of I.t/=In

versus time in a typical situation (see example 8.5).When the laser intensity becomes equal to
Is, which occurs at time t D ts in the figure, the absorber begins to bleach owing to saturation.
The rate of growth of laser intensity is thus increased, this in turn results in an increased rate
of absorber bleaching, and so on. The overall result is a very rapid bleaching of the saturable
absorber. Since Is is comparatively small, the inversion still left in the laser medium, after
bleaching of the absorber, is essentially the same as the initial inversion, i.e., very large. After
the absorber has bleached, the laser will thus have a gain well in excess of the losses, and

FIG. 8.8. Typical time behavior for the laser beam intensity I and cavity photon number � in a 50-cm long Nd:YAG
laser which is passively Q-switched by a saturable absorber. (a) shows a logarithmic plot of I=In , where In is the noise
intensity due to spontaneous emission, and provides the most convenient description of dynamical behavior before
saturation of the saturable absorber. (b) shows a linear plot of �=�i D I=In , where �i Š 1 is the initial number of
photons due to spontaneous emission, this providing the most convenient description of time evolution around the
peak of the pulse.
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a giant pulse will be produced. The dynamical behavior during this last phase is illustrated
in more detail in Fig. 8.8b, where the quantity �.t/=�i D I.t/=In Œ�.t/ is the cavity photon
number and �i Š 1 is the initial value due to spontaneous emission] is now plotted vs time, in
a linear scale and in a restricted time interval. The time behavior of the total inversion NVa,
where Va is the volume of the mode in the active medium, is also shown in the same figure (see
example 8.5). One sees that, as in any other Q-switching case, the photon number now keeps
increasing rapidly until saturation of the inversion and hence of the gain sets in. The pulse
thus reaches a maximum value when the inversion becomes equal to the critical inversion, Nc,
of the laser without saturable absorber and the pulse thereafter decreases.

An important feature to be noticed from Fig. 8.8 is that the time taken for the pulse to
increase from the noise level to the peak value is very long .tp Š 3.94 μs/. This is essentially
due to the fact that, during the unbleached phase of the saturable absorber, i.e. for t < ts,
laser gain barely exceeds the high threshold value established by the presence of the, as yet
unsaturated, absorber. The growth of laser intensity is thus very slow and a large number of
passes is required for the beam to reach its peak value (�2,370 in the example considered
in Fig. 8.8). This results in a natural selection of cavity modes..11/ Suppose in fact that two
modes have single pass unsaturated gains g1 and g2 .g D �Nl/ and single pass losses �1 and
�2. Since the two modes start from the same intensity as established by spontaneous emission,
the ratio of the two intensities, at time t D ts, i.e., before saturable absorber saturation, will be
given by

I1

I2
D
"

e.g1�
1/

e.g2�
2/

#n

(8.4.5)

where n is the number of round trips within the cavity up to a time t D ts (n Š 2, 310 in the
example of Fig. 8.8). If we now let ı D .g1 ��1/�.g2 ��2/ be the difference between the two
net gains, from Eq. (8.4.5) we can write .I1=I2/ D exp nı. We thus see that, even assuming the
very modest value for ı of 0.001, for n D 2, 310 we get .I1=I2/ D exp 2.3 Š 10. Thus even
a very modest discrimination of either gain or loss between the two modes results in a large
discrimination between their intensities at time t D ts, and hence also at the peak of the pulse,
which occurs shortly afterward (�100 ns in the example). As a result, single-mode operation
can be achieved rather easily in the case of a saturable absorber Q-switch. Note that, in the
case of active Q-switching, this mode selection mechanism is much less effective since the
laser build-up from noise is much faster and the total number of transits may now be of the
order of only 10 or 20�.

Passive Q-switching by saturable absorbers provides the simplest method of
Q-switching. Photochemical degradation of the absorber, particularly for dye saturable
absorbers, was the main drawback to this type of Q-switch. This situation is now changing
with the advent of solid-state absorbers which do not degrade. The use of passive Q-switching
has therefore mainly restricted to low average-power devices.

� It should be noted, however, that one can operate an active Q-switch in an analogous fashion to the saturable
absorber by setting the low Q (high loss) condition to a value that permits lasing to start (known as “prelasing”)
before gradually switching to high Q after a long prelase has allowed mode selection to occur..38/
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8.4.3. Operating Regimes

Q-switched lasers can operate in either one of the following two ways: (1) Pulsed opera-
tion (Fig. 8.9). In this case the pump rate Rp.t/ is generally in the form of a pulse of duration
comparable to the upper state lifetime � (Fig. 8.9a). Without Q-switching, the population
inversion, N.t/, would reach a maximum value and decrease thereafter. The cavity Q is
switched at the time when N.t/ reaches its maximum value (t D 0 in Fig. 8.9b). Then,
for t > 0, the number of photons begins to grow, leading to a pulse whose peak occurs at
some time �d after switching. As a result of the growth of the photon number, the popula-
tion inversion N.t/ will decrease from its initial value Ni (at t D 0) to the final value Nf left
after the pulse is over. It should be noted that, according to a comment already made in con-
nection with Fig. 8.3, the time scales for t < 0 and t > 0 are completely different. In fact,
the time scale of events for t < 0 falls in the ms range while the time scale of events for
t > 0 falls in the ns range. Q-switched lasers with a pulsed pump can obviously be operated
repetitively, and typical repetition rates are from a few to a few tens of Hz. (2) Continu-
ously pumped, repetitively Q-switched operation (Fig. 8.10). In this case a cw pump, Rp, is
applied to the laser (Fig. 8.10a) and the cavity losses are periodically switched from a high to
a low value (Fig. 8.10b). The laser output then consists of a continuous train of Q-switched
pulses (Fig. 8.10c). During each pulse, the inversion will fall from its initial value Ni (before
Q-switching) to a final value Nf (after the Q-switched pulse) (Fig. 8.10d). The population
inversion is then restored to its initial value Ni by the pumping process before the next Q-
switching event. Since the time taken to restore the inversion is roughly equal to the upper
state lifetime � , the time �p between two consecutive pulses must be equal to or shorter than
� . In fact, if �p were much longer than � , most of the available inversion would be lost by
spontaneous decay. Therefore, repetition rates of cw pumped Q-switched lasers are typically
from a few kHz to a few tens of kHz.

Electro-optical and mechanical shutters as well as saturable absorbers are commonly
used for pulsed operation. For repetitive Q-switching of continuously pumped lasers (which
have lower gain than pulsed lasers) acousto-optic Q-switches and, sometimes, mechanical

FIG. 8.9. Development of a Q-switched laser pulse in pulsed operation. The figure shows the time behavior of: (a)
the pump rate Rp; (b) the resonator loss � , (c) the population inversion N; (d) the number of photons �.
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FIG. 8.10. Development of Q-switched laser pulses in a repetitively Q-switched, cw pumped, laser. The figure shows
the time behavior of: (a) the pump rate Rp; (b) the resonator losses � ; (c) the number of photons �; (d) the population
inversion N.

shutters are commonly used. With low-power cw lasers, a saturable absorber within the cavity
can, under appropriate conditions, lead to repetitive Q-switching operation. In this case, the
repetition rate of the Q-switched pulses is established by the non-linear dynamics of the
absorber rather than by an external control.

8.4.4. Theory of Active Q-Switching

For the sake of simplicity we will only consider the case of active Q-switching and we
will further assume the switching to be instantaneous (fast switching case)..12/ The dynamical
behavior of the laser can again be obtained from Eqs. (7.2.16) and (7.2.24) for four- and
quasi-three-level lasers, respectively.

We will first consider a four-level laser operating in a pulsed regime (Fig. 8.9) and assume
that, for t < 0, the losses are large enough for the laser to be below threshold. If Q-switching
is performed when N.t/ has attained its maximum value, the corresponding initial inversion
can be obtained from Eq. (7.2.16a) by setting .dN=dt/ D 0. We thus get

Ni D �Rp.0/ (8.4.6)

where Rp.0/ is the pump rate value when Q-switching occurs (i.e., at t D 0). We now assume
that the time behavior of Rp.t/ is always the same whatever the value of

R
Rpdt, i.e., of the

pump energy. We can then put Rp.0/ / R
Rpdt so that, for example, if

R
Rpdt is doubled then

Rp.0/ will also double. Thus, if we let Ep be the pump energy corresponding to the given
pump rate, since Ep / R

Rpdt, we will then have Ep / Rp.0/ and, according to Eq. (8.4.6),
Ep / Ni. Therefore, if we let Nic and Epc be the initial inversion and the corresponding pump
energy, respectively, when the laser is operated just at threshold, we can write

.Ni=Nic/ D .Ep=Epc/ D x (8.4.7)

where x D .Ep=Epc/ is the amount by which threshold is exceeded. Since Nic is the critical
inversion for normal laser action (i.e., when the Q-switching element is open), its value can be
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obtained by the usual critical inversion relation i.e., Nic D Nc D �=� l, where � is the cavity
loss with the Q-switching element open. If Nic is known, i.e., if � , � , and l are known, and
if the ratio x between the actual pump energy and the threshold pump energy is also known,
then Eq. (8.4.7) allows the initial inversion, Ni, to be readily calculated.

Once Ni is known, the time evolution of the system after Q-switching, i.e., for t > 0,
can be obtained from Eq. (7.2.16) with the initial conditions N.0/ D Ni and �.0/ D �i. Here
again �i is just some small number of photons needed to let laser action start Œ�i Š 1�. The
equations can now be considerably simplified since we expect the evolution of both N.t/ and
�.t/ to occur on a time scale so short that the pump term Rp and the spontaneous decay term
N=� in (7.2.16a) can be neglected. Equations (7.2.16) then reduce to

dN

dt
D �B�N (8.4.8a)

d�

dt
D
�

VaBN � 1

�c

�
� (8.4.8b)

Before proceeding it is worth remembering that, according to Eq. (8.2.12), the population
Np corresponding to the peak of the photon pulse (see Fig. 8.9c), i.e., when .d�=dt/ D 0, is

Np D 1=VaB�c D �=� l (8.4.9)

which is the same as the critical inversion Nc. This result, with the help of Eq. (8.4.7), allows
us to express the ratio Ni=Np in a form that will be useful for the discussion that follows, viz.,

.Ni=Np/ D x (8.4.10)

After these preliminary considerations, we are ready to proceed with a calculation of the peak
power of the laser output pulse, Pp, through, e.g., mirror 2. According to Eq. (7.2.18) we have

Pp D
�
�2c

2Le

�
h��p (8.4.11)

where �p is the number of photons in the cavity at the peak of the laser pulse. To calculate �p

we take the ratio between Eqs. (8.4.8a) and (8.4.8b). Using Eq. (8.4.9) also, we get

d�

dN
D �Va

�
1 � Np

N

�
(8.4.12)

which can be readily integrated to give

� D VaŒNi � N � Np ln.Ni=N/� (8.4.13)

where, for simplicity, the small number �i has been neglected. At the peak of the pulse we
then get

�p D VaNp

�
Ni

Np
� ln

Ni

Np
� 1

�
(8.4.14)

which readily gives �p once Np and the ratio .Ni=Np/ are known through Eqs. (8.4.9)
and (8.4.10) respectively. The peakpower is then obtained from Eqs. (8.4.11), (8.4.14)
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and (8.4.9) as

Pp D �2

2

�
Ab

�

� �
h�

�c

� �
Ni

Np
� ln

Ni

Np
� 1

�
(8.4.15)

where Ab D Va=l is the beam area and where the expression for �c, given by Eq. (7.2.14), has
also been used.

To calculate the output energy, E, we begin by noticing that

E D
1Z

0

P.t/dt D
�
�2c

2Le

�
h�

1Z
0

�dt (8.4.16)

where P.t/ is the time behavior of the output power and where Eq. (7.2.18) has been used
again. The integration in Eq. (8.4.16) can be carried out easily by integrating both sides of
Eq. (8.4.8b) and by noting that �.0/ D �.1/ Š 0. We then get

R1
0 �dt D Va�c

R1
0 B�Ndt.

The quantity
R1

0 B�Ndt can then be obtained by integrating both sides of Eq. (8.4.8a), to
give

R1
0 B�Ndt D .Ni � Nf / where Nf is the final inversion (see Fig. 8.3b). We thus getR1

0 �dt D Va�c.Ni � Nf / so that Eq. (8.4.16) becomes

E D .�2=2�/.Ni � Nf /.Vah�/ (8.4.17)

Note that Eq. (8.4.17) can be readily understood when we notice that .Ni � Nf / is the
available inversion and this inversion produces a number of photons .Ni � Nf /Va. Out of this
number of photons emitted by the medium, only the fraction .�2=2�/ is available as output
energy. To calculate E from Eq. (8.4.17) one needs to know Nf . This can be obtained from
Eq. (8.4.13) by letting t ! 1. Since �.1/ Š 0, we get

Ni � Nf

Ni
D Np

Ni
ln

Ni

Nf
(8.4.18)

which gives Nf =Ni as a function of Np=Ni. We can now define the quantity �E D .Ni � Nf /=Ni

appearing in Eq. (8.4.18) as the inversion (or energy) utilization factor. In fact, out of the
initial inversion Ni, the inversion which has been actually used is .Ni � Nf /. In terms of �E

Eq. (8.4.18) can be recast in the form

�E.Ni=Np/ D � ln.1 � �E/ (8.4.19)

Figure 8.11 shows a plot of the energy utilization factor �E versus .Ni=Np/ as obtained
from Eq. (8.4.19). Note that, for large values of .Ni=Np/, i.e., for pump energy far exceeding
the threshold pump energy, the energy utilization factor tends to unity. Note also that, in
terms of �E, Eq. (8.4.17), with the help of Eq. (8.4.9) can be put in the simpler and more
suggestive form

E D
�
�2

2

Ni

Np
�E

� �
Ab

�

�
h� (8.4.20)

where Ab D Va=l is again the beam area.
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FIG. 8.11. Energy utilization factor �E versus the ratio, Ni=Np , between the initial inversion and the peak inversion.

Once the output energy and peak power are known, we can get an approximate value,
	�p, for the width of the output pulse by defining it as 	�p D E=Pp. From Eqs. (8.4.20)
and (8.4.15) we get

	�p D �c
.Ni=Np/�E

Œ.Ni=Np/� ln.Ni=Np/� 1�
(8.4.21)

Note that	�p=�c only depends upon the value of .Ni=Np/ D x, and, for .Ni=Np/ ranging
e.g. from 2 to 10, 	�p turns out to range between 5.25 and 1.49 times the photon decay time
�c. In particular, if we take .Ni=Np/ D x D 2.5 we find from Fig. 8.11 that �E D 0.89 and
from Eq. (8.4.21)	�p Š 3.81 �c. It should be noted, however, that the expression Eq. (8.4.21)
provides only an approximate value of	�p. The emitted pulse is in fact somewhat asymmetric
and one can, more precisely, define a pulse risetime �r and a pulse fall time �f as the time
intervals from the peak of the pulse to its half-power points. For the example .Ni=Np/ D x D
2.5 just considered, the computer values for �r and �f are �r D 1.45�c and �f D 2.06�c. We
see that, in this example, the approximate value for 	�p calculated from Eq. (8.4.21) is about
9% higher than the actual computed value �r C �f , a result that holds approximately for any
value of .Ni=Np/.

We can now proceed to calculate the time delay �d between the peak of the pulse and the
time of Q-switching (see Fig. 8.9). This delay can be approximated by the time required for
the photon number to reach some given fraction of its peak value. If, for instance, we choose
this fraction to be (1/10), no appreciable saturation of the inversion is expected to occur up to
this point, and we can make the approximation N.t/ Š Ni in Eq. (8.4.8b). With the help of
Eqs. (8.4.9) and (8.4.10), then Eq. (8.4.8b) transforms to .d�=dt/ D .x � 1/�=�c, which upon
integration gives

� D �i expŒ.x � 1/t=�c� (8.4.22)



8.4 � Q-Switching 333

FIG. 8.12. Laser output energy versus input energy to the flashlamp for a Q-switched Nd:YAG laser, whose
geometrical dimensions are shown in the inset (after Koechner,.13/ by permission).

The time delay �d is obtained from Eq. (8.4.22) by putting � D �p=10. Setting �i D 1,
we get

�d D �c

x � 1
ln

�
�p

10

�
(8.4.23)

where �p is given by Eq. (8.4.14). Note that, since �p is a very large number (�1017 or more,
see next example) and since it appears in the logarithmic term of Eq. (8.4.23), �d does not
change much if we choose a different fraction of �p in this logarithmic term, e.g., .�p=20/.

Example 8.4. Output energy, pulse duration, and pulse build-up time in a typical Q-switched Nd:YAG
laser Figure 8.12 shows a typical plot of laser output energy, E, versus input energy, Ep, to the flash-
lamp for a Q-switched Nd:YAG laser. The rod and cavity dimensions are also indicated in the inset of the
figure..13/ The laser is operated in a pulsed regime and is Q-switched by a KD�P (deuterated potassium
dihydrogen phosphate, i.e., KD2PO4) Pockels cell. From the figure we observe that the laser has a thresh-
old energy Ecp Š 3.4 J and gives, e.g., an output energy E Š 120 mJ for Ep Š 10 J. At this value of pump
energy the laser pulsewidth is found experimentally to be �6 ns.

We can now proceed to a comparison of these experimental results with those predicted from the
previous equations. We will neglect mirror absorption and so put �2 Š � ln R2 D 1.2 and �1 Š 0. Internal
losses of the polarizer-Pockels cell combination are estimated to be Li Š 15%, while, in comparison, the
internal losses of the rod can be neglected. We thus get �i D � ln.1 � Li/ Š 0.162 and � D Œ.�1 C
�2/=2�C �i D 0.762. The predicted value of laser energy, at Ep D 10 J, can be obtained from Eq. (8.4.20)
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once we notice that, for our case, one has .Ni=Np/ D .Ep=Ecp/ D 2.9. We now assume Ab Š A D
0.19 cm2, where A is the cross-sectional area of the rod. Since .Ni=Np/ D 2.9, we find from Fig. 8.11 that
�E Š 0.94 and from Eq. (8.4.20), assuming an effective value of the stimulated emission cross section of
� D 2.8 � 10�19 cm2 (see example 2.10), we obtain E Š 200 mJ. The somewhat larger value predicted
by the theory can be attributed to two main reasons: (i) The area of the beam is certainly smaller than that
of the rod. (ii) Due to the short cavity length, the condition for fast switching, namely that the switching
time is much shorter than the build-up time of the laser pulse, may not be well satisfied in our case. Later
on in this example, it will be shown, in fact, that the predicted build-up time of the Q-switched pulse,
�d, is about 20 ns. It is difficult to switch the Pockels cell in a time much shorter than this value and, as
a consequence, some energy will be lost, through the polarizer, during the switching process (in some
typical cases, with pulses of this short a duration, as much as 20% of the output energy can be found to be
switched out of the cavity by the polarizer, during the Q-switching process).

To calculate the predicted pulse duration we begin by noticing that, according to Eq. (7.2.11), the
effective resonator length is Le D L C .n � 1/l Š 22 cm, where n Š 1.83 for Nd:YAG, so that from
Eq. (7.2.14) we obtain �c D Le=c� Š 1 ns. The laser pulsewidth is obtained through Eq. (8.4.21) as
	�p D �c�Ex=.x � ln x � 1/ Š 3.3 ns, where Fig. 8.11 has been used to calculate �E. The discrepancy
between this value and the experimental value, 	�p Š 6 ns, is attributed to two factors: (1) Multimode
oscillation. In fact, the build up time is expected to be different for different modes owing to their slightly
different gain and this should appreciably broaden the pulse duration. (2) As already mentioned, the
condition for fast switching may not be completely satisfied in our case, and the pulsewidth is expected to
be somewhat broadened by slow switching.

The build-up time of the Q-switched pulse can be obtained from Eq. (8.4.23) once �p is known. If we
take Np D �=� l Š 5.44 � 1017 cm�3 and assume Va D Ab l Š Al Š 1 cm3, from Eq. (8.4.14) we obtain
�p Š 4.54 � 1017 photons, so that from Eq. (8.4.23), with �c D 1 ns and x D 2.9, we get �d Š 20 ns.

Example 8.5. Dynamical behavior of a passively Q-switched Nd:YAG laser We consider a laser cavity
with equivalent length Le D 50 cm in which the active medium is a Nd:YAG rod of diameter D D
5 mm. We assume the laser to be passively Q-switched by a saturable absorber with saturation intensity
Is D 1 MW=cm2 and we also assume that the cell containing the saturable absorber solution has an
unsaturated loss of L D 50%. We take the output mirror reflectivity to be R2 D 74% and we neglect all
other cavity losses. We thus have �2 D � ln R2 Š 0.3 for the loss of the output-coupling mirror and
�a D � ln.1 � L/ D 0.693 for the unsaturated loss of the saturable absorber. The total unsaturated loss
will then be �t D �a C .�2=2/ D 0.843. We now assume that the pump rate provides a square pulse lasting
for a time tP D 100 μs (see Fig. 8.13). According to Eq. (8.4.1) the population inversion, at the end of the
pumping pulse and in the absence of laser action, is given by

N.tP/ D N1Œ1 � exp.�tP=�/� D 0.35N1 (8.4.24)

where we have taken � D 230 μs. Oscillation threshold will be reached at time tth (see Fig. 8.13) such that

�N.tth/l D �t (8.4.25)
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We now set the pumping rate to exceed the laser threshold by 10% so that

N.tP/ D 1.1N.tth/ (8.4.26)

where N.tP/ is the inversion which would be present at t D tP in the absence of laser action (see Fig. 8.13).
From Eqs. (8.4.26) and (8.4.24) we obtain N.tth/ Š 0.32 N1 so that, from Eq. (8.4.1), we get tth Š 88 μs
and from Eq. (8.4.25) �N1l D �t=0.32 D 2.64.

For t > tth the laser will show a net gain, gnet.t0/, which, before appreciable absorber saturation
occurs, can be written as gnet.t/ D �Nl � �t Š � l.dN=dt/tht0, where we have changed to a new reference
time axis t0 whose origin is at t D tth. From Eq. (8.4.1) and using the previously calculated value of tth,
one has .dN=dt/th D .N1=�/ exp.�tth=�/ D 0.68 .N1=�/. The net gain will then be given by gnet.t0/ D
0.68.�N1l/.t0=�/ and, using the previously calculated value of .�N1l/, we get

gnet.t
0/ Š 1.8.t0=�/ (8.4.27)

Once the expression for the net gain has been calculated, the growth of the cavity photons in the laser
cavity can be obtained from the equation

.d�=dt/ D .gnet=tT/� (8.4.28)

where tT D Le=c Š 1.66 ns is the single-pass transit time for the laser cavity. Equation (8.4.28) could be
readily derived by an argument very similar to that used to obtain Eq. (7.2.12). If Eq. (8.4.27) is substituted
into Eq. (8.4.28) and the resulting equation integrated, we obtain

�.t0/ D �i exp

"
0.9

� tT
�

� � t0

tT

�2
#

(8.4.29)

Note that, since the net gain increases linearly with time [see Eq. (8.4.27)], �.t0/ increases exponen-
tially with t02 [see Eq. (8.4.29) and see also Fig. 8.8a, where time t coincides with time t0 of this example].
To calculate from Eq. (8.4.29) the time t0s at which saturation occurs, we need to relate �.t0/ to the circulat-
ing beam intensity I.t0/. To arrive at this situation we first observe that, if two beams of the same intensity,
I, are traveling in opposite directions within a laser cavity, the spatially averaged value of the energy
density within the cavity will be � D 2I=c [compare with Eq. (2.4.10)]. The relation between the photon
number and the circulating laser intensity within the cavity will then be � D �AbLe=h� D 2IAbLe=ch�,
where Ab is the beam area. From the previous expression, taking Ab D 
D2=4 Š 0.196 cm2, we find that
the photon number �s corresponding to the saturation intensity, Is D 1 MW=cm2, is �s Š 3.49 � 1015.
From Eq. (8.4.29), taking �i D 1, we then obtain .t0s=tT/ Š 2, 347 i.e., t0s Š 3.89 μs and hence ts Š 92 μs
(see Fig. 8.13). Therefore, starting from the noise level, it takes �2,350 transits for the light to reach an
intensity equal to the absorber saturation intensity. From this point on the saturable absorber bleaches very
rapidly.

For t > ts, the dynamical behavior of the laser can be calculated approximately by assuming that the
saturable absorber is completely bleached. The time evolution can then be obtained from the equations of
this section by assuming, as initial inversion, Ni D N.ts/. We then have for the initial gain gi D �Nil D
�N1lŒ1 � exp �.ts=�/� D 0.87, while the gain at the peak of the pulse is gp D �Npl D � D 0.15.
We thus get Ni=Np D gi=gp D 5.8. The total initial inversion in the mode volume Va is then given by
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NiVa D NiAbl D .Ab=�/gi. Taking � D 2.8 � 10�19 cm2 (see previous example) and the previously
calculated value of Ab and gi, we obtain NiVa D 6.09 � 1017 ions (see Fig. 8.8b). Likewise we have
NpVa D NiVa=5.8 D 1.05 � 1017 ions. The calculation of the peak photon number is then readily obtained
from Eq. (8.4.14) as �p D 3.19 � 1017 photons. The calculation of the peak pulse delay time �d and
pulsewidth 	�p are also readily obtained from Eqs. (8.4.23) and (8.4.21), respectively, once the cavity
photon decay time is calculated as �c D tT=� Š 11 ns. We get �d Š 88 ns and 	�p Š 21 ns, so that pulse
peak occurs approximately at a time t0p Š t0s C �d C .	�p=2/ D 3.99�s (see Fig. 8.8b).

We now go on to consider the case of a continuously pumped, repetitively Q-switched,
laser (Fig. 8.10). We first note that, after switching and during the evolution of the Q-switched
pulse, Eq. (8.4.8) still apply. The expressions for peak power, output energy, and pulse dura-
tion are therefore still given by Eqs. (8.4.15), (8.4.20), and (8.4.21) respectively. What does
change, however, is the expression for .Ni=Np/, which is no longer given by Eq. (8.4.10)
since it is determined by a different pump dynamics. In fact, we now require that, in the
time �p between two consecutive pulses, the pump rate must reestablish the initial inversion,
starting from the population, Nf , which was left after the preceding Q-switching event. From
Eq. (7.2.16a), putting � D 0, we get, upon integration,

Ni D .Rp�/ � .Rp� � Nf / exp.��p=�/ (8.4.30)

From Eqs. (7.3.6), (7.3.3) and (8.4.9) we have Rp� D xNc D xNp and Eq. (8.4.30)
then gives

x
Np

Ni
Œ1 � exp.�1=f �/� D 1 � Nf

Ni
exp.�1=f �/ (8.4.31)

FIG. 8.13. Time evolution of the pump rate and of the laser gain �NL for a square pump of duration tP D 100 μs
and for a medium with relaxation time � D 230 μs.
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FIG. 8.14. Case of a cw-pumped repetitively Q-switched laser. Plot of .Ni=Np/ versus the amount x by which
threshold is exceeded, for several values of the normalized pulse repetition rate f �.

where x is the amount by which the cw pump exceeds its threshold value and f � D � f , where
f D 1=�p is the laser repetition rate. Equation (8.4.31) together with Eq. (8.4.18), which still
holds, provide a pair of equations that can be solved for both .Ni=Np/ and .Ni=Nf /, once x and
f � are known. Fig. 8.14 shows the solution for .Ni=Np/ versus the amount x by which thresh-
old is exceeded, plotted for several values of the normalized frequency f �. For given values
of x and f �, Fig. 8.14 gives the corresponding value of .Ni=Np/. Once .Ni=Np/ is known,
the quantity .Ni=Nf / or, equivalently, the energy utilization factor �E , can be obtained from
Fig. 8.11. When .Ni=Np/ and �E have been calculated, Pp, E, and 	�p are readily obtained
from Eqs. (8.4.15), (8.4.20), and (8.4.21), respectively. Note that, within the range we have
been considering for the variables x and f �, the relation between .Ni=Np/ and x is close to
linear.

The calculations for a quasi-three-level laser would proceed in a similar way starting
from Eq. (7.2.24). Because of space limitations, these calculations are not presented here.

8.5. GAIN SWITCHING

Gain switching, like Q-switching, is a technique that allows the generation of a laser
pulse of short duration (generally from a few tens to a few hundreds of nanoseconds) and
high peak power. Unlike Q switching, however, where the losses are rapidly switched to
a low value, in the case of gain switching, it is the laser gain that is rapidly switched to
a high value. Gain switching is achieved by using a pumping pulse that is so fast that the
population inversion and hence the laser gain reach a value considerably above threshold
before the number of cavity photons has had time to build up to a sufficiently high level to
deplete the inversion.
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The physical phenomena involved can be simply described by referring to the spiking
situation depicted in Fig. 8.1. If we assume that the pump rate, Rp D Rp.t/, is in the form
of a square pulse starting at t D 0 and ending at t Š 5 μs, the light emission will consist of
just the first spike of �.t/, occurring at about t D 5 μs. After this spike, in fact, the inversion
will have been driven by the light pulse to a value well below the threshold value and it does
not grow thereafter as there is no further pumping. Thus we see that gain switching is similar
in character to laser spiking described in Sect. 8.2. The main difference arises from the fact
that, to obtain pulses of high peak power and short duration, the peak value of Rp must be
much larger than the cw value considered in Fig. 8.1. Depending on the peak value of this
pump rate, the peak inversion may then range between 4 and 10 times the threshold value
rather than the value of �1.48 shown in Fig. 8.1. The build up time of the laser radiation up
to its peak value may correspondingly range between 5 and 20 times the cavity photon decay
time �c. The time duration of the pumping pulse must therefore be approximately equal to this
build-up time and hence very short..14/

In an actual situation, the time behavior of the pumping is usually in the form of a bell-
shaped pulse rather than a square pulse. In this case we require that the peak of the photon
spike occurs at an appropriate time in the trailing edge of the pumping pulse. In fact, if this
peak were to occur at e.g., the peak of the pumping pulse, there could be enough pump input
left after the laser pulse to allow the inversion to exceed threshold again and thus produce a
second, although weaker, laser pulse. If, on the other hand, the photon peak were to occur
much later in the tail of the pulse, this would imply that there was insufficient pumping time
for the inversion to grow to a sufficiently high value. The above discussion implies that, for
a given duration of pump pulse, there is some optimum value for the peak pump rate. By
decreasing the pump duration, the optimum value of the peak pump rate increases and a more
intense and narrower laser pulse is produced.

It should be noted that, given a sufficiently fast and intense pump pulse, any laser can in
principle be gain switched even if the spontaneous decay of its upper laser level is allowed
by electric dipole interaction and the lifetime correspondingly falls in the nanosecond range.
In this case the pumping pulse and the cavity photon decay time must be appreciably shorter
than this lifetime and, correspondingly, very short gain switched pulses, i.e., with duration
shorter than �1 ns, can be obtained.

Example 8.6. Typical cases of gain switched lasers The most common example of a gain-switched laser
is the electrically pulsed TEA (Transversely Excited at Atmospheric pressure; see Chap. 10) CO2 laser.
Taking a typical cavity length of L D 1 m, a 20% transmission of the output mirror, and assuming that
the internal losses arise only from this mirror’s transmission, we get � Š 0.1 and �c D L=c� Š 30 ns.
Assuming that the laser build up time is ten times longer, we see that the duration of the pumping pulse
should last �300 ns, in agreement with experimental findings.

As typical examples of gain switched lasers using active media with upper state lifetime, � , in
the nanosecond range, we mention the case of a short-cavity dye laser (e.g., Rhodamine 6G dye laser,
� Š 5 ns) pumped by the fast .�0.5 ns/ pulse of an atmospheric pressure N2 laser or the case of a semi-
conductor laser (e.g., GaAs, � Š 3 ns) pumped by a very short .�0.5 ns/ current pulse. In both cases, gain
switched laser pulses of �100 ps duration can be obtained.
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8.6. MODE-LOCKING

Let us now consider a laser which is oscillating on a rather large number of longitudinal
modes. Under ordinary circumstances, the phases of these modes will have random values
and, for cw oscillation, the beam intensity will show a random time behavior. As an example,
Fig. 8.15 shows the time behavior of the square of the electric field amplitude, jA.t/j2, of the
output beam for the case of N D 31 oscillating modes, each with the same amplitude E0, and
evenly separated in frequency by the frequency difference 	� between consecutive longitu-
dinal modes. One sees that the output beam consists of a random sequence of light pulses.
Despite this randomness, since these pulses arise from the sum of N frequency components
which are evenly spaced in frequency, the pulse waveform of Fig. 8.15 has the following
general properties which are a characteristic of a Fourier series: (i) The waveform is periodic
with a period �p D 1=	�. (ii) Each light pulse of the random waveform has a duration 	�p

roughly equal to 1=	�L where, 	�L D N	�, is the total oscillating bandwidth. Thus, for
lasers with relatively large gain bandwidths, such as solid-state, dye or semiconductor lasers,
	�L may be comparable to this gain bandwidth and hence short noise pulses, with durations
of picoseconds or less, can be produced. Note that, since the response time of a conventional
photodetector is usually much longer than a few picoseconds, one does not resolve this com-
plex time behavior in the detected output of a, random phase, multimode laser, and instead its
average value is monitored. This value is simply the sum of powers in the modes and hence is
proportional to NE2

0.
Let us now suppose that the oscillating modes, while still having equal or comparable

amplitudes, are somehow made to oscillate with some definite relation between their phases.
Such a laser is referred to as mode locked, and the process by which the modes are made to
adopt a definite phase relation is referred to as mode locking..15/ Mode-locked lasers will be
considered at some length in this section.

FIG. 8.15. Example of time behavior of the squared amplitude of the total electric field, jA.t/j2, for the case of 31
oscillating modes, all with the same amplitude E0 and with random phases.
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FIG. 8.16. Mode amplitudes (represented by vertical lines) versus frequency for a mode-locked laser. (a) Uniform
amplitude. (b) Gaussian amplitude distribution over a bandwidth (FWHM) 	!L.

8.6.1. Frequency-Domain Description

We will first describe mode-locking in the frequency domain and consider, as a first
example, the case of 2n C 1 longitudinal modes oscillating with the same amplitude E0

(Fig. 8.16a). We will assume the phases 'l of the modes in the output beam to be locked
according to the relation

'l � 'l�1 D ' (8.6.1)

where ' is a constant. The total electric field E.t/ of the e.m. wave, at any given point in the
output beam, can be written as

E.t/ D
CnX
�n

lE0 exp fj Œ.!0 C l	!/ t C l'�g (8.6.2)

where !0 is the frequency of the central mode, 	! is the frequency difference between two
consecutive modes and where the value of the phase for the central mode has, for simplicity,
been taken to be zero. According to Eq. (8.6.2), the total electric field of the wave can be
written as

E.t/ D A.t/ exp.j!0t/ (8.6.3)

where

A.t/ D
CnX
�n

lE0 exp Œjl .	!t C '/� (8.6.4)

Equation (8.6.3) shows that E.t/ can be represented in terms of a sinusoidal carrier wave,
at the center-mode frequency !0, whose amplitude A.t/ is time dependent. To calculate the
time behavior of A.t/, we now change to a new time reference t0 such that 	!t0 D 	!t C '.
In terms of the new variable t0, Eq. (8.6.4) transforms to

A.t0/ D
CnX
�n

lE0 exp jl.	! t0/ (8.6.5)
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FIG. 8.17. Time behavior of the squared amplitude of the electric field for the case of seven oscillating modes with
locked phases and equal amplitudes, E0.

and the sum appearing in the right-hand side can be easily recognized as a geometric progres-
sion with a ratio exp j.	!t0/ between consecutive terms. Summation of this progression can
then be easily performed and we obtain

A.t0/ D E0
sin Œ.2n C 1/	! t0=2�

sin Œ	! t0=2�
(8.6.6)

To help understanding the physical significance of this expression, Fig. 8.17 shows the
quantity A2.t0/=E2

0, A2.t0/ being proportional to the beam intensity, versus time t0, for 2nC1 D
7 oscillating modes. It is seen that, as a result of the phase-locking condition Eq. (8.6.1), the
oscillating modes interfere so as to produce a train of evenly spaced light pulses. The pulse
maxima occur at those times for which the denominator of Eq. (8.6.6) vanishes. In the new
time reference t0, the first maximum occurs for t0 D 0. Note that, at this time, the numerator
of Eq. (8.6.6) also vanishes and, upon making the approximation sin ˛ Š ˛, which holds for
small values of ˛, we readily see from Eq. (8.6.6) that A2.0/ D .2n C 1/2E2

0. The next pulse
will occur when the denominator of Eq. (8.6.6) again vanishes and this will happen at a time
t0 such that .	!t0=2/ D 
 . Two successive pulses are therefore separated by a time

�p D 2
=	! D 1=	� (8.6.7)

where	� is the frequency separation between two consecutive oscillating modes. For t0 > 0,
the first zero for A2.t0/ in Fig. 8.17 occurs when the numerator of Eq. (8.6.6) again vanishes.
This occurs at a time t0p such that

�
.2n C 1/	!t0p=2

	 D 
 . Since the width 	�p (FWHM) of
A2.t0/, i.e. of each laser pulse, is approximately equal to t0p, we thus have

	�p Š 2
=.2n C 1/	! D 1=	�L (8.6.8)

where 	�L D .2n C 1/	!=2
 is the total oscillating bandwidth (see Fig. 8.16a).
The mode-locking behavior of Fig. 8.17 can be readily understood if we represent the

field components of Eq. (8.6.5) by vectors in the complex plane. The l-th amplitude compo-
nent would thus correspond to a complex vector of amplitude E0 and rotating at the angular
velocity l	!. At time t0 D 0, all these vectors are seen from Eq. (8.6.5) to have zero phase
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FIG. 8.18. Representation of the cavity mode amplitudes in the complex plane for the case of five modes. Figure (a)
show the situation at a general time t0 > 0, while FIG. (b) depicts the time instant at which the sum of the five mode
amplitudes is zero.

and, accordingly, they lie in the same direction in Fig. 8.18, which we assume to be the
horizontal direction. The total field will, in this case, be .2n C 1/E0. For t0 > 0, the vector
corresponding to the central mode remains fixed, the vectors of the modes with l > 0 i.e., with
! > !0, will rotate in one direction (e.g., counterclockwise) while the vectors of the modes
with ! < !0 will rotate in the opposite (clockwise) sense. Thus, for the case of e.g., five
modes, the situation at some later time t0, will be as indicated in Fig. 8.18a. If now the time t0
is such that mode 1 has made a 2
 rotation (which occurs when 	!t0 D 2
), mode �1 will
also have rotated (clockwise) by 2
 , while modes 2 and �2 will have rotated by 4
 . All these
vectors will therefore be aligned again with that at frequency !0, and the total field amplitude
will again be .2n C 1/E0. Thus the time interval �p between two consecutive pulses must be
such that 	!�p D 2
 , as indeed shown by Eq. (8.6.7). Note that, in this picture, the time
instant t0p at which A.t0/ vanishes (see Fig. 8.17) correspond to the situation where all vectors
are evenly spaced around the 2
 angle (Fig. 8.18b). To achieve this condition, mode 1 must
have made a rotation of only 2
=5, or, more generally for .2n C 1/ modes, of 2
=.2n C 1/.
The time duration t0p and hence the pulse duration	�p thus turn out to be given by Eq. (8.6.8).

Before proceeding further it is worth summarizing and commenting on the main results
that have been obtained so far. We have found that, under the mode locking condition given
by Eq. (8.6.1), the output beam consists of a train of mode-locked pulses, the duration of
each pulse,	�p, being about equal to the inverse of the oscillating bandwidth	�L. Again this
result comes about again from a general property of a Fourier series. Now, since 	�L can be
of the order of the width of the gain line 	�0, very short pulses (down to a few picoseconds)
can be expected to result from mode-locking of solid-state or semiconductor lasers. For dye
or tunable solid-state lasers, the gain linewidth can be at least a factor 100 times larger, so
that very much shorter pulsewidths are possible and indeed have been obtained (e.g., �25 fs
for Rhodamine 6G dye laser and �7 fs for Ti:sapphire laser). In the case of gas lasers, on the
other hand, the gain linewidth is much narrower (up to a few GHz) and relatively long pulses
are generated (down to �100 ps). Note also that the peak power of the pulse is proportional
to .2n C 1/2E2

0, while for modes with random phases the average power is simply the sum of
powers in the modes and hence is proportional to .2n C 1/E2

0. Therefore, for the same number
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of oscillating modes and their field amplitudes E0, the ratio between the peak pulse power
in the mode-locked case and the average power in the non-mode-locked case is equal to the
number, .2n C 1/, of oscillating modes, which, for solid state or liquid lasers, can be rather
high .103 � 104/. We thus see that mode-locking is useful not only for producing pulses of
very short duration but also for producing high peak power.

So far we have restricted our considerations to the rather unrealistic case of an equal-
amplitude mode-spectrum (Fig. 8.16a). In general the spectral envelope is expected to have
a bell-shaped form and, as a characteristic example, we will consider an envelope with a
Gaussian distribution (Fig. 8.16b). We can therefore write the amplitude El of the l-th mode as

E2
l D E2

0 exp

"
�
�

2l	!

	!L

�2

ln 2

#
(8.6.9)

where 	!L represents the bandwidth (FWHM) of the spectral intensity. If we again assume
that the phases are locked according to Eq. (8.6.1) and that the phase of the central mode is
equal to zero, we again find that E.t/ can be expressed as in Eq. (8.6.3) where the amplitude
A.t/, in the time reference t0, is given by

A.t0/ D
C1X
�1

lEl exp j.l	! t0/ (8.6.10)

If the sum is approximated by an integral [i.e., A.t/ Š R
El exp j.l	!t/dl], the field

amplitude A.t/ is seen to be proportional to the Fourier transform of the spectral amplitude El.
We then find that A2.t/, i.e., the pulse intensity, is a Gaussian function of time, which can be
written as

A2.t/ / exp

"
�
�

2t

	�p

�2

ln 2

#
(8.6.11)

where

	�p D 2 ln 2=
	�L D 0.441=	�L (8.6.12)

Here, the term 	�p, appearing in Eq. (8.6.11), represents the width (FWHM) of the pulse
intensity.

As a conclusion to our discussion of the two examples given above, we can say that, when
the mode-locking condition Eq. (8.6.1) holds, the field amplitude turns out to be given by the
Fourier transform of the magnitude of the spectral amplitude. In such a case, the pulsewidth
	�p is related to the width of the laser spectrum 	�L by the relation 	�p D ˇ=	�L, where
ˇ is a numerical factor (of the order of unity), which depends on the particular shape of the
spectral intensity distribution. A pulse of this sort is said to be transform-limited.

Under locking conditions different from Eq. (8.6.1), the output pulse may be far from
being transform limited. As an example, instead of Eq. (8.6.1), which can be written as 'l D
l', we consider the situation where

'l D l'1 C l2'2 (8.6.13)



344 8 � Transient Laser Behavior

where '1 and '2 are two constants. If we again assume a Gaussian amplitude distribution such
as in Eq. (8.6.9), the Fourier transform of the spectrum can again be analytically calculated
and E.t/ can be written as

E.t/ / exp
��˛t2

	
exp

�
j


!0t C ˇt2

�	
(8.6.14)

where the two constants ˛ and ˇ are related to 	!L and '2. For brevity, these relations are
not given here since they are not needed for what follows. What is important to notice here,
however, are the following three points: (i) The beam intensity, being proportional to jE.t/j2,
is still described by a Gaussian function whose pulsewidth 	�p (FWHM), in terms of the
parameter ˛ is equal to

	�p D .2 ln 2=˛/1=2 (8.6.15)

(ii) The presence of a phase term l2'2 in Eq. (8.6.13), which is quadratic in the mode index
l, results in E.t/ having a phase term, ˇt2, which is quadratic in time. This means that the
instantaneous carrier frequency of the wave, !.t/ D d.!0t C ˇt2/=dt D !0 C 2ˇt, now
has a linear frequency sweep (or frequency chirp). (iii) Depending of the value of '2, the
product 	�p	�L can be much larger than the minimum value, 0.441, given by Eq. (8.6.12).
To understand this point, it is easiest to go back to a calculation of the spectrum of a field such
as in Eq. (8.6.14). The spectral intensity again turns out to be given by a Gaussian function
whose bandwidth	�L (FWHM) is given by

	�L D 0.441

	�p

"
1 C

 
ˇ	�2

p

2 ln 2

!#1=2

(8.6.16)

where the expression for ˛ given by Eq. (8.6.15) has been used. Equation (8.6.16) shows that,
if ˇ ¤ 0, one has 	�p	�L > 0.441 and that, for ˇ	�2

p � 1, i.e., for sufficiently large values
of the frequency chirp, the product	�p	�L becomes much larger than 1. The physical basis
for this result can be understood by noting that the spectral broadening now arises both from
the pulsed behavior of jE.t/j2, i.e., from the amplitude modulation of E.t/ [which accounts
for the first term on the right-hand side of Eq. (8.6.16)] and from the frequency chirp term 2ˇt
of E.t/ [which accounts for the second term on the right-hand side of Eq. (8.6.16)].

8.6.2. Time-Domain Picture

We recall that, with the mode locking condition given by Eq. (8.6.1), two consecutive
pulses of the output beam were found to be separated by a time �p given by Eq. (8.6.7). Since
	� D c=2L, where L is the cavity length, �p turns out to be equal to 2L=c, which is just the
cavity round trip time. It should be noted at this point that the spatial extent 	z of a typical
mode-locked pulse is usually much shorter than the cavity length [e.g. for a pulse of duration
	�p D 1 ps, one has 	z D c	�p D 0.3 mm while a laser cavity is typically several tens of
centimeter long]. The oscillating behavior inside the laser cavity can therefore be visualized as
consisting of a single ultrashort pulse, of duration	�p given by Eq. (8.6.8), which propagates
back and forth within the cavity. In such a case, in fact, the output beam would obviously
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FIG. 8.19. Use of a fast cavity shutter to achieve mode-locking: (a) Shutter placed at one cavity end thus leading to
an output pulse train with a repetition frequency of 	� D c=2L. (b) Shutter placed at a distance L=2, from one cavity
mirror. (c) Shutter placed at a distance, L=3, from one cavity mirror. The output pulse repetition rates for cases (b) and
(c) are 2	� and 3	�, respectively, these being examples of harmonic mode-locking. Figure (d) represents the case
of ring-laser mode-locking where the shutter position required for establishing mode-locking becomes irrelevant.

consist of a train of pulses with time separation between consecutive pulses equal to the cavity
round trip time. This is the so-called time-domain picture of mode-locking. According to this
picture, we readily understand that the mode-locking condition given by Eq. (8.6.1) can be
achieved by placing a suitably fast shutter at one end of the cavity (Fig. 8.19a). In fact, if an
initially non-mode-locked beam is present within the cavity, its spatial amplitude distribution
can be represented as in Fig. 8.15 with time t being replaced by z=c, where z is the longitudinal
coordinate along the laser cavity. Let us now assume that the shutter is periodically opened
with a period T D 2L=c, possibly at the time where the most intense noise pulse of Fig. 8.15
reaches the shutter. If the opening time of the shutter is comparable with the duration of this
noise pulse, then only this pulse will survive in the laser cavity and thus produce the mode-
locking situation of Fig. 8.19a. Following a similar argument, one can now realize that, if the
shutter is placed at the cavity center and if the shutter is periodically opened with a period
T D L=c, the mode locking situation described in Fig. 8.19b will develop. In this case, two
ultrashort pulses are present in the cavity and they are located and traveling in such a way as
to cross each other at the shutter position when the shutter is opened. By the same argument, if
the shutter is placed at a distance L=3 from one cavity mirror and if the shutter is periodically
opened with a period T D 2L=3c, the mode-locking situation described in Fig. 8.19c will
develop. In this case, three ultrashort pulses are present in the cavity and they are located
and traveling in such a way that two pulses always cross at the shutter position when the
shutter is open. Note that, for the cases of Fig. 8.19b and 8.19c, the repetition rate for the
train of output pulses is 2	� and 3	�, respectively, where 	� D c=2L is the pulse repetition
rate of the mode-locking case considered in Fig. 8.19a. For this reason, the mode-locking
situations represented in Fig. 8.19b and c are referred to as cases of harmonic mode-locking.
By contrast to these cases, the mode-locking situation of Fig. 8.19a is sometimes referred to
as mode-locking at the fundamental frequency or fundamental mode-locking. Note also that
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the frequency domain description of mode-locking for the two cases of Fig. 8.19b and c must
correspond to a phase locking condition different from Eq. (8.6.1), since this condition was
shown to lead to the mode-locking picture of Fig. 8.19a. For instance, it can be shown that the
phase locking condition corresponding to Fig. 8.19b is 'lC1 � 'l D 'l � 'l�1 C 
 , instead of
'lC1 � 'l D 'l � 'l�1 which is another form in which Eq. (8.6.1) can be expressed.

A rather interesting situation occurs when a ring laser cavity is used in mode-locked
operation (Fig. 8.19d). In this case, independently of the shutter position within the cavity, the
laser will produce fundamental, second harmonic, or third harmonic mode-locking depending
on whether the shutter repetition rate is set equal to c=Lp, 2c=Lp, or 3c=Lp, where Lp is
the length of the ring cavity perimeter. For instance, assume that the shutter is opened with
a repetition rate c=Lp (Fig. 8.19d). Then, if two counter-propagating pulses meet once at
the shutter position, they will then keep meeting at the same position after each round trip,
independently of shutter position.

8.6.3. Methods of Mode-Locking

The methods of mode-locking, like those of Q-switching, can be divided into two cate-
gories: (1) Active-mode-locking, in which the mode-locking element is driven by an external
source. (2) Passive mode-locking, in which the element which induces mode-locking is not
driven externally and instead exploits some non-linear optical effect such as saturation of a
saturable absorber or non-linear refractive index change of a suitable material.

8.6.3.1. Active Mode-Locking

There are three main types of active mode-locking (ML), namely: (1) Mode-locking
induced by an amplitude modulator (AM mode-locking). (2) Mode-locking induced by a
phase modulator (FM mode-locking). (3) Mode-locking induced by a periodic modulation
of the laser gain at a repetition rate equal to the fundamental cavity frequency 	� D c=2L
(ML by synchronous pumping). We will discuss AM mode-locking in most details, this type
being the most popular, and then give a briefer discussion of the FM mode-locking. Mode-
locking by synchronous pumping will not be discussed here since it is now less widely used.
In fact, it only applies to active media with nanosecond relaxation time, notably dye media,
and, to obtain the shortest pulses, requires that the modulation rate of the pump be equal, to
within high precision, to the fundamental frequency of the laser cavity. For this reason, pulse
durations shorter than 1 ps are difficult to achieve from a synchronously pumped dye laser.

To describe AM-mode-locking, we suppose a modulator to be inserted in the cavity,
which produces a time-varying loss at frequency !m. If !m ¤ 	!, where 	! D 2 
	�, 	�
being the frequency difference between longitudinal modes, this loss will simply amplitude
modulate the electric field, El.t/, of each cavity mode to give

El.t/ D E0Œ1 � .ı=2/.1 � cos!mt/� cos.!lt C �l/ (8.6.17)

where !l is the mode frequency, �l its phase and where ı is the depth of amplitude modula-
tion, which means that the field amplitude is modulated from E0 to E0.1 � ı/. Note that the
term E0.ı=2/ cos!mt�cos.!l tC�l/ in Eq. (8.6.17) can be written as .E0ı=4/fcosŒ.!l C!m/t
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FIG. 8.20. Time-domain description of AM mode-locking: (a) steady state condition; (b) light pulse arriving before
the time tm of minimum loss; (c) pulse-shortening occurring when the pulse arrives at time tm .

C�l�CcosŒ.!l �!m/tC�l�g. Thus El.t/ actually contains two terms oscillating at the frequen-
cies !l ˙ !m (modulation side-bands). If now !m D 	!, these modulation side-bands will
coincide with the adjacent mode frequencies of the resonator. These two side-bands will thus
give contributions to the field equations of the two adjacent cavity modes. So, the equations
for cavity modes become coupled i.e., the field equation of a given cavity mode will contain
two contributions arising from the modulation of the adjacent modes..16/ If the modulator is
placed very close to one cavity mirror, this mode-coupling mechanism can then be shown to
lock the mode phases according to Eq. (8.6.1).

The details of the operation of AM mode-locking can be more readily understood in the
time domain rather than in the frequency domain. Thus, Fig. 8.20a shows the time behavior
of the cavity round-trip power losses� 2� which are modulated with a modulation period T D
2
=!m. We will assume the modulator to be placed at one end of the cavity (see Fig. 8.19a).
If now !m D 	!, the modulation period T will be equal to the cavity round-trip time and the
stable steady-state condition will correspond to light pulses passing through the modulator at
the times tm when a minimum loss of the modulator occurs (Fig. 8.20a). Indeed, if a pulse
is assumed to pass through the modulator at a time of minimum loss, it will return to the

� In a mode-locked linear cavity, it proves to be simpler to talk in terms of round-trip loss and round trip gain, rather
than in terms of the corresponding single-pass values.
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modulator after a time, 2L=c, where the loss is again at a minimum. If, on the other hand, the
pulse is assumed to initially pass through the modulator at a time, e.g., slightly shorter than
tm (solid-line pulse in Fig. 8.20b), then the effect of the time-varying loss of the modulator
is that the leading edge of the pulse will suffer more attenuation than the trailing edge. Thus,
after passing through the modulator, the pulse indicated by a dashed line in Fig. 8.20b will
result, having its pulse peak advanced in such a way that, during the next passage, the peak
will arrive closer to tm. This shows that, eventually, the steady state situation of Fig. 8.20a
will be reached. Actually, in this case, the pulse-duration tends to be shortened each time the
pulse passes through the modulator because both the leading and trailing edge of the pulse are
somewhat attenuated while the peak of the pulse is not attenuated by the time varying loss,
2�m.t/, of the modulator (see Fig. 8.20c). Thus, if it were only for this mechanism, the pulse-
duration would tend to zero with progressive passages through the modulator. This is however
prevented by the finite bandwidth of the gain medium. In fact, as the pulse becomes shorter,
its spectrum would eventually become so large to fill the bandwidth of the laser medium.
The wings of the pulse spectrum would then no longer be amplified. This constitutes the
fundamental limitation to the pulse bandwidth and hence to the pulse duration.

The way in which the finite bandwidth of the active medium influences the steady-
state pulse duration is quite different, however, for homogeneous or inhomogeneous lines.
For an inhomogeneously broadened line and if the laser is sufficiently far above threshold,
the oscillating bandwidth 	�L tends to cover the whole gain bandwidth 	��

0 . In fact, in a
frequency-domain description, the primary purpose of the modulator is to lock the phases
of these already oscillating modes. Under the synchronism condition, !m D 	!, and if the
AM modulator is placed at one cavity end, the phase locking condition given by Eq. (8.6.1)
develops and, assuming for simplicity a Gaussian distribution for the mode amplitudes, we
get from Eq. (8.6.12).

	�p Š 0.441=	��
0 (8.6.18)

By contrast to this situation, for a homogeneous line, the phenomenon of spatial hole
burning tends to concentrate the width of the oscillating spectrum in a narrow region around
the central frequency �0 (see Sect. 7.7). Thus, assuming the laser to be originally unlocked,
the noise light pulses (see Fig. 8.15) would tend to be appreciably longer than 1=	�0, where
	�0 is the width of the gain line. In this case, the mechanism described in Fig. 8.20c is really
effective in shortening the pulse duration, i.e., in broadening its spectrum. This pulse narrow-
ing is however counteracted by pulse broadening occurring when the pulse passes through the
active medium and so undergoes spectral narrowing. The theory of active mode-locking, for a
homogeneously broadened gain medium, has been given a detailed and elegant treatment by
Kuizenga and Siegman.17/ and, later, presented in a more general framework by Haus..18/ We
will limit ourselves here to just quoting the most relevant results and refer to Appendix F for
a more detailed treatment. The intensity profile turns out to be well described by a Gaussian
function whose width 	�p (FWHM) is approximately given by

	�p Š 0.45=.�m	�0/
1=2 (8.6.19)

where �m is the frequency of the modulator (�m D !m=2
 D c=2L, for fundamental har-
monic mode-locking). If the pulsewidth expressions for inhomogeneous, Eq. (8.6.18), and
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homogeneous, Eq. (8.6.19), lines are compared at the same value of the laser linewidth (i.e.,
for 	��

0 D 	�0), we see that, since .�m=	�0/ � 1, one has .	�p/hom � .	�p/inhom. One
should also note that the pulse-narrowing mechanism depicted in Fig. 8.20c does not play any
appreciable role in the case of a inhomogeneous line, although it is still obviously present.
In this case, in fact, short noise pulses, with duration about equal to the inverse of the gain
bandwidth, are already present even under non-mode-locking conditions. The main role of the
modulator is then to establish a synchronism between the oscillating modes so that, out of the
noise pulses of Fig. 8.15, only one pulse survives, the pulse passing through the modulator at
the time of minimum loss (Fig. 8.20a).

Example 8.7. AM mode-locking for a cw Ar and Nd:YAG
laser We first consider a mode-locked Ar-ion laser oscil-
lating on its � D 514.5 nm green transition, this transition
being Doppler-broadened to a width of 	��

0 D 3.5 GHz.
From Eq. (8.6.18) we then get 	�p Š 126 ps. We con-
sider next a mode-locked Nd:YAG laser oscillating on
its � D 1.064 μm transition whose width is phonon
broadened to a value 	�0 Š 4.3 cm�1 D 129 GHz at
T D 300 K. We take a laser cavity with an optical length
Le D 1.5 m and consider the case where the AM mod-
ulator is located at one cavity end (Fig. 8.19a). We then
get �m D c=2Le D 100 MHz, and, from Eq. (8.6.19),
	�p Š 125 ps. Note that, on account of the different
expressions of	�p for a homogeneous or inhomogeneous
line, the pulsewidths for the two cases are almost the same
despite the linewidth of Nd:YAG being almost 30 times
wider than that of Ar-ion.

To describe FM mode-locking, we sup-
pose a modulator, whose refractive index n
is sinusoidally modulated at frequency !m,
to be inserted at one end of the cavity. Any
given mode of the cavity will therefore be
subjected to a time varying phase shift given
by ' D .2
L0=�/�n.t/, where L0 is the mod-
ulator length. These phase modulated modes
will show sidebands [see Eq. (7.10.5)] whose
frequencies, for !m D 	!, coincide with
those of the neighboring modes. Thus, the
cavity modes become coupled again and their
phases locked,.16/ although the locking condi-
tion turns out to be different from that given
by Eq. (8.6.1). In the time domain, this FM
mode-locking produces pulses as indicated
in Fig. 8.21. In this case, two stable mode-
locking states can occur, i.e., such that the
light pulse passes through the modulator
either at each minimum of n.t/ (solid-line pulses) or at each maximum (dotted-line pulses).
To get some physical understanding of what happens in this case, we first observe that, since
the optical length of the modulator is L0

e D n.t/L0, this type of modulation actually results
in a modulation of the overall optical length, Le, of the cavity. In its effect, the cavity is thus
equivalent to one without a modulator but where the position of one cavity mirror is oscillating
at frequency !m. Either one of the two stationary situations of Fig. 8.21 thus corresponds to
mode-locked pulses striking this moving mirror when it is at either of its extreme positions
(i.e., when the mirror is stationary). Note that, after reflection by this moving mirror, the pulse

FIG. 8.21. FM mode-locking. Time behavior of modulator refractive index n and of output intensity I.
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will acquire a nearly parabolic phase variation, of either positive sign (for the solid-line pulses)
or negative sign (for the dotted-line pulses), and its spectrum will be slightly broadened.
The overall phase modulation of the pulse and the corresponding pulse duration will then
be established by the condition that the spectral broadening produced at each reflection from
the moving mirror must be compensated by the spectral narrowing resulting from the passage
through the amplifier. A stability analysis could also be performed to understand what happens
when the pulse strikes the mirror not exactly at a stationary point. However, this analysis turns
out to be rather complicated and, due to the somewhat limited importance of this type of mode-
locking, it will not be considered here. In fact, this type of locking is much less frequently
used in practice for two main reasons: (i) The pulses are frequency modulated. (ii) Mode-
locking tends to be somewhat unstable in the sense that switching between the two states of
Fig. 8.21 often occurs in practice.

For a pulsed and generally high gain laser, AM mode-locking is commonly achieved by
a Pockels cell amplitude modulator. A possible configuration may be that shown in Fig. 8.5a
with the Pockels cell voltage being sinusoidally modulated from zero to some fraction of the
�=4 voltage. For a cw pumped and generally low gain laser, AM mode-locking is more com-
monly achieved with an acousto-optic modulator, owing to its lower insertion loss compared
to a Pockels cell modulator. However, the acousto-optic modulator used for mode-locking
differs significantly from that used for Q-switching and discussed in Fig. 8.7. In fact, the face
to which the piezoelectric transducer is bonded and the opposite face of the optical material
are now cut parallel each other. The sound wave launched into the material by the transducer
is then reflected back by the opposite face of the material. So, if the length of the optical block
is equal to an integral number of half-wavelengths of the sound wave, an acoustic standing-
wave pattern is produced. Since the amplitude of the standing-wave is sinusoidally modulated
in time, the same will happen for the diffraction losses. It can be shown, however, that, if the
sound wave is oscillating at frequency !, the diffraction loss will be modulated at frequency
2!. Consider, in fact, an acoustic standing-wave of the form S D S0 .cos!t/.sin kz/. The
modulator loss will reaches a maximum whenever a maximum amplitude of the standing-
wave pattern occurs and this maximum is reached twice in an oscillation period (i.e., at t D 0
and t D 
=!). The modulator loss is thus modulated at frequency 2! and, for fundamental
ML (see Fig. 8.19a), ML is achieved when: (i) the modulator is put as near as possible to one
cavity mirror; (ii) the modulation frequency 2� is set equal to .c=2L/ and, accordingly, the
transducer is driven at a frequency equal to c=4L (e.g., � D 50 MHz for L D 1.5 m). In the
case of FM mode-locking (both for pulsed or cw lasers), a Pockels cell electro-optic phase
modulator is commonly used. In this case one of the two axes, e.g., x, of induced birefrin-
gence (see Fig. 8.5b) is oriented along the polarizer axis. So, the beam does not rotate its
polarization when passing through the Pockels cell but, rather, acquires a phase shift given
by � D .2
L0=�/nx, where L0 is the Pockels cell length and nx is its refractive index for
polarization along x-direction. If now the voltage to the Pockels is sinusoidally modulated,
the refractive index nx, due to the Pockels effect, will also be sinusoidally modulated and the
same modulation will occur to the phase of the beam.

8.6.3.2. Passive Mode Locking

There are four main types of passive mode-locking (ML), namely: (1) Fast saturable
absorber ML, which makes use of the saturation properties of a suitable absorber (e.g.
a dye molecule or a semiconductor) with very short upper state lifetime. (2) Kerr Lens
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Mode-locking (KLM), which exploits the self-focusing property of a suitable transparent
non-linear optical material. (3) Slow saturable absorber ML, which exploits the dynamic
saturation of the gain medium. (4) Additive Pulse ML (APM), in which one exploits the self-
phase-modulation induced in a suitable non-linear optical element inserted in an auxiliary
cavity, coupled to the main cavity and of identical length. In this case, the pulse shortening
mechanism arises from the interference of the main pulse in the laser cavity with the pulse
coupled back from the auxiliary cavity and which has been phase-modulated by the non-
linear material. APM locking requires however that the optical lengths of the two cavities
be equal with an accuracy typically of a fraction of the laser wavelength. For this reason,
this type of ML is not so widely used as the other techniques and will not be discussed
further here.

To illustrate mode-locking by a fast saturable absorber, we consider an absorber with
low saturation intensity and with relaxation time much shorter than the duration of the mode-
locked pulses. The theory of mode-locking by a fast saturable absorber, for a homogeneously
broadened gain medium, has been treated in detail, notably by Haus..19/ We will only quote
here the most relevant results and refer to Appendix F for a more detailed treatment.

For low values of intracavity beam intensity, I, compared to the absorber’s saturation
intensity, Is, the cavity round-trip power-loss� can be written as

2�t D 2� � 2� 0.I = Is/ (8.6.20)

where � is the unsaturable single-pass loss and � 0 is the low-intensity single-pass loss of
the saturable absorber�. Suppose now that the absorber is very thin and placed in contact
with one cavity mirror (Fig. 8.19a) and that the laser is initially oscillating with mode phases
un-locked. The intensity of each of the two traveling waves will be made up of a random
sequence of light bursts (see Fig. 8.15) and, for the initially low peak intensity of these bursts,
the saturated round-trip power gain, 2g0, will be roughly equal to the cavity unsaturable loss.
However, the most intense pulse of Fig. 8.15, as a result of absorber saturation, will suffer the
least attenuation in the saturable absorber. If certain special conditions are met,.19/ this pulse
can then grow faster than the others and, after many round trips, the situation described in
Fig. 8.22 will eventually be established, where, for simplicity, the gain medium and saturable
absorber are assumed to be together at one end of the cavity. In this case a single, intense, ML
pulse survives in the cavity and, due to the reduced loss arising from the more pronounced
absorber saturation, the average power will increase compared to the unlocked case and, cor-
respondingly, the round-trip saturated gain, 2g0

0, will now become smaller than the round-trip
unsaturable loss of the cavity. Accordingly, a time window of net gain is established during
the passage of the pulse, i.e., between times t1 and t2 in the figure, the pulse tails seeing a net
loss and the pulse peak a net gain. If it were only for this mechanism, the pulse would be pro-
gressively shortened after each pass through the absorber-amplifier combination. However,
a steady state condition is again established by the balance between this pulse shortening

� In a mode-locked linear cavity it is preferable to think in terms of round-trip loss and gain rather than in terms of
the corresponding single-pass values

� According to (2.8.12) and for I 
 Is, the absorbance, �a , of an absorber of length la can be written as �a D ˛la D
˛0 laŒ1 � .I=Is/� and the intensity independent term ˛0 la can be included in the total unsaturable loss � .
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FIG. 8.22. Passive ML by a fast saturable absorber.

mechanism and pulse broadening arising from the finite gain bandwidth. The steady state
pulse amplitude turns out, in this case, to be described by a hyperbolic secant function, viz.,

E.t/ / sech .t=�p/ (8.6.21)

The duration 	�p of the pulse intensity (FWHM) is related to �p by 	�p ' 1.76�p and is
given by

	�p Š 0.79

	�0

�
g0

0

� 0

�1=2 � Is

Ip

�1=2

(8.6.22)

where 	�0 is the gain bandwidth (FWHM) and Ip is the peak intensity of the pulse. Note
that the physical picture described in Fig. 8.22 actually applies to long lifetime (hundreds of
μs) gain media such as crystalline or glass solid state media. In this case, in fact, no appre-
ciable variation of gain occurs during the passage of the pulse and the saturated gain, g0

0, is
established by the average intracavity laser power.

For a simple two-level system, the absorber’s saturation intensity is given by Is D
h�=2�� [see Eq. (2.8.11)], and since � must be very short (� a few ps or shorter), the required
low value of saturation intensity calls for very large values of the absorption cross section �
(�10�16 cm2 or larger). It thus follows that the most commonly used saturable absorbers are
either solutions of fast dye molecules or semiconductors. In the case of dye solutions, cya-
nine dyes consisting of a long chain of the form .–CH D CH–/n, where n is an integer and
terminated by two aromatic end groups, are often used. The upper state relaxation time of the
cyanine dyes used for mode-locking is typically some tens of picoseconds and is established
by non-radiative decay arising both from internal conversion (see Fig. 3.6) and from rota-
tion of the aromatic rings. Thus, the absorber remains saturated for a time roughly equal to
this relaxation time and ML pulses shorter than a few picoseconds cannot be obtained. For a
semiconductor saturable absorber, the absorber’s recovery typically shows a multi-component
decay, namely: (i) A fast decay .� � 100 fs/, due to intraband thermalization of electrons
within the conduction band, arising from electron-electron collisions. (ii) A slower relaxation
.�1 ps/ due to intraband thermalization of the conduction-band electrons with the lattice,
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arising from electron-phonon collisions. (iii) A still slower relaxation (from a few picosec-
onds to some nanoseconds) due to interband radiative and non-radiative decay. The longest
relaxation time will result in the lowest saturation intensity, and this is helpful for starting the
ML process. The fastest relaxation time then provides the fast saturable absorber mechanism
needed to produce short pulses. A particularly interesting solution consists in integrating a
multiple-quantum-well saturable absorber between two mirrors whose spacing is such that
the resulting Fabry-Perot etalon operates at anti-resonance, i.e., at a point where a minimum
of transmission or a maximum of reflection occurs (see Fig. 4.11). If the etalon is used as
one cavity mirror, the laser intensity within the etalon may be substantially reduced com-
pared to the value of the laser cavity. This offers the considerable advantages of increasing,
in a controlled manner, the effective value of the saturation intensity, decreasing the effective
unsaturable losses, and increasing the damage threshold..20/ The effectiveness of this simple-
to-use anti-resonance-Fabry-Perot-saturable absorber (A-FPSA) has been widely proven for
generating both picosecond and femtosecond laser pulses from several wide-bandwidth solid
state lasers.

Example 8.8. Passive mode-locking of a Nd:YAG and
Nd:YLF laser by a fast saturable absorber We consider
a cw Nd:YAG laser passively mode-locked by a �0.6 μm
thick multiple-quantum-well (�50 wells) InGaAs/GaAs
A-FPSA..20/ We take g0

0 D 2%, � 0 D 1%, 	�0 D
4.5 cm�1 Š 135 GHz at T D 300 K, and Ip D 0.3 Is.
From Eq. (8.6.22) we then get 	�p Š 15 ps. Note
that, in this case, the absorber is heavily saturated and
Eq. (8.6.22) can only be taken as a first order approx-
imation to the calculation of the predicted pulse-width.
For the case of a Nd:YLF laser, we will assume the
same value of the unsaturable and saturable losses as
for Nd:YAG. We therefore assume the same value of
g0

0. The gain linewidth of Nd:YLF, 	�0
0, is taken to be

about three-times larger than that of Nd:YAG (i.e.,	�0
0 Š

13 cm�1) and the comparison then made at the same
value of output power i.e., at the same value of the
pulse energy E Š Ip 	�p. From Eq. (8.6.22) one read-
ily finds that the pulsewidth 	� 0

p for this case is related
to the pulsewidth of the previous case by the relation
	� 0

p D 

	�0=	�

0
0

�2
	�p. For 	� 0

0 D 2.89	�0 we then
get 	� 0

p Š 1.8 ps. Note the strong dependence of laser
pulsewidth on gain linewidth under these conditions.

Another fast passive mode-locking tech-
nique relies on the lens-effect induced in a
suitable material by a Kerr-type non-linearity
and is thus referred to as Kerr-Lens-Mode-
Locking (KLM)..21,22/ Consider first an opti-
cal material, such as quartz or sapphire, tra-
versed by a light beam of uniform intensity
I. At sufficiently high intensity, the refractive
index of the medium will be influenced to a
readily observable extent by the field inten-
sity, i.e., one can generally write n D n.I/.
The first term of a Taylor expansion of n
vs I will be proportional to I and one can
thus write

n D n0 C n2I (8.6.23)

where n2 is a positive coefficient which
depends on the material (e.g. n2 Š 4.5 �
10�16 cm2=W for fused quartz and n2 Š
3.45 � 10�16 cm2=W for sapphire). This phe-
nomenon is known as the optical Kerr effect
and is generally due to a hyper-polarizability
of the medium occurring at high electric
fields and arising from either a deformation
of the electronic orbitals of the atoms or molecules or from a reorientation of the molecules
(for a gas or liquid). For a solid, only deformation of the atom’s electron cloud can occur
and the optical Kerr effect is very fast, the response time being of the order of a rotation
period of the outermost electrons of the atom (a few femtoseconds). Assume now that the
beam intensity, in a medium exhibiting the optical Kerr effect (a Kerr medium), has a given
transverse profile, e.g., Gaussian. The intensity at the beam center will then be larger than in
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FIG. 8.23. Non-linear loss element exploiting the optical Kerr effect in a suitable non-linear material.

the wings and, according to Eq. (8.6.23), a non-linear refractive index change, ın D n2I, will
be induced which is positive at the beam center and goes to zero in the wings of the beam. For
a Gaussian beam profile, i.e., I D Ip exp �2.r=w/2, where Ip is the peak intensity and w is the
(field) spot size, the non-linear phase shift acquired by the beam in traversing a length l of the
medium will be ı� D 2
ınl=� D .2
n2Ipl=�/ exp �2.r=w/2 Š .2
n2Ipl=�/ � Œ1–2.r=w/2�.
Thus, to first order in .r=w/2, ı� can be taken as a parabolic function of .r=w/, which is
equivalent to saying that a spherical lens is induced in the medium by the optical Kerr effect.
In fact this induced lens may lead to beam focusing when the beam power exceeds a critical
value, a phenomenon known as self-focusing. A non-linear loss element providing a loss of
the general form of Eq. (8.6.20) can then be realized as shown schematically in Fig. 8.23. In
fact, at higher beam intensities, the beam will be focused more strongly at the aperture and,
therefore, less loss will be experienced at this aperture. If now the non-linear loss element of
Fig. 8.23 is correctly located within a laser cavity, passive ML may be achieved according to
the mechanism described in Fig. 8.22 for a fast saturable absorber. In fact, the time response
of KLM is very short so that, for all practical purposes, it can be taken to be instantaneous.
By appropriate control of cavity dispersion, the fastest ML pulses have been achieved by this
technique, using ultra-broadband gain media (bandwidths of �100 THz).

Although many passively mode-locked lasers make use of fast saturable absorbers, slow
saturable absorbers, under special circumstances, can also lead to mode locking and this type
of ML is often referred to as slow-saturable-absorber ML. The special circumstances which
are required can be summarized as follows: (i) The relaxation time of both absorber and
amplifier must be comparable to the cavity round trip time. (ii) The saturation fluence of
both gain medium [�sg D h�=�g, see Eq. (2.8.29)] and saturable absorber [�sa D h�=2�a,
see Eq. (2.8.17)] must be sufficiently low to allow both media to be saturated by the intra-
cavity laser fluence. (iii) The saturation fluence of the gain medium must be comparable to,
although somewhat larger than that of the saturable absorber. The physical phenomena that
lead to mode-locking, in this case, are rather subtle.23/ and will be described with the help of
Fig. 8.24, where, for simplicity, it is supposed that both saturable absorber and active medium
are together at one end of the cavity. Before the arrival of the mode-locked pulse, the gain
is assumed to be smaller than the losses, so that the early part of the leading edge of the
pulse will suffer a net loss. If the total energy fluence of the pulse has a suitable value, the
accumulated energy fluence of the pulse may become comparable to the saturation fluence of
the absorber during the leading edge of the pulse. Saturation of the saturable absorber will
begin to occur so that, at some time during the pulse leading edge (time t1 in Fig. 8.24), the
absorber loss becomes equal to the laser gain. For t > t1 the pulse will then see a net gain
rather than a net loss. However, if the saturation energy fluence of the gain medium has a
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FIG. 8.24. Time-domain picture of slow-saturable-absorber mode locking. Note that the figure is not to scale since
the time duration of a mode-locked pulse is typically in the hundreds femtosecond range while the time interval �p

between two consecutive pulses, i.e., the cavity round trip time is typically a few nanoseconds.

suitable value (typically �2 times higher than that of the absorber), gain saturation will be
produced so that, at some time during the trailing edge of the pulse (time t2 in Fig. 8.24), the
saturated gain becomes equal to the saturated loss. For t > t2 the pulse will then see a net
loss again rather than a net gain and a time window of net gain will thus be established for
t1 < t < t2. Thus, after each pass through the absorber-amplifier combination, the pulse is
shortened and a steady state condition is again established by the balance between this pulse
shortening mechanism and pulse broadening arising from the finite gain bandwidth. One thus
expects a pulse duration again comparable to the inverse of the gain bandwidth	�0.

The evolution toward mode-locking, for this slow-saturable-absorber plus dynamic-gain-
saturation mechanism, can be described by assuming the laser to be initially oscillating
with unlocked phases. The saturated gain will then be equal to the unsaturated loss and,
under appropriate circumstances, the most energetic pulse within its noisy time-pattern (see
Fig. 8.15) will begin to produce the time-window net-gain mechanism described in Fig. 8.24.
This process will then continue to occur after each passage through the laser cavity until
only one laser pulse survives and the situation described in Fig. 8.24 occurs. Note that, after
the mode locked pulse has passed through the absorber-amplifier combination and before the
arrival of the next one, the saturable loss must recover to its unsaturated value by spontaneous
(i.e., radiative plus non-radiative) decay. The corresponding decay time must then be appre-
ciably shorter than the cavity round trip time. During the same time interval, the gain medium
must partially but not completely recover to the steady state value established by the pumping
process [see Fig. 8.3a] so as to leave a saturated gain smaller than the loss. This means that
the lifetime of the gain medium must be somewhat longer than the cavity round trip time. We
reiterate that the saturation fluences of both amplifier and absorber must be sufficiently low
to allow the two media to be saturated by the laser pulse. So, this type of mode-locking can
be made to occur with short-lifetime (� a few nanoseconds) high cross section .�10�16 cm2/

gain media such as dyes or semiconductors. As saturable absorbers, saturable dyes with life-
time of a few nanoseconds (determined by spontaneous emission) are often used. By contrast
to this situation, this type of mode-locking cannot occur with long lifetime (hundreds of μs)
gain media such as crystalline or glass solid-state media, where dynamic gain saturation can-
not occur. When the delicate conditions for this type of mode-locking can be met, however,
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very short light pulses down to the inverse of the laser linewidth can, in principle, be obtained.
The large gain bandwidths (a few tens of THz) available from dye lasers would then allow
pulses with duration of some tens of femtosecond to be produced. As will be discussed in the
next section, however, cavity dispersion plays a very important role for such short pulses and
its value must be controlled if pulses of the shortest duration are to be obtained.

8.6.4. The Role of Cavity Dispersion in Femtosecond Mode-Locked
Lasers

We have mentioned in the previous section that, when ultra-broad-band gain-media
(bandwidths as large as 100 THz) are involved, cavity dispersion plays an important role in
establishing the shortest pulse duration that can be achieved in ML operation. We will con-
sider this point here by first making a short digression to provide a reminder of the concepts
of phase velocity, group velocity, and group delay dispersion in a dispersive medium.

8.6.4.1. Phase-Velocity, Group-Velocity and Group-Delay-Dispersion

Consider first a plane, linearly polarized, monochromatic e.m. wave, at frequency !,
propagating along the z direction of a transparent medium. The electric field E.t, z/ of the
wave can then be written as E D A0 exp j.!t � ˇz/, where A0 is a constant and where the
propagation constant, ˇ, will generally be a function of the angular frequency!. The relation
ˇ D ˇ.!/ is a characteristic of the given medium and is referred to as the dispersion relation
of the medium (see Fig. 8.25). Since now the total phase of the wave is �t D !t � ˇz, the
velocity of a given phase front will be such that the elemental changes dt and dz, of the
temporal and spatial coordinates, must satisfy the condition d�t D !dt � ˇdz D 0. This

FIG. 8.25. (a) Phase velocity and group velocity in a dispersive medium; (b) dispersion in time delay for two pulses
of carrier frequencies !1 and !2; (c) group-velocity dispersion for a pulse of large oscillation bandwidth 	!L.
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shows that the phase front moves at a velocity

�ph D dz

dt
D !

ˇ
(8.6.24)

referred to as the phase velocity of the wave.
Consider next a light pulse traveling in the medium and let !L and	!L be, respectively,

the center frequency and the width of the corresponding spectrum (Fig. 8.25a). Assume also
that the dispersion relation, over the bandwidth	!L, can be approximated by a linear relation,
viz. ˇ D ˇL C.dˇ=d!/!D!L .!�!L/, where ˇL is the propagation constant corresponding to
the frequency !L. In this case, upon considering a Fourier expansion of wave, one can show
that the electric field of the wave can be expressed as (see Appendix G)

E.t, z/ D AŒt � .z=�g/� expŒj.!Lt � ˇLz/� (8.6.25)

where A is the pulse amplitude, expŒj.!Lt � ˇLz/� is the carrier wave, and �g is given by

�g D
�

d!

dˇ

�
ˇDˇL

(8.6.26)

The fact that the pulse amplitude is a function of the variable t � .z=�g/ means that the
pulse propagates without changing its shape and at a speed �g. This velocity is referred to as
the group velocity of the pulse and, according to Eq. (8.6.26), is given by the slope of the ! vs
ˇ relation at ! D !L (i.e. �g D tg 
 0, see Fig. 8.25a). Note also that, for a general dispersion
relation such as that of Fig. 8.25a, the phase velocity of the carrier wave (�ph D tg 
 , see
Fig. 8.25a) will be different from the group velocity.

According to the previous considerations, the pulse, after traversing the length l of the
medium, will be subjected to a time delay

�g D l

�g
D l

�
dˇ

d!

�
!L

D �0.!L/ (8.6.27)

For the previous equation, we have defined a phase �, dependent on the frequency !,
such that

�.! � !L/ D ˇ.! � !L/l (8.6.28)

and we have called �0.!L/ D Œd�.! � !L/=d!�!L . For obvious reasons, the quantity �g D
�0.!L/ is referred to as the group delay of the medium at frequency !L.

Let us now see what happens when two pulses, with bandwidths	!1 and 	!2 centered
at !1 and !2, respectively, are traveling in the medium (!2 > !1, see Fig. 8.25b). If the
slope of the dispersion relation is different at the two frequencies, the two pulses will travel at
different group velocities �g1 and �g2 . Thus, if the peaks of the two pulses enter the medium
at the same time, then, after traversing the length l of the medium, they will become separated
in time by a delay

	�g D �0.!2/� �0.!1/ Š �00.!1/ � .!2 � !1/ (8.6.29)
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where we have used the symbol �00.!1/ D Œd2�=d!2�!1 . Note that the last equation holds
exactly if the relation between � and !, in the frequency range between !1 and !2, can be
approximated by a parabolic law viz.

� D �L C
�

d�

d!

�
!L

.! � !L/C 1

2

�
d2�

d!2

�
!L

.! � !L/
2 (8.6.30)

Consider next the case of a light pulse with a bandwidth	!L so large that it is no longer
a good approximation to describe the dispersion relation by a linear law (Fig. 8.25c). In this
case, different spectral regions of the pulse will travel with different group velocities and,
consequently, the pulse will broaden as it propagates. Again assuming that the dispersion rela-
tion, within the bandwidth 	!L, can be approximated by a parabolic law, then, according to
Eq. (8.6.29), the broadening of the pulse due to dispersion,	�d, will be given approximately
by the difference in group delay between the fastest spectral component and the slowest one.
According to Eq. (8.6.29) we then have

	�d Š j�00.!L/j 	!L (8.6.31)

The quantity �00.!L/ is referred to as the group delay dispersion (GDD) of the medium
at frequency !L. Its magnitude gives the pulse broadening per unit bandwidth of the pulse.
From Eqs. (8.6.28) and (8.6.31) one then sees that 	�d can also be written as

	�d Š l

ˇ̌
ˇ̌� d2ˇ

d!2

�
!L

ˇ̌
ˇ̌ 	!L (8.6.32)

The quantity, GVD, expressed by

GVD D .d2ˇ = d2!/!L D Œd.1=�g/ = d!�!L (8.6.33)

is usually referred to as the group velocity dispersion at frequency !L. Its magnitude gives the
pulse broadening per unit length of the medium and per unit bandwidth of the pulse. It should
be observed that the concept of group velocity dispersion is straightforward, in application,
only for a homogeneous medium. For an inhomogeneous or multi-component medium, such
as the two prism pairs of Fig. 8.26 or a multilayer dielectric mirror, the concept of group delay
dispersion is more easy to consider.

8.6.4.2. Limitation on Pulse Duration due to Group-Delay Dispersion

When a dispersive medium is present within a ML laser cavity, an approximated value
of the steady state pulse duration can be obtained from the condition that the relative time
shortening, .ı�p=�p/s, due to the net gain time window (see Fig. 8.22 or 8.24), must equal
the pulse broadening due to both the gain medium, .ı�p=�p/g, and the dispersive medium,
.ı�p=�p/D. For the sake of simplicity, we will consider here a ring cavity in which the pulse
is sequentially passing through the gain medium, the dispersive medium, and through what-
ever element provides the self-amplitude-modulation (e.g., a fast saturable absorber). We will



8.6 � Mode-Locking 359

assume that the light pulse has a Gaussian intensity profile with pulsewidth (FWHM)	�p, and
that the dispersive medium can be described, at a general frequency!, by its group-delay dis-
persion �00 D �00.!/. The gain medium is assumed to be homogeneously broadened and will
be described by its saturated single pass gain, g0 D N0� l, and its linewidth (FWHM) 	!0.

For small changes of pulse duration, the relative pulse broadenings, .ı�p=�p/g and
.ı�p=�p/D, after passing through the gain medium and the dispersive medium, are shown
in Appendix G to be given, respectively, by

�
ı�p

�p

�
g

D
�

2 ln 2


2

�  
1

	�2
p	�

2
0

!
g0 (8.6.34)

where 	�0 D 	!0=2
 , and by
�
ı�p

�p

�
D

D .8 ln2 2/
�002

	�4
p

(8.6.35)

where �00 is calculated at the central frequency, !L, of the laser pulse.
The steady state pulse duration can now be obtained from the condition that the relative

time shortening, .ı�p=�p/s, due to the net gain time window must be equal to the pulse broad-
ening due to both the gain medium and the dispersive medium. From Eqs. (8.6.34) and (8.6.35)
we then get

�
ı�p

�p

�
s

D 0.14
g0

	�2
p	�

2
0

C 3.84
�002

	�4
p

(8.6.36)

Note that the two terms on the right hand side of Eq. (8.6.36) are inversely proportional to
	�2

p and 	�4
p , respectively. This means that the importance of GDD in establishing the pulse

duration becomes more important as 	�p decreases. To get an estimate of the pulse-width at
which GDD begins to become important we equate the two terms on the right hand side of
Eq. (8.6.36). We get

	�p D
�

27.4

g0

� 1=2 ˇ̌
�00ˇ̌ 	�0 (8.6.37)

Assuming, as an example, 	�0 Š 100 THz (as appropriate for a Ti:sapphire gain
medium) and �00 D 100 fs2 (equivalent, at � Š 800 nm, to the presence of �2 mm of
quartz material in the cavity) and g0 D 0.1, we get from (8.6.37) 	�p Š 162 fs. This means
that, to get pulses shorter than �150 fs, down to perhaps the inverse of the gain linewidth
	�0 .	�

0
p D 1=	�0 Š 4 fs/, one needs to reduce GDD by about an order of magnitude.

To obtain the shortest pulses, when second order dispersion, GDD, is suitably compen-
sated, one also needs to compensate higher order dispersion terms in the power expansion
Eq. (8.6.30). Of course, the next term to be considered would be third order dispersion, TOD,
defined as TOD D �000 D ˇ000 l, where the third derivatives are taken at the laser’s center
frequency, !L. We shall not consider, at any length, the effects produced by TOD on an inci-
dent pulse, and, for a discussion of this topic, we refer to the literature..24/ We will just point
out that, in the case of e.g., a Ti:sapphire laser .	�0 Š 100 THz/, TOD begins to play a
pulse-limiting role for pulses shorter than �30 fs.
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FIG. 8.26. Four-prism sequence having a negative and controllable second order group delay dispersion.

8.6.4.3. Dispersion Compensation

According to the previous example, to achieve pulses shorter than �150 fs, the GDD of
the laser cavity, contributed by its various optical elements (e.g., the active medium itself and
the cavity mirrors), needs to be controlled in broad-band ML lasers. We have also seen in the
previous example that fused quartz, at � Š 800 nm and more generally in the visible range,
provides a positive value of �00 and this is also the case for all media which are said to exhibit
normal dispersion, i.e., for most common optical media. So, to compensate for cavity GDD,
one needs a suitable element providing a negative �00 i.e., showing anomalous dispersion.

The now classical solution to providing a negative and controllable second order GDD in
a laser cavity utilizes the four prism sequence shown in Fig. 8.26..25/ The prisms are generally
used at minimum deviation (i.e., with incidence angle equal to the refraction angle) and cut at
such an apex angle that the rays enter and leave each prism at Brewster’s angle. The entrance
face of prism II is made parallel to the exit face of prism I, and the exit face of prism II
is parallel to the entrance face of prism I and so on. The plane MM0, normal to the rays
between prisms II and III and midway between the two prisms, is a plane of symmetry for
the ray-paths. To understand the principle of operation we first observe that, according to
Eq. (8.6.29), to obtain a negative GDD one must have 	�g < 0 i.e., �g.!2/ < �g.!1/ for
!2 > !1. This is exactly what the four-prism sequence does. In fact, the angular dispersion
of the prisms is such that two pulses at !2 and !1, entering the prism sequence at the same
time and in the same direction, will propagate along the two different paths indicated in the
figure. Owing to the longer path lengths, in prisms II and III, for the pulse at !1 compared
to that at !2, the overall path length for pulse at !1 results to be longer than that at !2.
This means that �g.!1/ > �g.!2/, i.e. GDD D �00 < 0. For simplicity, we will not present
the resulting expression for �00 here. We merely limit ourselves to observing that �00 depends
linearly on the distance l between the two prism couples and, as an example, for quartz prisms,
a length l D 250 mm gives a negative dispersion which can compensate the positive GDD, at
� Š 800 nm, of a quartz element with a thickness of 6.6 mm (i.e., �00 Š �360 fs2).

The four prism sequence of Fig. 8.26 proves to be a convenient way of introducing a
negative GDD in a laser cavity for the following main reasons: (i) Since all faces are at Brew-
ster’s angle to the beam path, losses introduced by the system are low. (ii) The negative value
of GDD can be coarsely changed by changing the separation l of the two prism pairs. (iii) By
translating any one of the prisms along an axis normal to its base (e.g., prism II), one changes
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the total length of the optical medium traversed by the beam. This motion thus introduces, in
a finely controlled way, a positive (material) dispersion, of adjustable size, without altering
the ray directions and hence the negative dispersion due to the geometry of the ray paths. (iv)
The transmitted beam is collinear with the incident one and this facilitates the insertion of the
four-prism sequence in an already aligned cavity. Finally, it should be noted that, since MM0
is a symmetry plane, one can use just the first two prisms, in a two-mirror resonator, provided
that one cavity mirror is plane and located at the MM0 position. In this case, the GDD per pass
is of course half that of the four-prism sequence.

It should be noted that the four-prism sequence of Fig. 8.26 introduces not only a second
order, �00, but also a third order dispersion, �000, and this term turns out to be the dominant
contribution to the overall TOD of a typical femtosecond laser cavity. As with second order
dispersion, the third order dispersion depends on the ray path geometry in Fig. 8.26, hence its
value is proportional to the prism separation. The ratio �000=�00 is therefore a characteristic of
only the prism material and laser wavelength. In this respect, fused quartz proves to be one the
best optical materials, with the ratio �000=�00 having the lowest value [e.g., �000.!L/=�

00.!L/ D
1.19 fs at the frequency of the Ti:sapphire laser, i.e., at � Š 800 nm]. Thus, to achieve the
smallest value of TOD, one must start with a cavity with the smallest value of positive �00 so
as to require the smallest values of both �00 and �000 from the four-prism sequence.

An alternative way of compensating cavity dispersion is to use, instead of the two-prism
couple of Fig. 8.26, a dispersive element which introduces a negative GDD which is wave-
length independent (i.e., such that �000 Š 0). A very interesting solution, in this regard, is
the use of chirped multilayer dielectric mirrors in the laser cavity..26/ The mirror consists of a
large number .�40/ of alternating low- and high-refractive-index layers whose thickness pro-
gressively increases, in a suitable manner, in going toward the substrate. In this way, the high
frequency components of the laser pulse spectrum are reflected first and the low frequency
components are reflected further on in the multilayer thickness. Hence the group delay of the
reflected beam increases with decreasing values of ! thus giving �00 < 0. For the appropriate,
computer-optimized, design of the spatial frequency chirp of the layers, one can also obtain a
value of �00 which, within the bandwidth of interest, is approximately constant with frequency
i.e., so that �000 Š 0. Alternatively, again by computer optimization, the GDD can be required
to exhibit a slight linear variation with frequency with a slope suitable for compensating the
TOD of other cavity components (e.g., the gain medium). The main limitation of chirped
mirrors stems from the fact that the amount of negative GDD which is typically obtainable
is rather small .��50 fs2/. To achieve the required GDD one must then arrange for the laser
beam to undergo many bounces on the mirror.

8.6.4.4. Soliton-type of Mode-Locking

Consider a medium exhibiting the optical Kerr effect so that its refractive index can be
described as in Eq. (8.6.23), and assume that a light pulse, of uniform transverse intensity
profile, is traveling through the medium in the z-direction. After a length z, the carrier wave
of the pulse acquires a phase term ' D !Lt � ˇLz given by

' D !Lt � !L.n0 C n2I/

c
z (8.6.38)
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FIG. 8.27. Self-phase-modulation phenomenon. Time behavior of the pulse frequency, Fig. (b), when a bell-shaped
pulse, Fig. (a), is traversing a medium exhibiting the optical Kerr effect.

where I is the light pulse intensity. Now, since I D I.t/, the instantaneous carrier frequency
of the pulse will be given by

! D @ .!Lt � ˇLz/

@ t
D !L � !Ln2z

c

@ I

@ t
(8.6.39)

Thus, the carrier frequency,! D !.t/, is linearly dependent on the negative time deriva-
tive of the corresponding light intensity. So, for a bell shaped pulse as in Fig. 8.27a, the phase
' D '.t/ will be time-modulated by the beam intensity and the carrier frequency will vary
with time as indicated in Fig. 8.27b. This phenomenon is called self-phase-modulation (SPM).

We note that, around the peak of the pulse, i.e., around the region where the time behav-
ior of the pulse can be described by a parabolic law, the frequency chirp induced by SPM
increases linearly with time. Suppose now that the medium has a negative GDD. In this
case, it is shown in Appendix G that, during propagation in this medium, the pulse tends
to acquire an instantaneous frequency chirp which decreases linearly with time�. The two
effects thus tend to cancel each other and one could expect that, under appropriate conditions,
the effect of SPM can exactly cancel that due to dispersion for the whole pulse. The above
intuitive picture is confirmed by a detailed calculation..27/ In fact, if a pulse is propagating
in a medium showing an optical Kerr effect and a negative GVD (such as a silica optical

� One may observe that the pulse spectrum must remain unchanged while the pulse propagates through a passive
medium such as the dipersive medium considered here. In such a medium, however, the pulse broadens upon
propagation [see (8.6.32)] and the spectral contribution arising from the finite pulse duration decreases. It then
follows that the pulse must also acquire an appropriate frequency modulation to keep the spectrum unchanged.
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fiber at � > 1300 nm), the pulse propagation, due to the presence of SPM, is described by
a nonlinear wave equation which admits pulsed solutions that propagate without distortion.
The time behavior of the corresponding electric field, for the lowest order solution, turns out
to be described by a hyperbolic secant function [i.e., A.t0/ / sech .t0=�p/], i.e., the pulse is
unchirped and the whole pulse propagates without distortion as a result of the mutual compen-
sation of SPM and GVD, as discussed above. These solutions are called solitary solutions of
the nonlinear wave equation or solitons. One of the most interesting properties of the lowest
order soliton is that its pulsewidth	�p (FWHM) is related to the pulse peak power, Pp, by the
equation.27/

	�2
p D 3.11jb2j

� Pp
(8.6.40)

where b2 D .d2ˇ=d!2/!L , � D n2!L=cAeff , and Aeff is the effective area of the beam (Aeff D

w2 for a Gaussian beam of spot size w). One can also show that �=2 is simply the nonlinear
phase shift per unit length per unit peak power [see also Eq. (8.6.38)].

One can now ask the question as to whether solitary pulses can be produced in a ML
laser cavity containing a medium exhibiting the optical Kerr effect and with overall negative
GDD. The answer to this question is that solitary solutions, alone, are unstable in a ML
laser cavity.28/ but can become stabilized by some nonlinear loss mechanism producing a
self amplitude modulation (see Fig. 8.22 or Fig. 8.24). In this case, if one neglects pulse
broadening arising from the finite gain bandwidth and higher order dispersion, one gets an
approximate steady-state solution that is equivalent to the fundamental soliton propagation in
optical fibers with anomalous dispersion. In particular, according to Eq. (8.6.40), the pulse
duration turns out to be proportional to the inverse of the pulse energy E .E Š 2.27 Pp	�p/

according to the relation.29/

	�p D 3.53j�00j
ı E

(8.6.41)

where �00 is the GDD for the round trip in the laser cavity and ı is the nonlinear round-trip
phase shift per unit power in the Kerr medium and thus given by ı D � lK , where lK is the
length of the Kerr medium. From Eq. (8.6.41), taking �00 D �200 fs2, ı � 10�6 W�1, and
E � 50 nJ (as appropriate for a ML Ti:sapphire laser) one obtains 	�p Š 14 fs. Indeed, soli-
tary solutions have been observed in both ML Ti:sapphire and ML dye lasers by carefully
adjusting the laser parameters..29,30/ In both these cases, ML was exploiting a mechanism of
self amplitude modulation, such as that occurring by KLM or by a slow saturable absorber
combined with dynamic gain saturation. In both cases, very short (10–20 fs) pulses can be
generated either by the soliton mechanism alone or by the combined action of pulse broaden-
ing due to the finite gain bandwidth. It is also important to note that very short ML light pulses
.�100 fs/ have been produced by this soliton-type mechanism even using ML elements pro-
viding a much slower time window of net gain (e.g., semiconductor saturable absorbers with
picosecond relaxation time)..31/ In this case, the ML element just helps to stabilizing the soli-
ton solution while the pulse duration is essentially determined by the soliton equation given
by Eq. (8.6.41).
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8.6.5. Mode-Locking Regimes and Mode-Locking Systems

Mode-locked lasers can be operated either with a pulsed or cw pump, and depending
on the type of mode-locking element and type of gain medium used, the ML regimes can be
rather different. Some examples will be briefly discussed in this section.

In the pulsed case (Fig. 8.28a), the time duration 	� 0
p of the mode-locked train enve-

lope has a finite value which is established by the mode-locking method being used. As
already discussed in Sect. 8.6.3.1, active AM- and FM-mode-locking are commonly achieved
by means of a Pockels cell providing electro-optic amplitude or phase modulation, respec-
tively, and, in this case, 	� 0

p is generally determined by the duration of the pump pulse. This
occurs, for instance, for gain media with fast recovery time (� of around a few nanosec-
onds e.g., dye lasers) which cannot operate Q-switched. In this case 	� 0

p may typically be
a few tens of microseconds. Passive ML is usually achieved by fast (a few tens of ps) dye-
solution saturable absorbers, and, for gain media with a slow recovery time (� of around
a few hundreds of microseconds, as applies e.g., to solid-state lasers), the presence of the
saturable absorber will result not only in mode-locked but also in Q-switched operation. In
this case the duration 	� 0

p of the mode-locked train will be established by the same consid-
eration that determine the duration 	�p of Q-switched pulse behavior (generally a few tens
of nanoseconds, see Sect. 8.4.4). Note that, when a slow saturable absorber (� of around a
few nanoseconds) is used with a slow gain medium�, passive Q-switching with single-mode-
selection rather than ML will tend to occur, due to the mode-selecting mechanism discussed
in Sect. 8.4.2.4.

FIG. 8.28. Different mode-locking regimes: (a) ML with a pulsed pump. (b) cw ML with a cw pump. (c) ML with
a cw pump and fast saturable absorber, showing the simultaneous occurrence of ML and repetitive Q-switching.

� It must be noted that we have been using the terms “fast” and “slow” in regard to recovery time in different ways
for the cases of absorber and gain medium. The recovery time of a saturable absorber is considered to be slow when
its value (typically a few nanoseconds) is comparable to a typical cavity round trip time. This lifetime is typical
for absorbers whose decay is determined by spontaneous emission via an electric-dipole-allowed transition. The
recovery time is considered to be fast (a few picoseconds or shorter) when it is comparable to a typical duration of
a mode-locked pulse. By contrast, the lifetime of a gain medium is considered to be fast when comparable to the
cavity round trip time. This occurs for an electric-dipole-allowed laser transition. The lifetime of a gain medium
is considered to be slow when it corresponds to an electric-dipole-forbidden transition.
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In the case of active ML and a cw pump, the output beam consists of a continuous train
of mode-locked pulses (Fig. 8.28b), whose repetition rate will depend on whether funda-
mental or harmonic ML is involved (see Fig. 8.19). As already discussed in Sect. 8.6.3.1.,
active ML is, in this case, usually achieved by an acousto-optic modulator, on account of
its lower insertion loss compared to a Pockels cell modulator. Continuous wave passive ML
by slow-saturable-absorber-ML can be achieved using slow saturable absorbers combined
with fast gain media (notably dye lasers). Continuous wave passive ML can also be achieved
with non-linear elements providing a fast non-linear loss (such as a fast saturable absorber
or Kerr-lens nonlinear element). When the latter is used with a slow gain medium (a solid-
state medium), however, care must be exercised to avoid the simultaneous occurrence of
repetitive Q-switching..32,33/ If this situation is not avoided, the system may operate either in
repetitive Q-switching with mode-locking (Fig. 8.28c) or in repetitive Q-switching without
mode-locking. In both of these cases, the time duration of the Q-switched pulse, 	�p, and
the Q-switching repetition rate, 1=�p, (see Fig. 8.28c) are established by the dynamics of the
passive Q-switching process.

A large number of different lasers have been made to operate mode-locked, both actively
and passively, including many gas lasers (e.g., He-Ne, Ar ion and CO2 lasers), all of the
commonly used solid-state lasers, many semiconductor lasers and many dye lasers. As rep-
resentative examples, Table 8.1. shows the most common media providing picosecond and
femtosecond laser pulses, in cw ML, together with the corresponding values of gain linewidth
	�0, peak stimulated emission cross section � , and upper state lifetime � . In the same
table, the shortest pulse duration, 	�p, so far achieved and the minimum pulse duration,
	�mp Š 0.44=	�0, achievable from that particular laser is also shown. One should remem-
ber that, according to Eq. (7.3.12), the threshold pump power is inversely proportional to �� .
Thus, for a given gain medium, 1=�� can be taken as a figure of merit for achieving the lowest
threshold while, of course, 1=	�0 represents a figure of merit to produce the shortest pulses.

TABLE 8.1. Most common media providing picosecond and femtosecond laser pulses together with
the corresponding values of: (a) gain linewidth, 	�0; (b) peak stimulated emission cross-section, � ;
(c) upper state lifetime, � ; (d) shortest pulse duration so far reported, 	�p; (e) shortest pulse duration,

	�mp, achievable from the same laser

Laser medium 	�0 �Œ10�20 cm2� � Œμs� 	�p 	�mp

Nd:YAG 135 GHz 28 230 5 ps 3.3 ps
� D 1.064 μm
Nd:YLF 390 GHz 19 450 2 ps 1.1 ps
� D 1.047 μm
Nd:YVO4 338 GHz 76 98 <10 ps 1.3 ps
� D 1.064 μm
Nd:glass 8 THz 4.1 350 60 fs 55 fs
� D 1.054 μm
Rhodamine 6G 45 THz 2 	 104 5 	 10�3 27 fs 10 fs
� D 570 nm
Cr:LISAF 57 THz 4.8 67 18 fs 8 fs
� D 850 nm
Ti:sapphire 100 THz 38 3.9 6–8 fs 4.4 fs
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FIG. 8.29. Arrangement for a colliding-pulse mode-locked (CPM) ring dye laser including two-prism pairs for
dispersion control.

Note that, since � / 1=	�0, the lasers capable of the shortest pulses tend to have the high-
est threshold. Mode-locked lasers are also quite diversified in terms of their configuration,
and it is beyond the scope of this book to provide detailed descriptions of these many and
varied systems. We will therefore limit ourselves to describing just two cases of cw femtosec-
ond lasers, representing particularly relevant and up-to-date examples: (i) The colliding-pulse
mode-locked (CPM) Rhodamine 6G laser; (ii) the Ti:sapphire KLM laser.

In the CPM Rhodamine 6G dye laser (Fig. 8.29), a ring laser cavity is used and the
dye active medium, which is located at the beam waist between the two focusing mirrors M2

and M3, consists of a solution of Rhodamine 6G in ethylene glycol, flowing in a jet stream
orthogonal to the plane of the figure. The laser is passively mode-locked by a slow saturable
absorber which is located at the beam waist between the two focusing mirrors M4 and M5 and
consists of a solution of DODCI in ethylene glycol, again flowing as a jet stream orthogonal
to the plane of the figure..34/ The active medium is quasi-longitudinally pumped by a cw Ar
ion laser beam which is focused in the jet stream by mirror M1. The ring configuration leads to
the generation of two oppositely traveling femtosecond laser pulses that meet each time (i.e.,
collide) at the saturable absorber jet position. Due to the associated formation of a standing
wave pattern in the saturable absorber, absorber saturation is enhanced and this increases the
peak net gain generated (Fig. 8.24). The two pulses meet at time intervals separated by Lp=c,
where Lp is the length of the ring perimeter. The Rhodamine 6G dye jet is positioned at a
distance Lp=4 from the saturable absorber. As can be readily seen from Fig. 8.30, this ensures
that the single pulses that pass through the Rhodamine 6G are all equally spaced in time by
Lp=2c. This time symmetry allows the saturated gain of Rhodamine 6G to be the same for
the two pulses, thus providing the best ML performances. To control the cavity GDD, the
four-prism sequence of Fig. 8.26 is also introduced in the ring. In this way, with the overall
GDD minimized, pulses of �50 fs can be generated. Under special operating conditions, ML
can be further enhanced by a soliton-type mechanism, via the phenomenon of SPM within the
jet streams and with the required amount of negative GDD being provided by the four-prism
system..30/ In this operating regime, pulses down to 27 fs have been generated (the shortest for
a ML dye laser).

In the Ti:sapphire KLM laser, a 10 mm thick plate of Ti:sapphire is longitudinally
pumped, in a z-folded linear laser cavity, again by a focused beam of an Ar ion laser
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FIG. 8.30. Schematic representation of a CPM ring dye laser: (a) time t D 0 when the two counter-propagating
pulses meet (collide) at the location of the saturable absorber; (b) time t D Lp=4c, where Lp is the length of the ring
perimeter, when one pulse passes through the dye gain medium.

FIG. 8.31. Arrangement for a KLM mode-locked Ti:sapphire laser using a symmetric, z-folded, linear cavity and
one prism pair for dispersion control.

(Fig. 8.31). KLM-type mode-locking (see Fig. 8.23) is achieved by exploiting the optical
Kerr lens induced in the sapphire plate combined with a suitable aperture placed at one end
of the cavity. To obtain the largest value of Kerr-lens nonlinearity, so that the laser can be
self-starting, the two arms of the z-shaped cavity must be made of equal lengths..35/ A two-
prism sequence (i.e., just the first half of the four prism sequence of Fig. 8.26) is used for
GDD control. Under optimum operating conditions, when the two-prism sequence compen-
sates the positive GDD of sapphire, pulses as short as 30 fs can be obtained from such a laser.
By decreasing the sapphire thickness down to �2 mm, one can reduce the positive GDD of
the active medium to a sufficiently low value to be compensated by the negative GDD of
intracavity chirped mirrors in a multipass configuration..36/ In this way, the problem of cavity
third order dispersion is greatly reduced and pulses down to the record value of 6–8 fs have
been obtained..36,37/
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8.7. CAVITY DUMPING.38/

The technique of cavity dumping allows the energy contained in the laser, in the form of
laser photons, to be coupled out of the cavity in a time equal to the cavity round-trip time. The
principle of this technique can be followed with the help of Fig. 8.32, where the laser cavity
is assumed to be made of two 100% reflecting mirrors and the output beam is taken from a
special kind of output coupler. The reflectivity, R D R.t/, of this coupler is in fact held at zero
until a desired time instant when it is suddenly switched to 100%. This coupler will thus dump
out of the cavity, in a double transit, whatever optical power is circulating in the laser cavity.
Alternatively, if the reflectivity R of the output coupler is switched to a value less than 100%,
the cavity dumper will still work correctly provided that the coupler reflectivity is held, after
switching, at its high value for a time equal to the cavity round-trip time and then returned to
zero. Cavity dumping is a general technique that can be used to advantage whether the laser
be mode-locked, or cw or Q-switched. In the discussion that follows we will limit ourselves
to considering the case of cavity dumping of a mode-locked laser, this being one of the cases
where cavity dumping is used most often in practice.

For pulsed ML lasers, cavity dumping is usually carried out at the time when the intra-
cavity mode-locked pulse reaches its maximum value (see Fig. 8.28a). In this way a single
ultrashort pulse of high intensity is coupled out of the laser cavity. This type of dumping is
often obtained by a Pockels cell electro-optic modulator used in a configuration that is similar
to that used for Q-switching (see Fig. 8.5a). In this case the reflected beam from the polarizer
is taken as output and, to obtain switching to 100% reflectivity, the voltage to the Pockels cell
is switched from zero to its �=4 voltage at the time when cavity dumping is required.

For a cw mode-locked laser, the technique of cavity dumping can be used in a repetitive
way to produce a train of ultrashort pulses whose repetition rate is now set by the repetition
rate of the dumper rather than by the repetition frequency of the ML process (e.g., � D c=2L
for fundamental ML). If this rate is low enough (typically between 100 kHz and 1 MHz) the
corresponding time interval between two successive cavity dumping events .1–10 μs/ allows
sufficient time for ML to fully reestablish itself. The technique of repetitive cavity dumping
therefore allows one to obtain a train of ultrashort laser pulses of much lower repetition rate
and hence much higher peak power that those obtained by ordinary mode-locking. These two
properties are often a desirable feature when ultrashort pulses are being put to use in some
applications. We recall that, if the output coupler reflectivity is less than 100%, the coupler
needs to be switched on and off so that the time for the on-state is equal to the cavity round-
trip time. In this case, however, a reduced-intensity mode-locked pulse will remain in the
cavity after dumping, and, as ML does not have to start again from noise, the system works

FIG. 8.32. Principle of laser cavity dumping.
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FIG. 8.33. Common arrangement for cavity dumping of a cw-pumped laser (e.g., Nd:YAG or Ar ion). Mirrors
M1–M3 are nominally 100% reflecting at the laser wavelength. The broken lines indicate the beam which is diffracted
by the modulator. For cavity dumping of a mode-locked laser, a mode-locker is also inserted at one end of the cavity
(e.g., near mirror M1).

in a more reliable way. In view of its lower insertion loss, the dumping device often used for
this application is the acousto-optic cavity dumper. It consists of an acousto-optic modulator
working in the Bragg regime and in the traveling-wave mode where the diffracted beam is
taken as the output coupled beam. Its configuration is shown in Fig. 8.33 and it differs from
that shown, for Q-switching, in Fig. 8.7a in three main aspects: (1) The rf oscillator, which
drives the piezoelectric transducer, is now oscillating at a much higher frequency (e.g., � D
380 MHz). Its output is gated in such a way that the rf envelope is a pulse of duration �p equal
to the cavity round trip time (e.g., �p D 10 ns). Cavity dumping thus occurs when the resulting
acoustic pulse interacts with the cavity beam. This pulse must therefore be synchronized with
the circulating mode-locked pulse so that the two pulses meet in the modulator. Note that
the high carrier frequency serves the double purpose of allowing amplitude modulation by
short pulses .�p D 10 ns/ and of producing a higher diffraction angle 
d. In fact, since 
d D
�=�a, where �a is the acoustic wavelength, the diffraction angle increases linearly with the
carrier frequency. (2) The beam is focused to a very small spot-size in the modulator. The time
duration of the optical coupling is in fact established not only by the duration of the acoustic
pulse but also by the pulse transit time through the focused laser beam. As an example, taking
a spot diameter of d D 50 μm and a sound velocity of � D 3.76 � 105 cm = s (shear-wave
velocity in fused quartz) we get t D d=� D 13.3 ns. (3) The circulating and the diffracted
laser pulses are made to interact twice with the acoustic pulse within the modulator. This is
achieved with the help of mirror M3, which also refocuses the scattered beam back into the
modulator. In this way, higher diffraction efficiency .�70%/ can be obtained.

8.8. CONCLUDING REMARKS

In this chapter, several cases of transient laser behavior have been considered in some
detail. Generally speaking, these cases can be grouped into two categories: (1) Laser transients
occurring on a time scale appreciably longer than the cavity round trip time. This includes the
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phenomena of relaxation oscillations, Q-switching and gain switching. In this case, to first
order, one can describe the laser light in the cavity in terms of a total number of photons, more
or less uniformly filling the cavity, undergoing a time evolution according to the dynamical
situation involved. (2) Laser transients occurring in a time scale appreciably shorter and often
much shorter than the cavity round trip time. This category includes all cases of mode-locking
of practical interest and some cases of cavity dumping. In this case the laser light in the
cavity can be described in terms of a light pulse (i.e., a photon bunch) traveling back and
forth in the cavity. For both kinds of transient behavior and, in particular, for Q-switching
and mode-locking, several techniques for inducing the required transient behavior have been
introduced and discussed. In doing so, new physical phenomena have been described and
characterized including interaction of light with sound-waves, pulse propagation in dispersive
media and some nonlinear optical phenomena such as self-phase-modulation, self-focusing
and the formation of solitary waves. We have thus acquired some new understanding of light-
matter interaction particularly under transient conditions.

The level of treatment has been subjected to several limitations. All but the simplest
analytical treatments have been avoided, aiming rather to develop a deeper physical under-
standing of the complex phenomena involved. In particular, complications arising from any
spatial variation of the laser beam and of the pump rate (e.g., variations of the transverse
beam profile) have been ignored here. So, the material introduced in this chapter represents
the minimum base-knowledge which, in the author’s opinion, is required for a comprehensive
and balanced understanding of transient laser behavior.

PROBLEMS

8.1. For the Nd:YAG Q-switched laser considered in Fig. 8.12, calculate the expected threshold energy,
output energy, and pulse duration, for Ein D 10 J, when the output coupling is reduced to 20%.

8.2. Consider a Pockels cell in the so-called longitudinal configuration i.e., with the dc field applied
along the direction of the beam passing through the nonlinear crystal. In this case, the induced
birefringence, 	n D nx � ny, is given by 	n D n3

or63 V=L0, where no is the ordinary refractive
index, r63 is the appropriate nonlinear coefficient of the material, V is the applied voltage and L0 is
the crystal length. Derive an expression for the voltage required to keep the polarizer-Pockels-cell
combination of Fig. 8.5a in the closed position.

8.3. For a Pockels cell made of KD2PO4 (deuterated potassium dihydrogen phosphate, also known
as KD�P) the value of the r63 coefficient at � D 1.06 μm is r63 D 26.4 � 10�12 m=V, while
no D 1.51. From the result of Problem 8.2 calculate the voltage that needs to be applied for the
closed position.

8.4. The Nd:YAG laser of Figs. 7.4 and 7.5 is pumped at a level of Pin D 10 kW and repetitively
Q-switched, at 10 kHz repetition rate, by an acousto-optic modulator (whose insertion losses are
assumed negligible). Calculate the energy, and duration of the output pulses, as well as the peak
and average powers expected for this case.

8.5. Derive the expressions for output energy and pulse duration which apply for a Q-switched quasi-
three level laser.

8.6. A He-Ne laser beam with wavelength (in air) of � D 632.8 nm is deflected by a LiNbO3 acousto-
optic deflector operating, in the Bragg regime, at the acoustic frequency of 1 GHz (the highest



Problems 371

acoustic frequency which is possible in LiNbO3 without introducing excessive losses). Assuming
a sound velocity in LiNbO3 of 7.4 � 105 cm=s and a refractive index n D 2.3, calculate the angle
through which the beam is deflected.

8.7. Consider a Rhodamine 6G dye laser, transversely pumped by an atmospheric pressure nitrogen
laser (see Chap. 9) with a pulse duration tp sufficiently short to make the laser operate gain-
switched. Assume: (i) The dye dissolved in ethanol .n D 1.36/. (ii) A length l D 5 mm of
the dye cell, the whole length being pumped by the focused beam of the nitrogen laser. (iii)
A circular cross section of the pumped region with a diameter D D 50 μm. (iv) The two end
mirrors directly attached to the ends of the dye cell (i.e., L Š l) one mirror being 100% reflecting
and the other having a power transmission of 50%. (v) All other cavity losses negligible. (vi)
An effective stimulated emission cross section, at the � D 570 nm lasing wavelength, of �e D
2�10�16 cm2. (vii) A square pump pulse of duration tp much shorter than the upper state lifetime
of the Rhodamine 6G solution .� Š 5 ns/. Assume also that the pump amplitude is such as to
produce a peak inversion 4 times larger than the threshold inversion.
Calculate: (i) The time at which threshold is reached. (ii) The time behavior of the net gain.
(iv) The time behavior of the photon number, neglecting gain saturation. (v) The time duration of
the pump pulse, tp, such that, at the end of the pump pulse, the photon number has reached the
value �p=20, where the peak value �p is calculated according to the theory of fast switching.

8.8. Derive Eq. (8.6.6)

8.9. Assuming a phase relation as in Eq. (8.6.13), show that the resulting electric field of the pulse can
be written as in Eq. (8.6.14) and calculate the values of ˛ and ˇ as a function of 	!L and '2.

8.10. The oscillation bandwidth (FWHM) of a mode-locked He-Ne laser is 1 GHz, the spacing between
consecutive modes is 150 MHz, and the spectral envelope can be approximately described by a
Gaussian function. For fundamental mode-locking, calculate the corresponding duration of the
output pulses and the pulse repetition rate.

8.11. Assume that the phase relation between consecutive modes is such that 'lC1 �'l D 'l �'l�1 C

and that the spectral amplitude is constant over 2n modes. Show that the pulse repetition rate is
now equal to 2	�, where 	� D c=2L (case of second-harmonic mode-locking). [Hint: label the
modes with the indices l D 0, 1, 2, : : : starting from the mode with the lowest frequency and
show that one can write 'l D l', where ' is a constant, for even l, and 'l D l'C .
=2/ for odd l.
Then consider, separately, the even-mode sum and the odd-mode sum and show that they produce
two, time-intercalated, mode-locked trains: : : : : :].

8.12. Prove Eq. (8.6.16)

8.13. Assuming a uniform laser output spectrum as in Fig. 8.16a, calculate the ratio between the peak
power for fundamental mode-locked operation and the average power when the modes have
random phases.

8.14. For a random-noise intensity pattern as in Fig. 8.15, the probability density pI (i.e., pI dI gives the
elemental probability that the beam intensity is measured to be between I and I C dI) is given by
pI / exp �.I=I0/ (see also Fig. 11.11b). Calculate the average beam intensity and the probability
that, in an intensity measurement, one finds a value exceeding 2I0.

8.15. By approximating the sum over all modes in Eq. (8.6.10) with an integral, an important
characteristic of the output behavior is lost. What is it?

8.16. Consider a KLM-mode-locked Ti:sapphire laser and, according to Eq. (8.6.20), assume that the
total round trip cavity losses can be written as 2�t D 2��kP, where P is the peak intracavity laser
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power and where the nonlinear loss coefficient k, due to the KLM mechanism, can be taken to be
�5�10�8 W�1. Assume a saturated round-trip gain 2g0

0 Š 0.1, a gain bandwidth of 100 THz, and
an intracavity laser energy of W D 40 nJ. Calculate the pulse duration achievable in the limiting
case where the effects of cavity dispersion and self-phase modulation can be neglected.

8.17. Assuming a GVD for quartz at � Š 800 nm of 50 fs2=mm, calculate the maximum thickness of
a quartz plate that an initially unchirped 10 fs pulse, of Gaussian intensity profile, can traverse if
the output pulse duration is not to exceed the input pulse duration by more than 20%.

8.18. Consider a Nd:phosphate glass laser, whose linewidth can be taken to be homogeneously broad-
ened to 	�0 Š 6 THz. Assuming a saturated round-trip gain of 5% and a peak round-trip loss
change, due to a fast self-amplitude-modulation mechanism, of 2%, calculate the expected width
of the mode-locked pulses.
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9

Solid-State, Dye, and Semiconductor
Lasers

9.1. INTRODUCTION

In this chapter, the most important types of lasers involving high density active media
are considered, namely solid-state, dye and semiconductor lasers. The chapter concentrates
on those examples that are in widest use and whose characteristics are representative of a
whole class of lasers. The main emphasis here is on stressing the physical behavior of the
laser and relating this behavior to the general concepts developed in the previous chapters.
Some engineering details are also provided with the main aim again of helping to provide
for a better physical insight into the behavior of the particular laser. To complete the picture,
some data relating to laser performances (e.g., oscillating wavelength(s), output power or
energy, wavelength tunability, etc.) are also included to help providing some indication of the
laser’s applicability. For each laser, after some introductory comments, the following items are
generally covered: (1) Relevant energy levels; (2) excitation mechanisms; (3) characteristics
of the laser transition(s); (4) engineering details of the laser structure(s); (5) characteristics of
the output beam; (6) applications.

9.2. SOLID-STATE LASERS

The use of the term solid-state laser is generally reserved for those lasers having as their
active species ions introduced as an impurity in an otherwise transparent host material (in
crystalline or glass form). Thus, semiconductor lasers are not usually included in this category,
the mechanisms for pumping and for laser action being in fact quite different. These will be
considered in a separate section.

O. Svelto, Principles of Lasers,
c
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Ions belonging to one of the series of transition elements of the Periodic Table, in partic-
ular rare-earth (RE) or transition metal ions, are generally used as the active impurities. On the
other hand, for host crystals, either oxides, e.g. Al2O3, or fluorides, e.g. YLiF4 [abbreviated
as YLF], are most often utilized..1/ The Al3C site is too small to accommodate rare earth ions
and it is generally used for transition metal ions. A suitable combination of oxides, to form
synthetic garnets such as Y3Al5O12 D .1=2/.3 Y2O3 C 5 Al2O3/, are often used and the Al3C
site can accommodate transition metal ions while the Y3C site can be used for RE ions. Other
oxides include YVO4 for Nd3C ions and alexandrite for Cr3C ions. Among the fluorides, YLF
is used as host for rare earths while LiSrAlF6 (abbreviated as LISAF) or LiCaAlF6 (abbre-
viated as LICAF) are used for transition metals, most notably for Cr3C ions. A comparison
between oxides and fluorides shows that oxides have the advantages of being harder, with
better mechanical and thermo-mechanical (i.e. higher thermal fracture limit) properties. Flu-
orides, on the other hand, show better thermo-optical properties (i.e. lower thermally-induced
lensing and birefringence). Glasses of either the silicate (i.e. based on SiO2) or phosphate (i.e.
based on P2O5) family have so far been used only for RE ions. Compared to crystals, many
glasses have much lower melting temperatures and, therefore, are easier and cheaper to fab-
ricate even in much larger dimensions. On the other hand, glasses have much lower (by �
an order of magnitude) thermal conductivity which leads to much worse thermo-mechanical
and thermo-optical properties. A comparison between various glasses reveals silicates to have
better thermal and mechanical properties while phosphates to show better thermo-optical and
non-linear optical properties.

The general electronic structure of a RE is 4f N 5s2 5p6 5d0 6s2 as shown for Nd, Er, Yb,
Tm, and Ho in Table 9.1 where, for comparison, the structure of Xe is also indicated. When
the RE is inserted in a host material, the two 6s electrons and one of the 4f electrons are used
for the ionic binding so that the RE presents itself as a triply ionized ion (e.g. N � 1 D 3 for
Nd3C). The remaining N �1 electrons can then arrange themselves in different states of the 4f
shell, resulting in a large number of energy levels. In fact, these states are split by three types
of interaction, namely Coulomb interaction among the 4f N�1 electrons, spin-orbit coupling,
and crystal field interaction. The Coulomb interaction is the strongest of these three and splits

TABLE 9.1. Electronic configurations
of some rare earth and transition met-
als of interest as laser active impurities.
For reference, the fundamental config-

uration of Xe is also shown

Xenon, Xe .Kr/4d105s25p6

Neodymium, Nd .Xe/4f 45d06s2

Holmium, Ho .Xe/4f 115d06s2

Erbium, Er .Xe/4f 125d06s2

Thulium, Tm .Xe/4f 135d06s2

Ytterbium, Yb .Xe/4f 145d06s2

Chromium, Cr .Ar/3d54s1

Titanium, Ti .Ar/3d24s2

Cobalt, Co .Ar/3d74s2

Nickel, Ni .Ar/3d84s2
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the 4f states into sublevels which are typically separated by � 10,000 cm�1. Spin-orbit cou-
pling then splits each term into manifolds typically separated by � 3,000 cm�1. Crystal field
interaction produces the weakest perturbation (weakened by the screening effect of the 5s2

and 5p6 orbitals), thus further splitting each sub-level into a manifold with energy separation
typically of 200 cm�1. All relevant absorption and emission features are due to transitions
between these 4f states (4f –4f transitions). Electric dipole transitions within the 4f shell are
parity-forbidden and it needs a mixture of wavefunctions with opposite parity, brought about
by the crystal-field interaction, to create non-zero, although still weak, transition probabili-
ties. Thus, one generally finds long (hundreds of �s) radiative lifetimes. Furthermore, due to
the screening from the 5s2 and 5p6 orbitals, electron-phonon coupling turns out to be very
weak. One thus has sharp transition lines and weak non-radiative decay channels for low ion-
doping (ion-ion interaction can lead to non-radiative decay at high RE ion concentrations, see
Fig. 2.13). From the above considerations one expects large values of the overall lifetime, � ,
and of the product �� , where � is the peak cross-section. This implies a low threshold pump
power for laser action since, e.g. for a four level laser, the threshold pump rate is proportional
to 1=�� [see Eq. (7.3.3)].

The electronic configurations for those transition metals, of interest for laser action, are
also shown in Table 9.1. Note that the electronic configuration of the most important active
species, i.e., Cr, is given by .Ar/3d54s1, while those of Ti, Co, and Ni can be written in
the general form .Ar/3dN4s2 (with N D 2 for Ti, 7 for Co and 8 for Ni). When in an ionic
crystal, the 4s1 electron and two 3d electrons of Cr are used for the ionic binding and Cr is
present as a triply ionized ion with 3 electrons left in the 3d shell. For Titanium, the two 4s
electrons and one 3d electron are used for the ionic binding and Ti is present as triply ionized
ion with only one electron left in the 3d shell. For both Co and Ni the two 4s electrons are
used for the binding and these elements are present as doubly ionized ions. In all cases, the
remaining electrons in the 3d orbital can arrange themselves in a large number of states (e.g.
24 for Cr3C) and all the absorption and emission features of transition metal ions arise from
3d � 3d transitions. Lacking the screening which occurs for RE ions, the 3d states interact
strongly with the crystal field of the host and, as we shall see later, this is the fundamental
reason for the vibronic character, leading to wide absorption and emission bands, for most of
the corresponding transitions. Again electric dipole transitions within the 3d shell are parity
forbidden but, due to the stronger crystal field compared to the RE case, the 3d�3d transitions
are more allowed and thus the lifetimes are significantly shorter (a few �s) than those of the
4f � 4f transitions of RE ions. Compared to e.g. Nd:YAG, the transition cross sections are
somewhat smaller so that the product �� is now typically one order of magnitude smaller.

As a conclusion to this section, it is worth noting that ions belonging to the actinide
series, notably U3C, were also used in the early days of laser development (actually the
U3C laser was the second solid state laser to be developed, i.e. immediately after the ruby
laser). These ions are essentially no longer used but they deserve a mention here for historical
reasons.

9.2.1. The Ruby Laser

This type of laser was the first to be made to operate (T. H. Maiman, June 1960.2,3/) and
still continues to be used in some applications..4/ As a naturally occurring precious stone, ruby
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FIG. 9.1. Simplified energy levels of ruby.

has been known for at least 2,000 years. It consists of a natural crystal of Al2O3 (corundum)
in which some of the Al3C ions happen to have been replaced by Cr3C ions. For the laser
material, one uses artificial crystals obtained by crystal growth from a molten mixture of
Al2O3 with a small percentage of Cr2O3 (0.05% by weight)..4/ Without the addition of Cr2O3,
the crystal that forms is colorless and it is known as sapphire. Due to the strong green and
violet absorption bands of Cr3C ions, it only needs the small addition of Cr2O3 to give the
crystal a pink color (pink ruby). In the case of gem stones, the Cr3C concentration is about an
order of magnitude larger, giving them a strong red color (red ruby).

The energy levels of ruby are due to one of the three electrons of the Cr3C ion, in the
3d inner shell, under the influence of the octahedral field at the Al site in the Al2O3 lattice.
The corresponding levels, of interest for laser action, are shown in Fig. 9.1. The notation used
to label the levels is derived from group theory and is not discussed at any length here. We
merely limit ourselves to pointing out that the superscript to the left of each letter indicates
the multiplicity of the state while the letter indicates the particular rotational symmetry of the
state. Thus, as an example, the ground 4A2 state has a multiplicity .2S C 1/D 4, i.e., S D 3=2
where S is the total spin quantum number of the three 3d electrons. This means that the spins
of these electrons are all parallel in this case.

Ruby has two main pump bands 4F1 and 4F2 and the peaks of the transitions from the
ground 4A2 level to these bands occur at the wavelengths of 550 nm (green) and 420 nm
(violet), respectively (see also Fig. 6.7). The two bands are connected by a very fast (ps)
nonradiative decay to both 2 NA and NE states, which together form the 2E state. The 2 NA and NE
states are themselves connected to each other by a very fast nonradiative decay, which leads to
a fast thermalization of their populations, thus resulting in the NE level being the most heavily
populated. Since the total spin of the 2E state is 1/2, the 2E ! 4A2 transition is spin-forbidden.
The relaxation time of both 2 NA and NE levels to the ground state is thus very long .� Š 3 ms/,
actually one of the longest among all solid-state laser materials.

From the discussion above it is now apparent that the level NE accumulates the largest
fraction of the pump energy, and is thus a good candidate as the upper laser level. In fact, laser
action usually occurs on the NE ! 4A2 transition (R1 line) at the wavelength �1 D 694.3 nm
(red). It should be noted, however, that the frequency separation between 2 NA and NE levels
.�29 cm�1/ is small compared to kT=h (�209 cm�1 at T D 300 K) so that the 2 NA population is
comparable to, although slightly smaller than, the NE level population. It then follows that it
is also possible to obtain laser action on the 2 NA ! 4A2 transition (R2 line, �1 D 692.8 nm). It
is anyhow apparent that ruby operates as a three-level laser (actually, together with Er lasers,
it represents the most notewhorty example of a three-level laser). As already discussed in
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TABLE 9.2. Optical and spectroscopic parameters
of ruby for room temperature operation

Property Values and units

Cr2O3 doping 0.05 wt. %
Cr3C concentration 1.58 	 1019 ions=cm3

Output wavelengths 694.3 nm (R1 line)
692.9 nm (R2 line)

Upper laser level lifetime 3 ms
Linewidth of R1 laser transition 11 cm�1

Stim. emission cross-section �e 2.5 	 10�20 cm2

Absorption cross section �a 1.22 	 10�20 cm2

Refractive index .�D 694.3 nm/ n D 1.763 .E?c/
n D 1.755 .Ej jc/

connection with Fig. 2.10, the R1 transition is, at room temperature, predominantly homoge-
neously broadened, the broadening arising from the interaction of the Cr3C ions with lattice
phonons. The width of the transition (FWHM) is	�0 Š 11 cm�1 (330 GHz) at T D 300 K. As
a summary, Table 9.2 shows some relevant optical and spectroscopic parameters of ruby at
room temperature.

Ruby lasers are usually operated in a pulsed regime. For this, the pump configuration
of Fig. 6.1 using a medium-pressure .�500 Torr/ xenon flashtube, is generally utilized. Typ-
ical rod diameters range between 5 and 10 mm with a length between 5 and 20 cm. It should
be noted that a helical flashtube surrounding the active rod was used in the earliest ruby
lasers. Since this laser operates on a three-level scheme, the threshold pump energy is typi-
cally an order of magnitude higher than that of other solid-state lasers operating with four level
schemes (e.g. Neodimium lasers). Due to the long upper state lifetime, ruby lasers lend them-
selves readily to Q-switched operation and, due to the relatively broad laser linewidth, they
can also produce short pulses .�5 � 10 ps/ in mode-locked operation. Both active and pas-
sive methods can be used for Q-switching and mode-locking. When slow saturable absorbers
are used for Q-switching, the laser tends to operate on a single transverse and longitudinal
mode due to the mode selecting mechanism discussed in Sect. 8.4.2.4. With fast saturable
absorbers (usually solutions of cyanine dyes), simultaneous Q-switched and mode-locked
operation occurs (see Fig. 8.28a). Peak powers of a few tens of MW, for Q-switching, and
a few GW, when also mode-locked, are typical. Since the gain of the R2 line is somewhat
smaller than for the R1 line, laser action on the R2 line can be selected by using, for instance,
the dispersive system of Fig. 7.16b. Ruby lasers can also run cw, transversely pumped by a
high-pressure mercury lamp or longitudinally pumped by an Ar ion laser.

Ruby lasers, once very popular, are now less widely used since, on account of their
higher threshold, they have been superseded by competitors, such as Nd:YAG or Nd:glass
lasers. In fact, ruby lasers were extensively used in the past for the first mass production of
military rangefinders, an application in which this laser is now completely replaced by other
solid-state lasers (Nd:YAG, Nd:glass, Yb:Er:glass). Ruby lasers are, however, still sometimes
used for a number of scientific and technical applications where their shorter wavelength,
compared to e.g., Nd:YAG, represents an important advantage. This is for instance the case
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of pulsed holography, where Nd:YAG lasers cannot be used owing to the lack of response, in
the infrared, of the high-resolution photographic materials which are used.

9.2.2. Neodymium Lasers

Neodymium lasers are the most popular type of solid-state laser. The host medium is
often a crystal of Y3Al5O12 (commonly called YAG, an acronym for yttrium aluminum garnet)
in which some of the Y3C ions are replaced by Nd3C ions. Besides this oxide medium, other
host media include some fluoride (e.g. YLiF4) or vanadate (e.g. YVO4) materials as well
as some phosphate or silicate glasses. Typical doping levels in e.g. Nd:YAG are �1 atomic
%. Higher doping generally leads to quenching of fluorescence and also results in strained
crystals since the radius of the Nd3C ion is somewhat larger (by �14%) than that of the Y3C
ion. The doping levels used in Nd:glass (�4% of Nd2O3 by weight) are somewhat higher than
the value for Nd:YAG. The undoped host materials are usually transparent and, when doped,
generally become pale purple in color because of the Nd3C absorption bands in the red.

9.2.2.1. Nd:YAG

A simplified energy-level scheme for Nd:YAG is shown in Fig. 9.2. As discussed above,
these levels arise from the three inner shell 4f electrons of the Nd3C ion which are effectively
screened by 8 outer electrons (5s2 and 5p6). The energy levels are only weakly influenced by
the crystal field of YAG and the Russell-Saunders coupling scheme of atomic physics can then
be used. Level notation is accordingly based on this scheme and the symbol characterizing
each level is in the form 2SC1LJ, where S is the total spin quantum number, J is the total
angular momentum quantum number, and L is the orbital quantum number. Note that the
allowed values of L, namely L D 0, 1, 2, 3, 4, 5, 6, . . . . are expressed, for historical reasons,
by the capital letters S, P, D, F, G, H, I, . . . . . . , respectively. Thus the 4I9=2 ground level
correspond to a state in which 2S C 1 D 4 (i.e., S D 3=2), L D 6, and J D L � S D 9=2. Each
level is .2J C 1/-fold degenerate corresponding to the quantum number mJ running from �J
to CJ in unit steps. In the octahedral symmetry of the YAG crystal field, states with the same
value of jmJ j have the same energy in the presence of the Stark effect and each 2SC1LJ level is
split into .2JC1/=2 doubly degenerate sublevels. Thus the 4I11=2 and 4F3=2 levels are split into
6 and 2 sublevels, respectively (see Fig. 9.2). Note that, since the degeneracy of all sublevels

FIG. 9.2. Simplified energy levels of Nd:YAG.
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is always the same (i.e., g D 2), we can disregard this degeneracy and consider each sublevel
of Fig. 9.2 as if it were a single non-degenerate level.

The two main pump bands of Nd:YAG occur at �730 and �800 nm, respectively,
although higher-lying absorption bands (see Fig. 6.7) also play an important role, notably for
flash-lamp pumping. These bands are coupled by a fast nonradiative decay to the 4F3=2 level
from where the decay to the lower I levels occurs (i.e., to 4I9=2, 4I11=2, 4I13=2, etc. levels, see
Figs. 9.2 and 2.15). However, the rate of this decay is much slower .� Š 230�s/ than that of
the nonradiative decay, because the transition, in the isolated ion, is forbidden via the electric-
dipole interaction (the selection rule for electric-dipole allowed transitions is 	J D 0 or ˙1)
but becomes weakly allowed due to the crystal field interaction. Note that nonradiative decay
is not so important because the decay due to ion-ion interactions (see Fig. 2.13b) does not play
an important role at the stated Nd ion concentrations and because multiphonon decay is also
not so effective due both to the screening of the 5s2 and 5p6 states and the large energy gap
between 4F3=2 and the nearest level below it. This means that level 4F3=2 accumulates a large
fraction of the pump power and is therefore a good candidate as the upper level for laser action.

From the above discussion it is now apparent that several laser transitions are possible
between 4F3=2 and several lower-lying I levels. Out of these transitions, it turns out that the
4F3=2 ! 4I11=2 is the strongest one. Level 4I11=2 is then coupled by a fast (hundreds of ps)
nonradiative decay to the 4I9=2 ground level so that thermal equilibrium between these two
levels is very rapidly established. Then, since the energy difference between the 4I11=2 and
4I9=2 levels is almost an order of magnitude larger than kT, according to Boltzmann statis-
tics, level 4I11=2 may, to a good approximation, be considered to be empty at all times.
Thus laser operation on the 4F3=2 ! 4I11=2 transition corresponds to a four-level scheme.
Actually, according to the above discussion, the 4F3=2 level is split by the Stark effect into
two sublevels (R1 and R2) while the 4I11=2 level is split into six sublevels. It then turns out
that laser action usually occurs from the upper, R2, sublevel to a particular sublevel of the
4I11=2 level, this transition having the highest value of stimulated-emission cross section. The
transition occurs at �D 1.064�m (near infrared) this being the most widely used lasing wave-
length for Nd:YAG lasers. It should be noted that laser action can also be obtained on the
4F3=2 ! 4I13=2 transition (see Fig. 2.15, �D 1.319�m being the wavelength of the strongest
transition in this case) provided the multilayer dielectric coatings of the cavity mirrors have
high reflectivity at �D 1.319�m and sufficiently low reflectivity at �D 1.064�m wavelength
(see Fig. 4.9). With diode-laser pumping, laser action has also been made to occur effectively
on the 4F3=2 ! 4I9=2 transition. In this case the transition, at a wavelength �D 946 nm (see
Fig. 2.15), is to a sub-level of the 4I9=2 state which, despite being a high lying sublevel, is
still appreciably populated according to Boltzmann statistics, and the system operates as a
quasi-three-level laser. In the case of the usual �D 1.064�m transition, and probably for all
the other cases, the laser transition is homogeneously broadened at room temperature owing
to interaction with lattice phonons. The corresponding width is 	�Š 4.2 cm�1 D 126 GHz
at T D 300 K. This makes Nd:YAG a good candidate for mode-locked operation and pulses
as short as 5 ps have indeed been obtained by passive mode-locking (see Example 8.8).
The long lifetime of the upper laser level .� Š 230�s/ also makes Nd:YAG very suitable
for Q-switched operation. Table 9.3 gives a summary of relevant optical and spectroscopic
parameters for Nd:YAG at room temperature.
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TABLE 9.3. Optical and spectroscopic parameters of Nd:YAG, Nd : YVO4, Nd:YLF,
and Nd:glass (phosphate). In the table, Nt is the concentration of the active ions, � is
the fluorescence lifetime, 	�0 is the transition linewidth (FWHM), �e is the effective

stimulated emission cross section. Data refer to room temperature operation

Nd:glass
Nd:YAG Nd : YVO4 Nd:YLF �D 1.054�m

�D 1.064�m �D 1.064�m �D 1.053�m (Phosphate)

Nd doping [at. %] 1 at. % 1 at. % 1 at. % 3.8% Nd2O3

by weight
Nt Œ1020 ions=cm3� 1.38 1.5 1.3 3.2
� Œ�s� 230 98 450 300
	�0 Œcm�1� 4.5 11.3 13 180
�e Œ10�19 cm2� 2.8 7.6 1.9 0.4
Refractive index n D 1.82 no D 1.958 n0 D 1.4481 n D 1.54

ne D 2.168 ne D 1.4704

Nd:YAG lasers can operate either cw or pulsed and can be pumped either by a lamp
or by an AlGaAs semiconductor laser..5/ For lamp pumping, linear lamps in single-ellipse
(Fig. 6.1a), close-coupling (Fig. 6.1b) or multiple-ellipse configurations (Fig. 6.2) are com-
monly used. Medium pressure (500–1,500 Torr) Xe lamps and high-pressure (4–6 atm) Kr
lamps are used for the pulsed and cw cases, respectively. If a rod is used as the active
medium, the rod diameter ranges typically between 3 and 6 mm with a length between 5
and 15 cm. To reduce pump-induced thermal lensing and thermal birefringence, a slab config-
uration (Fig. 6.3a) is also sometimes used. The slope efficiency is about 3% for both cw and
pulsed operation and average output powers up to a few kW (1–3 kW) are common. Longitu-
dinally diode-pumped lasers (Fig. 6.11) with cw output powers up to �15 W and transversely
diode-pumped lasers (Figs. 6.14 and 6.15) with cw output powers well above 100 W are now
available. The slope efficiency, for diode-pumping, is much higher than for lamp pumping
and may exceed 10%.

Nd:YAG lasers are widely used in a variety of applications, among which we mention:
(1) Material processing such as drilling and welding. For drilling applications the beam of a
repetitively pulsed laser is focused on the material (average powers of 50–100 W are com-
monly used with E D 5–10 J pulse energy,	�p D 1–10 ms pulse duration, and f D 10–100 Hz
repetition rate). For welding applications, the repetitively pulsed laser beam is conveyed to the
working region through a, 0.5–2 mm diameter, optical fiber (average powers up to 2 kW are
now commonly handled in this way). In this application, high power Nd:YAG lasers are super-
seding their direct competitors (high power CO2 lasers) on account of the system flexibility
offered by optical fiber delivery. (2) Medical applications. For coagulation and tissue disrup-
tion, cw Nd:YAG lasers with power up to 50 W are used and the beam is delivered through an
optical fiber, inserted into a conventional endoscope, to the internal organs (lungs, stomach,
bladder) of the human body. Repetitively Q-switched Nd:YAG lasers are used for photodisrup-
tion of transparent membranes of pathological origin which can appear in the anterior chamber
of the eye (e.g., secondary cataract) or for iridoctomy. (3) Laser ranging, in particular for laser
rangefinders and target designators used in a military contest. In this case Q-switched lasers
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are used .E � 100 mJ, 	�p D 5–20 ns, f D 1–20 Hz/. (4) Scientific applications: in this case,
Q-switched lasers, with their second harmonic .�D 532 nm/, third harmonic .�Š 355 nm/
and fourth-harmonic beams .�D 266 nm/, as well as mode-locked lasers are commonly used
in a variety of applications. Lastly, it should be noted that diode-pumped Nd:YAG lasers, with
intracavity second harmonic generation, giving a green .�D 532 nm/ cw output power up to
�10 W have become available, providing an all-solid-state alternative to the Ar laser for many
of its applications.

9.2.2.2. Nd:Glass.6/

As already mentioned, the relevant transitions of the Nd3C ion involve the three electrons
of the 4f shell, and these are screened by 8 outer electrons in the 5s and 5p configuration.
Accordingly, the energy levels of Nd:glass are approximately the same as those of Nd:YAG.
Thus the strongest laser transition again occurs at about the same wavelength (�Š 1.054�m
for phosphate glass, see Table 9.3). The linewidths of the laser transitions are, however,
much larger as a result of the inhomogeneous broadening arising from the local field inho-
mogeneities typical of a glass medium. In particular the main �Š 1.054�m laser transition is
much broader (by �40 times) while the peak cross section is somewhat smaller (by �7 times)
than that of Nd:YAG. The larger bandwidth is of course a desirable feature for mode-locked
operation and, indeed, diode-pumped passively-mode-locked Nd:glass lasers have produced
ultrashort pulses .�100 fs/. The smaller cross-section, on the other hand, is a desirable fea-
ture for pulsed high-energy systems since the “threshold” inversion for the parasitic process
of amplified spontaneous emission, ASE [see Eq. (2.9.4)], is correspondingly increased. Thus
more energy per unit volume can be stored in Nd:glass compared to Nd:YAG before the onset
of ASE [see Example 2.13]. It should also be noted that glass, due to its lower melting temper-
ature, can be fabricated more easily than YAG and active media of much larger dimensions
can therefore be produced. Finally, since the pump absorption bands of Nd:glass are also
much broader than those of Nd:YAG and Nd3C concentrations are typically twice as great,
the pumping efficiency of a lamp-pumped Nd:glass rod is somewhat larger (�1.6 times) than
that of a Nd:YAG rod of the same dimensions (see Table 6.1). Against these advantages of
Nd:glass compared to Nd:YAG, we must set the disadvantage arising from its much lower
thermal conductivity (thermal conductivity of glass is about ten times smaller than that of
Nd:YAG). This has limited applications of Nd:glass lasers mainly to pulsed laser systems of
rather low repetition rate .<5 Hz/ so that thermal problems in the active medium (rod or slab)
can be avoided�.

As discussed above, Nd:glass lasers are often used in applications where a pulsed laser
of low repetition rate is required. This is for instance the case for some military rangefinders
and some scientific Nd lasers. A very important application of Nd:glass is in the form of laser
amplifiers in the very high energy systems used in laser-driven fusion experiments. Systems
based on Nd:glass amplifiers have indeed been built in several countries, the largest one being
in the USA (Nova laser, Lawrence Livermore National Laboratory) and delivering pulses with
energy of �100 kJ and peak power of 100 TW .	�p D 1 ns/. The laser makes use of a chain

� An exception to this is provided by glass fiber lasers, where long length and small transverse dimension eliminate
the thermal problem and have allowed cw outputs in excess of 100 W.
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of several Nd:glass amplifiers, the largest of which consists of Nd:glass disks (see Fig. 6.3b)
of �4 cm in thickness and �75 cm in diameter. A national ignition facility delivering pulses
of much higher energy (�10 MJ, Lawrence Livermore National Laboratory) and a similar
system delivering about the same output energy (�2 MJ, Limeil Center) are presently being
built in the USA and in France, respectively.

9.2.2.3. Other Crystalline Hosts

Many other crystal materials have been used as hosts for the Nd3C ion and we limit
ourselves here to mentioning YLiF4 [YLF] and YVO4.

Compared to YAG, YLF has better thermo-optical properties.7/ (pump induced ther-
mal lensing and thermal birefringence) and lamp pumped Nd:YLF lasers are used to obtain
TEM00-mode cw-beams of better quality and higher output power. The larger linewidth of
Nd:YLF compared to Nd:YAG (�3 times, see Table 9.3) makes Nd:YLF lasers particularly
attractive for mode-locked operation both with lamp and diode pumping (see Example 8.8).
The mechanical and thermo-mechanical properties of YLF are however worse than those of
YAG and this make YLF rods more difficult to handle and easier to break. It should also
be noted that the 1,053 nm emission wavelength of Nd:YLF provides a good match with the
peak gain wavelength of Nd:glass:phopsphate lasers (see Table 9.3). Mode-locked Nd:YLF
lasers are accordingly used as the first stage in the large energy systems used for laser fusion
experiments.

Compared to Nd:YAG, Nd:YVO4 has much larger peak cross section .�e Š 7.6�
10�19 cm2/ and much shorter fluorescence lifetime .� D 98�s/. The product �� is about
the same for the two cases and one thus expects approximately the same threshold. For a
given inversion, however, the gain coefficient of Nd:YVO4 is about 3 times larger than that
of Nd:YAG and this makes a Nd:YVO4 laser less sensitive to cavity losses. Longitudinally-
diode-pumped Nd:YVO4 of high cw power .�15 W/ are now commercially available and, for
this application, Nd:YVO4 seems to be preferred to Nd:YAG.

9.2.3. Yb:YAG

The Yb:YAG laser is the most noteworthy example of a quasi-three level laser. It oscil-
lates at �1.03�m wavelength and thus presents itself as direct competitor to Nd:YAG laser.
Since it operates on a quasi-three-level laser scheme, it is usually pumped by semiconductor
laser diodes which can provide the intense pumping required..8/

A simplified scheme of the energy level diagram of Yb:YAG is shown in Fig. 9.3. The
level structure is particularly simple here, only one excited manifold, 2F5=2, being present,
because Yb3C is one electron short to a full 4f shell (see Table 9.1), this shell thus acting
as if it contained one electron hole. The two main absorption lines occur at 968 and 941 nm,
respectively, the two lines have approximately the same value of the peak absorption cross
section, the line at 941 nm being usually preferred for diode-pumping due to its larger width.
The main gain line occurs at 1.03�m (quasi-three-level laser). Table 9.4 shows some relevant
optical and spectroscopic parameters of Yb:YAG at room temperature. Note, in particular,
the long lifetime, � D 1.16 ms, of essentially radiative origin, which is indicative of a good
storage medium.
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FIG. 9.3. Energy level diagram of Yb:YAG.

TABLE 9.4. Optical and spectroscopic parameters, at room temperature,
of the most important quasi-three-level laser materials. Note that, for
Yb:Er:glass, the effective value of the stimulated emission and absorption
cross sections are about the same and the laser can be considered to operate

on (almost) a pure three-level scheme

Yb:Er:glass
Yb:YAG Nd:YAG Tm:Ho:YAG �D 1.54�m

�D 1.03�m �D 946 nm �D 2.091�m (Phosphate)

doping [at. %] 6.5 at. % 1.1 at. %
Nt Œ1020 ions=cm3� 8.97 1.5 8 [Tm] 10 [Yb]

0.5 [Ho] 1 [Er]
� Œms� 1.16 0.23 8.5 8
	�0 Œcm�1� 86 9.5 42 120
�e Œ10�20 cm2� 1.8 2.4 0.9 0.8
�a Œ10�20 cm2� 0.12 0.296 0.153 0.8
Refractive index n D 1.82 n D 1.82 n D 1.82 n D 1.531

Yb:YAG lasers are pumped, in a longitudinal pumping configuration using a pump
at �p D 943 nm wavelength, usually by InGaAs/GaAs strained quantum well, QW, lasers
although they can be also pumped by a Ti:sapphire laser. The optical-to-optical efficiency
turns out to be rather high .�60%/, a result mainly of the high pump quantum efficiency
.�q D h�=h�p D�p=�D 91.5%/..9/ Average output powers well in excess of 50 W have so
far been achieved..10/ Compared to Nd:YAG, the Yb:YAG laser offers the following main
favorable properties: (1) Very low quantum defect Œ.h�p � h�/=h�p Š 9%� and hence very
low fractional heating. (2) Long radiative lifetime of the upper state making Yb:YAG a good
medium for Q-switching. (3) Due to the simple energy level structure, one can use high dop-
ing levels (6.5 at. % are usually used) without incurring in fluorescence quenching phenomena
due to ion-ion interaction. (4) Broad emission bandwidth .�86 cm�1/ indicating suitability for



386 9 � Solid-State, Dye, and Semiconductor Lasers

mode-locked operation (sub-picosecond pulses have indeed been obtained). (5) Low stimu-
lated emission cross-section allowing high energy to be stored before the onset of ASE. By
contrast to these favorable properties, the main limitation of Yb:YAG comes from the high
threshold, a result of its quasi-three-level nature and of its low stimulated-emission cross-
section. The various features of Yb:YAG indicated above suggest that it can be better suited
than Nd:YAG for many applications where a diode-pumped laser at a wavelength around 1�m
will be needed.

9.2.4. Er:YAG and Yb:Er:glass

Erbium-lasers can emit radiation at either �D 2.94�m wavelength (for Er:YAG) or
at �D 1.54�m wavelength (for Yb:Er:glass),.11/ the former wavelength being particularly
interesting for biomedical applications and the latter wavelength being attractive for appli-
cation situations where eye-safety is important and for optical communications in the third
transparency-window of optical fibers.

In the case of Er:YAG, the Er3C ion occupies Y3C ion sites in the lattice and the rel-
evant energy levels of the laser are shown in Fig. 9.4a. Laser oscillation can take place on
either the 4I11=2 ! 4I13=2 transition .�D 2.94�m/.12/ or on the 4I13=2 ! 4I15=2 transition
.�Š 1.64�m/. Due to their interest for biomedical applications, Er:YAG lasers, oscillating
on the �D 2.94�m transition, have been subject to much development. The spectroscopy of
Er:YAG indicates that, for flash-lamp excitation, the 4I11=2 upper laser level is pumped via
light absorbed from transitions at wavelengths shorter than 600 nm. For diode laser pumping,
diode lasers oscillating at �D 970 nm (InGaAs/GaAs strained QW) are used. The lifetime of
the upper state .�0.1 ms/ is much shorter than that of the lower state .�2 ms/ and the laser is
therefore usually operated in a pulsed regime. Despite this unfavorable lifetime ratio, the laser,
particularly when diode pumped, can also operate cw under the usual operating conditions.
This possibility arises from the fact that, due to the high Er concentrations used (10–50 at. %),
a strong Er3C � Er3C interaction occurs thus leading to an efficient 4I13=2 ! 4I9=2 upconver-
sion transition (see Fig. 2.13c). This process eventually leads to energy being recycled from
the 4I13=2 lower level to the 4I11=2 upper laser level.

FIG. 9.4. Relevant energy level diagram of: (a) Er:YAG; (b) Yb:Er:phosphate-glass.
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In a flash-lamp pumped configuration, the Er:YAG rod has typical dimensions compara-
ble to those of a flash-lamp pumped Nd:YAG laser (e.g. 6 mm diameter � 7.5 cm length) and
it is usually pumped using either an elliptical-cylinder or a close-coupling pumping chamber
(Fig. 6.1). Flash-lamp pumped Er:YAG lasers giving output energies up to 1 J with repetition
rates up to 10 Hz are commercially available. Due to the very strong water absorption spec-
trum around �D 2.94�m, flashlamp-pumped Er:YAG lasers are particularly interesting for
biomedical applications and, in particular, for plastic surgery. The human body in fact consists
of �70% water content and the skin penetration depth of a 2.94�m wavelength Er:YAG laser
is around 5�m. More recently, diode-pumped Er:YLF lasers, oscillating at �D 2.8�m, have
produced cw operation with good optical-to-optical slope efficiency .�35%/ and sufficiently
high output power .>1 W/.

The relevant energy levels of the Yb:Er:phosphate-glass laser are shown in Fig. 9.4b.
The laser can be pumped either by a flashlamp.13/ or by a cw diode.14/ and oscillates on
the 4I13=2 ! 4I15=2 transition .�D 1.54�m/. For 1.54�m Er lasers, the Er concentration
must be kept low to avoid the detrimental effect, in this case, of the up-conversion mecha-
nism mentioned above. So, for both flash-lamp and diode-laser pumping, the Er absorption
coefficients turn out to be too small for efficient laser operation and, to increase the pump
absorption, codoping with Yb3C ions (and Cr3C ions for flash-lamp pumping) is used. With
diode-pumping around the 980 nm wavelength, the pump power is mainly absorbed by the
Yb3C ions (2F7=2 ! 2F5=2 transition) and excitation is then efficiently transferred to the
4I11=2 Er level by a Förster-type dipole-dipole interaction (see Sect. 2.6.1). The 4I11=2 Er level
then decays relatively quickly .� Š 0.1 ms/, by multiphonon relaxation, to the 4I13=2 upper
laser level. The lifetime of this level in phosphate glass is particularly long .� Š 8 ms/ thus
making it very suitable for laser action. It should be noted that the peak of the gain spec-
trum of Er:glass is only slightly Stokes-shifted to longer wavelengths compared to the peak
of the absorption spectrum, both spectra arising from several transitions between the 4I13=2

and the 4I15=2 manifolds. Thus the Yb:Er:glass laser behaves almost like a pure three-level
laser. Other relevant spectroscopic and optical properties of the Yb:Er:glass laser are shown
in Table 9.4.

Q-switched flash-lamp pumped Cr:Yb:Er:glass lasers are used as eye-safe rangefinders.
The 1.5�m wavelength is in fact particularly safe for the eye..15/ Diode-pumped cw
Yb:Er:glass lasers have notable potential applications in optical communications and for free
space optical measurements where eye safety is of concern.

9.2.5. Tm:Ho:YAG.16/

The relevant energy levels of the Tm:Ho:YAG laser are shown in Fig. 9.5. Both Tm3C and
Ho3C ions occupy Y3C-ion sites in the lattice. Typical Tm concentrations are rather high (4–
10 at. %) while the concentration of Ho ions is an order of magnitude smaller. For flash-lamp
pumping, the active medium is also sensitized by Cr3C ions, which substitute for Al3C ions
in the YAG crystal. In this case the pump energy is absorbed mainly via the 4A2 ! 4T2 and
4A2 ! 4T1 transitions� of the Cr3C ions and then efficiently transferred to the 3F4 level of the

� Note that, from a group-theory view-point, the 4T2 and 4T1 states of Cr3C ion considered here are equivalent to
the 4F2 and 4F1 states of Ruby (see Fig. 9.1), the last notation of states thus being an old notation.
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FIG. 9.5. Relevant energy level diagram of Cr:Tm:Ho:YAG system.

Tm3C ion by a Förster-type ion-ion interaction. For cw diode-pumping, the 3F4 level of Tm3C
is directly pumped by AlGaAs semiconductor lasers at 785 nm wavelength, so that codoping
with Cr3C ions is not needed. For both flash-lamp and diode-laser pumping, excitation to the
3F4 level of Tm3C ion is then followed by a cross-relaxation process, between adjacent ions,
of the form Tm.3F4/C Tm.3H6/ ! 2Tm.3H4/. This process converts one excited Tm ion in
the 3F4 state into two excited Tm ions both in the 3H4 state. For the high Tm concentrations
being used, this cross-relaxation process becomes dominant over the 3F4 radiative decay and
leads to an overall pump quantum efficiency of nearly 2. A fast spatial migration of the excited
energy between Tm ions, again due to Förster-type ion-ion interaction, then occurs until the
excitation reaches a Tm ion very near to a Ho ion. In this case, energy transfer to the 5I7 level
of Ho occurs followed by laser action on the Ho3C 5I7 ! 5I8 transition. Laser action actually
occurs between the lowest sub-level of the 5I7 manifold to a sublevel, � 462 cm�1 above the
ground sub-level, of the 5I8 manifold at �D 2.08�m wavelength (quasi-three-level laser).
Without Ho-doping, the crystal can lase on the 3H4 ! 3H6 Tm transition at �D 2.02�m
wavelength.

When flash-lamp pumped, the active medium is in the form of a rod of the same typical
dimensions as those of the Er:YAG rod considered in the previous section, and again pumped
in an elliptical cylinder or close-coupling configuration (see Fig. 6.1). Output energies up to
1 J in a �200�s long pulse, and a slope efficiency of up to 4% with a repetition rate below
10 Hz, are typical laser operating figures. This laser may find interesting applications in the
biomedical field since biological tissue also has a strong absorption around 2�m (although
less strong than at the 2.94�m wavelength of the Er-laser). When diode-pumped, a longitudi-
nal pumping configuration such as that of Fig. 6.11a is often used. Given the strong absorption
coefficient of Tm3C ions at the pump wavelength .˛p Š 6 cm�1/, the thickness of the active
medium is now typically 2–3 mm and the medium is generally cooled to low temperatures
.�10 to �40 ıC/ to reduce the thermal population of the lower laser level.

Eye-safe coherent laser radar systems using Tm:Ho:YAG lasers are used for remote
measurements of wind velocity in the atmosphere. This involves a single frequency diode-
pumped Tm:Ho laser, used to injection-seed a flash-lamp-pumped, Pockels cell Q-switched,
Cr:Tm:Ho:YAG slave oscillator.
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9.2.6. Fiber Lasers.17/

In a fiber laser the active medium is the core of the fiber, doped with a rare earth. Most
commonly, this fiber is of a single mode type and is made of silica. The pump beam is
launched longitudinally along the fiber length and may be guided either by the core itself
as occurs for the laser mode (conventional single mode fiber laser) or by an inner cladding
around this core (double-clad fiber-laser). It should be noted that, although fiber lasers were
first demonstrated in the early days of laser development,.18/ they have become of practi-
cal interest only in recent years after the advent of suitable diode-lasers allowing efficient
pumping and of the techniques for fabricating doped single-mode silica fibers.

In a conventional single-mode fiber, the transverse dimensions of both pump, wp, and
laser, w0, beams are comparable to the core radius a (typically a Š 2.5�m). Thus both wp

and w0 are 10–50 times smaller than the corresponding typical values of a bulk device (see
Examples 7.4 and 7.5). From either Eq. (6.3.20) or (6.3.25), holding for a 4-level and a quasi-
3-level laser respectively, one sees that the threshold pump power, Pth, is proportional to

w2

0 C w2
p

�
. Hence, for the same values of laser parameters (e.g. � , �e, �p, � for a 4-level

laser), Pth is expected to be smaller in a fiber laser compared to a bulk device by two to
three orders of magnitude. Thus, again according to examples 7.4 and 7.5, threshold pump
powers well below 1 mW are expected and indeed achieved in fiber lasers. This argument
also shows that laser action can be obtained for active media of very low radiative quan-
tum efficiency and hence of very short lifetime � . On the other hand, the expression for the
laser slope efficiency for a 4-level and for a quasi-three-level laser [the two are identical, see
Eqs. (7.3.13) and (7.4.10)], turns out to be independent of the upper state lifetime and only
dependent on the pump efficiency �p. Thus, even for a transition with a low radiative quan-
tum efficiency, a high laser slope efficiency can be obtained provided that most of the pump
power is absorbed (i.e., �p Š 1). So, transitions which look unpromising in bulk media can
still show a low enough threshold in a fiber to be diode-pumped and show a high slope effi-
ciency. It should be noted that an interesting effect occurring at the high pump powers (up
to �100 mW, see Sect. 6.3.1) available from single-transverse-mode diode lasers is ground
state depletion. Consider for instance a 4-level laser such as Nd:glass and let Fp be the pump
photon flux (assumed, for simplicity, to be uniform in the core) and Ng and N2 the populations
of the ground level and upper laser level, respectively. In the absence of laser action and under
cw conditions one can then simply write the following balance equation

�pFpNg D N2=� (9.2.1)

where σp is the pump absorption cross section and τ is the upper state lifetime. Thus, to
have Ng D N2 one must have Fp D .Ip=h�p/D .1=σpτ/, where Ip is the pump intensity and
h�p is the energy of a pump photon. According to Fig. 6.8a and Table 9.3, we now take,
for a Nd:silica fiber, �p D 2.8 � 10�20 cm2 and � D 300 μs. From the previous expression we
get Ip D .h�p=�pτ/Š 25 kW=cm2 so that Pp D IpAcore Š 0.25 mW, where Acore is the area of
the core, taken to be �10�7 cm2. Thus, in the example considered, more than half of the
ground-state population is raised to the upper laser level at pump powers below 1 mW. Given
the ease with which pump-induced depletion of the ground-state population occurs, it follows
that typical pump powers can deplete absorption over lengths very much exceeding the small-
signal extinction length (l D 1=˛p, where ˛p is the small-signal absorption coefficient at the
pump wavelength). It can be shown in fact that, if the pump power exceeds this saturation
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FIG. 9.6. Scheme of cladding pumping.

power Pp by a factor x, the pump power will penetrate the fiber to a distance roughly x times
the extinction length. This circumstance must be taken into account in choosing the optimum
fiber length.

In conventional end-pumped single-mode fibers, one needs a pump source which is
itself diffraction limited. So, for diode pumping, only the single-stripe device of Fig. 6.9a
can be used, consequently the pump power is limited to �100 mW (and �1 W in the case
of MOPA diode lasers) and the output power is limited correspondingly. On the other hand,
high-power diode lasers (see Figs. 6.9b and 6.10) show a rather poor beam quality, unsuitable
for direct launch into the end of the fiber core. The solution to this problem is provided by the
technique referred to as cladding-pumping and illustrated in Fig. 9.6. The core, which may
be monomode, lies within a lower index inner-cladding which in turn lies within an outer-
cladding of yet lower index. Pump light can be end-launched into the inner cladding, with a
much less stringent beam-quality requirement compared with launching into the core. This
pump light, while propagating in the inner cladding, is then progressively absorbed into the
core with an effective absorption coefficient which is smaller than the true absorption coef-
ficient of the core by a factor of the order of the ratio of the inner-cladding area to the core
area. Thus, for a given doping of the core, the length of the fiber must be correspondingly
increased to allow efficient absorption of the pump power. Provided propagation losses of the
pump, in the inner cladding, and of the lasing mode, in the core, are not excessively increased
by this increase of fiber length, then efficient pumping by a multimode diode and efficient
monomode lasing can be achieved. Thus, the cladding-pumping scheme can provide a very
simple means of enhancing the brightness of a (diode) pump source by efficiently converting
it to a monomode laser output. Cladding pumped Nd-doped fibers and Yb-doped fibers with
output powers of several watts .4 � 10 W/ are commercially available and power levels in
excess of 30 W have been demonstrated.

As discussed above, the high values of the pump power available via laser pumping
enable a considerable fraction of the ground state population, in a conventional monomode
fiber, to be raised to some upper level of the active ion. Under this condition, a second pump
photon of the same or of different wavelength, can raise this population to a still higher level.
From this level laser action can then take place to a lower level so that the energy of the
emitted photon is actually higher than pump photon energy (see Fig. 9.7). A laser working on
such a scheme, where two or more than two pump photons, of equal or different wavelength,
are used, is referred to as an upconversion laser. While such schemes have worked with bulk
media, they have become much more practical with the advent of fiber lasers exploiting fiber
materials of a special kind. In silica fibers, in fact, the main limitations to achieving this upcon-
version scheme stem from non-radiative decays of the levels involved, usually occurring via
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FIG. 9.7. Scheme of an up-conversion laser.

multi-phonon deactivation. As explained in Sect. 2.6.1, the probability of such a decay is a
very strong function of the number of phonons that need to be emitted in the process. In this
case, the relevant phonon energy is the maximum energy in the phonon spectrum of the host
material, since the non-radiative decay rate increases strongly, for a given transition, with
increasing values of this energy. For fused silica, this energy correspond to �1,150 cm�1,
which results in rapid nonradiative decay for energy gaps of less then �4,500 cm�1. A sub-
stantial reduction of the rate for nonradiative decay can be obtained by using host materials
with lower phonon energy. Among such materials which can be fabricated into fiber, the most
widely used one consists of a mixture of heavy metal fluorides, referred to as ZBLAN [an
acronym for Zirconium, Barium, Lanthanum, Aluminum and Sodium (Na)], which has a
maximum phonon energy of only 590 cm�1. A few years ago, the undoped fiber was already
available at an advanced stage of development since, on account of the correspondingly
reduced infrared absorption of heavy metal fluorides, it was developed as a possible route
to ultra-low-loss fibers. As an example of performance capability, ZBLAN fibers doped with
Tm3C, when pumped by three-photons of the same wavelength .�D 1,120–1,150 nm/, have
produced a very efficient upconversion laser in the blue .�D 480 nm/ giving output pow-
ers in excess of 200 mW. ZBLAN fibers doped with Pr3C, when pumped by two photons at
�1, 010 nm and �835 nm, have produced laser action on several transitions from blue to red
(�D 491, 520, 605, 635 nm) giving e.g. up to �20 mW of output power in the blue. These
figures hold promise for a practical, all-solid-state blue upconversion laser source.

9.2.7. Alexandrite Laser.19/

Alexandrite, chromium-doped chrysoberyl, is a crystal of BeAl2O4 in which Cr3C ions
replace some of the Al3C ions (0.04–0.12 at. %). This laser may be considered as the archetype
of what is now a large class of solid-state lasers usually referred to as tunable solid-state
lasers. The emission wavelength of these lasers can in fact be tuned over a wide spec-
tral bandwidth (e.g. 	�Š 100 nm around �D 760 nm for alexandrite). Tunable solid-state
lasers include, among others, Ti:sapphire and Cr:LISAF, to be considered in next sections,
as well as Co:MgF2 (	�Š 800 nm around �D 1.9�m), Cr4C:YAG .	�Š 150 nm around
�D 1.45�m) and Cr4C:Forsterite (Cr4C : Mg2SiO4, 	�Š 250 nm around �D 1.25�m). In
this category one could also include color center lasers,.20/ which are broadly tunable in the
near infrared (at wavelengths ranging between 0.8 to 4�m). Color center lasers, once rather
popular, have declined in popularity and importance due to problems associated with handling
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FIG. 9.8. Energy level diagram of alexandrite laser in a configuration-coordinate model.

and storage of the active medium and due to the advent of new competitors in the same wave-
length range (i.e., other tunable solid-state lasers or parametric oscillators, to be considered in
Chap. 12). For these reasons they will not be considered any further here.

The energy states of the Cr3C ion in BeAl2O4 are qualitatively similar to those of Cr3C
in other hosts with octahedral crystalline field such as, e.g., ruby, which we have already
considered. It is therefore important to understand why the alexandrite laser is tunable while
ruby laser is not, at least not to anything like the same extent. To help explaining this point,
Fig. 9.8 shows a simplified scheme for the energy states as a function of a configuration
coordinate of the Cr3C ion (i.e., the distance between this ion and the 6 surrounding O2�
anions of the octahedron, see Figs. 3.3 and 9.9a). One sees from Fig. 9.8 that the equilibrium
coordinate for both the 4T2 and 4T1 states, due to their symmetry, is shifted to a larger value
than that of 4A2 and 2E states�. As in other Cr3C-doped hosts, the decay between the 4T2

and 2E states is via a fast internal conversion (decay-time of less than 1 ps) probably due to
the level-crossing which occurs between the two states. These two states can therefore be
considered to be in thermal equilibrium at all times, and, since the energy difference between
the bottom vibrational levels of the 4T2 and 2E states in alexandrite .	E Š 800 cm�1/ is only
a few kT, an appreciable population will be present in the vibrational manifold of the 4T2 state
when the 2E state has been populated. Invoking the Franck-Condon principle, one sees that
the vibronic transitions from the 4T2 state end in empty vibrational levels of the 4A2 state,
thus becoming the preferred laser transition. Excitation will then be terminated by phonon
decay to the lowest vibrational level of the 4A2 state. Because there is a very large number of
vibrational levels involved, the resulting emission is in the form of a broad continuous band
.�D 700–800 nm/. In keeping with the physical description given above, this type of laser is
also referred to as a phonon terminated laser or a vibronic laser. Note that, in the ruby laser,

� Note that, as already pointed out, the 4T2 and 4T1 states of Cr3C ion, being considered here, are equivalent to the
4F2 and 4F1 states of Ruby (see Fig. 9.1).
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laser action takes place between the 2E and 4A2 states while the phonon terminated transition
does not occur because the energy difference between the 4T2 (old 4F2) and 2E states is much
larger .	E Š 2, 300 cm�1/ and hence there is no appreciable population in the 4F2 level. Note
also that, in alexandrite, laser action can occur, as for ruby, on the 2E ! 4A2 transition
(compare Fig. 9.8 with Fig. 9.1). In this case, however, alexandrite operates on a three-level
scheme, the threshold is much higher, and the emission wavelength occurs at a somewhat
different value .�D 680.4 nm/.

Pumping of alexandrite takes place mostly through its green and blue absorption bands
(4A2 ! 4T2 and 4A2 ! 4T1 transitions, see Fig. 9.8) which are very similar to those of
ruby. The effective values of the lifetime and stimulated emission cross section of the 4T2

upper laser state can be calculated roughly by assuming that the upper level consists of two
strongly coupled levels with energy spacing of 	E Š 800 cm�1, these levels being the lowest
vibrational levels of the 4T2 and 2E states (see Fig. 2.16 and Example 2.11). The upper state
lifetime, at T D 300 K, then turns out to be � Š 200�s, which is almost the same as that of
Nd:YAG. Note that, although the true lifetime of the 4T2 state is much shorter .�T Š 6.6�s/,
the effective lifetime is considerably increased by the presence of the long-lived 2E state
(�E Š 1.5 ms, the 2E ! 4A2 being spin forbidden), which thus acts as a reservoir for the 4T2

state. Due to the coupling of these two states, the effective cross section of the laser transition
.�e Š 0.8 � 10�20 cm2/ turns out to be considerably smaller than the true value. One should
also note that both � and �e are temperature dependent because the relative population of
the two states depends on temperature. Table 9.5 provides a summary of some optical and
spectroscopic data relevant to the tunable laser transition of alexandrite.

From an engineering viewpoint, alexandrite lasers are similar to Nd:YAG lasers. In fact,
alexandrite lasers are usually lamp-pumped in a pumping chamber as in Fig. 6.1 or 6.2 and,
although they can operate cw, the much smaller cross-section compared to e.g. Nd:YAG,
makes pulsed operation more practical. The laser can operate either in the free-running regime
(output pulse duration �200�s) or Q-switched regime (output pulse duration �50 ns) and is
usually pulsed at relatively high repetition rate (10–100 Hz). Due to the strong increase of
effective emission cross section with temperature, the laser rod is usually held at an elevated
temperature .50–70 ıC/. The performances of a pulsed alexandrite laser in terms of output

TABLE 9.5. Optical and spectroscopic parameters, at room temperature, of
the most important tunable solid-state laser materials. Note that the density of
active ions, Nt, for both Cr:LISAF and Cr:LICAF has been given at �1% molar

concentration of CrF3 in the melt

Alexandrite Ti:sapphire Cr:LISAF Cr:LICAF

doping [at. %] 0.04–0.12 at. % 0.1 at. % up to 15 at. % up to 15 at. %
Nt Œ1019 ions=cm3� 1.8–5.4 3.3 10 [�1 at. %] 10 [1 at. %]
Peak wavelength [nm] 760 790 850 780
Tuning range [nm] 700–820 660–1,180 780–1,010 720–840
�e Œ10�20 cm2� 0.8 28 4.8 1.3
� Œ�s� 260 3.2 67 170
	�0 [THz] 53 100 83 64
Refractive indices na D 1.7367 no D 1.763

nb D 1.7421 ne D 1.755 ne D 1.4 ne D 1.39
nc D 1.7346
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vs input energy and slope efficiency are similar to those of a Nd:YAG laser using a rod of
the same dimensions. Average powers up to 100 W at pulse repetition rates of �250 Hz have
been demonstrated. Flashlamp-pumped alexandrite lasers have proved to be useful when high
average power at �Š 700 nm wavelength is needed (such as in laser annealing of silicon
wafers) or where tunable radiation is required (as in the case of pollution monitoring).

9.2.8. Titanium Sapphire Laser.21�23/

The titanium sapphire, Ti:Al2O3, laser is the most widely used tunable solid state laser. It
can be operated over a broad tuning range (	�Š 400 nm, corresponding to 	�0 Š 100 THz),
thus providing the largest bandwidth of any laser.

To make Ti:sapphire, Ti2O3 is doped into a crystal of Al2O3 (typical concentrations
range between 0.1 and 0.5% by weight) and Ti3C ions then occupy some of the Al3C-ion
sites in the lattice. The Ti3C ion possesses the simplest electronic configuration among the
transition ions, only one electron being left in the 3d shell. The second 3d electron and the
two 4s electrons of the Ti atom (see Table 9.1) are in fact used for the ionic bonding to the
oxygen anions. When Ti3C substitutes for an Al3C ion, the Ti ion is situated at the center
of an octahedral site whose 6 apexes are occupied by O2� ions (Fig. 9.9a). Assuming, for
simplicity, a field of perfect octahedral symmetry�, the fivefold degenerate (neglecting spin)
d-electron levels, of an isolated Ti3C ion, are split by the crystal field of the 6 nearest-neighbor
oxygen anions into a triply degenerate 2T2 ground state and a doubly degenerate 2E upper state
(Fig. 9.9b). As usual, the notation for these crystals incorporating a transition metal is derived

FIG. 9.9. (a) Octahedral configuration of Ti:Al2O3; (b) Splitting of 3d energy states in an octahedral crystal field.
(c) Energy states in a configuration-coordinate model.

� For a more exact treatment, see.21,22/
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FIG. 9.10. Absorption and fluorescence bands of Ti:sapphire (after reference,.54/ Copyright 1983 PennWell
Publishing Co., by permission).

from group theory. When spin is also taken into account (S D 1=2 for this essentially one
electron system), the two states acquire a multiplicity of 2S C 1 D 2, as denoted by the upper-
left suffix attached to each letter. In a configuration coordinate model, where this coordinate is
just the Ti-O separation, the two states can be represented as in Fig. 9.9c. Note that the rather
strong interaction of the 3d electron with the crystal field results in the equilibrium distance
being appreciably larger for the upper state compared to the lower state. This circumstance is
particularly relevant because it produces absorption and fluorescence bands which are wide
and widely separated, as shown in Fig. 9.10. Finally, it should be noted that a particularly
relevant feature of the Ti3C ion in an octahedral site is that it only has one excited state (i.e.,
the 2E state). This eliminates the possibility of excited state absorption (e.g. as arising from
the 4T2 ! 4T1 transition in alexandrite), an effect that limits the tuning range and reduces the
efficiency of many other transition metal lasers.

In accordance with the discussion above and again involving the Franck-Condon princi-
ple it follows that laser action takes place from the lowest vibrational level of the 2E state to
some vibrational level of the ground 2T2 state. Some relevant optical and spectroscopic prop-
erties of this phonon terminated transition are listed in Table 9.5. Note that the upper-state
lifetime (� Š 3.2�s at T D 300 K, the radiative lifetime being �r Š 3.85�s) is much shorter
than for alexandrite because there is no lengthening effect arising from a reservoir of pop-
ulation in another excited state, as for alexandrite. The stimulated emission cross section,
on the other hand, is much (�40 times) larger than in alexandrite and comparable to that of
Nd:YAG. Note the large bandwidth of the laser transition, the largest amongst commonly used
solid-state lasers.

CW Ti:sapphire lasers are pumped by the green output of an Ar laser while, in pulsed
operation, frequency doubled Nd:YAG or Nd:YLF lasers as well as flashlamps are used. Due
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to the small value of the �� product, flashlamp pumping requires very intense lamps. Nonethe-
less, flashlamp pumped Ti:sapphire lasers are commercially available. Argon pumped cw
lasers provide a convenient source of coherent and high power .>1 W/ light which is tun-
able over a wide spectral range .700–1, 000 nm/. Perhaps the most important application of
a Ti:sapphire laser is the generation (see Sect. 8.6.5) and amplification (see Chap. 12) of
femtosecond laser pulses. Sophisticated systems based on Ti:sapphire lasers and Ti:sapphire
amplifiers, giving pulses of relatively large energy .20 mJ�1 J/ and with femtosecond duration
.20–100 fs/, are now available in several laboratories.

9.2.9. Cr:LISAF and Cr:LICAF.24,25/

Two of the more recently developed tunable solid state materials, based on Cr3C as active
species, are Cr3C:LiSrAlF6 (Cr:LISAF) and Cr3C:LiCaAlF6 (Cr:LICAF). Both materials offer
a wide tuning range and can be either flashlamp pumped or diode-laser pumped.

In both Cr:LISAF and Cr:LICAF, the Cr3C ions replace some of the Al3C ions in the
lattice and the impurity ion occupies the center of a (distorted) octahedral site surrounded
by 6 fluorine ions. Thus, to a first approximation, the general energy level picture, in the
configuration-coordinate representation, as presented for Alexandrite also holds for this case
(see Fig. 9.8). The corresponding absorption and fluorescence spectra, for the electric field
parallel or perpendicular to the c-axis of the crystal (LISAF and LICAF are uniaxial crystals),
are shown in Fig. 9.11 for Cr:LISAF. Note that the two main absorption bands centered at
650 and 440 nm, respectively, arise from 4A2 ! 4T2 and 4A2 ! 4T1 transitions. Note also
that the sharp features superimposed on the 4T2 band arise from absorption to the 2E and
2T1 states (the latter state is not shown in Fig. 9.8). Thus the 2E state is now located within

FIG. 9.11. Absorption and fluorescence bands of Cr:LISAF for polarization parallel and perpendicular to the optical
c-axis of the crystal (after.24/ by permission).
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the 4A2 ! 4T2 absorption band which implies that the lowest vibrational level of 4T2 must
now be located appreciably below the 2E state. Due to the fast relaxation between the two
states, it then follows that the most heavily populated state is now 4T2, so that the 2E state
does not play any role as an energy reservoir, as for alexandrite. This is also evidenced by
the fact that the lifetime of the 4T2 state has been measured to be roughly independent of
temperature. Other relevant optical and spectroscopic parameters of the two laser materials
are listed in Table 9.5. Note that, amongst the tunable solid state laser materials shown in
the Table, Cr:LISAF exhibits the largest value of the �� product. Thus, due to its larger
values of both the cross section and the �� product and its wider tuning range (the tuning
range of Cr:LICAF is limited by excited state absorption), Cr:LISAF is generally preferred to
Cr:LICAF.

Cr:LISAF has found applications as a flashlamp or diode-pumped laser source providing
tunability around 850 nm. The large gain linewidth makes this medium attractive for the gen-
eration of femtosecond pulses. For this application, Kerr-lens mode locked Cr:LISAF lasers,
end-pumped by GaInP/AlGaInP QW laser diodes at 670 nm wavelength, in a configuration
such as that shown in Fig. 8.31, have been developed. Large, flashlamp pumped, Cr:LISAF
amplifier systems, to amplify femtosecond pulses from either a Ti:sapphire or a Cr:LISAF
mode-locked laser, have also been developed. Other potential applications of Cr:LISAF are in
tunable systems for pollution monitoring and for spectroscopy.

9.3. DYE LASERS.26/

Dye lasers make use of an active medium consisting of a solution of an organic dye
in a liquid solvent such as ethyl or methyl alcohol, glycerol, or water. Organic dyes con-
stitute a large class of polyatomic molecules containing long chains of conjugated double
bonds [e.g., .–C D/n]. Laser dyes usually belong to one of the following classes: (1) Poly-
methine dyes, which provide laser oscillation in the red or near infrared .0.7–1.5�m/. As an
example Fig. 9.12a shows the chemical structure of the dye 3, 30 diethyl thiatricarbocyanine
iodide, which oscillates in the infrared (at a peak wavelength, �p D 810 nm). (2) Xanthene
dyes, whose laser operation is in the visible. As an example Fig. 9.12b shows the chemi-
cal structure of the widely used rhodamine 6G dye .�p D 590 nm/. (3) Coumarin dyes, which
oscillate in the blue-green region (400–500 nm). As an example Fig. 9.12c shows the chemical
structure of coumarin 2, which oscillates in the blue .�p D 450 nm/.

9.3.1. Photophysical Properties of Organic Dyes

Organic dyes usually show wide absorption and fluorescence bands without sharp fea-
tures, the fluorescence being Stokes-shifted to longer wavelengths than the absorption, a
feature reminiscent of the tunable solid state laser materials considered in the previous
sections. As an example, Fig 9.13 shows the relevant absorption and emission characteristics
of rhodamine 6G in ethanol solution.

To understand the origin of the features shown in Fig. 9.13, we first need to consider
the energy levels of a dye molecule. A simple understanding of these levels can be obtained
using the so-called free-electron model,.27/ which is illustrated here by considering the case
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FIG. 9.12. Chemical structure of some common dyes: (a) 3, 30 diethyl thiatricarbocyanine iodide; (b) rhodamine
6G; (c) coumarin 2. In each case the chromophoric region of the dye is indicated by heavier lines.

FIG. 9.13. Absorption cross section, �a , singlet-singlet stimulated-emission cross section, �e, and triplet-triplet
absorption cross section, �T , for an ethanol solution of rhodamine 6 G.

of the cyanine dye shown in Fig. 9.14a. The 
-electrons of the carbon atoms are then seen
to form two planar distributions, one above and one below the plane of the molecule (dotted
regions in both Fig. 9.14a, b). The 
-electrons are assumed to move freely within their planar
distributions, limited only by the repulsive potential of the methyl groups at the end of the dye
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FIG. 9.14. Free-electron model for the electronic energy states of a dye molecule (after,.27/ by permission).

chain, and the electronic states of the molecule originate from these electrons. To first order,
the energy levels of the electrons are then simply those of a free electron in a potential well of
the form shown in Fig. 9.14c. If this well is approximated by a rectangular one (Fig. 9.14d),
the energy levels are then known to be given by

En D h2n2

8mL2
(9.3.1)

where n is an integer, m is the electron mass, and L is the length of the well. It is important to
remark, at this point, that dye molecules have an even number of electrons in the 
-electron
cloud�. If we let the number of these electrons be 2N, the lowest energy state of the molecule
will correspond to the situation where these electrons are occupying the lowest N energy
levels, each level being occupied by two electrons with opposite spin. This molecular state
will thus have a total spin equal to zero and will thus be a singlet state, labeled S0 in Fig. 9.15.
An approximate value for the energy of the uppermost electrons of this state, EN , is obtained
from Eq. (9.3.1) by letting n D N. In Fig. 9.15a, the highest occupied level and the next one
above it are indicated by two squares one above the other, and the S0 state thus corresponds
to the situation where the lower box is full, having two electrons, and the upper one is empty.
The first excited singlet state (labeled S1 in the figure) corresponds to one of the two highest-
lying electron having been promoted, without flipping its spin, to the next level up. The energy
of the uppermost electron of this state, ENC1, can be roughly calculated from Eq. (9.3.1) by
letting n D N C 1. The difference of energy between the S1 and S0 states is thus seen to be
equal to ENC1 � EN , and, according to Eq. (9.3.1) can be shown to decrease with increasing
length L of the chain. If the spin is flipped, the total spin is S D 1 and the resulting state is a
triplet state, labeled T1 in the figure. Excited singlet, S2 (not shown in Fig. 9.15), and triplet,

� Molecular systems with unpaired electrons are known as radicals and they tend to react readily, thus forming a
more stable system with paired electrons.
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FIG. 9.15. (a) Typical energy levels for a dye in solution. The singlet and triplet states are shown in separate columns.
(b) Energy level diagram of a dye, in a configuration-coordinate representation (after,.28/ by permission).

T2, states result when the electron is promoted to the next higher level, and so on. Note that
in Fig. 9.15a the corresponding energy levels are indicated by a close set of horizontal lines
representing the inclusion of vibrational energy. Note also that, in Fig 9.15b, the energy states
and the vibrational structure of a dye molecule is represented as a function of a configuration-
coordinate (i.e., a coordinate describing one of the many vibrational modes that a long-chain
dye molecule has). Note finally that, due to the large number of vibrational and rotational
levels involved and due to the effective line broadening mechanisms in liquids, the rotational-
vibrational structure is in fact unresolved at room temperature.

We now look at what happens when the molecule is subjected to electromagnetic radia-
tion. First, we recall that the selection rules require that 	S D 0. Hence singlet-singlet as well
as triplet-triplet transitions are allowed, while singlet-triplet transitions are forbidden. There-
fore, the interaction with electromagnetic radiation can raise the molecule from the ground
level S0 to some vibrational levels of the S1 state, account being taken of the Franck-Condon
principle (see Fig. 9.15b) or, more precisely, of the corresponding Franck-Condon factors (see
Sect. 3.1.3.). Since the vibrational and rotational structure is unresolved, the absorption spec-
trum will show a broad and featureless transition as indeed shown in Fig. 9.13 for the case
of rhodamine 6G. Note that an important characteristic of dyes is that they have a very large
dipole matrix element �. This is because the 
-electrons are free to move over a distance
roughly equal to the chain length, L, and, since L is quite large, it follows that � is also
large .� � eL/. It then follows that the absorption cross section, �a, which is proportional to
�2, is also large (�10�16 cm2, see Fig. 9.13). Once in the excited state, the molecule nonra-
diatively decays in a very short time (�nr Š 100 fs, resulting from collisional deactivation) to
the lowest vibrational level of the S1 state (Fig. 9.15b)�. From there it decays radiatively to
some vibrational level of S0 state account being taken again of the Franck-Condon principle
(Fig. 9.15b). The fluorescent emission will then take the form of a broad and featureless band,
Stokes shifted to the long-wavelength side of the absorption band (see Fig. 9.13). Due to the
large value of the dipole moment �, the stimulated emission cross section is also expected

� More precisely, thermalization among the many rotational-vibrational levels of this state will occur.
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to be quite large again (�10�16 cm2, see Fig. 9.13). Having dropped to an excited vibrational
level of the ground S0 state, the molecule will then return to the lowest vibrational state by
another very fast .�100 fs/ nonradiative decay. Note that, while the molecule is in the lowest
level of S1, it can also decay to the T1 state. This process is referred to as intersystem cross-
ing and, although radiatively forbidden, may occur rather readily via collisions. Similarly,
the transition T1 ! S0 takes place mainly by near-resonant-energy-transfer collisions with
species within the solution (e.g., dissolved oxygen) provided that these collisions, according
to the Wigner rule (see Sect. 6.4.1.1.), preserve the total spin of the colliding partners. Note
finally that, while the molecule is in the lowest level of T1, it can also absorb radiation to
undergo the T1 ! T2 transition, which is optically allowed. Unfortunately, this absorption
tends to occur in the same wavelength region where stimulated emission occurs (see again,
for example, Fig. 9.13) and, as we shall see below, it may represent a serious obstacle to laser
action.

The three decay processes considered above, occurring from states S1 and T1, can be
characterized by the following three constants: (1) �sp, the spontaneous-emission lifetime of
the S1 state. (2) kST , the intersystem crossing rate .s�1/ of the S1 ! T1 transition. (3) �T , the
lifetime of the T1 state. If we let � be the overall lifetime of the S1 state, then, according to
Eq. (2.6.18), we get

1

�
D 1

�sp
C kST (9.3.2)

Owing to the large value of the dipole matrix element �, the radiative lifetime falls in
the nanosecond range (e.g. �sp Š 5 ns for rhodamine 6G). Since k�1

ST is usually much longer
(e.g., �100 ns for rhodamine 6G), it follows that most of the molecules decay from the S1

state by fluorescence. The fluorescence quantum yield (number of photons emitted by fluo-
rescence divided by number of molecules raised to the S1 state) is therefore nearly unity. In
fact, according to Eq. (2.6.22), one has

� D �=�sp (9.3.3)

The triplet lifetime �T depends on the dye solution and, particularly, on the amount of dis-
solved oxygen. The lifetime can range from 10�7 s, in an oxygen-saturated solution, to 10�3 s
or more in a solution that has been deoxygenated.

As a summary, Table 9.6 indicates the typical ranges of various relevant optical and
spectroscopic parameters of dye laser media.

9.3.2. Characteristics of Dye Lasers

From the discussion above, one can see that these materials have the appropriate charac-
teristics for exhibiting laser action, over the wavelength range of fluorescence, according to
a 4-level laser scheme. In fact, the fast nonradiative decay within the excited singlet state S1

populates the upper laser level very effectively, while the fast nonradiative decay within the
ground state is effective in depopulating the lower laser level. It was, however, quite late in
the general development of laser devices before the first dye laser was operated (1966),.29,30/

and we now look for some reasons for this. One problem which presents itself is the very
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TABLE 9.6. Range of optical and
spectroscopic parameters of typical

dye laser media

Available laser

wavelengths [nm] 320�1,500
Concentration [molar] 10�3�10�4

Nt Œ1019 mol.=cm3� 0.1�1
�e Œ10�16 cm2� 1�4
�T Œ10�16 cm2� 0.5�0.8
	�Œnm� 25�30
� Œns� 2�5
k�1

ST Œns� �100
�T Œs� 10�7�10�3

Refractive index 1.3�1.4

short lifetime � of the S1 state since the required pump power is inversely proportional to � .
Although this is, to some extent, compensated by the comparatively large value of the stimu-
lated emission cross-section, the product �� [one should always remember that, for a 4-level
laser, the threshold pump power is inversely proportional to �� , see Eqs. (7.3.12) and (6.3.20)
for the space independent and space dependent model, respectively] is still about three orders
of magnitude smaller for e.g., rhodamine 6G compared to Nd:YAG. A second problem arises
from intersystem crossing. In fact, if �T is long compared to k�1

ST , then molecules accumulate
in the triplet state resulting in absorption at the laser wavelength due to triplet-triplet transi-
tion. In fact, it can be readily shown that a necessary condition for laser action is that �T is less
than some particular value, which depends on other optical parameters of the dye molecule.
To obtain this result, let N2 and NT be the populations of the upper laser state and of the
triplet state respectively. A necessary condition for laser action can then be established by
requiring that the gain coefficient, due to stimulated emission, exceeds the intrinsic loss due
to triplet-triplet absorption, i.e.,

�eN2 > �TNT (9.3.4)

where �T is the cross section for triplet-triplet absorption and where the values of both �e and
�T are taken at the wavelength where laser action is considered. In the steady state, the rate of
decay of triplet population, NT=�T , must equal the rate of increase due to intersystem crossing
kSTN2, i.e.,

NT D kST�TN2 (9.3.5)

Combining Eqs. (9.3.4) and (9.3.5) we get

�T < �e=�TkST (9.3.6)

which is a necessary condition for cw laser action [i.e., in a sense equivalent to the condition
Eq. (7.3.1) for a simple two-level system]. If this condition is not satisfied, the dye laser can
only operate in a pulsed regime. In this case, the duration of the pump pulse must be short
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enough to ensure that an excessive population does not accumulate in the triplet state. Finally,
a third crucial problem comes from the presence of thermal gradients produced in the liquid
by the pump. These tend to produce refractive-index gradients and hence optical distortions
that can prevent laser action.

Dye lasers can be operated pulsed or, when condition Eq. (9.3.6) is satisfied, also cw.
Pulsed laser action has been obtained from very many different dyes by using one of the
following pumping schemes: (1) Fast and intense flashlamps, with pulse duration usually less
than �100�s. (2) Short light pulses from another laser. In both cases, the short pulse duration
serves the purpose of producing laser action before an appreciable population has accumulated
in the triplet state and before the onset of refractive-index gradients in the liquid.

For flashlamp pumping, linear lamps in an elliptical-cylinder pumping chamber (see
Fig. 6.1a) have been used with the liquid containing the active medium flowing through a glass
tube placed along the second focal line of the ellipse. To achieve better pumping uniformity
and hence more symmetric refractive index gradients, annular flashlamps, consisting of two
concentric glass tubes, with the dye solution in a central glass tube, are also used.

For pulsed laser pumping, nitrogen lasers are sometimes used, its UV output beam being
suitable for pumping many dyes that oscillate in the visible range�. To obtain more energy
and higher average power, the more efficient excimer lasers (in particular KrF and XeF)
are being increasingly used as UV pumps, while, for dyes with emission wavelength longer
than �550–600 nm, the second harmonic of a Q-switched Nd:YAG laser .�D 532 nm/ or the
green and yellow emissions of a copper vapor laser are being increasingly used. For these visi-
ble pump lasers, the conversion efficiency from pump laser to dye laser output is rather higher
(30–40%) than that obtained with UV laser pumping .�10%/. Furthermore, dye degrada-
tion due to the pump light is considerably reduced. For all the cases considered above where
pulsed laser pumping is used, a transverse pump configuration (i.e., direction of the pump
beam orthogonal to the resonator axis) is generally adopted (Fig. 9.16). The laser pump beam
is focused by the lens L, generally a combination of a spherical and cylindrical lens, to a fine
line along the axis of the laser cavity. The length of the line focus is made equal to that of the
dye cell (a few millimeters), while the transverse dimensions are generally less than 1 mm.
To tune the output wavelength within the wide emission bandwidth of a dye .�30–50 nm/,

FIG. 9.16. Arrangement for a transversely pumped dye laser. The pumping beam may be that of a nitrogen, excimer,
or copper vapor laser, or it may be the second harmonic beam of a Q-switched Nd:YAG laser.

� In this case the pump light is usually absorbed by the S0 ! S2 transition of the dye and then rapidly transferred to
the bottom of the S1 state.
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FIG. 9.17. Arrangement of an Ar-ion laser-pumped cw dye laser.

a grazing-incidence diffraction grating is commonly inserted in the laser cavity (see Fig. 9.16)
and tuning is achieved by rotating the mirror labeled as mirror 2 in the figure. Grazing inci-
dence is used to increase the resolving power of the grating� and hence to considerably reduce
the bandwidth of the emitted radiation .�0.01–0.02 nm/. Smaller bandwidths, down to single
mode operation, can be obtained by inserting one or more Fabry-Perot etalons, as discussed
in Sect. 7.8.2.1.

For continuous laser pumping, ArC lasers (and sometimes also KrC lasers) are often
used. To achieve a much lower threshold, as required for cw pumping, the near-longitudinal
pumping configuration of Fig. 9.17 is now used. The liquid dye medium is in the form of a thin
jet stream (�200�m thickness) freely flowing in a plane orthogonal to the plane of the figure
and inclined at Brewster’s angle relative to the dye-laser beam direction. Accordingly, the
laser beam is linearly polarized with its electric field in the plane of the figure. Both pump and
laser beams have their waist in the jet stream with similar, very small, spot sizes .�10�m/.
For laser tuning, a birefringent filter may be inserted within the laser cavity. To achieve single
longitudinal mode operation, a birefringent filter and generally two Fabry-Perot etalons in an
unidirectional ring cavity are often used (see Fig. 7.25). For femtosecond pulse generation a
colliding pulse mode locked (CPM) laser configuration is generally used (see Fig. 8.29). To
achieve the shortest pulse duration (�25 fs for a combination of a solution of rhodamine 6G
as active medium and of DODCI as a saturable absorber) a prism-pair is also inserted within
the laser cavity for dispersion control.

By virtue of their wavelength tunability, wide spectral coverage, and the possibility
of generating femtosecond laser pulses, organic dye lasers have found an important role in
many fields. In particular, these lasers are widely used in scientific applications, either as a
narrow band, down to single mode, tunable source of radiation for high-resolution frequency-
domain spectroscopy, or as femtosecond-pulse generators for high resolution time-domain
spectroscopy. Other applications include the biomedical field (e.g., treatment of diabetic
retinopathy or treatment of several dermatological diseases) and applications in the field of
laser photochemistry. In particular, a repetitively pulsed dye laser system, made of 20 dye
lasers each transversely pumped by a copper vapor laser of �100 W average power, has been
built for laser isotope separation of 235U.

� The resolving power, �= 	�, 	� being the resolved bandwidth, turns out to be just equal to the number of lines
of the diffraction grating illuminated by the laser beam. At grazing incidence, this number increases and thus the
resolving power also increases.
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9.4. SEMICONDUCTOR LASERS.31,32/

Semiconductor lasers represent one of the most important class of lasers in use today,
not only because of the large variety of direct applications in which they are involved but also
because they have found a widespread use as pumps for solid state lasers. These lasers will
therefore be considered at some length here.

Semiconductor lasers require, for the active medium, a direct gap material and, accord-
ingly, the normal elemental semiconductors (e.g., Si or Ge) cannot be used. The majority of
semiconductor-laser materials are based on a combination of elements belonging to the third
group of the periodic table (such as Al, Ga, In) with elements of the fifth group (such as N, P,
As, Sb) (III–V compounds). Examples include the best known, GaAs, as well as some ternary
(e.g. AlGaAs, InGaAs) and quaternary (e.g., InGaAsP) alloys. The cw laser emission wave-
length of these III–V compounds generally ranges between 630–1,600nm. Quite recently,
however, very interesting InGaN semiconductor lasers, providing cw room-temperature emis-
sion in the blue .�410 nm/, have been developed and promise to become the best candidates
for semiconductor laser emission in the very important blue-green spectral region. Semicon-
ductor laser materials are not limited to III–V compounds, however. For the blue-green end
of the spectrum we note that there are wide-gap semiconductors using a combination between
elements of the second group (such as Cd and Zn) and of the sixth group (S, Se) (II–VI
compounds). For the other end of the e.m. spectrum, we mention semiconductors based on
some IV–VI compounds such as Pb salts of S, Se, and Te, all oscillating in the mid-infrared
.4�m–29�m/. Due to the small band gap, these last lasers reuire cryogenic temperatures,
however. In the same wavelength range, we thus mention the recent invention of the quantum
cascade laser,.33/ which promises efficient mid infrared sources without requiring cryogenic
temperatures.

9.4.1. Principle of Semiconductor Laser Operation

The principle of operation of a semiconductor laser can be simply explained with the help
of Fig. 9.18, where the semiconductor valence band, V , and conduction band, C, separated
by the energy gap, Eg, are indicated. For simplicity, let us first assume that the semiconduc-
tor is held at T D 0 K. Then, for a non-degenerate semiconductor, the valence band will be
completely filled with electrons while the conduction band will be completely empty (see
Fig. 9.18a, in which the energy states belonging to the hatched area are completely filled by

FIG. 9.18. Principle of operation of a semiconductor laser.
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electrons). Suppose now that some electrons are raised from the valence band to the conduc-
tion band by a suitable pumping mechanism. After a very short time .�1 ps/, the electrons
in the conduction band drop to the lowest unoccupied levels of this band, and, meanwhile,
any electron near the top of the valence band also drops to the lowest unoccupied levels of
this band, thus leaving holes at the top of the valence band (Fig. 9.18b). This situation can be
described by introducing the quasi-Fermi levels, E0

Fc
, for the conduction band and, E0

Fv
, for the

valence band (see Sect. 3.2.3.). At T D 0 K they define, for each band, the energy below which
states are fully occupied by electrons and above which, states are empty. Light emission can
now occur when an electron, of the conduction band, falls back to the valence band recom-
bining with a hole. This, so-called recombination-radiation process, is the process by which
radiation is emitted in light emitting diodes (LED). Given the appropriate conditions, how-
ever, a process of stimulated emission of this recombination radiation, thus leading to laser
action, can occur. It was shown in Sect. 3.2.5. that the condition for a photon to be amplified
rather than absorbed by the semiconductor is simply given by [see Eq. (3.2.39)]

Eg 	 h� 	 E0
Fc

� E0
Fv

(9.4.1)

In the simple case where T D 0 K, this condition can be readily understood from Fig. 9.18b,
since the non-hatched area in the valence band corresponds to states which are empty, and
a conduction band electron can only fall into an empty state of the valence band. However,
the detailed treatment of Sect. 3.2.5. shows that condition of Eq. (9.4.1) in fact holds for
any temperature and simply means that, for the range of transition energy h� defined by
Eq. (9.4.1), the gain arising from stimulated emission exceeds the absorption. To achieve
condition of Eq. (9.4.1) one must, of course, have E0

Fc
� E0

Fv

 Eg. It is important at this point

to realize that the values of both E0
Fc

and E0
Fv

depend on the intensity of the pumping process,
i.e. on the number density, N, of electrons raised to the conduction band (see Fig. 3.15).
Actually E0

Fc
D E0

Fc
.N/ increases while E0

Fv
D E0

Fv
.N/ decreases as N is increased. Thus, to

obtain E0
Fc

� E0
Fv


 Eg i.e., to have gain exceeding absorption losses, the electron density N
must exceed some critical value established by the condition

E0
Fc
.N/ � E0

Fv
.N/ D Eg (9.4.2)

The value of the injected carrier density which satisfies Eq. (9.4.2) is referred to as the carrier
density at transparency�, Ntr . If now the injected carrier density is larger than Ntr, the semi-
conductor will exhibit a net gain and, if this active medium is placed in a suitable cavity, laser
action can occur if this net gain is sufficient to overcome the cavity losses. Thus, to obtain
laser action, the injected carriers must reach some threshold value, Nth, larger than Ntr by a
sufficient margin to allow the net gain to overcome the cavity losses.

Semiconductor laser pumping can in principle be achieved, and indeed has been
achieved, in a number of ways, e.g., by using either the beam of another laser, or an aux-
iliary electron beam, to transversely or longitudinally excite a bulk semiconductor. By far the
most convenient way of excitation is, however, to use the semiconductor laser in the form of a
diode with excitation produced by current flowing in the forward direction of the junction..34/

Laser action in a semiconductor was in fact first observed in 1962 by using a p-n junction

� Condition (9.4.2) is thus equivalent to the condition N2 D N1 under which a non-degenerate two level system
becomes transparent
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diode, the demonstration being made almost simultaneously by four groups,35–38 three of
which were using GaAs. The devices developed during the early stage of semiconductor laser
research made use of the same material for both the p and n sides of the junction and are
therefore referred to as homojunction lasers. The homojunction laser is now only of histori-
cal importance, since it has been essentially superseded by the double heterostructure (DH)
laser where the active medium is sandwiched between p and n materials which are different
from the active material. Homojunction lasers could in fact operate cw only at cryogenic tem-
peratures .T D 77 K/, while it was only after the invention of the heterojunction laser that it
became possible to operate semiconductor lasers cw at room temperature. This development
occurred 7 years after the invention of the homojunction laser (1969)39–41 and opened up the
way to the great variety of applications in which semiconductor lasers are nowadays used.
Homojunction semiconductor lasers will nevertheless be discussed briefly in the next section
since this discussion helps to understand the great advantages offered by the DH lasers.

9.4.2. The Homojunction Laser

In the homojunction laser, the pumping process is achieved in a p-n junction where both
p-type and n-type regions, being of the same material (e.g., GaAs), are in the form of a
degenerate semiconductor. This means that the donor and acceptor concentrations are so large
.�1018 atoms=cm3/ that the Fermi levels fall in the valence band for the p type, EFp , and
in the conduction band for the n type, EFn . When a junction is formed, and if no voltage is
applied, the band structure will be as shown in Fig. 9.19a, where the two Fermi energies are
seen to be the same. When a forward bias voltage V is applied, the band structure becomes as
shown in Fig. 9.19b and the two Fermi levels become separated by	E D eV . We see from this
figure that, in the junction region, electrons are injected into the conduction band (from the
n-type region) while holes are injected into the valence band (from the p-type region). Thus,
under appropriate values of current density, the transparency condition and then the laser
threshold condition can be reached. Actually, one of the main limitations of this device comes
from the very small potential barrier that an electron, in the conduction band, encounters
when it reaches the p-side of the junction. The electron can then penetrate into the p-type
material where it becomes a minority carrier thus recombining with a hole. The penetration

FIG. 9.19. Band structure of a p-n junction semiconductor laser with zero voltage, (a), and forward voltage,
(b), applied to the junction.
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FIG. 9.20. Typical broad-area p-n homojunction laser.

depth, d, of the electron will then be given, according to diffusion theory, by d D p
D� , where

D is the diffusion coefficient and � is the electron lifetime, as established by electron-hole
recombination. In GaAs, D D 10 cm2=s and � Š 3 ns so that d � 1�m which shows that the
active region is quite thick being limited by the diffusion length d rather then by the thickness
of the depletion layer .�0.1�m/.

A typical configuration of a p-n junction laser is shown in Fig. 9.20, the shaded region
corresponding to the active layer. It is seen that the diode dimensions are very small (some
hundreds of microns). To provide feedback for laser action, two parallel end faces are pre-
pared, usually by cleavage along crystal planes. Often the two surfaces are not provided
with reflective coatings. In fact, since the refractive index of a semiconductor is very large
(e.g., n D 3.6 for GaAs), there is already a sufficient high reflectivity (�32% for GaAs) from
the Fresnel reflection at the semiconductor-air interface. Note that, as mentioned earlier, the
thickness of the active region in the direction perpendicular to the junction is d � 1�m.
Because of diffraction, however, the transverse dimension of the laser beam in this direction
.�5�m/ is significantly larger than the active region.

A homojunction laser has a very high threshold current density at room temperature
.Jth Š 105 A=cm2/ which prevents the laser from operating cw at room temperature (without
suffering destruction in a very short time!). There are two main reasons for this high thresh-
old value: (1) The thickness of the active region .d � 1�m/ is quite large and the threshold
current, being proportional to the volume of the active medium, is proportional to this thick-
ness. (2) The laser beam, owing to its comparatively large transverse dimensions, extends
considerably into the p and n regions, where it is strongly absorbed. Given the above reasons,
homojunctions lasers could only operate cw at cryogenic temperatures (typically at liquid
nitrogen temperature T D 77 K). For a given laser transition, in fact, the semiconductor gain,
according to Eq. (3.2.37), can be shown to increase rapidly with decreasing temperature and,
also, contact of the diode with liquid nitrogen helps to give a very efficient cooling.

9.4.3. The Double-Heterostructure Laser

The limitations discussed in the previous section prevented any widespread use of
semiconductor lasers until, first, the single-heterostructure, and, immediately after, the
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FIG. 9.21. Schematic diagram of a double-heterostructure where the active medium (hatched area) consists of GaAs,
(a), and InGaAsP, (b).

double-heterostructure lasers were introduced. We will limit our discussion here to the latter
type of laser structure since it is the only one that is now in common use.

Two examples of a double-heterostructure, where the active medium is a thin layer
.0.1–0.2�m/ of either GaAs or of the quaternary alloy InGaAsP, are shown in Fig. 9.21a and
b respectively. For the two cases considered, the p and n sides are made of Al0.3Ga0.7As and
InP, respectively. When properly optimized (see Fig. 9.23), the room-temperature threshold
current-density of such a diode structure can be reduced by about two orders of magnitude
(i.e., to �103 A=cm2) compared to the corresponding homojunction devices, thus making
cw room temperature operation feasible. This strong reduction of threshold current density
is due to the combined effect of three circumstances: (1) The refractive index of the active
layer n1 (e.g., n1 D 3.6 for GaAs) is significantly larger than that, n2, of the p-side and n-
side cladding-layers (e.g., n2 D 3.4 for Al0.3Ga0.7As), thus providing a guiding structure (see
Fig 9.22a). This means that the laser beam will now be mostly confined to the active layer
region, i.e., where the gain exists (photon-confinement, see Fig. 9.22b). (2) The band gap
Eg1 of the active layer (e.g., Eg1 Š 1.5 eV in GaAs) is significantly smaller than that, Eg2 , of
the cladding layers� (e.g., Eg2 Š 1.8 eV for Al0.3Ga0.7As). Energy barriers are thus formed
at the two junction planes thus effectively confining the injected holes and electrons within
the active layer (carrier-confinement, see Fig. 9.22c). Thus, for a given current density, the
concentration of holes and electrons in the active layer is increased and therefore the gain is
increased. (3) Since Eg2 is appreciably larger than Eg1 , the laser beam, which has a frequency
�Š Eg1=h, is much less strongly absorbed in the tails of the beam profile (see Fig. 9.22b)
by the cladding layers, the loss arising, in this case, only from free-carriers (reduced
absorption).

To form a double heterostructure, thus taking advantage of all its favorable properties, a
very important requirement must be fulfilled, namely that the lattice period of the active layer
must be equal (to within �0.1%) to that of the cladding layers�. In fact, if this condition is not
fulfilled, the resulting strain at the two interfaces will result in misfit dislocations being pro-
duced there, each dislocation acting as a rather effective center for electron-hole nonradiative
recombination. For the GaAs/AlGaAs structure, this requirement of lattice matching does not
constitute a limitation because the lattice periods of GaAs (0.564 m) and AlAs (0.566 m) are

� It is a general rule for all III–V compounds that, any change in composition that produces a change, in a given
sense e.g. a decrease, of band gap also produces a change, in the opposite sense i.e. an increase, of the refractive
index.

� All III–V compounds crystallize in the cubic structure.
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FIG. 9.22. (a) Refractive index profile, (b) transverse beam profile, and (c) band structure (very schematic) of a
double-heterostructure diode-laser.

very close in value (the atomic radii of Ga and Al are, in fact, almost the same). In the case
of the quaternary compound In1�xGaxAsyP1�y, the alloy can be lattice matched to InP for a
specific y=x ratio, as one can appreciate from the following argument: suppose that, starting
with InP for the active layer, some fraction, x, of Ga is added, substituting for some In in the
lattice (which hence becomes In1�x). Since the radius of Ga is smaller (by �19 pm) than that
of In, the lattice period of the In1�xGaxP will be decreased compared to InP. Suppose now
that some fraction, y, of As .Asy/ substitutes for P (thus becoming P1�y). Since the radius
of As is now larger (by �10 pm) than that of P, this addition will tend to increase the lattice
period. So, if the y=x ratio of the two substituents has an appropriate value, the two effects will
cancel each other thus resulting in In1�xGaxAsyP1�y being lattice matched to InP. This lattice-
matching condition turns out to be given by y Š 2.2 x. Upon changing x, while keeping the y=x
ratio equal to the lattice-matching value, the semiconductor band-gap and hence the emission
wavelength can be changed. In this way the emission wavelength of In1�xGaxAsyP1�y can
be varied between 1,150 and 1,670 nm, for cw room temperature operation, thus encompass-
ing the so-called second .�1300 nm/ and third .�1550 nm/ transmission windows of silica
optical fibers.

Experimental and theoretical plots of the threshold current density, Jth, vs thickness, d, of
the active layer, for a DH GaAs laser are shown in Fig. 9.23..42/ Note that, as d decreases, Jth

first decreases then reaches a minimum value (Jth Š 1 kA=cm2 for d Š 0.1�m) and thereafter
increases. To understand this behavior, we need first to relate the threshold current density, Jth,
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to the threshold carrier density, Nth. We begin by defining Rp as the rate at which electrons (and
holes) are injected into unit volume of the active layer. We also let �i, usually referred to as the
internal quantum efficiency, be the fraction of the carriers which recombine radiatively in the
layer, the remaining fraction undergoing nonradiative electron-hole recombination mostly at
the junction boundaries. The quantity �i can also be looked upon as the effective fraction of the
injected carriers, while the remaining fraction can be considered as not having been injected
into the active region at all. For a given current density, J, flowing through the junction, Rp

is then readily seen to be given by Rp D �iJ=ed where e is the electron charge and d is the
thickness of the active layer. Under steady state conditions, a simple balance condition gives
the corresponding expression for the carrier density N as N D Rp�r, where �r is the radiative
recombination time (given the assumptions made before, all carriers recombine radiatively
in the active layer). From the previous two expressions one gets J D edN=�i�r so that, at
threshold, one has:

Jth D
�

ed

�i�r

�
Nth (9.4.3)

With the help of Eq. (9.4.3) we can now qualitatively understand the relevant features of
Fig. 9.23. We first note that, for sufficiently large values of d, the threshold carrier density, Nth,
turns out to be almost the same as the transparency density, Ntr (see Example 9.1) and hence
it is a constant. Equation (9.4.3) then predicts a linear relation between Jth and d as indeed
observed in Fig. 9.23 for sufficiently large values of d (larger than �0.15�m). However,
when the thickness d becomes sufficiently small, the confinement action of the active layer,
indicated in Fig. 9.22b, will no longer be so effective and the beam will extend considerably
into the p and n sides of the junction. This situation will result in a reduction of the effective
gain and, at the same time, an increase of losses experienced in the cladding layers, both

FIG. 9.23. Calculated (continuous and dashed lines) and experimental (open and closed circles) values of the thresh-
old current density, Jth , vs active layer thickness, d, for a 300�m long AlGaAs DH laser. Closed and open circles
represent data for a 40�m and 20�m stripe width, respectively. The theoretical curves, Jcal , refer to the cases of
“undoped” and low Si-doped active layers (after.42/ by permission).
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of which effects lead to a strongly increased Nth. So, at sufficiently small values of d, Jth is
expected to increase as d is decreased.

Example 9.1. Carrier and current densities at threshold for a DH GaAs laser Since the laser field is
space-dependent, the threshold condition must be derived, as in previous examples (see e.g., Sect. 6.3.4.),
by setting the condition that the spatially averaged gain must equal the spatially averaged losses. Thus, in
general terms, we write

<g>L D <˛a>L C<˛n>L C<˛p>L C �m (9.4.4)

where L is the length of the active medium, g is the gain coefficient, ˛a is the scattering loss of the active
layer, ˛n and ˛p are the losses in the n and p sides of the cladding, respectively, and �m is the mirror loss.
The average values appearing in Eq. (9.4.4) are to be taken over the field intensity distribution, so that, for
example, the average gain is given by

<g> D
R

a gjUj2dVR
c jUj2dV

(9.4.5)

where U.x, y, z/ is the field distribution within the laser cavity, the integral of the numerator is taken over
the volume of the active medium and the integral of the denominator is taken over the whole volume
of the cavity. The quantities <g> and <g>L are usually referred to as the modal gain coefficient and
the modal gain, respectively. Similar expressions hold for the average values appearing in the right hand
side of Eq. (9.4.4). For simplicity, we assume that ˛n Š˛p D ˛ and we neglect the spatial variation of the
cavity field along the longitudinal z-coordinate (as produced by e.g. a standing wave pattern) and along
the coordinate parallel to the junction. Then Eq. (9.4.4), with the help of Eq. (9.4.5) and the corresponding
expressions for <˛a> and <˛p>, readily gives

g� D ˛a� C ˛.1 � � /C Œln.1=R/=L� (9.4.6)

where R is the power reflectivity of the two end mirrors (assumed to be equal for the two mirrors) and

� D

Cd=2R
�d=2

jUj2dx

C1R
�1

jUj2dx

(9.4.7)

where x is the coordinate along the direction orthogonal to the junction. The quantity � represents the
fraction of the beam power which is actually in the active layer and is usually referred to as the beam
confinement factor. According to the discussion in Sect. 3.2.5, we can now approximate g as g D�

.N � Ntr/ where � is the differential gain coefficient and Ntr is the carrier density at transparency. If
we now further assume, for simplicity, ˛a D ˛, then Eq. (9.4.6) simplifies to

�� .Nth � Ntr/ D ˛ C Œln.1=R/=L� D �=L (9.4.8)

where Nth is the threshold carrier density and � D ˛L C ln.1=R/ is the total loss per pass. From Eq. (9.4.8)
we finally get the desired expression for the threshold carrier density as

Nth D .�=�L� /C Ntr (9.4.9)
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To proceed with the calculation, we now need to evaluate the confinement factor � . A fairly accurate and
simple expression turns out to be given by given by.43/

� Š D2=.2 C D2/ (9.4.10)

where

D D 2
.n2
1 � n2

2/
1=2d=� (9.4.11)

is the normalized thickness of the active layer (we recall that n1 and n2 are the refractive indices of the
active medium and cladding layers, respectively). If we now take n1 D 3.6, n2 D 3.4, and �D 850 nm (as
appropriate for a GaAs laser) and we make the calculation for d D 0.1�m, we obtain D Š 0.875 and hence
� Š 0.28. To obtain a numerical estimate of the corresponding value of Nth, we take the reflectivity of the
two end faces equal to that of the uncoated surfaces .R Š 32%/, and assume a loss coefficient ˛Š 10 cm�1

and a cavity length of L D 300�m. We obtain � D ln.1=R/C ˛L Š 1.44. If we now take (see Table 3.1)
� D 1.5 � 10�16 cm2 and Ntr D 2 � 1018 carriers=cm3, we obtain from Eq. (9.4.9)

Nth D .1.14 C 2/ � 1018 carriers/cm3 (9.4.12)

where, for convenience, the numerical values of the two terms appearing in the right hand side of
Eq. (9.4.9) have been left separated. Equation (9.4.12) thus shows that, in this case, the first term, i.e.,
the carrier density needed to overcome cavity losses, is comparable to Ntr.

The threshold current density is now readily obtained by substituting Eq. (9.4.9) in Eq. (9.4.3). We get

Jth D
�

ed

�i�r

� h� �

�L�

�
C Ntr

i
(9.4.13)

We have seen that, for sufficiently large values of d, Ntr is the dominant term in the square bracket of
Eq. (9.4.13). In this case Jth is expected to be proportional to d, as indeed shown in Fig. 9.23 for d
larger than �0.15�m, and most of the threshold pump current is just used to reach the semiconductor
transparency condition. When d becomes very small, however, the confinement factor also becomes very
small [according to Eq. (9.4.10), for very small values of d, one has � / d2/, the first term in the
brackets eventually dominates and Jth reaches a point where it increases with decreasing d. To get a
numerical evaluation of Jth from Eq. (9.4.13), we assume d D 0.1�m, we take �i Š 1, �r D 4 ns and use
the previously calculated value of Nth. We obtain Jth Š 103 A=cm2 in reasonable agreement with the results
of Fig. 9.23.

9.4.4. Quantum Well Lasers.44/

If the thickness of the active layer of a DH laser is greatly reduced to a point
where the dimension is comparable to the de-Broglie wavelength .�Š h=p/, where p is
the electron momentum a quantum well, QW, double heterostructure laser is produced.
Such lasers exploit the more favorable optical properties of a QW or of a multiple
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Example 9.2. Carrier and current densities at thresh-
old for a GaAs/AlGaAs quantum well laser We assume
that a functional relation of the form g D�.N � Nth/

still holds approximately for a QW�, so that the rela-
tions established in Example 9.1. can still be applied. To
make a comparison with the case discussed in Exam-
ple 9.1, we take the same values of the loss coeffi-
cient ˛.10 cm�1) and mirror reflectivity R (32%), hence
of the total loss �.� D 1.44/. We also take the same
value of cavity length .300�m/ and carrier density at
transparency Ntr .2 � 1018 cm�3/, while we now take
� Š 6 � 10�16 cm2 (see Sect. 3.3.5.). To calculate the con-
finement factor we assume that the beam field profile can
be written as U / exp �.x2=w2?/, where w? is the beam
spot size in the direction orthogonal to the junction. From
Eq. (9.4.7) we then readily get � D .d=0.62d?/, where
d is the well thickness and d? D 2w? so that, taking
d D 10 nm and d? D 1�m, we obtain � D 1.6 � 10�2.
From Eq. (9.4.9) we now get Nth D .5 C 2/� 1018 cm�3,
where the numerical values of the two terms appearing in
the right hand side of Eq. (9.4.9) have again been left sep-
arated. We see that, due to the much smaller value of the
confinement factor, the first term, i.e., the carrier density
required to overcome cavity losses, is now appreciably
larger than the second term, Ntr . The threshold current
density is now readily obtained by substituting the previ-
ously calculated value of Nth into Eq. (9.4.3). Assuming
again that �i D 1 and � D 4 ns, we obtain Jth Š 280 A=cm2

which is about 4 times smaller than the value calculated
for a DH laser. Note that, in this case, since it is cavity
loss that mainly determines the value of Nth, a reduction
of this loss is helpful to further reduce Jth. If we now take,
for example, ˛D 3 cm�1 and R D 80%, we get � D 0.28,
hence Nth D .2.3 C 2/� 1018 cm�3 and Jth Š 170 A=cm2.

quantum well, MQW, structure compared
to those of the corresponding bulk material,
in particular, the increased differential gain
(see Example 3.12), and decreased depen-
dence of this gain on temperature. These
favorable properties are essentially related to
the completely different density of states of
QW materials compared to bulk materials,
arising from quantum-confinement along the
well direction (see Sect. 3.3). Single QW and
also MQW lasers would, however, be seri-
ously affected by the strong reduction of the
confinement factor arising from the reduced
layer thickness. To limit the beam size along
the QW direction, one then needs to use a
separate confinement structure.

Several structures have been introduced
for this purpose, and a particularly sim-
ple example is shown in Fig. 9.24a. Every-
thing in this figure is to scale, except for
the bulk GaAs band-gap energy, which has
been reduced for clarity. At the center of
the structure is the thin .�10 nm/ quan-
tum well (GaAs) and, on both sides of
the well, there are two thicker .�0.1�m/,
inner barrier, layers of wider band-gap
and hence lower refractive-index material
.Al0.2Ga0.8As/. Outside the inner barrier lay-
ers there are two, much thicker .�1�m/,
cladding layers of still wider band-gap mate-
rial .Al0.6Ga0.4As/, constituting the p- and
n-sides of the diode. Beam confinement is
established by the higher refractive index
of the inner barrier layers compared to the
cladding layers, while the contribution to
confinement by the very thin QW is negligi-
ble. The resulting beam intensity profile for
this waveguide configuration is also shown as

a dashed line in Fig. 9.24a. One can see that the full width between the 1=e2 points is, in
this case, confined to a comparatively small dimension .�0.8�m/. A somewhat similar and
widely used structure is that shown in Fig. 9.24b, where the index composition of the inner
barrier layer, AlxGa1�xAs, is gradually changed from e.g., x D 0.2 at the QW interface to the
value x D 0.6 at the interfaces between the two cladding layers, where it matches the index of

� This approximation holds with less accuracy for a QW, a plot of g vs N showing a curve which, due to the
essentially two-dimensional structure of the density of states, saturates at sufficiently high values of the current
injection (see.45/).
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FIG. 9.24. (a) Energy bands of a step-index AlxGa1�xAs-GaAs separate confinement QW heterostructure. The
resulting optical mode intensity profile for this waveguide structure is shown as a dashed line (after.46/ by permission).
(b) Energy bands of a graded-index AlxGa1�xAs-GaAs separate confinement QW heterostructure (GRINSCH).

the cladding layers. This structure is usually referred to as GRINSCH, from GRaded-INdex
Separated-Confinement Heterostructure. Note that, in both structures of Fig. 9.24, the carriers
are confined by the QW structure while the beam is confined by the step-index or graded-
index profile of Fig. 9.24a and b respectively. Note also that, although the thickness of the
QW layer is much smaller than the width of the beam, optical confinement results in a suffi-
ciently high confinement factor to now take advantage of the expected reduction of Jth arising
from the strong reduction of the active layer thickness d [see Eqs. (9.4.3) and (9.4.13)]. In fact,
as shown in Example 9.2, one may now typically obtain values of Jth which are �4–5 times
smaller than those of a DH laser (i.e., �200 A=cm2). This threshold reduction thus arises
from a combination of the following two features: (1) Reduction in threshold as expected
from the strong reduction of layer thickness, once the problem of beam confinement has been
partially overcome by a separated confinement structure. (2) Increase (by about a factor 2) of
the differential gain which occurs in a QW compared to the corresponding bulk material.

The separated confinement structures of Fig. 9.24 may include either a single QW, as
shown in the figure, or a multiple quantum well (MQW) structure, the structure in this case
consisting of a number of alternating layers of narrow and wide band-gap materials. A note-
worthy example is the In0.5Ga0.5P=In0.5Ga0.25Al0.25P MQW structure (see Fig. 9.25) leading
to laser emission, in the red, at 670 nm wavelength. The thickness of each In0.5Ga0.5P QW
is seen to be 5 nm while the thickness of the In0.5Ga0.25Al0.25P barrier layer is 4 nm. This

FIG. 9.25. Composition variations in a In0.5GaP0.5=In0.5.Ga0.5�xAlx/P MQW active layer, where x D 0.25 for well
barriers and x D 0.35 for confinement layers, producing laser emission at 670 nm wavelength. Substrate material is
GaAs which provides a good lattice match to the In0.5Ga0.15Al0.35P confinement layer.
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layer has, in fact, a wider gap than that of the QW layer because it was shown earlier that the
substitution of Al to Ga results in an increase of the gap. The MQW structure is then termi-
nated by two In0.5Ga0.25Al0.25P cladding layers while the p and n sides of the diode are made
of In0.5Ga0.15Al0.35P. This last sides have, in fact, a lower refractive index compared to the
cladding layers due to the higher Al content. The structure is grown over a GaAs substrate
which provides a good lattice match to the, either p or n, In0.5Ga0.15Al0.35P layers.

We have seen in Sect. 9.4.3. that, in a DH laser, a precise lattice match between the two
heterostructures (better than 0.1%) must be achieved. For the very small thickness of a QW,
however, this matching condition can be considerably relaxed and a lattice mismatch between
the QW and the surrounding, wider-gap, material up to �1–3% can be tolerated without
creating excessive misfit dislocations at the boundaries between the two materials. Due to the
lattice mismatch, a compressive or tensile strain is produced in the QW structure and one thus
has a strained QW. Strained quantum wells present two main advantages: (1) Structures can
be grown which can produce laser action in wavelength ranges not otherwise covered (e.g.,
900–1,100 nm for InxGa1�x As/GaAs). (2) As discussed in Sect. 3.3.6., under compressive
strain, the effective mass of the hole in a direction parallel to the junction decreases to a value
closer to the effective mass of the electron. This situation lowers the transparency density, Ntr ,
and increases the differential gain, compared to an unstrained QW. Thus, strained quantum
well lasers allow laser action to be obtained, with very low threshold current density and high
efficiency, at wavelengths not previously accessible.

9.4.5. Laser Devices and Performances

Double-heterostructure as well as QW lasers quite often make use of the so-called stripe-
geometry configuration of Fig. 9.26, where the active area, shown dashed, may be either a
double heterostructure or a separated confinement single QW or MQW structure. One can see
from both figures that, by introducing a suitable insulating oxide layer, the current from the
positive electrode is constrained to flow in a stripe of narrow width s .s D 3–10�m/. Com-
pared to a broad area device (see Fig. 9.20), this stripe-geometry device has the advantage
of considerably reducing the area A (A D Ls, where L is the semiconductor length) through

FIG. 9.26. Detail of stripe-geometry double-heterostructure semiconductor lasers: (a) Gain-guided laser; (b) buried-
heterostructure index-guided laser.
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which the current flows. Thus, for a given current density J, the required total current, I D JA,
is correspondingly reduced. Furthermore, since the width of the gain region in the junction
plane is also roughly equal to s, this mechanism can already be used to confine the beam trans-
verse dimension in the direction parallel to the junction. The corresponding device is referred
to as a gain-guided laser, see Fig. 9.26a and, if s is made sufficiently small .s < 10�m/,
gain confinement results in the beam being restricted to the fundamental transverse mode in
the direction parallel to the junction. In the direction orthogonal to the junction, on the other
hand, the beam is also confined to the fundamental transverse mode by the index guiding
effect produced by the double heterostrusture (see Fig. 9.22) or by the separated confine-
ment structure (see Fig. 9.24). The output beam thus consists of a single transverse mode of
elliptical cross section .�1�m � 5�m/. The gain-guided structure of Fig. 9.26a has the dis-
advantage that the unpumped regions of the active layer are strongly absorbing and the beam
confinement action arising from these regions inevitably introduces some loss for the beam.
A better solution is to provide lateral confinement via a refractive-index guiding action within
the junction plane as well (index-guided lasers). A possible solution is to surround the active
layer with semiconductor materials of lower refractive index such as in the buried heterostruc-
ture laser of Fig. 9.26b. The advantage of an index-guided laser is that the laser beam suffers
less absorption by the laterally confining media. In fact, index-guided structures (e.g., buried
or ridge waveguide structures) appear to be increasingly favored in commercial devices.

We now consider some properties of the output beam namely output power, beam
divergence and spectral content.

Plots of output power versus input current, for two different temperatures, are shown
in Fig. 9.27 for a gain-guided DH GaAs semiconductor laser. Note that the threshold cur-
rent, Ith, at room temperature is less than 100 mA as a result of using the stripe geometry.
Threshold currents lower than this .�15 mA/ are now more typical for both gain-guided and
index-guided DH GaAs semiconductor lasers, while much lower values .�1 mA/ have been

FIG. 9.27. Plot of the output power vs the input current for a DH laser at room temperature and elevated temperature.
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Example 9.3. Output power and external quantum effi-
ciency of a semiconductor laser To calculate the output
power, we first note that, under steady-state conditions,
the power emitted by stimulated emission can simply be
written as Pe D .I � Ith/�ih�=e, where �i is the inter-
nal quantum efficiency, introduced in Sect. 9.4.3., and
� is the frequency of the emitted radiation. Part of this
power is dissipated by the internal losses (due to scatter-
ing and cladding losses) and part is available as output
power from the two cavity ends. This power can then be
written as

P D
�
.I � Ith/�ih�

e

� � � ln R

˛L � ln R

�
(9.4.14)

where R is the power reflectivity of the two end mir-
rors, ˛ is the internal loss coefficient and L is the cavity
length. One can now define the external quantum effi-
ciency �ex as the ratio between the increase in emitted
photons and the corresponding increase in injected car-
riers, i.e., �ex D d.P=h�/=d.I=e/. From Eq. (9.4.14) we
then get

�ex D �in

� � ln R

˛L � ln R

�
(9.4.15)

which shows that �ex increases by reducing the cavity
length. Note also that, following our previous definitions,
the relation between the external efficiency and the slope
efficiency is simply �ex D �s.eV=h�/.

obtained with particular QW devices [indeed,
assuming Jth D 200 A=cm2, see Example 9.2.,
s D 4�m and L D 150�m, one gets Ith D 1.2
mA]. Note also from Fig. 9.27 the rapid
increase of Ith with temperature. In most laser
diodes this increase has been found empir-
ically to follow the law Ith / exp.T=T0/

where T0 is a characteristic temperature,
dependent on the particular diode, whose
value is a measure of the quality of the diode.
The ratio between the threshold values at
two temperatures differing by 	T is in fact
given by



I0
th=I00

th

� D exp.	T=T0/. Thus the
larger T0 the less sensitive is Ith to tempera-
ture. In the case of Fig. 9.27 it can be read-
ily calculated that T0 Š 91 K. In DH GaAs
lasers, T0 typically ranges between 100 to
200 K, while T0 is usually larger .> 270 K/
for GaAs QW lasers. Thus, the increase in
characteristic temperature of a QW laser is
another favorable feature of QW devices and
results from a weaker dependence of quasi-
Fermi energies and hence of the differen-
tial gain on temperature (compare Fig. 3.25
with Fig. 3.15). The characteristic tempera-
ture for DH InGaAsP/InP lasers is consid-
erably lower than the above values .50 K <

T0 < 70 K/ probably due to the rapid increase
in nonradiative decay rate (due to Auger pro-
cesses) in this narrower bandgap material
(see Sect. 3.2.6.). Note that the output power
in Fig. 9.27 is limited to �10 mW. Higher

output powers (typically above 50 mW) can result in beam intensities high enough to dam-
age the semiconductor facets. Note finally that the slope efficiency of the laser is given by
�s D dP=VdI, where V is the applied voltage. Taking V Š 1.8 V we get �s D 40%. Even higher
slope efficiencies than this (up to about 60%) have in fact been reported. Thus, semiconductor
lasers are currently the most efficient lasers available.

As far as the divergence properties of the output are concerned, we first note that, due
to the small beam dimension in the direction orthogonal to the junction .�1�m/, the out-
put beam is always diffraction limited in the plane orthogonal to the junction. Furthermore,
as already pointed out above, if the width of the stripe is smaller that some critical value
.�10�m/, the beam is also diffraction limited in the plane parallel to the junction. Now let
d? and djj be the beam dimensions (full width between 1=e points of the electric field) along
the two directions and let us assume a Gaussian field distribution in both transverse directions.
According to Eq. (4.7.19), the beam divergences in the plane parallel to the junction, 
jj, and
in the plane orthogonal to the junction, 
?, will be given by 
jj D 2�=
djj and 
? D 2�=
d?,
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FIG. 9.28. Typical spectral emission of a Fabry-Perot type DH GaAs semiconductor laser with a cavity length
of 250�m.

respectively. For an output beam of elliptical cross-section (e.g., 1�m � 5�m) the divergence
in the plane orthogonal to the junction will be larger than that in the plane parallel to the junc-
tion. Thus the beam ellipticity rotates by 90ı at a distance some tens of microns away from
the semiconductor exit face (see Fig. 6.9a). As discussed in Sect. 6.3.2.1., optical systems can
be developed to compensate for this astigmatic behavior of the beam.

A typical emission spectrum of a diode laser, in which optical feedback is provided by
the two end-face reflections, is shown in Fig. 9.28. The equally spaced peaks corresponds
to different longitudinal modes of the Fabry-Perot cavity. Two points should be noted from
this figure: (1) The relative spectral bandwidth 	�L=� is sufficiently small .�1.1 � 10�3/ to
justify stating, according to Eq. (9.4.1), that the emission frequency is roughly equal to Eg=h.
(2) The absolute value of this bandwidth (	�L Š 400 GHz in Fig. 9.28) is sufficiently large,
however, to be a problem for optical fiber communications, due to the chromatic dispersion
of an optical fiber, particularly around �D 1, 550 nm. To obtain much smaller linewidths, the
best approach is to use either a distributed feedback laser or a laser with distributed Bragg
reflectors. These lasers are briefly considered in the next section.

9.4.6. Distributed Feedback and Distributed Bragg Reflector Lasers

A distributed feedback (DFB) laser consists of an active medium in which a periodic
thickness variation is produced in one of the cladding layers forming part of the heterostruc-
ture..47/ A schematic example of a DFB laser oscillating at 1,550 nm is shown in Fig. 9.29a,
where a InGaAsP active layer .�D 1, 550 nm/ is sandwiched between two InGaAsP cladding
layers .�D 1, 300 nm/, one of the two layers showing this periodic thickness variation. Since
the refractive index of the InGaAsP cladding layers is larger than that of the InP, p- and
n-type, layers, the electric field of the oscillating mode will see an effective refractive index
neff .z/D<n.x, z/>x which depends on the longitudinal z-coordinate. In the previous expres-
sion <>x stands for a weighted spatial average taken over the x-coordinate, orthogonal to the
junction, the weight being determined by the transverse distribution of the beam intensity,
jU.x/j2 [see also Eq. (9.4.5)]. We now assume that neff .z/ is a periodic function of z i.e.,

neff .z/ D n0 C n1 sinŒ.2
z=�/C '� (9.4.16)
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FIG. 9.29. Schematic structure of: (a) A DFB laser with a uniform grating. (b) A �=4-shifted DFB laser.

where� is the pitch of the periodic thickness change (see Fig. 9.29a). In accordance with the
ideas of Bragg, for the scattering from a periodic array of elements, the forward and backward
propagating beams of the DFB laser will be effectively coupled to each other if the free space
wavelength of the radiation is such that

� D �B D 2<neff>� (9.4.17)

where<neff> is some suitable average value, along the z-coordinate, of neff , whose value will
be discussed later on. To appreciate the significance of the above expression, we assume, for
simplicity, that neff .z/ consists of a periodic square-wave function of period �. In this case,
the structure of Fig. 9.29a is equivalent to a periodic sequence of high and low refractive index
layers, the thickness of each layer being equal to�=2. This case is rather similar to a periodic
sequence of multilayer dielectric mirrors (see Sect. 4.4) and constructive reflection is expected
to occur when .<neff>�=2/D�=4. Equation (9.4.17) then shows that, for a given pitch �,
there is only one wavelength, i.e., only one mode satisfying the Bragg condition. Only this
mode is then expected to oscillate when the appropriate threshold condition is satisfied.

The above simple considerations are very approximate and a better understanding of the
DFB laser behavior would require a detailed analytical treatment. In this analysis, the two
oppositely traveling waves are assumed to see an effective gain coefficient as established by
the active medium and to be coupled by a periodic change of the dielectric constant i.e., of
the refractive index. One also generally assumes that there are finite values, r1 and r2, of the
electric-field reflectivity from the two end faces. We will not go into this analysis here, refer-
ring elsewhere for a detailed treatment,.47,48/ and only discussing a few important results. First
we consider a rather peculiar result, indicated, for the simple case r1 D r2 D 0, in Fig. 9.30a
which shows the intensity transmittance T, e.g., T D jEf .0, L/=Ef .0, 0/j2 for the forward beam,
vs normalized detuning ıL D .ˇ �ˇB/L. In the above expressions Ef .x, z/ is the electric field
of the forward beam, L is the cavity length, ˇD 2
n0=� and ˇB D
=�. The plots shown
in the figure have been obtained for the value kL D 2 of the normalized coupling coefficient
k .k Š 2
n1=�/ and for several values of the effective gain <g>L..49/ Figure 9.30a shows that
a transmission minimum actually occurs at exact resonance .ıD 0/ while several transmis-
sion maxima, i.e., several modes are present, symmetrically located from either side of exact
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FIG. 9.30. Transmittance T vs normalized detuning ıL, at several values of the gain gL, for zero end-face reflectivity
and for: (a) A uniform grating. (b) A �=4-shifted grating (from,.49/ by permission).

FIG. 9.31. Schematic representation of the refractive index change, mode patterns and corresponding resonance
wavelengths for a DFB laser with a uniform grating and for a DFB laser with a �=4-shifted grating (after,.49/

by permission).

resonance. The reason for the existence of e.g., the first and strongest two resonances can be
understood with the help of Fig. 9.31a, where the longitudinal variation of the refractive index,
the standing wave patterns of the two modes and the corresponding resonant wavelengths are
shown..49/ One can see that the mode labeled C1 is subjected to an effective, i.e., longitu-
dinally averaged, refractive index <neff>1 which is slightly smaller than that, <neff>�1, of
mode �1. In both previous expressions, the spatial average <> is now taken over the lon-
gitudinal intensity distribution of the cavity mode. According to the general Bragg condition
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Eq. (9.4.17), the resonant wavelengths of C1 and �1 modes will then be slightly smaller and
slightly larger than the resonance value �B D 2n0�, respectively.

The symmetric situation for the DFB modes shown in Fig. 9.30a is obviously not desir-
able and several solutions have been considered to ensure that one mode prevails. A commonly
used solution makes the device asymmetric by providing end mirror reflectivities r1 and r2 of
different values. The best solution, however, appears to be the so-called �=4-shifted DFB
laser..50/ In this case the periodic variation in thickness of the inner cladding layer undergoes
a shift of �=4 at the center of the active layer (i.e., at z D L=2, see Fig. 9.29b). In this case, in
fact, the intensity transmittance T vs normalized detuning ıL shows the behavior indicated in
Fig. 9.30b, where several plots have been made for different value of the gain <g>L and for
a given value of the normalized coupling constant kL .kL D 2/. A peak transmission, at exact
Bragg resonance �D�B, is now seen to occur and, as a further advantage, the difference in
transmission between this mode and the two neighboring modes, i.e., the mode selectivity,
is higher, in this case, than in the previously considered case of a uniform grating (compare
with Fig. 9.30a). The reason for the existence of only one low-loss mode can be understood
with the help of Fig. 9.31b, where, due to the �=4-shift of the variation in layer thickness, the
effective value of the refractive index, neff D<n>x, is seen to also show a similar shift in its
longitudinal variation (see Fig. 9.31b). The standing-wave pattern of the lowest-loss mode is
also shown in the figure, and the longitudinal spatial average of the effective refractive index
<neff> is now seen to be equal to n0. The resonance condition will then be .�=2n0/D� and
the wavelength � of the mode will coincide with the Bragg wavelength �B D 2n0�.

Fabrication of uniform-grating devices and, even more so, �=4-shifted DFB lasers
presents some very challenging technological problems. The pitch of the grating� has, typi-
cally, to be of submicron dimension [e.g., for a 1,550 nm InGaAsP laser, one has<neff>Š 3.4
and from Eq. (9.4.17) one gets �Š 0.23�m]. It is therefore difficult to make this pitch
uniform along the length of the grating and also constant from one grating to the next.

Besides using a DFB laser, another way to ensure semiconductor laser oscillation on a
single line is to use the structure shown in Fig. 9.32. In this figure, the two cavity ends are
made of passive sections where, by appropriate corrugation of a suitable layer, the effective
refractive index is modulated with a period� along the longitudinal direction. The reflectivity
of the two end sections then arises from the constructive interference which occurs in the two
sections, under the Bragg condition. The situation which occurs in these sections is then
somewhat similar to that of a .�=4/ multilayer dielectric mirror and maximum reflectivity is
expected to occur at the wavelength �D 2<neff>�. Compared to DFB lasers, DBR lasers
have the advantage that the grating is fabricated in an area separated from the active layer.
This introduces some simplification in the fabrication process and makes the DBR structure

FIG. 9.32. Schematic representation of a distributed Bragg reflector (DBR) semiconductor laser.
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more suitable for integration with other devices, such as separated sections for laser tuning or
modulation. The wavelength selectivity of a DBR laser is however less than that of a DFB laser
owing to the presence of many Fabry-Perot longitudinal modes. Actually, due to the small
length of the active section, usually only one mode falls within the high-reflectivity bandwidth
of the DBR structure. Temperature variations can however produce jumping between adjacent
modes and, for this reason, DBR lasers are much less widely used than DFB lasers.

9.4.7. Vertical Cavity Surface Emitting Lasers

So far, we have considered semiconductor diode lasers that generate light traveling in a
direction parallel to the junction plane, and hence emitted from one edge of the device (edge
emitting lasers). For several applications which we will discuss in the next section, semicon-
ductor lasers emitting normal to the junction plane have been developed. These devices are
usually referred to as surface emitting lasers and are made using one of the following two
approaches: (1) Use of a conventional edge-emitting geometry, but with some optical ele-
ment, e.g., a 45ı mirror, to deflect the output beam vertically (Fig. 9.33a). (2) Use of highly
reflective mirrors to clad the active layer thus resulting in a vertical cavity that produces an
output beam propagating normal to the junction plane (vertical-cavity surface-emitting laser,
VCSEL, see Fig. 9.33b). Surface emitting lasers, of the type shown in Fig. 9.33a, are no dif-
ferent, conceptually, from a conventional edge-emitting laser. A peculiar characteristic of a
VCSEL, on the other hand, is the very short length of active medium and thus the very small
gain involved. However, once this low-gain limitation is overcome by using sufficiently high
reflectivity mirrors, low thresholds can be obtained and these lasers then present some distinct
advantages over the corresponding edge-emitting devices, due to the inherently high packag-
ing density and low threshold currents that can be achieved. In the discussion that follows we
therefore concentrate on vertical-cavity surface-emitting lasers..51/

A schematic view of a VCSEL using, as active medium, three In0.2Ga0.8As=GaAs
strained QW layers, each 8 nm thick, is shown in Fig. 9.34. The three active layers are sand-
wiched between two Ga0.5Al0.5As spacers to form an overall thickness of one wavelength.
The bottom and top mirrors are made of a 20.5-pairs of n-doped, and 16-pairs of p-doped,

FIG. 9.33. Schematic representation of: (a) A surface emitting laser where the light of an edge-emitting laser is
deflected vertically by a 45ı mirror. (b) A vertical cavity surface emitting laser.
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FIG. 9.34. Schematic representation of a bottom emitting VCSEL design. The top-most GaAs layer is a
half-wavelength thick to provide phase matching for the metal contact (after,.52/ by permission).

quarter-wave GaAs/AlAs stacks, respectively. On account of the relatively high refractive-
index change between the two layers (the refractive index is 3.6 for GaAs and 2.9 for AlAs),
high reflectivity .�99%/ can be achieved for both end mirrors. Due to the short length of
the cavity, scattering and absorption losses in the active layer are very small and reasonably

Example 9.4. Threshold current density and threshold
current for a VCSEL According to Eq. (9.4.9), assum-
ing a confinement factor � Š 1, we can write in this
case Nth D .�=� l/ C Ntr, where l is the thickness of the
active layer. Following Example 9.2, we will assume
the values Ntr D 2 � 1018 cm�3 and � Š 6 � 10�16 cm2

for the transparency carrier density and for the differ-
ential gain of the strained-layer quantum wells. The
single pass loss is then given by � D � ln R C ˛iL,
where R is the power reflectivity of each of the two
mirrors, ˛i is the internal loss coefficient and L is the
cavity length. If we take R D 99%, ˛i D 20 cm�1 and
L D 2�m, we obtain � D 1.4 � 10�2. If we now assume
l D 24 nm for the overall thickness of the active lay-
ers, we obtain Nth Š 11 � 1018 cm�3, which shows that
the value of Nth is dominated by the loss term .�=� l/.
From Eq. (9.4.3), taking �i Š 1 and � D 2 ns, we get
Jth D 3.84 � 103 A=cm2. Assuming a diameter D D 8�m
for the active area, the threshold current is given by
Ith D .
 D2=4/Jth Š 0.44 mA.

low-threshold current densities can be obtai-
ned .Jth Š 4 kA=cm2/. Since the diameter of
the circular surface, through which current
flows, is usually made very small .D D 5 �
10�m/, a very small threshold current is
obtained .�1 mA/. Due to this small cross-
sectional area of the active-region, VCSELs
tend to oscillate on a TEM00 mode even
at currents well above (e.g., two times)
the threshold value. It should also be noted
that, due to the small length of the laser
cavity .1–2�m/, consecutive longitudinal
modes are widely spaced in wavelength
.	�Š 100 nm/. Thus, if one mode is made
to coincide with the peak reflectivity of each
of the quarter-wave stacks, the two adjacent
modes fall outside the high reflectivity band
of the mirrors and single longitudinal mode
oscillation is also obtained.

Fabrication of VCSELs presents some
technological difficulties. One of the main
difficulties is in making the cavity length to
such a precision that one longitudinal mode

falls exactly at the center of the high reflectivity band of the mirrors. Once this difficulty and
the other one, relating to the fabrication of so many layers of exactly �=4 thickness, have
been solved, a low threshold can be achieved. If cavity losses are minimized, the slope effi-
ciency of a VCSEL can be as high as that of an edge-emitting device, and slope-efficiencies
up to 50% have been demonstrated. The output power emitted by a single VCSEL is rather
limited .�1 mW/ to avoid the onset of thermal problems arising from the injection of high



9.4 � Semiconductor Lasers 425

pump powers into such a small volume of active layer. Arrays of e.g., 8 � 8, independently
addressable, lasers as well as matrix-addressable arrays have been made.

9.4.8. Applications of Semiconductor Lasers

Semiconductor lasers lend themselves to a large variety of both low-power and high-
power applications, some of which will be briefly reviewed here. We first refer to Table 9.7
where some characteristics of the most common DH or QW lasers are presented. Since
all the structures shown are grown on either a GaAs or InP substrate, the laser material
is characterized by the active layer-substrate combination. In each case, the laser wave-
length is largely determined by the composition index of the active layer and, for a QW
laser, also by the thickness of this layer. Most recent lasers use separated-confinement
(e.g., GRINSCH) QW and MQW layers in a gain-guiding or, more often, index guiding
configuration.

In the AlxGa1�xAs=AlyGa1�yAs laser structures, the composition index y of the cladding
layers must be larger than that, x, of the active layer. Depending on the value of this last com-
position index, the emission wavelength usually ranges between 720 and 850 nm. Low-power
.P D 5–20 mW/, single-stripe devices are widely used in Compact-Disk (CD) players and
laser printers. Higher power single-stripe lasers, laser arrays, laser bars and stacks of laser
bars (Figs. 6.9 and 6.10) are used to pump solid-state lasers such as Nd (pump wavelength
�p Š 800 nm), Tm:Ho .�p Š 790 nm/ and Cr:LISAF .�p Š 670 nm/. Some of these laser sys-
tems and the corresponding fields of applications have been discussed in Sect. 9.2 of this
chapter as well as in previous chapters.

In the In1�xGaxAsyP1�y/InP lasers, lattice matching is achieved by letting y Š 2.2 x and
the oscillation wavelength covers the so-called second (centered at �D 1, 310 nm, which cor-
responds to x D 0.27) and third (�D 1, 550 nm center wavelength, corresponding to x D 0.42)
transmission windows of optical fibers. Thus, these lasers find their widest use in optical
communications. Most recent optical communication systems use lasers around 1,550 nm
wavelength. Due to the relatively large group-delay dispersion of optical fibers around this
wavelength, narrow-linewidth .	�L<10 MHz/ DFB lasers are now widely used. With these

TABLE 9.7. Some characteristic parameters of the most important semiconductor laser
diodes

Material/Substrate AlGaAs/GaAs InGaAsP/InP InGaAs/GaAs InGaAlP/GaAs

Wavelength
[nm]

720–850 1,200–1,650 900–1,100 630–700

Internal loss 4–15 5–10 2–10 �10
Œcm�1�

Threshold
current density
Jth ŒA=cm2�

80–700 200–1,500 50–400 200–3,000

Characteristic
Temperature
T0 ŒK�

120–200 50–70 100–200 60–100
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lasers, modulation rates up to a few Gbits/s have been demonstrated by direct modula-
tion of the diode current. Even higher modulation rates (up to a few tens of Gbits/s) have
also been demonstrated using external modulators such as LiNbO3 waveguide modulators.
For communication systems operating at even larger communication bit-rates (from a few
hundreds Gbit/s up to the Tbit/s range) Wavelength-Division-Multiplexing (WDM) systems
have increasingly been used. For this application, many DFB lasers tuned at distinct wave-
lengths in the low transparency region (spanning �13 THz) around 1,550 nm wavelength
are used. Systems based on WDM thus allow exceptionally high bit rate capacity to be
achieved.

In1�xGaxAs=GaAs strained-layer QW lasers allow oscillation to be obtained over a wide
range (900–1,100nm) at previously inaccessible wavelengths. Lasers with emission around
980 nm wavelength .x D 0.8/ are of particular interest as pumps for Er-doped fiber amplifiers
and lasers as well as for pumping Yb:Er:glass and Yb:YAG lasers. For these applications,
output powers up to �100 mW are available in a diffraction-limited beam (of 1 � 4�m area)
and up to �1 W from a broader area .1 � 30�m/ device. To obtain higher output pow-
ers (�40 W or even larger), diode laser arrays and laser bars are also available. Given the
favorable laser properties of strained-layer QW structures, vertical-cavity surface-emitting
lasers based on In1�xGaxAS=GaAs structures have been particularly actively developed. They
promise to offer interesting solutions for optical interconnects, optical communications, and
optical signal processing.

InGaAlP/GaAs lasers are particularly interesting since they emit radiation in the visi-
ble, red, region of the e.m. spectrum..53/ The In0.5Ga0.5P=In0.5.Ga0.5�xAlx/P QW or MQW
structure (where x D 0.25 for the well barriers and x D 0.35 for the confinement layers, see
Fig. 9.25) oscillating at 670 nm wavelength has been particularly developed. These lasers are
commercially available with sufficiently high power (up to �10 mW) and long lifetime to be
used for CD players or as substitutes for red-emitting He-Ne lasers for applications such as
bar-code scanners and general alignment uses.

The development of semiconductor lasers is by no means limited to the laser cat-
egories shown in Table 9.7. On the short wavelength side (blue-green region) the most
interesting category now appears to be the III-V nitride-based diode-lasers, e.g., the
In0.2Ga0.8N=In0.05Ga0.95N MQW structure oscillating in the blue (417 nm)..54/ In the same
wavelength region, wide-gap II-VI lasers such as ZnCdSe/ZnSSe QW lasers have also been
demonstrated. After a number of years of intense development, however, these lasers are
still suffering from a few technological limitations with particular problems of rather limited
operating lifetime .�100 h/. Although nitride-lasers also present similar lifetime problems
(less than 100 h), their recent development and the rapid progress which is occurring indi-
cate nitride-based diode-lasers as the best candidates for blue-green semiconductor emitters.
Potentially, blue-green lasers are of strong interest for e.g. a new generation of CD players
where, due to the shorter wavelength, substantially higher bit densities could be achieved on
the CD. On the long wavelength side, on the other hand, we just mention the IV–VI com-
pounds such as the Pb and Sn salts (e.g., PbSSe, PbSnTe, and PbSnSe), oscillating in the
middle-far infrared .4–29�m/. All these lasers, however, need to operate at cryogenic tem-
peratures .T<100 K/ to avoid problems such as the increased free-carrier absorption and the
increased rate of non-radiative decay arising from the much narrower band-gaps. Thus, due to
this cryogenic requirement, these lasers have found only a limited use (e.g., for spectroscopy).
It should be noted, however, that the recent invention of a quantum-cascade laser promises
efficient mid-IR sources without the need for cryogenic temperatures..33/
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9.5. CONCLUSIONS

In this chapter, a few of the most notable solid-state, dye and semiconductor lasers have
been considered. These lasers use high-density active media and thus share a few common
features. A first feature is that they generally show wide and strong absorption band(s) which
indicates that they are generally suitable for optical pumping, this type of pumping being in
fact always used for solid-state and dye lasers and sometimes also used for semiconductor
lasers. The high values of absorption coefficient allow for lasers with dimensions down to
a few microns (microlasers). A second relevant feature is that these media generally show
wide fluorescence, and hence wide gain bandwidths. On the one hand, this offers tunabil-
ity over wide (a few to several nm) bandwidths. On the other hand, this also implies that
very short pulse durations (femtoseconds) can be obtained in mode-locked operation. A third
relevant feature is that the optical-to-optical laser efficiency, for solid-state and dye media,
and electrical to optical efficiency, for semiconductors, is generally quite large. It should also
be noted that laser pumping involving combination of these three categories of lasers has
been used increasingly (e.g., diode-pumped solid-state lasers or solid-state-laser pumped dye
lasers) thus allowing compact and efficient lasers to be realized. Thus, as a conclusion, high-
density laser media appear to present some of the best solutions to requirements for laser
radiation in the visible-to-near-infrared range, even at high power levels.

PROBLEMS

9.1. Make up a diagram in which the tuning ranges of all the tunable solid-state lasers considered in
this chapter are plotted vs oscillation wavelength.

9.2. For pollution monitoring, a tunable laser oscillating around 720 nm wavelength is needed. Which
kind of solid-state laser would you use?

9.3. For biomedical photo-coagulation purposes, using an endoscopic apparatus, a cw laser with power
exceeding 50 W needs to be used. Which laser would you use?

9.4. For material working applications, a laser with an average power of 2 kW, to be transmitted
through a �1 mm diameter optical fiber, is needed. Which laser would you use?

9.5. Consider a 6 mm diameter, 10 cm long Nd:phosphate glass laser rod. Using data from Table 9.3
and the results discussed in Sect. 2.9.2., calculate the maximum inversion and the corresponding
maximum value of stored energy which are allowed if the onset of amplified spontaneous emis-
sion is to be avoided. Compare the results obtained with those for a Nd:YAG rod of the same
dimensions.

9.6. With reference to the energy level diagram of alexandrite shown in Fig. 9.8, assume that the
4T2 and the 2E states are strongly coupled and take �T D 1.5 ms and �E D 6.6�s as the lifetimes
of the two states. Knowing that the degeneracy of the two states is the same .g D 4/, calculate
the effective lifetime of the 4T2 state at T D 300 K and T D 400 K. Knowing that the true cross-
section for the 4T2 ! 4A2 transition is � Š 4 � 10�19 cm2, calculate then the effective value of
the cross section at the two temperatures. Using these results, consider whether the laser threshold
is expected to increase or decrease when the crystal temperature is raised from 300 to 400 K.
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9.7. Consider a Cr:LISAF laser longitudinally pumped, at 647.1 nm wavelength, by a Kr ion laser.
Assume the linearly polarized beam of the laser to be sent along the c-axis of the LISAF and
assume an active medium with 1 at. % Cr3C concentration and a length l D 4 mm. Also assume
both pump and mode spot sizes to be matched to a value of 60 μm, the output coupling trans-
mission to be 1%, and the internal loss per pass to be 1%. Using data from Fig. 9.11 and from
Table 9.5 and neglecting both ground-state and excited-state absorption, calculate the expected
threshold pump power.

9.8. With reference to the previous problem, how would the expression for the threshold pump power,
given by Eq. (6.3.19), need to be modified if ground state absorption, characterized by a loss per
pass �a, and excited-state absorption, characterized by an excited-state absorption cross-section
�ESA, were taken into account? Compare the result with that given in..25/

9.9. Derive an expression for the threshold pump power of a longitudinally pumped dye laser, taking
into account triplet-triplet absorption (assume Gaussian transverse profiles for both pump and
mode beams). Compare this expression with that obtained for Cr:LISAF in the previous problem.

9.10. Using the expression for the threshold pump power obtained in the previous problem and using
data from Fig. 9.13, calculate the threshold power for an ArC pumped rhodamine 6G (see
Fig. 9.17) laser oscillating at 580 nm wavelength. For this calculation, assume an output cou-
pling of 3%, an internal loss per pass of 1%, assume also that 80% of the pump power is absorbed
in the dye jet stream, take the lifetime for the first excited singlet state to be 5 ns, the intersystem
crossing rate to be kST Š 107 s�1 and the triplet lifetime to be �T Š 0.1�s. Compare this value of
Pth with that obtained for Cr:LISAF in problem 9.7 and explain the numerical differences.

9.11. At the very small values of the thickness, d, corresponding to the minimum of Jth in Fig. 9.23, the
expression for the beam confinement factor � of a DH semiconductor-laser, given by Eq. (9.4.10),
can be approximated by � Š D2=2, where D is expressed by Eq. (9.4.11). Under this approxi-
mation, calculate the expression for this thickness, dm, that minimizes Jth. From data given in
Example 9.1, then calculate the value of dm and the corresponding value of Jth.

9.12. From the expression for the output power of a semiconductor laser given in Example 9.3, derive
an expression for the laser slope efficiency. Using data given in Example 9.1, then calculate the
predicted slope-efficiency of a DH GaAs/AlGaAs laser by taking an applied voltage of 1.8 V.

9.13. Assume that the beam at the exit face of a semiconductor laser is spatially coherent. Assume that
the transverse field distributions have Gaussian profiles along the directions parallel and perpen-
dicular to the junction, with spot sizes wjj and w? respectively. Assume also that, for both field
distributions, the location of the beam-waists occurs at the exit face. Under these assumptions,
derive an expression for the propagation distance at which the beam becomes circular. Taking
w? D 0.5�m and wjj D 2.5�m, calculate the value of this distance for �D 850 nm.

9.14. By taking into account the fact that the refractive index of a semiconductor, n, is a relatively
strong function of the wavelength �, derive an expression for the frequency difference between
two consecutive longitudinal modes of a Fabry-Perot semiconductor laser [express this frequency
difference in terms of the material group index ng D n � �.dn=d�/].

9.15. The calculations leading to Fig. 9.30a were performed by assuming kL D 2, where k is the coupling
constant between forward and backward propagating beams in a DFB laser and L is its length.
From the definition of k given in Sect. 9.4.6., calculate the value n1, appearing in Eq. (9.4.16), for
�D 1, 550 nm and L D 600�m.

9.16. The two strongest peaks of Fig. 9.30a are seen from the figure to be separated by a normalized
frequency difference 	.ıL/Š 7.28. From the definition of the normalized frequency detuning ı
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given in Sect. 9.4.6., calculate the frequency difference 	� between the two modes by taking,
for a InGaAsP DFB laser, L D 600�m, n0 D 3.4 and �D 1, 550 nm. Compare this value with the
corresponding one obtained for the frequency separation between two consecutive longitudinal
modes of a Fabry-Perot semiconductor laser with the same length and wavelength and with a
group index, ng, equal to n0.
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10

Gas, Chemical, Free Electron,
and X-Ray Lasers

10.1. INTRODUCTION

In this chapter, the most important types of lasers involving low density active media
are considered, namely gas, chemical and free electron lasers. Some considerations on X-ray
lasers involving highly ionized plasmas will also be presented. The main emphasis, again,
is to stress the physical behavior of the laser and to relate this behavior to the general con-
cepts developed in the previous chapters. Some engineering details are also presented with
the main intention again of providing for a better physical insight into the behavior of the
particular laser. To complete the picture, some data relating to laser performances (e.g., oscil-
lation wavelength(s), output power or energy, wavelength tunability, etc.) are also included
to help provide some indication of the laser’s field of application. For each laser, after some
introductory comments, the following items are generally covered: (1) Relevant energy levels;
(2) excitation mechanisms; (3) characteristics of the laser transition(s); (4) engineering details
relating to the laser structure(s); (5) characteristics of the output beam; (6) applications.

10.2. GAS LASERS

In general, for gases, the broadening of the energy levels is rather small (of the order of a
few GHz or less), since the line-broadening mechanisms are weaker than in solids. For gases
at the low pressures often used in lasers (a few tens of torr), in fact, the collision-induced
broadening is very small, and the linewidth is essentially determined by Doppler broadening.
Thus, no broad absorption bands are present in the active medium and optical pumping by c.w.
or pulsed lamps is not used for gases. This would, in fact, be very inefficient since the emission
spectrum of these lamps is more or less continuous. Therefore, gas lasers are usually excited
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by electrical means, i.e., by passing a sufficiently large current (which may be continuous,
at radiofrequency or pulsed) through the gas. The principal pumping mechanisms occurring
in gas lasers have been discussed in Sect. 6.4. It should also be pointed out that some gas
lasers can in addition be pumped by mechanisms other than electrical pumping. In particular,
we mention pumping by gas-dynamic expansion, chemical pumping, and optical pumping by
means of another laser (particularly used for far-infrared lasers).

Once a given species is in its excited state, it can decay to lower states, including the
ground state, by four different processes: (1) Collisions between an electron and the excited
species, in which the electron takes up the excitation energy as kinetic energy (super-elastic
collision); (2) near-resonant collisions between the excited species and the same or a different
species in the ground state; (3) collisions with the walls of the container; (4) spontaneous
emission. Regarding this last case, one should always take into account the possibility of radi-
ation trapping, particularly for the usually very strong UV or VUV transitions. This process
slows down the effective rate of spontaneous emission (see Sect. 2.9.1).

For a given discharge current, these various processes of excitation and de-excitation lead
eventually to some equilibrium distribution of population among the energy levels. Thus it can
be seen that, due to the many processes involved, the production of a population inversion in
a gas is a more complicated matter that, e.g., in a solid-state laser. In general we can say
that a population inversion between two given levels will occur when either (or both) of the
following circumstances occur: (1) The excitation rate is greater for the upper laser level (level
2) than for the lower laser level (level 1); (2) the decay of level 2 is slower than that of level 1.
In this regard we recall that a necessary condition for cw operation is that the rate of the 2 ! 1
transition be smaller than the decay rate of level 1 [see Eq. (7.3.1)]. If this condition is not
satisfied, however, laser action can still occur under pulsed operation provided the condition
(1), above, is fulfilled (self-terminating lasers).

10.2.1. Neutral Atom Lasers

These lasers make use of neutral atoms in either gaseous or vapor form. Neutral atom gas
lasers constitute a large class of lasers and include in particular most of the noble gases. All
these lasers oscillate in the infrared .1–10�m/, apart from the notable exceptions of green
and red emission from the He-Ne laser. Metal vapor lasers also constitute a large class of
lasers, including, for example, Pb, Cu, Au, Ca, Sr, and Mn. These lasers generally oscillate in
the visible, the most important example being the copper vapor laser oscillating on its green
(510 nm) and yellow (578.2 nm) transitions. All metal vapor lasers are self-terminating and
therefore operate in a pulsed regime.

10.2.1.1. Helium-Neon Lasers.1,2/

The He-Ne laser is certainly the most important of the noble gas lasers. Laser action
is obtained from transitions of the neon atom, while helium is added to the gas mixture to
greatly facilitate the pumping process. The laser oscillates on many wavelengths, by far the
most popular being at � D 633 nm (red). Other wavelengths include the green (543 nm) and
the infrared ones at � D 1.15�m and � D 3.39�m. The helium-neon laser oscillating on its
� D 1.15�m transition was the first gas laser and the first cw laser ever to be operated..3/
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FIG. 10.1. Relevant energy levels of the He-Ne laser.

The energy levels of the He-Ne system that are relevant for laser action are shown in
Fig. 10.1. The level notation for He is according to Russell-Saunders coupling with the prin-
cipal quantum number of the given level also indicated as the first number. Thus the 11S state
corresponds to the case where the two electrons of He are both in the 1s state with opposite
spins. The 23S and 21S states correspond to a situation where one of the two electrons is raised
to the 2s state with its spin either in the same or opposite direction to that of the other elec-
tron, respectively. Neon, on the other hand, has an atomic number of ten and a number of ways
have been used, such as Paschen or Racah notations, to indicate its energy levels. For sim-
plicity, however, we will limit ourselves here to simply indicating the electron configuration
corresponding to each level. So, the ground state is indicated by the 1s22s22p6 configuration,
while the excited states shown in the figure correspond to the situation where one 2p electron
is raised to excited s states (3s, 4s, and 5s) or excited p states (3p and 4p). One should also
notice that, due to the interaction with the remaining five electrons in the 2p orbitals, these s
and p states are split into four and ten sub-levels, respectively.

It is apparent form Fig. 10.1 that the levels 23S and 21S of He are nearly resonant with
the 4s and 5s states of Ne. Since the 23S and 21S levels are metastable (S ! S transitions
are electric dipole forbidden and, furthermore, the 23S ! 11S transition is also forbidden
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due to the change of multiplicity, i.e., spin-forbidden), it is found that He atoms in these
states prove very efficient at pumping the Ne 4s and 5s levels by resonant energy transfer. It
has been confirmed that this process is the dominant one for producing population inversion
in the He-Ne laser, although direct electron-Ne collisions also contribute to the pumping.
Since significant population can be built-up in the Ne 4s and 5s states, they prove suitable
candidates as upper levels for laser transitions. Taking account of the selection rules, we see
that the possible transitions are those to the p states. In addition, the decay time of the s states
.�s Š 100 ns/ is an order of magnitude longer than the decay time of the p states .�p Š 10 ns/.
So, the condition Eq. (7.3.1) for operation as a cw laser is satisfied. Finally, it should be
noted that the electron-impact excitation rates from the ground state to the 3p and 4p levels
are much smaller than the corresponding rates to the 4s and 5s levels, due to smaller values
of cross section involved. As we shall see, however, direct excitation to the 3p and 4p levels
plays an important role in determining the laser performances.

The above discussion indicates that one can expect laser action in Ne to occur between
5s or 4s levels, as upper levels, and 3p and 4p levels, as lower levels. Some of the most
important laser transitions arising from these levels are also indicated in Fig. 10.1. For
transitions differing widely in wavelength .	� > 0.2 �/, the actual oscillating transition
depends on the wavelength at which the peak reflectivity of the multilayer dielectric mir-
ror is centered (see Fig. 4.9). The laser transitions are predominantly broadened by the
Doppler effect. For instance, for the red He-Ne laser transition (� D 633 nm in vacuum
and � D 632.8 nm in air), Doppler broadening leads to a linewidth of �1.5 GHz (see also
example 2.6). By comparison, natural broadening, according to Eq. (2.5.13), can be estimated
to be 	�nat D 1=2
� Š 19 MHz, where ��1 D ��1

s C ��1
p and �s, �p are the lifetimes of the

s and p states, respectively. Collision broadening contribute even less than natural broadening
[e.g., for pure Ne, 	�c Š 0.6 MHz at the pressure of p Š 0.5 torr, see example 2.2]. Some
spectroscopic properties of the 633 nm laser transition are summarized in Table 10.1.

The basic design of a He-Ne laser is shown in Fig. 10.2. The discharge is produced
between a ring anode and a large tubular cathode, which can thus withstand the collisions
from positive ions. The discharge is confined to a capillary for most of the tube length and
high inversion is only achieved in the region where the capillary is present. The large volume
of gas available in the tube surrounding the capillary acts as a reservoir to replenish the He-
Ne mixture in the capillary. When a polarized output is needed, a Brewster angle plate is
also inserted inside the laser tube. The laser mirrors are directly sealed to the two tube ends.
The most commonly used resonator configuration is nearly hemispherical since this is easy

TABLE 10.1. Spectroscopic properties of laser transitions and gas-mixture composition in some relevant
atomic and ionic gas lasers

Laser type He-Ne Copper Vapor Argon Ion He-Cd

Laser wavelength [nm] 633 510.5 514.5 441.6
Cross-section Œ10�14 cm2� 30 9 25 9
Upper-state lifetime [ns] 150 500 6 700
Lower-state lifetime [ns] 10 � 104 � 1 1
Transition Linewidth [GHz] 1.5 2.5 3.5 1
Partial pressures of gas mixture [torr] 4 (He) 40 (He) 0.1 (Ar) 10 (He)

0.8 (Ne) 0.1–1 (Cu) 0.1 (Cd)
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FIG. 10.2. Internal design of a hard-sealed helium-neon laser (courtesy of Melles-Griot).

to adjust, is very stable against misalignment, and readily gives TEM00 mode operation. The
only disadvantage of this configuration is that it does not fully utilize the volume of the plasma
discharge since the mode spot size is much smaller at the plane mirror than at the concave
mirror. If, however, the left-hand mirror in Fig. 10.2 is chosen to be the plane mirror, the region
of smaller spot size for the near-hemispherical TEM00 mode will be outside the capillary, i.e.,
in a region of low inversion.

One of the most characteristic features of the He-Ne laser is that the output power does
not increase monotonically with the discharge current but reaches a maximum and there-
after decreases. For this reason, commercially available He-Ne lasers are provided with a
power supply designed to give only the optimum current. The fact that there is an optimum
value of current, i.e., of current density J within the capillary is because (at least for the
633 nm and 3.39�m transitions), at high current densities, de-excitation of the He (23S and
21S) metastable states takes place not only by collision at the walls but also by super-elastic
collision processes such as

He.21S/C e ! He.11S/C e (10.2.1)

Since the rate of this process is proportional to the electron density Ne, and hence to J, the
overall rate of excitation can be written as k2 C k3J. In this expression k2 is a constant that
represents de-excitation due to collisions with the walls and k3J, where k3 is also a constant,
represents the superelastic collision rate of process Eq. (10.2.1). The excitation rate, on the
other hand, can be expressed as k1J, where k1 is again a constant. Under steady state condi-
tions we can then write that Ntk1J D .k2 C k3J/N�, where Nt is the ground-state He atom
population and N� is the excited .21S/ state population. The equilibrium 21S population is
then given by

N� D Nt
k1J

k2 C k3J
(10.2.2)

which can be seen to saturate at high current densities. Since the steady-state population of
the 5s state of Ne is established by near-resonant energy transfer from He 21S state, the pop-
ulation of the upper, 5s, laser level will also show a similar saturation behavior as J increases
(see Fig. 10.3). On the other hand, in the absence of laser action, the population of the lower
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FIG. 10.3. Schematic dependence on current density of upper-level and lower-level populations in a He-Ne laser.

laser level (3p or 4p), produced by direct pumping from ground-state Ne atoms and radia-
tive cascading from higher levels, is found experimentally to increase linearly with J (see
Fig. 10.3). Therefore, as the discharge current is increased, the population difference and
hence the output power rises to some optimum value and thereafter falls.

Besides this optimum value of current density, the He-Ne laser has optimum values for
other operational parameters, namely: (1) An optimum value for the product of total gas
pressure p and capillary diameter D.pD D 3.6–4 torr � mm/. This optimum value of the pD
product is a consequence of the fact that the electron temperature needs to be optimized (see
Sect. 6.4.5). (2) An optimum value of the ratio between the partial pressures of He and Ne
(� 5 : 1 at � D 632.8 nm and � 9 : 1 at � D 1.15�m). (3) An optimum value of the capillary
diameter .D Š 2 mm/. This can be understood when it is realized that, for a constant value
of pD i.e., for a given electron temperature, all electron-collision excitation processes scale
simply as the number of atoms available for excitation. Since both upper and lower laser levels
are ultimately populated by electron-collision processes, their populations and hence the laser
gain will be proportional to p i.e., to D�1 at constant pD. On the other hand, diffraction losses
of the laser cavity will increase as D is decreased and a value of the capillary diameter which
optimizes the net gain (gain minus diffraction losses) is therefore expected.

According to the discussion of the behavior presented in Fig. 10.3, He-Ne lasers are
typically low power devices (under optimized conditions the available output power at the
633 nm transition may range between 1 and 10 mW for tube lengths ranging between 20 and
50 cm, while the output power on the green transition is typically an order of magnitude less).
The efficiency of a He-Ne laser, on any of its laser transitions, is always very low .<10�3/ a
major cause of this low efficiency being the low quantum efficiency. In fact, from Fig. 10.1,
one can readily see that each elementary pumping cycle requires an energy of �20 eV while
the energy of the laser photon is less than 2 eV. The narrow gain linewidth, on the other hand,
is an advantage when single longitudinal mode is required. In fact, if the cavity length is short
enough .L<15–20 cm/, single longitudinal mode is readily achieved when the cavity length is
tuned (by a piezo-electric translator) to bring a cavity mode into coincidence with the peak of
the gain line (see Sect. 7.8.2). Single mode He-Ne lasers can then be frequency stabilized to a
high degree Œ.	�=�/D 10�11 � 10�12� against a frequency reference (such as a high finesse
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Fabry-Perot interferometer or, for absolute stabilization, against an 129I2 absorption line, for
the 633 nm transition).

He-Ne lasers oscillating on the red transition are still widely used for many applications
where a low power visible beam is needed (such as alignment or bar-code scanners). Most
supermarkets and other stores use red He-Ne lasers to read the coded information contained in
the bar code on each product. For some of these applications, however, He-Ne lasers are facing
a very strong competition from red-emitting semiconductor lasers, these lasers being smaller
and more efficient. Given the better visibility of a green beam to the eye, green-emitting He-
Ne lasers are increasingly being used for alignment and cell cytometry. In this last application,
individual cells (e.g., red-blood cells) stained by suitable fluorochromes are flowed, rapidly,
through a capillary, onto which the He-Ne laser is focused, and are characterized by their
subsequent scattering or fluorescent emission. Single mode He-Ne lasers are also often used
for metrological applications (e.g., very precise, interferometric, distance measurements) and
for holography.

10.2.1.2. Copper Vapor Lasers.4/

The relevant energy levels of the copper vapor laser are shown in Fig. 10.4, where
Russell-Saunders notation is again used. The 2S1=2 ground state of Cu corresponds to the
electron configuration 3d104s1, while, the excited 2P1=2 and 2P3=2 levels correspond to the
outer 4s electron being promoted to the next higher 4p orbital. The 2D3=2 and 2D5=2 levels
arise from the electron configuration 3d94s2 in which an electron has been promoted from the
3d to the 4s orbital.

The relative values of the corresponding cross-sections are such that the rate of electron-
impact excitation to the P states is greater than that to the D states. Thus, the P states are
preferentially excited by electron-impact. On the other hand, the 2P ! 2S1=2 transition is

FIG. 10.4. Energy levels of copper atoms relevant to laser operation.
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strongly electric-dipole allowed (we recall that the selection rules for optically allowed tran-
sitions require that 	J D 0 or ˙1) and the corresponding absorption cross section turns out
to be quite large. At the temperature used for Cu lasers .T D 1500 ıC/, the vapor pressure is
then sufficiently high (� 0.1 torr) that the 2P ! 2S1=2 transition is completely trapped. Thus,
the only effective decay route of the 2P state is via the 2D states and the corresponding decay
time is rather long .� 0.5 μs/ since the transition is only weakly allowed. It then follows that
the 2P states can accumulate a large population and are therefore good candidates to act as
upper laser levels. Thus laser action in Cu can occur on both the 2P3=2 ! 2D5=2 (green) and
2P1=2 ! 2D3=2 (yellow) transitions. One should note that the 2D ! 2S transition is electric-
dipole forbidden and the lifetime of the 2D state is very long (a few tens of microseconds).
It then follows that the laser transition is self-terminating and the laser can only operate on
a pulsed basis with pulse duration of the order of or shorter than the lifetime of the 2P state.
One should also note that the 2D ! 2S decay occurs mainly via super-elastic collisions with
cold electrons remaining after the pump pulse, and that the corresponding decay rate sets an
upper limit to the repetition rate of the laser. Some relevant spectroscopic properties of the
copper-vapor green transition are indicated in Table 10.1 as a representative example.

The construction of a metal vapor laser is based on the arrangement shown schematically
in Fig. 10.5, where the vapor is contained in an alumina tube which is thermally isolated
in a vacuum chamber. The necessary high temperature is usually maintained by the power
dissipated in the tube due to the repetitively pulsed pumping-current. Anode and cathode are
in the form of ring electrodes and are placed at the ends of the alumina tube. A 25–50 torr
neon buffer gas is used to provide enough electron density, after the passage of the discharge
pulse, to allow for de-excitation of the lower 2D state by superelastic collisions. The neon
gas is also helpful in reducing the diffusion length of the Cu vapor thus preventing metal-
vapor deposition on the (cold) end-windows. More recently, the so-called Copper-HyBrID
lasers have also been introduced, which use HBr in the discharge. Since, in this case, CuBr
molecules are formed in the discharge region and these molecules are much more volatile than
Cu atoms, the temperatures required in the gas discharge are lower.

Copper vapor lasers are commercially available with average output powers in excess
of 100 W, with short pulse durations (30–50 ns), high repetition rates (up to �10 kHz) and

FIG. 10.5. Schematic construction of a Cu-vapor laser (courtesy of Oxford Lasers, Ltd).
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relatively high efficiency .�1%/. The latter is the result of both the high quantum efficiency
of the copper laser (�55%, see Fig. 10.4) and the high electron-impact cross section for the
2S ! 2P transition. Even higher output powers .�200 W/ and higher efficiencies .�3%/ have
recently been obtained with Copper-HyBrID lasers.

Copper vapor lasers are used for some industrial applications (such as high-speed
photography, resistor trimming, and more recently, micromachining) and as a pump for
dye lasers. In particular, in high-speed flash photography, the short pulse (tens of ns) and
high-repetition-rate (10–20 kHz) are exploited in stroboscopic illumination of various, rapidly
moving, objects (e.g., a bullet in flight). A large facility based on copper-laser pumped dye
lasers (using many copper lasers, each with average power up to 100 W) is currently in use in
a pilot plant, in the United States, for 235U isotope separation.

10.2.2. Ion Lasers

In the case of an ionized atom, the scale of energy levels is expanded in comparison with
neutral atoms. In this case, in fact, an electron in the outermost orbital(s) experiences the field
due to the positive charge Ze of the nucleus (Z being the atomic number and e the electronic
charge) screened by the negative charge .Z � 2/e of the remaining electrons. Assuming, for
simplicity, the screening to be complete, the net effective charge is then 2e rather than simply
e for the corresponding neutral atom. This expansion in energy scale means that ion lasers
typically operate in the visible or ultraviolet regions. As in the case of neutral atom lasers,
ion lasers can be divided into two categories: (1) Ion gas lasers, involving most of the noble
gases, the most notable example being the ArC laser, which we consider below, and the KrC
laser. Both lasers oscillate on many transitions, the most common being in the green and blue
(514.5 nm and 488 nm) for the ArC laser and in the red (647.1 nm) for the KrC laser. (2)
Metal-ion vapor lasers, involving many metals (Sn, Pb, Zn, Cd, and Se), the most notable
example being the He-Cd laser, discussed below, and the He-Se laser.

10.2.2.1. Argon Laser.5,6/

A simplified scheme for the relevant energy levels in an argon laser is shown in Fig. 10.6.
The ArC ground state is obtained by removing one electron out of the six electrons of the, 3p,
outer shell of Ar. The excited 4s and 4p states are then obtained by promoting one of the
remaining 3p5 electrons to the 4s or 4p state, respectively. As a consequence of the interaction
with the other 3p4 electrons, both the 4s and 4p levels, indicated as single levels in Fig. 10.6,
actually consist of many sublevels.

Excitation of the Ar ion to its excited states occurs by a two-step process involving colli-
sions with two distinct electrons. The first collision, in fact, ionizes Ar i.e., raises it to the ArC
ground state, while the second collision excites the Ar ion. Since the lifetime of the 4p level
(�10�8 s, set by the 4p ! 4s radiative transition) is about ten times longer than the radia-
tive lifetime of the 4s ! 3p5 transition, excited Ar ions accumulate predominantly in the 4p
level. This means that the 4p level can be used as the upper laser level, for the 4p ! 4s laser
transition, and that, according to Eq. (7.3.1), cw laser action can be achieved. It should be
noted that excitation of the Ar ion can lead to ions in the 4p state by three distinct processes
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FIG. 10.6. Energy levels of Ar relevant for laser action.

(see Fig. 10.6): (a) direct excitation to the 4p level starting from the ArC ground level; (b)
excitation to higher-lying states followed by radiative decay to the 4p level; (c) excitation to
metastable levels followed by a third collision leading to excitation to the 4p state. Consider-
ing, for simplicity, only processes (a) and (b) one can readily see that the pumping process to
the upper state is expected to be proportional to the square of the discharge current density. In
fact, since processes (a) and (b) involve a two-steps electron collision, the rate of upper state
excitation, .dN2=dt/p, is expected to be of the form

.dN2=dt/p / NeNi Š N2
e (10.2.3)

where Ne and Ni are the electron and ion density in the plasma (Ne Š Ni in the positive
column of the plasma). Since the electric field of the discharge is independent of the discharge
current, the drift velocity, �drift, will also be independent of the discharge current. From the
standard equation J D e�driftNe, one then see that the electron density Ne is proportional to
the discharge current density, and, from Eq. (10.2.3) it follows that .dN2=dt/p / J2. Laser
pumping thus increases rapidly with current density and high current densities .�1 kA=cm2/

are required if the inherently inefficient two-step processes, considered above, are to pump
enough ions to the upper state. This may explain why the first operation of an ArC laser
occurred some three-years after the first He-Ne laser..7/
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FIG. 10.7. Schematic diagram of a high-power water-cooled ArC laser tube.

From the discussion above, one expects laser action in an Ar laser to occur on the
4p ! 4s transition. Since both the 4s and 4p levels actually consist of many sub-levels,
the argon laser is found to oscillate on many lines, the most intense being in the green
.� D 514.5 nm/ and in the blue .� D 488 nm/. From spectral measurements of the sponta-
neously emitted light it is found that the Doppler linewidth 	��

0 , on e.g. the green transition,
is about 3500 MHz. From Eq. (2.5.18) it is seen that this implies an ion temperature of
T Š 3000 K. The ions are therefore very hot, a result of ion acceleration by the electric field
of the discharge. Some relevant spectroscopic properties of the Ar ion green laser transition
are summarized in Table 10.1.

A schematic diagram of a high power .>1 W/ argon laser is shown in Fig. 10.7. One
sees that both the plasma current and the laser beam are confined by metal disks (of tungsten)
inserted in a larger bore tube of ceramic material (BeO). The use of this thermally conductive
and resistant metal-ceramic combination is necessary to ensure a good thermal conductivity
of the tube and, at the same time, to reduce the erosion problems that arise from the high
ion temperature. The diameter of the central holes in the disks is kept small .�2 mm/ to
confine oscillation to a TEM00 mode (long-radius of curvature mirrors are commonly used for
the resonator) and to reduce the total current required. A problem that must be overcome in
an argon laser is that which arises from the cataphoresis of the argon ions. Due to the high
current density, in fact, a substantial migration of Ar ions occurs toward the cathode, where
they are neutralized upon combining with electrons emitted by the cathode surface�. Thus
an accumulation of neutral atoms tends to build up at this electrode with a corresponding
reduction of the Ar pressure in the discharge capillary, below its optimum value. To overcome
this problem, off-center holes are also made in the disk to provide return paths for the atoms,
from cathode to anode, by diffusion. The holes are arranged in such a way that no current
flows along this return path on account of the longer path lengths involved compared to that
of the central path. The inner ceramic tube is water cooled to remove the large amount of
heat that it is inevitably dissipated in the tube (some kW/m). Note also that a static magnetic
field is also applied in the discharge region, parallel to the tube axis, by a solenoid. With this

� With reference to the discussion of Sect. 6.4.4., we recall that direct electron ion recombination cannot occur in
the discharge volume since the process cannot satisfy, simultaneously, both energy and momentum conservation.
Electron-ion recombination can therefore only occur in the presence of a third partner e.g., at the tube walls or at
the cathode surface.
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arrangement, the Lorentz force makes the electrons rotate around the tube axis, thus reducing
the rate of electron diffusion to the walls. This increases the number of free electrons at the
center of the tube and leads to an increased pump rate. This may explain the observed increase
in output power when a magnetic field is applied. By confining the charges toward the center
of the tube, the magnetic field also alleviates the problem of wall damage (mostly occurring
at the holes of the tungsten disks). Note that, for high power lasers .>1 W/, the laser mirrors
are mounted externally to the laser tube to reduce degradation of the mirror coatings due to
the intense VUV radiation emitted by the plasma. For lower-power lasers .<1 W/, the laser
tube is often simply made of a block of ceramic (BeO) provided with a central hole for the
discharge current. In this case, no magnetic field is applied, the tube is air cooled, and the
mirrors are directly sealed to the ends of the tube as in a He-Ne laser.

Water-cooled argon lasers are commercially available with power ranging between 1
and 20 W, operating on both blue and green transitions simultaneously or, by using the con-
figuration of Fig. 7.16b, operating on a single line. Air-cooled argon lasers of lower power
.�100 mW/ and much simpler design are also commercially available. In both cases, once
above threshold, the output power increases rapidly with current density ./ J2/ since, by
contrast with the behavior of He-Ne lasers, in this case there is no process leading to sat-
uration of inversion. The laser efficiency is, however, very low .<10�3/, because the laser
quantum efficiency is rather low (�7.5%, see Fig. 10.6) and because the electron impact exci-
tation involves many levels that are not coupled effectively to the upper laser level. Argon
lasers are often operated in mode-locked regime using an acousto-optic modulator. In this
case, fairly short mode-locked laser pulses .�150 ps/ are achievable by virtue of the relatively
large transition line-width .�3.5 GHz/ which, furthermore, is inhomogeneously broadened.

Argon lasers are widely used in ophthalmology (particularly to cure diabetic retinopa-
thy), and in the field of laser entertainment (laser light shows). In a more scientifically-oriented
contest, argon lasers are also widely used for a variety of studies of light-matter interaction
(particularly in mode-locked operation) and also as a pump for solid-state lasers (particularly
Ti:sapphire) and dye lasers. For many of these applications, argon lasers are tending to be
superseded now by cw diode-pumped Nd : YVO4 lasers in which a green beam, λ D 532 nm,
is produced by intracavity second harmonic generation. Lower-power Ar lasers are extensively
used for high-speed laser printers and cell cytometry.

10.2.2.2. He-Cd Laser

The energy levels of the He-Cd system that are relevant for laser action are shown in
Fig. 10.8, where, again, level labeling is according to Russell-Saunders notation. Pumping of
CdC upper laser levels .2D3=2 and 2D5=2/ is achieved with the help of He through the Penning
ionization process. This process can be written in the general form

A� C B ! A C BC C e (10.2.4)

where the ion BC may or may not be left in an excited state. Of course, the process can only
occur if the excitation energy of the excited species A� is greater than or equal to the ionization
energy of species B (plus the excitation energy of BC if the ion is left in an excited state). Note
that, unlike near-resonant energy transfer, Penning ionization is a non-resonant process, any
surplus energy being in fact released as kinetic energy of the ejected electron. In the case of the
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FIG. 10.8. Relevant energy levels of the He-Cd laser.

He-Cd system, the 21S and 23S metastable states of He act as the species A� in Eq. (10.2.4),
and, upon collision, this excitation energy is given up to ionize the Cd atom and to excite the
CdC ion. Although the process is not resonant, it has been found that the rate of excitation
to the D states is about three times larger than that to the P states�. What is more important,
however, is that the lifetime of the D states .�0.1�s/ is much longer than the lifetime of the
P states .�1 ns/. Population inversion between the D and P states can, therefore, be produced
readily and cw laser action can be produced. Indeed, in accordance with the selection rule
	J D 0, ˙1, laser action is obtained on the 2D3=2 !2 P1=2 .� D 325 nm, UV/ and the
2D5=2 !2 P3=2 .� D 416 nm, blue/ lines. The CdC ion then drops to its 2S1=2 ground state by
radiative decay.

A typical construction for the He-Cd laser is in the form of a tube, terminated by two
Brewster’s angle windows, with the two laser mirrors mounted separate from the tube. In one
possible arrangement, the tube, which is filled with helium, also has a small reservoir contain-
ing the Cd metal, located near the anode. The reservoir is raised to a high enough temperature
.�250 ıC/ to produce the desired vapor pressure of Cd atoms in the tube. The discharge itself
then produces enough heat to prevent condensation of the vapor on the tube walls along the
discharge region. Due to ion cataphoresis, however, the ions migrate to the cathode where
they recombine with the electrons emitted by the cathode. Neutral Cd atoms then condense
around the cathode region, where there is no discharge and the temperature is low. The net

� According to e.g., (2.6.2), the rate of excitation, kA�B, of the general process Eq. (10.2.4) can be defined via the
relation .dN=dt/ABC D kA�B NA� NB, where .dN=dt/BC is the number of species BC, which are produced per
unit volume per unit time, and NA� and NB are the concentrations of the colliding partners.
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result is a continuous flow of metal vapor from the anode to the cathode. Therefore a sufficient
supply of Cd (�1 g per 1,000 h) must be provided for long-term operation of the laser.

He-Cd lasers can give output powers of 50–100 mW, placing them in an intermediate
position between red He-Ne lasers (a few mW) and ArC lasers (a few W). Thus, He-Cd lasers
are used for many applications where a blue or UV beam of moderate power is required (e.g.,
high-speed laser printers, holography, cell cytometry, fluorescence analysis of e.g., biological
specimens).

10.2.3. Molecular Gas Lasers

These lasers exploit transitions between the energy levels of a molecule. Depending on
the type of transition involved, molecular gas lasers belong to one of the three following cate-
gories: (1) Vibrational-rotational lasers. These lasers use transitions between vibrational levels
of the same electronic state (the ground state) and the energy difference between the levels
falls in the middle- to the far-infrared .2.5–300�m/. By far the most important example of
this category is the CO2 laser oscillating at either 10.6 or 9.6�m. Other noteworthy examples
are the CO laser .� Š 5�m/ and the HF chemical laser .� Š 2.7–3.3�m/. (2) Vibronic
lasers, which use transitions between vibrational levels of different electronics states: In this
case the oscillation wavelength generally falls in the UV region. The most notable example of
this category of laser is the nitrogen laser .� D 337 nm/. A special class of lasers, which can
perhaps be included in the vibronic lasers, is the excimer laser. These lasers involve transitions
between different electronic states of special molecules (excimers) with corresponding emis-
sion wavelengths generally in the UV. Excimer lasers, however, involve not only transitions
between bound states (bound-bound transitions) but also, and actually more often, transitions
between a bound upper state and a repulsive ground state (bound-free transitions). It is more
appropriate therefore to treat these lasers as being in a category of their own. (3) Pure rota-
tional lasers, which use transitions between different rotational levels of the same vibrational
state (usually an excited vibrational level of the ground electronic state). The corresponding
wavelength falls in the far infrared (25�m to 1 mm). Since these pure rotational lasers are
relatively less important than the other categories, we shall not discuss them further in the
sections that follow. We therefore limit ourselves to pointing out here that laser action is more
difficult to achieve in this type of laser since the relaxation between rotational levels is gener-
ally very fast. Therefore these lasers are usually pumped optically, using the output of another
laser as the pump (commonly a CO2 laser). Optical pumping excites the given molecule (e.g.,
CH3F, � D 496�m) to a rotational level belonging to some vibrational state above the ground
level. Laser action then takes place between rotational levels of this upper vibrational state.

10.2.3.1. The CO2 Laser.8,9/

The laser utilizes, as active medium, a suitable mixture of CO2, N2, and He. Oscillation
takes place between two vibrational levels of the CO2 molecule, while, as we shall see, the
N2 and He greatly improve the efficiency of laser action. The CO2 laser is actually one of the
most powerful lasers (output powers of more than 100 kW have been demonstrated from a
CO2 gas-dynamic laser) and one of the most efficient (15–20% slope efficiency).
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FIG. 10.9. The lowest vibrational levels of the ground electronic state of a CO2 molecule and a N2 molecule (for
simplicity, the rotational levels are not shown).

FIG. 10.10. The three fundamental modes of vibration for a CO2 molecule: .�1/ symmetric stretching mode, .�2/

bending mode, .�3/ asymmetric stretching mode.

Figure 10.9 shows the relevant vibrational-energy levels for the electronic ground states
of the CO2 and N2 molecules. N2, being a diatomic molecule, has only one vibrational mode
whose lowest two energy levels .� D 0, � D 1/ are indicated in the figure. The energy levels
for CO2 are more complicated since CO2 is a linear triatomic molecule. In this case, there
are three nondegenerate modes of vibration (Fig. 10.10): (1) Symmetric stretching mode, (2)
bending mode, and (3) asymmetric stretching mode. The oscillation behavior and the corre-
sponding energy levels are therefore described by means of three quantum numbers n1, n2

and n3, which give the number of quanta in each vibrational mode. This means that, apart
from zero-point energy, the energy of the level is given by E D n1h�1 Cn2h�2 Cn3h�3, where
�1, �2, and �3 are the resonance frequencies of the three modes. For example, the 0110 level�
corresponds to an oscillation in which there is one vibrational quantum in mode 2. Since mode
2 has the smallest force constant of the three modes (the vibrational motion is transverse), it

� The superscript (which we will denote by l) on the bending quantum number arises from the fact that the bending
vibration is, in this case, doubly degenerate. In fact, it can occur both in the plane of Fig. 10.10 and in the
orthogonal plane. A bending vibration therefore consists of a suitable combination of these two vibrations and
the superscript l characterizes this combination; more precisely, l„ gives the angular momentum of this vibration
about the axis of the CO2 molecule. For example, in the 0200 state .l D 0/, the two degenerate vibrations combine
in such a way to give an angular momentum l„ D 0.
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follows that this level will have the lowest energy. Laser action takes place between the 0001
and 1000 levels .� Š 10.6�m/ although it is also possible to obtain oscillation between 0001
and 0200 .� Š 9.6�m/.

The pumping of the upper 0001 laser level is very efficiently achieved by two processes:
Direct Electron Collisions. The main direct collision to be considered is obviously as

follows: e C CO2.000/ ! e C CO2.001/. The electron collision cross section for this process
is very large and is appreciably larger than those for excitation to both the 100 and 020 levels,
probably because the 000 ! 001 transition is optically allowed whereas, for instance, the
000 ! 100 transition is not. Note also that direct electron impact can also lead to excitation
of upper .0, 0, n/ vibrational levels of the CO2 molecule. The CO2 molecule, however, rapidly
relaxes from these upper states to the (001) state by near resonant collisions of the type�

CO2.0, 0, n/C CO2.0, 0, 0/ ! CO2.0, 0, n � 1/C CO2.0, 0, 1/ (10.2.5)

This process tends to degrade all excited molecules to the (0, 0, 1) state. Note that, since most
molecules in a CO2 laser mixture are in fact in the ground state, collision of an excited with
an unexcited molecule constitutes the most likely collisional event.

Resonant Energy Transfer from N2 Molecule. This process is also very efficient due to
the small energy difference between the excited levels of the two molecules .	E D 18 cm�1/.
In addition, the excitation of N2 from the ground level to the � D 1 level is a very efficient
process and the � D 1 level is metastable. The 1 ! 0 transition is in fact electric-dipole
forbidden since, by virtue of its symmetry, a N-N molecule cannot have a net electric dipole
moment. Finally the higher vibrational levels of N2 are also closely resonant .	E < kT/
with the corresponding CO2 levels (up to 0005), and transitions between the excited levels,
00n, and the 001 level of the CO2 molecule occur rapidly through the process indicated in
Eq. (10.2.5).

The next point to consider is the decay of both upper and lower laser levels. We note that,
although the transitions 0001 ! 1000, 0001 ! 0200, 1000 ! 0100, and 0200 ! 0100 are
optically allowed, the corresponding decay times �sp for spontaneous emission are very long
(we recall that �sp / 1=�3). The decay of these various levels is therefore determined essen-
tially by collisions. Accordingly, the decay time �s of the upper laser level can be obtained
from a formula of the type

.1=�s/ D †aipi (10.2.6)

where pi are the partial pressures and ai the rate constants that are corresponding to the
gases in the discharge. Taking, for example, the case of a total pressure of 15 torr (in a 1:1:8
CO2 : N2 : He partial pressure ratio) one finds that the upper level has a lifetime �s Š 0.4 ms.
As far as the relaxation rate of the lower level is concerned, we begin by noting that the
100 ! 020 transition is very fast and it occurs even in a isolated molecule. In fact the energy
difference between the two levels is much smaller than kT. Furthermore, a coupling between
the two states is present (Fermi resonance) because a bending vibration tends to induce a
change of distance between the two oxygen atoms (i.e., induce a symmetric stretching). Levels

� Relaxation processes in which vibrational energy is given up as vibrational energy of another like or unlike
molecule are usually referred to as VV relaxations.
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1000 and 0200 are then effectively coupled to the 0110 level by the two near-resonant collision
processes, involving CO2 molecules in the ground state (VV relaxation), as shown below:

CO2.1000/C CO2.0000/ ! CO2.0110/C CO2.0110/C	E (10.2.7a)

CO2.0200/C CO2.0000/ ! CO2.0110/C CO2.0110/C	E0 (10.2.7b)

The two processes have a very high probability since 	E and 	E0 are much smaller than kT.
It follows, therefore, that the three levels 1000, 0200 and 0110 reach thermal equilibrium in a
very short time. We are therefore left with the decay from the 0110 to the ground level 0000. If
this decay were slow, it would lead to an accumulation of molecules in the 0110 level during
laser action. This in turn would produce an accumulation in the .1000/ and .0200/ levels since
these are in thermal equilibrium with the .0110/ level. Thus a slowing down of the decay
process of all three levels would occur, i.e., the 0110 ! 0000 transition would constitute a
“bottleneck” in the overall decay process. It is, therefore, important to look into the question of
the lifetime of the 0110 level. Note that, since the 0110 ! 0000 transition is the least energetic
transition in any of the molecules in the discharge, relaxation from the 0110 level can only
occur by transferring this vibrational energy to translational energy of the colliding partners
(VT relaxation). From the theory of elastic collisions we then know that energy is most likely
to be transferred to the lighter atoms, i.e., to helium in this case. This means that the lifetime
is again given by an expression of the type of Eq. (10.2.6) where the coefficient ai for He is
much larger than that of the other species. For the same partial pressures as considered in the
example above, one obtains a lifetime of about 20�s. It follows from the above discussion
that this will also be the value of the lifetime of the lower laser level. So, by virtue of the much
larger value of the upper state lifetime, population accumulates in the upper laser level and the
condition for cw laser action is also fulfilled. Note that He has another valuable effect: The
He, because of its high thermal conductivity, helps to keep the CO2 cool by conducting heat
away to the walls of the container. A low translational temperature for CO2 is necessary to
avoid population of the lower laser level by thermal excitation. The energy separation between
the levels is, in fact, comparable to kT. In conclusion, the beneficial effects of nitrogen and
helium can be summarized as follows: Nitrogen helps to produce a large population in the
upper laser level while helium helps to empty population from the lower laser level.

From the above considerations it is seen that laser action in a CO2 laser may occur
either on the .0001/ ! .1000/.�D10.6�m/ transition or on the .0001/ ! .0200/ transition
.�D9.6�m/. Since the first of these transitions has the greater cross section and since both
transitions share the same upper level, it follows that it is usually the 0001 ! 1000 transition
that oscillates. To obtain oscillation on the 9.6�m line, some appropriate frequency-selective
device is placed in the cavity to suppress laser action on the line with highest gain (the system
of Fig. 7.16a is often used). Our discussion has so far ignored the fact that both upper and
lower laser levels actually consist of many closely spaced rotational levels. Accordingly, the
laser emission may occur on several equally spaced rotational-vibrational transitions belong-
ing to either P or R branches (see Fig. 3.7) with the P branch exhibiting the largest gain. To
complete our discussion one must now also take into account the fact that, as a consequence
of the Boltzmann distribution between the rotational levels, the J0 D 21 rotational level of the
upper 0001 state happens to be the most heavily populated (see Fig. 10.11)�. Laser oscillation

� For symmetry reasons, only levels with odd values of J are occupied in a CO2 molecule.
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FIG. 10.11. Relative population of the rotational levels of the upper laser level of CO2.

will then occur on the rotational-vibrational transition with the largest gain, i.e., originating
from the most heavily populated level. This is because, in a CO2 laser, the rate of thermaliza-
tion of the rotational levels .107 s�1 torr�1/ is faster than the rate of decrease of population
(due to spontaneous and stimulated emission) of the rotational level from which laser emis-
sion is occurring. Therefore, the entire population of rotational levels will contribute to laser
action on the rotational level with highest gain. Consequently, and as a conclusion to this
discussion, we can say that laser action in a CO2 laser normally occurs on the P.22/ ! i.e.,
.J0 D 21/ .J00 D 22/ line of the .0001/ ! .1000/ transitions. Other lines of the same tran-
sition as well as lines belonging to the .0001/ ! .0200/ transition (the separation between
rotational lines in a CO2 laser is about 2 cm�1) can be selected with, e.g., the scheme of
Fig. 7.16a.

A major contribution to the laser linewidth in a CO2 laser comes from the Doppler effect.
Compared with, e.g., a visible gas laser, the corresponding value of the Doppler linewidth is,
however, rather small (about 50 MHz) on account of the low frequency v0 of the laser tran-
sition [see example 3.2]. Collision broadening is, however, not negligible [see example 3.3].
and actually becomes the dominating line-broadening mechanism for CO2 lasers operating at
high pressures .p > 100 torr/.

From the point of view of their constructional design, CO2 lasers can be separated into
eight categories: (1) Lasers with slow axial flow, (2) sealed-off lasers, (3) waveguide lasers,
(4) lasers with fast axial flow, (5) diffusion-cooled area-scaling lasers, (6) transverse-flow
lasers, (7) transversely excited atmospheric pressure (TEA) lasers, and (8) gas-dynamic lasers.
We will not consider the gas-dynamic laser, here, since its operating principle has already
been described in Sect. 6.1. Before considering the other categories, it is worth pointing out
here that, although the corresponding lasers differ from one another as far as many of their
operating parameters are concerned (e.g., the output power), they all share a very impor-
tant characteristic feature namely a high slope efficiency (15–25%). This high efficiency is a
consequence of the high laser quantum efficiency (�40%; see Fig. 10.10) and of the highly
efficient pumping processes that occur in a CO2 laser at the optimum electron temperature of
the discharge (see Fig. 6.27).
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FIG. 10.12. Schematic diagram of a CO2 laser with longitudinal gas flow.

Lasers with Slow Axial Flow. Operation of the first CO2 laser was achieved in a laser of
this type (C. K. N. Patel, 1964.10/). The gas mixture is flowed slowly along the laser tube (see
Fig. 10.12) simply to remove the dissociation products, in particular CO, that would otherwise
contaminate the laser. Heat removal is provided by radial conduction of heat to the tube walls
(usually made of glass), which are cooled externally by a suitable coolant (usually water).
An internal mirror arrangement is often used, and, at least in the design of Fig. 10.12, one
of the metal mounts holding the cavity mirrors needs to be held at high voltage. One of the
main limitations of this laser arises from the fact that there is a maximum laser output power
per unit length of the discharge (50–60 W/m) that can be obtained, independently of the tube
diameter. In fact, from Eq. (6.4.24), we find that the number of molecules pumped into the
upper laser level per unit volume and unit time can be written as

�
dN2

dt

�
p

D Nt
J

e

�
<��>

�drift

�
(10.2.8)

where J is the current density, � is a suitable electron-impact cross section, which takes into
account both direct and energy-transfer excitations, and Nt is the total CO2 ground-state popu-
lation. For pump rates well above threshold, the output power, P, is proportional to .dN2=dt/p
and to the volume of the active medium, Va. From Eq. (10.2.8) we can therefore write

P _ JNtVa _ JpD2l (10.2.9)

where D is the diameter of the active medium, l its length, and p the gas pressure. Under
optimum operating conditions we now have the following: (1) The product pD must be con-
stant (�22.5 torr � cm, e.g., 15 torr for D D 1.5 cm) to keep the discharge at the optimum
electron temperature. (2) Due to thermal limitations imposed by the requirement of heat con-
duction to the tube walls, an optimum value of the current density exists, and this value is
inversely proportional to the tube diameter D. The existence of an optimum value of J can be
understood when one notices that excessive current density leads to excessive heating of the
mixture (even with an efficiency of 20%, some 80% of the electrical power is dissipated in
the discharge as heat) with consequent thermal population of the lower laser levels. The fact
that the optimum value of J is inversely proportional to D can now be understood when one
realizes that, for larger diameters, the generated heat has more difficulty in escaping to the
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walls. From this discussion we draw the conclusion that, under optimum conditions, both J
and p are inversely proportional to D and, hence, from Eq. (10.2.9), the optimum value of P
is only proportional to the tube length l. CO2 lasers with slow axial flow and relatively low
power (50–100 W) are widely used for laser surgery, for resistor trimming, for cutting ceramic
plates for the electronics industry, and for welding thin metal sheets .<1 mm/.

Sealed-off Lasers. If the flow of the gas mixture were stopped in the arrangement shown
in Fig. 10.12, laser action would cease in a few minutes. This is because the chemical reaction
products formed in the discharge (CO, in particular) would no longer be removed and would
instead be adsorbed on the walls of the tube or react with the electrodes, thus upsetting the
CO2-CO-O2 equilibrium. Ultimately this would lead to dissociation of a large fraction of CO2

molecules in the gas mixture. For a non-circulating sealed-off laser, some kind of catalyst
must be present in the gas tube to promote the regeneration of CO2 from the CO. A simple
way to achieve this is to add a small amount of H2O (1%) to the gas mixture. This leads to
regeneration of CO2, probably through the reaction

CO� C OH ! CO�
2 C H (10.2.10)

involving vibrationally excited CO and CO2 molecules. The relatively small amount of H2O
vapor required may be added in the form of hydrogen and oxygen gas. Actually, since oxygen
is produced during the dissociation of CO2, it is found that only hydrogen needs be added.
Another way of inducing the recombination reaction relies on the use of a hot .300 ıC/ Ni
cathode, which acts as a catalyst. With these techniques, lifetimes for sealed-off tubes in
excess of 10,000 h have been demonstrated.

Sealed-off lasers have produced output powers per unit length of �60 W/m, i.e., compa-
rable to those of longitudinal-flow lasers. Low-power (�1 W) sealed-off lasers of short length
and hence operating in a single mode are often used as local oscillators in optical heterodyne
experiments. Sealed-off CO2 lasers of somewhat higher power (�10 W) are attractive for laser
microsurgery and for micromachining.

Capillary Waveguide Lasers. If the diameter of the laser tube in Fig. 10.12 is reduced to
around a few millimeters (2–4 mm), a situation is reached where the laser radiation is guided
by the inner walls of the tube. Such waveguide CO2 lasers have a low diffraction loss. Tubes of
BeO or SiO2 have been found to give the best performance. The main advantage of a waveg-
uide CO2 laser stems from the fact that, owing to the small bore diameter, the pressure of the
gas mixture needs to be considerably increased (100–200 torr). With this increase in pressure,
the laser gain per unit length is correspondingly increased. This means that one can make
short CO2 lasers .L < 50 cm/ without having to face a difficult requirement on reduction of
cavity losses. On the other hand, however, the power available per unit length of the discharge
suffers the same limitation discussed earlier for the slow axial flow laser (�50 W/m). There-
fore waveguide CO2 lasers are particularly useful when short and compact CO2 lasers of low
power .P < 30 W/ are needed (e.g., for laser microsurgery). To fully exploit their compact-
ness these lasers usually operate as sealed-off devices. The laser configuration may either be
similar to that of Fig. 10.12, in which the discharge current flows longitudinally along the
laser tube, or as shown in Fig. 10.13, where the current (usually provided by a rf source) flows
transversely across the tube. For a given value of discharge electric field E , owing to the fact
that the quantity E=p must be constant, the transverse pumping configuration offers a signif-
icant advantage over longitudinal pumping by way of a much reduced (one to two orders of
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FIG. 10.13. Schematic diagram of a rf excited waveguide CO2 laser.

magnitude) electrode voltage. Radiofrequency (�Š 30 MHz) excitation presents many advan-
tages, the most important of which are perhaps:.11/ (1) The avoidance of permanent anodes
and cathodes, which eliminates the associated gas-chemistry problem at the cathode; (2) a
stable discharge with the help of simple non-dissipative elements (e.g., a dielectric slab) in
series in the discharge circuit (see e.g., Fig. 6.20). As a result of these various advantages,
rf discharge lasers are being used increasingly not only for waveguide lasers but also for fast
axial flow lasers and for the transverse flow lasers which we consider next. We note finally
that the laser tube of a waveguide CO2 laser is either not cooled or, for the largest power units,
cooled by forced air.

Lasers with Fast Axial Flow. To overcome the output power limitation of a CO2 laser with
slow-axial-flow, as discussed with the help of Eqs. (10.2.8) and (10.2.9), a possible solution,
and a very interesting one, practically, is to flow the gas mixture through the tube at very
high supersonic speed (about 50 m/s). In this case the heat is removed simply by removing the
hot mixture, which is then cooled outside the tube by a suitable heat exchanger before being
returned to the tube as shown in the schematic diagram of Fig. 10.14. Excitation of each of the
two laser tubes indicated in the figure may be provided either by a dc longitudinal discharge
or, more frequently, by a rf transverse discharge across the glass tube (see Fig. 6.20). When
operated in this way there is no optimum for the current density, the power actually increases
linearly with J, and much higher output powers per unit discharge length can be obtained
(�1 kW=m or even greater). While outside the laser tube, the mixture, besides being cooled,
is also passed over a suitable catalyst to let CO recombine with O2 and thus achieve the

FIG. 10.14. Schematic diagram of a fast axial flow CO2 laser.
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FIG. 10.15. Schematic diagram of a diffusion-cooled area-scaling CO2 laser using either a planar, (a), or an
annular,(b), electrode configuration.

required regeneration of CO2 molecules (some O2 is already present in the mixture owing
to dissociation of the CO2 in the discharge region). In this way either completely sealed-off
operation can be achieved or at least replenishment requirements for the mixture are kept to a
minimal level. Fast axial flow CO2 lasers with high power (1–6 kW) are now commonly used
for many material working applications and in particular for laser cutting of metals (with a
thickness of up to a few millimeters).

Diffusion-Cooled Area-Scaling Lasers. An alternative way of circumventing the power
limitation of a slow-axial-flow laser is to use a transverse discharge with electrodes spacing,
d, much smaller than the electrode width, W (see Fig. 10.15a). In this case the gas mixture is
cooled very effectively by one-dimensional heat flow toward the electrodes which are water
cooled. It can be shown that the laser output power scales, in this case, as Pout D C.Wl/=d,
where C is a constant .C Š 50 W=m/ and l is the electrode length..12/ Thus, for a given
electrode spacing, the output power scales as the electrode area, Wl, rather than electrode
length like in e.g., CO2 lasers with slow axial flow [see Eq. (10.2.9)]. For sufficiently small
electrode spacing, large powers per unit electrode area can then be obtained [e.g., .Pout=Wl/ Š
20 kW=m2 for d D 3 mm]. Instead of the planar configuration of Fig. 10.15a, the annular
configuration of Fig. 10.15b can also be used, this latter configuration being technically more
complicated but allowing more compact devices to be achieved.

It should be stressed again that the above results hold if the electrode width is appreciably
larger (by � an order of magnitude) than the electrode spacing. To produce a good-quality dis-
charge and an output beam with good divergence properties, from a gain medium with such
a pronounced elongation, poses some difficult problems. Stable and spatially uniform dis-
charges can however be obtained exploiting the advantages of radiofrequency excitation. For
electrode spacing of the order of a few millimeters, on the other hand, the laser beam is guided
in the direction normal to the electrode surface and propagates freely in the direction parallel
to this surface. To obtain output beams with good quality, hybrid resonators, which are stable
along the electrode spacing and unstable along the electrode width, have been developed..13/

Compact, area-scaling, CO2 lasers with output powers above 1 kW are now commer-
cially available with potential large impact for material working applications.

Transverse-Flow Lasers. Another way of circumventing the power limitations of a slow
axial flow laser is to flow the gas mixture perpendicular to the discharge (Fig. 10.16). If the
flow is fast enough, the heat, as in the case of fast axial flow lasers, gets removed by convection
rather than by diffusion to the walls. Saturation of output power versus discharge current
does not then occur, and, as in the case of fast axial flow, very high output powers per unit
discharge length can be obtained (a few kW/m; see also Fig. 7.7). It should be noted that the
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FIG. 10.16. Schematic diagram for a transverse-flow CO2 laser.

FIG. 10.17. Schematic diagram (viewed along the laser axis) of a CO2 TEA laser. The laser uses UV radiation from
several spark sources placed along the tube direction, to provide for gas preionization.

optimum total pressure (�100 torr) is now typically an order of magnitude greater than that of
large-bore longitudinal flow systems. The increase in total pressure p requires a corresponding
increase of the electric field E in the discharge. In fact, for optimum operating conditions, the
ratio E=p must remain approximately the same for all these cases since this ratio determines
the temperature of the discharge electrons [see Eq. (6.4.20)]. With this higher value of electric
field, a longitudinal-discharge arrangement such as in Fig. 10.12 would be impractical since
it would require very high voltages (100–500 kV for a 1-m discharge). For this reason, the
discharge is usually applied perpendicular to the resonator axis (TE lasers, i.e., lasers with
transverse electric field).

TE CO2 lasers with fast transverse flow and high output power (1–20 kW) are used in
a great variety of metal-working applications (cutting, welding, surface hardening, surface
metal alloying). Compared to the fast axial flow lasers, these lasers turn out to be simpler
devices in view of the reduced flow speed requirement for transverse flow. However, due
to the cylindrical symmetry of their discharge current distribution, the beam quality of fast
axial flow lasers is considerable better and this makes them particularly interesting for cutting
applications.
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Transversely Excited Atmospheric Pressure (TEA) Lasers. In a cw TE CO2 laser, it is
not easy to increase the operating pressure above �100 torr. Above this pressure and at the
current densities normally used, glow discharge instabilities set in and result in the formation
of arcs within the discharge volume. To overcome this difficulty, the voltage can be applied
to the transverse electrodes in the form of a pulse. If the pulse duration is sufficiently short
(a fraction of a microsecond), the discharge instabilities have no time to develop and the
operating pressure can then be increased up to and above atmospheric pressure. These lasers
are therefore referred to as TEA lasers, the abbreviation standing for Transversely Excited
at Atmospheric pressure. These lasers thus produce a pulsed output and are capable of large
output energies per unit discharge volume (10–50 J/liter). To avoid arc formation, some form
of ionization (preionization) is also applied, the preionization pulse just preceding the main
voltage pulse which produces the gas excitation. A configuration that is often used is shown
in Fig. 10.17, where the ionization is produced by the strong UV emission of a row of sparks
which runs parallel to the tube length. The deep UV emission of these sparks produces the
required ionization by both photoionization of the gas constituents and UV-induced electron
emission from the electrodes (UV-preionization). Other preionization techniques include the
use of pulsed e-beam guns (e-beam preionization) and ionization by the corona effect (corona
preionization). Once ionization within the whole volume of the laser discharge is produced,
the fast switch (a hydrogen thyratron or a spark gap) is closed and the main discharge pulse is
passed through the discharge electrodes. Since the transverse dimensions of the laser discharge
are usually large (a few centimeters), the two end mirrors are often chosen to give an unsta-
ble resonator configuration (positive-branch unstable confocal resonator; see Fig. 5.18b). For
low pulse repetition rates (�1 Hz), it proves unnecessary to flow the gas mixture. For higher
repetition rates, the gas mixture is flowed transversely to the resonator axis and is cooled
by a suitable heat exchanger. Repetition rates up to a few kilohertz have been achieved in
this way. Another interesting characteristic of these lasers is their relatively broad linewidths
(�4 GHz at p D 1 atm, due to collision broadening). Thus, optical pulses with less than 1-
ns duration have been produced with mode-locked TEA lasers. Transverse-flow CO2 TEA
lasers of relatively high repetition rate .�50 Hz/ and relatively high average output power
.<Pout> Š 300 W/ are commercially available. Besides being used in scientific applications,
these lasers find a number of industrial uses for those material working applications in which
the pulsed nature of the beam presents some advantage (e.g., pulsed laser marking or pulsed
ablation of plastic materials).

10.2.3.2. The CO Laser

The second example of a gas laser using vibrational-rotational transitions that we will
briefly consider is that of the CO laser. This laser has attracted considerable interest on account
of its shorter wavelength (� Š 5�m) than the CO2 laser, combined with high efficiencies and
high power. Output powers in excess of 100 kW and efficiencies in excess of 60% have been
demonstrated..14/ However, to achieve this sort of performance the gas mixture must be kept
at cryogenic temperature (77–100 K). Laser action, in the 5�-m region, arises from several
rotational-vibrational transitions [e.g., from � 0.11/ ! �.10/, to � 0.7/ ! �.6/ at T D 77 K�
of the highly excited CO molecule.
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FIG. 10.18. Partial inversion between two vibrational transitions (� and � 0) having the same total population.

Pumping of the CO vibrational levels is achieved by electron-impact excitation. Like
the isoelectronic N2 molecule, the CO molecule has an unusually large cross section for
electron-impact excitation of its vibrational levels. Thus, nearly 90% of the electron energy
in a discharge can be converted into vibrational energy of CO molecules. Another impor-
tant feature of the CO molecule is that VV relaxation proceeds at a much faster rate than
VT relaxation (which is unusually low). As a consequence of this, a non-Boltzmann pop-
ulation buildup in higher vibrational levels, by a process known as anharmonic pumping,
plays a very important role�. Although this phenomenon does not allow a total inversion
in the vibrational population of a CO molecule, a situation known as partial inversion may
occur. This is illustrated in Fig. 10.18, in which the rotational populations of two neigh-
boring vibrational states are indicated. One sees from the figure that, although the total
population for the two vibrational states is equal, an inversion exists for the two P transi-
tions Œ.J0 D 5/ ! .J D 6/, .J0 D 4/ ! .J D 5/� and also for the two R-branch transitions
indicated in the figure. Under these conditions of partial inversion, laser action can thus take
place, and a new phenomenon, called cascading, can then play an important role. The effect
of laser action is in fact to depopulate a rotational level of the upper state and populate a
rotational level of the lower vibrational state. The latter level can then accumulate enough
population to result in population inversion with respect to a rotational level of a still lower
vibrational state. At the same time, the rotational level of the upper state may become suf-
ficiently depopulated to result in population inversion with respect to a rotational level of a
still higher vibrational state. This process of cascading coupled with the very low VT rate
results in most of the vibrational energy being extracted as laser output energy. This, together
with the very high excitation efficiency, accounts for the high efficiency of the CO laser. The
low-temperature requirement arises from the need for very efficient anharmonic pumping. In

� Anharmonic pumping arises from a collision of the type CO.� D n/CCO.� D m/ ! CO.� D nC1/CCO.� D
m � 1/ with n > m. Because of anharmonicity (a phenomenon shown by all molecular oscillators), the separation
between vibrational levels becomes smaller for levels higher up in the vibrational ladder (see also Fig. 3.1). This
means that, in a collision process of the type indicated above, with n > m, the total vibrational energy of the
two CO molecules after collision is somewhat smaller than before collision. The collision process therefore has a
greater probability of proceeding in this direction rather than the reverse direction. This means that the hottest CO
molecule ŒCO.� D n/� can climb up the vibrational ladder and this leads to a non-Boltzmann distribution of the
population among the vibrational levels.
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fact, the overpopulation of the high vibrational levels compared to the Boltzmann distribu-
tion, and hence the degree of partial inversion, increases rapidly with decreasing translational
temperature.

As in the case of the CO2 laser, the CO laser has been operated with longitudinal flow,
with e-beam preionized pulsed TE, and with gasdynamic excitation. The requirement of cryo-
genic temperatures has so far limited the commercial development of CO lasers. Recently,
however, high power .P > 1 kW/ CO lasers, operating at room temperature while retaining
a reasonably high slope efficiency .�10%/, have been introduced commercially. This laser is
now under active consideration as a practical source for material-working applications.

10.2.3.3. The N2 Laser.15/

As a particularly relevant example of vibronic lasers, we will consider the N2 laser. This
laser has its most important oscillation at � D 337 nm (UV), and belongs to the category of
self-terminating lasers.

The relevant energy level scheme for the N2 molecule is shown in Fig. 10.19. Laser action
takes place in the so-called second positive system, i.e., in the transition from the C3˘u state
(henceforth called the C state) to the B3˘g state (B state)�. The excitation of the C state is
believed to arise from electron-impact collisions with ground-state N2 molecules. Since both
C and B states are triplet states, transitions from the ground state are spin-forbidden. On the
basis of the Franck-Condon principle, we can however expect the excitation cross section, due
to e.m. wave interaction and hence due to the electron-impact cross section, to the � D 0 level
of the C state to be larger than that to the � D 0 level of the B state. The potential minimum

FIG. 10.19. Energy states of the N2 molecule. For simplicity only the lowest vibrational level .� D 0/ is shown for
each electronic state.

� Under different operating conditions laser action can also take place, in the near infrared .0.74–1.2�m/, in the
first positive system involving the B3˘g ! A3˙C

u transition.
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TABLE 10.2. Spectroscopic properties of UV laser transitions and gas-mixture composition in nitrogen
and KrF lasers

Laser type N2 .KrF/�

Laser wavelength [nm] 337.1 248
Cross-section Œ10�14 cm2� 40 0.05
Upper-state lifetime [ns] 40 10
Lower-state lifetime [ns] 10 s
Transition Linewidth [THz] 0.25 3
Partial press. of gas mixture [mbar] 40 (N2) 120 (Kr)

960 (He) 6 .F2/

2,400 (He)

of the B state is in fact shifted (relative to the ground state) to larger internuclear separation
than that of the C state. The lifetime (radiative) of the C state is 40 ns, while the lifetime of
the B state is 10� s. Clearly the laser cannot operate cw since condition Eq. (7.3.1) is not
satisfied. The laser can, however, be excited on a pulsed basis provided the electrical pulse is
appreciably shorter than 40 ns. Laser action takes place predominantly on several rotational
lines of the � 00.0/ ! � 0.0/ transition .� D 337.1 nm/ because this transition exhibits the
largest stimulated-emission cross-section. Oscillation on the � 00.1/ ! � 0.0/.� D 357.7 nm/
transition and the � 00.0/ ! � 0.1/.� D 315.9 nm/ transition also occurs, although with lower
intensity. Some spectroscopic data for the N2 laser are summarized in Table 10.2.

Given the high pressure of the gas mixture (�40 mbar of N2 and 960 mbar of He) and
the correspondingly high electric field (�10 kV/cm), a TEA configuration (see Fig. 10.17)
is normally used for a nitrogen laser. To obtain the required fast current pulse (5–10 ns), the
discharge circuit must have as low an inductance as possible. Owing to the high gain of this
self-terminating transition, oscillation takes place in the form of amplified spontaneous emis-
sion (ASE) and the laser can be operated even without mirrors. Usually, however, a single
mirror is placed at one end of the laser since this reduces the threshold gain and hence the
threshold electrical energy for ASE emission (see Sect. 2.9.2). The mirror also ensures a uni-
directional output and reduces the beam divergence. With this type of laser, it is possible to
obtain laser pulses, of high peak power (up to �1 MW) and short duration (�10 ns), at high
repetition rate (up to �100 Hz). Nitrogen lasers with nitrogen pressure up to atmospheric
pressure and without helium have also been developed. In this case, the problem of arcing is
alleviated by further reducing (to �1 ns) the duration of the voltage pulse. The increased gain
per unit length, due to the higher N2 pressure, and the fast discharge, leads to this type of laser
usually being operated without any mirrors. The length can be kept very short (10–50 cm)
and, as a consequence, output pulses of shorter time duration can be obtained (�100 ps with
100 kW peak power). Nitrogen lasers of both long (�10 ns) and short (�100 ps) time duration
are widely used as pumps for dye lasers, since most dyes absorb strongly in the UV.

10.2.3.4. Excimer Lasers.17/

Excimer lasers represent an interesting and important class of molecular lasers involving
transitions between different electronic states of special molecules referred to as excimers.
Consider a diatomic molecule A2 with potential energy curves as in Fig. 10.20, for the ground
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FIG. 10.20. Energy states of an excimer laser.

and excited states, respectively. Since the ground state is repulsive, the molecule cannot exist
in this state, i.e., the species only exists in the monomer form A in the ground state. Since,
however, the potential energy curve shows a minimum for the excited state, the species is
bound in this state i.e., it exists in dimer form. Such a molecule A�

2 is called an excimer, a
contraction of the words excited dimer. Now suppose that a large fraction of excimers are
somehow produced in the given volume of the medium. Under appropriate conditions, laser
action can then be produced on the transition between the upper (bound) state and the lower
(free) state (bound-free transition). This is referred to as an excimer laser, a classical example
being the Ne�

2 laser, the first excimer laser to be operated .� D 170 nm/..16/

Excimer lasers have three notable and important properties: (1) Since the transition
occurs between different electronic states of a molecule, the corresponding transition wave-
length generally falls in the UV spectral region. (2) Once the molecule, after undergoing
stimulated emission, reaches the ground state, it rapidly dissociates due to the repulsive poten-
tial of this state. This means that the lower laser level can be considered to be empty and the
laser operates as a four-level laser. (3) Due to the lack of energy levels in the ground state,
no rotational-vibrational transitions exist, and the transition is observed to be featureless and
relatively broad .	� D 20–100 cm�1/. It should be noted, however, that, in some excimer
lasers, the energy curve of the ground state does not correspond to a pure repulsive state but
features a (shallow) minimum. In this case the transition occurs between an upper bound state
and a lower (weakly) bound state (bound-bound transition). However, since the ground state is
only weakly bound, a molecule in this state undergoes rapid dissociation either by itself (a pro-
cess referred to as predissociation) or as a result of the first collision with another species of
the gas mixture. Thus, in this case also, the light emission produces a continuous spectrum.

We now consider a particularly important class of excimer laser in which a rare gas
atom (notably Kr, Ar, Xe) is combined, in the excited state, with a halogen atom (notably
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FIG. 10.21. Potential energy diagram showing the energy states of KrF (by permission from ref..17/).

F, Cl) to form a rare-gas-halide excimer�. Specific examples are ArF .� D 193 nm/, KrF
.� D 248 nm/, XeF .� D 351 nm/ and XeCl .� D 309 nm/, all oscillating in the UV. The
reason why rare-gas-halides are readily formed in the excited state can be understood if we
consider an excited rare-gas atom reacting with a ground-state halogen. In fact, an excited
rare-gas atom becomes chemically similar to an alkali atom, and such an atom is known
to react readily with halogens. This analogy also indicates that the bonding in the excited
state has ionic character: In the bonding process, the excited electron is transferred from
the rare gas atom to the halogen atom. This bound state is therefore also referred to as a
charge-transfer state.

We will now consider the KrF laser in some detail, as it represents one of the most
important lasers of this category (Fig. 10.21). The upper laser level is an ionically bound
charge-transfer state which, at large internuclear distances .R ! 1/, corresponds to the 2P
state of the Kr positive ion and to the 1S state of the negative F ion. Thus, for large values
of the internuclear distance, the energy curves of the upper state obey the Coulomb law.
The interaction potential between the two ions therefore extends to much greater distances
(0.5–1 nm) than those occurring when covalent interactions predominate (compare with e.g.,
Fig. 10.19). The lower state, on the other hand, is covalently bonded and, at large internuclear
distances .R ! 1/, corresponds to the 1S state of Kr atom and 2P state of the F atom.
As a result of interaction of the corresponding orbitals, both upper and lower states are then
split, for short internuclear distance, into the well-known 2˙ and 2˘ states of molecular
spectroscopy. Laser action occurs on the B2˙ ! X2˙ transition, since it exhibits the largest
cross section. Note that, during the transition, the radiating electron transfers from the F� to
the KrC ion. Some relevant spectroscopic data for this transition are shown in Table 10.2.

The two main excitation mechanisms responsible for producing KrF excimers arise either
from excited Kr atoms or from Kr ions. The route involving excited atoms can be described

� Strictly speaking these should not be referred to as excimers since they involve binding between unlike atoms. In
fact, the word exciplex, a contraction from excited complex, has been suggested as perhaps being more appropriate
for this case. However, the word excimer is now widely used in this context, and we will follow this usage.
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by the following reactions

e C Kr ! e C Kr� (10.2.11a)

Kr� C F2 ! .KrF/� C F (10.2.11b)

where Kr is first excited by a discharge electron and then reacts with a fluorine molecule. The
route involving Kr ions, on the other hand, can be described by the following three reactions

e C Kr ! 2e C KrC (10.2.12a)

e C F2 ! F� C F (10.2.12b)

F� C KrC C M ! .KrF/� C M (10.2.12c)

involving first production of Kr and F ions and then their recombination, in the discharge
volume, in the presence of a third partner (usually He, referred to as a buffer gas), to satisfy
both energy and momentum conservation. Note that reaction Eq. (10.2.12b) is a peculiar one,
usually referred to as dissociative attachment, resulting from the high electron affinity of F
atoms. Note also that, due to the long-range interaction between the two reacting ions, the
reaction Eq. (10.2.12c) can proceed at very fast rate provided that the buffer gas pressure is
sufficiently high. Indeed, He partial pressures well above atmospheric pressure are normally
used (a typical gas mixture may contain �120 mbar of Kr, 6 mbar of F2 and 2,400 mbar of He).
Under this condition, the reaction pathway described by Eqs. (10.2.12) becomes the dominant
mechanism of .KrF/� production.

Since the pressure of the gas mixture is above atmospheric pressure, excimer lasers can
only be operated in a pulsed regime and the general TEA configuration of Fig. 10.17 is used.
In the case of excimer lasers, however, the components of the laser tube and laser flow system
must be compatible with the highly reactive F2 gas. Furthermore, owing to the shorter lifetime
of the upper state and to avoid the onset of arc formation, faster pumping is usually provided
for excimer lasers compared to TEA CO2 lasers (pump durations of 10–20 ns are typical). For
standard systems, preionization is achieved, as in Fig. 10.17, by a row of sparks. However,
for the largest systems, more complex preionization arrangements are adopted, using either
an auxiliary electron-beam or an X-ray source.

Excimer lasers with high repetition rate (up to �500 Hz) and high average power (up
to �100 W) are commercially available, while larger, laboratory, systems exist with higher
average power (in excess of a few kW). The efficiency of these lasers is usually quite high
(2–4%) as a result of the high quantum efficiency (see Fig. 10.21) and the high efficiency of
the pumping processes.

Excimer lasers are used to ablate plastic as well as biological materials with great preci-
sion since these material exhibit strong absorption at UV wavelengths. In fact, in some of these
materials, the penetration depth, for each laser pulse, may be only a few�m. Due to the strong
absorption and short pulse duration, a violent ablation process is produced wherein these
materials are directly transformed into volatile components. Applications include drilling
of very precise holes in thin plastic films (as used e.g., for the ink-jet printer head) and
corneal sculpturing to change the refractive power of the eye and hence correct myopia. In
the field of lithography, the 193 nm UV light provides a good illumination source for achiev-
ing submicron-size features in semiconductor microchips. Excimer lasers can also be used as
dye-laser pumps since most dye absorb strongly in the UV.
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10.3. CHEMICAL LASERS.18,19/

A chemical laser is usually defined as one in which the population inversion is “directly”
produced by an exothermic chemical reaction�. Chemical lasers usually involve either an
associative or a dissociative chemical reaction between gaseous elements.

An associative reaction can be described by an equation of the form A CB ! AB. For an
exothermic reaction, some of the heat of reaction will appear as either rotational-vibrational
or electronic energy of the molecule AB. Thus, if a population inversion is achieved, the asso-
ciative reaction can in principle lead to either a vibrational-rotational or a vibronic transition.
In spite of much effort, however, only chemical lasers operating on vibrational-rotational
transitions have been demonstrated so far. For this kind of transition, the range of oscilla-
tion wavelengths, achieved so far, lies between 3 and 10�m, with the HF and DF lasers,
considered in the next section, being the most notable examples.

A dissociative reaction, on the other hand, can be described by an equation of the general
form ABC ! A C BC. If the reaction is exothermic, some of the heat of reaction can be left
either as electronic energy of the atomic species A or as internal energy of the molecular
species BC. The most notable example of a laser exploiting this type of reaction is the atomic
iodine laser, in which iodine is chemically excited to its 2P1=2 state and laser action occurs
between the 2P1=2 state and the 2P3=2 ground state .� D 1.315�m/. Excited atomic iodine
may be produced via the exothermic dissociation of CH3I (or CF3I, C3F7I), the dissociation
being produced by means of UV light .�300 nm/ from powerful flashlamps. More recently,
excited iodine has been produced via generation of excited molecular oxygen by reacting
molecular chlorine with hydrogen peroxide. The molecular oxygen, excited to its long-lived
singlet-state (the ground electronic state of oxygen molecule happens in fact to be a triplet
state), in turn transfers its energy to atomic iodine (oxygen-iodine chemical laser).

Chemical lasers are important mainly for two main reasons: (1) They provide an interest-
ing example of direct conversion of chemical energy into electromagnetic energy. (2) They are
potentially able to provide either high output power (in cw operation) or high output energy (in
pulsed operation). This is because the amount of energy available in an exothermic chemical
reaction is usually quite large�.

10.3.1. The HF Laser

HF chemical lasers can be operated using either SF6 or F2 as compounds donating the
atomic fluorine, and, from a practical view-point, the two lasers are very different. In commer-
cial devices, the inert SF6 molecule is used as fluorine donor and the gas mixture also contains
H2 and a large amount of He. An electrical discharge is then used to dissociate the SF6 and
excite the reaction. The overall pressure of the mixture is around atmospheric pressure, the

� According to this definition, the gas-dynamic CO2 laser, briefly considered in Sect. 6.1., should not be regarded as
a chemical laser even though the upper state population arises ultimately from a combustion reaction.

� For example, a mixture of H2, F2, and other substances (16% of H2 and F2 in a gas mixture at atmospheric
pressure) has a heat of reaction equal to 2,000 J/liter, of which 1,000 J is left as vibrational energy of HF (a large
value in terms of available laser energy).
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laser is pulsed, and the laser configuration is very similar to that of a CO2 TEA laser. The
output energy of this type of device is, however, appreciably smaller than the input electrical
energy. Thus, the laser derives only a small part of its output energy from the energy of the
chemical reaction and it can only be considered marginally as a chemical laser. On the other
hand, when a F2 and H2 gas mixture is used, the laser operates cw and it derives most its
power from the chemically reacting species. So, only the latter type of HF chemical laser will
be considered below.

In a F2 C H2 chemical laser a certain amount of atomic fluorine gets produced from the
fluorine molecules. This atomic fluorine can then react with molecular hydrogen according to
the reaction

F C H2 ! HF� C H (10.3.1)

which produces atomic hydrogen. This atomic hydrogen can then react with molecular
fluorine according to the second reaction

H C F2 ! HF� C F (10.3.2)

Atomic fluorine is then restored after this second reaction and this fluorine atom can then
repeat the same cycle of reaction, and so on. We thus have a classical chain-reaction which
can result in a large production of excited HF molecules. It should be noted that the heats of
reaction of Eqs. (10.3.1) and (10.3.2) are 31.6 kcal/mole and 98 kcal/mole respectively, the
two reactions being therefore referred to as the cold and hot reaction, respectively. It should
also be noted that, in the case of the cold reaction, the energy released,	H D 31.6 kcal=mole,
can easily be shown to correspond to an energy of 	H Š 1.372 eV for each molecular HF
produced. Since the energy difference between two vibrational levels of HF, corresponding to
a transition wavelength of � Š 3�m, is about 	E Š 0.414 eV, one then understands that, if
all this energy were released as vibrational excitation, vibrationally excited HF molecules up
to the � D 	H=	E Š 3 vibrational quantum number could be produced (see Fig. 10.22a). It
is found, however, that the fraction of the reaction energy which goes into vibrational energy
depends on the relative velocity of the colliding partners and on the orientation of this velocity
compared to the H-H axis. In a randomly oriented situation such as in a gas, one can then
calculate the fraction of molecules found in the � D 0, 1, 2 or 3 vibrational states respectively.
The relative numbers N.�/ of excited HF molecules are also indicated in the same figure. For
instance, one can see that 5 out of 18 molecules are found in the � D 3 state and thus take up
almost all the available energy as vibrational energy. On the other hand, 1 out of 18 molecules
are found in the ground .� D 0/ vibrational state and, in this case, all the reaction enthalpy
is found as kinetic energy of the reaction products (mostly H, this being the lightest product).
From the figure one thus sees that, if this were the only reaction, a population inversion would
be established, particularly for the .� D 2/ ! .� D 1/ transition. In the case of the hot
reaction, on the other hand, excited HF up to the .� D 10/ vibrational level can be produced
(Fig. 10.22b). The relative populations of these vibrational levels, N.�/, can be calculated
and is also shown in the same figure. One now sees that a pretty strong population inversion
exists particularly for the .� D 5/ ! .� D 4/ transition. From the above considerations
one can then easily calculate that, e.g., for the cold reaction of Eq. (10.3.1), more than 60%
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FIG. 10.22. Pumping of the vibrational levels of the HF molecule by the two reactions F C H2 ! HF� C H (a) and
H C F2 ! HF� C F (b). The relative populations, N.�/, of each vibrational state, of quantum number � , are also
indicated in the two figures.

of the reaction energy is, on average, released as vibrational energy. The reason why the HF
molecule is left in an excited vibrational state, after chemical reaction, can be understood in a
simple way. Consider an F atom colliding with a H2 molecule. As a result of the high electron
affinity of a fluorine atom, the interaction is strongly attractive and leads to a considerable
polarization of the H2 charge distribution even at large F-H2 distances. As a consequence
of the electron’s low inertia, an electron can be transferred to the fluorine atom from the
nearest hydrogen atom, hence forming the HF ionic bond, before the spacing between the
hydrogen and fluorine has adjusted itself to the internuclear separation corresponding to the
HF equilibrium distance. This classical picture indicates that, after reaction has occurred, the
HF molecule is left in an excited vibrational state.

As one can see from the above discussion, a consequence of the combined effect of both
the cold and hot reactions, described by Eqs. (10.3.1) and (10.3.2), is that a population inver-
sion between several vibrational levels of HF is produced in an HF laser. If the active medium
is placed in a suitable resonator, laser action on a number of transitions from vibrationally
excited HF molecules is thus expected to occur. Laser action has indeed been observed on
several rotational lines of the .� D 1/ ! .� D 0/ transition up to the .� D 6/ ! .� D 5/
transition. In fact, due to the anharmonicity of the interaction potential, the vibrational energy
levels of Fig. 10.22 are not equally spaced and the laser spectrum actually consists of many
roto-vibrational lines encompassing a rather wide spectral range .� D 2.7–3.3�m/. It should
also be noted that the number of observed laser transitions is larger than one would have
expected according to the population inversion situation described in Fig. 10.22. As already
discussed in the case of a CO laser, there are two reasons why oscillation can occur on so
many lines: (1) The phenomenon of cascading: if, in fact, the .� D 2/ ! .� D 1/ tran-
sition (usually the strongest one) lases, the population will be depleted from level 2 and
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FIG. 10.23. Supersonic-diffusion HF (or DF) chemical laser (after ref..18/).

will accumulate in level 1. Consequently, laser action on the .� D 3/ ! .� D 2/ and
.� D 1/ ! .� D 0/ transition now become more favored. (2) The phenomenon of partial
inversion, according to which there may be a population inversion between some rotational
lines even when no inversion exists between the overall populations of the corresponding
vibrational levels. Finally, it should be noted that, besides laser action in HF, laser action can
also be achieved in the analogous compounds DF, HCl, and HBr thus providing oscillation on
a large number of transitions in the 3.5–5�m range.

A possible configuration for a high-power cw HF or DF laser is shown in Fig. 10.23.
Fluorine is thermally dissociated by an arc jet heater and then expanded to supersonic veloc-
ity .� Mach 4/ through some appropriate expansion nozzles. Molecular hydrogen is then
mixed downstream through some appropriate perforated tubes inserted in the nozzles. Down-
stream in the expansion regions, excited HF molecules are produced by the chain reactions
Eqs. (10.3.1) and (10.3.2) and a suitable resonator, with its axis orthogonal to the flow direc-
tion, is placed around this region. To handle the large power available in the expanding beam,
usually of large diameter, unstable resonators exploiting metallic water-cooled mirror are
often utilized. Chemical lasers of this type can produce very large c.w. output powers (in
the MW range!) with good chemical efficiency.

Pulsed TEA type HF lasers are commercially available and have found a limited use
when an intense source of middle infrared radiation is needed (e.g., in spectroscopy). HF and
DF chemical lasers of the type described in Fig. 10.23 are used exclusively for military appli-
cations. Safety considerations have indeed prevented the use of these lasers for commercial
applications. In fact, the F2 molecule is one of the most corrosive and reactive element known,
the waste products are difficult to dispose of, and, under certain conditions, the chain reaction
Eqs. (10.3.1) and (10.3.2) may even become explosive. In the military field, due to the large
available output powers, these lasers can be used as directed energy weapons to e.g., destroy
enemy missiles. A military c.w. device named MIRACL (Mid-Infrared Advanced Chemical
Laser), using DF, has given the largest c.w. power of any laser (2.2 MW). DF rather than
HF molecule was used because the system was intended for use from a ground station and
the DF emission wavelengths fall in a region of relatively good atmospheric transmission.
More recently, HF lasers of somewhat higher power .�5 MW/ have been constructed. The
laser is intended to be used either from a high altitude plane, for destruction of missile during
their ballistic flight, or from a space station, for missile destruction during their lift-off phase
(where the rocket has much lower speed and hence is much more vulnerable).
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10.4. THE FREE-ELECTRON LASER.20/

In a free-electron laser (FEL) an electron beam moving at a speed close to the speed of
light is made to pass through the magnetic field generated by a periodic structure (called the
wiggler or the undulator) (Fig. 10.24). The stimulated emission process comes about through
the interaction of the e.m. field of the laser beam with these relativistic electrons moving in
the periodic magnetic structure. As in any other laser, two end mirrors are used to provide
feedback for laser oscillation. The electron beam is injected into the laser cavity and then
deflected out the cavity using suitable bending magnets.

To understand how this interaction comes about, we first consider the case of sponta-
neously emitted radiation, i.e., when no mirrors are used. Once injected into the periodic
structure, the electrons acquire a wiggly, or undulatory, motion in the plane orthogonal to the
magnetic field direction (Fig. 10.24). The resulting electron acceleration produces a longitu-
dinal emission of the synchrotron radiation type. The frequency of the emitted radiation can
be derived, heuristically, by noting that the electron oscillates in the transverse direction at an
angular frequency !q D .2
=�q/�z Š .2
=�q/c, where �q is the magnet period and �z is
the (average) longitudinal velocity of the electron (which is almost equal to the vacuum light
velocity c). Let us now consider a reference frame that is moving longitudinally at velocity
�z. In this frame, the electron will be seen to oscillate essentially in the transverse direction
and thus looks like an oscillating electric dipole. In this reference frame, due to the Lorentz
time-contraction, the oscillation frequency will then be given by

!0 D !q

Œ1 � .�z=c/2�1=2
(10.4.1)

and this will therefore be the frequency of the emitted radiation. If we now go back to the lab-
oratory frame, the radiation frequency undergoes a (relativistic) Doppler shift. The observed
frequency ! 0 and the corresponding wavelength �0 will then be given by

! 0 D
�

1 C �z=c

1 � .�z=c/

�1=2

!0 Š 2!q

1 � .�z=c/2
(10.4.2)

FIG. 10.24. Basic structure of a free-electron laser (courtesy of Luis Elias, University of California, at Santa Barbara
Quantum Institute).
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and

�0 D �q
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1 �

��z

c

�2
�

(10.4.3)

respectively. Note that, since �z Š c, �0 is generally much smaller than the magnet period.
To calculate the quantity Œ1 � .�z=c/2� appearing in both Eqs. (10.4.2) and (10.4.3), we begin
by noting that, for a completely free electron moving with velocity �z along the z axis, one
would have Œ1 � .�z=c/2� D .m0c2=E/2, where m0 is the rest mass of the electron and E its
energy. However, for a given total energy, the wiggling motion reduces the value of �z, i.e.,
it increases the value of Œ1 � .�z=c/2�. A detailed calculation then shows that this quantity is
given by

1 �
��z

c

�2 D 

1 C K2� �m0c2

E

�2

(10.4.4)

where the numerical constant K, which is usually smaller than 1, is referred to as the undulator
parameter. Its value is obtained from the expression K D ehB2i1=2�q=2
m0c2, where B is the
magnetic field of the undulator and where the average is taken along the longitudinal direction.
From Eqs. (10.4.2) and (10.4.3), with the help of Eq. (10.4.4), we get our final result

!0 D 4
 c

�q

�
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1 C K2
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�2

(10.4.5)

and

�0 D �q

2

�
m0c2

E

�2 

1 C K2

�
(10.4.6)

which shows that e.g., the emission wavelength can be changed by changing the magnet
period �q, and/or the energy E of the electron beam. Assuming, as an example, �q D 10 cm
and K D 1, we find that the emitted light can range from the infrared to the ultraviolet
by changing the electron energy from 102 to 103 MeV. Note that, according to our earlier
discussion, the emitted radiation is expected to be polarized in the plane orthogonal to the
magnetic field direction (see also Fig. 10.24). To calculate the spectral line shape and the
bandwidth of the emitted radiation we notice that, in the reference frame considered above,
the electron emission is seen to last for a time 	t0 D .l=c/Œ1 � .�z=c/2�1=2, where l is the
overall length of the wiggler magnet. With the help of Eq. (10.4.1) one then sees that the
emitted radiation from each electron consists of a square pulse containing a number of cycles,
Ncyc D !0	t0=2
 D l=�q, i.e., equal to the number of periods Nw D l=�q of the wiggler. From
standard Fourier-transform theory it then follows that such a pulse has a power spectrum of
the Œsin.x=2/=.x=2/�2 form, where x D 2
Nw.� � �0/=�0. The spectral width 	�0 (FWHM)
is then approximately given by the relation

��0

�0
D 1

2Nw
(10.4.7)
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FIG. 10.25. Spectrum (a) of the spontaneously emitted radiation, and (b) of the stimulated emission cross section in
a free- electron laser as a function of the normalized quantity x D 2
Nw.� � �0/=�0.

This spectrum is shown in Fig. 10.25a as a function of the dimensionless quantity x.
Since all electrons, if injected with the same velocity and in the same direction, will show
the same line shape, this corresponds to a homogeneous line shape for the FEL laser. Inho-
mogeneous effects arise from such factors as spread in electron energy, angular divergence
of the electron beam, and variation in magnetic field over the beam cross section. Note that,
since the number of undulator periods may typically be Nw � 102, we have from Eq. (10.4.7)
	�0=�0 Š 5 � 10�3. Note also that there is an alternative way of considering the behavior of
the emitted radiation. In the rest frame of the electron that we considered earlier, the magnetic
field of the undulator appears to move at nearly the velocity of light. It can be shown that the
static magnetic field then appears to the electrons essentially like a counter-propagating e.m.
wave. The synchrotron emission can therefore be considered as arising from Compton back
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scattering of this “virtual” e.m. wave from the electron beam. For this reason the correspond-
ing type of free electron laser (FEL) is sometimes referred to as operating in the Compton
regime (Compton FEL).

A calculation of the stimulated emission cross section requires a detailed analysis, which
we do not consider here, of the interaction between a longitudinally propagating e.m. wave
and the electron propagating in the wiggler magnetic field. We merely wish to point out that,
unlike the situation that we have considered previously for all other lasers, the spectral dis-
tribution of this cross section is not the same as that of the spontaneously emitted radiation
but is instead proportional to its frequency derivative. Accordingly, its shape will be as shown
in Fig. 10.25b and one has gain on the low-frequency side and loss on the high-frequency
side of the transition. This unusual behavior is a result of the interaction being based upon a
light-scattering process rather than absorption or emission from bound states.

So far, demonstrations of FEL operation have been made on several devices (more than
ten) around the world, with oscillation wavelengths ranging from millimeter waves up to
the UV region. Many more FELs are now at various stages of planning. All of these lasers
require large facilities since they involve using rather large e-beam accelerators. Historically,
the first FEL was made to operate at � D 3.4�m using the Stanford University superconduct-
ing linear accelerator..21/ Since the incoming e-beam consisted of 3.2-ps pulses separated by
� D 84.7 ns, the cavity length L was chosen to be equal to the cavity round trip time (i.e.,
L D c�=2 D 12.7 m) and the laser was operated in the synchronously mode-locked regime.
One of the most important issues for a FEL is related to its efficiency. Since the emitted fre-
quency depends on the electron energy [see Eq. (10.4.5)], the maximum energy that can be
extracted from the electron is that which shifts its energy so that the corresponding operating
frequency falls outside the gain curve. Consequently the maximum efficiency �max, defined as
the ratio between the maximum energy given to the laser beam and the initial electron energy,
is approximately given by just 	�0=�0, i.e., is given by �max D .1=2Nw/. This means that
the efficiency in such a device is rather limited .10�2–10�3/. Two ways of obtaining higher
efficiency are being actively pursued: (1) The period of the magnet is gradually decreased
along the e-beam direction so as to keep the �q=E2 ratio constant (tapered wiggler). (2) The
energy remaining in the electron beam, after leaving the wiggler, is recovered by decelerating
the electrons. Much higher efficiencies are predicted to be achievable using these approaches
and indeed have been achieved to some degree. As a final comment we point out that the
FELs described so far all use e-beam machines of high energy .E > 10 MeV/ and low cur-
rent .I � 1–100 A/. Under these conditions, as previously discussed, the light emission can
be described as arising from Compton scattering of the virtual quanta of the magnetic field
from individual electrons (Compton regime FEL). Free electron lasers using e-beams of lower
energy .E D 1–2 MeV/ and much higher currents .I�10–20 kA/ have also been made to
operate. In this case, the electron-electron interaction becomes so strong that collective oscil-
latory motions (plasma waves) are induced in the e-beam when interacting with the e.m. wave
in the wiggler. The emission can then be looked upon as arising from scattering of the virtual
quanta of the magnetic field from these collective motions rather than from single electrons.
The emitted frequency, �0 D 2
=!0, is then no longer given by Eq. (10.4.5) but in fact down-
shifted by the frequency of this collective motion. The phenomenon is analogous to Raman
scattering of light from molecular vibrations, and the corresponding laser is said to operate in
the FEL-Raman regime. Because of the lower value of electron energy involved, these lasers
all oscillate in the millimeter wave region.
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As a conclusion to this section we can say that the most attractive properties of FELs are:
(1) Wide tunability; (2) excellent beam quality, close to the diffraction limit; and potentially,
(3) very high efficiency, and thus very high laser power (the average power of the e-beam of
the Stanford Linear Accelerator is about 200 kW). Free electron lasers are, however, inher-
ently large and expensive machines, and interest in their applications is likely to be strongest
in the frequency ranges where more conventional lasers are not so readily available e.g., in
the far IR (100–400�m) or in the vacuum ultraviolet .�<100 nm/.

10.5. X-RAY LASERS.22/

The achievement of coherent oscillation in the x-ray region has been a long sought
dream that is slowly but steadily coming true. The potential applications of x-ray lasers
are indeed very important. They include in fact such possibilities as: (i) X-ray holography
or x-ray microscopy of e.g., living cells or cell constituents, allowing, respectively, three-
dimensional or two-dimensional pictures with sub-nanometer resolution to be obtained. (ii)
X-ray lithography, where patterns with extremely high resolution could be produced.

Before discussing what has been achieved so far in this wavelength region, let us indicate
the difficulties that have to be overcome to obtain x-ray laser operation. Starting with funda-
mental considerations, we recall that the threshold pump power of a four-level laser is given
by Eq. (7.3.12) which is here reported for convenience

Pth D h�mp

�p

� A

� �
(10.5.1)

The minimum threshold, Pmth, is of course attained for � D �.� D �0/ D �p, where �p

is the cross section at the peak of the transition. Furthermore, one must take into account
that, in the x-ray region, the upper state lifetime � is established by the spontaneous life-
time �sp. From Eqs. (2.4.29) and (2.3.15) one then gets 1=�p�sp / �2

0=gt.0/, independently of
the transition matrix element j�j. For either Eq. (2.4.9b) (homogeneous line) or Eq. (2.4.28)
(inhomogeneous line) one then finds that gt.0/ / 1=	�0, where 	�0 indicates here the tran-
sition linewidth for either a homogeneous or inhomogeneous line. Thus, in either case, from
Eq. (10.5.1), with h�mp Š h�0, we obtain Pmth / �3

0	�0. At frequencies in the VUV to soft
x-rays and at moderate pressures, we may assume that the linewidth is dominated by Doppler
broadening. Hence, [see Eq. (2.5.18)],	�0 / �0 and Pmth is expected to increase as �4

0 . At the
higher frequencies corresponding to the x-ray region, the linewidth is dominated by natural
broadening since the radiative lifetime becomes very short (down to the femtosecond region).
In this case one has 	�0 / 1=�sp / �3

0 and Pmth is expected to increase as �6
0 . Thus, if we

go from e.g., the green .� D 500 nm/ to the soft x-ray region .� Š 10 nm/ the wavelength
decreases by a factor of 50 and Pmth increases by very many orders of magnitude. From a
more practical viewpoint we note that multilayer dielectric mirrors for the x-ray region are
lossy and difficult to make. A basic problem is that the difference in refractive index between
various materials become very small in this region. Dielectric multi layers with a large num-
ber of layers (hundreds) are therefore needed to achieve a reasonable reflectivity. Scattering
of light at the many interfaces then makes the mirrors very lossy and, furthermore, the mirrors
have difficulty to withstand the high intensity of a x-ray-laser beam. For these reasons, the
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x-ray lasers that have been operated so far, have operated without mirrors as ASE (amplified
spontaneous emission) devices.

As a representative example, we will consider the soft x-ray laser based on 24-times
ionized selenium .Se24C/ as the active medium,.23/ this being the first laser of a kind (the x-ray
recombination laser) which now includes a large number of materials. Pumping is achieved
by the powerful second harmonic beam .� D 532 nm/ of the Novette laser (pulse energy
�1 KJ, pulse duration �1 ns), consisting of one arm of the Nova laser, at Lawrence Livermore
Laboratory in the U.S.. The beam is focused to a fine line .d Š 200�m, l D 1.2 cm/ on a thin
stripe (75 nm thick) of selenium evaporated on a 150-nm-thick foil of Formvar (Fig. 10.26).
The foil could be irradiated from one or both sides. Exposed to the high intensity of this
pump beam .�5 � 1013 W=cm2/, the foil explodes and a highly ionized selenium plasma
is formed, whose shape is approximately cylindrical with a diameter d Š 200�m. During
the electron-ion recombination process, a particularly long-lived constituent of this plasma is
formed, consisting of Se24C. This ion has the same ground-state electronic configuration as
neutral Ne (1s22s22p6, see Fig. 10.1) and, accordingly, it is usually referred to as neon-like
selenium. Impact collisions with the hot plasma electrons .Te Š 1 keV/ then raises Se24C
from its ground state to excited states and population inversion between the states 2p53p and
2p53s is achieved because the lifetime of the 3s ! ground state transition is much shorter
than the lifetime of the 3p ! 3s transition (both transitions are electric-dipole allowed). With
a pump configuration as in Fig. 10.26, a strong longitudinal emission due to ASE is observed
on two lines (�1 D 20.63 nm and �2 D 20.96 nm) of the 2p53p ! 2p53s transition (see
Fig. 10.1). Owing to the much higher nuclear charge of Se compared to Ne, these lines fall
in the soft x-ray region. From the length dependence of the emitted energy it is deduced that
a maximum single-pass gain, G D exp.�pNl/, of about 700 has been obtained. Note that
this gain is still well below the “threshold” for ASE as defined in Sect. 2.9.2. In fact, for the
experimental situation described here, the emission solid angle is ˝ Š 10�4 sterad and the
linewidth is expected to be still dominated by Doppler broadening. From Eq. (2.9.4b) one then
gets Gth Š 4.5 � 105. This means that the emitted intensity due to ASE is still much smaller
than the saturation intensity of the amplifier. Indeed, the x-ray output energy produced was an
extremely small fraction .�10�10/ of the pump energy.

FIG. 10.26. Transverse irradiation geometry of a soft X-ray laser using the exploding-foil technique.
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Since this first laser was demonstrated, research activity in this field has been very
strong..24/ Thus many new active media have been made to operate namely many more neon-
like ions (from Ag37C to Ar8C), many hydrogen-like ions (from Al12C to C5C), lithium-like
ions (from Si11C to Al10C) and nickel-like ions (from Au51 to Eu35C) ions. The range of the
oscillation wavelength now extends from �3.6 to 47 nm while the single pass gain, G, gener-
ally ranges from 10 to 103. To achieve the high pump powers required [see Eq. (10.5.1)] and, at
the same time, reduce the corresponding pump energy, picosecond or even femtosecond laser
pulses are now also used for pumping. Amplified spontaneous emission (at � D 46.9 nm)
has also been observed in neon-like Ar8C by passing a strong current pulse of short duration
through a 1 � 10 cm long capillary filled with Ar.

10.6. CONCLUDING REMARKS

In this chapter, the most notable examples of lasers involving low-density media have
been considered. In general these lasers tend to be more bulky, and often less efficient than
the lasers considered in the previous chapter (notably semiconductor and diode-pumped solid-
state lasers). For these reasons, whenever possible, these low-density lasers are tending to be
superseded by the solid-state-laser counterparts. This is for instance the case of the Argon
laser, which is facing a strong competition from the green beam emitted by a diode-pumped
Nd laser (e.g., Nd:YVO4) with intracavity second-harmonic generation. This is also the case,
at least for quite a few applications, of the red-emitting He-Ne laser, which is facing strong
competition from red-emitting InGaAlP semiconductor lasers. Low-density lasers will how-
ever survive in those frequency ranges which are not covered effectively by semiconductor
or diode-pumped solid-state lasers. This is for instance the case for middle-infrared lasers,
the CO2 lasers being the most notable example here, and for the lasers oscillating in the UV
(e.g. excimer lasers) down to the X-ray spectral region. Another field of applications where
low-density lasers will continue to perform well is where very high powers are required, with
CO2 lasers, excimer lasers, and chemical lasers as important examples. Thus, as a conclusion,
one can foresee that lasers based on low-density media will still maintain an important role in
the laser field.

PROBLEMS

10.1. List at least four lasers, using a low-density active medium, whose wavelengths fall in the
infrared.

10.2. List at least four lasers, using a low-density active medium, whose wavelengths fall in the UV to
soft-x-ray region. What are the problems to be faced in achieving laser action in the UV or x-ray
region?

10.3. For metalworking applications, a laser with cw output power >1 kW is required. Which lasers
meet this requirement?
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10.4. The 514.5 nm transition of an argon-ion laser is Doppler broadened to a line-width of �3.5 GHz.
The cavity length of the laser is 100 cm and, when pumped three times above threshold, the
laser emits a power of 4 W in a TEM00 mode-profile. Assuming that the frequency of one of
the oscillating TEM00 modes coincides with the center of the gain line, calculate the number of
TEM00 modes which are expected to oscillate.

10.5. Consider the argon-ion laser described in the previous problem and assume that the laser is
mode-locked by an acousto-optic modulator. Calculate: (i) The duration and the peak power of
the mode-locked pulses. (ii) The drive frequency of the rf oscillator.

10.6. Assume that the bond between the two nitrogen atoms of the N2 molecule can be simulated by a
spring of suitable elastic constant. Knowing the vibrational frequency (Fig. 10.9) and the atomic
mass calculate the elastic constant. Compare this constant with that obtainable from the ground
state curve of Fig. 10.19.

10.7. Show that, if the elastic constant of the N-N bond is taken to be the same as that of the iso-
electronic CO molecule, the .� 0 D 1/ ! .� D 0/ transition wavelength of the N2 molecule is
approximately the same as that of the CO molecule.

10.8. Assume that each of the two oxygen-carbon bonds of the CO2 molecule can be simulated by a
spring with elastic constant k. With the assumption that there is no interaction between the two
oxygen atoms and knowing the �1 frequency .�1 D 1337 cm�1/, calculate this constant.

10.9. Knowing the elastic constant k between the two oxygen-carbon bonds, obtained in the previous
problem, calculate the expected frequency �3 of the asymmetric stretching mode and compare
the result with the value shown in Fig. 10.9.

10.10. Show that each C-O bond of the CO2 molecule cannot be simulated by elastic springs if the
harmonic oscillation corresponding to the bending mode of frequency �2 has to be calculated.

10.11. From the knowledge that, for a Boltzmann distribution, the maximum population of the upper
laser level of a CO2 molecule occurs for the rotational quantum number J0 D 21 (see Fig. 10.11),
calculate the rotational constant B [assume T D 400 K, which corresponds to an energy kT such
that .kT=h/ Š 280 cm�1]. From this value then calculate the equilibrium distance between the
C atom and each O atom.

10.12. Using the result of the previous problem, calculate the frequency spacing (in cm�1) between the
rotational lines of the CO2 laser transition [assume that the rotational line constant of the lower
laser level is the same as that of the upper laser level, and remember that only levels with odd
values of J are occupied in a CO2 molecule].

10.13. The linewidth, due to collision broadening, of the CO2 laser transition is given by 	�c D
7.58 . CO2 C 0.73 N2 C 0.6 He/p.300=T/1=2 MHz, where the  are the fractional partial
pressures of the gas mixture, T is the gas temperature and p is the total pressure (in torr) (see
example 3.3). Taking a ratio of the partial pressures of CO2, N2, and He molecules of 1:1:8 and
assuming a separation between rotational lines of the CO2 laser transition of	�r Š 2cm�1, cal-
culate the total gas pressure needed to make all the rotational lines merge together. What would
the width of the gain curve be?

10.14. Consider a CO2 laser with high enough pressure to have all its rotational lines merged together.
If this laser were mode-locked, what would be the order of magnitude of the corresponding laser
pulse-width?

10.15. Show that a reaction energy of 31.6 kcal/mole, as in the HF cold reaction [see Eq. (10.3.1)], is
equivalent to an energy of 1.372 eV released for each molecular reaction.
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10.16. Consider the cold reaction of Fig. 10.22a and take the values shown in the figure for the relative
populations of HF molecules which, after reaction, are left in the first three vibrational levels.
Calculate the fraction, �, of heat released in the reaction which goes into vibrational energy.

10.17. Repeat the previous calculation for the hot reaction of Fig. 10.22b.

10.18. To reach the final end products of the cold reaction, see Eq. (10.3.1), one can choose a reaction
path-way where one first dissociates the H2 molecule, to obtain the single atoms F, H, and H, and
then let the fluorine and one hydrogen atom recombine together. Similarly, for the hot reaction,
see Eq. (10.3.2), one can first dissociate molecular fluorine and then recombine one fluorine
with the hydrogen atom. Given the two possibilities, relate the difference in heat of reaction of
these two reactions to the difference in dissociation energy between the fluorine and hydrogen
molecules.
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11

Properties of Laser Beams

11.1. INTRODUCTION

In Chap. 1 it was stated that the most characteristic properties of laser beams are
(1) monochromaticity, (2) coherence (spatial and temporal), (3) directionality, (4) brightness.
The material presented in earlier chapters allows us to now examine these properties in more
detail and compare them with the properties of conventional light sources (thermal sources).

In most cases of interest to us, the spectral bandwidth of the light source 	! is much
smaller than the mean frequency <!> of the spectrum (quasi-monochromatic wave). In this
case, the electric field of the wave, at position r and time t, can be written as

E.r, t/ D A.r, t/ exp j Œ<!>t � �.r, t/� (11.1.1)

where A.r, t/ and �.r, t/ are both slowly varying over an optical period, i.e.,

�ˇ̌ˇ̌ @A

A@ t

ˇ̌
ˇ̌ ,

ˇ̌
ˇ̌@ �
@ t

ˇ̌
ˇ̌� � h!i (11.1.2)

We then define the intensity of the beam as

I.r, t/ D E.r, t/E�.r, t/ D jA.r, t/j2 (11.1.3)

11.2. MONOCHROMATICITY

We have seen in Sects. 7.9–7.11 that the frequency fluctuations of a c.w. single-mode
laser mostly arise from phase fluctuations rather than amplitude fluctuations. Amplitude
fluctuations come in fact from pump or cavity loss fluctuations. They are usually very
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small .�1%/ and can be further reduced by suitable electronically-controlled feedback
loops. To first order we can thus take A.t/ to be constant for a single-mode laser and
so consider its degree of monochromaticity to be determined by frequency fluctuations.
The theoretical limit to this monochromaticity arises from zero-point fluctuations and is
expressed by Eq. (7.9.2). However, this limit generally corresponds to a very low value
for the oscillating bandwidth, 	�L, which is seldom reached in practice. In the exam-
ple 7.9, for instance, the value of 	�L is calculated to be �0.4 mHz for a He-Ne laser
with 1 mW output power. A notable exception to this situation occurs for a semiconduc-
tor laser, where, due to the short length and high loss of the laser cavity, this limit is
very much higher .	�L Š 1 MHz/ and the actual laser linewidth is indeed often deter-
mined by these quantum fluctuations. Otherwise, in most other cases, technical effects
such as vibrations and thermal expansion of the cavity are dominant in determining the
laser linewidth 	�L. If a monolithic structure is used for the laser cavity configuration,
as in the non-planar ring oscillator of Fig. 7.26, typical values of 	�L may fall in the
10�50 kHz range. Much smaller linewidths (down to �0.1 Hz) can be obtained by stabiliz-
ing the laser frequency against an external reference, as discussed in Sect. 7.10. In pulsed
operation the minimum linewidth is obviously limited by the inverse of the pulse dura-
tion �p. For example, for a single-mode Q-switched laser, assuming �p Š 10 ns, one has
	�L Š 100 MHz.

In the case of a laser oscillating on many modes, the monochromaticity is obviously
related to the number of oscillating modes. We recall, for example, that in mode-locked oper-
ation, pulses down to a few tens of femtoseconds have been obtained. In this case, actually,
the corresponding laser bandwidth is in the range of a few tens of THz and the condition for
quasi-monochromatic radiation no longer holds well.

The degree of monochromaticity required depends, of course, on the given application.
Actually, the very narrowest laser linewidths are only needed for the most sophisticated
applications dealing with metrology and with fundamental measurements in physics (e.g.
gravitational wave detection). For other more common applications, such as interferomet-
ric measurements of distances, coherent laser radar, and coherent optical communications,
the required monochromaticity falls in the 10–100 kHz range while a monochromaticity of
�1 MHz is typical of what is needed for much of high resolution spectroscopy and it is cer-
tainly enough for optical communications using wavelength-division-multiplexing (WDM).
For some applications, of course, laser monochromaticity is not relevant. This is certainly the
case for important applications such as laser material working and for most applications in
the biomedical field.

11.3. FIRST-ORDER COHERENCE.1/

In Chap. 1 the concept of coherence of an e.m. wave was introduced in an intuitive
fashion, with two types of coherence being distinguished: (1) spatial and (2) temporal coher-
ence. In this section we give a more detailed discussion of these two concepts. In fact, as will
be better appreciated by the end of this chapter, it turns out that spatial and temporal coherence
describe the coherence properties of an e.m. wave only to first order.
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11.3.1. Degree of Spatial and Temporal Coherence

In order to describe the coherence properties of a light source, we can introduce a whole
class of correlation functions for the corresponding field. For the moment, however, we will
limit ourselves to looking at the first-order functions.

Suppose that a measurement of the field is performed at some point r1 in a time interval
between 0 and T. We can then obtain the product E.r1, t1/E�.r1, t2/ where t1 and t2 are given
time instants within the time interval 0�T. If the measurement is now repeated a large number
of times, we can calculate the average of the above product over all the measurements. This
average is called the ensemble average and written as

� .1/.r1, r1, t1, t2/ D hE.r1, t1/E
�.r1, t2/i (11.3.1)

For the remainder of this section as well as in the next two sections, we will consider the case
of a stationary beam,� as would for instance apply to a single-mode c.w. laser or to a c.w.
laser oscillating on many modes that are not locked in phase, or to a c.w. thermal light source.
In these cases, by definition, the ensemble average will only depend upon the time difference
� D t1–t2 and not upon the particular times t1 and t2. We can then write

� .1/.r1, r1, t1, t2/ D � .1/.r1, r1, �/ D hE.r1, t C �/E�.r1, t/i (11.3.2)

where we have set t D t2 and � .1/ only depends upon � . If now the field, besides being
stationary is also ergodic (a condition that also usually applies to the cases considered above),
then, by definition, the ensemble average is the same as the time average. We can then write

� .1/.r1, r1, �/ D lim
T!1

1

T

TZ
0

E.r1, t C �/ E�.r1, t/dt (11.3.3)

Note that, the definition of � .1/ in terms of a time average is perhaps easier to deal with than
that based on ensemble averages. However, the definition of � .1/ in terms of an ensemble
average is more general and, in the form given by Eq. (11.3.1), can be applied also to non
stationary beams, as we shall see in Sect. 11.3.4.

Having defined the first-order correlation function � .1/ at a given point r1, we can define
a normalized function � .1/.r1, r1, �/ as follows

� .1/ D hE.r1, t C �/ E�.r1, t/i
hE.r1, t/ E�.r1, t/i1=2hE.r1, t C �/ E�.r1, t C �/i1=2

(11.3.4)

Note that, for a stationary beam, the two ensemble averages in the denominator of Eq. (11.3.4)
are equal to each other and, according to Eq. (11.1.3), are both equal to the average beam
intensity hI.r1, t/i. The function � .1/, as defined by Eq. (11.3.4), is referred to as the complex
degree of temporal coherence while its magnitude,

ˇ̌
� .1/

ˇ̌
, as the degree of temporal coherence.

Indeed � .1/ gives the degree of correlation between the fields at the same point r1 at two

� A process is said to be stationary when the ensemble average of any variable that describes it (e.g., the analytic
signal or the beam intensity, in our case), is independent of time.
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instants separated by a time � . The function � .1/ has the following main properties: (1) � .1/ D
1 for � D 0, as apparent from Eq. (11.3.4); (2) � .1/.r1, r1, ��/ D � .1/�

.r1, r1, �/ as can
readily be seen from Eq. (11.3.4) with the help of Eq. (11.1.1); (3)

ˇ̌
� .1/.r1, r1, �/

ˇ̌ 	 1,
which follows from applying the Schwarz inequality to Eq. (11.3.4).

We can now say that a beam has perfect temporal coherence when � .1/ D 1 for
any � . For a c.w. beam this essentially implies that both amplitude and phase fluctuations
of the beam are zero so that the signal reduces to that of a sinusoidal wave, i.e., E D
A.r1/ exp j Œ!t � �.r1/�. Indeed, the substitution of this expression into Eq. (11.3.4) shows
that

ˇ̌
� .1/

ˇ̌ D 1 in this case. The opposite case of complete absence of temporal coherence
occurs when hE.r1, t C �/E�.r1, t/i and hence � .1/ vanishes for � > 0. Such would be the
case for a thermal light source of very large bandwidth (e.g., a blackbody source, see Fig. 2.3).
In more realistic situations

ˇ̌
� .1/

ˇ̌
is generally expected to be a decreasing function of � as indi-

cated in Fig. 11.1. Note that, according to the property stated as point (2) above,
ˇ̌
� .1/

ˇ̌
is a

symmetric function of � . We can therefore define a characteristic time �co (referred to as the
coherence time) as, for instance, the time for which

ˇ̌
� .1/

ˇ̌ D 1=2. For a perfectly coherent
wave, one obviously has �co D 1, while for a completely incoherent wave one has �co D 0.
Note that we can also define a coherence length Lc as Lc D c�co.

In a similar way, we can define a first-order correlation function between two points r1

and r2 at the same time as

� .1/.r1, r2, 0/ D hE.r1, t/ E�.r2, t/i D lim
T!1

1

T

TZ
0

E.r1, t/ E�.r2, t/dt (11.3.5)

We can also define the corresponding normalized function � .1/.r1, r2, 0/ as

� .1/ D hE.r1, t/ E�.r2, t/i
hE.r1, t/ E�.r1, t/i1=2 hE.r2, t/ E�.r2, t/i1=2

(11.3.6)

The quantity � .1/.r1, r2, 0/ is referred to as the complex degree of spatial coherence and
its magnitude, the degree of spatial coherence. Indeed � .1/ gives, in this case, the degree of
correlation between the fields at the two space points r1 and r2 at the same time. Note that,
from the Schwarz inequality, we again find that

ˇ̌
� .1/

ˇ̌ 	 1. A wave will be said to have a

FIG. 11.1. Example of possible behavior of the degree of temporal coherence j�.1/.�/j. The coherence time, �co,
can be defined as the half-width of the curve at half-height.
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perfect spatial coherence if
ˇ̌
� .1/

ˇ̌ D 1 for any two points r1 and r2 (provided that they lie on
the same wave front or on wave fronts whose separation is much smaller than the coherence
length Lc). Often, however, one has a situation of partial spatial coherence. This means that,
for a fixed value of r1, the degree of spatial coherence,

ˇ̌
� .1/

ˇ̌
, as a function of jr2 � r1j,

decreases from the value 1 (which occurs for r2 D r1) to zero as jr2 � r1j increases. This
situation is illustrated in Fig. 11.2 where the function

ˇ̌
� .1/.r2 � r1/

ˇ̌
is plotted vs r2 for a

given position of point P1 (of coordinate r1) on the wavefront. One sees that
ˇ̌
� .1/

ˇ̌
will be

larger than some prescribed value (e.g., 1/2) over a certain characteristic area, referred to as
the coherence area of the beam at point P1 of the wave-front.

The concepts of spatial and temporal coherence can be combined by means of the so-
called mutual coherence function, defined as

� .1/.r1, r2, �/ D hE.r1, t C �/E�.r2, t/i (11.3.7)

which can also be normalized as follows

� .1/.r1, r2, �/ D hE.r1, t C �/ E�.r2, t/i
hE.r1, t/ E�.r1, t/i1=2 hE.r2, t/ E�.r2, t/i1=2

(11.3.8)

This function, referred to as the complex degree of coherence, provides a measure of
the coherence between two different points of the wave at two different times. For a
quasi-monochromatic wave, it follows from Eqs. (11.1.1) and (11.3.8) that we can write

� .1/.�/ D
ˇ̌̌
� .1/

ˇ̌̌
expfj Œh!i� � �.�/�g (11.3.9)

FIG. 11.2. Plot of the degree of spatial coherence j�.1/.r2 � r1/j at a given point P1 of a wavefront, to illustrate the
concept of coherence area.
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where
ˇ̌
� .1/

ˇ̌
and �.�/ are both slowly varying functions of � , i.e.,

"
d
ˇ̌
� .1/

ˇ̌
ˇ̌
� .1/

ˇ̌
d�

,

ˇ̌
ˇ̌d�
d�

ˇ̌
ˇ̌
#

� h!i (11.3.10)

11.3.2. Measurement of Spatial and Temporal Coherence

One very simple way of measuring the degree of spatial coherence between two points,
P1 and P2, on the wave front of a light wave is by using Young’s interferometer (Fig. 11.3).
This simply consists of a screen 1, in which two small holes have been made at positions P1

and P2, and a screen 2 on which an interference pattern is produced by the light diffracted
from the two holes. More precisely, the interference at point P and time t will arise from the
superposition of the waves emitted from points P1 and P2 at times Œt�.L1=c/� and Œt�.L2=c/�,
respectively. One will therefore see interference fringes on screen 2, around point P, that are
more distinct the better the correlation between the two fields of the light wave, EŒr1, t �
.L1=c/� and EŒr2, t � .L2=c/�, where r1 and r2 are the coordinates of points P1 and P2

�. If
we now let Imax and Imin represent, respectively, the maximum intensity of a bright fringe and
the minimum intensity of a dark fringe in the region of the screen around P, we can define a
visibility, VP, of the fringes as

VP D Imax � Imin

Imax C Imin
(11.3.11)

One can now see that, if the diffracted fields, at point P, from the two holes 1 and 2 have the
same amplitude and if the two fields are perfectly coherent, their destructive interference at the
point of the dark fringe will give Imin D 0. From Eq. (11.3.11), one has in this case VP D 1. If,
on the other hand, the two fields are completely uncorrelated, they will not interfere at all and
one will have Imin D Imax. Recalling the discussion of the previous section, one can now see
that VP must be related to the magnitude of the function � .1/. To obtain the degree of spatial
coherence one must however consider the two fields, EŒr1, t � .L1=c/� and EŒr2, t � .L2=c/�,

FIG. 11.3. The use of Young’s interferometer for the measurement of the degree of spatial coherence between points
P1 and P2 of an e.m. wave.

� Note that the integration time T appearing in the correlation function [see Eq. (11.3.5)] is now equal to the time
taken for the measurement of the fringes (e.g., the exposure time of a photographic plate).
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at the same time. This then requires that the point P be chosen so that L1 D L2. In this case, it
will be shown in example 11.1 that

VP D j� .1/.r1, r2, 0/j (11.3.12)

On the other hand, if the two holes 1 and 2 do not produce the same amplitudes, i.e., the same
illumination, at point P, instead of Eq. (11.3.12) one has

VP D 2ŒhI1i hI2i�1=2

hI1i C hI2i
ˇ̌
ˇ� .1/.r1, r2, 0/

ˇ̌
ˇ (11.3.13)

where hI1i and hI2i are the average intensities of the ligth diffracted to point P from the two
holes. Note also that, for the general point P shown in Fig. 11.3, the visibility VP can be shown
to be equal to

ˇ̌
� .1/.r1, r2, �/

ˇ̌
, where � D .L2 � L1/=c.

Example 11.1. Calculation of the fringe visibility in Young’s interferometer. The field E.rP, t0/, at point
P of Fig. 11.3 and time t0, can be expressed as a superposition of the fields diffracted from holes 1 and 2
at times .t0 � L1=c/ and .t0 � L2=c/, respectively. We can then write

E.rP, t0/ D K1 E.r1, t0 � L1=c/C K2 E.r2, t0 � L2=c/ (11.3.14)

where E.r1, t0 � L1=c/ and E.r2, t0 � L2=c/ are the fields at points P1 and P2 while K1 and K2 represent
the fractions of these two fields which are diffracted to position P, respectively. The factors K1 and K2

are expected to be inversely proportional to L1 and L2 and to also depend on the hole dimensions and the
angle between the incident wave and the wave diffracted from P1 and P2. Since the diffracted secondary
wavelets are always a quarter of a period out of phase with the incident wave [see also the discussion of
“Huygens wavelets” appearing in Sect. 4.6] it follows that

K1 D jK1j exp Œ�.j
=2/� (11.3.15a)

K2 D jK2j exp Œ�.j
=2/� (11.3.15b)

If we now define t1 D t0 � L2=c and � D .L2=c/� .L1=c/, Eq. (11.3.14) can be written as

E D K1 E.r1, t C �/C K2 E.r2, t/ (11.3.16)

According to Eq. (11.1.3), the intensity at the point P can be written as I D EE� D jK1 E.r1, t C �/ C
K2 E.r2, t/j2, where Eq. (11.3.16) has been used. From this expression, with the help of Eq. (11.3.15),
one obtains

I D I1.t C �/C I2.t/C 2Re ŒK1 K�
2 E.r1, t C �/E� .r2, t/� (11.3.17)

where Re stands for real part. In the previous expressions, I1 and I2 are the intensities, at point P, due to
the emission from point P1 alone and point P2 alone, respectively, and are given by

I1 D jK1j2jE.r1, t C �/j2 D jK1j2 I.r1, t C �/ (11.3.18a)

I2 D jK2j2jE.r2, t/j2 D jK2j2 I.r2, t/ (11.3.18b)
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where I.r1, t C �/ and I.r2, t/ are the intensities at points P1 and P2. Taking the time average of both
sides of Eq. (11.3.17) and using Eq. (11.3.7), we find

hIi D hI1i C hI2i C 2jK1jjK2jReŒ� .1/.r1, r2, �/� (11.3.19)

where equations (11.3.15) have also been used. Equation (11.3.19) can be expressed in terms of � .1/ by
noting that from Eq. (11.3.8) we have

� .1/ D � .1/ŒhI.r1, t C �/ihI.r2, t/i�1=2 (11.3.20)

The substitution of Eq. (11.3.20) in Eq. (11.3.19) with the help of Eq. (11.3.18) gives
hIi D hI1i C hI2i C 2.hI1ihI2i/1=2 ReŒ� .1/.r1, r2, �/�. From Eq. (11.3.9) we then get

hIi D hI1i C hI2i C 2.hI1ihI2i/1=2j� .1/j cosŒh!i� � �.�/� (11.3.21)

Now, since both j� .1/j and �.�/ are slowly varying as a function of � , it follows that the variation of
intensity hIi as P is changed, i.e., the fringe pattern, is due to the rapid variation of the cosine term with
its argument h!i� . So, in the region around P, we have

Imax D hI1i C hI2i C 2.hI1ihI2i/1=2j� .1/j (11.3.22a)

Imin D hI1i C hI2i � 2.hI1ihI2i/1=2j� .1/j (11.3.22b)

and therefore, from equation (11.3.11)

VP D 2 .hI1ihI2i/1=2

hI1i C hI2i
ˇ̌
ˇ� .1/.r1, r2, �/

ˇ̌
ˇ (11.3.23)

For the case � D .L2=c/� .L1=c/ D 0, Eq. (11.3.23) reduces to Eq. (11.3.13).

The measurement of the degree of temporal coherence is usually performed by means of
the Michelson interferometer (Fig. 11.4a). Let P be the point where the temporal coherence
of the wave is to be measured. A combination of a suitably small diaphragm placed at P and
a lens with its focus at P transforms the incident wave into a plane wave (see Fig. 11.12).
This wave then falls on a partially reflecting mirror S1 (of reflectivity R D 50%) which splits
the beam into the two beams A and B. These beams are reflected back by mirrors S2 and S3

(both of reflectivity R D 100%) and recombine to form the beam C. Since the waves A and
B interfere, the illumination in the direction of C will be either light or dark according to
whether 2.L3 � L2/ is an even or odd number of half wavelengths. Obviously this interference
will only be observed as long as the difference L3 � L2 does not become so large that the
two beams A and B become uncorrelated in phase. Thus, for a partially coherent wave, the
intensity Ic of beam C as a function of 2.L3 � L2/ will behave as shown in Fig. 11.4b. At a
given value of the L3 � L2 difference between the lengths of the interferometer arms, i.e., at
a given value of the delay � D 2.L3 � L2/=c between the two reflected waves, one can again
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FIG. 11.4. (a) Michelson interferometer for the measurement of the degree of temporal coherence of an e.m. wave at
point P. (b) Behavior of the output intensity, along the direction C of the interferometer, as a function of the difference
L3 � L2 between the lengths of the interferometer arms.

define a fringe visibility VP as in Eq. (11.3.11), where the quantities Imax and Imin are as shown
in Fig. 11.4b. One then expects VP to be a function of the time delay � and, as in the case of
Young’s interferometer, related to the degree of temporal coherence. One can show, in fact,
that one has, in this case,

VP.�/ D j� .1/.r, r, �/j (11.3.24)

where r is the coordinate of point P. Once VP.�/ D j� .1/.�/j has been measured, the value of
the coherence time �co defined as, e.g., the time at which VP.�co/ D 1=2 (see Fig. 11.1) can be
determined. The corresponding coherence length will then be given by Lc D c�co and, given
the definition �co adopted in Fig. 11.1, we then see that Lc is equal to twice the difference
L3 � L2 between the interferometer arms for which the fringe visibility falls to VP D 1=2.

11.3.3. Relation Between Temporal Coherence and Monochromaticity

From the paragraphs above it is clear that, for a stationary beam, the concept of tem-
poral coherence is intimately connected with the monochromaticity. For example, the more
monochromatic the wave is, the greater its temporal coherence, i.e. the coherence time, �co,
has an inverse dependence on the laser oscillation bandwidth,	�L. In this section we wish to
discuss this relationship in more depth.

We start by noting that the spectrum of an e.m. wave, as measured by, e.g., a spec-
trograph, is proportional to the power spectrum W.r, !/ of the field E.r, t/. Since the
power spectrum W is equal to the Fourier transform of the auto correlation function � .1/,
either one of these quantities can be obtained once the other is known. To give a precise
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Example 11.2. Coherence time and bandwidth for a sinu-
soidal wave with random phase jumps. We will assume
that the time behavior of the field at a given point is
described by a sinusoidal wave with constant amplitude
and with phase undergoing random jumps (see Fig. 2.9).
The correlation function � .1/.�/ for this wave has been
calculated in Appendix B to be � .1/.�/ / exp �.j� j=�c/

where �c is the average time between two consecutive
phase jumps. According to Eq. (11.3.26) one then gets

�2
� D

1R
0
�2 expŒ�.2�=�c/�d�

1R
0

expŒ�.2�=�c/�d�
D �2

c

4

1R
0

x2 expŒ�x�dx

1R
0

expŒ�x�dx
D �2

c

2

where x D 2�=�c. We thus get �� D �c=
p

2. The power
spectrum, W.� � �0/, of this signal is then described by
a Lorentzian function (see again Appendix B) so that,
according to Eq. (11.3.27) we can write

�2
� D

1R
0
.� � �0/

2
h

1
1C4�2.���0/2�2

c

i 2
d.� � �0/

1R
0

h
1

1C4�2.���0/2�2
c

i 2
d.� � �0/

D

D 1

4
2�2
c

1R
0

x2
h

1
1Cx2

i 2
dx

1R
0

h
1

1Cx2

i 2
dx

where x D 2
.� � �0/�c. It turns out that the two inte-
grals on the right-hand side of the above equation are
both equal to .
=4/.11/ so that �� D .1=2
�c/. From
the previous calculations one then finds that the product
���� is equal to 1=.2

p
2/
 , i.e., it is

p
2 times larger

than the minimum value, 1=4
 , that holds for a Gaussian
spectrum.

expression for the relation between �co and
	�L we need to redefine these two quantities
in an appropriate way. So we will define �co

as the variance, �� , of the function j� .1/.�/j2,
i.e., such that

.�� /
2 D

�Z C1

�1
.� � h�i/2j� .1/.�/j2d�

�.
�Z C1

�1
j� .1/.�/j2d�

�
,

where the mean value h�i is defined by
h�i D Œ

R
� j� .1/.�/j2d��=Œ

R j� .1/.�/j2d��.
As a short-hand notation for the above
expression, we will write

.�� /
2 D hŒ� � h�i�2i (11.3.25)

Since j� .1/.��/j2 D j� .1/.�/j2, one has
h�i D 0 and Eq. (11.3.25) reduces to

.�� /
2 D h�2i (11.3.26)

The coherence time defined in this way
is conceptually simpler, although sometimes
involving lengthier calculation, than that
defined earlier, i.e., the half-width at half-
height of the curve j� .1/.�/j2, see Fig. 11.1.
In fact, if j� .1/.�/j2 were an oscillatory func-
tion of the coherence time, �co, as defined
in Fig. 11.1, would not be uniquely deter-
mined. Similarly we define the laser oscilla-
tion bandwidth	�L as the variance of W2.�/,
i.e., such that

.	�L/
2 D .��/

2 D hŒ� � h�i�2i (11.3.27)

where h�i, the mean frequency of the spec-
trum, is given by h�i D Œ

R
�W2d��

ı
Œ
R

W2d��. Now, since W and � .1/ are related
by a Fourier transform, it can be shown that
�� and �� , as we have just defined them,

satisfy the condition

�� �� 
 .1=4
/ (11.3.28)

The relation (11.3.28) is closely analogous to the Heisenberg uncertainty relation and can be
proved using the same procedure as used to derive the uncertainty relation..2/ The equality sign
in Eq. (11.3.28) applies when j�.1/.�/j [and hence W.�/] are Gaussian functions. This case is
obviously the analogue of the minimum uncertainty wave packets of quantum mechanics..2/
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11.3.4. Nonstationary Beams
�

We will now briefly consider the case of a nonstationary beam. In this case, by definition,
the function � .1/ in Eq. (11.3.1) depends on both t1 and t2 and not only on their difference
� D t1 � t2. Examples would include an amplitude-modulated laser, an amplitude-modulated
thermal light source, a Q-switched or a mode-locked laser. For a nonstationary beam, the
correlation function can be obtained as the ensemble average of many measurements of the
field in a time interval between 0 and T, where the origin of the time interval is synchronized
to the driving signal (e.g., synchronized to the amplitude modulator for a mode-locked laser
or the Pockels cell driver for a Q-switched laser). The degree of temporal coherence at a given
point r can then be defined as

� .1/.t1, t2/ D hE.t1/ E�.t2/i
hE.t1/ E�.t1/i1=2 hE.t2/ E�.t2/i1=2

(11.3.29)

where t1 and t2 are two given times, in the interval 0-T, and where all signals are measured at
point r. We can now say that the beam has a perfect temporal coherence if j� .1/.t1, t2/j D 1
for all times t1 and t2. According to this definition we can see that a nonstationary beam
without amplitude and phase fluctuations has a perfect temporal coherence. In the absence
of fluctuations, in fact, the products E.t1/E�.t2/, E.t1/E�.t1/, and E.t2/E�.t2/ appearing in
Eq. (11.3.29) remain the same for all measurements of the ensemble. These products are thus
equal to the corresponding ensemble averages and � .1/.t1, t2/ reduces to

� .1/.t1, t2/ D E.t1/E�.t2/
jE.t1/jjE.t2/j (11.3.30)

From Eq. (11.3.30) we then immediately see that j� .1/j D 1. According to this definition of
temporal coherence, the coherence time of a nonstationary beam, e.g., of a mode-locked laser,
is infinite if the beam does not fluctuate in amplitude or phase. This shows that the coherence
time of a nonstationary beam is not related to the inverse of the oscillating bandwidth. In a
practical situation, however, if we correlate, e.g., one pulse of a mode-locked train with some
other pulse of the train, i.e., if we choose t1 � t2 to be larger than the pulse repetition time,
some lack of correlation will be found due to fluctuations. This means that j� .1/j will decrease
as t1 � t2 increases beyond the pulse repetition time. Thus the coherence time is expected to
be finite although not related to the inverse of the oscillating bandwidth but to the inverse of
the fluctuation bandwidth.

11.3.5. Spatial and Temporal Coherence of Single-Mode
and Multimode Lasers

Consider first a cw laser oscillating on a single transverse and longitudinal mode. Above
threshold, as explained in Sects. 7.10 and 7.11, the amplitude fluctuations may, to first order,
be neglected and the fields of the wave, at the two points r1 and r2, can be written as

E.r1, t/ D a0u.r1/ expfjŒ! t � �.t/�g (11.3.31a)

E.r2, t/ D a0u.r2/ expfjŒ! t � �.t/�g (11.3.31b)

�
The author wishes to acknowledge some enlightening discussion on this topic with Professor V. Degiorgio.
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where a0 is a constant, u.r/ describes the mode amplitude and ! is the angular fre-
quency at band center. The substitution of Eq. (11.3.31) into Eq. (11.3.6) then gives
� .1/ D u.r1/u�.r2/=ju.r1/jju.r2/j, which shows that j� .1/j D 1. Thus, a laser oscillating
on a single mode has perfect spatial coherence. Its temporal coherence, on the other hand, is
established by the laser bandwidth	�L. As an example, a single mode monolithic Nd:YAG laser
(seeFig.7.26)mayhave	�L Š 20 kHz.Thecoherencetimewillthenbe�co Š 1=	�L Š 0.05 ms
and the coherence length Lc D c�co Š 15 km (note the very large value of this coherence
length).

Let us now consider a laser oscillating on a single transverse mode and on l longitudi-
nal modes. In terms of the cavity mode amplitudes u.r/, the fields at two points r1 and r2

belonging to the same wave-front can generally be written as

E.r1, t/ D
lX
1

k ak u.r1/ exp jŒ!kt � �k.t/� (11.3.32a)

E.r2, t/ D
lX
1

k ak u.r2/ exp jŒ!kt � �k.t/� (11.3.32b)

where ak are constant factors, !k and �k are, respectively, the frequency and the phase of
the k-th mode. Note that, since the transverse field configuration is the same for all modes
(e.g., that of a TEM00 mode), the amplitude u has been taken to be independent of the mode
index k. The function u.r/ can thus be taken out of the summation in both equations (11.3.32)
so that one gets the following result

E.r2, t/ D Œu.r2/=u.r1/�E.r1, t/ (11.3.33)

This means that, whatever time variation E.r1, t/ is observed in r1, the same time variation
will be observed at r2 except for a proportionality constant. Substitution of Eq. (11.3.33) into
Eq. (11.3.6) then readily gives j� .1/j D 1. Thus a laser beam made of many longitudinal
modes with the same transverse profile (e.g., corresponding to a TEM00 mode) still has a
perfect spatial coherence. The temporal coherence, if all the mode phases are random, is again
equal to the inverse of the oscillating bandwidth. If no frequency-selecting elements are used
in the cavity, the oscillating bandwidth may now be comparable to the laser gain bandwidth
and hence the coherence time may be much shorter than in the example considered previously
generally in the range of nanoseconds to picoseconds. When these modes are locked in phase,
however, the temporal coherence may become very long, as discussed in the previous section.
Thus a mode-locked laser can in principle have perfect spatial and temporal coherence.

The last case we should consider is that of a laser oscillating on many transverse modes.
It will be shown in the following example that, in this case, the laser has only partial spatial
coherence.

Example 11.3. Spatial coherence for a laser oscillating on many transverse-modes. For a laser oscillating
on l transverse modes, the fields of the output beam, at two points r1 and r2 on the same wave-front, can
be written as [compare with Eq. (11.3.32)]

E.r1, t/ D
lX
1

k ak uk.r1/ exp jŒ!kt � �k.t/� (11.3.34a)
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E.r2, t/ D
lX
1

k ak uk.r2/ exp jŒ!kt � �k.t/� (11.3.34b)

If the product E.r1, t/E�.r2, t/ is carried out, one obtains a set of terms proportional to exp jŒ.!k � !k0/ t �
.�k � �0

k/� with k0 ¤ k. These terms can be neglected because, performing the time average, they will
average out to zero. We are thus left only with terms for which k0 D k, so that we obtain

hE.r1, t/E�.r2, t/i D
lX
1

k ak a�
k uk.r1/u

�
k .r2/ (11.3.35)

For r2 D r1, one gets from Eq. (11.3.35)

hE.r1, t/E�.r1, t/i D
lX
1

k jakj2 juk.r1/j2 (11.3.36)

Likewise, for r1 D r2, one gets from Eq. (11.3.35)

hE.r2, t/E�.r2, t/i D
lX
1

k jakj2 juk.r2/j2 (11.3.37)

The substitution of Eqs. (11.3.35)–(11.3.37) in Eq. (11.3.6) then gives

� .1/ D

lP
1

k aka�
k uk.r1/u�

k .r2/

�
lP
1

k jakj2 juk.r1/j2

� 1=2 � lP
1

k jakj2 juk.r2/j2

� 1=2
(11.3.38)

If we now let R1 represent a complex vector characterized by the components akuk.r1/ in an l-
dimensional space, and similarly for R2, one writes their scalar product as

R1 � R2 D
lX
1

k aka�
k uk.r1/u

�
k .r2/ (11.3.39)

The magnitude of the two vectors is, on the other hand, given by

R1 D jR1j D
"

lX
1

k jakj2 juk.r1/j2

# 1=2

(11.3.40)

and

R2 D jR2j D
"

lX
1

k jakj2 juk.r2/j2

# 1=2

(11.3.41)
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respectively. The substitution of Eqs. (11.3.39)–(11.3.41) in Eq. (11.3.38) shows that

� .1/ D R1 � R2

R1 R2
(11.3.42)

From the Schwartz inequality it then follows that, since now R1 ¤ aR2, where a is a constant, one always
has j� .1/j<1.

11.3.6. Spatial and Temporal Coherence of a Thermal Light Source

We shall now discuss, briefly, the coherence properties of the light emitted by an ordinary
lamp, which may be either a filament lamp or a lamp filled with a gas at a suitable pressure.
Since the emitted light now arises from spontaneous emission of atoms essentially under
thermal equilibrium conditions, these sources will generally be referred to as thermal sources.

As far as the temporal coherence is concerned, one notes that the light emitted by a c.w.
gas lamp generally consists of several emission lines (see, e.g., Fig. 6.6b), the width of these
lines being rather broad .	� D 1�10 THz/ due to the high pressures generally used. On the
other hand, in the case of a flashlamp (see, e.g., Fig. 6.6a) or a filament source, the emission
is much broader, resembling that of a blackbody radiator (see Fig. 2.3). Thus the coherence
time, �co Š 1=	�, of a thermal light source is, generally, very short .�co<1 ps/.

As far as the spatial coherence is concerned, one may note that, since the e.m. wave orig-
inates from spontaneous emission by independent emitters, the wave is completely incoherent
at a location very near to the source while it acquires an increasing degree of spatial coherence
as the considered location moves away from the source. This situation can be understood with
the help of Fig. 11.5, where uncorreletated emitters (dots) are assumed to be present within
the aperture of a hole, of diameter d, in a screen S. Emission will occur over a 4
 solid angle
and the degree of spatial coherence between points P1 and P2 is measured at some distance z
from the emitters. For simplicity, let P1 be the point on the symmetry axis of the system and
let r be the distance between the two points. It is clear from the figure that, for very small
values of z, points P1 and P2 .r< d=2/ will mostly see the emission of the emitter just facing
to it and the fields at the two points will then be completely uncorrelated. As z is increased,
however, each of the two points will receive an increasing contribution from all other emitters

FIG. 11.5. Degree of spatial coherence in a plane at a distance z from independent emitters, covering an area of
diameter d.
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and the fields at the two points will become more and more correlated. A calculation of the
degree of spatial coherence, j� .1/j, as a function of the coordinate r is beyond the scope of
this book and we refer elsewhere for this treatment..4/ We limit ourselves to pointing out that
j� .1/j turns out to be a function of the dimensionless quantity .rd=�z/ and, as an example, one
has j� .1/j D 0.88 for

r Š 0.16.�z=d/ (11.3.43)

a result which will be used in a following section.

11.4. DIRECTIONALITY

There are usually two ways by which the directionality, i.e., the divergence, of a laser
beam, or more generally of any light source, can be measured, namely: (i) By measuring the
degree of beam spreading at very large distances from the source. In fact, if we let W represent
a suitably defined radius of the beam at a very large distance z, the half-angle beam divergence
can be obtained from the relation


d D W=z (11.4.1)

(ii) By measuring the radial intensity distribution, I.r/, of the focused beam in the focal plane
of a lens. To understand the basis of the latter measurement, let r be the coordinate of a
general point in this focal plane, relative to an origin at the beam center. According to the
discussion made in relation to Fig. 1.8, the beam can be thought of as composed of a set of
plane waves propagating along slightly different directions..5/ The wave inclined at an angle 

to the propagation axis will then be focused, in the focal plane, to the point of radial coordinate
r given by (for small 
)

r D f
 (11.4.2)

Hence, a knowledge of the intensity distribution I.r/ in the focal plane of a lens gives the
angular distribution of the original beam. In what follows, we will use either one of the above
methods, as convenient.

The directional properties of a laser beam are strictly related to its spatial coherence. We
will therefore discuss first the case of an e.m. wave with perfect spatial coherence and then
the case of partial spatial coherence.

11.4.1. Beams with Perfect Spatial Coherence

Let us first consider a beam with perfect spatial coherence consisting of a plane wave
front of circular cross section, with diameter D, and constant amplitude over this cross section.
Following the discussion above, the beam divergence can be calculated from a knowledge of
the intensity distribution, I.r/, in the focal plane of a lens. This calculation was performed in
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FIG. 11.6. Distribution of light intensity in the focal plane of a lens, of diameter D, as a function of radial distance
r in terms of the normalized variable x D krD=2f .

the 19th century, using diffraction theory, by Airy..6/ The expression obtained for I.r/, known
as Airy formula, can be written as

I D
�

2J1 .krD=2f /

krD=2f

�2

I0 (11.4.3)

where k D 2
=�, J1 is the first-order Bessel function, and I0 is given by

I0 D Pi

�

D2

4�2 f 2

�
r

(11.4.4)

Pi being the power of the beam incident at the lens. Note that, since the value of the expression
in the square brackets of Eq. (11.4.3) becomes unity when r D 0, I0 represents the beam
intensity at the center of the focal spot.

The behavior of the intensity, I, as a function of the dimensionless quantity

x D krD=2f (11.4.5)

is shown in Fig. 11.6. From this figure one can see that the diffraction pattern consists of a
circular central zone (the Airy disk) surrounded by a series of rings of rapidly decreasing inten-
sity. The divergence angle 
d of the original beam is defined as corresponding to the radius
of the first minimum shown in Fig. 11.6. While this is an arbitrary definition, it is convenient,
and is the conventionally accepted definition. So, from the value of x which corresponds to
this minimum, with the help of Eqs. (11.4.5) and (11.4.2) one obtains


d D 1.22 �=D (11.4.6)

As a second example of the propagation of a spatially coherent beam, we consider the
case of a Gaussian beam .TEM00/ such as can be obtained from a stable laser cavity consisting
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of two spherical mirrors. If we let w0 be the spot size at the beam waist, the spot size w and the
radius of curvature R of the equiphase surface at a distance z from the waist can be obtained
from Eqs. (4.7.17a) and (4.7.17b), respectively. At a large distance from the waist [i.e., for

�z=
w2

0

� � 1] one then see that w Š �z=
w0 and R Š z. Since both w and R increase
linearly with distance, the wave can be considered to be a spherical wave having its origin at
the waist. Following the convention of identifying the radius of the beam with the spot size w,
the beam divergence is obtained as


d D w=z D �=
w0 (11.4.7)

A comparison of Eqs. (11.4.7) and (11.4.6) indicates that one can set D D 2w0, implying that
for the same diameter, a Gaussian beam has a divergence about half that of a plane beam.

As a conclusion to this section we can say that the divergence 
d of a spatially coherent
beam can generally be written as


d D ˇ�=D (11.4.8)

where D is a suitably defined beam diameter and ˇ is a numerical factor of the order of unity
whose exact value depends on the field amplitude distribution as well as on the way by which
both 
d and D are defined. Such a beam is commonly referred to as being diffraction-limited.

11.4.2. Beams with Partial Spatial Coherence

For an e.m. wave with partial spatial coherence the divergence is greater than for a
spatially coherent wave having the same intensity distribution. This can, for example, be
understood following the argument used to explain the divergence of a beam of uniform
amplitude in Fig. 1.6. In fact, if the wave considered in Fig. 1.6 is not spatially coher-
ent, the secondary wavelets emitted over its cross section would no longer be in phase and
the wave front produced by diffraction would have a larger divergence than that given by
Eq. (11.4.6). A rigorous treatment of this problem (i.e., the propagation of partially coher-
ent waves) is beyond the scope of this book, and the reader is referred to more specialized
texts..3/ We will limit ourselves to considering first a particularly simple case of a beam of
diameter D (Fig. 11.7a), which is made up of many smaller beams (shaded in the figure)
of diameter d. We will assume that each of these smaller beams is diffraction-limited (i.e.,
spatially coherent). Now, if the various beams are mutually uncorrelated, the divergence of
the beam as a whole will be equal to 
d D ˇ�=d. If, on the other hand, the various beams
were correlated, the divergence would be 
d D ˇ�=D. The latter case is actually equivalent
to a number of antennas (the small beams) all emitting in phase with each other. After this
simple case, we can now consider the general case where the partially coherent beam has a
given intensity distribution over its diameter D and a coherence area Ac at a given point P
(Fig. 11.7b). By analogy with the previous case one can readily understand that one has, in
this case,


d D ˇ�=Dc (11.4.9)
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FIG. 11.7. Examples to illustrate the different divergence properties of coherent and partially coherent waves:
(a) Beam of diameter D made of the superposition of several smaller and coherent beams of diameter d. (b) Beam of
diameter D and coherence area Ac at point P.

where Dc is the diameter of the coherence area and ˇ is a numerical factor of the order of
unity whose value depends on how 
d and Dc are defined. The concept of directionality is
thus intimately related to that of spatial coherence.

11.4.3. The M2 Factor and the Spot-Size Parameter
of a Multimode Laser Beam

The expressions for the beam divergence given above [see Eqs. (11.4.9) and (11.4.8)]
involve a degree of imprecision which has its origin in the arbitrary definition of beam diame-
ter. We now present some precise definitions of beam radius and beam divergence which allow
to describe, in a more general way, beam propagation both for a diffraction-limited laser beam
with arbitrary transverse profile and for a non-diffraction-limited, multi-transverse-mode,
partially-coherent laser beam..6/

Let I.x, y, z/ be the, time averaged, intensity profile of the laser beam at the longitudinal
coordinate z. Note that, for great generality, we do not restrict ourserlves to radially symmetric
beams and, accordingly, the intensity I is written as a function of both transverse coordinates
x and y, separately. One can now define a beam variance, �2

x .z/, along, e.g., the x-coordinate
so that

�2
x .z/ D

’
.x � <x>/2 I.x, y, z/dxdy’

I.x, y, z/dxdy
(11.4.10)

where <x> D Œ
’

x I.x, y, z/dxdy�=Œ
’

I.x, y, z/dxdy�, and equivalent definition applies for
the y coordinate. To introduce a similar definition for the beam divergence, let OI.sx, sy/

be the wave intensity at the normalized angular coordinates sx D 
x=λ, and sy D 
y=λ.
The sx and sy coordinates are usually referred to as the spatial-frequency coordinates of
the wave and their use is quite common in diffraction optics..7/ If, for instance, the diver-
gence is obtained by measuring the beam intensity I.x0, y0/ at a plane, x0, y0, at a large
distance, z, from the source, the angular intensity OI.sx, sy/ is obtained from I.x0, y0/ using the
relations

x0 D 
xz D sx λz (11.4.11a)
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and

y0 D 
yz D syλz (11.4.11b)

Having defined the intensity OI.sx, sy/, the variance of the spatial frequency sx can now be
readily defined as

�2
sx

D
’
.sx � <sx>/

2 OI.sx, sy/dsxdsy’ OI.sx, sy/dsxdsy

(11.4.12)

where <sx> D Œ
’

sxOI.sx, sy/dsxdsy�=Œ
’ OI.sx, sy/dsxdsy�, and similarly for the y-coordinate. If

we now let u.x, y, z/ be the transverse amplitude profile of the beam (so that I / juj2) and
Ou.sx, sy/ be the spatial-frequency profile (so that OI / jOuj2/, we know that, for any arbitrary
optical beam, the two functions are related through a Fourier transform..8/ For any arbitrary
real laser beam, one can then prove that �2

x .z/ obeys the free space propagation equation

� 2
x.z/ D � 2

x0 C � 2� 2
sx
.z � z0x/

2 (11.4.13)

where �x0 is the minimum value of �x and z0x is the coordinate at which this minimum is
attained. One can also show from the same treatment that [compare with Eq. (11.3.28)]

�x0�sx 
 1=4
 (11.4.14)

the equality holding only for a coherent Gaussian beam. In this case, in fact, one has
I.x, y, z/ / expŒ�2.x2 C y2/=w2.z/� while it can be readily shown, using the coordinate trans-
formations Eq. (11.4.11), that OI.sx, sy/ / exp

��2
2w2
0



s2

x C s2
y

�	
. From Eqs. (11.4.10) and

(11.4.12) one then gets

�x.z/ D w.z/=2 (11.4.15a)

�sx D 1=2
w0 (11.4.15b)

and obviously, setting z D 0 in (11.4.15a),

�x0 D w0=2 (11.4.15c)

From Eqs. (11.4.15b) and (11.4.15c) one then obtains

.�x0�sx/G D 1=4
 (11.4.16)

Following the previous argument one can now define an M2
x factor as the ratio between

the .�x0�sx/ product of the beam and the corresponding product, .�x0�sx/G, for a Gaussian
beam i.e.,

M2
x D .�x0�sx/=.�x0�sx/G D 4
.�x0�sx/ (11.4.17)
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and similarly for the y-coordinate. Note that, according to Eq. (11.4.14) one has M2
x 
 1. The

term M2
x is usually referred to as the beam quality. Since larger values of M2

x correspond to
lower beam quality, it has also been referred to (less commonly) as the inverse beam quality
factor. Note also that, if a comparison is made with a Gaussian beam having the same variance,
i.e., if .�x0/G D .�x0/, M2

x then specifies how much the beam divergence exceeds that of a
Gaussian beam.

An alternative way to Eq. (11.4.13) for describing the propagation of a multimode laser
beam can be obtained by noting that, for a Gaussian beam, according to Eqs. (11.4.15a) and
(11.4.15c) one has wx.z/ D 2�x.z/ and wx0 D 2�x0. Consequently, for a laser beam of general
transverse profile, one can define the spot-size parameters Wx.z/ and Wx0 as

Wx.z/ D 2�x.z/ (11.4.18a)

Wx0 D 2�x0 (11.4.18b)

Note that we are using the upper-case symbols Wx.z/ and Wx0 to indicate the spot-size param-
eters of an arbitrary laser beam. The substitution, in Eq. (11.4.13), of �x.z/ and �x0 from
Eqs. (11.4.18) and of �sx from Eq. (11.4.17) then gives

W2
x .z/ D W2

x0 C M4
x

�2


2W2
x0

.z � z0x/
2 (11.4.19)

For a Gaussian beam, one obviously has Wx.z/ D wx.z/, Wx0 D wx0, and M2
x D 1 and

Eq. (11.4.19) reduces to Eq. (4.7.13a). For a multimode laser beam, on the other hand,
Eq. (11.4.19) represents an equation formally similar to that of a Gaussian beam except that
the second term on the right hand side, expressing the spreading due to beam diffraction, is
multiplied by a factor M4

x .
Equation (11.4.19) expresses the propagation of a multimode laser beam as a function of

a precisely defined spot-size parameter Wx.z/. Note that the beam propagation is determined
by the three parameters Wx0, M2

x and z0x. Their values can in principle be determined by
performing a measurement of the beam size Wx.z/ at three different z-coordinates. Note also
that, at large distances from the waist position, z0x, one obtains from Eq. (11.4.19) Wx.z/ Š

M2

x�=
Wx0
�
.z� z0x/. For a multimode laser beam, one can then define a beam divergence as


dx D Wx.z/=.z � z0x/ D M2
x .�=
Wx0/ (11.4.20)

The beam divergence of a multimode laser beam is thus M2
x times that of a Gaussian beam

of the same spot size (i.e., such that wx0 D Wx0). A comparison of Eq. (11.4.20) with
Eq. (11.4.9) also allows one to establish a relation between M2

x , Wx0 and the diameter Dc

of the coherence area.

Example 11.4. M2-factor and spot-size parameter of a broad area semiconductor laser. We will consider
a broad area AlGaAs/GaAs semiconductor laser with output beam dimensions, at the exit face of the
laser i.e., in the near-field, of d? D 0.8�m and dk D 100�m and with beam divergences 
? D 20ı and

k D 10ı. The labels ? and k represent directions perpendicular and parallel to the junction plane, respec-
tively. The diameters, d, are measured between the half-intensity points and, likewise, the divergences, 
 ,
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are measured as half-angles between half-maximum-intensity points (HWHM). Since the exit face of the
semiconductor is plane, the waist positions for both axes can be taken to coincide with this face. The near-
field intensity distribution perpendicular to the junction (the ‘fast-axis’) can be taken to be approximately
Gaussian. The corresponding spot-size w0? D W0? must then be such that expŒ�2.d?=2w0?/2� D .1=2/.
We get w0? D W0? D d?=Œ2 ln 2�1=2 Š 0.68�m. The far-field intensity profile along the same direction
may also be taken to be Gaussian. According to Eq. (11.4.11) its intensity profile, in terms of the trans-
verse coordinate 
z, can be written, for large z, as / expŒ�2.
 z=W?/2� where W?.z/ D w?.z/ is the
spot-size. Its value can be obtained by setting / expŒ�2.
?z=W?/2� D .1=2/. Since the beam divergence
is now defined as θd? D W?=z, one obtains θd? D Œ2= ln 2�1=2
? Š 0.59 rad and from Eq. (11.4.20)
M2

? D 
W0?
d?=� D 

?d?=.ln 2/� D 1.5, where � Š 850 nm. As expected, the M2
?-factor is

close to that of a true Gaussian beam. The near-field intensity distribution in the direction parallel to the
junction (the ‘slow-axis’) can be taken to be approximately constant. From Eq. (11.4.10) one then gets
W0k Š dk=2 D 50�m. The far-field intensity distribution, on the other hand, is a bell-shaped function
that can be approximated by a Gaussian function. As before, we then get θdk D Œ2= ln 2�1=2
k Š 0.148 rad
and, using Eq. (11.4.20) M2

k D 
W0k
dk=� D 

kdk=Œ2 ln 2�1=2� D 55. Thus, in the slow-axis direction
the beam divergence is much larger than the diffraction-limit of a Gaussian beam, i.e. the beam is many
time diffraction limited.

11.5. LASER SPECKLE.9,10/

Following the discussion on first-order coherence given in Sect. 11.3, we now briefly
consider a very striking phenomenon, characteristic of laser light, known as laser speckle.
Laser speckle is apparent when one looks at the scattered ligth from a laser beam, of suffi-
ciently large diameter, incident on, for example, the surface of a wall or a transparent diffuser.
The scattered light is then seen to consist of a random collection of alternately bright and
dark spots (or speckles) (Fig. 11.8a). Despite the randomness, one can distinguish an average
speckle (or grain) size. This phenomenon was soon recognized by early workers in the field as
being due to constructive and destructive interference of radiation coming from the small scat-
tering centers within the area where the laser beam is incident. Since the phenomenon depends
on there being a high degree of first-order coherence, it is an inherent feature of laser light.

FIG. 11.8. (a) Speckle pattern and its physical origin (b) for free-space propagation, and (c) for an image-forming
system.
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The physical origin of the observed granularity can be readily understood, both for free-
space propagation (Fig. 11.8b) and for an imaging system (Fig. 11.8c), when it is realized
that the surfaces of most materials are extremely rough on the scale of an optical wavelength.
For free-space propagation, the resulting optical wave at any moderately distant point from
the scattering surface consists of many coherent components or wavelets, each arising from a
different microscopic element of the surface. Referring to Fig. 11.8b, one notes that the dis-
tances traveled by these various wavelets may differ by many wavelengths. Interference of the
phase-shifted but coherent wavelets results in the granular intensity (or speckle pattern, as it is
usually referred to). When the optical arrangement is that of an imaging system (Fig. 11.8c),
an explanation of the observed pattern must take account of diffraction as well as interfer-
ence. In fact, due to the finite resolving power of even a perfectly corrected imaging system,
the intensity at a given image point can result from the coherent addition of contributions from
many independent parts of the surface. This situation occurs in practice when the point-spread
function of the imaging system is broad in comparison to the microscopic surface variations.

One can readily obtain an order-of-magnitude estimate for the grain size dg (i.e., the
average size of the spots in the speckle pattern) for the two cases just considered. In the first
case (Fig. 11.9a) the scattered light is assumed to be recorded on a photographic film at a
distance L from the diffuser with no lens between film and diffuser. Suppose now that a bright
speckle is present at some point P in the recording plane. This means that the light diffracted
by all points of the diffuser will interfere at point P in a predominantly constructive way so
as to give an overall peak for the field amplitude. In a heuristic way we can then say that the
diffractive contributions, at point P, from the wavelets scattered from points P1, P0

1, P00
1, etc.

add (on the average) in phase with those from points P2, P0
2, P00

2, etc. We now ask how far the
point P must be moved along the x-axis in the recording plane for this constructive interference
to become a destructing interference. This situation will occur when the contributions of, e.g.,

FIG. 11.9. Grain-size calculation (a) for free-space propagation and (b) for an image-forming system.
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the diffracted waves from points P1 and P2 interfere, at the new point P0, destructively rather
than constructively. In this case, in fact, one can show that the contributions from points
P0

1, and P0
2 will also interfere destructively, the same circumstance occurring also for points

P00
1 and P00

2 etc., and the overall light intensity will have a minimum value. Taking, e.g.,
points P1 and P2, one then requires that the change ıx, in the x-coordinate of point P, be such
that the corresponding change ı.P2P�P1P/ in the path difference P2P�P1P be equal to �=2.
Since P2P D .x2 C L2/1=2 and P1P D fŒ.D=2/ � x�2 C L2g1=2, one obtains (for D � L) the
result that ı.P2P � P1P/ Š .D=2L/ıx. The requirement ı.P2P � P1P/ D �=2 then gives

ıx D �L=D (11.5.1)

Following a similar calculation, one can readily show that the same result is obtained by
considering points P0

1 and P0
2 (or points P00

1 and P00
2 etc.) rather than points P1 and P2.

All the corresponding contributions will now (on average) combine destructively rather than
constructively and one can thus write the following approximate expression for the grain
size, dg:

dg Š 2ıx D 2�L=D (11.5.2)

To obtain an approximate expression of the grain size for the imaging system of
Fig. 11.8b, we first note that a similar argument to that presented above can be used to cal-
culate the beam diameter of the Airy spot in the focal plane of a lens. Consider in fact the
case where the diffuser in Fig. 11.9a is replaced by a lens of focal length f D L. Following
the argument above one now realizes that an intensity maximum must be present at x D 0,
i.e., at the center of the recording plane. In fact, as a result of the spherical wave front pro-
duced by the lens, the contributions from points P1, P0

1, P00
1, etc. add in phase, there, with

the contributions from points P2, P0
2, P00

2 etc. The approximate size of the spot in the focal
plane is then expected to be given again by Eq. (11.5.2), i.e., equal to dg Š 2�L=D. This
result should be compared with the value dg D 2.44�L=D which can be obtained from the
Airy function shown in Fig. 11.6. From this example, one can now understand the following
general property of a diffracted wave: whenever the whole aperture, of diameter D, of an
optical system contributes coherently to the diffraction to one or more spots in a plane located
at a distance L, the minimum spot size in this recording plane is always approximately given
by 2�L=D

�

. Note that, in the case of a diffuser, this coherent contribution from the whole
aperture D occurs provided that: (1) the size ds of the individual scatters is much smaller than
the aperture D; (2) there is an appreciable overlap, at the recording plane, between wavelets
diffracted from various scattering centers. This implies that the dimension of each of these
wavelets at the recording plane .��L=ds/ is larger than their mean separation .� D/. The
length L must therefore be such that L> dsD=�. Thus, for instance, with ds D 10�m and
� D 0.5�m one has L> 20D.

We now go on to consider the case where the scattered light is recorded on a photographic
plate after passing through a lens which images the diffuser onto the plate (Fig. 11.9b). We
assume that the diameter, D0, of the lens aperture is fully illuminated by the light diffracted by

�
Since, for D � L, the field distribution in the recording plane is the Fourier transform of that in the input plane,.7/

this property emerges as a general property of the Fourier transform.
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each individual scatterer, i.e., that .2�L=ds/ 
 D0. Given this condition, the whole aperture
contributes via diffraction to each spot on the photographic plate and the grain size, dg, at the
plate is given by

dg D 2�L0=D0 (11.5.3)

Example 11.5. Grain size of the speckle pattern as
seen by a human observer. We will consider a red,
�D 633 nm, He-Ne laser beam illuminating, e.g., an area
of diameter D D 2 cm on a scattering surface for which
the individual scatterers are taken to have a dimension
ds D 50 μm. The scattered ligth is observed by a human
eye at a distance L D 50 cm from the diffuser. We will take
L0 D 2 cm as the distance between the retina and the lens
of the eye and assume a pupil diameter D0 D 2 mm. Since
.2�L=ds/ Š 12.7 mm is much greater than D0, the whole
aperture of the eye is illuminated by the light diffracted
by each individual scatterer. The apparent size of the
speckle at the illuminated region of diffuser is obtained
from Eq. (11.5.4) as dag Š 316 μm. Note that, if the
observer moves to a distance L D 100 cm from the dif-
fuser, the apparent grain-size on the D D 2 cm illuminated
spot of the diffuser will double to � 632 μm.

It should be noted that the arrangement of
Fig. 11.9b also corresponds to the case where
one looks directly at a scattering surface. In
this case the lens and the recording plane cor-
respond to the lens of the eye and the retina,
respectively. Accordingly, dg, as given by
Eq. (11.5.3), can be taken as the expression
for the grain size on the retina. Note that the
apparent grain size on the scattering surface,
dag, is dg.L=L0/ so that

dag D 2�L=D0 (11.5.4)

This expression, which actually gives the
eye’s resolution for objects at a distance L,
shows that dag is expected to increase with
increasing L, i.e., with increasing distance
between the observer and the diffuser and
to decrease with increasing aperture of the

iris (i.e., when the eye is dark-adapted). Both these predictions are readily confirmed by
experimental observations.

Speckle noise often constitutes an undesirable feature of coherent light. The spatial reso-
lution of the image of an object made via illumination with laser light is in fact often limited by
speckle noise. Speckle noise is also apparent in the reconstructed image of a hologram, again
limiting the spatial resolution of this image. Some techniques have therefore been developed
to reduce speckle from coherently illuminated objects..10/ Speckle noise is not always a nui-
sance, however. In fact techniques have been developed that exploit the presence of speckle to
show up, in a rather simple way, the deformation of large objects arising, e.g., from stresses
or vibrations (speckle interferometry).

11.6. BRIGHTNESS

The brightness B of a light source or of a laser source has already been introduced in
Sect. 1.4.4. [see Eqs. (1.4.3) and (1.4.4)]. We note again that the most significant parameter
of a laser beam (and in general of any light source) is not simply its power or its intensity,
but its brightness. This was already pointed out in Sect. 1.4.4. where it was shown that the
maximum peak intensity, which can be obtained by focusing a given beam, is proportional to
the beam brightness [see Eq. (1.4.6)]. This is further emphasized by the fact that, although the
intensity of a beam can be increased, its brightness cannot. In fact, the simple arrangement
of confocal lenses shown in Fig. 11.10 can be used to decrease the beam diameter, if f2<f1,
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FIG. 11.10. Method for increasing the intensity of a laser beam.

and hence increase its intensity. However, the divergence of the output beam .��=D2/ is also
correspondingly increased relative to that .��=D1/ of the input beam, and so one can see
that the brightness remains invariant. This property, illustrated here for a particular case, is, in
fact, of general validity (for incoherent sources also): given some light source and an optical
imaging system, the image cannot be brighter that the original source (this is true provided
the source and image are in media of the same refractive index).

The brightness of laser sources is typically several orders of magnitude greater than
that of the most powerful incoherent sources. This is due to the extreme directionality of a
laser beam. Let us compare, for example, an Ar laser oscillating on its green, � D 514 nm,
transition with a power of P D 1 W, with what is probably the brightest conventional source.
This would be a high-pressure mercury vapor lamp (PEK Labs type 107/109), driven by an
electrical power of �100 W and with an optical output power of Pout Š 10 W and a brightness
B of �95 W=cm2�sr in its most intense green line at � D 546 nm wavelength. We will assume
that the laser is oscillating on a TEM00 mode so that we can take A D 



w2
0=2

�
as the beam

area, where w0 is the spot-size at the beam waist. Note the factor 2 in the denominator of the
above expression which arises from the fact that w0 actually represents the .1=e/ spot-size
of the laser field rather than of the laser intensity. Likewise, since the .1=e/ field-divergence
is given by 
 D .�=
w0/, the emission solid angle can be taken to be ˝ D .

2=2/. The
brightness of this laser source can now be written as B D .P=A˝/, where P is the power. From
the previous two expressions for the beam area and for the emission solid angle we then obtain

B D .4P=� 2/ (11.6.1)

Inserting the appropriate values, for P and �, for this laser gives B Š 1.6�109 W=cm2�sr. The
brightness of the Ar laser is thus more than 7 orders of magnitude larger than that of the lamp.
Since this will also be ratio of the two peak intensities obtained by focusing the corresponding
sources, we now have a more quantitative appreciation of why a focused laser beam can be
used, while a focused lamp cannot be used, in applications like, e.g., welding and cutting.

11.7. STATISTICAL PROPERTIES OF LASER LIGHT
AND THERMAL LIGHT.11/

The temporal fluctuations of the field generated by a laser source or by a thermal light
source can be described effectively in terms of the corresponding statistical behavior. Let
E.t/ D A.t/ exp jŒ!t � �.t/� be the field generated by the source at some given space point.
Writing E.t/ D QE.t/ exp j.!t/, where QE D A exp �j.�/ we then concentrate on just the slowly
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FIG. 11.11. Plot of the probability density pE.QE/ of the field QE vs the real, Er, and imaginary, Ei, parts of QE. (a)
Case of a coherent signal such as that of a single-mode laser. (b) Case of a thermal light such as that emitted by a
conventional light source.

varying (over an optical cycle) complex-amplitude QE.t/. Suppose now that a number of mea-
surements are made, at different times t, of QE, e.g., of its real, Er, and imaginary, Ei, parts. In
the limit of a very large number of measurements, we can obtain the bidimensional probabil-
ity density pE. QE/ D pE.Er, Ei/ defined such that dp D pE. QE/dErdEi represents the elemental
probability that a field measurement gives a value for the real part between Er and Er C dEr

and imaginary part between Ei and Ei C dEi. Alternatively, we can represent pE. QE/ as a func-
tion of the amplitude, A, and phase, �, and thus write dp D pE. QE/AdAd� as the elemental
probability that a measurement gives a value of the amplitude between A and ACdA and phase
between � and � C d�. Once pE. QE/ is known, the average intensity of the wave, according to
Eq. (11.1.3), can be written as

<I> D
’ jEj2pE. QE/dErdEi’

pE. QE/dErdEi
D
’ jAj2pE. QE/AdAd�’

pE. QE/AdAd�
(11.7.1)

The probability density can be represented, in a very effective way, in three-dimensional space
as a function of Er and Ei.

The plot of pE. QE/ vs .Er, Ei/ for a single mode laser source is shown in Fig. 11.11a.
As already pointed out in Sect. 7.11, the output intensity and hence the field amplitude of
this laser is fixed, for a given pump rate, by the condition that upward transitions, due to
pumping, must be balanced by downward transitions due to both stimulated emission and
spontaneous decay. Small amplitude fluctuations may then arise from fluctuations of both
pump rate and cavity loss. On the other hand, the phase �.t/ is not controlled by such a
balancing process and is thus free to take any value between 0 and 1. Since, now, one has

A D �
E2

r C E2
i

	1=2
and � D � tan�1.Ei=Er/, the expected plot will be as shown in Fig. 11.11a.

Note that the amplitude fluctuations of A D A.t/ have been greatly exaggerated in the figure,
relative amplitude fluctuations of a few percent or less being typical in free-running operation
for, e.g., a good diode-pumped solid-state laser source (see Fig. 7.30). To first order we can
then assume

pE. QE/ / ı.A � A0/ (11.7.2)
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where A0 is a constant determined by the average intensity value. The substitution of
Eqs. (11.7.2) into (11.7.1) gives in fact <I> D A2

0. In the time domain, the point that rep-
resents QE.t/ in the .Er, Ei/ plane will then travel essentially along the circumference of radius
j QEj D A0. As a consequence of the statistical nature of the phase fluctuations, this move-
ment will be random and the corresponding angular speed, d�=dt, will establish the laser
bandwidth.

The plot of pE. QE/ vs .Er, Ei/ for a thermal light source is shown in Fig. 11.11b. In
this case, the field is due to the superposition of the uncorreleted light emitted, by sponta-
neous emission, from the individual atoms of the light source. Since the number of these
emitters is very large, it follows from the central limit theorem of statistics that the proba-
bility distribution of both real and imaginary parts of QE must follow a Gaussian law. We can
thus write

pE. QE/ / exp �
�

E2
r C E2

i

A2
0

�
D exp �

�
A2

A2
0

�
(11.7.3)

where A0 is a constant again determined by the average light intensity. The substitution of
Eqs. (11.7.3) into (11.7.1) gives, in fact, <I> D A2

0. Note that the average values of both
Er and Ei are now zero. Thus, the time-domain movement of the point representing QE in
the .Er, Ei/ plane consists now of a random movement around the origin. The speed of this
movement in terms of both amplitude and phase (i.e., in term of both dA/Adt and d�=dt)
establishes, in this case, the bandwidth of this thermal source.

11.8. COMPARISON BETWEEN LASER LIGHT AND THERMAL LIGHT

A comparison will now be made between a red-emitting, � D 633 nm, He-Ne laser
oscillating, on a single mode, with a “modest” output power of 1 mW with what is probably
the brightest conventional source, already considered in Sect. 11.6. (PEK Labs type 107/109),
giving an optical output power of Pout Š 10 W and a brightness B of �95 W=cm2 � sr in
its most intense green line at � D 546 nm wavelength. To obtain a beam with good spatial
coherence from this lamp, one can use the arrangement of Fig. 11.12, where a lens of focal
length, f , and suitable aperture, D, collects a fraction of the emitted light. The lamp is sim-
ulated by individual emitters, located within an aperture, of diameter d, made in a screen S.
Following the discussion in Sect. 11.3.6, to obtain a beam with a spatial coherence which
approaches the ideal, the aperture D must be chosen so that [see Eq. (11.3.43)]

D Š 0.32�f=d (11.8.1)

This beam, although having a degree of spatial coherence somewhat less than unity
[� .1/.P1, P2/ Š 0.88, in the case considered], may be regarded, generously, as having the
same degree of spatial coherence as that of the He-Ne laser [whose value for � .1/ may be taken
to be essentially unitary]. The output power of the beam obtained after the lens is then given
by Pout D BA˝ , where B is the brightness of the lamp, A is its emitting area .A D 
 d2=4/ and
˝ is the acceptance solid angle of the lens .˝ D 
2D2=4f 2/. With the help of Eq. (11.8.1)
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FIG. 11.12. Spatial and frequency filter to obtain a, first-order, coherent output beam from an incoherent lamp.

one then obtains [compare with Eq. (11.6.1)]

Pout Š .�=4/2B (11.8.2)

Using the value B D 95 W=cm2 � sr for the lamp brightness one obtains Pout Š 1.8 �10�8 W.
Note that this power is now �5 orders of magnitude smaller than that emitted by the He-
Ne laser and �9 orders of magnitude smaller than that emitted by the lamp. Note also that,
according to Eq. (11.8.2), the power that can be obtained in a spatially coherent beam depends
only on the brightness of the lamp and this further illustrates the importance of this quantity.

Having paid such a high penalty in terms of output power, one has now a beam which
has about the same degree of spatial coherence as that of our He-Ne laser. The degree of
temporal coherence, however, is still much worse because the emission bandwidth of the
lamp is certainly much larger than that of the He-Ne laser. In fact, the linewidth of the lamp
is broadened, by the high pressure of its internal gas, to a width of 	� Š 1013 Hz. The
linewidth of the He-Ne laser, on the other hand, even using a modest frequency stabilization
scheme, may be taken to be 	�L Š 1 kHz. To achieve the same degree of time coherence
we must then arrange for the bandwidths of the two sources to be the same. In principle
this can be done by inserting a frequency filter with the (exceptionally) narrow linewidth of
1 kHz in the output beam obtained from the lamp (see Fig. 11.12). However, this filter further
reduces the output power of this source by about ten orders of magnitude [corresponding to
.	�L=	�/ Š 10�10� so that the final output power of the, spatially- and frequency-filtered
lamp would be Pout Š 10�18 W.

Thus, for a penalty of about 19 orders of magnitude on the original green output power
emitted by the lamp, we can now say that the He-Ne laser beam and the filtered output beam
of Fig. 11.12 show, approximately, the same degree of spatial and temporal coherence. To
compare the two beams at the same output power, one may now place an attenuator with a
factor 1015 attenuation in front of the He-Ne laser. At this stage the power and the degree
of coherence for the two beams is the same and it is therefore natural to ask the question as
to whether these two sources would now be effectively the same, i.e., indistinguishable. The
answer is however negative. In fact, a detailed comparison between the two sources show that
the two beams remain basically different and that, notably, the He-Ne laser beam still remains
more coherent.

A first comparison can readily be made in terms of the statistical properties of the two
light sources. One may notice, in fact, that the filtering operation, applied to the lamp output,
and an attenuator, placed in front of the He-Ne laser beam, do not alter the statistical properties
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of the corresponding light. Thus Fig. 11.11a and Fig. 11.11b can still be used to describe the
statistical properties of the two sources and, from these figures, a first basic difference between
the two beams is now apparent. Note that, since the output powers of the two beams have
been equalised, the quantity A0 appearing in Eqs. (11.7.2) and (11.7.3) is the same for the two
sources. Note also that, if the degree of temporal coherence of the two beams is made equal,
this simply means that the speed of movement of the point representing QE in the .Er, Ei/ plane
is the same for the two cases. Note lastly that, if the degree of spatial coherence of the two
beams is equalised, this simply means that, for each beam, the movement in the .Er, Ei/ plane
will be the same at any point of the wavefront. Nonetheless, the statistical properties of the
two beams, as represented in Fig. 11.11, still remain fundamentally different.

A second comparison between the two sources can be made in terms of the coherence
properties to higher-order (see Appendix H). To this purpose, we recall that the coherence
function � .1/ was introduced in Sect. 11.3 in terms of the product E.x1/E�.x2/ between fields
taken at two different space-time points xi D .ri, ti/. For this reason, a superscript (1) was
used for � as a reminder of the fact that one is actually performing a, first-order, correlation
between the two fields. To higher order, one can in fact introduce a whole class of correla-
tion functions, e.g., <E.x1/E.x2/E�.x3/E�.x4/> involving the four distinct space-time points
x1, x2, x3, and x4, and so on to yet higher order

�

. One can then introduce some suitable defi-
nition of a higher-order coherence, � .n/, in terms of these higher-order correlation functions.
When this is done, it turns out that the higher-order coherence of our monomode laser source
is still larger than the filtered beam taken from a lamp (see Appendix H). It also turns out that,
fundamentally, one can at best arrange for the two sources to exhibit the same, first-order,
coherence i.e., the same degree of spatial and temporal coherence, as indeed achieved by the
filtering system of Fig. 11.12.

Thus, as a conclusion, despite having paid such a heavy penalty in terms of output power,
our filtered thermal source remains basically different from a laser.

PROBLEMS

11.1. Calculate � .1/.r1, r1, �/ for a sinusoidal wave.

11.2. Prove Eq. (11.3.9).

11.3. For the Michelson interferometer of Fig. 11.4a, find the analytical relation between the intensity
along the C direction, Ic, and � .1/.r, r, �/, where � D 2.L3 � L2/=c.

11.4. Assume that the field at point P of the Michelson interferometer of Fig. 11.4a is made of a sinu-
soidal wave with constant amplitude and random phase jumps (see Fig. 2.9). Using the expression
for � .1/.�/ calculated in Appendix B for this field and the relation between Ic and � .1/.�/

calculated in the previous problem, find the analytical expression of Vp D Vp.�/.

11.5. The shape of the spectral output of a CO2 laser beam operating at � D 10.6 μm is approximately
Gaussian with a bandwidth of 10 kHz Œ	�L is defined according to Eq. (11.3.27)]. Calculate the
coherence length Lc and the distance 	L between two successive maxima of the intensity curve
of Fig. 11.4b.

�
Actually, it can be shown that a given field E.x/ can, in principle. be completely characterized by either the infinite
set of values for E obtained by changing x, or by the infinite set of correlation functions as indicated above.
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11.6. A plane e.m. wave of circular cross section, uniform intensity, and perfect spatial coherence
is focused by a lens. What is the increase in intensity at the focus compared to that of the
incident wave?

11.7. A Gaussian beam is focused by a lens of focal length f . Assuming that the waist of the incident
beam is located at the lens position and that the corresponding spot-size w0 is appreciably smaller
than the lens diameter, relate the peak intensity at the focal spot to the power, Pi, of the incident
beam. Compare then the resulting expression with Eq. (11.4.4).

11.8. The near-field transverse-intensity profile of a Nd:YAG laser beam, at � D 1.064 μm wavelength,
is, to a good approximation, Gaussian with a diameter (FWHM) D Š 4 mm. The half-cone
beam divergence, measured at the half-maximum point of the far-field intensity distribution, is 
d
Š 3 mrad. Calculate the corresponding M2 factor.

11.9. The near-field transverse intensity profile of a pulsed TEA CO2 laser beam, at � D 10.6 μm
wavelength, is, to a good approximation, constant over its 1 cm � 4 cm dimension. The laser is
advertised to have a M2 factor of 16 along both axes. Assuming the waist position to be located at
the position of the output mirror, calculate the spot-size parameters at a distance from this mirror
of z D 3 m.
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Laser Beam Transformation:
Propagation, Amplification, Frequency
Conversion, Pulse Compression
and Pulse Expansion

12.1. INTRODUCTION

Before it is put to use, a laser beam is generally transformed in some way. The most
common type of transformation is that which occurs when the beam is simply made to prop-
agate in free space or through a suitable optical system. Since this produces a change in the
spatial distribution of the beam (e.g., the beam may be focused or expanded), we shall refer to
this as a spatial transformation of the laser beam. A second type of transformation, also rather
frequently encountered, is that which occurs when the beam is passed through an amplifier or
chain of amplifiers. Since the main effect here is to alter the beam amplitude, we shall refer to
this as amplitude transformation. A third, rather different, case occurs when the wavelength
of the beam is changed as a result of propagating through a suitable nonlinear optical material
(wavelength transformation or frequency conversion). Finally the temporal behavior of the
laser beam can be modified by a suitable optical element. For example, the amplitude of a cw
laser beam may be temporally modulated by an electro-optic or acousto-optic modulator or
the time duration of a laser pulse may be increased (pulse expansion) or decreased (pulse com-
pression) using suitably dispersive optical systems or nonlinear optical elements. This fourth
and last case will be referred to as time transformation. It should be noted that these four
types of beam transformation are often interrelated. For instance, amplitude transformation
and frequency conversion often result in spatial and time transformations occurring as well.

In this chapter the four cases of laser beam transformation introduced above will be
briefly discussed. In the case of frequency conversion, of the various nonlinear optical effects
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that can be used.1/ to achieve this, only the so-called parametric effects will be considered
here. These in fact provide some of the most useful techniques so far developed for producing
new sources of coherent light. Time transformation will be considered only for the cases of
pulse expansion or pulse compression, while we refer elsewhere for the case of amplitude
modulation..2/ We also omit a number of aspects of amplitude and time transformation that
arise from the nonlinear phenomenon of self-focusing and the associated phenomenon of self-
phase-modulation,.3/ although it should be noted that they can play a very important role in
limiting, for instance, the performance of laser amplifiers.

12.2. SPATIAL TRANSFORMATION: PROPAGATION
OF A MULTIMODE LASER BEAM.4,5/

The free-space propagation of a Gaussian beam and of a multi-transverse-mode beam has
already been considered in Sects. 4.7.2 and 11.4.3, respectively. In Sect. 4.7.2 it was shown
that a Gaussian beam, of, e.g., circular cross-section, is characterized by two parameters,
namely the coordinate, z0, of the beam-waist and the corresponding spot-size, w0. By contrast
to this, it was shown in Sect. 11.4.3 that a multi-mode beam, of, e.g., circular cross section
again, is characterized by three parameters, namely the coordinate, z0, of the beam-waist, the
spot-size parameter W0, and M2, the beam-quality factor. The propagation of a Gaussian beam
through a general optical system characterized by a given ABCD matrix, has, on the other
hand, been considered in Sect. 4.7.3. It was shown there that the complex q-parameter of the
beam, after passing through the optical system, can be readily obtained from the q-parameter
of the input beam once the matrix elements, A, B, C, D, are known. To complete this picture,
we will consider, in this Section, the propagation of a multi-mode laser beam through a general
optical system characterized by a given ABCD matrix.

Consider first the free-space propagation of a multimode laser beam. The spot-size
parameter, along, e.g., the transverse direction x and at a longitudinal coordinate z, is described
by Eq. (11.4.19) which, for convenience, is reproduced here

W2
x .z/D W2

0x C M4
x

� 2


2W2
0x

.z � z0x/
2 (12.2.1)

We can now see that, as far as free-space propagation is concerned, the multimode laser beam
behaves as if it contained an “embedded Gaussian beam” having the same waist location, z0x,
as the multimode beam and a spot-size, at any coordinate z, given by

wx.z/D Wx.z/=Mx (12.2.2)

where Mx Dp
M2

x is a constant. In fact, the substitution of Eq. (12.2.2) in Eq. (12.2.1) readily
gives Eq. (4.7.13a). It can also be shown that the radius of curvature, R.z/, of this embedded
Gaussian beam equals, at any z, that of the multimode beam.

This notion of an embedded Gaussian beam can be shown to hold also for prop-
agation through a general optical system described by, e.g., its ABCD matrix. Accord-
ingly, the propagation of the multi-mode beam can be obtained by the following simple
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Example 12.1. Focusing of a multimode Nd:YAG beam
by a thin lens Consider a multimode beam from a repeti-
tively pulsed Nd:YAG laser, at � Š 1.06�m wavelength,
such as used for welding or cutting metallic materials.
The near-field transverse-intensity profile may be taken
to be approximately Gaussian with a diameter (FWHM)
of D D 4 mm, while the M2 factor may be taken to be
�40. We want now to see what happens when the beam
is focused by a spherical lens of f D 10 cm focal length.
We assume that the waist of this multimode beam coin-
cides with the output mirror, this being a plane mirror. We
will also assume that the lens is located very near to this
mirror so that the waist of the multimode beam and hence
of the embedded Gaussian beam can be taken to coincide
with the lens location. For a Gaussian intensity profile,
the spot size parameter of the input beam, W D W0, is
then related to the beam diameter, D, by the condition
exp �2.D=2W0/

2 D .1=2/. We get W0 D D=Œ2 ln 2�1=2 Š
3.4 mm, so that w0 D W0=

p
M2 Š 0.54 mm. According

to Eq. (4.7.26), since the Rayleigh range correspond-
ing to this spot size, zR D
 w2

0=� Š 85 cm, is much
larger than the focal length of the lens, the waist formed
beyond the lens will approximately be located at the lens
focus. From Eq. (4.7.28), the spot-size of the embed-
ded Gaussian beam at this focus, w0f , is then given by
w0f Š �f=
w0 Š 63�m and the spot-size parameter of
the multimode beam by W0f D p

M2w0f Š 400�m.

procedure involving steps (a), (b), (c),
and (d): (a) Starting with the multimode
laser beam characterized by given values of
W0x, M2

x , and z0x, one defines the embed-
ded Gaussian beam with w0x D W0x=Mx and
beam-waist at the location of the multimode
beam-waist. (b) One then calculates the prop-
agation of the embedded Gaussian beam
through the optical system by, e.g., using
the ABCD law of Gaussian-beam propaga-
tion. (c) At any location within the optical
system, the wavefront radius of curvature of
the multimode beam will then coincide with
that of the embedded Gaussian beam. This
means, in particular, that any waist will have
the same location for the two beams. (d) The
spot-size parameter, Wx, of the multimode
beam, at any location, will then be given by
Wx.z/D Mxwx.z/.

12.3. AMPLITUDE
TRANSFORMATION:
LASER AMPLIFICATION.6�8/

In this section we consider the rate-
equation treatment of a laser amplifier. We
assume that a plane wave of uniform intensity I enters (at z D 0) a laser amplifier extending
for a length l along the z direction. We limit our considerations to the case where the incoming
laser beam is in the form of a pulse (pulse amplification) while we refer elsewhere.8/ for the
amplification of a c.w. beam (steady-state amplification).

We consider first the case of an amplifier medium working on a four-level scheme and
further assume that pulse duration, �p, is such that �1 � �p � � , where �1 and � are the
lifetime of the lower and upper levels of the amplifier medium, respectively. In this case the
population of the lower level of the amplifier can be set equal to zero. This is perhaps the
most relevant case to consider as it would apply, for instance, to the case of a Q-switched
laser pulse from a Nd: YAG laser being amplified. We will also assume that pumping to the
amplifier upper-level and subsequent spontaneous decay can be neglected during the passage
of the pulse and that the transition is homogeneously-broadened. Under these conditions and
with the help of Eq. (2.4.17) [in which we set F D I=hv], the rate of change of population
inversion N.t, z/ at a point z within the amplifier can be written as

@N

@ t
D � WN D � NI

�s
(12.3.1)



508 12 � Propagation, Amplification, Frequency Conversion, Pulse Compression

where

�s D .hv=�/ (12.3.2)

is the saturation energy fluence of the amplifier [see Eq. (2.8.29)]. Note that a partial derivative
is required in Eq. (12.3.1) since we expect N to be a function of both z and t, i.e., N D N.t, z/,
on account of the fact that I D I.t, z/. Note also that Eq. (12.3.1) can be solved for N.t/ to
yield

N.1/D N0 exp �.� =�s/ (12.3.3)

where N0 D N.�1/ is the amplifier’s upper-level population before the arrival of the pulse,
as established by the combination of pumping and spontaneous decay, and where

� .z/D
Z C1

�1
I.z, t/ dt (12.3.4)

is the total fluence of the laser pulse.
Next we derive a differential equation describing the temporal and spatial variation of

intensity I. To do this we first write an expression for the rate of change of e.m. energy within
unit volume of the amplifier. For this we refer to Fig. 12.1 where an elemental volume of the
amplifier medium of length dz and cross-section S is indicated by the shaded area. We can
then write

@�

@t
D
�
@�

@t

�
1

C
�
@�

@t

�
2

C
�
@�

@t

�
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(12.3.5)

where .@�=@t/1 accounts for stimulated emission and absorption in the amplifier, .@�=@t/2 for
the amplifier loss (e.g., scattering losses), and .@�=@t/3 for the net photon flux which flows
into the volume. With the help again of Eq. (2.4.17) ŒF D I=hv� we obtain
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D WNhv D �NI (12.3.6)

FIG. 12.1. Rate of change of the photon energy contained in an elemental volume of length dz and cross sectional
area S of a laser amplifier.
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and from Eqs. (2.4.17) and (2.4.32) we obtain
�
@�

@t

�
2

D � WaNahv D � ˛ I (12.3.7)

where Na is the density of the loss centers, while Wa is the absorption rate, and ˛ the absorp-
tion coefficient associated with the loss centers. To calculate .@�=@t/3, we refer again to
Fig. 12.1, and note that .@�=@t/3Sdz is the rate of change of e.m. energy in this volume
due to the difference between the incoming and outgoing laser power. We can then write
.@�=@t/3Sdz D SŒI.t, z/ � I.t, z C dz/�, which readily gives
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Equation (12.3.5), with the help of Eqs. (12.3.6)–(12.3.8) and with the observation that
.@�=@t/D .@I=c@t/, gives
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C @I

@z
D �NI � ˛I (12.3.9)

This equation, together with Eq. (12.3.1), completely describes the amplification process.
Note that Eq. (12.3.9) has the usual form of a time-dependent transport equation.

Equations (12.3.1) and (12.3.9) must be solved with the appropriate boundary and initial
conditions. As the initial condition we take N.0, z/D N0, where N0 is the amplifier upper-level
population before the arrival of the laser pulse. The boundary condition is obviously estab-
lished by the intensity I0.t/ of the light pulse injected into the amplifier, i.e., I.t, 0/D I0.t/.
For negligible amplifier losses (i.e., neglecting the term �˛l), the solution to Eqs. (12.3.1)
and (12.3.9) can be written as

I.z, �/D I0.�/
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:1 � Œ1 � exp.�gz/� exp
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(12.3.10)

where � D t � .z=c/ and where g D �N0 is the unsaturated gain coefficient of the amplifier.
From Eqs. (12.3.1) and (12.3.9), we can also obtain a differential equation for the total

fluence of the pulse, � .z/, given by Eq. (12.3.4). Thus, we first integrate both sides of

Eq. (12.3.1) with respect to time, from t D �1 to t D C1, to obtain
�R C1

�1 NIdt=�s

�
D N0 �

N.C1/D N0Œ1 � exp.�� =�s/�, where Eq. (12.3.3) has been used. We then integrate both
sides of Eq. (12.3.9) with respect to time, on the same time interval, and use the above

expression for
�R C1

�1 NIdt=�s

�
and the fact that I.C1, z/D I.�1, z/D 0. We obtain
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dz
D g�sŒ1 � exp.�� =�s/� � ˛� (12.3.11)

Again neglecting amplifier losses, Eq. (12.3.11) gives
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where G0 D exp.gl/ is the unsaturated gain of the amplifier and�in is the energy fluence of the
input beam. As a representative example the ratio � =�s is plotted in Fig. 12.2 versus �in=�s

for G0 D 3. Note that, for �in � �s, Eq. (12.3.12) can be approximated as

� .l/D G0�in (12.3.13)

and the output fluence increase linearly with the input fluence (linear amplification regime).
Equation (12.3.13) is also plotted in Fig. 12.2 as a dashed straight line starting from the origin.
At higher input fluences, however, � increases with �in at a lower rate than that predicted by
Eq. (12.3.13) i.e., amplifier saturation begins to occur. For �in � �s (deep saturation regime)
Eq. (12.3.12) can be approximated to

� .l/D�in C gl�s (12.3.14)

Equation (12.3.14) has also been plotted in Fig. 12.2 as a dashed straight line. Note that
Eq. (12.3.14) shows that, for high input fluences, the output fluence is linearly dependent on
the length l of the amplifier. Since �sgl D N0lhv, one then realizes that every excited atom
undergoes stimulated emission and thus contributes its energy to the beam. Such a condition
obviously represents the most efficient conversion of stored energy to beam energy, and for
this reason amplifier designs operating in the saturation regime are used wherever practical.

It should be pointed out again that the previous equations have been derived for an ampli-
fier having an ideal four-level scheme. For a quasi-three-level scheme, on the other hand, one
can see from the considerations developed in Sect. 7.2.2 that Eq. (12.3.1) still applies provided
that �s is now given by

�s D hv=.�e C �a/ (12.3.15)

where �e and �a are the effective cross-sections for stimulated emission and absorption,
respectively. One can also show that Eq. (12.3.9) still applies provided that � is replaced by �e.

FIG. 12.2. Output laser energy fluence � versus input fluence �in for a laser amplifier with a small signal gain
G0 D 3. The energy fluence is normalized to the laser saturation fluence �s D h�=� .
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It then follows that Eq. (12.3.12) still remain valid provided that �s is given by Eq. (12.3.15)
and G0 given by G0 D exp�eN0l. Similar considerations can be made for an amplifier oper-
ating on a four-level scheme when the pulse duration becomes much shorter than the lifetime
of the lower level of the transition. In this case the population driven to the lower level by
stimulated emission remains in this level during the pulse and one can show that Eq. (12.3.12)
still remains valid provided that � is replaced by �e, and �s is given by Eq. (12.3.15), where
�a is the effective absorption cross-section of the lower level of the transition.

If amplifier losses cannot be neglected, the above picture has to be modified somewhat.
In particular the output fluence � .l/ does not continue increasing with input fluence, as in
Fig. 12.2, but reaches a maximum and then decreases. This can be understood by noting
that, in this case, the output as a function of amplifier length tends to grow linearly due to
amplification [at least for high input fluences, see Eq. (12.3.14)] and to decrease exponentially
due to loss [on account of the term �˛� in Eq. (12.3.11)]. The competition of these two terms
then gives a maximum for the output fluence � . For ˛ � g this maximum value of the output
fluence, �m, turns out to be

�m Š g�s=˛ (12.3.16)

It should be noted, however, that, since amplifier losses are typically quite small, other phe-
nomena usually limit the maximum energy fluence that can be extracted from an amplifier. In
fact, the limit is usually set by the amplifier damage fluence �d (10 J=cm2 is a typical value
for a number of solid-state media). From Eq. (12.3.14) we then get the condition

� Š gl�s<�d (12.3.17)

Another limitation to amplifier performance arises from the fact that the unsaturated
gain G0 D exp.gl/ must not be made too high, otherwise two undesirable effects can occur in
the amplifier: (1) parasitic oscillations, (2) amplified spontaneous emission (ASE). Parasitic
oscillation occurs when the amplifier starts lasing by virtue of some internal feedback which
will always be present to some degree, (e.g., due to the amplifier end faces). The phenomenon
of ASE has already been discussed in Sect. 2.9.2. Both these phenomena tend to depopulate
the available inversion and hence decrease the laser gain. To minimize parasitic oscillations
one should avoid elongated amplifiers and in fact ideally use amplifiers with roughly equal
dimensions in all directions. Even in this case, however, parasitic oscillations set an upper
limit .gl/max to the product of gain coefficient, g, with amplifier length, l, i.e.,

gl< .gl/max (12.3.18)

where, for typical cases, .gl/max may range between three and five. The threshold for ASE
has already been given in Sect. 2.9.2 [see Eq. (2.9.4a), for a Lorentzian line]. For an amplifier
in the form of a cube (i.e., for ˝ Š 1) and for a unitary fluorescence quantum yield we get
G Š 8 [i.e., gl Š 2.1] which is comparable to that established by parasitic oscillations. For
smaller values of solid angle ˝ , which are more typical, the value of G for the onset of ASE
is expected to increase [Eq. (2.9.4a)]. Hence parasitic oscillations, rather than ASE, usually
determine the maximum gain that can be achieved.
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Example 12.2. Maximum energy which can be extracted
from an amplifier. It is assumed that the maximum
value of gl is limited by parasitic oscillations such that
.gl/2max Š 10 and the rather low gain coefficient of
g D 10�2 cm�1 is also assumed. For a damage energy-
fluence of the amplifier medium of �d D 10 J=cm2, we
get from Eq. (12.3.19) Em Š l MJ. It is however worth
noting that this represents an upper limit to the energy
since it would require a somewhat impractical amplifier
dimension of the order of lm Š .gl/m=g Š 3 m.

When both limits, due to damage,
Eq. (12.3.17), and parasitic oscillations,
Eq. (12.3.18), are taken into account, one
can readily obtain an expression for the max-
imum energy Em, that can be extracted from
an amplifier, as

Em D�dl2m D�d.gl/2m=g2 (12.3.19)

where lm is the maximum amplifier dimen-
sion (for a cubic amplifier) implied by
Eq. (12.3.18). Equation (12.3.19) shows that

Em is increased by decreasing the amplifier gain coefficient g. Ultimately, a limit to this
reduction in gain coefficient would be established by the amplifier losses ˛.

So far we have concerned ourselves mostly with the change of laser pulse energy as the
pulse passes through an amplifier. In the saturation regime, however, important changes in
both the temporal and spatial shape of the input beam also occur. The spatial distortions can
be readily understood with the help of Fig. 12.2. For an input beam with a bell-shaped trans-
verse intensity profile (e.g., a Gaussian beam), the beam center, as a result of saturation, will
experience less gain than the periphery of the beam. Thus, the width of the beam’s spatial pro-
file is enlarged as the beam passes through the amplifier. The reason for temporal distortions
can also be seen quite readily. Stimulated emission caused by the leading edge of the pulse
implies that some of the stored energy has already been extracted from the amplifier by the
time the trailing edge of the pulse arrives. This edge will therefore see a smaller population
inversion and thus experience a reduced gain. As a result, less energy is added to the trailing
edge than to the leading edge of the pulse, and this leads to considerable pulse reshaping.
The output pulse shape can be calculated from Eq. (12.3.10), and it is found that the ampli-
fied pulse may either broaden or narrow (or even remain unchanged), the outcome depending
upon the shape of the input pulse..7/

12.3.1. Examples of Laser Amplifiers: Chirped-Pulse-Amplification

One of the most important and certainly the most spectacular example of laser pulse
amplification is that of Nd:glass amplifiers used to produce pulses of high energy (10–100 kJ)
for laser fusion research..8/ Very large Nd:glass laser systems have, in fact, been built and oper-
ated at a number of laboratories throughout the world, the one having the largest output energy
being operated at the Lawrence Livermore National Laboratory in the USA (the NOVA laser).
Most of these Nd:glass laser systems exploit the master-oscillator power-amplifier (MOPA)
scheme. This scheme consists of a master oscillator, which generates a well controlled pulse
of low energy, followed by a series of power amplifiers, which amplify the pulse to high
energy. The clear aperture of the power amplifiers is increased along the chain to avoid opti-
cal damage as the beam energy increases. A schematic diagram of one of the ten arms of the
NOVA system is shown in Fig. 12.3. The initial amplifiers in the chain consist of phosphate-
glass rods (of 380 mm length and with a diameter of 25 mm for the first amplifiers, 50 mm
for the last). The final stage of amplification is achieved via face-pumped disk amplifiers (see
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FIG. 12.3. Schematic layout of the amplification system, utilizing Nd:glass amplifiers, for one arm of the Nova
system [after ref.,.8/ by permission].

Fig. 6.3b) with large clear-aperture diameter (10 cm for the first amplifiers, 20 cm for the last).
Note the presence in Fig. 12.3 of Faraday isolators (see Fig. 7.23) whose purpose is to avoid
reflected light counter-propagating through the amplifier chain and thus damaging the initial
stages of the system. Note also the presence of spatial filters consisting of two lenses, in a
confocal arrangement (Fig. 11.10), with a pinhole at the common focus. These filters serve
the double purpose of removing the small-scale spatial irregularities of the beam, as well as
matching the beam profile between two consecutive amplifiers of different aperture. The laser
system of Fig. 12.3 delivers an output energy of �10 kJ in a pulse of duration down to 1 ns,
which gives a total energy of the 10-arms NOVA system of �100 kJ. Laser systems based on
this layout concept and delivering an overall output energy of �1 MJ are now being built in
USA (National Ignition Facility, NIF, Livermore) and in France (Megajoule project, Limeil)
[see also Sect. 9.2.2.2].

A second class of laser amplifiers which has revolutionized the laser field in terms of
focusable beam intensity, relies on the Chirped Pulse Amplification (CPA) concept.9/ and is
used to amplify picosecond or femtosecond laser pulses. At such short pulse durations, in
fact, the maximum energy which can be obtained from an amplifier depends on the onset,
either of self-focusing, which is related to the beam peak power, or multi-photon-ionization,
which is related to the beam peak intensity. To overcome these limitations, one can adopt a
technique, already used in radar technology, of pulse expansion (or pulse-stretching), before
amplification, followed by pulse compression, to its original shape, after the amplification
process. In this way the peak power and hence the peak intensity of the pulse, in the amplifier
chain, may be reduced by a few orders of magnitude .103–104/. This allows a corresponding
increase in the maximum energy which can be safely extracted from a given amplifier. Pulse
expansion is achieved via an optical system which provides, e.g., a positive group-delay dis-
persion (GDD). In this way the pulse may be considerably expanded in time while acquiring
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a positive frequency sweep (see Sect. 12.5.2 and Appendix G). The amplified pulse is then
passed through an optical system having negative GDD (see Sect. 12.5.1). The effect of this
second dispersive element is then to compensate the frequency sweep introduced by the first
and so restore the initial shape of the pulse entering the amplifier chain.

Figure 12.4 illustrates a commonly used lay-out for a Ti:sapphire CPA. In the figure,
P1, P2, and P3 are three polarizers which transmit light whose field is polarized in the plane of
the figure (horizontally-polarized light) while reflecting light with field polarized orthogonal
to the figure (vertically-polarized light). The combination of the �=2-plate and Faraday-rotator
(F.R.) is such as to transmit, without rotation, light traveling from right to left and to rotate, by
90ı, the polarization of light traveling from left to right (see Fig. 7.24). Low-energy .�1 nJ/,
high-repetition rate .f Š 80 MHz/, horizontally-polarized, femtosecond pulses, emitted by a
Ti:sapphire mode-locked oscillator, are sent to the CPA. They are thus transmitted by polarizer
P2, do not suffer polarization-rotation on passing through the �=2-plate-F.R. combination, are
then transmitted by polarizer P1, and thus sent to the pulse stretcher (whose lay-out will be
discussed in Sect. 12.5.2). Typical expansion of the retroreflected pulse from the stretcher may
be by a factor of �5, 000, e.g. from 100 fs to 500 ps. The expanded pulses are then transmitted
by polarizer P1, undergo a 90ı polarization rotation in the F.R.-�=2-plate combination and
are reflected by polarizer P2. With the help of polarizer P3, the expanded pulses are then
injected into a so-called regenerative amplifier which consists of a Ti:sapphire amplifier and a
Pockels cell (P.C.) located in a three-mirror (M1, M2, and M3) folded resonator. The Pockels
cell is oriented so as to produce a static �=4 retardation. The cavity Q is thus low before the
pulse arrival and the regenerative amplifier is below the oscillation threshold. In this situation,
any injected pulse become horizontally polarized after a double passage through the P.C.,
and is thus transmitted by polarizer P3 toward the Ti:sapphire amplifier. After returning from

FIG. 12.4. Amplification of femtosecond laser pulses via a Ti:sapphire regenerative amplifier and the chirped-pulse-
amplification technique.
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the amplifier, the pulse is transmitted by polarizer P3, and, after again double-passing the
P.C., becomes vertically polarized and thus reflected out of the cavity by polarizer P3. So,
in this double transit through the regenerative amplifier, very little amplification is obtained
for the output pulse. If however, while the pulse is between the polarizer and mirror M1, a
�=4-voltage is applied to the P.C., the cell becomes equivalent to a �=2-plate, and the pulse
does not change its polarization state after each double passage through the cell. Therefore,
the pulse gets trapped in the regenerative amplifier and, on each pass through the amplifying
medium, it is amplified. After a suitable number of round-trips in the cavity (typically 15–20),
the pulse energy reaches its maximum value and is then extracted from the cavity by applying
an additional �=4 voltage to the P.C.. In this case, in fact, after a double pass through the cell,
the pulse becomes vertically polarized and is reflected by polarizer P3 back in the direction
of the incoming pulses. This, high-energy, vertically-polarized pulse is reflected by polarizer
P2, does not suffer polarization-rotation on passing through the �/2-plate-F.R. combination,
and is reflected by polarizer P1 toward the pulse compressor (whose lay-out will be discussed
in Sect. 12.5.1). The retroreflected beam from the compressor then consists of a train of high
energy pulses, each with a duration approximately equal to that of the original pulses emitted
by the oscillator, and with a repetition rate equal to that at which the Ti:sapphire amplifier is
pumped (1–10 kHz, usually by the second-harmonic green-beam of a repetitively Q-switched
Nd:YLF laser).

Systems of this type, exploiting the CPA technique, have allowed the development of
lasers with ultra-high peak-power..10/ For instance, using Ti:sapphire active media, table-top
CPA systems with peak power of �20 TW have already been demonstrated while systems
with peak powers approaching 100 TW (e.g., 2 J in a 20 fs pulse) are under construc-
tion. The largest peak power, so far achieved by exploiting the CPA technique, is actually
�1.25 PW .1 PW D 1015 W/,.11/ obtained using a chain of amplifiers taken from one arm of
the NOVA laser (so as to obtain an amplified pulse with �580 J energy and �460 fs dura-
tion). The peak intensity obtained by focusing these ultra-high-power pulses is extremely high
.1019–1020 W=cm2/, representing an increase of four to five orders of magnitude compared to
that available before introducing the CPA technique. When these ultra-high intensity beams
interact with a solid target or with a gas, a highly ionized plasma is obtained and a completely
new class of nonlinear optical phenomena is produced. Applications of these high intensi-
ties cover a broad area of science and technology including ultrafast x-ray and high-energy
electron sources, as well as novel fusion concepts and plasma astrophysics..12/

A third class of amplifier, widely used in optical fiber communications, is represented by
the Er-doped optical-fiber amplifier (EDFA)..13/ This amplifier is diode-pumped either in the
980 nm or 1480 nm pump bands of the ErC ion [see Fig. 9.4] and is used to amplify pulses at
wavelengths corresponding to the so-called third transmission window of silica optical fibers
.� Š 1550 nm/. Since, usually, the pulse repetition rate of a communication system is very
high .� GHz/ and the upper-state lifetime of ErC is very long (�10 ms, see Table 9.4) the
saturation behavior of the ErC population is a cumulative result of many laser pulses, i.e.,
determined by the average beam intensity. The rate-equation treatment of this type of ampli-
fication can then be made in terms of average beam intensity and, in principle, is very simple.
Complications however arise from several factors, namely: (1) The ErC system works on an
almost pure three-level scheme (see Sect. 9.2.4) and therefore, the effective cross-sections of
stimulated-emission and absorption, both covering a large spectral bandwidth, must be taken
into account. (2) Transverse variation, within the fiber, of both the ErC population profile and
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the intensity profile of the propagating mode, must be taken into account. (3) Account must
also be taken of the simultaneous presence of bidirectional noise arising from amplified spon-
taneous emission (ASE). We therefore make no attempt to cover this subject in any detail,
limiting ourselves to pointing out that a vast literature exists,.14/ that very high small-signal
gain (up to �50 dB), relatively large saturated average output powers .�100 mW/, and low
noise are achieved via these amplifiers. Thus, Erbium-doped fiber amplifiers must be con-
sidered a major break-through in the field of optical fiber communications, with applications
regarding both long-haul systems as well as distribution networks.

12.4. FREQUENCY CONVERSION: SECOND-HARMONIC
GENERATION AND PARAMETRIC OSCILLATION.1,15/

In classical linear optics one assumes that the induced dielectric polarization of a medium
is linearly related to the applied electric field, i.e.,

P D "0�E (12.4.1)

where � is the dielectric susceptibility. With the high electric fields involved in laser beams
the above linear relation is no longer a good approximation, and further terms in which P is
related to higher-order powers of E must also be considered. This nonlinear response can lead
to an exchange of energy between e.m. waves at different frequencies.

In this section we will consider some of the effects produced by a nonlinear polarization
term that is proportional to the square of the electric field. The two effects that we will consider
are: (1) Second-harmonic generation (SHG), in which a laser beam at frequency ! is partially
converted, in the nonlinear material, to a coherent beam at frequency 2! [as first shown by
Franken et al..16/]. (2) Optical parameter oscillation (OPO), in which a laser beam at frequency
!3 causes the simultaneous generation, in the nonlinear material, of two coherent beams at
frequency !1 and !2 such that !1 C!2 D!3 [as first shown by Giordmaine and Miller.17/].
With the high electric fields available in laser beams the conversion efficiency of both these
processes can be very high (approaching 100% in SHG). Therefore, these techniques are
increasingly used to generate new coherent waves at different frequencies from that of the
incoming wave.

12.4.1. Physical Picture

We will first introduce some physical concepts using the simplifying assumption that the
induced nonlinear polarization PNL is related to the electric field E of the e.m. wave by a scalar
equation, i.e.,

PNL D 2ε0dE2 (12.4.2)

where d is a coefficient whose dimension is the inverse of an electric field.� The physical ori-
gin of Eq. (12.4.2) resides in the nonlinear deformation of the outer, loosely bound, electrons

� We use 2ε0 dE2 rather than dE2 (as often used in other textbooks) to make d conform to increasingly accepted
practice.
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of an atom or atomic system when subjected to high electric fields. This is analogous to a
breakdown of Hooke’s law for an extended spring, resulting in the restoring force no longer
being linearly dependent on the displacement from equilibrium. A comparison of Eqs. (12.4.2)
and (12.4.1) shows that the nonlinear polarization term becomes comparable to the linear one
for an electric field E Š �=d. Since � Š 1, we see that .1=d/ represents the field strength
for which the linear and nonlinear terms become comparable. At this field strength, a sizable
nonlinear deformation of the outer electrons must occur and .1=d/ is then expected to be of
the order of the electric field that an electronic charge produces at a distance corresponding
to a typical atomic dimension a, i.e., .1=d/ Š e=4
ε0a2 [thus .1=d/ Š 1011 V=m for a Š
0.1 nm]. We note that d must be zero for a centrosymmetric material, such as a centrosym-
metric crystal or the usual liquids and gases. For symmetry reasons, in fact, if we reverse the
sign of E, the sign of the total polarization Pt D P C PNL must also reverse. Since, however,
PNL / dE2, this can only occur if d D 0. From now on we will therefore confine ourselves to
a consideration of non-centrosymmetric materials. We will see that the simple Eq. (12.4.2) is
then able to account for both SHG and OPO.

12.4.1.1. Second-Harmonic Generation

We consider a monochromatic plane wave of frequency! propagating along some direc-
tion, denoted as the z-direction, within a nonlinear crystal, the origin of the z-axis being taken
at the entrance face of the crystal. For a plane wave of uniform intensity we can write the
following expression for the electric field E!.z, t/ of the wave

E!.z, t/D .1=2/ fE.z, !/ expŒj.! t � k!z/�C c.c.g (12.4.3)

In the above expression c.c. means the complex conjugate of the other term appearing in the
brackets and

k! D !

c!

D n!!

c
(12.4.4)

where c! is the phase velocity, in the crystal, of a wave of frequency !, n! is the refractive
index at this frequency, and c is the velocity of light in vacuum. Substitution of Eq. (12.4.3)
into Eq. (12.4.2) shows that PNL contains a term� oscillating at frequency 2!, namely,

PNL
2! D ."0d=2/

˚
E2.z, !/ expŒj.2! t � 2k!z/�C c.c.

�
(12.4.5)

Equation (12.4.5) describes a polarization wave oscillating at frequency 2! and with
a propagation constant 2k! . This wave is then expected to radiate at frequency 2!, i.e., to
generate an e.m. wave at the second harmonic (SH) frequency 2!. The analytical treatment,
given later, involves in fact substitution of this polarization in the wave equation for the e.m.
field. The radiated SH field can be written in the form

E2!.z, t/D .1=2/ fE.z, 2!/ expŒj.2! t � k2!z/�C c.c.g (12.4.6)

� The quantity PNL also contains a term at frequency !D 0 which leads to development of a dc voltage across the
crystal (optical rectification).
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where

k2! D 2!

c2!

D 2n2!!

c
(12.4.7)

is the propagation constant of a wave at frequency 2!. The physical origin of SHG can thus be
traced back to the fact that, as a result of the nonlinear relation Eq. (12.4.2), the e.m. wave at
the fundamental frequency ! will beat with itself to produce a polarization at 2!. A compari-
son of Eq. (12.4.5) with Eq. (12.4.6) reveals a very important condition that must be satisfied
if this process is to occur efficiently, viz., that the phase velocity of the polarization wave
.�P D 2!=2k!/ be equal to that of the generated e.m. wave .�E D 2!=k2!/. This condition
can thus be written as

k2! D 2k! (12.4.8)

In fact, if this condition is not satisfied, the phase of the polarization wave at coordinate
z D l into the crystal, 2k!l, will be different from that, k2! l, of the wave generated at z D 0
which has subsequently propagated to z D l. The difference in phase, .2k! �k2!/l, would then
increase with distance l and the generated wave, being driven by a polarization which does not
have the appropriate phase, will then not grow cumulatively with distance l. Equation (12.4.8)
is therefore referred to as the phase-matching condition. Note that, according to Eqs. (12.4.4)
and (12.4.7), equation (12.4.8) implies that

n2! D n! (12.4.9)

Now, if the polarization directions of E! and PNL (and hence of E2!/ were indeed the
same [as implied by Eq. (12.4.2)] condition Eq. (12.4.9) could not be satisfied owing to the
dispersion .	n D n2! � n!/ of the crystal. This would then set a severe limit to the crystal
length lc over which PNL can give contributions which keep adding cumulatively to form the
second harmonic wave. This length lc (the coherence length) must in fact correspond to the
distance over which the polarization wave and the SH wave get out of phase with each other
by an amount 
 . This means that k2!lc �2k!lc D
 , from which, with the help of Eqs. (12.4.4)
and (12.4.7), one gets

lc D �

4	 n
(12.4.10)

where �D 2
c=! is the wavelength in vacuum of the fundamental wave. Taking, as an exam-
ple, � Š 1�m and 	n D 10�2, we get lc D 25�m. Note that, at this distance into the crystal,
the polarization wave becomes 180ı out of phase compared to the SH wave and the latter
begins to decrease with increased distance rather than continuing to grow. Since, as seen in
the previous example, lc is usually very small, only a very small fraction of the incident power
can then be transformed into the second harmonic wave.

At this point it is worth pointing out another useful way of visualizing the SHG process,
in terms of photons rather than fields. First we write the relation between the frequency of the
fundamental (!) and second-harmonic .!SH/ wave, viz.,

!SH D 2! (12.4.11)
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If we now multiply both sides of Eqs. (12.4.11) and (12.4.8) by „, we get

„!SH D 2„! (12.4.12a)

„k2! D 2„k! (12.4.12b)

respectively. For energy to be conserved in the SHG process, we must have dI2!=dz D
�dI!=dz, where I2! and I! are the intensities of the waves at the two frequencies. With
the help of Eq. (12.4.12a) we get dF2!=dz D �.1=2/dF!=dz, where F2! and F! are the pho-
ton fluxes of the two waves. From this equation we can then say that, whenever, in the SHG
process, one photon at frequency 2! is produced, correspondingly two photons at frequency
! disappear. Thus the relation Eq. (12.4.12a) can be regarded as a statement of conservation
of photon energy. Remembering that „k is the photon momentum, Eq. (12.4.12b) is then seen
to correspond to the requirement that photon momentum is also conserved in the process.

We now reconsider the phase-matching condition Eq. (12.4.9) to see how it can be sat-
isfied in a suitable, optically anisotropic, crystal..18,19/ To understand this we will first need
to make a small digression to explain the propagation behavior of waves in an anisotropic
crystal, and also to show how the simple nonlinear relation Eq. (12.4.2) should be generalized
for anisotropic media.

In an anisotropic crystal it can be shown that, for a given direction of propagation, there
are two linearly polarized plane waves that can propagate with different phase velocities. Cor-
responding to these two different polarizations one can then associate two different refractive
indices, the difference of refractive index being referred to as the crystal’s birefringence. This
behavior is usually described in terms of the so-called index ellipsoid which, for a uniaxial
crystal, is an ellipsoid of revolution around the optic axis (the z axis of Fig. 12.5). Given this
ellipsoid, the two allowed directions of linear polarization and their corresponding refractive
indices are found as follows: Through the center of the ellipsoid one draws a line in the direc-
tion of beam propagation (line OP of Fig. 12.5) and a plane perpendicular to this line. The
intersection of this plane with the ellipsoid is an ellipse. The direction of the two axes of the
ellipse then give the two polarization directions and the length of each semiaxis gives the
refractive index corresponding to that polarization. One of these directions is necessarily per-
pendicular to the optic axis and the wave having this polarization is referred to as the ordinary
wave. Its refractive index, no, can be seen from the figure to be independent of the direction
of propagation. The wave with the other direction of polarization is referred to as the extraor-
dinary wave and the corresponding index, ne.
/, depends of the angle 
 and ranges in value
from that of the ordinary wave n0 (when OP is parallel to z) to the value ne, referred to as the
extraordinary index, which occurs when OP is perpendicular to z. Note now that one defines a
positive uniaxial crystal as corresponding to the case ne> no while a negative uniaxial crystal
corresponds to the case ne< no. An equivalent way to describe wave propagation is through
the so-called normal (index) surfaces for the ordinary and extraordinary waves (Fig. 12.6). In
this case, for a given direction of propagation OP and, for either ordinary or extraordinary
waves, the length of the segment between the origin O and the point of interception of the ray
OP with the surface gives the refractive index of that wave. The normal surface for the ordi-
nary wave is thus a sphere, while the normal surface for the extraordinary wave is an ellipsoid
of revolution around the z axis. In Fig. 12.6 the intersections of these two normal surfaces
with the y-z plane are indicated for the case of a positive uniaxial crystal.
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FIG. 12.5. Index ellipsoid for a positive uniaxial crystal.

FIG. 12.6. Normal (index) surface for both the ordinary and extraordinary waves (for a positive uniaxial crystal).

After this brief discussion of wave propagation in anisotropic crystals, we now return to
the problem of the induced nonlinear polarization. In general, in an anisotropic medium, the
scalar relation Eq. (12.4.2) does not hold and a tensor relation needs to be introduced. First,
we write the electric field E!.r, t/ of the e.m. wave at frequency ! and at a given point r and
the nonlinear polarization vector at frequency 2!, P2!

NL.r, t/ in the form

E!.r, t/D .1=2/ŒE!.r,!/ exp.j!t/C c.c.� (12.4.13a)

P 2!
NL.r, t/D .1=2/ŒP 2!.r, 2!/ exp.2j!t/C c.c.� (12.4.13b)

A tensor relation can then be established between P2! .r, 2!/ and E!.r, !/. In fact, the
second harmonic polarization component, along, e.g., the i-direction of the crystal, can be
written as

P2!
i D

X
j,k D 1,2,3

"0d2!
ijk E!

j E!
k (12.4.14)
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Note that Eq. (12.4.14) is often written in condensed notation as

P2!
i D

6X
1

m"0d2!
im .EE/m (12.4.15)

where m runs from one to six. The abbreviated field notation is that .EE/1 � E2
1 � E2

x , �
.EE/2 � E2

2 � E2
y , .EE/3 � E2

3 � E2
z , .EE/4 � 2E2E3 � 2EyEz, .EE/5 � 2E1E3 �

2ExEz, and .EE/6 � 2E1E2 � 2ExEy, where both the 1, 2, 3 and the x, y, z notation for
axes have been indicated. Note that, expressed in matrix form, dim is a 3 � 6 matrix that
operates on the column vector .EE/m. Depending on the crystal symmetry, some of the values
of the dim matrix may be equal and some may be zero. For the N42m point group symmetry,
which includes the important nonlinear crystals of the KDP type and the chalcopyrite semi-
conductors, only d14, d25, and d36 are non-zero and these three d coefficients, are themselves
equal. Therefore only one coefficient, e.g., d36, needs to be specified, and one can write

Px D 2"0 d36 EyEz (12.4.16a)

Py D 2"0 d36 EzEx (12.4.16b)

Pz D 2"0 d36 ExEy (12.4.16c)

where the z-axis is again taken along the optic axis of the uniaxial crystal. The nonlinear
optical coefficients, the symmetry class, the transparency range, and the damage threshold of
some selected nonlinear materials are indicated in Table 12.1. Except for cadmium germanium
arsenate and AgGaSe2, which are commonly used around the 10μm range, all the other crys-
tals listed are used in the near UV to near IR range. The table includes the more recent crystals
of KTP (potassium titanyl phosphate), and BBO (beta-barium borate), the former being com-
monly used for second harmonic generation at, e.g., the Nd:YAG wavelength. The nonlinear
d-coefficients are normalized to that of KDP, whose actual value is d36 Š 0.5 � 10�12 m=V.

Following this digression on the properties of anisotropic media we can now go on to
show how phase matching can be achieved for the particular case of a crystal of N42m point
group symmetry. From Eq. (12.4.16) we note that, if Ez D 0, only Pz will be non-vanishing
and will thus tend to generate a second-harmonic wave with a non-zero z-component. We
recall (see Fig. 12.5) that a wave with Ez D 0 is an ordinary wave while a wave with Ez ¤ 0 is
an extraordinary wave. Thus an ordinary wave at the fundamental frequency ! tends, in this
case, to generate an extraordinary wave at 2!. To satisfy the phase-matching condition one
can then propagate the fundamental wave at an angle 
m to the optic axis, in such a way that

ne.2!, 
m/D no.!/ (12.4.17)

This can be better understood with the help of Fig. 12.7 which shows the intercepts of the
normal surfaces no.!/ and ne.2!, 
/ with the plane containing the z axis and the propagation
direction. Note that, since crystals usually show a normal dispersion, one has no.!/< no.2!/,
while for a negative uniaxial crystal one has ne.2!/< no.2!/, where, as a short-hand nota-
tion (see Fig. 12.7), we have set ne.2!/ � ne.2!, 90ı/ and no.2!/ � ne.2!, 0/. Thus the
ordinary circle, corresponding to the wave at frequency, intersects the extraordinary ellipse,
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TABLE 12.1. Nonlinear optical coefficients for selected materials

Nonlinear Transparency Damage
d coefficient Symmetry range threshold

Material Formula (relative to KDP) class .�m/ .GW=cm2/

KDP KH2PO4 d36 D d14 D 1 N42m 0.22–1.5 0.2
KD�P KD2PO4 d36 D d14 D 0.92 N42m 0.22–1.5 0.2
ADP NH4H2PO4 d36 D d14 D 1.2 N42m 0.2–1.2 0.5
CDA CsH2AsO4 d36 D d14 D 0.92 N42m 0.26–1.4 0.5
Lithium iodate LiIO3 d31 D d32 D d24 6 0.3–5.5 0.5

d15 D 12.7
Lithium niobate LiNbO3 d31 D 12.5 3m 0.4–5 0.05

d22 D 6.35
KTP KTiOPO4 d31 D 13 mm2 0.35–4.5 1

d32 D 10
d33 D 27.4
d24 D 15.2
d15 D 12.2

BBO ˇ � BaB2O4 d22 D 4.1 3m 0.19–3 5
Cadmium
germanium
arsenide CdGeAs2 d36 D d14 D 538 N42m 2.4–20 0.04
Silver-gallium
selenide AgGaSe2 d36 D d14 D 66 N42m 0.73–17 0.05

FIG. 12.7. Phase-matching angle 
m for type I second-harmonic generation in a negative uniaxial crystal.

corresponding to the wave at frequency 2!, at some angle 
m.� For light propagating at
this angle 
m to the optic axis (i.e., for all ray directions lying in a cone around the z axis,
with cone angle 
m/, Eq. (12.4.17) is satisfied and hence the phase-matching condition is
satisfied.

� It should be noted that for this intersection to occur at all it is necessary for ne.2!, 90ı/ to be less than
no.!/, otherwise the ellipse for ne.2!/ (see Fig 12.7) will lie wholly outside the circle for no.!/. Thus
ne.2!, 90ı/D ne.2!/< no.!/< no.2!/, which shows that crystal birefringence no.2!/� ne.2!/must be larger
than crystal dispersion no.2!/� no.!/.
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Example 12.3. Calculation of the phase-matching angle
for a negative uniaxial crystal. With reference to
Fig. 12.7, we label the horizontal-axis as the y-axis. If
we then let z and y represent the cartesian coordinates of
general point of the ellipse describing the extraordinary
index, ne.2!, 
/, one can write

z2



no

2

�2 C y2



ne

2

�2 D 1

where, as a short-hand notation, we have set no
2 D no.2!/

and and ne
2 D ne.2!/. If the coordinates z and y are now

expressed as a function of ne.2!, 
/ and of the angle 
 ,
the previous equation transforms to

Œne.2!, 
/�2

no

2

�2 cos2 
 C Œne.2!, 
/�2

ne

2

�2 sin2
 D 1

For 
 D 
m, Eq. (12.4.17) must hold. Substitution of this
equation into the equation above then gives

�
no

1

no
2

�2

.1 � sin2
m/C
�

no
1

ne
2

�2

sin2
m D 1

where, again as a short-hand notation we have set
no

1 D no.!/. This last equation can be solved for sin2 
m

to obtain

sin2
m D
1 �

�
no

1
no

2

�2

�
no

1
ne

2

�2 �
�

no
1

no
2

�2 D
�

no
2

no
1

�2 � 1
�

no
2

ne
2

�2 � 1

It should be noted that, if 
m ¤ 90ı, the
phenomenon of double refraction will occur
in the crystal, i.e., the direction of the energy
flow for the extraordinary (SH) beam will be
at an angle slightly different from 
m. Thus
the fundamental and SH beams will travel
in slightly different directions (although sat-
isfying the phase-matching condition). For a
fundamental beam of finite transverse dimen-
sions this will put an upper limit on the inter-
action length in the crystal. This limitation
can be overcome if it is possible to operate
with 
m D 90ı, i.e., ne .2!, 90ı/D no.!/.
This is referred to as the 90ı phase matching
condition. Since ne and no generally undergo
different changes with temperature, it turns
out that 90ı phase matching condition can,
in some cases, be reached by changing the
crystal temperature. To summarize the above
discussion, we can say that phase match-
ing is possible in a (sufficiently birefringent)
negative uniaxial crystal when an ordinary
ray at ! [Ex beam of Eq. (12.4.16c)] com-
bines with an ordinary ray at ! [Ey beam of
Eq. (12.4.16c)] to give an extraordinary ray
at 2!, or, in symbols, o! C o! ! e2! . This
is referred to as type I second-harmonic gen-
eration. In a negative uniaxial crystal another
scheme for phase-matched SHG, called type
II, is also possible. In this case an ordinary
wave at ! combines with an extraordinary
wave ! at to give an extraordinary wave at
2!, or, in symbols, o! C e! ! e2! .�

Second-harmonic generation is cur-
rently used to provide coherent sources at new wavelengths. The nonlinear crystal may be
placed either outside or inside the cavity of the laser producing the fundamental beam. In
the latter case one takes advantage of the greater e.m. field strength inside the resonator to
increase the conversion efficiency. Very high conversion efficiencies (approaching 100%) have
been obtained with both arrangements. Among the most frequent applications of SHG are fre-
quency doubling the output of a Nd:YAG laser (thus producing a green beam, �D 532 nm,
from an infrared one, �D 1.064�m) and generation of tunable UV radiation (down to
� Š 205 nm) by frequency doubling a tunable dye laser. In both of these cases either cw

� More generally, interactions in which the polarizations of the two fundamental waves are the same are termed type
I (e.g., also e! C e! ! o2! ), and interactions in which the polarization of the fundamental waves are orthogonal
are termed type II.
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or pulsed laser sources are used. The nonlinear crystals most commonly used as frequency
doublers for Nd:YAG lasers are KTP and ˇ � BaB2O4 (BBO), while BBO, due to its more
extended transparency toward the UV, is particularly used when a SH beam at UV wavelengths
down to �200 nm have to be generated. Efficient frequency conversion of infrared radiation
from CO2 or CO lasers is often produced in chalcopyrite semiconductors (e.g., CdGeAs2).

12.4.1.2. Parametric Oscillation

We now go on to discuss the process of parametric oscillation. We begin by noticing that
the previous ideas introduced in the context of SHG can be readily extended to the case of two
incoming waves at frequencies!1 and!2 combining to give a wave at frequency!3 D!1C!2

(sum-frequency generation). Harmonic generation can in fact be thought of as a limiting case
of sum-frequency generation with !1 D!2 and !3 D 2!. The physical picture is again very
similar to the SHG case: By virtue of the nonlinear relation Eq. (12.4.2) between PNL and the
total field EŒE D E!1 .z, t/ C E!2 .z, t/�, the wave at !1 will beat with that at !2, to give a
polarization component at !3 D!1 C !2. This will then radiate an e.m. wave at !3. Thus for
sum-frequency generation we can write

„!1 C „!2 D „!3 (12.4.18a)

which, according to a description in terms of photons rather than fields, implies that one
photon at !1 and one photon at !2 disappear while a photon at !3 is created. We therefore
expect the photon momentum to be also conserved in the process, i.e.,

„ k1 C „ k2 D „ k3 (12.4.18b)

where the relationship is put in its general form, with the k denoted by vectors. Equa-
tion (12.4.18b), which expresses the phase-matching condition for sum-frequency gener-
ation, can be seen to be a straightforward generalization of that for SHG [compare with
Eq. (12.4.12b)].

Optical parametric generation is in fact just the reverse of sum-frequency generation.
Here, instead, a wave at frequency !3 (the pump frequency) generates two waves (called the
idler and signal waves) at frequencies !1 and !2, in such a way that the total photon energy
and momentum is conserved, i.e.,

„!3 D „!1 C „!2 (12.4.19a)

„ k3 D „ k1 C „ k2 (12.4.19b)

The physical process occurring in this case can be visualized as follows. Imagine first that a
strong wave at !3 and a weak wave at !1 are both present in the nonlinear crystal. As a result
of the nonlinear relation Eq. (12.4.2), the wave at !3 will beat with the wave at !1 to give
a polarization component at !3 � !1 D!2. If the phase-matching condition Eq. (12.4.19b)
is satisfied, a wave at !2 will thus build up as it travels through the crystal. Then the total
E field will in fact be the sum of three fields ŒE D E!1 .z, t/ C E!2 .z, t/ C E!3 .z, t/� and
the wave at !2 will in turn beat with the wave at !3 to give a polarization component at
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FIG. 12.8. Schematic diagram of an optical parametric oscillator.

!3 � !2 D!1. This polarization will cause the !1 wave to grow also. Thus power will be
transferred from the beam at !3 to those at !1 and !2, and the weak wave at !1 which was
assumed to be initially present will be amplified. From this picture one sees a fundamental
difference between parametric generation and SHG. In the latter case only a strong beam at the
fundamental frequency is needed for the SHG process to occur. In the former case, however, a
weak beam at !1 is also needed and the system behaves like an amplifier at frequency!1 (and
!2). In practice, however, the weak beam need not be supplied by an external source (such
as another laser) since it is generated, internally to the crystal, as a form of noise (so-called
parametric noise). One can then generate coherent beams from this noise in a way analogous to
that used in a laser oscillator. Thus, the nonlinear crystal, which is pumped by an appropriately
focused pump beam, is placed in an optical resonator (Fig. 12.8). The two mirrors (1 and 2)
of this parametric oscillator have high reflectivity (e.g., R1 D 1 and R2 Š 1) either at !1 only
(singly resonant oscillator, SRO) or at both !1 and !2 (doubly resonant oscillator, DRO). The
mirrors are ideally transparent to the pump beam. Oscillation will start when the gain arising
from the parametric effect just exceeds the losses of the optical resonator. Some threshold
power of the input pump beam is therefore required before oscillation will begin. When this
threshold is reached, oscillation occurs at both !1 and !2, and the particular pair of values of
!1 and !2 is determined by the two Eq. (12.4.19). For instance, with type I phase matching
involving an extraordinary wave at!3 and ordinary waves at!1 and!2 (i.e., e!3 ! o!1 Co!2/,
Eq. (12.4.19b) would give

!3ne.!3, 
/D!1no.!1/C !2no.!2/ (12.4.20)

For a given 
 , i.e., for a given inclination of the nonlinear crystal with respect to the cavity
axis, Eq. (12.4.20) provides a relation between !1 and !2 which, together with the relation
Eq. (12.4.19a), determines the values of both!1 and!2. Phase-matching schemes of both type
I and type II (e.g., e!3 ! o!1 C e!2 for a negative uniaxial crystal) are possible and tuning
can be achieved by changing either the crystal inclination (angle tuning) or its temperature
(temperature tuning). As a final comment, we note that, if the gain from the parametric effect
is large enough, one can dispense with the mirrors altogether, and an intense emission at !1

and !2, grows from parametric noise in a single pass through the crystal. This behavior is
often referred to as superfluorescent parametric emission and such a device is referred to as
an optical parametric generator (OPG).

Singly resonant and doubly resonant optical parametric oscillators have both been used.
Doubly resonant parametric oscillation has been achieved with both c.w. and pulsed pump
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lasers. For c.w. excitation, threshold powers as low as a few milliwatts have been demon-
strated. It should be noted, however, that the requirement for the simultaneous resonance of
both parametric waves in the same cavity generally leads to poor amplitude and frequency
stability of the output beams. Singly resonant parametric oscillation had, until relatively
recently, only been achieved using pulsed pump lasers since the threshold pump power for
the singly resonant case is much higher (by as much as two orders of magnitude) than
that of the doubly resonant case. However, with improved nonlinear crystals, c.w. oscil-
lation is now readily achieved. Singly resonant oscillators produce a much more stable
output and, for this reason, is the most frequently used. Optical parametric oscillators pro-
ducing coherent radiation from the visible to the near infrared .0.5–5�m/ are now well
developed, with the most successful devices being based on BBO, LBO and lithium nio-
bate .LiNbO3/. Optical parametric oscillators can also generate coherent radiation at longer
infrared wavelengths (to �14�m) using crystals such as silver-gallium selenide .AgGaSe2/

and cadmium selenide (CdSe). Synchronous pumping of OPOs, using a mode-locked pump,
is also proving very attractive as a means of generating short pulses with very wide tunabil-
ity. A notable feature of these devices is that their gain is determined by the peak power of
the pump pulse, so that thresholds corresponding to very low average powers (a few mil-
liwatts) can be achieved even for a singly resonant oscillator. It should last be observed
that the efficiency of an OPO can be very high, approaching the theoretical 100% photon
efficiency.

12.4.2. Analytical Treatment

To arrive at an analytical description of both SHG and parametric processes, we need to
see how the nonlinear polarization [e.g., Eq. (12.4.2)], which acts as the source term to drive
the generated waves, is introduced into the wave equation. The fields within the material obey
Maxwell’s equations

r � E D �@B
@t

(12.4.21a)

r � H D J C @D
@t

(12.4.21b)

r � D D � (12.4.21c)

r � B D 0 (12.4.21d)

where � is the free-charge density. For the media of interest here we can assume the
magnetization M to be zero; thus

B D�0H C �0M D�0H (12.4.22)

Losses within the material (e.g., scattering losses) can be simulated by the introduction of a
fictitious conductivity �s such that

J D �sE (12.4.23)
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Finally we can write

D D "0E C PL C PNL D "E C PNL (12.4.24)

where PL is the linear polarization of the medium and is taken account, in the usual way,
by introducing the dielectric constant ". Upon applying the r� operator to both sides of
Eq. (12.4.21a), interchanging the order of r� and @=@t operators on the right-hand side of the
resulting equation, and making use of Eqs. (12.4.22), (12.4.21b), (12.4.23), and (12.4.24), we
obtain

r � r � E D � �0

�
�s
@E
@t

C "
@2E
@t2

C @2PNL

@t2

�
(12.4.25)

Using the identity r � r � E D r.r � E/� r2E and under the assumption that r � E Š 0, we
get from Eq. (12.4.25)

r2E � �s

"c2

@E
@t

� 1

c2

@2E
@t2

D 1

"c2

@2PNL

@t2
(12.4.26)

where c D ."�0/
�1=2 is the phase velocity in the material. Equation (12.4.26) is the wave

equation with the nonlinear polarization term included. Note that the linear part of the medium
polarization has been transferred to the left-hand side of Eq. (12.4.26) and its effect is included
in the dielectric constant. The nonlinear part PNL has been kept on the right-hand side since
it will be shown to act as a source term for the waves being generated at new frequencies as
well as a loss term for the incoming wave. Confining ourselves to the simple scalar case of
plane waves propagating along the z-direction, one sees that Eq. (12.4.26) reduces to

@2E

@z2
� �s

"c2

@E

@t
� 1

c2

@2E

@t2
D 1

"c2

@2PNL

@t2
(12.4.26a)

We now write the field of the wave at frequency !i as

E!i.z, t/D .1=2/ fEi.z/ expŒj.!it � kiz/�C c.c.g (12.4.27a)

where Ei is taken to be complex in general. Likewise, the amplitude of the nonlinear
polarization at frequency !i will be written as

PNL
!i

D .1=2/
˚
PNL

i .z/ expŒj.!it � kiz/�C c.c.
�

(12.4.27b)

Since Eq. (12.4.26a) must hold separately for each frequency component of the waves present
in the medium, Eqs. (12.4.27a) and (12.4.27b) can be substituted into the left- and right-hand
sides of Eq. (12.4.26a), respectively. Within the slowly varying amplitude approximation,
we can neglect the second derivative of Ei.z/, i.e., assume that d2Ei=dz2 � ki .dEi=dz/.
Equation (12.4.26a) then yields

2
dEi

dz
C �i

ni"0c
Ei D � j

�
!i

ni"0c

�
PNL

i (12.4.28)
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where �i, ni, and "i are, respectively, the loss, the refractive index, and the dielectric constant
of the medium at frequency !i, and where use has been made of the relations ki D ni!i=c and
"i D n2

i "0.
Equation (12.4.28) is the basic equation that will be used in the next sections. Note that

it has been obtained subject to the assumption of a scalar relation between PNL and E [see
Eq. (12.4.2)]. This assumption is not correct, and actually a tensor relation should be used [see
Eq. (12.4.15)]. However, it can be shown that one can still use this scalar equation provided
that Ei now refers to the field component along an appropriate axis and an effective coefficient,
deff , is substituted for d in Eq. (12.4.2). In general, deff is a combination of one or more of the
dim coefficients appearing in Eq. (12.4.15) multiplied by appropriate trigonometric functions
of the angles 
 and � that define the direction of wave propagation in the crystal.20/ (
 is the
angle between the propagation vector and the z axis while � is the angle that the projection of
the propagation vector in the x-y plane makes with the x axis of the crystal). For example, for a
crystal of N42m point group symmetry and for type I phase matching one obtains deff D d36 sin
2� sin 
 . As a short-hand notation, however, we will still retain the symbol d in Eq. (12.4.2)
while bearing in mind that it means the effective value of the d coefficient, deff .

12.4.2.1. Parametric Oscillation

We now consider three waves at frequencies !1, !2 and !3 [where !3 D!1 C !2]
interacting in the crystal. Thus we write the total field E.z, t/ as

E.z, t/D E!1.z, t/C E!2.z, t/C E!3.z, t/ (12.4.29)

where each of the fields can be written in the form of Eq. (12.4.27a). Upon substituting
Eq. (12.4.29) into Eq. (12.4.2) and using Eq. (12.4.27a) we obtain an expression for the com-
ponents PNL

i .z/ [as defined by Eq. (12.4.27b)] of the nonlinear polarization at the frequency
!i. After some lengthy but straightforward algebra we find that, for instance, the component
PNL

1 at frequency !1 is given by

PNL
1 D 2"0dE3.z/E

�
2 .z/ expŒj.k1 C k2 � k3/z� (12.4.30)

The components of PNL at !2 and !3 are obtained in a similar way. For each of the three
frequencies, the field equation is then obtained by substituting into Eq. (12.4.28) the expres-
sion for PNL corresponding to the appropriate frequency. We thus arrive at the following three
equations:

dE1

dz
D �

�
�1

2n1"0c

�
E1 � j

�
!1

n1c

�
dE3E�

2 expŒ�j.k3 � k2 � k1/z� (12.4.31a)

dE2

dz
D �

�
�2

2n2"0c

�
E2 � j

�
!2

n2c

�
dE3E�

1 expŒ�j.k3 � k1 � k2/z� (12.4.31b)

dE3

dz
D �

�
�3

2n3"0c

�
E3 � j

�
!3

n3c

�
dE1E2 expŒ�j.k1 � k2 � k3/z� (12.4.31c)
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These are the basic equations describing the nonlinear parametric interaction. One sees that
they are coupled to each other via the nonlinear coefficient d.

It is convenient at this point to define new field variables Ai as

Ai D .ni=!i/
1=2=Ei (12.4.32)

Since the intensity of the wave is Ii D ni"0cjEij2=2, the corresponding photon flux Fi will be
given by Fi D Ii=„!i D ."0c=2„/jAij2. Thus jAij2 is seen to be proportional to the photon flux
Fi with a proportionality constant independent of both ni and !i. When reexpressed in terms
of these new field variables, equations (12.4.31) transform to

dA1

dz
D � ˛1A1

2
� jı A3A�

2 expŒ�j.	kz/� (12.4.33a)

dA2

dz
D � ˛2A2

2
� jı A3A�

1 expŒ�j.	kz/� (12.4.33b)

dA3

dz
D � ˛3A3

2
� jı A1A2 expŒj.	kz/� (12.4.33c)

where we have put ˛i D �i=ni"0c, 	k D k3 � k2 � k1, and

ıD d

c

�
!1!2!3

n1n2n3

�1=2

(12.4.34)

The advantage of using Ai instead of Ei is now apparent since, unlike Eq. (12.4.31), relations
Eq. (12.4.33) now involve a single coupling parameter ı.

If losses are neglected (i.e., when ˛i D 0), we can obtain from Eq. (12.4.33) some very
useful conservation laws. For instance, if we multiply both sides of Eq. (12.4.33a) by A�

1 and
both sides of Eq. (12.4.33b) by A�

2 , and compare the resulting expressions, we arrive at the
following relation: djA1j2=dz D � djA3j2=dz. Similarly from Eqs. (12.4.33b) and (12.4.33c)
we get djA2j2=dz D � djA3j2=dz. We can therefore write

d jA1j2

dz
D d jA2j2

dz
D � d jA3j2

dz
(12.4.35)

which are known as the Manley-Rowe relations. Note that, since jAij2 is proportional to the
corresponding photon flux, Eq. (12.4.35) implies that whenever a photon at !3 is destroyed, a
photon at !1 and a photon at !2 are created. This is consistent with the photon model for the
parametric process which was discussed in Sect. 12.4.1.2. Note also that Eq. (12.4.35) means,
for instance, that .dP1=dz/D � .!1=!3/.dP3=dz/, where P1 and P3 are the powers of the
two waves. Thus only a fraction .!1=!3/ of the power at frequency !3 can be converted into
power at frequency !1.

Strictly speaking, equations (12.4.33) apply to a traveling wave situation in which an
arbitrarily long crystal is being traversed by the three waves at !1, !2, !3. We now want
to see how these equations might be applied to the case of an optical parametric oscillator
as in Fig. 12.8. Here we will first consider the DRO scheme. The waves at !1 and !2 will
therefore travel back and forth within the cavity, and the parametric process will only occur
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FIG. 12.9. (a) Unfolded path for an optical parametric oscillator; (b) Reduction to a single-pass scheme with mirror
losses incorporated into the distributed losses of the crystal.

when their propagation direction is the same as that of the pump wave (since it is only under
these circumstances that phase matching can be satisfied). If we unfold the optical path, it
will look like that of Fig. 12.9a, and it can be seen that loss occurs on every pass while
parametric gain occurs only once in every second pass. This situation can be reduced to that of
Fig. 12.9b if one chooses an appropriate definition of the effective loss coefficient ˛i.i D 1, 2/.
The loss due to a crystal of length l in Fig. 12.9b must in fact equal the losses incurred in a
double pass in Fig. 12.9a. The latter losses must account for the actual losses in the crystal,
as well as the mirror and diffraction losses. Thus the coefficients ˛1 and ˛2 in Eq. (12.4.33)
must be appropriately defined so as to incorporate these various losses. From Eq. (12.4.33),
neglecting the parametric interaction [i.e., setting ıD 0], one sees that, after the beam at
frequency !i .i D 1, 2/ traverses the length l of the crystal, its power will be reduced by a
fraction exp .�˛il/. This reduction must then account for the round-trip losses of the cavity,
which requires that

exp.�˛il/ D R1iR2i.1 � Li/
2 (12.4.35a)

where R1i and R2i are the power-reflectivities of the two mirrors at frequency !i, and Li is
the crystal loss (plus diffraction loss) per pass. If we now define [compare with Eq. (1.2.4)]
�1i D � ln R1i, �2i D � ln R2i, � 0

i D � ln.1 � Li/ and �i D Œ.�1i C �2i/=2�C � 0
i , we can rewrite

Eq. (12.4.35a) as

˛il D 2�i (12.4.36)

where �i is the overall cavity loss per pass at frequency!i. Note that this amounts to simulating
the mirror losses by losses distributed through the crystal and then including them into an
effective absorption coefficient of the crystal ˛i.i D 1, 2/. The loss ˛3, on the other hand, only
involves crystal losses and can in general be neglected. Thus we can say that Eq. (12.4.33) can
be applied to a DRO provided that ˛1 and ˛2 are given by Eq. (12.4.36) and provided one sets
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˛3 Š 0. To obtain the threshold condition of a DRO, Eq. (12.4.33) can be further simplified if
we neglect depletion of the pump wave by the parametric process. This assumption together
with the assumption ˛3 D 0 means that we can take A3.z/ Š A3.0/, where A3.0/, the field
amplitude of the incoming pump wave, is taken to be real. With the further assumption of
	k D 0 (perfect phase matching), Eq. (12.4.33) is considerably simplified and becomes

dA1

dz
D � ˛1A1

2
� j

g

2
A�

2 (12.4.37a)

dA2

dz
D � ˛2A2

2
� j

g

2
A�

1 (12.4.37b)

where we have set

g D 2ı A3.0/D 2d
E3.0/

c

�
!1!2

n1n2

�1=2

(12.4.38)

Example 12.4. Calculation of the threshold intensity for
the pump beam in a doubly resonant optical parametric
oscillator. From Eqs. (12.4.38) and (12.4.40) one readily
gets the following value for expression E2

3.0/, the square
of the pump-beam amplitude at threshold

E2
3th.0/D c2

d2

n1n2

!1!2

�1�2

l2

Since the pump-beam intensity is given by I3 D
n3"0cjE3j2=2, one then obtains the following expression
for the threshold pump intensity

I3th D
h n3

2Zd2

i �n1n2� 1� 2

.2
 l/2

�
Œ�1�2�

where Z D 1="0c D 377 Ohms, is the free-space
impedance while �1 and �2 are the wavelengths of
the signal and idler waves, respectively. Note that
the term in the first bracket on the right hand-side of
the above equation has the dimension of an intensity
while the factors in the remaining two brackets are
dimensionless.

The threshold condition for a DRO is then
readily obtained from Eq. (12.4.37) by
imposing the condition dA1=dz D dA2=dz D 0.
This leads to

˛1A1 C jgA�
2 D 0 (12.4.39a)

jgA1 � ˛2A�
2 D 0 (12.4.39b)

where the complex conjugate of Eq. (12.4.37b)
has been taken. The solution of this homo-
geneous system of equations will yield non-
zero values for A1 and A2 only if

g2 D ˛1˛2 D 4.�1�2=l2/ (12.4.40)

where Eq. (12.4.36) has been used. It should
be noted that, according to Eq. (12.4.38),
g2 is proportional to E2

3.0/, i.e., to the
intensity of the pump wave. Thus condition
Eq. (12.4.40) means that a certain threshold
intensity of the pump wave is needed in order
for parametric oscillation to start. As will be
shown in the following example, the thres-
hold intensity is proportional to the product
of the single-pass (power) losses, �1 and �2 of the two waves at !1 and !2, and inversely
proportional to d2 and l2.

The SRO case is somewhat more involved. If the laser cavity is resonant only at !1, then
˛1 can again be written as in Eq. (12.4.36). Since the wave at !2 is no longer fed back, ˛2 will
involve only the crystal losses and it can therefore be neglected. Again, neglecting depletion
of the pump wave and assuming perfect phase matching, Eq. (12.4.37) will still be applicable



532 12 � Propagation, Amplification, Frequency Conversion, Pulse Compression

provided we now set ˛2 D 0. For small parametric conversion we can set A�
1 .z/ Š A�

1 .0/ on
the right-hand side of Eq. (12.4.37b). We thus get

A2.z/D � jgA�
1 .0/z=2 (12.4.41)

where the condition A2.0/D 0 has been assumed (i.e., no field, at frequency !2, is fed back
into the crystal by the resonator). If one then substitutes Eq. (12.4.41) in Eq. (12.4.37a) and
put A1.z/ Š A1.0/ in the right-hand side of the latter equation, one gets

dA1

dz
D
�

�˛1

2
C g2z

4

�
A1.0/ (12.4.42)

Integration of Eq. (12.4.42) over the length, l, of the crystal gives the following expression for
the field at frequency !1

A1.l/D A1.0/

�
1 � ˛1l

2
C g2l2

8

�
(12.4.43)

The threshold condition is then reached when A1.l/D A1.0/, i.e., when

g2 D 4˛1

l
D 8�1

l2
(12.4.44)

Since g2 is proportional to intensity I of the pump wave, a comparison of Eq. (12.4.44) with
Eq. (12.4.40) gives the ratio of threshold pump intensities as

ISRO

IDRO
D 2

�2
(12.4.45)

For example, if one takes a loss per pass of �2 D 0.02 (i.e., 2% loss), one finds from
Eq. (12.4.45) that the threshold power for the SRO is 100 times larger than for the DRO case.

12.4.2.2. Second-Harmonic Generation

In the case of SHG we take

E.z, t/D .1=2/ fE! expŒj.!t � k!z/�C E2! expŒj.2!t � k2!z/�C c.c.g (12.4.46)

PNL.z, t/D .1=2/
˚
PNL

! expŒj.!t � k!z/�C PNL
2! expŒj.2!t � k2!z/�C c.c.

�
(12.4.47)

Substitution of Eqs. (12.4.46) and (12.4.47) into Eq. (12.4.2) gives

PNL
2! D "0dE2

! expŒ�j.2k! � k2!/z� (12.4.48a)

PNL
! D 2"0dE2!E�

! expŒ�j.k2! � 2k!/z� (12.4.48b)
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If one then substitutes Eq. (12.4.48) into Eq. (12.4.28) and neglects crystal losses (i.e., one
takes �i D 0), one gets

dE2!

dz
D � j

!

n2!c
dE2

! exp.j	kz/ (12.4.49a)

dE!

dz
D � j

!

n!c
dE2!E�

! exp.�j	kz/ (12.4.49b)

where 	k D k2! � 2k! . These are the basic equations describing SHG.
To solve these equations, it is first convenient to define new field variables E0

! and E0
2! as

E0
! D .n!/

1=2 E! (12.4.50a)

E0
2! D .n2!/

1=2 E2! (12.4.50b)

Since the intensity I! of the wave at ! is proportional to n! jE!j2, the quantity jE0
!j2 is seen

to be proportional to I! with a proportionality constant independent of refractive index. The
substitution of Eq. (12.4.50) into Eq. (12.4.49) then gives

dE0
2!

dz
D � j

lSH

E02
!

E0
!.0/

expŒj.	kz/� (12.4.51a)

dE0
!

dz
D � j

lSH

E0
2!E0�

!

E0
!.0/

expŒ�j.	kz/� (12.4.51b)

In the above equations E0
!.0/ is the value of E0

! at z D 0, assumed to be a real quantity, and
lSH is a characteristic length, for second-harmonic interaction, given by

lSH D � .n!n2!/
1=2

2
dE!.0/
(12.4.52)

where � is the wavelength and E!.0/, the field amplitude of the incident wave at frequency
!, is also a real quantity. Note that the advantage of using the new field variables E0

! and E0
2!

is now apparent from Eq. (12.4.51) since they involve a single coupling parameter, lSH . From
Eq. (12.4.51) one readily finds

d
ˇ̌
E0

2!

ˇ̌2
dz

D � d jE0
!j2

dz
(12.4.53)

which represents the Manley-Rowe relation for SHG. Note that the equation shows that, e.g.,
a decrease of beam power, or intensity, at frequency !, must correspond to an increase,
by the same amount, of the power or intensity at frequency 2!. Thus 100% conversion of
fundamental-beam power into second-harmonic power is possible in this case.

As a first example of the solution of Eq. (12.4.51), we consider the case where there
is an appreciable phase mismatch (i.e., lSH	k � 1) so that little conversion of fundamental
into SH is expected to occur. We therefore set E0

!.z/ Š E0
!.0/ on the right-hand side of
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Eq. (12.4.51a). The resulting equation can then be readily integrated and, using the boundary
condition E0

2!.0/D 0, one obtains

E0
2!.1/D � E0

!.0/

lSH

�
exp.�j	kl/� 1

	k

�
(12.4.54)

One can then readily show that

ˇ̌
ˇ̌E0

2!.l/

E0
!.0/

ˇ̌
ˇ̌2 D sin2.	kl=2/

.	klSH=2/2
(12.4.55)

Since jE0
2!j2 is proportional to the SH intensity I2! , the variation of this intensity with crystal

length is immediately obtained from Eq. (12.4.55). The corresponding behavior of I! vs l
can then be obtained from the condition I! C I2! D I!.0/, this condition being an immediate
consequence of Eq. (12.4.53). The plots of ŒI!=I!.0/� and ŒI2!=I!.0/� vs .l=lSH/, obtained in
this way for lSH	k D 10, are shown as dashed curves in Fig. 12.10. Note that, due to the large
phase mismatch, only a small conversion to second harmonic occurs. Note also that, as can
be readily shown from Eq. (12.4.55), the first maximum of ŒI2!=I!.0/� occurs at l D lc, where
lc, the coherence length, is given by Eq. (12.4.10).

As a second example of a solution to Eq. (12.4.51), we consider the case of perfect phase
matching .	k D 0/. In this case appreciable conversion to second harmonic may occur and
the depletion of the fundamental beam must therefore be taken into account. This means that
Eq. (12.4.51) must now be solved without the approximation E0

!.z/ Š E0
!.0/. If 	k D 0,

however, it can be shown from Eq. (12.4.51) that, if E0
!.0/ is taken to be real, then E0

!.z/ and
E0

2!.z/ turn out to be real and imaginary, respectively. We can therefore write

E0
! D ˇ̌

E0
!

ˇ̌
(12.4.56a)

E0
2! D � j

ˇ̌
E0

2!

ˇ̌
(12.4.56b)

and Eq. (12.4.51) then gives

d jE0
! j

dz
D � 1

lSH

ˇ̌
E0

2!

ˇ̌ jE0
! j

E0
!.0/

(12.4.57a)

d
ˇ̌
E0

2!

ˇ̌
dz

D 1

lSH

jE0
! j2

E0
!.0/

(12.4.57b)

The solution of Eq. (12.4.57) with the boundary conditions E0
!.z D 0/D E0

!.0/ and
E0

2!.0/D 0 is

ˇ̌
E0

2!

ˇ̌ D E0
!.0/ tanh.z=lSH/ (12.4.58a)ˇ̌

E0
!

ˇ̌ D E0
!.0/ sech.z=lSH/ (12.4.58b)

Since the intensity of the wave, at a given frequency, is proportional to jE0j2, one has
I2!=I!.0/D jE0

2! j2=E02
2!.0/ and I!=I!.0/D jE0

!j2=E02
! .0/. The dependence of I2!=I!.0/ and
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FIG. 12.10. Normalized plots of second-harmonic intensity I2! and fundamental intensity I! versus crystal length l
for perfect phase-matching (continuous curves) and for a finite phase mismatch (dashed curves).

I!=I!.0/ on crystal length, as predicted by Eq. (12.4.58), is shown by solid curves in
Fig. 12.9. Note that, for l D lSH , an appreciable fraction .�59%/ of the incident wave has
been converted into a SH wave. This illustrates the role of lSH as a characteristic length for
the second-harmonic interaction. Note that, according to Eq. (12.4.52) the value of lSH is
inversely proportional to the square root of beam-intensity at the fundamental frequency !.
Note also that, for l � lSH , the radiation at the fundamental frequency can be completely
converted into second-harmonic radiation, in agreement with the Manley-Rowe relation
Eq. (12.4.53).

12.5. TRANSFORMATION IN TIME: PULSE COMPRESSION
AND PULSE EXPANSION

The phenomena of pulse compression and pulse expansion, now widely used in the field
of ultrashort laser pulses, are considered in this section. Before entering into a detailed dis-
cussion of these phenomena, it is worth recalling that, given a homogeneous medium, such
as a piece of glass or an optical fiber, characterized by the dispersion relation ˇDˇ.!/, one
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FIG. 12.11. Experimental setup for pulse compression.

can define a group velocity, �g, and group-velocity dispersion, GVD, as �g D .d!=dˇ/!L [see
(8.6.26)] and GVD D .d2ˇ=d!2/!L [see Eq. (8.6.33)], respectively, where !L is the central
frequency of the beam spectrum. On the other hand, for an inhomogeneous medium such as
the prism-pair described in Sect. 8.6.4.3 or the grating-pair described below, a more useful
approach can be obtained if we let Ein / exp j.!t/ be the field of a monochromatic input
beam at frequency ! and Eout / exp jŒ!t � �.!/� the field of the corresponding output beam.
For a pulsed input beam, one can then define a group delay, �g, and a group-delay disper-
sion, GDD, of the medium as �g D .d�=d!/!L , [see Eq. (8.6.27)], and GDD D .d2�=d!2/!L ,
respectively.

12.5.1. Pulse Compression

An arrangement that is commonly used to compress ultrashort laser pulses is shown
schematically in Fig. 12.11. The pulse of a mode-locked laser, of sufficient power (in practice
a relatively modest peak-power of, e.g., Pp D 2 kW) and long time duration (e.g., �p D 6 ps),
is sent through a single-mode silica optical fiber of suitable length (e.g., L D 3 m). The wave-
length of the pulse (e.g., � Š 590 nm) falls in the region of positive GVD of the fiber
(�< 1.32�m, for non-dispersion-shifted fibers). After leaving the fiber, the output is col-
limated and passed through an optical system consisting of two identical gratings aligned
parallel to each other and whose tilt and spacing are appropriately chosen, as described below.
Under appropriate conditions, the output beam then consists of a light pulse with a much
shorter duration (e.g., �p D 200 fs) than that of the input pulse and, hence, of much higher
peak power (e.g., Pp D 20 kW). Thus, the arrangement of Fig. 12.11 can readily provide a
large compression factor (e.g., �30 in the illustrated case) of the input pulse. The rather subtle
phenomena involved in this pulse compression scheme are discussed below..21,22/

We start by considering what happens when the pulse propagates in the optical fiber.
First we recall that, due to the phenomenon of self-phase modulation, a light pulse of uniform
intensity profile, which travels a distance z in a material exhibiting the optical Kerr effect,
acquires a nonlinear phase term given by Eq. (8.6.38). In an optical fiber, however, the situa-
tion is somewhat more complicated due to the non-uniform transverse intensity profile of its
fundamental mode .EH11/. In this case, it can be shown that the whole mode profile acquires
a phase term given by.22/

� .t, z/D!Lt � !Ln0

c
z � !Ln2P

cAeff
z (12.5.1)
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FIG. 12.12. Time behavior (a) of the pulse intensity, and (b) of the pulse frequency, when propagating through a
single mode fiber of suitable length. The solid and dashed curves refer, respectively, to the cases of no group velocity
dispersion and positive group velocity dispersion in the fiber.

where n0 is the low-intensity refractive index, n2 is the coefficient of the nonlinear index of
the medium [see Eq. (8.6.23)], P D P.t, z/ is the power of the beam traveling in the fiber
and Aeff is a suitably defined effective area of the beam in the fiber. The instantaneous carrier
frequency of the light pulse is then obtained from Eq. (12.5.1) as

! .t, z/D @�

@t
D!L � !L

cAeff
zn2

@P

@t
(12.5.2)

and it is seen to be linearly dependent on the negative time derivative of the corresponding
power, P. Thus, for a bell-shaped pulse as in Fig. 12.12a, the carrier frequency will vary with
time as indicated by the solid curve in Fig. 12.12b. Notice that, around the peak of the pulse,
the time behavior of the power can be described by a parabolic law and the instantaneous
carrier frequency then increases linearly with time (i.e., the pulse is said to show a positive
frequency chirp). Note however that the frequency chirp becomes negative after the pulse
inflection points, i.e., for t< tA or t> tB in Fig. 12.12b.

It should be noted that the physical situation described so far has neglected the presence
of GVD in the fiber. In the absence of GVD the pulse shape does not change with propagation
i.e. the field amplitude remains a function of the variable .z��gt/, where �g is the group veloc-
ity (see Appendix G). The z dependence of the pulse, at any given time, is then obtained from
the corresponding time dependence by reversing the positive direction of the axis and multi-
plying the time scale by �g (see Fig. 12.12). This means that a point such as A of Fig. 12.12a
is actually in the leading edge while a point such as B is in the trailing edge of the pulse. Note
now that, according to Fig. 12.12b, the carrier frequency of the pulse around point A will be
smaller than at C, where it is roughly equal to !L. On the other hand, the carrier frequency of
the pulse around point B will be higher than at C.

Assume now that the fiber has a positive GVD. That part of the pulse, in the vicinity of
point A, will move faster than that corresponding to point C and this will, in turn, move faster
than the region around point B. This means that the central part of the pulse, while traveling in
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FIG. 12.13. Plots of calculated values of (a) self-broadening and (b) self-phase-modulation of an initial 6-ps pulse
after propagating through 30 m of single-mode fiber with positive group velocity dispersion; (c) output pulse spec-
trum; (d) compressed pulse produced by an optical system having a negative group velocity dispersion with linear
dispersion (after ref.,.21/ by permission).

the fiber, will be expanded. Following a similar argument one sees that the outer parts of the
pulse will be compressed rather than expanded, because there the frequency chirp is negative.
Thus, when a positive GVD is considered, the actual shape of the pulse intensity as a function
of time, at a given z position, will look like the dashed curve of Fig. 12.12a. The corresponding
behavior for the frequency change will then be as shown by the dashed curve of Fig. 12.12b.
Note from Fig. 12.12a that, owing to the pulse broadening produced by the GVD, the peak
intensity of the dashed curve is lower than that of the solid curve. Note also that, since the
parabolic part of the pulse now extends over a wider region around the peak, the linear part of
the positive frequency chirp will now occur over a larger fraction of the pulse.

Having established these general features of the interplay between SPM and GVD, we are
now able to understand how, for a long enough fiber, the time behavior of the pulse amplitude
and of the pulse frequency, at the exit of the fiber, can actually develop into those shown in
Figs. 12.13a and 12.13b. Note that the pulse has been squared and expanded to a duration of
� 0

p Š 23 ps while the positive frequency chirp is linear with time over most of this light pulse
duration. The corresponding pulse spectrum is shown in Fig. 12.13c and one can see that,
due to the strong SPM occurring for such a small beam in the fiber (the core diameter for the
condition depicted in Fig. 12.13 was d Š 4�m), the spectral extension of the output pulse,
	�0

L D 50 cm�1, is considerably larger than that of the input pulse to the fiber. The latter is,
in fact, established by the inverse of the pulse duration and, for the case considered of �p Š
6 ps, corresponds to	�L Š 0.45=�p Š 2.5 cm�1. This means that the bandwidth of the output
pulse is predominantly established by the phase modulation of the pulse rather than by the
duration of its envelope.

Suppose now that the pulse of Fig. 12.13a and 12.13b is passed through a medium of
negative GDD. With the help of a similar argument to that used in relation to Fig. 12.12, we
can now see that the region of the pulse around point A will move more slowly than that around
C and this in turn will move more slowly than that around B. This implies that the pulse will
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now be compressed. Let us next suppose that the GDD of the medium, besides being negative,
is also independent of frequency. According to Eq. (8.6.27), this means that the dispersion in
group-delay, d�g=d!, will also be negative and independent of frequency. Thus �g decreases
linearly with frequency and, since the frequency chirp of the pulse increases linearly with time
(see Fig. 12.13b), all points of the pulse of Fig. 12.13a will tend to be compressed together at
the same time if the GDD has the appropriate value. According to Eq. (8.6.31), this optimum
value of GDD must be such that

�
d2�

d!2

�
!L

	!0
L D � 0

p (12.5.3)

where 	!0
L D 2
	�0

L is the total frequency sweep of the pulse of Fig. 12.13b and � 0
p is the

duration of the expanded pulse of Fig. 12.13a. It should be noted, however, that this compres-
sion mechanisms cannot produce an indefinitely sharp pulse as, at first sight, one may be led
to believe. In fact, the system providing the negative GDD is a linear medium and this implies
that the pulse spectrum must remain unchanged on passing through such a system. This means
that the spectrum of the compressed pulse still remains as that shown in Fig. 12.13c. Even
under optimal conditions, the duration of the compressed pulse, � 00

p , cannot then be shorter
than approximately the inverse of the spectral bandwidth, i.e., � 00

p Š 1=	�0
L Š 0.75 ps.

Since the time duration �p of the pulse originally entering the optical fiber was �6 ps (see
Fig. 12.11a), the above result indicates that a sizable compression of the incoming light pulse
has been achieved.�

The above heuristic discussion is based on the assumption that a chirped pulse can be
subdivided into different temporal regions with different carrier frequencies. Although this
idea is basically correct and allows a description of the phenomena in simple physical terms, a
more critical detailed examination of this approach would reveal some conceptual difficulties.
To validate this analysis, however, the analytical treatment of the problem can be performed
in a rather straightforward way although the intuitive physical picture of the phenomenon
gets somewhat obscured. For this analytical treatment, in fact, one merely takes the Fourier
transform, E!.!/, of the pulse of Figs. 12.13a and 12.13b and then multiplies, E!.!/, by the
transmission t.!/ of the medium exhibiting negative GDD. The resulting pulse, in the time
domain, is then obtained by taking the inverse Fourier transform of E.!/t.!/. Note that, for
a lossless medium, t.!/ must be represented by a pure phase term, i.e., it can be written as

t.!/ D exp.�j�/ (12.5.4)

where �D�.!/. If the medium has a constant GDD, the Taylor-series expansion of �.!/
around the central carrier frequency !L gives

�.!/D�.!L/C
�

d�

d!

�
!L

.! � !L/C 1

2

�
d2�

d!2

�
!L

.! � !L/
2 (12.5.5)

where .d�=d!/!L is the group delay and .d2�=d!2/!L is the group-delay dispersion. By sub-
stituting Eq. (12.5.5) into Eq. (12.5.4) and taking the inverse Fourier transform of E.!/t.!/

� Techniques of this type to produce shorter pulses by first imposing a linear frequency chirp followed by pulse
compression have been extensively used in the field of radar (chirped radars) since World War II.
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FIG. 12.14. Grating-pair for pulse compression.

one then finds that, if .d2�=d!2/!L is negative and satisfies condition Eq. (12.5.3), the opti-
mum pulse compression occurs. The optimally compressed pulse, calculated in this way, is
shown in Fig. 12.13d. The resulting pulse duration turns out to be � 00

p Š 0.6 ps, rather than the
approximate value (0.75 ps) estimated before.

We are now left with the problem of finding a suitable optical system that can provide
the required negative GDD. Notice that, since one can write GDD D d�g=d!, a negative GDD
implies that the group delay must decrease with increasing !. As discussed in Sect. 8.6.4.3,
one such system consists of the two-prism couple shown in Fig. 8.26. Another such system
is the pair of parallel and identical gratings shown in Fig. 12.11..23/ To understand the main
properties of this last system we refer to Fig. 12.14, which shows a plane wave, represented
by the ray AB, incident on the grating 1 with a propagation direction at an angle 
i to the
grating normal. We now assume that the incident wave consists of two synchronous pulses,
at frequency !2 and !1, with !2>!1. As a result of the grating dispersion, the two pulses
will then follow paths ABCD and ABC0D0, respectively, and one sees that the delay suffered
by the pulse at frequency !2, �d2 D ABCD=�g, is smaller than that, �d1 D ABC0D0=�g, for the
pulse at frequency !1. Since !2 > !1, this means that the pulse delay dispersion is negative.
A detailed calculation then shows that the GDD can be expressed as.23/

GDD D d2�

d!2
D � 4
 2c

!3d2

1

fŒ1 � Œsin
i�.�=d/�2g3=2
Lg (12.5.6)

where ! is the frequency of the wave, � its wavelength, d the grating period, and Lg the
distance between the two gratings. Note the minus sign on the right-hand side of Eq. (12.5.6)
indicating indeed a negative GDD. Note also that the value of the dispersion can be changed
by changing Lg and/or the incidence angle 
i. It should lastly be observed that the two-grating
system shown in Fig. 12.14 has the drawback that a lateral walk-off is present in the output
beam, the amount of walk-off depending upon the difference in frequency between the beam
components (as it occurs e.g. between rays CD and C0D0). For beams of finite size, this walk-
off can represent a problem. This problem can however be circumvented by retroreflecting
the output beam back to itself by a plane mirror. In this case the overall dispersion resulting
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from the double pass through the diffraction-grating-pair is, of course, twice that given by
Eq. (12.5.6).

The system of Fig. 12.11 has been used to produce compression of both picosecond
and femtosecond laser pulses over a wide range of conditions..24/ For example, pulses of
�6 ps duration (and �2 kW peak power), from a synchronously-pumped mode-locked dye
laser, have been compressed, using a 3-m-long fiber, to about 200 fs .Pp D 20 kW/. These
pulses have again been compressed, by a second system as in Fig. 12.11, using a 55-cm-
long fiber, to optical pulses of 90 fs duration. One of the most interesting results achieved
involves the compression of 50 fs pulses, from a colliding-pulse mode-locked dye laser down
to �6 fs, using a 10-mm-long fiber..25/ To achieve this record value of pulse duration, for such
a configuration, second-order group-delay dispersion ŒGDD D .d2�=d!2/!L �, and third-order
group-delay dispersion ŒTOD D .d3�=d!3/!L � were compensated using both two consecutive
grating pairs (each pair as in Fig. 12.14) and a four-prism sequence as in Fig. 8.26. In fact, the
TOD of the two compression system could be arranged to be of opposite sign, so as to cancel
each other.

A limitation of the optical-fiber compression scheme of Fig. 12.11 arises from the small
diameter .d Š 5�m/ of the core of the fiber. Accordingly, the pulse energy that can be
launched into the fiber is necessarily limited to a low value .�10 nJ/. A recently introduced
guiding configuration to produce wide-bandwidth SPM spectra, uses a hollow-silica fiber
filled with noble gases (Kr, Ar) at high pressures (1–3 atm)..26/ With an inner diameter for the
hollow-fiber of 150–300�m, a much higher-energy input pulse .�2 mJ/ could be launched
into the fiber. Using a fiber length of �1 m, wide SPM spectra .�200 nm/ have been obtained
starting with input pulses of femtosecond duration .20–150 fs/. With the help of a specially
designed two-prism sequence, in a double-pass configuration, and also using two reflections
from a specially designed chirped mirror,.27/ 20 fs pulses from the amplified beam of a mode-
locked Ti:sapphire laser were compressed to �4.5 fs..28/ These pulses containing �1.5 cycle
of the carrier-frequency, are the shortest pulses generated to date and have a relative large
amount of energy .�100�J/.

12.5.2. Pulse Expansion

It was already pointed out in Sect. 12.3 that, for chirped-pulse amplification, one needs
first to subject the pulse to a large expansion in time. In principle this expansion can be
achieved by a single-mode fiber of suitable length (see Fig. 12.11 and Fig. 12.12a). How-
ever, the linear chirp, produced in this way (see Fig. 12.13b), cannot be exactly compensated
by a grating-pair compressor Fig. 12.14, due to the higher order dispersion exhibited by this
compressor. For pulses of short duration (subpicosecond), this system would thus only provide
a partial compression of the expanded pulse to its original shape. A much better solution.29/

involves using an expander which also consists of a grating-pair, but in an anti-parallel config-
uration and with a 1:1 inverting telescope between the two gratings, as shown in Fig. 12.15..30/

To achieve the desired positive GDD, the two gratings must be located outside the telescope
but within a focal length of the lens, i.e., one must have .s1, s2/< f , where f is the focal length
of each of the two lenses. In this case, under the ideal paraxial wave-propagation conditions
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FIG. 12.15. Pulse expander consisting of two diffraction gratings, in an antiparallel configuration, with a 1:1
inverting telescope between them.

and negligible dispersion of the lens material, the GDD can be shown to be given by.30/

GDD D d2�

d!2
D 4
2c

!3d2 cos2

.2f � s1 � s2/ (12.5.7)

where ! is the frequency of the wave, d is the grating period, and 
 is the angle shown
in Fig. 12.15. Equation (12.5.7) indeed shows that one has, in this case, a positive value of
GDD. To understand this result we refer again to Fig. 12.15, where the plane wave incident on
the first grating, represented by the ray AB, is assumed to consist of two synchronous pulses,
at frequency !2 and !1, with !2>!1. As a result of the grating dispersion, the two pulses
will then follow paths ABCD and ABC0D0, respectively, and one sees that the delay suffered
by the pulse at frequency !2, �d2 D ABCD=�g, is now larger than that, �d1 D ABC0D0=�g, for
the pulse at frequency !1. Since !2 > !1, this means that the pulse delay dispersion is now
positive. It should be observed that the two-grating telescopic-system shown in Fig. 12.15
has the drawback that a lateral walk-off is present in output the beam, the amount of walk-off
depending upon the difference in frequency between the beam components (e.g., between rays
CD and C0D0). For beams of finite size, this walk-off can represent a problem. This problem
can however be circumvented by retroreflecting the output beam back to itself by a plane
mirror. In this case the overall dispersion resulting from the double pass through the system
of Fig. 12.15 is, of course, twice that given by Eq. (12.5.7)

To compare the positive GDD of this pulse expander with the negative GDD of the
grating-pair of Fig. 12.14, we first remember that, according to the grating equation, one
has sin 
i � .�=d/D sin 
 0, where 
i is the angle of incidence at the grating and 
 0 is the cor-
responding diffraction angle. One can now substitute this grating equation into Eq. (12.5.6)
and compare the resulting expression with Eq. (12.5.7). One then readily sees that, if 
 0 D 
 ,
the two expressions become identical, apart from having opposite sign, provided that

.Lg=cos 
/D 2f � s1 � s2 (12.5.8)

It should be stressed that this equivalence only holds under the ideal conditions considered
above. In this case, and when Eq. (12.5.8) applies, the expander of Fig. 12.15 is said to be con-
jugate to the compressor of Fig. 12.14. Physically, the conjugate nature of this expander comes
about from the fact that the telescope produces an image of the first grating which is located
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beyond the second grating and parallel to it. The expander of Fig. 12.15 is thus equivalent to
a two-parallel-grating system with negative separation and, under condition Eq. (12.5.8), this
system has exactly opposite dispersion, for all orders, to that of the compressor of Fig. 12.14.
In practice, due to lens aberrations and dispersion, the expander of Fig. 12.15 works well for
pulse durations larger than �100 fs and for expansion ratios less than a few thousands. For
shorter pulses and larger expansion ratios, the 1:1 telescope of the expander is usually realized
via a suitably designed cylindrical-.31/ or spherical-mirror configuration..32/ In particular, the
use of the cylindrical-mirror configuration has resulted in an expander with expansion ratio
greater than 104 and with second-, third-, and fourth-order dispersion being matched, for a
suitable choice of material dispersion in the amplification chain, to that of the compressor..31/

PROBLEMS

12.1. The Nd:YAG laser beam of example 12.1. is first propagated in free-space for a distance of
1 m, starting from its waist, and then focused by a positive lens with f D 10 cm focal length.
Calculate the waist position after the lens and the spot-size parameter at this waist. [Hint: To
calculate this waist position, the lens can be considered to consist of two positive lenses, f1, and
f2 .f �1

1 C f �1
2 D f �1/, the first lens compensating the curvature of the incoming wavefront, thus

producing a plane wave front, while the second focuses the beam: : : .]

12.2. The output of a Q-switched Nd:YAG laser .E D 100 mJ, �p D 20 ns/ is to be amplified by a 6.3-
mm-diameter Nd:YAG amplifier having a small signal gain of G0 D 100. Assume that: (1) The
lifetime of the lower level of the transition is much shorter than �p. (2) The beam transverse
intensity profile is uniform. (3) The effective peak cross-section for stimulated emission is � Š
2.8 � 10�19 cm2. Calculate the energy of the amplified pulse, the corresponding amplification,
and the fraction of the stored energy in the amplifier that is extracted by the incident pulse.

12.3. A large Nd: glass amplifier, to be used for amplifying 1-ns laser pulses for fusion experiments,
consists of a disk-amplifier with disk clear-aperture of D D 9 cm and overall length of the disks of
15 cm. Assume: (1) A measured small signal gain, G0, for this amplifier of � 4. (2) An effective,
stimulated-emission peak cross-section for Nd:glass of � D 4 � 10�20 cm2 (see Table 9.3). (3)
That the lifetime of the lower level of the transition is much shorter than the laser pulse. Calculate
the total energy available in the amplifier and the required energy of the input-pulse to generate
an output energy of Eout D 450 J.

12.4. Following the analysis made in deriving Eqs. (12.3.1) and (12.3.9) (assume ˛D 0) as well as
the rate-equation calculation for a quasi-three level laser [see Eqs. (7.2.21)–(7.2.24)], prove
Eq. (12.3.15).

12.5. With reference to problem 12.2., assume now that the input pulse duration is much shorter than
the lifetime, �1, of the lower laser level .�1 Š 100 ps/. Using data obtained in example 2.10.
and knowing that the fractional population of the lower laser sub-level of the 4I11=2 state is
f13 Š 0.187, calculate the energy of the amplified pulse and the corresponding amplification.
Compare the results with those obtained in problem 12.2.

12.6. A large CO2 TEA amplifier (with a gas mixture CO2:N2:He in the proportion 3:1.4:l) has
dimensions of 10 � 10 � 100 cm. The small signal gain coefficient for the P.22/ transition
has been measured to be g D 4 � 10�2 cm�1. The duration of the input light pulse is 200 ns,
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which can therefore be assumed much longer than the thermalization time of the rotational lev-
els of both the upper and lower vibrational states. The laser pulse is however much shorter than
the decay time of the lower laser level. The true peak cross-section for the P.22/ transition is
� Š 1.54 � 10�18 cm2, while, for T D 300 K, the fractional population of both initial and final
rotational states can be calculated to be f D 0.07. Calculate the output energy and the gain avail-
able from this amplifier for an input energy of 17 J. Also calculate the energy per unit volume
available in the amplifier.

12.7. Prove Eq. (12.3.12).

12.8. The frequency of a Nd:YAG laser beam .�D 1.06 m/ is to be doubled in a KDP crys-
tal. Knowing that, for KDP, no.�D 1.06�m/ D 1.507, no.�D 532 nm/D 1.5283, and
ne.�D 532 nm/D 1.48222, calculate the phase-matching angle, 
m.

12.9. Prove Eq. (12.4.30).

12.10. Calculate the threshold pump intensity for parametric oscillation at �1 Š �2 D 1�m in a
5-cm-long LiNbO3 crystal pumped at �3 D 0.5�m Œn1 D n2 D 2.16, n3 D 2.24, d Š 6 �
10�12 m=V, �1 D �2 D 2 � 10�2�. If the pumping beam is focused in the crystal to a spot of
�100 �m diameter, calculate the resulting threshold pump power.

12.11. Calculate the second-harmonic conversion efficiency via type I second-harmonic generation in
a perfectly phase-matched 2.5-cm-long KDP crystal for an incident beam at �D 1.06 m having
an intensity of 100 MW=cm2 [for KDP n Š 1.5, deff D d36 sin 
m D 0.28 � 10�12 m=V, where

m Š 50ı is the phase-matching angle].
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A

Semiclassical Treatment
of the Interaction of Radiation
with Matter

The calculation that follows will make use of the so-called semiclassical treatment of the
interaction of radiation with matter. In this treatment the atomic system is assumed to be quan-
tized and it is therefore described quantum mechanically while the e.m. radiation is treated
classically, i.e., by using Maxwell’s equations.

We will first examine the phenomenon of absorption. We therefore consider the usual
two-level system where we assume that, at time t D 0, the atom is in its ground state 1 and
that a monochromatic e.m. wave at frequency! made to interact with it. Classically, the atom
has an additional energy H0 when interacting with the e.m. wave. For instance this may be
due to the interaction of the electric dipole moment of the atom μe with the electric field E
of the e.m. wave .H0 D μe � E/, referred to as as an electric dipole interaction. This is not
the only type of interaction through which the transition can occur, however. For instance,
the transition may result from the interaction of the magnetic dipole moment of the atom μm

with the magnetic field B of the e.m. wave (μm � B, magnetic dipole interaction). To describe
the time evolution of this two-level system, we must now resort to quantum mechanics. Thus,
just as the classical treatment involves an interaction energy H0, so the quantum mechanical
approach introduces an interaction Hamiltonian H 0. This Hamiltonian can be obtained from
the classical expression for H0 according to the well-known rules of quantum mechanics. The
precise expression for H 0 need not concern us at this point, however. We only need to note
that H 0 is a sinusoidal function of time with frequency equal to that of the incident wave.
Accordingly we put

H 0 D H00 sin !t (A.1)

The total Hamiltonian H for the atom can then be written as

H D H0 C H 0 (A.2)

547
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where H0 is the atomic Hamiltonian in the absence of the e.m. wave. Once the total
Hamiltonian H for t > 0 is known, the time evolution of the wave function  of the atom is
obtained from the time-dependent Schrödinger equation

H D j„@ 
@ t

(A.3)

To solve Eq. (A.3) for the wave-function  .t/ we begin by introducing, according
to Eq. (2.3.1),  1 D u1 expŒ�.jE1t=„/� and  2 D u2 expŒ�.jE2t=„/�, as the unperturbed
eigenfunctions of levels 1 and 2, respectively. Thus u1 and u2 satisfy the time-independent
Schrödinger wave-equation

H0ui D Ei ui .i D 1, 2/ (A.4)

Under the influence of the e.m. wave, the wave-function of the atom can be written as

 D a1.t/ 1 C a2.t/ 2 (A.5)

where a1 and a2 will be time-dependent complex numbers that, according to quantum
mechanics, obey the relation

ja1j2 C ja2j2 D 1 (A.6)

Since, according to Eq. (1.1.6), one has W12 D �dja1.t/j2=dt D dja2.t/j2=dt, to calculate
W12, we must calculate the function ja2.t/j2. To do this we will first generalize Eq. (A.5) as

 D
mX
1

ak k D
mX
1

ak uk expŒ�j.Ek=„/ t� (A.7)

where k denotes a general state of the atom and m gives the number of these states. By
substituting Eq. (A.7) into Eq. (A.3) we obtain

P
k
.H0 C H 0/ak uk expŒ�j.Ek=„/ t� D P

k
fj „.dak=dt/uk expŒ�j.Ek=„/ t�

C akukEk expŒ�j .Ek=„/ t�g
(A.8)

This equation, with the help of Eq. (A.4), reduces to

X
j„.dak=dt/uk expŒ�j.Ek=„/ t� D

X
akH

0uk expŒ�j.Ek=„/ t� (A.9)

By multiplying each side of this equation by the arbitrary eigenfunction u�
n and then

integrating over the whole space, we obtain

P
j„.dak=dt/ expŒ�j.Ek=„/ t�

R
uk u�

n dV

D P
ak expŒ�j.Ek=„/t�

R
u�

n H 0uk dV
(A.10)
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Since the wave functions uk are orthogonal (i.e.,
R

u�
n uk dV D ıkn), Eq. (A.10) gives

.dan=dt/ D 1

.j„/
mX
1

kH0
nkak exp

�
�j
.Ek � En/t

„
�

(A.11)

where H0
nk D H0

nk.t/ is given by

H0
nk.t/ D

Z
u�

n H 0 uk dV (A.12)

Equation (A.11) comprises a set of m differential equations for the m variables ak.t/, and
these equations can be solved once the initial conditions are known. For the simpler case of
a two-level system the wave-function  is given by Eqs. (A.5) and (A.11) reduces to the two
equations

�
da1

dt

�
D
�

1

j„
� n

H0
11 a1 C H0

12 a2 exp
h
�j.E2 � E1/

t

„
io

(A.13a)

�
da2

dt

�
D
�

1

j„
� n

H0
21 a1 exp

h
�j.E1 � E2/

t

„
i

C H0
22 a2

o
(A.13b)

which are to be solved with the initial condition a1.0/ D 1, a2.0/ D 0.
So far, no approximations have been made. Now, to simplify the solution of the

Eq. (A.13), we will make use of a perturbation method. We will assume that on the right-
hand side of Eq. (A.13) we can make the approximations that a1.t/ Š 1 and a2.t/ Š 0. By
solving Eq. (A.13) subject to this approximation, we obtain the first-order solutions for a1.t/
and a2.t/. For this reason, the theory that follows is known as first-order perturbation theory.
The solutions a1.t/ and a2.t/ obtained in this way can then be substituted in the right-hand
side of Eq. (A.13) to get a solution which could then be a second-order approximation, and so
on to higher orders. To first order, therefore, Eq. (A.13) gives

�
da1

dt

�
D
�

1

j„
�

H0
11 (A.14a)

�
da2

dt

�
D
�

1

j„
�

H0
21 exp .j!0t/ (A.14b)

where we have written !0 D .E2�E1/=„ for the transition frequency of the atom. To calculate
the transition probability, we need only to solve Eq. (A.14b). Thus, making use of Eqs. (A.1)
and (A.12), we write

H0
21 D H00

21 sin! t D H00
21Œexp.j! t/ � exp.�j! t/�=2j (A.15)

where H00
21 is given by

H00
21 D

Z
u�

2 H00u1 dV (A.16)
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FIG. A.1. Plot of the function y D Œsin.	! t = 2/ = 	!�2 versus 	!.

and is, in general, a complex constant. By substituting Eq. (A.15) into Eq. (A.14b) and
integrating with the initial condition a2.0/ D 0, we obtain

a2.t/ D H00
21

2j„
�

expŒj.!0 � !/t� � 1

!0 � !
� expŒj.!0 C !/t� � 1

!0 C !

�
(A.17)

If we now assume that ! Š !0, we see that the first term in the square brackets is much
larger than the second. We can then write

a2.t/ Š �H00
21

2j„
�

exp.�j	! t/ � 1

	!

�
(A.18)

where 	! D ! � !0. One can then readily calculate that

ja2.t/j2 D jH00
21j2

„2

�
sin(	! t = 2/

	!

� 2

(A.19)

The function y D Œsin .	!t=2/=	!�2 is plotted in Fig. A.1 vs 	! and one can then
see that the peak value of the function becomes greater and its width narrower as t increases.
Furthermore, one can show that

C1Z
�1

�
sin(	! t = 2/

	!

�2

d	! D 
 t

2
(A.20)

For large enough values of t we can then put

�
sin(	! t = 2/

	!

� 2

Š 
 t

2
ı.	!/ (A.21)
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where ı is the Dirac ı function. Within this approximation Eq. (A.19) gives

ja2.t/j2 D jH00
21j2

„2




2
tı.	!/ (A.22)

which shows that, for long enough times, the probability ja2.t/j2 of finding the atom in level
two is proportional to the time t. Consequently, the transition probability W12 is obtained as

W12 D dja2.t/j2

dt
D 


2

jH00
21j2

„2
ı.	!/ (A.23)

To calculate W12 explicitly, we must now calculate the quantity
ˇ̌
H00

21

ˇ̌2
. Let us assume

that the interaction responsible for the transition occurs between the electric field of the e.m.
wave and the electric dipole moment of the atom (electric-dipole interaction). Classically, if
we let r be the vector that specifies the position of the electron with respect to the nucleus and
e the magnitude of the electron charge, the corresponding dipole moment of the atom will be
μe D �er. The classical interaction energy H0 is then given by H0 D μe � E D �eE.r, t/ � r,
where E is the electric field of the incident e.m. wave at the electron position. Following the
well-known rules of quantum mechanics, the interaction Hamiltonian is then simply given by

H 0 D �eE.r, t/ � r (A.24)

Substitution of Eq. (A.24) into Eq. (A.12) with n D 2 and k D 1, gives

H0
21 D �e

Z
u�

2 E � r u1 dV (A.25)

Let us now suppose that the wavelength of the e.m. wave is much larger than the atomic
dimension. This is satisfied very well for e.m. waves in the visible. One has in fact � D 500 nm
for green light while typical atomic dimensions are � 0.1 nm). In this case, we can assume
that E(r, t) does not change appreciably over an atomic dimension and thus remains equal to
its value, E(0, t), at r D 0, i.e., at the center of the nucleus (electric-dipole approximation).
We can thus write

E.r, t/ Š E.0, t/ D E0 sin!t (A.26)

where E0 is a constant. If Eq. (A.26) is now substituted into Eq. (A.25) and the result-
ing expression for H0

21 compared with that given in Eq. (A.15), one finds that H00
21 can be

expressed as

H00
21 D E0 � μ21 (A.27)

where μ21 is given by

μ21 D �
Z

u�
2 eru1 dV (A.28)
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and is called the matrix element of the electric dipole moment. If we now let as cos 
 be the
angle between μ21 and E0 we obtain from Eq. (A.27) that

ˇ̌
H00

21

ˇ̌2 D E2
0 j�21j2 cos2 
 (A.29)

where j�21j is the magnitude of the complex quantity μ21. If we now assume that the e.m.
wave interacts with several atoms whose vectors μ21 are randomly oriented with respect to E0,
the average value of

ˇ̌
H00

21

ˇ̌2
will be obtained by averaging Eq. A.29 over all possible angles


 and � (in two dimensions). To carry this out, let p.
) represent the probability density for
the orientation of the atomic dipoles, so that p.
/d˝ gives the elemental probability that
the vector μ21 is within the solid angle d˝ making an angle 
 with the direction of E0. For
randomly oriented dipoles, one has p.
/ D const. and accordingly one has< cos2 
 >D 1=3,
where the brackets<> indicate the average value over all dipole orientations. From Eq. (A.29)
we then get

˝jH00
21j2

˛ D E2
0j�21j2=3 (A.30)

The substitution of this last expression into Eq. (A.23) then gives

W12 D 


6

.2
/2E2
0j�21j2

h2
ı.! � !0/ (A.31)

If the function ı.v�v0/ is used instead of ı.!�!0/ in Eq. (A.31) then, since ı.v�v0/ D
2
ı.! � !0/, Eq. (A.31) transforms to Eq. (2.4.5).

Having calculated the rate of absorption, we can now go on to calculate the rate of
stimulated emission. To do this, we should start again from Eq. (A.13), this time using
the initial conditions a1.0/ D 0 and a2.0/ D 1. We immediately see, however, that the
required equations in this case are obtained from the corresponding Eqs. [(A.13)–(A.31)] for
the case of absorption simply by interchanging the indexes 1 and 2. Since it can be seen from
Eq. (A.28) that j�12j D j�21j, it follows from Eq. (A.31) that W12 D W21, which shows that
the probabilities of absorption and stimulated emission are equal.



B

Lineshape Calculation for Collision
Broadening

As explained in Sect. 2.5.1, the calculation of the lineshape for collision broadening can be
obtained from the normalized spectral density, g.�0 � �/, of the sinusoidal waveform with
random phase-jumps shown in Fig. 2.9. The signal wave of Fig. 2.9 will be written as

E.t/ D E0 exp jŒ!t � �.t/� (B.1)

where E0 is taken to be a real constant, ! D 2
� is the angular frequency of the radiation
and where the phase �.t/ is assumed to undergo random jumps at each atom’s collision.
We will assume that the probability density, p� .�/, of the time � between two consecutive
collisions can be described by Eq. (2.5.7). The calculation of g.�0 � �/ is best done in terms
of the angular frequency !, i.e., in terms of the distribution, g.!0 � !/. Since obviously
one has g.�0 � �/d �0 D g.!0 � !/d!0, it follows that g.�0 � �/ D 2
g.!0 � !/. Apart
from a proportionality constant, the function g.!0 � !/ is then given by the power spectrum
W.!0 � !/ of the waveform shown in Fig. 2.9. For this proportionality constant to be unity,
we require, according to Eq. (2.5.4), that W.!0 �!/ be such that s W.!0 �!/d !0 D 1. From
Parseval’s theorem one then has

C1Z
�1

W.!0 � !/d!0 D lim
T!1




T

CTZ
�T

jE.t/j2dt D 2
E2
0 (B.2)

The condition s W.!0 � !/d!0 D 1 then leads to the result 2
E2
0 D 1. This means that

g.!0 � !/ can be obtained as the power spectrum of the signal E.t/ given by Eq. (B.1) and
with amplitude

E0 D .2
/�1=2 (B.3)
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To calculate the power spectrum W.!0 � !/ of the signal given in Eq. (B.1) we make use of
the Wiener-Kintchine theorem so that W.!0 � !/ is obtained as the Fourier transform of the
signal autocorrelation function, � .�/. We can thus write

W.!0 � !/ D
C1Z

�1
� .�/ exp �.j!0�/ d� (B.4)

where the autocorrelation function � .�/ is given by

� .�/ D lim
T!1

1

2T

CTZ
�T

E�.t/E.t C �/dt (B.5)

For the waveform shown in Fig. 2.9, we can then write

� .�/ D lim
T!1

1

2T
E2

0 exp.j!�/

8<
:
Z

corr.

dt C
Z

uncorr.

expŒ�j.	�/�dt

9=
; (B.6)

The first integral in the right hand side of Eq. (B.6) is calculated over the time intervals,
between �T and CT, in which no phase-jumping collision has occurred and thus the signals
E.t/ and E.t C �/ have the same phase (correlated intervals). The second integral in the right
hand side of Eq. (B.6) is calculated over the time intervals in which a collision has occurred
and thus the two signals E.t/ and E.t C �/ have a random phase difference	� (uncorrelated
intervals). This situation can be illustrated schematically as in Fig. B.1, where the vertical bars
(continuous-line) indicate the instants of phase jumps for both E.t/ and E.tC�/. On projecting
the vertical bars of e.g., E.t C �/ onto the plot of E.t/ (dashed vertical lines), the correlated
time intervals, shown as hatched areas, are obtained.

To calculate � .�/ from Eq. (B.6) we first notice that the contribution of the second
integral in the right hand side of Eq. (B.6) vanishes as T tends to infinite because the integrand
expŒ�j.	�/� is a random number with zero average. Equation (B.6) then reduces to

� .�/ D lim
T!1

E2
0

2T
exp.j!�/

2
4 Z

corr.

dt

3
5 (B.7)

The integral in Eq. (B.7) is equal to the total time of phase correlation, i.e. to the sums of
the time intervals corresponding to the hatched areas in Fig. B.1. If we let � 0

n represent the
time interval between the n-th phase-jump and the next one (see Fig. B.1), this sum can be
expressed as

P
n



� 0

n � ��, where summation is extended over the values � 0
n for which � 0

n > � .
Equation (B.7) can then be written as

� .�/ D E2
0 exp.j!�/ lim

T!1

P
n .�

0
n � �/

2T
(B.8)
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FIG. B.1. Plots of the phase jumps of the two functions E.t/ and E.t C �/ with the time intervals where the two
functions are correlated indicated as hatched areas.

If we now let N be the number of phase-jumps between �T and CT, we can write

lim
T!1

P
n .�

0
n � �/

2T
D lim

T!1
Œ
P

n .�
0
n � �/�=N

2T =N
D <.� 0 � �/>

�c
(B.9)

where �c D 2T=N is the average time between two consecutive phase-jumps and <.� 0 � �/>
is the average value of .� 0 � �/ (with the constraint � 0>�/. Using the probability density of
the time intervals between consecutive jumps given by Eq. (2.5.7), the value <.� 0 � �/> can
be obtained as

<� 0 � �> D .1=�c/

C1Z
�

.� 0 � �/ exp �.� 0=�c/ d � 0 D �c exp �.�=�c/ (B.10)

From Eqs. (B.8), (B.9) and (B.10) we get the expression for the correlation function as� .�/ D
E2

0 expŒj!� � .�=�c/�. If � .�/ is now extended also to the case �<0, then, since one must have
� .��/ D � �.�/, we can write our final result as

� .�/ D E2
0 expŒj!� � .j� j=�c/� (B.11)

With the help of the Wiener-Kintchine theorem, see Eq. (B.4), we can now readily calculate
W.!0 � !/ and hence, using Eq. (B.3) for E0, also g.!0 � !/. We obtain

g.!0 � !/ D �c




1

Œ1 C .!0 � !/2�2
c �

(B.12)

Since g.�0 � �/ D 2
g.!0 � !/, we can also write [see Eq. (2.5.9)]

g.�0 � �/ D 2�c
1

Œ1 C .�0 � �/24
2�2
c �

(B.13)

from which the lineshape function given by Eq. (2.5.10) is readily obtained.



C

Simplified Treatment of Amplified
Spontaneous Emission

We will assume that ASE emission occurs in both directions within the active medium and
therefore refer to the geometry shown in Fig. C.1. We will further assume that the amplifier
behaves as an ideal four-level system, so that the lower level population can be neglected. We
will consider both homogeneously and inhomogeneously broadened transitions. A detailed
theory that holds for these conditions has been developed by Casperson..1/ The theory is rather
complicated, however, and as a result one cannot readily obtain the main aspects of the phys-
ical behavior of ASE from this treatment. Following some very recent work,.2/ we present
here a simplified treatment of ASE aimed at obtaining some asymptotic expressions for ASE
behavior in the low saturation regime.

In the low saturation regime, we assume that the upper state population, N2, and hence
the population inversion N Š N2, are not appreciably saturated by the ASE intensity. With
reference to Fig. C.1, we let I�.z, �/ be the spectral ASE intensity at coordinate z for the beam
propagating in the positive z-direction. The elemental variation, dI� , along the z-coordinate,
must account not only for the stimulated emission but also for the spontaneous-emission
contribution arising from the element dz. We can thus write

@ I�

@ z
D �NI� C NA�

˝.z/

4

(C.1)

where � is the transition cross section at frequency �, A� is the rate of spontaneous emission
at frequency � and˝.z/ is the solid angle subtended by the exit face as seen from the element
dz. Note that the factor ˝.z/=4
 , in the right hand side of Eq. (C.1), accounts for the fact
that the spontaneous radiation from the element dz is emitted uniformly over the whole solid
angle, 4
 , while we are only interested in that fraction emitted within the solid angle ˝.z/.
To calculate the ASE spectral intensity I�.l, �/ at the z D l exit face of the medium, we
must integrate Eq. (C.1) over the z-coordinate. Noting that most of ASE emission arises from
emitting elements near z D 0, which experience the largest gain, we can assume ˝.z/ Š ˝ ,
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FIG. C.1. Calculation of the ASE spectral emission along the z-direction.

where˝ is the solid angle subtended by one face of the active medium as seen from the other
face (see Fig. C.1). Equation (C.1) can then be readily integrated and, using the boundary
condition I�.0, �/ D 0, one obtains

I�.l, �/ D ˝

4

A�

h �Œexp.�Nl/ � 1�

�
(C.2)

Equation (C.2) can be rearranged by noting that A� D Ag.� � �0/ and � D �pg.� � �0/=gp,
where A is the rate of spontaneous emission, g.� � �0/ is the transition lineshape function, gp

is its peak value, �p is the peak cross-section and �0 is the frequency of the transition peak.
Equation (C.2) can then be written as

I�.l, �/ D �Is
˝

4

gpŒexp.�Nl/� 1� (C.3)

where � D �=�r D �A is the fluorescence quantum yield [see Eq. (2.6.22)] and Is D h �=�p�

is the saturation intensity of the amplifier [see Eq. (2.8.24)].
The ASE emission at a general frequency �, normalized to its peak value, is readily

obtained from Eq. (C.3) as ŒI�.l, �/=I�.l, �0/� D Œexp.�Nl/ � 1�=Œexp.�pNl/ � 1�. For both
Lorentzian and Gaussian lines, this spectral emission can be readily computed for a given
value of the peak gain, G D exp.�pNl/. As an example, Fig. 2.24 shows, as solid lines, the
computed spectral profiles vs the normalized frequency offset, 2.���0/=	�0, for a Lorentzian
line with peak gains of 103 and 106, respectively. On the other hand, an approximate expres-
sion for the ASE linewidth,	�ASE, can be obtained from Eq. (C.3) if we assume that the ASE
spectrum can be approximated by a Gaussian function. We accordingly write

Œexp.�Nl/ � 1� Š Œexp.�pNl/� 1� � exp.�kx2/ (C.4)

where k is a constant and x represents the normalized frequency offset i.e.,

x D 2.� � �0/=	�0 (C.5)

where 	�0 is the transition linewidth (for either a homogeneously or inhomogeneously
broadened transition). From Eq. (C.4) we readily obtain the expression for kx2 as

kx2 Š lnŒexp.�pNl/� 1�� lnŒexp.�Nl/� 1� (C.6)

If we now let f .x/ represent the function on the right hand side of Eq. (C.6), the constant k
can be readily obtained from the relation

k D 1

2

�
d2f

dx2

�
xD0

(C.7)
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For a Lorentzian line, we now write � D �p=.1 C x2/ in Eq. (C.6). After some lengthy but
straightforward calculations, we then get from Eq. (C.7)

k D G ln G

.G � 1/
(C.8)

Similarly, for the case of a Gaussian line, we write � D �p exp �.x2 ln 2/ in Eq. (C.6) and
thus obtain from Eq. (C.7)

k D .ln 2/
G ln G

.G � 1/
(C.9)

With the above Gaussian approximation, the normalized ASE linewidth, in terms of the nor-
malized frequency offset x, is now readily obtained as 	xASE D 2.ln 2=k/1=2. Since, from
Eq. (C.5), one has	�ASE D 	xASE � .	�0=2/, the ASE linewidth can be found from the two
previous expressions once the value for k given by Eq. (C.8) or (C.9) is used. We thus obtain

	�ASE D Œln 2�1=2

�
G � 1

G ln G

�1=2

	�0 (C.10)

for a Lorentzian line and

	�ASE D
�

G � 1

G ln G

�1=2

	�0 (C.11)

for a Gaussian line. As an example, expression Eq. (C.10) has been used to obtain the nor-
malized ASE linewidth, 	�ASE=	�0, vs peak gain G which is plotted in Fig. 2.25 as a
dashed line.

With the help of these considerations on the spectral behaviour of ASE, we can now also
obtain an approximate expression for the total ASE intensity, I D s I�d�, at the exit face of
the active medium. To obtain this we first integrate both sides of Eq. (C.3) over frequency �
and obtain

I D � Is

�
˝

4


�
gp

C1Z
�1

Œexp.�Nl/� 1�d� (C.12)

With the help of the Gaussian approximation for the ASE spectrum given by Eq. (C.4), the
integral in Eq. (C.12) is readily calculated, using Eqs. (C.8) and (C.9), to give [see Eq. (2.9.3)]

I D � Is

�
˝

4
3=2

�
.G � 1/3=2

ŒG ln G�1=2
(C.13)

for a Lorentzian and

I D � Is

�
˝

4


�
.G � 1/3=2

ŒG ln G�1=2
(C.14)

for a Gaussian line.
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D

Calculation of the Radiative Transition
Rates of Molecular Transitions

A simplified treatment is considered here merely to show how the selection rules arise for a
molecular transition.

The transition probability can be expressed in the form of Eq. (2.4.9) provided that the
appropriate value for the amplitude of the oscillating dipole moment j�j is used. Thus we
begin by recalling that, for an ensemble of negative charges (the electrons of the molecule),
each of value e (with the sign included) and of positive charges of value eh (the nuclei of the
molecule) the classical electrical dipole moment is given by μ D †i eri C†j eh Rj. Here, ri

and Rj specify the positions of the electrons and of the nuclei, respectively, relative to some
given reference point, and the sum is taken over all electrons and nuclei of the molecule. If
the reference point is taken to be center of the positive charges, then †j eh Rj D 0 and μ

reduces to

μ D †i eri (D.1)

To simplify matters, we will now consider a diatomic molecule. In this case the nuclear
coordinates may be reduced to the magnitude R of the internuclear spacing R and to the angu-
lar coordinates, 
 , and, �, of R relative to a given reference system. According to quantum
mechanics the oscillating dipole moment of the molecule is then given by [see also Eq. (2.3.6)]

μosc D 2 Re
Z
 �

2 .ri, R, rr/ μ  1 .ri, R, rr/ dri dR drr (D.2)

where  2 and  1 are, respectively, the wave functions of the final and initial states of the
transition. Note that both  1 and  2 are taken to be functions of the positions of all electrons,
of the internuclear distance R, and of the rotational coordinates rr (a shorthand notation for 

and �), and the integral is taken over all these coordinates. Following the Born-Oppenheimer
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approximation, the molecular wave functions  can now be written as

 .ri, R, rr/ D ue.ri, R/ u�.R/ ur.rr/ exp Œ�j .E =„/ t� (D.3)

where ue, u� , and ur are the electronic, vibrational, and rotational wave functions, respec-
tively, and E D Ee C E� C Er is the total energy of the given state. The substitution of
Eq. (D.3) into Eq. (D.2) then shows that μosc oscillates at the frequency �21 D .E2 � E1/=h
with a complex amplitude μ21 given by [compare with Eq. (2.3.7)]

μ21 D
�Z

u�
�2 μe u�1 dR

� �Z
u�

r2 ur1 drr

�
(D.4)

In the above expression one has

μe D μe.R/ D
Z

u�
e2.ri, R/μ ue1.ri, R/ dri (D.5)

where μ is the dipole moment given by Eq. (D.1). Since the electronic wave functions are
slowly varying functions of R, μe.R/ can then be expanded in a power series around the
equilibrium internuclear distance R0 in the form

μe.R/ D μe.R0/C dμe

dR
.R � R0/C : : : (D.6)

Let us first consider pure rotational transitions. In this case one has ue2 D ue1 and u�2 D
u�1 and, from Eq. (D.5), the dipole moment μe.R0/ is seen to be given by

μe.R0/ D
Z

μ jue1.ri, R0/j2 dri (D.7)

which is the permanent electric dipole moment μep of the molecule. If we assume μ D μe.R0/

in the first integral on the right hand side of Eq. (D.4) and remember that
R

u�
�2 u�1 dR DR ju�1j2 dR D 1, we get the following expression for j�21j2 D jμ21j2 to be used in Eq. (2.4.9):

j�21j2 D jμepj2

ˇ̌̌
ˇ
Z

u�
r2ur1drr

ˇ̌̌
ˇ
2

(D.8)

The first factor in the right-hand side of Eq. (D.8) indicates that pure rotational transi-
tions are possible only in molecules possessing a permanent dipole moment μep. This can be
easily understood because the stimulated emission process can be considered to arise from the
interaction of the incident e.m. wave with this rotating dipole moment. For molecules with a
permanent dipole moment, j�21j2 is then proportional to the second factor on the right-hand
side of Eq. (D.8). From the symmetry properties of the rotational wave functions, it then fol-
lows that this factor is nonzero only if the quantum jump 	J between the rotational numbers
of the two states obeys the selection rule 	J D ˙1.

Let us next consider rotational-vibrational transitions. One has again ue2 D ue1 and, to
first order, we again put μe.R/ Š μe.R0/ D μep into Eq. (D.4). We readily see that μ21
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reduces to


μep

R
u�

�2u
�1dR

� 
R
u�

r2ur1drr

�
which is zero on account of the orthogonality of the

vibrational wave functions belonging to the same electronic state. To calculate the transition
rate we need therefore to consider the second term in the expansion Eq. (D.6). The substitution
of this term into Eq. (D.4) then gives the following expression for j�21j2:

j�21j2 D
ˇ̌
ˇ̌dμe

dR

ˇ̌
ˇ̌2
ˇ̌
ˇ̌Z u�

�2.R � R0/u�1dR

ˇ̌
ˇ̌2
ˇ̌
ˇ̌Z u�

r2ur1drr

ˇ̌
ˇ̌2 (D.9)

The third factor in the right hand side of Eq. (D.9) again gives the selection rule	J D ˙1
for the rotational quantum jump. As far as the second factor is concerned, we remember that,
if the potential energy curve U.R � R0/ of the molecule is approximated by a parabola, i.e.
for harmonic restoring force, the wave functions u� are given by the well-known harmonic-
oscillator functions i.e., by the product of Hermite polynomials with a Gaussian function. As a
result of the symmetry properties of these functions, j�21j2 then turns out to be non-zero only
if 	� D ˙1. Overtones arise if the above parabolic assumption is relaxed (i.e., in the case
of anharmonicity of the potential-energy) or if the higher-order terms in Eq. (D.6) are taken
into account (electrical anharmonicity). Note finally that, under certain symmetry conditions
for the ground state electronic wave-function, the first factor in Eq. (D.9) turns out to be zero
and the transition is said to be infrared inactive. An obvious case for this circumstance occurs
when the two atoms of the molecule are identical as in the case of e.g. a N2 molecule involving
the same isotopic species for the two atoms. In this case in fact, for symmetry reasons, the
molecule cannot have a net dipole moment, μe.R/, for any value of the internuclear distance
R, and j�21j2 in Eq. (D.9) is always zero.

Lastly we consider the case of vibronic transitions. If we again take only the first term in
the expansion Eq. (D.6), then j�21j2, from Eq. (D.4), is seen to be given by

j�21j2 D jμe.R0/j2

ˇ̌
ˇ̌Z u�

�2u�1dR

ˇ̌
ˇ̌2
ˇ̌
ˇ̌Z u�

r2ur1drr

ˇ̌
ˇ̌2 (D.10)

As a result of the symmetry properties of the electronic wave functions of the two states,
the first factor in the right hand side of Eq. (D.10) may turn out to be zero. In this case the
vibronic transition is said to be electric dipole forbidden. For a dipole-allowed transition, the
third factor on the right-hand side of Eq. (D.10) leads again to the selection rule 	J D ˙1.
Within this selection rule and again for a dipole-allowed transition, Eq. (D.10) then shows that
j�21j2 is proportional to the second factor appearing in the right hand side of the equation,
known as the Franck-Condon factor. Note that, in this case, this factor is non-zero because
u�2 and u�1 belong to different electronic states. The transition probability W is thus deter-
mined by the degree of overlap between the nuclear wave functions, as discussed in chap. 3
in connection with Fig. 3.6.
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Space Dependent Rate Equations

The purpose of this appendix is to develop a rate-equation treatment, and to solve these equa-
tions for the c.w. case, when the spatial variation of both the pump-rate and the cavity field are
taken into account. As a result of these spatial variations, the population inversion will also be
space dependent. In all cases, we will assume the laser oscillating on a single mode.

E.1. FOUR-LEVEL LASER

For an ideal four-level laser, we can neglect the population, N1, of the lower laser level
and thus let N Š N2 represent the population inversion. We can then write

@N

@ t
D Rp � WN � N

�
(E.1.1a)

d�

dt
D
Z
a

WNdV � �

�c
(E.1.1b)

where the integral in Eq. (E.1.1b) is taken over the volume of the active medium and where the
meaning of all other symbols has already been given in Chap. 7. Equation (E.1.1a) expresses
a local balance between pumping, stimulated emission, and spontaneous decay processes.
Note that a partial derivative has been used on the left-hand side of the equation on account
of the expected spatial variation of N. The integral term on the right-hand side of Eq. (E.1.1b)
accounts for the contribution of stimulated processes to the total number of cavity photons �.
This term has been written on the basis of a simple balance, using the fact that each individual
stimulated process produces a photon. For a plane wave, we can now write W D �F D �I=h�
and I D c�=n, where � is the stimulated-emission cross-section, F is photon flux, I is the
intensity of the wave, � is the energy density in the active medium and n is its refractive index.
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From the previous expressions, we can then relate W to the energy density of the wave as

W D c�

nh�
� (E.1.2)

Although this equation has been derived, for simplicity, for a plane wave, one immedi-
ately recognizes that it merely establishes a local relation between the transition rate and the
energy density of the e.m. field. It then follows that this equation has a general validity and
can thus represent the relation between W and � for e.g. the e.m. field of the cavity. In this case
� is expected to be dependent on both space, r, and, for a transient case, also on time, t, the
spatial dependence accounting for the spatial variation of the cavity mode. Equations (E.1.1),
with the help of Eq. (E.1.2) give

@N

@ t
D Rp � c�

nh�
�N � N

�
(E.1.3a)

d�

dt
D c�

nh�

Z
a

�NdV � �

�c
(E.1.3b)

Note that, since both Rp and � are assumed to depend on position (and time for a tran-
sient case), this will also apply to N, which cannot therefore be taken out of the integral in
Eq. (E.1.3b). Note also that the total number of cavity photons � may be related to the energy
density of the e.m. wave by

� D 1

h�

Z
c

� dV (E.1.4)

where the integral is taken over the whole volume of the cavity. We will consider a laser
cavity of length L in which is inserted an active medium of length l and refractive index n and
we will assume that the beam waist is located somewhere in the active medium. Under these
conditions, the energy density of the mode outside, �out, and inside, �in, the active medium
can be written, respectively, as

�out D �0ju.r/j2 (E.1.5a)

�in D n�0ju.r/j2 (E.1.5b)

where u.r/ is the field amplitude, at the general coordinate, r, normalized to its peak value
(occurring at the waist), and n�0 is the energy density at the waist location. From Eqs. (E.1.4)
and (E.1.5) we then obtain

� D �0

h�

0
@n

Z
a

juj2dV C
Z
r

juj2dV

1
A (E.1.6)

where the two integrals are taken over the active medium and the remaining volume of the
cavity, respectively. The form of Eq. (E.1.6) suggests that we define an effective volume of
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the mode in the cavity, V , as

V D
0
@n

Z
a

juj2dV C
Z
r

juj2dV

1
A (E.1.7)

and a volume Va of the mode in the active medium as

Va D
Z
a

juj2dV (E.1.8)

With the help of Eqs. (E.1.5b), (E.1.6), and (E.1.7), Eq. (E.1.3) transform to

@N

@ t
D Rp � c�

V
� Njuj2 � N

�
(E.1.9a)

d�

dt
D
2
4c�

V

Z
a

Njuj2dV � 1

�c

3
5 � (E.1.9b)

which represents our final result describing the space dependent rate equations of a four-
level laser.

We will now solve Eq. (E.1.9) for the case of a c.w. laser oscillating on a single TEM00

mode. For simplicity, we will further assume the e.m. cavity field, u.r/, to be independent of
the longitudinal coordinate z. This implies that we are neglecting both the spot size variation
and the mode standing-wave-pattern along the laser cavity. We will also take the cladded-rod
model discussed in Sect. 6.3.3. so that one needs not to worry about the aperturing effect
caused by a finite rod-diameter. Under these assumptions we can write the following very
simple expression for ju.r/j, holding for any value of the longitudinal coordinate z in the
active medium, and for any value of the radial coordinate, r, between 0 and 1:

juj D exp �.r =w0/
2 (E.1.10)

where w0 is the spot size at the beam waist. Equation (E.1.7) then gives

V D 
 w2
0

2
Le (E.1.11)

where the equivalent length of the cavity, Le, can be expressed as [see Eq. (7.2.11)]

Le D L C .n � 1/l (E.1.12)

Likewise, from Eq. (E.1.8), we obtain

Va D 
 w2
0

2
l (E.1.13)
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The threshold condition for the population inversion is now obtained from Eq. (E.1.9b)
by letting .d�=dt/ D 0. Upon defining a spatially averaged population inversion as [see
Eq. (7.3.20)]

<N> D
R
a

Njuj2dV
R
a

juj2dV
D
R
a

Njuj2dV

Va
(E.1.14)

Equation (E.1.9b) gives [see Eq. (7.3.19)]

<N>c D 1

c��c

V

Va
D �

� l
(E.1.15)

where Eqs. (E.1.11), (E.1.13) and (7.2.14) have been used. The threshold expression for the
pump rate, on the other hand, can be obtained from Eq. (E.1.9a) by letting .@N=@t/ D 0 and
� D 0. We get

Rp.r, z/ D N.r, z/=� (E.1.16)

A spatially averaged pump rate <Rp> can now be defined as

<Rp> D
R
a

Rpjuj2dV
R
a

juj2dV
D
R
a

Rpjuj2dV

Va
(E.1.17)

The substitution of Eq. (E.1.16) on the right hand side of Eq. (E.1.17) with the further
help of Eq. (E.1.15) gives

<Rp>c D <N>c

�
D �

� l�
(E.1.18)

Above threshold, the steady state average population, <N>0, is obtained from
Eq. (E.1.9b) by letting .d�=dt/ D 0. This gives

<N>0 D <N>c D �=� l (E.1.19)

The steady state photon number, �0, on the other hand, is obtained from Eq. (E.1.9a) by
letting .@N=@t/ D 0. One gets

N
h
1 C c��

V
�0juj2

i
D Rp� (E.1.20)

To proceed further we relate �0, appearing in Eq. (E.1.20), to the output power, Pout, with
the help of Eq. (7.2.18). Equation (E.1.20) can then be transformed to

N D Rp�h
1 C Pout

Ps
juj2

i (E.1.21)
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where use has been made of Eq. (E.1.11) for the cavity volume and of Eq. (7.2.14) for the
photon decay time and where a saturation power, Ps, has been defined as [see Eq. (7.3.28)]

Ps D �2

2


w2
0

2

h�

��
(E.1.22)

Upon multiplying both sides of Eq. (E.1.21) by jUj2 and integrating over the volume of
the active medium, we obtain

<N>0 D 1

Va

Z
Rpjuj2�h

1 C Pout
Ps

juj2
i dV (E.1.23)

where Eq. (E.1.14) has been used and where the spatially-averaged inversion has been denoted
by <N>0 since the laser is operating c.w.. With the help of Eqs. (E.1.19), and (E.1.13), the
previous expression gives

�

�
D 2


 w2
0

Z
Rpjuj2�h

1 C Pout
Ps

juj2
i dV (E.1.24)

To proceed further we need to specify the spatial variation of Rp and to relate its value to
the pump power Pp. This will be done below for a pumping profile which is either uniform or
has a Gaussian transverse distribution.

In the case of uniform pumping, Rp is a constant and, for both lamp pumping and
electrical pumping, is given by [see Eqs. (6.2.6) and (6.4.26)]

Rp D �p
Pp


 a2lh�mp
(E.1.25)

Note that Eq. (E.1.25) holds only for 0 	 r 	 a, where a is the radius of the medium,
while one has Rp.r/ D 0 for r>a. Note also that, according to the discussion in Sect. 6.3.3.,
the expression valid for diode pumping, with a uniform illumination, is simply obtained from
Eq. (E.1.25) by replacing �mp, the minimum pump frequency described in Fig. 6.18, with
�p, the frequency of the pumping diode. The substitution of Eq. (E.1.25) in the integral of
Eq. (E.1.24) then gives

�

�
D �p

�
Pp�


 a2h�mp

� �
2


 w2
0

� aZ
0

juj2h
1 C Pout

Ps
juj2

i2
 rdr (E.1.26)

where the integration along the longitudinal coordinate, z, of the active medium has already
been performed. We now define a minimum pump threshold Pmth, and the dimentionless vari-
ables x and y as in Eqs. (7.3.26), (7.3.25), and (7.3.27), respectively. Equation (E.1.26) then
transforms to

1

x
D
�

2


 w2
0

� aZ
0

exp �2.r =w0/
2

Œ1 C y exp �2.r =w0/2�
2
 rdr (E.1.27)
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where Eq. (E.1.10) has been used for jUj2. Equation (E.1.27) can be readily integrated by the
substitution

t D exp �2.r =w0/
2 (E.1.28)

One obtains [compare with Eq. (7.3.30)]

1

x
D

1Z
ˇ

dt

1 C yt

D 1

y
ln

�
1 C y

1 C ˇ y

�
(E.1.29)

where

ˇ D exp �.a =w0/
2 (E.1.30)

In the case of a Gaussian distribution for the transverse pumping profile, as can be pro-
duced by e.g., longitudinal diode-pumping, Rp may be related to the pump power, Pp, by
Eq. (6.3.7). From Eq. (E.1.24), using the expression for jUj given by Eq. (E.1.10), we then get

�

�
D�r�t

 
2


 w2
p

! �
Pp�

h�p

� �
2


 w2
0

� 2
4

1Z
0

exp �2r2
�


w2
0 C w2

p

�
=w2

0w2
p

	
1 C .Pout =Ps/ exp � �2r2 =w2

0

	2
 rdr

3
5 �

�
lZ

0

˛ exp �Œ˛ z� dz (E.1.31)

According to Eq. (6.3.11), the second integral in the right hand side of Eq. (E.1.31)
gives the pump-absorption efficiency �a. We now define a minimum pump threshold as [see
Eq. (7.3.32)]

Pmth D
�
�

�p

� �
h�p

�

�  

w2

p

2�e

!
(E.1.32)

where �p D �r�t�a is the pump efficiency. We also define the dimensionless variables x and y
as in Eqs. (7.3.25) and (7.3.27), respectively. Equation (E.1.31) then gives

1

x
D
�

2


 w2
0

� 2
4

1Z
0

exp �2r2
�


w2
0 C w2

p

�
=w2

0w2
p

	
1 C y exp � �2r2 =w2

0

	 2
 rdr

3
5 (E.1.33)

If we now define a variable t as in Eq. (E.1.28) and a quantity ı as ı D .w0 =wp/
2, the

previous equation simplifies to

1

x
D

1Z
0

tı

1 C yı
dt (E.1.34)
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The integral in Eq. (E.1.34) can be calculated analytically for integer values of ı. In
particular, for ı D 1, one gets

1

x
D
�

t

y
� 1

y2
ln.1 C yt/

� 1

0
(E.1.35)

from which Eq. (7.3.34) is immediately obtained.

E.2. QUASI-THREE-LEVEL LASER

The procedure to establish the space-dependent rate equations for a quasi-three-level
laser and to solve them for the c.w. case follows the same path as that of a four-level laser.
According to Eq. (7.2.19) we now write

N1 C N2 D Nt (E.2.1a)

@N2

@ t
D Rp � .WeN2 � WaN1/� N2

�
(E.2.1b)

d�

dt
D
Z
a

.WeN2 � WaN1/dV � �

�c
(E.2.1c)

In the previous equations, following Eq. (E.1.2), the rates for stimulated emission, We,
and for absorption, Wa, can be written as

We D c�e

nh�
� (E.2.2a)

and

Wa D c�a

nh�
� (E.2.2b)

where �e and �a are the effective cross sections for emission and absorption, respectively.
One can now proceed following the same steps, from Eq. (E.1.4) to (E.1.8), as for a four-level
laser, to obtain [compare with Eq. (7.2.24)]

@N

@ t
D Rp.1 C f / � c.�e C �a/

V
� Njuj2 � f Nt C N

�
(E.2.3a)

d�

dt
D
2
4c�e

V

Z
a

Njuj2dV � 1

�c

3
5 � (E.2.3b)

where N D N2 � fN1 [see Eq. (7.2.23)] and f D �a=�e [see Eq. (7.2.22)]. These equations
represent our final result describing the space-dependent rate equations of a quasi-three-level
laser.
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We will now solve Eq. (E.2.3) for the case of a c.w. laser oscillating on a single TEM00

mode. Under the assumption, again, that ju.r/j is described by Eq. (E.1.10) for 0<r<1, we
obtain again Eqs. (E.1.11), (E.1.12) and (E.1.13) for V , Le, and Va, respectively. We also
define the spatially averaged values, <N>, and, <Rp>, as in Eqs. (E.1.14) and (E.1.17),
respectively.

The threshold value of <N> is obtained from Eq. (E.2.3b) by letting .d�=dt/ D 0.
This gives

<N>c D �=�el (E.2.4)

The threshold value of <Rp> is then obtained from Eq. (E.2.3a) by letting .@N=@t/ D 0
and � D 0. One gets

<Rp>c D f<Nt>C<N>c

.1 C f /�
D �a<Nt>l C �

.�e C �a/l�
(E.2.5)

Above threshold, the steady state value, <N>0, is again obtained from Eq. (E.2.3b) by
letting .d�=dt/ D 0. One gets

<N>0 D <N>c D �=�el (E.2.6)

From Eq. (E.2.3a), under the condition .@N=@t/ D 0, one obtains

N D Rp.1 C f /� � f Nt

1 C Œc.�e C �a/�=V��0juj2
(E.2.7)

and the steady-state number of photons, �0, can again be related to the output power, Pout, by
Eq. (7.2.18). Equation (E.2.7) can then be transformed to

N D Rp.1 C f /� � f Nt

1 C yjuj2 (E.2.8)

In the previous expression we have again defined y D Pout=Ps, where the saturation
power, Ps, is now given by

Ps D �2

2


w2
0

2

h�

.�e C �a/�
(E.2.9)

We now multiply both sides of Eq. (E.2.8) by jUj2 and integrate over the volume of the
active medium. With the help of Eqs. (E.1.13), (E.1.14) and (E.2.6) we obtain [compare with
Eq. (E.1.24)]

�

�
D 2


 w2
0

Z
ŒRp.1 C f /� � f Nt�juj2

Œ1 C yjuj2� dV (E.2.10)
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To proceed further, the spatial dependence of Rp needs to be specified. In the case of
longitudinal pumping with a pump beam of Gaussian radial profile we use Eq. (6.3.7). With
the help of Eq. (E.1.10) for juj, Eq. (E.2.10) can be written as

�

�el
D �r�t.1 C f /

�
Pp�

h�p

�  
2


 w2
pl

! 1Z
0

tı

1 C yt
dt

lZ
0

˛ exp �.˛z/dz�

� f Nt

1Z
ˇ

dt

1 C yt
(E.2.11)

where t and ˇ are expressed by Eqs. (E.1.28) and (E.1.30), respectively, and

ı D .w0 =wp/
2 (E.2.12)

Again recognizing that the integral over the longitudinal coordinate z is the absorption
efficiency �a, and under the simplifying assumption w0<<a (i.e. ˇ Š 0), Eq. (E.2.11) gives

� D �p.�e C �a/

�
Pp�

h�p

�  
2


 w2
p

! 1Z
0

tı

1 C yt
dt � �aNtl

ln.1 C y/

y
(E.2.13)

and this equation can be solved for Pp to get

Pp D �

�
h�p

�p�

� "

 w2

p

2.�e C �a/
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1

1R
0
Œtı
ı

1 C yt� dt

�
1 C B

ln.1 C y/

y

�
(E.2.14)

where B D �aNtl=� . The minimum pump threshold is obtained from Eq. (6.3.25) when
w0<<wp and �aNtl<<� . One obtains [see Eq. (7.4.16)]

Pmth D �

�
h�p

�p�

� "

w2

p

2.�e C �a/

#
(E.2.15)

By taking the ratio between Eqs. (E.2.14) and (E.2.15) we obtain our final result [see
Eq. (7.4.18)]

x D 1
1R

0

tı

1Cyt dt

�
1 C B

ln.1 C y/

y

�
(E.2.16)



F

Theory of Mode-Locking:
Homogeneous Line

According to the discussion presented in Sect. 8.6.3, a theory of mode-locking can be
developed, in the time domain, by requiring that the pulse reproduce itself after each cav-
ity round trip. We will limit our discussion here to the case of a homogeneous line and we will
further assume that the lifetime of the upper laser level is much longer than the cavity round-
trip time. Under these conditions, the saturated single-pass power gain of the amplifier, at the
transition peak, is given by g0 D �pN0l, where �p is the peak cross-section, l is the length of
the active medium and N0 is the steady-state inversion, as established by the cumulative effect
of the passage of many pulses. This means that this saturated gain will be determined by the
average intracavity beam intensity<I> and can thus be related to the unsaturated gain, g, by

g0 D g

1 C .< I > =Is/
(F.1)

where Is D h�0=�p� is the saturation intensity of the amplifier, at the transition peak.

F.1. ACTIVE MODE-LOCKING

This theory was developed by Kuizenga and Siegman.1/ and, later on, put in a more
general framework by Haus [2,3]. We will follow the latter treatment and for brevity we will
limit our considerations to mode-locking by an amplitude modulator. Thus, we consider the
laser configuration of Fig. F1 and assume that the modulator is very thin and placed as near
as possible to mirror 2. Under these conditions, a single light pulse is expected to be traveling
back and forth within the cavity (see Fig. 8.19). At any given position within the cavity, the
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FIG. F.1. Schematic diagram of the laser cavity considered for the theoretical analysis of mode-locking.

electric field of this pulse can be written as

E.t/ D A.t/ exp j.!0t � �/ (F.1.1)

where t represents a suitable local time to account for pulse propagation. The spectral
amplitude A!.!�!0/ of the pulse is then obtained by taking the Fourier transform of E.t/ i.e.,

A!.! � !0/ D
C1Z

�1
E.t/ exp.�j!t/dt D

C1Z
�1

A.t/ expŒ�j.! � !0/t�dt (F.1.2)

The field amplitude A.t/ is then related to A!.! � !0/ by the inverse Fourier transform

A.t/ D
C1Z

�1
A!.! � !0/ expŒj.! � !0/t� d.! � !0/ (F.1.3)

We first consider the passage of the light pulse through the amplifier. If we let A1! and
A2! represent the spectral amplitude of the light pulse before and after a single passage (see
Fig. F1), we can write A2! D tgA1! , where the single-pass electric-field transmission, tg,
through the amplifier can be shown to be given by.4/

tg D A2!

A1!

D Œexp �j.! nl=c/� � exp



.g0=2/

Œ1 C 2j.! � !0/=	!0�

�
(F.1.4)

where n is the refractive index of the active medium and 	!0 is the width (FWHM) of the
laser line. Note that, according to Eq. (F.1.4), the power gain is given by

G.!/ D jtgj2 D exp g0.!/ (F.1.5)

where the frequency dependent gain g0.!/ is given by

g0.!/ D g0n
1 C Œ2.! � !0/=	!0�

2
o (F.1.6)
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i.e., it shows the expected Lorentzian shape of a homogeneous line. If we assume that the
spectral width of the light pulse is appreciably narrower than 	!0, the expression appearing
as the argument of the second exponential function in Eq. (F.1.4) can be expanded as a power
series in .! � !0/. To first order, this gives

tg D exp �j f.! nl=c/C Œg0.! � !0/=	!0�g �
� exp.g0=2/

˚
1 � Œ2.! � !0/=	!0�

2
� (F.1.7)

The imaginary terms in the first exponential function correspond to a phase delay
� D .!nl=c/ C Œg0.! � !0/=	!0�, from which, according to Eq. (8.6.27), the time delay,
�d, experienced by the pulse after traveling in the active medium is obtained as

�d D d�

d!
D nl

c
C g0

	!0
(F.1.8)

Note that this delay is not simply nl=c because the gain line gives an additional finite
contribution. This delay should be taken into account when considering the requirement that
the round-trip pulse propagation time be set equal to the period of the amplitude modulator.
For simplicity we will not consider any further the effect of this delay as well as that of all
other cavity elements, the pulse amplitude being referred, in any case, to a local time where
these delays are taken into account. We therefore ignore the phase term in Eq. (F.1.7) and write

tg D exp
˚
.g0=2/

˚
1 � Œ2.! � !0/=	!0�

2
��

(F.1.9)

We also ignore the loss introduced by mirror 1, since this will be taken into account
in the overall cavity loss. After passing once more through the active medium, the
spectral amplitude of the light pulse will experience another transmission factor ta as
given by Eq. (F.1.9). The round trip transmission through the amplifier is then given by
t2
g D .A3!=A1!/ D exp

˚
g0
˚
1 � Œ2.! � !0/=	!0�

2
��

, where A3! is the spectral amplitude of
the light pulse after one round trip through the amplifier. Under the assumption g0 � 1, this
last equation gives

A3! D t2
gA1! D A1!



1 C g0

˚
1 � Œ2.! � !0/=	!0�

2�� (F.1.10)

To proceed further we need to calculate the effect of this transmission in the time-domain
rather than in the frequency-domain. For this we note the following property of a Fourier
transform .F.T./:

F.T.

�
dnA.t/

dtn

�
D Œj.! � !0/�

n A!.! � !0/ (F.1.11)

This relation can be readily proved by taking first the n-th derivative and then the Fourier
transform of both sides of Eq. (F.1.3). Equation (F.1.11) shows that the multiplication of the
spectral amplitude A! by k.! �!0/

n, where k is a constant, is equivalent, in the time domain,
of taking .k=jn/ times the n-th derivative of the amplitude A.t/. We can apply this rule to each
individual term on the right hand side of Eq. (F.1.10) to obtain

A3.t/ D
(

1 C g0

"
1 C

�
2

	!0

�2 d2

dt2

#)
A1.t/ (F.1.12)
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where A1.t/ and A3.t/ are, respectively, the amplitudes of the light pulse entering the amplifier
and after one round trip (see Fig. F1). Equation (F.1.12) shows that the effect on the light pulse
amplitude of a round trip passage through the gain medium, can be described by a round-trip
operator

OTg D
(

1 C g0

"
1 C

�
2

	!0

�2 d2

dt2

#)
(F.1.13)

We next consider the effect of cavity losses arising from finite mirror reflectivities and
internal losses. These losses are represented by the central box in Fig. F1. If we then let � be
the logarithmic power loss per pass, we can write, for a single passage in the cavity,

A4.t/ D Œexp.��=2/�A3.t/ (F.1.14)

In fact, according to Eq. (F.1.14), the ratio of corresponding intensities .I4=I3/ D
.A4=A3/

2 indeed shows the expected value exp.��/. From Eq. (F.1.14) one finds that the
transmission accounting for the round trip losses is given by exp.��/ and this expression, for
� � 1, can be approximated by 1 � � . This means that the operator corresponding to the
round trip loss in the cavity is simply

OTl D 1 � � (F.1.15)

Lastly, we consider the effect of the amplitude modulator. We let �mŒ1 � cos!mt�, rep-
resent the single-pass logarithmic power-loss introduced by the modulator. In this expression
!m is the modulator frequency which is assumed to be such that the modulator period is equal
to the round trip time of the light pulse in the laser cavity. The single pass transmission of the
field amplitude through the modulator will then be given by

tm D exp f � .�m=2/Œ1 � cos!mt�g (F.1.16)

The transmission for a double pass through the modulator is then t2
m D exp f � .�m/

Œ1 � cos!mt�g and this expression, for �m � 1, can be approximated to t2
m Š 1 � .�m/

Œ1�cos!mt�. We now assume that the pulse passes through the modulator when the modulator-
loss is zero (see Fig. 8.20), i.e. at time t D 0, and that the pulsewidth is much smaller that the
modulator period 2
=!m. Under these conditions, the round trip transmission can be further
approximated to t2

m D 1 � .�m=2/.!mt/2. The operator corresponding to a double-passage of
the pulse through the modulator is then simply given by

OTm D 1 � �m

2
.!mt/2 (F.1.17)

Having established the operators which describe the time-domain evolution of the pulse
upon a double passage through the three components considered, we now require that, in the
steady state regime, the pulse amplitude A.t/ reproduces itself after a round trip. We thus write

OTm OTl OTg A.t/ D A.t/ (F.1.18)
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Using the previous expressions for OTm, OTl, and OTg and again using the condition that
Œg0, � , �m� � 1 we obtain the following differential equation

(
g0

"
1 C

�
2

	!0

�2 d2

dt2

#
� � � �m

2
!2

m t2

)
A.t/ D 0 (F.1.19)

which is the final result of our calculation. This equation is readily seen to be equivalent to
the Schrödinger equation for a particle in a parabolic potential (harmonic oscillator), whose
solution is well known. The solution, in our case, can then be written as

A.t/ D Hn.!pt/ exp �
 
!2

p t2

2

!
(F.1.20)

where Hn is the Hermite polynomial of order n, and where

!p D
�
�m

2g0

� 1=4 �
!m	!0

2

� 1=2

(F.1.21)

and

1 � �

g0
D 4!2

p

	!2
0

.2n C 1/ (F.1.22)

It can also be shown, however, that, out of all these solutions, only the first order
Gaussian solution .n D 0/ is stable.

Equations (F.1.21) and (F.1.22) represent a set of two relations for the unknown param-
eters !p and g0. From a knowledge of !p one then gets the width of the mode-locked
pulse. The full width at half maximum intensity of the pulse, 	�p, is in fact given by
	�p D 2 Œln 2�1=2 =!p and from Eq. (F.1.21) one gets

	�p D
"

2
p

2 ln 2


2

# 1=2 �
g0

�m

� 1=4 � 1

�m	�0

� 1=2

(F.1.23)

where �m D !m=2
 and 	�0 D 	!0=2
 . We note that the first factor on the right hand side
of Eq. (F.1.23) is approximately equal to 0.45 while the second factor, as a result of the 1/4th
power, is approximately equal to unity. The values of	�p and, hence, !p are then only weakly
dependent on g0 and from Eq. (F.1.23) one obtains the following approximate expression for
	�p [see Eq. (8.6.19)]:	�p Š 0.45=.�m	�0/

1=2. From Eq. (F.1.22), with n D 0, the value of
g0 can now be obtained. Note that, according to Eq. (F.1.22), g0 turns out to be larger than
� on account of the presence of the modulator loss. Once the value of g0 is calculated, the
average intracavity laser intensity,< I >, is obtained from (F.1) since one has g D �pNl D x�
where x D N=Nc D Rp=Rpc is the amount by which threshold is exceeded. Knowing the
average intracavity laser intensity, the laser pulse duration and the pulse repetition rate, one
then obtains the laser peak intensity.
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F.2. PASSIVE MODE-LOCKING

We will consider the theory of passive mode-locking by a saturable absorber with a
lifetime much shorter than the pulse duration (fast saturable absorber)..5/ We will again refer
to Fig. F1, where the modulator is now replaced by this fast absorber.

According to Eq. (F.1.13), the effect on the pulse amplitude due to a round-trip passage
through the gain medium can be described by the operator

OTg D
(

1 C g0
0

"
1 C

�
2

	!0

�2 d2

dt2

#)
(F.2.1)

where, to conform with the discussion presented in Sect. 8.6.3.2., the saturated gain has been
denoted by g0

0. According to Eq. (F.1.15), the effect of the unsaturable cavity losses, can be
described by

OTl D 1 � �c (F.2.2)

where �c is the cavity loss without the saturable absorber. According to Eq. (F.1.14), the
single-pass amplitude-transmission of the saturable absorber is then written as

tsa D exp �.�sa=2/ (F.2.3)

In the previous expression �sa represents the, saturated, single-pass power-loss of the
absorber and is given by

�sa D � 0

1 C .I=Is/
(F.2.4)

where � 0 is the unsaturated loss, I D I.t/ is the pulse intensity, and Is is the saturation inten-
sity of the absorber. The amplitude-transmission for a double passage through the saturable
absorber is then given by t2

sa D exp �.�sa/ and, under the assumptions � 0 � 1 and .I=Is/ � 1,
this last equation, with the help of Eq. (F.2.4) gives t2

sa Š 1 � �sa Š 1 � � 0Œ1 � .I=Is/� D
1�� 0Œ1�.jAj2=Is/�, where the amplitude A.t/ is now normalized so that jAj2 is the beam inten-
sity. From the previous expression for t2

sa we obtain the operator corresponding to a double
pass through the saturable absorber as

OTsa D 1 � � 0 C � 0 jAj2

Is
(F.2.5)

Self-consistency now requires that

OTm OTl OTsaA.t/ D A.t/ (F.2.6)

From Eqs. (F.2.1), (F.2.2) and (F.2.5), again assuming Œg0
0, � , � 0� � 1, we get

(
g0

0

"
1 C

�
2

	!0

�2 d2

dt2

#
� �c � � 0 C � 0 jAj2

Is

)
A.t/ D 0 (F.2.7)
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The solution of Eq. (F.2.7) can be written as

A.t/ D A0

cosh .t=�p/
(F.2.8)

where

�p D
�

2g0
0

� 0

� 1=2 � 2

	!0

� �
Is

jA0j2

� 1=2

(F.2.9)

and

�c C � 0 � g0
0 D 4g0

0

	!2
0�

2
p

(F.2.10)

Since the width of the pulse intensity, 	�p, (FWHM) is given by 	�p D 1.76 �p and
	!0 D 2
	�0, from Eq. (F.2.9) one obtains Eq. (8.6.22) by recognizing that jA0j2 is the
peak laser intensity. Equation (F.2.10), on the other hand, shows that g0

0 < �c C� 0 D � , where
� is the overall unsaturated loss of the cavity. This means that, in the absence of the pulse, the
laser has a net loss while a net gain only exists during the passage of the mode-locked pulse
(see Fig. 8.22).
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G

Propagation of a Laser Pulse Through
a Dispersive Medium or a Gain
Medium

Consider first a light pulse traveling in a dispersive medium, and let !L and 	!L be, respec-
tively, the center frequency and the width of the corresponding spectrum (Fig. 8.25a). The
electric field, E.t, z/, of the corresponding waveform, at coordinate z along the propagation
direction, can generally be expressed in terms of a Fourier expansion as

E.t, z/ D
C1Z

�1
A!.! � !L/ expŒj.!t � ˇz/�d! (G.1)

where A! D A!.! � !L/ is the complex amplitude of each field component and ˇ D ˇ.!�
!L/ describes the dispersion relation of the medium.

Let us now assume that the dispersion relation of the medium, over the bandwidth	!L,
can be approximated by a linear relation, i.e.,

ˇ D ˇL C
�

dˇ

d!

�
!L

.! � !L/ (G.2)

where ˇL is the propagation constant corresponding to the frequency !L. On substituting
Eq. (G.2) in Eq. (G.1) one can see that this last equation can be written as

E.t, z/ D expŒj.!Lt � ˇLz/� �
C1Z

�1
A!.	!/ exp

(
j	!

"
t �

�
dˇ

d!

�
!L

z

#)
d	! (G.3)

where 	! D ! � !L. From Eq. (G.3) we can now see that the integration over 	! leads
to a function of the single variable Œt � .dˇ=d!/!L z�. Equation (G.3) can therefore be put in
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the form

E.t, z/ D AŒt � .z=�g/� expŒj.!Lt � ˇLz/� (G.4)

where A is the pulse amplitude, expŒj.!Lt � ˇLz/� is the carrier wave, and �g is given by

�g D
�

d!

dˇ

�
ˇDˇL

(G.5)

The fact that the pulse amplitude is a function of the variable t � .z=�g/ means that the pulse
propagates without changing its shape and at a speed �g. This velocity is called the group
velocity of the pulse and, according to Eq. (G.5), is given by the slope of the ! vs ˇ relation
at ! D !L (i.e. �g D tan 
 0, see Fig. 8.25a).

Consider next the case of a light pulse with a bandwidth	!L so large that it is no longer
a good approximation to describe the dispersion relation by a linear law (Fig. 8.25c). In this
case, different spectral regions of the pulse will travel with different group velocities and,
consequently, the pulse will broaden as it propagates. After traversing the length l of the
medium, the broadening of the pulse,	�d, will then be given approximately by the difference
in group delay between the slowest and the fastest spectral components, respectively. We can
then write

	�d D
 

l

� 0
g

� l

� 00
g

!
D l

��
dˇ

d!

�
!0

�
�

dˇ

d!

�
!00

�
(G.6)

where � 0
g and � 00

g are the two group velocities of these components and !0 and !00 are the cor-
responding frequencies. Let us now assume that the dispersion relation, within the bandwidth
	!L, can be approximated by a parabolic (or quadratic) law, i.e.,

ˇ D ˇL C
�

dˇ

d!

�
!L

.! � !L/C 1

2

�
d2ˇ

d!2

�
!L

.! � !L/
2 (G.7)

From Eqs. (G.6) and (G.7) one gets

	�d Š l

ˇ̌
ˇ̌� d2ˇ

d!2

�
!L

ˇ̌
ˇ̌ 	!L D j�00.!L/j 	!L (G.8)

where we have defined � D ˇl, �00 D d2�=d!2 and �00 is taken at the central laser fre-
quency !L. Given the form of Eq. (G.8), the quantity �00.!L/, is referred to as the group delay
dispersion (GDD) while the quantity

.d2ˇ=d!2/!L D GVD D Œd.1=�g/=d!�!L (G.9)

is referred to as the group velocity dispersion (GVD) at frequency !L.
The calculation leading to Eq. (G.8) is open to criticism because, to obtain Eq. (G.8),

we have in fact been considering the propagation of limited spectral components of the pulse,
each of which actually correspond to a different, and in fact, longer pulse than the original



Appendix G 585

one. A more precise and instructive calculation can be performed by assuming that the pulse,
upon entering the medium at coordinate z D 0, has a Gaussian amplitude profile i.e.,

E.t/ D A0 exp � 
t2=2�2
p

�
exp.j!Lt/ (G.10)

where �p is the 1/e half-width of the pulse intensity. Since the spectral amplitude, A!.!�!L/,
is a Gaussian function of .! � !L/, the electric field after a distance z in the medium can be
easily calculated from Eq. (G.1) if we assume that the dispersion relation can be developed in
a Taylor expansion up to second order of .!�!L/, as shown in Eq. (G.7). In this case, in fact,
the integrand in Eq. (G.1) can be readily expressed in terms of the inverse Fourier transform
of a generalized Gaussian function of complex argument, whose integral is well known. To
show the final result for the pulse amplitude, A(t, z), we refer to a new coordinate system
given by

t0 D t � .z=�g/ (G.11a)

z0 D z (G.11b)

�g being the group velocity. This means that the pulse amplitude is referred to a local time
which takes into account the group delay of the pulse. Using this new coordinate system, the
pulse amplitude turns out to be given by.1/

A.t0, z/ D A 0�p

�2

p C jb2z
�1=2

exp �
"

.t0/2

2


�2

p C jb2z
�
#

(G.12)

where, for simplicity, we have written b2 D .d2ˇ=d!2/!L D GVD, and where, on account of
Eq. (G.11b), we have written, again for simplicity, z0 D z. According to Eq. (G.12), A.t0, z/
then turns out to be given by a Gaussian function of t0 with complex argument so that we
can write

A.t0, z/ D jA.t0, z/j exp �j'.t0, z/ (G.13)

From Eq. (G.12), the pulse magnitude jA.t0, z/j can be readily calculated as

jA.t0, z/j D A0�p

Œ�4
p C b2

2z2�1=4
exp �

"
t02�2

p

2.�4
p C b2

2z2/

#
(G.14)

Equation (G.14) shows that the Gaussian pulse maintains its shape on propagation and com-
parison with Eq. (G.10) shows that the width of the pulse at coordinate z, �p.z/, is such that
�2

p .z/ D 

�4

p C b2
2z2
�
=�2

p . This expression can then be transformed to

�p.z/ D �p

"
1 C

�
z

LD

�2
#1=2

(G.15)

where LD D �2
p =jb2j is called the dispersion length of the pulse in the medium. Note from

Eq. (G.15) the analogy of time-broadening of a Gaussian pulse in a dispersive medium and
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spot-size increase of a Gaussian-beam due to diffraction [compare with Eq. (4.7.17a)], the
dispersive length, in the former case, being the equivalent of the Rayleigh range in the latter
case. This analogy can be traced back to a formal analogy between the diffraction equation,
in the paraxial approximation, and the differential equation describing pulse propagation in a
quadratic dispersive medium..1/

From Eq. (G.12), the phase, '.t0, z/, can also be readily calculated as

'.t0, z/ D � sgn.b2/.z=LD/

1 C .z=LD/2
t02

�2
p

C 1

2
tan�1

�
z

LD

�
(G.16)

where sgn.b2/ stands for the sign of b2 i.e., of GVD. Equation (G.16) shows that, '.t0, z/
contains, besides the constant term .1=2/ tan�1.z=LD/, another term which is quadratic in t0.
This means that the instantaneous frequency of the pulse, !.t0/ D @Œ.!Lt0/ � '.t0, z/�=@t0,
given by

! D !L C sgn.b2/
.z=LD/

1 C .z=LD/2
2t0

�2
p

(G.17)

now has a term which changes linearly with time. Thus the pulse acquires a linear frequency
chirp whose sign depends on the sign of b2. In particular, the instantaneous frequency will
decrease in time for a negative GVD.

If the length l of the medium is much smaller than the dispersion length, LD, the relative
pulse broadening, .ı�p=�p/D D Œ�p.l/� �p�=�p, can be readily obtained from Eq. (G.15), as

�
ı�p

�p

�
D

Š 1

2

�
l

LD

�2

D 1

2

 
�00

�2
p

!2

(G.18)

where �00 D �00.!L/ D Œd2�=d!2�!L . The width of a Gaussian pulse intensity (FWHM) is
then related to the quantity �p appearing in Eq. (G.10) by	�p D 2.ln 2/1=2�p. From Eq. (G.18)
we then obtain �

ı�p

�p

�
D

D .8 ln2 2/
�002

	�4
p

(G.19)

Let us now consider a Gaussian pulse, as in Eq. (G.10), entering a homogeneously broadened
gain medium. The spectral amplitude of the pulse A!.! �!0/, while entering the medium, is
obtained by taking the inverse Fourier transform of Eq. (G.10) and it is readily shown to be
given by

A!.! � !L/ / exp �
"
.! � !L/

2�2
p

2

#
(G.20)

where !L is the central laser frequency. If the spectral width of the pulse is much smaller
than the gain linewidth, the gain for the electric field amplitude can be approximated as (see
Appendix F)

Ge.! � !0/ D exp
n�g0

2

� ˚
1 � Œ2.! � !0/=�!0�

2�o (G.21)
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where g0 D N0� l is the saturated single pass power gain through the amplifier and	!0 is the
linewidth of the transition. The spectral amplitude of the pulse, after passing through the gain
medium, is then given by

Ag!.! � !0/ D Ge.! � !0/ � A!.! � !L/ (G.22)

From Eq. (G.22) with the help of Eqs. (G.20) and (G.21) and assuming !L D !0, we obtain

Ag!.! � !0/ / exp �
(
.! � !0/

2

"
�2

p

2
C g0

2

�
2

	!0

�2
#)

(G.23)

Equation (G.23) shows that, within the approximation made, the spectrum remains Gaus-
sian after the pulse has traversed the gain medium. A comparison of Eq. (G.23) with
Eq. (G.20) then indicates that the pulse duration has been broadened to a value � 0

p where
� 02

p =2 corresponds to the term appearing in the square brackets of Eq. (G.23). We thus get

� 0
p D �p

"
1 C g0

�
2

�p	!0

�2
#1=2

(G.24)

For small changes of pulse duration, the relative pulse broadening, .ı�p=�p/g D 

� 0

p � �p
�
=�p,

after the gain medium, is obtained from Eq. (G.24) as

�
ı�p

�p

�
g

D 1

2

�
2

�p	!0

�2

g0 (G.25)

Equation (G.25) can be readily recast in terms of the gain linewidth	�0 D 	!0=2
 and laser
pulsewidth	�p D 2.ln 2/1=2�p. We obtain

�
ı�p

�p

�
g

D
�

2 ln 2


2

�  
1

	�2
p	�

2
0

!
g0 (G.26)
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Higher-Order Coherence

The degree of coherence � .1/ introduced in Sect. 11.3 involves the first order correlation
function < E.x1/E�.x2/ >, see Eq. (11.3.7), where, as a short-hand notation, the symbol
xi D .ri, ti/ has been used to denote both space and time coordinates of the field. Likewise
we can define

� .n/.x1, x2, : : :, x2n/ D hE.x1/: : :E.xn/E
�.xnC1/: : :E

�.x2n/i (H.1)

which involves the product of 2n terms, these being the functions E evaluated at the 2n
space-time points x1, x2, : : : , x2n. The corresponding normalized quantity, � .n/, can then be
defined as

� .n/.x1, x2, : : :, x2n/ D hE.x1/ : : :E.xn/E�.xnC1/ : : :E�.x2n/i
2nQ
1

rhE.xr/E�.xr/i1=2

(H.2)

where
Q

is the symbol for product. Obviously these expression reduce to Eqs. (11.3.7) and
(11.3.8) for the case n D 1.

In terms of these higher-order correlation functions, we need now to define what we
mean by a completely coherent beam. Thus, we begin by noting that, if a wave is perfectly
coherent to first order (i.e., if � .1/ .x1, x2/ D 1), then one must have

� .1/.x1, x2/ D E.x1/ E�.x2/ (H.3)

i.e., � .1/ must factorize into a product of the fields at x1 and x2. Indeed, if field fluctuations
are completely absent, the ensemble averages of e.g., Eq. (11.3.7) or (11.3.8) simply reduce
to the product of the corresponding signals. By analogy one can define a perfectly coherent
e.m. wave as one for which � .n/ factorizes to all orders n. This means that

� .n/.x1, x2, : : :, x2n/ D
nY
1

r E.xr/

2nY
nC1

k E�.xk/ (H.4)
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Indeed, when field fluctuations are completely absent, the ensemble average of Eq. (H.1) will
again be simply the product of the corresponding fields. If now Eq. (H.4) is substituted in the
numerator of the right hand-side of Eq. (H.2), one readily finds that

� .n/.x1, x2, : : : , x2n/ D 1 (H.5)

for all orders n. It should be noted that the field of a cw laser oscillating in a single mode with
narrow linewidth can be considered, for all practical purposes, to satisfy condition Eq. (H.4)
to all orders. In fact, as discussed in Sect. 11.7, this field can be considered as showing only
phase fluctuations. For a narrow linewidth laser the rate of change of this phase is rather
slow, however. For example, in the case of the He–Ne laser considered in Sect. 11.8, having
a bandwidth of �vL Š 1 kHz, the phase change will occur in �co Š 1=�vL D 1 ms. This
means that, for time intervals much smaller that �co i.e., for separations between the equiphase
surfaces of the 2n space-time points much smaller than c�co D 300 km, phase fluctuations will
be the same for all 2n space-time points and one readily gets Eqs. (H.4) and (H.5).

The difference, to the n-th order, between a completely coherent beam, e.g., the single-
mode He–Ne laser just considered, and a thermal light source, is easily illustrated in the case
x1 D x2 D : : : D x2n D x, i.e., by considering field correlations at the same point and at the
same time. The correlation function � .n/.x, x, : : : , x/ can then be obtained from Eq. (H.1) as

� .n/ D hjEj2ni D
RR

A2npE. QE/A dA d�RR
pE. QE/A dA d�

(H.6)

where the field amplitude A D A.x/ is given by Eq. (11.1.1) and pE. QE/ is the probability
density introduced in Sect. 11.7. In particular, for n D 1, one has

� .1/.x, x/ D hjEj2i D hIi D
RR

A2pE. QE/A dA d�RR
pE. QE/A dA d�

(H.7)

In the case of a coherent field one can use the expression Eq. (11.7.2) for pE. QE/. From
Eq. (H.6) we then get � .n/ D A2n

0 while from Eq. (H.7) we get � .1/ D A2
0 so that one

can write

� .n/.x, x, : : :, x/ D Œ� .1/.x, x/�n (H.8)

In the case of a thermal light source, on the other hand, Eqs. (H.6) and (H.7), with the help of
Eq. (11.7.3) for pE. QE/, give

� .n/.x, x, : : :, x/ D nŠŒ� .1/.x, x/�n (H.9)

To obtain the normalized n-th order coherence function � .n/ using Eq. (H.2), we just note that
the denominator of the fractional expression on the right-hand side of this equation is, in any
case, equal to Œ� .1/ .x, x/�n. From Eqs. (H.8) and (H.9) one then obtains

� .n/.x, x, : : :, x/ D 1 (H.10)
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and

� .n/ D nŠ (H.11)

for the single-mode laser source and for the thermal source, respectively. Equation (H.10)
obviously shows that the laser beam satisfies the general coherent condition Eq. (H.5). Equa-
tion (H.11) then shows that a thermal source can satisfy the coherence condition only for
n D 1, i.e., only to first order. It follows that one can, at best, arrange for a thermal light
source to have perfect, first-order, coherence i.e., perfect spatial and temporal coherence, as
indeed discussed in Sect. 11.8.



I

Physical Constants and Useful
Conversion Factors

Physical constant Value Units

Planck constant .h/ 6.6260755.40/� 10�34 J � s
.„ D h=2π/ 1.05457266.63/� 10�34 J � s
Electronic charge .e/ 1.60217733.49/� 10�19 C
Electron rest mass .me/ 9.1093897 � 10�31 kg
Proton rest mass .mp/ 1.6726231.10/� 10�27 kg
Neutron rest mass .mn/ 1.6749286.10/� 10�27 kg
Velocity of light in vacuum .c/ 2.99792458 � 108 m/s
Boltzmann constant .k/ 1.380658.12/� 10�23 J � K�1

Bohr magneton .ˇ/ 9.2740154.30/� 10�24 A � m2

Permittivity of vacuum ."0/ 8.854187817 : : :� 10�12 F/m
Permeability of vacuum .�0/ 4π � 10�7 H/m
Avogadro’s constant .NA/ 6.0221367.36/� 1023 mol�1

Ideal-gas constant .R D NA � k/ 8.31451 J � K�1 � mol�1

Radius of first Bohr orbit Œao

D .4π2"0=me2/�

0.529177249.24/� 10�10 m

Stefan-Boltzmann constant .�SB/ 5.67051.19/� 10�8 W � m�2 � K�4

Free-space impedance .Z D 1="0c/ 376.73 : : : �

Ratio of the mass of the proton to the
mass of the electron .mp=me/

1836.152 : : :
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Physical constant Value Units

Energy corresponding to 1 eV 1.602 : : :� 10�19 J
Energy of a photon with wavelenght
� D 1 μm

1.986 : : :� 10�19 J

Wavenumbers corresponding to an
energy spacing of kT.T D 300 K/
. Q� D kT=hc/

208.512 : : : cm�1

Atmospheric pressure .1 atm
D 760 torr D 1.013 : : : bar/

1.013 : : :� 105 Pa



Answers to Selected Problems

Chapter 1

1.1. Far infrared: 1 mm – 50�m. Medium infrared: 50 � 2.5�m. Near infrared: 2.5�m � 750 nm.
Visible: 750 � 380 nm. Ultraviolet: 380 � 180 nm. Vacuum ultraviolet: 180 � 40 nm. Soft x-ray:
40 � 1 nm. X-ray: 1 � 0.01 nm.

1.4. For g1 D g2 one gets from Eq. (1.2.2) E2 � E1 D kT D 208.5 cm�1 so that � D .1=208.5/ cm
Š 48�m, falling in the medium infrared.

1.5. �1 D 1, �2 D � ln R2 Š 0.693, �i Š 0.01, � D �i C .�1 C �2/=2 Š 0.357, Nc D �=� l
Š 1.7 � 1017 cm�3.

1.6. Dm Š .2�=D/L Š 533 m, where Dm is the beam diameter on the moon, D is the telescope aper-
ture, and L is the distance between earth and moon. The first earth-moon ranging experiment was
achieved under these conditions, using a Q-switched ruby-laser. Owing to the large beam diameter
on the moon and to the surface variations over this diameter, the precision of this ranging exper-
iment was rather limited .�1 m/. Using special mirrors, as beam reflectors, placed on the moon
surface by visiting astronauts, the earth-moon distance can now be measured with an accuracy of
roughly a few mm.

Chapter 2

2.1. N.	�/ D 8πV 	�=�4 Š 1.9 � 1012 modes !

2.2. �� D �� jd�=d�j D 

cn=�

2
�
�� where the relation �� D cn (cn being the light velocity in the

medium filling the black-body cavity) has been used. From Eq. (2.2.22) with the substitution
� D cn=� one then obtains

�� D 8
cnh

�5

1

exp.hcn = �kT/ � 1

2.3. By imposing the condition .d��=d�/ D 0 and using the expression for �� given in the answer of
Problem 2.2, one gets the equation 5 � Œexp.hcn=�kT/� 1�� .hcn=�kT/ exp.hcn=�kT/ D 0. If one
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writes y D .hcn=�kT/ in the previous expression one sees that the value of y corresponding to the
peak of �� must satisfy the equation 5 � Œ1 � exp.yM/� D yM . The solution of this equation can be
obtained, by a fast converging iterative procedure, as yM Š 4.965. For cn D c, c being the light
velocity in vacuum, the wavelength, �M, at which the maximum value of �� occurs, must then
satisfy the relation (Wien’s law): �MT D hcn=yMk Š 2.3 � 10�3 m � K.

2.6. The density of the Nd3C ions, N, expressed in ions=cm3, and hence the Nd3C concentration in
the 4I9=2 manifold is given by N D 1 � 10�2 3.�=M.W./NA where � is the density, expressed

in g=cm3, M.W. is the molecular weight of YAG, and NA is Avogadro’s number. The factor 3
in the previous expression accounts for the presence of three yttrium atoms per molecule. Since
the YAG molecular weight is 594 g/mol we obtain N Š 1.38 � 1020 ions=cm�3. According to
Eq. (1.2.2), the fraction, f , of this population belonging to the lowest sub-level of the 4I9=2 state
is then given by

f D 1

1 C
4P

iD1
exp �.Ei = kT/

where Ei.i D 1–4/ is the energy separation between the higher sublevels and the ground sublevel.
Given the values of Ei for these sublevels one gets f D 46%.

2.7. From Eqs. (2.4.25) and (2.3.15) one gets �in D 

�2

n=8

�
Œg.� � �0/=�sp� where �n D c=n � �0

is the wavelength, in the medium, of an e.m. wave of frequency �0. For � D �0 and for a pure
inhomogeneous broadening, using Eq. (2.4.28), we obtain the following expression for the peak
cross-section �p D 0.939



�2

n=8

� 


1=���
0 �sp

�
. For �n D 1.15�m .n Š 1/, 	��

0 D 9 � 108 Hz,
and �sp Š 10�7 s we then get �p Š 5.5 � 10�12 cm2.

2.8. Consider a plane wave, of uniform intensity I, crossing a surface, of area S, in a medium of
refractive index n. The e.m. energy flux through the surface S in a time 	t is E D IS	t and this
energy is found, uniformly distributed, in a volume V D S.c=n/ Š 	t. The energy density in the
medium is then �n.E=V/ D .n=c/I.

2.11. The answer is readily obtained following Example 2.13. One gets .˝=4π/ D .D=4l/2 Š 4.4
�10�4 and from Eq. (2.9.4a), by a fast iterative procedure, one finds G D 1.24 � 104. The thresh-
old inversion is then Nth D ln G=�pl D 4.49 � 1018 cm�3 and the maximum stored energy EM

D Nth.πD2l=4/ � h� D 1.96 J.

2.13. Under thermal equilibrium the two processes Eqs. (2.6.9) and (2.6.10) must balance each other.
Thus the relation �B�ANB� NA D �BA� NBNA� must hold. At exact resonance and again at ther-
mal equilibrium one has .NA�=NA/ D .NB�=NB/ D exp �.E=kT/ where E is the energy level
separation between either one of the two-level system. We then get �B�A D �BA� .

2.14. For a Lorentzian line one has

Is D Isof1 C Œ2.� � �0/=	�0�
2g

We then get

˛.� � �0/ D ˛0.0/

1 C Œ2.� � �0/ =	�0�
2

� 1

1 C .I = Is/
D

D ˛0.0/

1 C Œ2.� � �0/ =	�0�
2 � 1

1 C I
Iso

1
1CŒ2.���0/ = ��0�2

D
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D ˛0.0/

1 C Œ2.� � �0/ =	�0�
2 C .I = Iso/

2.15. On setting � D �o in the expression obtained in Problem 2.14, we get

˛p.0/ D ˛0.0/

1 C .I = Is0/

According to this equation, the saturation intensity, Is0, is the intensity of a resonant .� Š �o/

e.m. wave at which the peak saturated absorption coefficient, ˛p.0/, is half of the corresponding
unsaturated value, ˛0.0/. The (1/2) power points of ˛ D ˛.� � �o/, in the expression obtained in
the previous problem, occur at frequency �0 so that Œ2.�0 ��0/=	�0�

2 D 1C.I=Is0/. The saturated
linewidth (FWHM) is then readily obtained as 	�sat D 	�0Œ1 C .I=Is0/�

1=2.

Chapter 3

3.1. The center of mass is midway between the two atoms. Considering the x-axis to be along the
vibration direction with the origin at the center of mass, the restoring force on each atom is given
by F D �2k0.x � x0/, where x0 is the equilibrium coordinate of each atom. The equation of
motion can then be written as ŒMd2.x � x0/dt2� D �2k0.x � x0/ so that the resonance frequency
is ! D Œ2k0=M�1=2.

3.2. Using the result of the previous problem we obtain k0 D .2π Q� c/2 � .M=2/ D 2, 314 J � m�2 where
the atomic weight of the N atom has been taken to be Š 14. The potential energy of the system is
then given by U D k0.R�R0/

2=2, where R is the internuclear separation and R0 is the equilibrium
value. For R � R0 D 0.03 nm one obtains U Š 6.5 eV.

3.6. B D „2=2I. In this expression one has I D 2MoR2
0, where Mo is the oxygen mass and R0 is

the equilibrium distance between oxygen and carbon. For B D 0.37 cm�1 and Mo D 16 g=mol
(atomic weight) we obtain R0 D „=2 � ŒMo � B�1=2 D 0.0515 nm.

3.8. From Fig. 3.15b, for N D 1.6 � 10�18 cm�3, one gets EFc D 2.35 kT and EFv D �1.45 kT . The
overall gain bandwidth is then 	 Q� D .EFc C EFv/=hc D 0.9.kT=hc/ D 187.65 cm�1. [we recall
that .kT=hc/ D 208.5 cm�1 at T D 300 K].

3.9. E2 C E1 D 0.45 kT . From Eq. (3.2.2) we get .E2=E1/ D mv=mc D 6.865 where mv is the hole
mass and mc is the electron mass in the conduction band. From the previous two equations we get
E2 D 0.392 kT and E1 D 0.0572 kT .

3.10. From Fig. 3.16 and for E � Eg D 0.45 kT Š 12 meV we obtain ˛ D ˛0 D 1.8 � 103 cm�1. Since
the probabilities of occupation of the upper and lower laser level are given by [see Eq. (3.2.10)]

fc.E2/ D 1

1 C exp
�
.E2 � EFC / = kT

	

fv.E1/ D 1

1 C exp
�
.EFV � E1/ = kT

	

from the results of Problems 3.8 and 3.9, we obtain fc.E2/ D 0.877 and fv.E1/ D 0.8186. From
Eq. (3.2.37) we then get g D ˛0Œfc.E2/� fv.E1/� Š 104 cm�1.
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3.11. � D .dg=dN/ D Œg=.N � Ntr/� D 2.6 � 10�16 cm2, where g D 104 cm�1, N D 1.6 � 1018 cm�3

and, see Example 3.7, Ntr D 1.2 � 1018 cm�3.

3.13. From Fig. 3.26, for N D 2 � 1018 cm�3, one gets EFc � E1c Š 2.8 kT Š 72 meV and EFv�
E1v Š �1.1 kT Š �28.6 meV. Using the results of Example 3.9 for E1c and E1v one then obtains
EFc D 128.2 meV and EFv D �20.6 meV. According to Eq. (3.3.26) the gain bandwidth occurs
for E-Eg ranging between 	E1 D E1c C E1v D 64.2 meV and EFc C EFv D 107.6 meV.

Chapter 4

4.3. One has T D 1 � R � A D 5 � 10�3. From Eq. (4.5.6a) the peak transmission is obtained as
.TFP/p D ŒT=.1 � R/�2 D 25%. Note the strong reduction in peak transmission even for such a
small mirror loss. A comparison between Eqs. (4.5.6a) and (4.5.6) [with R1 D R2 D R] shows
that the expression for the finesse still remains that given by Eq. (4.5.14); thus F D πR1=2=.1�R/
Š 312.4.

4.4. From Eqs. (4.5.8) and (4.5.3), assuming normal incidence .
 D 0/ and unit refractive index
.nr D 1/, one gets L D c=2	�fsr D 5 cm. From Eq. (4.5.13) the finesse is then obtained as
F D 	�fsr=	�c D 50. From Eq. (4.5.14), with R1 D R2 D R, we readily obtain the value of
the mirror reflectivity as R Š 94%. From Eq. (4.5.6a), for a peak transmission of 50%, we then
obtain T D 4.24 � 10�2 and hence A D 1 � R � T D 1.76 � 10�2.

4.7. The wavefront radius of curvature, at the lens position, is given by [see Eq. (4.7.17b)] R D
dŒ1 C .zR=d/2�, where zR D πw2

0=� is the Rayleigh length. To compensate this curvature, the
focal length of the lens must just equal R.

4.9. From Eq. (4.7.19) one gets w0 D �=π
d Š 201�m. Assuming that the output beam forms a
waist, the peak intensity will occur at this waist position and will be given by Ip D P=



πw2

0=2
� Š

7.85 W=cm2. From Eqs. (2.4.10) and (2.4.6), the intensity of an e.m. wave is seen to be related to
the field amplitude E0 by I D nE2

0=2Z where Z D 1="oc Š 377 ohms is the impedance of free

space. For n D 1 we then get E0 D Œ2IZ�1=2 Š 77 V=cm.

4.11. From Eq. (4.7.27) one readily gets w02 D �f =D. The numerical aperture of a lens is defined
as (see Sect. 1.4.4) N.A. D sin.
/, where 
 is the half-angle of the cone formed by the
aperture D seen from the central point in the focal plane. Since tan .
/ D D=2f , one gets
w02 D �=2 tan.sin�1 N.A./. For a small numerical aperture one has w02 Š �=2N.A.

4.13. According to Eq. (4.7.4), the beam parameter q, after the plate, is related to the input beam
parameter q0 by

1

q
D C C .D = q0/

A C .B = q0/

In our case q0 D �jzR, where zR D πw2
0=� is the Rayleigh length. Using the ABCD matrix

elements of a plate of length L and refractive index n [see Table 4.1] we obtain

1

q
D �jzR

1 � j.L = nzR/

From the real and imaginary parts of the above equation, with the help of Eq. (4.7.8), one obtains

w2 D w2
0Œ1 C .L0=zR/

2�

R D L0Œ1 C .zR=L0/2�
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where L0 D L=n. This proves the statement of Problem 4.13. After the plate, the spot size at
distance z from the waist would then be equal to that which would occur, without the plate, at a
distance z0 D .z�L/C.L=n/ D z� Œ.n�1/=n�L. At large distances from the waist, i.e. for z � zR,
one then has w.z/ D .�=πw0/ � fz � Œ.n � 1/=n�Lg. The beam divergence is then 
d D w.z/=z and,
if L 	 zR, one has z � L and the beam divergence remains equal to .�=πw0/ i.e. it is unaffected
by the presence of the plate.

4.14. Equation (4.7.26) can be written as

zm D 1
1
f C f

zR1

For a given value of zR1 , the denominator of the right hand side of the above equation has a
minimum for f D zR1 . At this value of focal length, zm then reaches its maximum value given by
zm D zR1=2.

Chapter 5

5.2. wo D p
L�= 2π D 0.29 nm; ws D p

2 wo Š 0.4 mm; 	�c D c=2L D 150 MHz. Number of
modes N D 	��

o =.c=4L/ D 47, where .c=4L/ is the frequency spacing between two consecutive
non-degenerate modes of a confocal resonator (see Fig. 5.10a).

5.4. The curvature of the wavefront must coincide with that of the mirror, at the mirror’s location.
From Eq. (4.7.13b), setting z D L=2 where L is the cavity length, one then gets


w2
0

�
D L

2

�
2R

L
� 1

�1=2

The above expression gives zR D πw2
0=� Š 1.32 m and w0 Š 0.466 mm. The spot-size at the

mirror is then obtained from Eq. (4.7.13a) as w D w0Œ1 C .L=2zR/
2/�1=2 D 0.498 mm.

5.6. Since the equiphase surfaces, at the two mirror positions, must coincide with the mirror surfaces,
from Eq. (4.7.17b) one writes

�R1 D z1 C
 

z2
R

z1

!

R2 D z2 C
 

z2
R

z2

!

L D z2 � z1

where z1 and z2 are the coordinates of the mirrors as measured from the waist. Note the minus
sign in front of the term R1 in the first equation. It arises from the fact that, if e.g. mirror 1 is a
concave mirror, R1 is positive while the sign of the wavefront is negative because the center of
curvature is to the right of the wavefront. From the above three equations one can then eliminate
z2 to obtain

�R1z1 D z2
1 C z2

R

R2.L C z1/ D .L C z1/C z2
R
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From these two equations one can eliminate z2
R, to obtain z1Œ2L � R1 � R2� D L.R2 � L/. Note

that, for R1 D R2 D R, this equation gives z1 D �L=2, which shows that, in this case, the waist is
located at the cavity center. From Eq. (5.4.10) one now finds R1 D L=.1�g1/ and R2 D L=.1�g2/.
The substitution of these two expressions for R1 and R2 into the previous equation then readily
gives �z1.g1 C g2 � 2g1g2/ D g2.1 � g1/L.

5.7. We have g1 D 0.333, g2 D 0.75. From the expression for z1 obtained in the previous problem
we then find z1 D �0.857 m. From Eqs. (5.5.8) and (5.5.9) we also find w1 D 0.533 mm, w2 D
0.355 mm and w0 D 0.349 mm.

5.9. For symmetry reasons the waist must be located at a distance Lp=2 from the lens. From
Eq. (4.7.17b) one then finds that the absolute value of the wavefront’s radius of curvature, on
both sides of the lens, is given by R D .Lp=2/Œ1 C .2zR=Lp/

2�. The lens must then transform one
wavefront into the other. One must then have f D R=2. Since zR D πw2

0=�, one obtains from the

previous expressions w2
0 D .�=2π/ŒL.4f � Lp/�

1=2. Note that the previous expression gives a real
value of w2

0 only when Lp 	 4f , which represents the stability condition for our case.

5.11. One has g1 D 1 and g1 D 1 � L=.L C	/ Š 	=L. From Eq. (5.5.8b) one then has w2 D wm D
.L�=π/1=2f1=.	=L/Œ1 � .	=L/�g1=4. For wm D 0.5 mm, L D 30 cm and � D 633 nm, the above
expression gives 	 D 1.85 cm. We then have R2 D L C 	 D 31.85 cm, and g2 D 0.058, and,
from Eq. (5.5.8a), the spot size at the plane mirror is obtained as w1 Š 0.122 mm.

5.13. In this case, from Eqs. (5.5.5) and (5.4.6) the stability condition is seen to be given by �2 <

2.2A1D1 �1/ < 2 i.e. by 0 < A1D1 < 1. Since B1D1 �A1C1 D 1, one then finds �1 < B1C1 < 0.

5.17. (1) g1 D 1, g2 D 1.25; (2) from Eq. (5.6.1): r1 D 2.24 and r2 D 1.24; (3) a1 > M21a2 D 1.8 a2;
(4) M D M12M21 D 2.62, so that � D .M2�1

/=M2 D 0.85.

5.18. Positive branch confocal unstable resonator. From Fig. 5.22, for � D 0.2 and Neq D 7.5, one finds
M D 1.35. It then follows that 2a2 D 2Œ2L�Neq=.M � 1/�1=2 D 4.26. To achieve a single-ended
resonator one must have a1 > 2Ma2 D 5.75 cm. The radii of the two mirrors, on the other hand,
must be such that L D .R1 C R2/=2 and M D �R1=R2 (note that R2 < 0). We obtain R1 D 7.7 m
and R2 D �5.7 m.

5.20. (1) From Eq. (5.6.20) one gets exp �2.a=w/6 D 2�10�2 i.e. w D 2.94 mm. (2) From Eq. (5.6.21)
wm D w=.M6 � 1/1=6 D 2.32 mm. (3) � D 1 � .R0=M2/ Š 0.744. (4) Since g2 D 1, from
Eqs. (5.6.3) and (5.6.1) one gets M D g1f1 C Œ1 C .1=g1/�

1=2g2 from which one obtains g1 D
1.0285. The radius of curvature of the convex mirror is then R1 D L=.1 � g1/ Š �17.5 m.

Chapter 6

6.1. For radial propagation, the power absorbed in the laser rod can be written as Pa D s SŒ1�
exp �.2˛R/�Ie�d�, where S is the rod’s lateral surface area. Since the power entering the rod is
Pe D s SIe�d�, we obtain �a D Pa=Pe D s Œ1 � exp �.2˛R/�Ie�d�= s Ie�d�.

6.4. From Eq. (6.2.6) with h�mp Š 2.11 � 10�19 J Œ�mp D 940 nm� one readily gets Rcp Š 2.01�
1020 cm�3s�1.

6.6. The pump efficiency is, in this case, equal to �p D �t�a�pq D 5.3%. The laser of Problem 6.4,
with a pump efficiency of �0

p D 4.5%, has a threshold of P0
th D 2.36 kW. With the present pump

configuration, the threshold pump power will then be Pth D
�
�p=�

0
p

�
P0

th D 2.36 kW. To pump
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the laser 2 times above threshold we then need a pump power of Pp Š 4.72 kW. The area of the
collecting optics is then given by A D Pp=I Š 4.72 m2, where I is the solar intensity. If we let
D and l be the rod diameter and rod length respectively, the focal lengths of the two lenses must
be such that f1˛ D D and f2˛ D l, where ˛ is the angle which the sun’s disc subtends at the
earth. One gets f1 D 0.64 m and f2 D 8.05 m. A cheaper focusing scheme could be made using a
spherical mirror, with focal length f2 D 8.05 m and diameter D D .4A=π/1=2 D 2.45 m, followed
by a cylindrical lens.

6.7. Rcp D �pEth=Vh�mp	t, where 	t is the pump duration. Since h�mp D 2.11 � 10�19 J one obtains
Rcp D 5.75 � 1021 cm�3s�1. The rate equation involving pumping and spontaneous decay is
.dN2=dt/ D Rp � .N2=�/ whose solution, for Rp D const and t 
 0, is N2.t/ D Rp� Œ1�
exp �.t=�/�. Assuming � D 230�s, t D 	t D 100�s, and with the help of the previously
calculated value of Rcp, one gets the critical inversion as N2c D Rcp�Œ1 � exp �.	t=�/� D
4.66 � 1017 cm�3. If the pulse duration is increased to 	t0 D 300�s, the pump rate, R0

cp, to
achieve the same inversion must be such that R0

cpŒ1 � exp �.	t0=�/� D RcpŒ1 � exp �.	t=�/�.
One gets R0

cp Š 0.48 Rcp Š 2.78 � 1021 cm�3s�1. The new threshold pump energy is then
E0

p D 

R0

cp	t0=Rcp	t
�

Ep Š 1.44 Ep Š 4.9 J.

6.10. From Table 6.2 one gets Nt D 9 � 1020 cm�3 so that �aNtl C � D 0.169. Assuming a �80%
efficiency for the transfer optics, the pump efficiency can be taken to be �p D �t�a D �tŒ1�
exp.˛l/� D 0.424 where ˛ D 5 cm�1 is the absorption coefficient at the pump wavelength (see
Table 6.2). From Eq. (6.3.25), with wp D w0, one then readily gets Pth Š 177 mW.

6.12. For a Maxwell–Boltzmann distribution one has kTe D .2=3/


m�2

th=2
�
. Since



m�2

th=2
� D

10 eV, we then get kTe D 6.67 eV.

6.15. Using Gauss’s theorem, the radially oriented electric field, at the radial coordinate r within the
medium, can be expressed as E.r/ D Nier=2"0. By integration, the potential drop between wall
and center is readily obtained as V D NieR2=4"0 Š 4.56 � 106 V, where R is the tube radius. The
very high value of the voltage obtained shows that there is a negligible probability for electrons to
disappear at a different rate from that of the ions.

6.18. The thermal velocity is given by �th D .2E=m/1=2 D 1.87 � 108 cm=s, where m is the mass of
the electron. For an ideal gas, the molar volume is given by V D RT=p, where R D 8.314 J �
mol�1 � K�1 is the gas constant. For p D 1.3 torr Š 1.73 � 102 Pa and T D 400 K one gets V D
19.2 � 106 cm3. The atomic density in the gas is then given by N D NA=V D 3.14 � 1016 cm�3

where NA is Avogadro’s constant (see Appendix I). We then obtain the electron mean free path as
l D 1=N� D 638�m. From Eqs. (6.4.14) and (6.4.15), the drift velocity can then be obtained as
�drift D eE l=m�th Š 1.8 � 107 cm=s .�drift=�th Š 9.6 � 10�2/.

Chapter 7

7.3. Le D L C .n � 1/l D 56.15 cm, � D 0.12, �c D 15.6 ns.

7.4. The overall lifetime of the upper laser level is such that .1=�/ D .1=�21/C .1=� 0/, where .1=�21/

is the rate of the 2 ! 1 transition and .1=� 0/ is the rate of all other spontaneous transitions
originating from level 2. Since the branching ratio, ˇ, is given by ˇ D .1=�21/=.1=�/ D �=�21, we
get �21 D �=ˇ D 451�s. Below threshold, at steady state, one has .N1=�1/ D .N2=�21/, where �1
is the lifetime of the lower laser level. Thus, for .N1=N2/ < 1%, one must have �1 < 10�2 �21 Š
4.5�s. For an output power of Pout D 200 W, the rate of emission of photons from the active
medium is .d�=dt/ D Pout.2�=�2/=h� D 1.58 � 1021 photons/s. The population ending up in
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the lower laser level, per unit time, will then be dN 0=dt D .d�=dt/=Abl D 9.16 � 1020 cm�3s�1,
where Ab is the effective beam area in the rod and l is the rod length. The steady-state population
N1 is then given by N1 D �1.dN0=dt/ while the upper-state population, N2, is now equal to the
threshold population, i.e., N2 D Nc Š 5.7 � 1016 cm�3. For .N1=N2/ < 1% one must now have
�1 < 10�2 � Nc=.dN0=dt/ Š 0.6�s. (The actual lifetime �1 for Nd:YAG is � 100 ps).

7.7. The minimum threshold power is given by Pmth D Pth � �i=� D 2.75 kW where �i is the internal
loss .�i D 0.02/ and � is the total loss .� D 0.32/. At a pump power of Pp D 140 kW we then
have xm D Pp=Pmth D 50.9. From Eq. (7.5.5) one finds Sop D 6.135, so that �2op D 2Sop�i D
0.25. The corresponding optimum output power is obtained from Eq. (7.5.6) as Pop D 16.78 kW.
We have T2op D 1 � exp.��2op/ Š 0.25. Since the peak intensity in the focal plane of a lens

is proportional to .M2�1
/=M2 (see Sect. 5.6.3) the ratio between the two intensities is .Iop=I/ D

PopT2op=PT2 D 16.78 � 0.22=12 � 4.45 D 0.777.

7.8. The lens of focal length f can be divided into two, closely spaced, lenses each of focal length
2f . The radius of curvature of the wavefront at the lens position is given by R D .L=2/�
f1 C ŒzR=.L=2/�2g, with zR D 
 w2

0=�, where w0 is the spot size at each of the two mirrors.
For symmetry reasons, the wavefront between the two lenses must be plane. Thus, one must
have R D 2f D 50 cm. Using this value of R in the previous expression one finds zR D 25 cm
i.e. w0 D 290�m. The spot size at the lens position is then w D p

2w0 D 410�m.

7.10. The minimum threshold pump power for zero output coupling is P0
mth D Pth�i=� D 12.5 mW

[note that P0
mth should not be confused with Pmth given by Eq. (7.3.32)]. At Pp D 1.14 W one

has xm D 91.2. From Eq. (7.5.5) one then gets Sop D 8.54 i.e. � 0
2op D 2Sop�i D 8.5%. To

calculate the output power we note that the total loss is now given by � 0 D
�
� 0

2op=2
�

C �i D
4.75% and the amount by which threshold is exceeded is x0 D x�=� 0, where x and � are the
corresponding values obtained in Example 7.4 (x D 30 and � D 3%). We get x0 D 19 so that,

from Eq. (7.3.34), we find y0 D 15.6. The expected power is then P0
out D Pout.y0=y/

�
� 0

2op=�2

�
D

510 mW where Pout, y, and �2 are the corresponding values obtained in Example 7.4 .Pout, D
500 mW, y D 26, �2 D 5%/. We should note that, indeed, our optimization procedure has
resulted in a value of P0

out (slightly) larger than Pout.

7.12. The lens of focal length f can be divided into two, closely spaced, lenses each of focal length f 0 D
2f . The spot size between the two lenses is wa and, for symmetry reasons, the wavefront is plane.
The position of the two plane mirrors must also correspond to a beam waist. From Eq. (4.7.26)
we then find that the distance between each plane mirror and the corresponding lens f 0 is given
by zm D f 0=Œ1 C .f 0=zR/

2� where, in our case, zR D 
 w2
a=� Š 581 cm. For f 0 D 2f D 42 cm

one finds zm Š 41.8 cm. The spot size on each mirror is then obtained from Eq. (4.7.28) as
w0 D .�=πwa/f 0 Š 100�m.

7.15. One has �2 D � ln.1 � T2/ Š 5.1%. To avoid oscillation on the TEM01 mode, the required
diffraction loss per pass for this mode must be � 
 7.45%. From Fig. 5.13b and for g D 1 �
.L=R/ D 0.8 one then finds N D a2=�L 	 2, i.e. a 	 p

2�L Š 1 mm.

7.17. Nc D �=�el Š 4 � 109 ions=cm3; Rcp D Nc=� Š 8 � 1017 cm�3s�1; 	� D c=2L Š 1.5�
108 Hz; .Rp=Rcp/ D exp

h

2	�= 	��

0

�2
ln 2

i
D 1.005.

7.19. One has L D n.�=2/, where n is an integer number. According to this equation, if L is increased
by �=2, the oscillation wavelength will increase by 	� D �=n. Since �� D c we then get
	� Š �.	�=�/� D ��=n. From the relation � D n.c=2L/ we then obtain 	� Š �.c=2L/.
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7.21. Assume that a transmission peak of the FP etalon is made coincident with the central mode. The
two adjacent longitudinal modes, which are frequency spaced by 	� D c=2L, will not oscillate
if the FP transmission at these two frequencies, T.	�/, is such that T.	�/ exp.�pNl � �/ 	 1.
We obtain T.	�/ 	 0.8. From Eqs. (4.5.6) and (4.5.14), with R1 D R2 D R, one gets T.	�/ D
1=Œ1 C .2F=π/2 sin2 �� where � D 2πL0	�=c with L0 Š nrLet D 2.9 cm (Let is the thickness
and nr is the refraction index of the etalon). We get � D πL0=L D 9.1 � 10�1 rad and since
T.	�/ 	 0.8, we obtain .2F=π/2 sin2 � Š .2F=π/2�2 
 0.25, i.e. F 
 .0.5π=2�/ D 8.63.
Equation (4.5.14), for R1 D R2 D R, can then be written as .1 � R/ D πR1=2=F from which, by
an iterative procedure, one gets R Š 0.7. We must also ensure that the mode near the next peak of

the FP etalon is below threshold. This occurs if expŒ� 
2	�fsr=	�
�
0

�2 ln 2� � exp.�pNl � �/ 	 1

i.e. for


2	�fsr=	�

�
0

�2 ln 2 
 0.223, where 	�fsr Š .c=2nrLet/ is the FP free-spectral-range.

We obtain Let 
 Œln 2=0.223�1=2 c=nr	�
�
0 Š 10.4 cm which shows that the above condition is

satisfied in our case.

Chapter 8

8.2. Since k�L0 D .
=2/, one finds V D �=4n3
0r63.

8.4. From Fig. 8.14, for f � D f � D 2.3 and x D 10 kW=2.2 kW D 4.55, we obtain Ni=Np Š 1.89, so
that, from Fig. 8.11, we find �E Š 0.76. Since �2 D 0.162 and Ab D 0.23 cm2 (see Example 7.2),
from Eq. (8.4.20) one finds E Š 18 mJ which gives an average output power of < P >D Ef D
180 W, i.e., very close to the c.w. value (202 W, see Fig. 7.5). Since � D 0.12 (see Example 7.2)
and Le D L.n � 1/l Š 56 cm (where n D 1.8 is the refractive index of the YAG crystal), we get
�c D Le=c� D 15.6 ns and, from Eq. (8.4.21), 	�p Š 90 ns.

8.7. (1) Since tp is much shorter than the upper state lifetime, one has .dN=dt/ D Rp i.e. N D Rpt.
Since Rptp D 4Nth, where Nth is the threshold inversion, the time at which threshold is reached
is tth D tp=4. (2) The time behavior of the net gain is then given by gnet D �.N � Nth/l D
.4�Nthl/.t � tth/=tp where tth D tp=4. (3) Neglecting saturation, one has .d�=dt/ D gnet�=tT ,
where tT is the transit time. Using the expression for net gain just derived, we find, by integration,
�.t0/ D �i expŒ.4�Nthl/ � .t02=2tptT /� where t0 D t � tth and �i Š 1. (4) At the end of the
pump pulse one has t0 D 3tp=4 and, from the above expression for �.t0/ one gets .9�Nthl=8/ �
.tp=tT / D ln.�p=20/ where �p is given by Eq. (8.4.14). Using this last expression one finds
tp D tT.8=9�/ ln.�p=20/, where � D .� ln T2/=2 D 0.35. To calculate �p from Eq. (8.4.14)
one notes that Ni=Np D 4 and VaNp D �A=� where A is the beam area. Thus one finds that
�p D 5.54 � 1010 and, since tT D 22.7 ps, it follows tp D 1.25 ns.

8.12. Equation (8.6.14) can be expressed more conveniently as E.t/ / exp .�� t2/ exp.j!0t/ where
� D ˛ � jˇ, i.e. it can be transformed into a Gaussian pulse with a complex Gaussian parameter
� . Its Fourier transform can then be written as E.! �!0/ / exp �.! �!0/

2=4� D exp �fŒ.!�
!0/

2=4.˛2 C ˇ2/� � .˛ C jˇ/g. The power spectrum will then be jE.! � !0/j2 / exp �Œ.!�
!0/

2˛=2.˛2 Cˇ2/�. If we now write jE.!�!0/j2 / exp � �4.! � !0/
2 ln 2=	!2

L

	
, where	!L is

the bandwidth, a comparison of the two above expressions gives 	!2
L D .8 ln 2/˛Œ1 C .ˇ2=˛2/�.

This equation, with the help of expression Eq. (8.16.15) for ˛ and using the relation 	�L D
	!L=2π, then leads to Eq. (8.6.16).

8.14. The average intensity is < I >D
1R
0

IpIdI=
1R
0

pIdI D I0, and the required probability is given by

p D
1R

2I0

pIdI=
1R
0

pIdI D exp.�2/ D 0.135.
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8.16. In our case we have 2�t D 2� � kP while, in the fast saturable absorber case, one can write
[see Eq. (8.6.20)] 2�t D 2� � 2� 0 .P=Ps/. A comparison of these two expressions shows that
k is equivalent to 2� 0=Ps. According to Eq. (8.6.22) the pulse duration can then be written as

	�p Š .0.79=	�0/


2g0

0=kPp
�1=2 where Pp is the peak power. For a hyperbolic secant function,

the peak power is related to the pulse energy by E D 1.13 Pp	�p. From the above two expressions
we get 	�p Š .0.79=	�0/

2


2g0

0=k
�
.1.13=E/ Š 3.5 fs.

8.17. From Eq. (8.6.35) with �00 D ˇ00l one gets l D .ı�p=�p/
1=2 �

�
	�2

p =ˇ
00�/2

p
2 ln 2 Š 0.46 mm,

where ˇ00 is the GVD.

Chapter 9

9.5. The emission solid angle is ˝ D πD2=4l2 Š 2.83 � 10�3 sr. Assuming a Gaussian line, from
Eq. (2.9.4b), with � Š 1, one gets G Š 1.37 � 104, i.e. Nth D ln G=�pl Š 2.38 � 1019 cm�3,
where �p Š 4 � 10�20 cm2 for Nd:glass (see Table 9.3). We then obtain E D NthVh� D 12.7 J
where V D 2.83 cm3. For Nd:YAG, at the same value of the solid angle and assuming a Lorentzian
line, we get from Eq. (2.9.4a), with � D 1, G Š 2.5 � 104 i.e. Nth D 3.61 � 1018 cm�3 so that
E Š 1.91 J.

9.7. Neglecting ground state and excited state absorption and under mode-matching conditions
.w0 Š wp/ the threshold pump power, from Eq. (6.3.20), is seen to be given by Pth D
.�=�p/.h�p=�/



πw2

0=�e
�
. We have � D .�2=2/C �i D 1.5 � 10�2, �p Š 1 � exp �.˛pl/ Š 0.86

where ˛p D 5 cm�1 is the pump absorption coefficient, h�p Š 3.1 � 10�19 J, � D 67�s, w0 D
60�m and �e D 4.8 � 10�20 cm2. We thus obtain Pth D 190 mW.

9.8. Pth D Œ.� C �a/=�p�.h�p=�/Œπ
�

w2
0 C w2

p

�
=2.�e � �ESA/�.

9.9. Pth D .�=�p/.h�p=�/Œπ
�

w2
0 C w2

p

�
=2.�e � kST�T�T/�.

9.12. �s D dP=VdI D .h�=eV/Œ� ln R=.˛L � ln R/�. For � D 850 nm, h�=e D 1.46 eV, and V D 1.8 V
one gets �s Š 64%.

9.13. One must have w2
0jj
h
1 C

�
z�=πw2

0jj
�

2
i�

D w2
0?
h
1 C 


z�=πw2
0?
�2i�

, which gives z D
πw0jjw0?=�. For the given values of w0jj, w0? and �, one obtains z D 4.6�m (note the very
short distance).

9.15. .2πn1L=�/ D 2 i.e. n1 D �=πL Š 8.22 � 10�4.

Chapter 10

10.4. If we let �.� � �0/ be the unsaturated cross section of ArC, oscillation will occur up to the n-th
mode, away from the central mode, such that �.n	�/�Nl 
 � , where	� is the frequency spacing
between consecutive longitudinal modes, N is the unsaturated inversion, l is the length of the
active medium, and � is the cavity loss. The unsaturated cross section is then given by �.n	�/ D
�p exp �Œ
2n	�=	��

0

�2 ln 2�. In this expression �p is the peak cross section and, with the laser
pumped three-times above threshold, one has �pNl D 3� . From the above three expressions

one finds 3 exp �Œ
2n	�=	��
0

�2 ln 2� 
 1, from which one gets n 	 Œln 3= ln 2�1=2


	��

0 =2	�
�
.
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Since 	��
0 D 3.5 GHz and 	� D c=2L D 150 MHz (L is the cavity length), one finds n 	 14.7.

The number of oscillating modes is then Nosc D 2n C 1 D 29.

10.6. For a homonuclear molecule consisting of two atoms of mass M, the vibrational frequency,
according to Eq. (3.1.3), is given by �0 D .1=2π/Œ2k0=M�1=2 where k0 is the elastic constant.
For M Š 14 a.u. Š 2.32 � 10�26 kg and Q�0 D 2300 cm�1 one finds k0 D 2180 Nm�1.

10.8. For the symmetric stretching mode, the carbon position is fixed and the force acting on each
oxigen atom is F D �k.x�x0/, where k is the elastic constant and x0 is the equilibrium separation
between carbon and oxygen. It then follows that the resonance frequency of this mode is given
by !1 D Œk=MO� where MO is the mass of the oxygen atom. For Q�1 D 1337 cm�1 and MO D
16 a.u. Š 2.65 � 10�26 kg one finds k D 1683 Nm�1.

10.10. Let x0 be the equilibrium distance between one of the oxygen atoms and the carbon atom. A
transverse displacement of the carbon atom by 	y would correspond to an elongation 	d of the

spring given by 	d D 

x2

0 C	y2
�1=2 � x0. For 	y � x0 one then gets 	d Š 	y2=2x0 from

which one sees that the force produced by the spring would be proportional to 	y2. This implies
that the harmonic oscillator model, for oscillation along the y-direction, cannot be derived via
the simplified spring-model considered in this problem.

10.13. All ro-vibrational lines will merge together when the collision-broadened linewidth, 	�c,
becomes comparable with the frequency separation between rotational lines. Assuming 	�c D
	�r D 60 GHz, from the given value of 	�c one gets a total pressure of p Š 13 997 torr D
18.4 atm. From Fig. 10.11 one then sees that the width of the gain curve, 	�0, corresponds to
J0 values ranging between J0 Š 11 and J0 Š 41, i.e., 	J0 Š 30. From the solution of Problem
10.11 one finds that the rotational constant, B, of a CO2 molecule is B Š 0.3 cm�1. The width
	�0 of the gain curve is then given by 	�0 D 2B	J0 Š 60B Š 18 cm�1.

10.16. The energy which is left, after reaction, as vibrational energy is E� D
3P
0

� N.�/�	E where

N.�/ is the population of the vibrational level, with vibrational quantum number �, and 	E is
the energy spacing between vibrational levels (assumed the same for all levels). On the other

hand, the total energy of reaction, Et, is, on the other hand, given by Et D 	H
3P
0

� N.�/ where

	H Š 3	E is the reaction energy. From the above equations one finds that � D .E�=Et/

D
3P
0

� N.�/� =
3P
0

� N.�/ D 68.5%.

Chapter 11

11.3. The field of the beam, along the C direction, due to the superposition of the two beams of the
interferometer, can be written as Ec D KAE.t/C KBE.t C �/. If the power reflectivity of mirror
S1 is 50% and neglecting, for simplicity, any phase shift arising from reflection at mirrors S1, S2,
and S3, we can assume KA D KB D K. We then get < Ic.t/ >D< Ec.t/E�

c .t/ >D 2 jKj2 f < I >
CReŒ� .1/.�/�g where < I >D< E.t/E�.t/ >D< E.t C �/E�.t C �/ > and Re stands for real

part. With the help of (11.3.4) and (11.3.9) one then gets < Ic.t/ >D 2 jKj2 < I > f1 C
ˇ̌̌
� .1/

ˇ̌̌
cos

Œ< ! > � � �.�/�g. Around a given time delay � , since both
ˇ̌̌
� .1/

ˇ̌̌
and � are slowly-varying

functions of � , one then has Imax D< Ic.t/ >maxD 2 jKj2 < I > Œ1 C
ˇ̌
ˇ� .1/ .�/

ˇ̌
ˇ�, Imin D<

Ic.t/ >minD 2 jKj2 < I > Œ1 �
ˇ̌
ˇ� .1/ .�/

ˇ̌
ˇ�, and Vp D

ˇ̌
ˇ� .1/ .�/

ˇ̌
ˇ.
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11.5. For a Gaussian spectral output, � .1/ .�/ will also be a Gaussian function, i.e. it can be written as
� .1/ D exp �Œ.�=�co/

2 ln 2�, where �co, the coherence time, is defined as in Fig. 11.1. According
to (11.3.28) one then has �� D 1=4π�� . In our case we have �� D 	�L while the variance �� of
the function Œ� .1/�2 D exp �Œ2.�=�co/

2 ln 2� is �� D �co=2
p

ln 2. From the above expressions we
obtain �co D p

ln 2=2π�� Š 13.25�s and Lco D c � �co Š 3.98 km.

11.7. I0 D 2Pi=π.�f=πw0/
2. To avoid excessive diffraction losses and creation of diffraction rings from

beam truncation by the finite lens aperture, DL, one should choose a large enough DL, typically
DL D πw0 [see Eq. (5.5.31)]. From the above expressions we then find I0 D .2=π/PiD2

L=.�f /2

while, from (11.4.4), with D D DL, we find I0 D .π=4/PiD2
L=.�f /2.

11.9. If we let x and y be the coordinates along the smaller and larger dimensions respectively of the
near-field pattern, one has Wx0 D 0.5 cm and Wy0 D 2 cm. From (11.4.19) one then has Wx.z D
3 m/ Š 3.28 cm, while from the equivalent equation along the y-direction, one gets Wy.z D
3 m/ Š 2.16 cm.

Chapter 12

12.1. Since w0 D 0.54 mm, one has w.z D 1 m/ D w0 Œ1 C .z=zR/�
1=2 D 0.83 mm and R.z D 1 m/ D

zŒ1 C .z=zR/
2�1=2 Š 1.74 m, where zR D 
w2

0=� Š 86.1 cm. The lens of focal length f can
be divided into a first lens, of focal length f1 D R D 1.74 m, to compensate for the wavefront
curvature, and a second lens, of focal length f2 D f1 �f=.f1�f / Š 10.61 cm, to focus the beam. To
a good approximation, the waist position then occurs at a distance of zm Š f2 Š 10.61 cm from
the original lens. The spot-size of the embedded Gaussian beam is w0

0 Š .�=
w/�f2 Š 0.043 mm

and the corresponding spot-size parameter is W0
0 D

p
M2w0

0 Š 0.274 mm.

12.3. One has �s D h�=� Š 4.71 J=cm2 and S D 
D2=4 Š 63.6 cm2, so that �out D Eout=S Š
7.07 J=cm2. The total energy available in the amplifier is Eav D h�NV D S�s ln G0 D 415 J,
where N is the initial inversion and V is the volume of the amplifier. To calculate the required
input energy, (12.3.12) can be solved for �in to give �in D ŒfŒexp.�out=�s/ � 1�=G0g C 1�
Š 2.95 J=cm2 which results in Ein D �in S D 187.8 J. Thus, out of an available energy of 415 J,
the energy extracted from the amplifier is Eex D Eout � Ein Š 262.2 J. Note that the length of
the amplifier does not enter into this calculation.

12.9. With the help of (12.4.27a), substitution of (12.4.29) into (12.4.2) gives PNL D

."0d=2/

(
3P
1

i Ei.z/ expŒj.!it � kiz/�C c.c.

) 2

. After manipulation of the right hand side of the

above equation, it can easily be seen that, since !1 D !3 � !2, the only term at frequency
!1 is PNL

!1
D ."0d=2/

˚
E�

2 .z/E3.z/ expŒj.!3 � !2/t � j.k3 � k2/z�C c.c.
�
. Using the relation

!1 D !3 � !2, and with the help of (12.4.27b) one then readily obtains (12.4.30).

12.11. From (12.4.58a) the second harmonic conversion efficiency is obtained as � D I2!=I!.0/ Dˇ̌
E0

2!

ˇ̌2
=
ˇ̌
E0

! .0/
ˇ̌2 D Œtanh.z=lSH/�

2. From (12.4.52), taking into account the fact that that E!.0/

is related to the incident intensity I D I!.0/ by E!.0/ D .2ZI/1=2, where Z D 1="0c Š
377 ohms is the free-space impedance, one gets lSH Š �no=Œ2πdeff .2ZI/1=2� D 2.75 cm where
no is the ordinary refractive index of KDP at frequency !. Substituing this value of lSH into the
above expression for �, assuming z D 2.5 cm, one gets � D 51.9%.
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Absorption efficiency, 214
Airy, 490, 497
Alexandrite, 212, 214, 216
Ambipolar diffusion, 246
Amplified spontaneous emission (ASE)

Gaussian approximation, 559
intensity, 557, 558
Lorentzian and Gaussian lines, 558, 559
spectral emission, z-direction, 557, 558

Anti-resonance-Fabry–Perot-saturable absorber
(A-FPSA), 353

Ar-ion laser-pumped cw dye laser, 404
Arc discharge, 233
Argon laser

air- and water-cooled argon lasers, 442
collision process, 439, 440
energy levels, 439, 440
high-power water-cooled ArC laser

tube, 441–442
ophthalmology, 442
spectroscopic properties, 434, 441
upper state excitation, 440

Atoms and ions radiation
absorption and stimulated emission

absorption measurement, 41
allowed and forbidden transitions, 36–37
Dirac delta function, 33
Einstein thermodynamic treatment, 41–43
Gaussian line, 39–40
homogeneous broadening, 37
inhomogeneous broadening, 38
Lorentzian line, 35
monochromatic electromagnetic (e.m.) wave,

32–33

oscillating dipole moment, 34
photon flux, 37–38
radiation interaction, 41
time-varying interaction energy, 33
total line shape function, 39

blackbody radiation theory
energy density, 18
Planck hypothesis and field quantization,

24–25
Rayleigh–Jeans and Planck radiation formula,

22–23
rectangular cavity modes, 19–22
spectral intensity, 18

degenerate levels
absorption coefficient, 60
Boltzmann equation, 58
two level system, 58

gain saturation, homogeneous line
amplifier saturation fluence, 69
four-level system, 67–68
unsaturated gain coefficient, 68

homogeneous broadening
collision broadening, 43

normalized spectral lineshape, 45
inhomogeneous broadening, 47–49, 69–70
nonradiative decay and energy transfer

collisional deactivation, 50
combined effects, 56–57
cooperative up-conversion process, 55
dipole-dipole interaction, 54–55
multiphonon deactivation, 53
superelastic collision, 50

607

laser linewidth vs. temperature, 47
natural broadening, 46
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thermal activation, 51
optically dense medium decay

apparent threshold, 73
directionality property, 72
gas and solid state lasers, 76
Lorentzian line, 72–73
mirrorless lasers, 75
radiation trapping, 71
saturation intensity, 74

saturation of absorption, homogeneous line
absorption cross section, 65
gain coefficient/absorption measurement, 66
population difference, 67
saturation intensity, 65
two-level system interaction, 64
unsaturated absorption coefficient, 66

spontaneous emission
allowed and forbidden transitions, 31–32
atom energy, 28
quantum electrodynamics approach, 30–31
radiated power, 27–28
radiative emission lifetime, 28
time behavior, 29

strongly coupled levels
absorption coefficient, 62
Alexandrite laser, 63
Boltzmann statistics, 60–61
Nd:YAG laser, 63

Autocorrelation function, 554

Bernard–Duraffourg condition, 107, 123
Bessel function, 303
Born approximation, 239
Bragg, 325, 420
Bragg regime, 324, 325, 369
Brewster’s angle, 209, 210, 286, 287, 360
Bulk semiconductors

absorption and gain coefficients
Bernard–Duraffourg condition, 106–107
GaAs semiconductor, 109–110
III–V semiconductors, 105
inverted semiconductor, 106
joint density of states, 104
vs. injected carrier density, 109

electronic states
Bloch wave functions, 93
conduction band, 93–94
III–V compounds, 96
split-off band, 97
valence band, 93–94
wave functions, 94–95

spontaneous emission and nonradiative decay
deep trap recombination, 111–112
qualitative behaviour, 110–111

thermal equilibrium

hole density, 100
level occupation probability, 98, 100, 118
n-type-doping, 98
p-type doping, 99
Pauli exclusion principle, 98
quasi-Fermi levels, 99–100, 119

Byer, R.L., 230, 297

Cascading process, 455
Casperson, L.W., 261, 276, 557
Cerullo, G., 200
Chemical lasers

applications, 464
atomic fluorine and hydrogen, 462
cascading phenomenon, 463–464
definition, 461
population inversion, 463, 464
supersonic-diffusion HF laser, 464
transitions, 463
vibrational levels, pumping, 462, 463

Chemical pumping, 207
Chester, A.N., 193
Chirped-pulse-amplification

Erbium-doped fiber amplifiers (EDFA), 515–516
femtosecond laser pulse, 514
master-oscillator power-amplifier (MOPA), 512
NOVA system, 512, 513
peak-power, 515
pulse compression, 513
pulse expansion, 513–514

Clay, R.A., 267
Close-coupled configuration, 208–209
CO laser

anharmonic pumping, 455
longitudinal flow, 456
partial inversion, 455
vibrational-rotational transitions, 454

CO2 laser
Boltzmann distribution, 447
capillary waveguide lasers, 450–451
decay process, 446, 447
decay time, 446
diffusion-cooled area-scaling laser, 452
direct electron collisions, 446
efficiency, 448
fast axial flow, 451–452
linewidth, Doppler effect, 448
modes of vibration, 445
probability, 447
resonant energy transfer, N2 molecule, 446
rotational level population, 447, 448
sealed-off lasers, 450
slow axial flow, 449–450
transverse-flow, 452–453
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transversely excited atmospheric pressure (TEA)
laser, 453, 454

vibrational-energy levels, 445
Coherent waves, divergence properties, 492
Colliding-pulse mode-locked (CPM) rhodamine 6G

dye laser, 366
Collision broadening, lineshape calculation

autocorrelation function, 554
correlation and lineshape function, 555
phase jumps plot, 554, 555
power spectrum, 553, 554
signal wave, 553
Wiener–Kintchine theorem, 554, 555

Continuous laser pumping, 404
Continuous wave laser behavior

Fabry–Perot etalons, 292–293
four-level laser

change of intensity, 258–259
critical/threshold inversion, 265
differential equations, 260
diode pumping, 274
Gaussian-beam pumping, 274–276
laser slope efficiency, 266
logarithmic loss per pass, 258
longitudinal efficiency, 276–277
mode distribution, 270
mode energy density, 256
mode-matching condition, 276
output power, 261
population inversion, 259–260
pump rate, 264–265, 271–272
radial and longitudinal coordinates, 271
resonator optical length, 259
Rigrod analysis, 260
saturation power, 272
self-terminating, 264
slope efficiency, 273, 275
spontaneous emission, 257
steady-state population, 264
stimulated emission, 257–258
threshold pump power, 272
unidirectional ring resonator, 276

frequency-pulling and monochromaticity
cavity mode frequency, 297
laser frequency, 297–298
linewidth, 298–299
quantum and technical noise, 299
spectral width, 298

intensity noise and intensity noise reduction
antiphase dynamic, 306
autocorrelation function, 304
mode-partition-noise, 306
relative intensity noise (RIN), 304–306

laser frequency fluctuation and stabilization
electric field, 302–303

Fabry–Perot (FP) interferometer, 301–302
frequency noise spectrum, 301
long-term drifts, 300
offset frequency, 301
Pound–Drever technique, 302, 303
short-term fluctuations, 300
spectral power density, 301

laser tuning
birefringent filter, 286
diffraction grating, 285
free spectral range, 287
Littrow configuration, 285

mode-selecting scheme, 291
multimode oscillation

gain profile vs. pump rate, 287–288
laser gain coefficient, 288
spatial hole burning, 289–290
spectral hole burning, 290
standing-wave pattern, 289

optimum output coupling
lamp-pumped Nd:YAG laser, 285
normalized output power vs. normalized

transmission, 284
output power, 284–285
relative insensitivity, 285

quasi-three-level laser
Gaussian transverse profile, 280
ground state absorption, 282
minimum threshold power, 281
normalized output power, 281
population inversion, 263
pump rate, 280–281
slope and transverse efficiency, 282
space-independent model, 279–280
stimulated emission and absorption, 262
thermal equilibrium, 261

single-transverse-mode selection, 290–291
unidirectional ring resonators

dye laser, 296
Faraday rotator, 294–295
longitudinal dc magnetic field, 294
Nd:YAG laser, 296–297
polarization rotation, 295
transverse gain distribution, 297

Copper vapor lasers
copper atoms, energy levels, 437
Copper-HyBrID laser, 438, 439
industrial applications, 439
schematic construction, 438

Damped sinusoidal oscillation, 316–317
deBroglie wavelength, 93, 238

Dexter, D.L., 54
Diffraction theory, 10–11
Diffusion-cooled area-scaling laser, 452
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Dirac, 24, 33, 34, 39, 42
Directionality

half-angle beam divergence, 489
M2 factor and spot-size parameter

beam divergence, 492
beam quality, 494
beam variance, 492, 493
broad area semiconductor laser, 494–495
Gaussian beam, 493, 494
multimode laser beam, 494
spatial frequency variance, 493

partial spatial coherence, 491–492
perfect spatial coherence

Airy formula, 490
beam divergence, 490, 491
diffraction-limited beam, 491
Gaussian beam, 490, 491
light intensity distribution, 490

Doppler broadening, 206
Drever, R.W.T., 302, 303
Duraffourg, G., 106
Dye lasers

characteristics
applications, 404
flashlamp pumping, 403
gain coefficient, 402
nonradiative decay, 401
transverse pump configuration, 403

chemical structure, 397, 398
photophysical properties, organic dyes

decay process, 400, 401
energy levels, 399, 400
Franck–Condon principle, 400
free-electron model, 398, 399
intersystem crossing process, 401
optical and spectroscopic parameters,

401, 402
rhodamine 6G, 397, 398

e-beam pumping, 206
Einstein, A., 2, 3, 24, 41–43
Electrical pumping

arc discharge, 233
ballast resistance, 233, 234
electron energy distribution

CO2 laser, 243–244
crude approximation, 243
electron temperature, 242–243
energy redistribution, 242
He–Ne laser, 244–245
Maxwell–Boltzmann (MB) distribution function,

242, 243
electron impact excitation

Born approximation, 239
exchange collision, 239

polychromatic electron source, 238
qualitative behavior, 237
surplus energy, 240
threshold energy, 237
transition cross section, 238

glow discharge, 233
ionization balance equation

ambipolar diffusion, 246
electron–ion recombination, 245
free fall model, 246
Tonks–Langmuir theory, 246, 247

longitudinal and transverse discharge, 233–234
near-resonant energy transfer, 235, 236
pump rate and pump efficiency, 248–249
radio-frequency transverse excitation, 234
scaling laws, electrical discharge lasers, 247
semiconductor laser pumping, 232
thermal and drift velocities

definition, 240
inelastic, elastic and electron–electron collisions,

240, 242
kinetic energy, 240, 241

Electron–phonon dephasing collisions, 103
Embedded Gaussian beam, 506–507
Energy levels, radiative and nonradiative transitions

absorption and gain coefficients
Bernard–Duraffourg condition, 106–107, 123
GaAs semiconductor, 109–110
GaAs/AlGaAs, 123
III–V semiconductors, 105
inverted semiconductor, 106
joint density of states, 104, 121–122
vs. injected carrier density, 109
vs. photon energy, 108, 124

Born–Oppenheimer approximation, 83
density of states, 97, 116–118
electronic states

bandgap energy difference, 113
Bloch wave functions, 93, 114
conduction band, 93–94
III–V compounds, 96
quantum-well state, 115
split-off band, 97
valence band, 93–94
wave functions, 94–95

harmonic oscillator expression, 82
metallo-organic chemical vapor deposition

(MOCVD), 113
polyatomic molecule, 84
potential energy curves, 82
quantum wires (QWR) and quantum dots (QD),

126–128
radiative and nonradiative decay, 91–92
rotational energy levels, 85, 86
Schrödinger’s equation, 83
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spontaneous emission and nonradiative decay
deep trap recombination, 111–112
modal gain, 112
qualitative behaviour, 110–111

stimulated transitions, 101–103, 119–121
Franck–Condon principle, 87–88
Gaussian function, 88
infrared active, 89
P branch lines, 89–90
pure rotational transitions, 87, 91
R branch lines, 89–90
rotational-vibrational transitions, 87, 89
selection rules, 89, 91
vibronic transitions, 87–88

strained quantum wells, 125–126
thermal equilibrium

hole density, 100
level occupation probability, 86, 98, 100, 118
n-type-doping, 98
p-type doping, 99
Pauli exclusion principle, 98
population distribution, 87
probability level occupation, 118
quasi-Fermi levels, 99–100, 119

vibrational energy levels, 82, 84
Excimer laser

applications, 460
charge-transfer state, 459
definition, 458
energy states, 457, 458
excitation mechanisms, 459–460
KrF laser, 459
properties, 458
rare-gas-halide excimer, 458–459
TEA configuration, 453, 460

Fabry–Perot (FP) interferometer, 301–302
properties

electric field amplitude, 143
finesse, 145
intensity transmission vs. incident wave

frequency, 144
mirror absorption, 146
multiple-beam interference, 142–143
power transmission, 143–144
spherical mirrors, 142
transmission maximum, 144
transmission minima, 145

spectrometer, 146–147
Fabry–Perot resonator, 164
Fan, T.Y., 230
Faraday rotator, 294–296
Fast axial flow CO2 laser, 451
Fermi levels, 407
Fermi–Dirac statistics, 98, 118

Findlay, D., 267
First-order perturbation theory, 549
Flash-lamp pumped configuration, 387
Förster, 54
Förster-type dipole–dipole interaction, 387
Förster-type ion–ion interaction, 388
Four-level laser

rate equations
change of intensity, 258–259
differential equations, 260
logarithmic loss per pass, 258
output power, 261
population inversion, 259–260
quantum electrodynamics, 257

resonator optical length, 259
Rigrod analysis, 260
spontaneous emission, 257
stimulated emission, 257–258

space-dependent model
diode pumping, 274
Gaussian-beam pumping, 274–276
longitudinal efficiency, 276–277
mode-matching condition, 276
pump rate, 271–272
saturation power, 272
slope efficiency, 273, 275
threshold pump power, 272
unidirectional ring resonator, 276

space-independent model
critical/threshold inversion, 265
laser slope efficiency, 266
pump rate, 264–265
self-terminating, 264
steady-state population, 264

Fourier series, 339, 342
Fourier transform, 170, 304–305, 343, 344
Fox, A.G., 184, 193
Franck–Condon factor, 91, 563
Franken, P.A., 516
Free-electron laser (FEL)

basic structure, 465
Compton scattering, 468
oscillation frequency, 465, 466
properties, 469
Raman scattering, 468
spectral width, 466
spontaneously emitted radiation, 466–467
stimulated emission process, 465,

467, 468
wavelength, 465, 466

Free-space propagation, 506
Fresnel number, 194, 195, 198, 290–291
Fresnel–Kirchoff integral, 148, 150, 154
Fundamental mode-locking, 345
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Gain-guided laser, 416, 417
Gas lasers

ion laser
air- and water-cooled argon lasers, 442
collision process, 439, 440
He–Cd laser, 442–444
high-power water-cooled ArC laser tube,

441–442
ophthalmology, 442
spectroscopic properties, 434, 441
upper state excitation, 440

molecular gas lasers
Boltzmann distribution, 447
capillary waveguide lasers, 450–451
CO laser, 454–456
decay process, 446, 447
decay time, 446
diffusion-cooled area-scaling laser, 452
direct electron collisions, 446
efficiency, 448
excimer laser, 457–460
fast axial flow, 451–452
linewidth, Doppler effect, 448
material-working applications, 456
modes of vibration, 445
N2 laser, 456–457
optical pumping, 444
probability, 447
resonant energy transfer, N2 molecule, 446
rotational level population, 447, 448
sealed-off lasers, 450
slow axial flow, 449–450
transverse-flow, 452–453
transversely excited atmospheric pressure (TEA)

laser, 453, 454
vibrational-energy levels, 445

neutral atom laser
copper vapor laser, 437–439
current density vs. population, 435, 436
de-excitation process, 435
electron configuration, 433
energy levels, He–Ne laser, 433–434
excited (21S) state population, 435
hard-sealed laser design, 434, 435
transitions, spectroscopic properties, 434

Gas-dynamic pumping, 207
Gaussian approximation, 559
Gaussian beams

ABCD law, 156–157
free space propagation

beam divergence, 155
field amplitude, 153
Rayleigh range, 154
transverse and longitudinal phase factor,

154–155

higher-order modes, 158–159
lowest-order mode

beam spot size, 152
complex parameter, 151
eigensolution, 150–151
wave’s radius of curvature, 151, 152

Gaussian lines, 558, 559
Giordmaine, J.A., 516
Glow discharge, 233
Graded-index separated-confinement heterostructure

(GRINSCH), 414, 415
Group delay dispersion (GDD)

dispersion compensation, 360–361
laser pulse propagation, 584
pulse compression, 539, 540
pulse duration, 358–360
pulse expansion, 542

Group velocity dispersion (GVD), 358, 538, 584

Hamiltonian interaction, 101, 103
Harmonic mode-locking, 345
Haus, H.A., 348, 351, 575
He–Cd laser

applications, blue/UV beam, 444
energy levels, 442, 443
Penning ionization process, 442–443
tube type construction, 443

Helium–Neon (He–Ne) laser
cavity length, 436
characteristic features, 435
current density vs. population, 435, 436
de-excitation process, 435
electron configuration, 433
energy levels, 433–434
excited (21S) state population, 435
hard-sealed laser design, 434, 435
oscillation, 432, 437
transitions, spectroscopic properties, 434

Helmholtz equation, 20
Henry, C.H., 299
Hermite polynomials, 158, 182, 184
Hermite–Gaussian solutions, 175, 176, 190
Higher-order coherence

correlation function, 590
degree of coherence, 589–590
normalized n-th order coherence function, 590–591

Homogeneous line
active mode-locking

field amplitude, 576
maximum intensity, pulse, 579
round trip loss, 578
single-pass electric-field transmission, 576
spectral amplitude, 576, 577
time delay, 577

passive mode-locking, 580–581
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Huygens’ wavelet, 148
Huygens–Fresnel propagation equation, 167
Huygens–Fresnel–Kirchoff integral, 149
Index-guided lasers, 416, 417
Interference fringes, 480
Inverse Fourier transform, 305

Kane, T.J., 297
Koechner, W., 268, 270, 333
Kubodera, K., 229
Kuizenga, D.J., 348, 575

Lamp-pumped solid state lasers, 214
Laser amplifier, 5
Laser beam transformation

amplification
amplifier medium, 507
chirped-pulse-amplification, 512–516
gain coefficient, amplifier length, 511
losses, 509–511
maximum energy, 512
output laser energy fluence vs. input fluence, 510
parasitic oscillations, 511, 512
rate of change, population inversion, 507
saturation energy fluence, 508
stimulated emission and absorption, 508

dielectric polarization, 516
dispersion relation, 535
Maxwell’s equations, 526
nonlinear polarization, 516, 517, 527
parametric oscillation

basic equations, nonlinear parametric interaction,
529

doubly resonant, 525–526, 531
nonlinear crystal, 524, 525
optical parametric oscillator, 525, 529
polarization component, 524, 525
singly resonant, 526
synchronous pumping, 526
threshold pump intensity ratio, 532

pulse compression
experimental setup, 536
grating-pair, 540
group delay dispersion (GDD), 539, 540
group velocity dispersion (GVD), 538
instantaneous carrier frequency, 537
optical-fiber compression scheme, 541
self-phase modulation, 536

pulse expansion
diffraction gratings, 541–543
grating-pair compressor, 540, 541
group delay dispersion (GDD), 542

second-harmonic generation (SHG)
anisotropic crystal, 519

characteristic length, 533
coherence length, 518
conversion efficiency, 523
double refraction phenomenon, 523
index ellipsoid, 519, 520
intensity vs. crystal length, 534, 535
nonlinear crystals, 523, 524
nonlinear optical coefficients, 521, 522
normal (index) surface, 519, 520
phase-matching angle, 521, 522
polarization wave oscillation, 2! frequency, 517
propagation constant, 518
second harmonic polarization component, 520,

521
Laser beams properties

brightness, 498–499
coherence time, 484
directionality

M2 factor and the spot-size parameter, 492–495
partial spatial coherence, 491–492
perfect spatial coherence, 489–491

intensity, 475
laser light vs. thermal light

degree of spatial coherence, 501
He–Ne laser, 502, 503
output power, 502
spatial and frequency filter, 501, 502

laser speckle
apparent grain size, scattering surface, 498
free-space propagation, 495, 496
grain-size calculation, 496–498
image-forming, 495, 496
noise, 498
pattern and physical origin, 495

monochromaticity, 475–476
nonstationary beams, 485
oscillation bandwidth, 484
spatial and temporal coherence

degree of spatial coherence, 479
degree of temporal coherence, 478
measurement, 480–483
mutual coherence function, 479
normalized function, 477, 478
single-mode and multimode lasers, 485–488
stationary beam, 477
thermal light source, 488–489

statistical properties, laser light and thermal light
average intensity, 500
fluctuations, 500, 501
single mode laser, 500
thermal light source, 501

Laser operation
beam properties

brightness, 11–13
directionality, 10–11
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monochromaticity, 9
radiation characteristics, 8
short time duration, 13
spatial and temporal coherence, 9–10

Boltzmann statistics, 4–5
critical inversion, 5–6
laser elements, 14
logarithmic losses, 6
population inversion, 5
pumping schemes

four-level laser schemes, 7
population inversion, 6–7
quasi-three-level lasers, 8
three-level laser schemes, 7
two-level saturation, 6

spontaneous and stimulated emission, absorption
absorption cross section, 3
Einstein A coefficient, 2
energy difference, E2–E1, 1–2
non-radiative decay, 1
stimulated emission cross section, 3

types, 14
Laser oscillation, 386
Laser pulse propagation, dispersive/gain medium

dispersion length, 585
electric field, 583, 584
group delay dispersion (GDD), 584
group velocity, 584
instantaneous frequency, 586
pulse broadening, 584
pulse magnitude, 585
spectral amplitude, 587

Laser pumping
absorption coefficient, 215–216
laser diode pumps

beam divergences, 217–218
index-guided laser, 217
monolithic and stacked bars, 218
monolithic array, 217, 218
spectral emission, 218–219
thermoelectric cooler, 219
types, 217
vs. lamp-pumping, 230–232

longitudinal pumping
anamorphic prism pair, 220–222
cylindrical lenses, 220–221
cylindrical microlens, 222, 223
double-ended pumping, 219
multimode optical fiber, 223
optical-to-optical efficiency, 223
plane-concave resonator, 219
reshaped beam, 223–224
single-stripe configuration, 220

pump rate and pump efficiency
absorption efficiency, 227

cladded rod, 228
Gaussian distribution, 226
spot size, 226–227

pumping parameters vs. laser wavelengths, 216
quantum well (QW) lasers, 215–216
threshold pump power

four-level laser, 228–229
quasi-three-level laser, 230

transverse pumping, 224–225
Laser quantum efficiency, 266
Li.T., 184, 185, 193
Line broadening mechanisms

homogeneous broadening
collision broadening, 43

normalized spectral lineshape, 45
inhomogeneous broadening, 47–49

Linear stability analysis, 317
Liquid lasers, 205
Littrow configuration, 285
Lorentz, H.A., 35
Lorentzian lines, 301, 302, 558, 559
Louisell, W. H., 484

Maiman, T.H., 377
Manley–Rowe relations, 529, 535
Maxwell equations, 19, 547
Maxwell–Boltzmann (MB) distribution function, 242,

243, 248
Michelson interferometer, 482, 483
Microwave amplification by stimulated emission of

radiation (Maser), 5
Mid Infrared Advanced Chemical Laser (MIRACL),

207
Miller, R.C., 516
Miyazawa, S., 229
Mode-locking, 13, 14

active mode-locking
electric field, 346–347
FM mode-locking, 349–350
Gaussian distribution, 348
mode-coupling mechanism, 347
noise pulse, 349
Pockels cell electro-optic phase modulator, 350
steady-state pulse duration, 348
types, 346

femtosecond mode-locked lasers, cavity dispersion
dispersion compensation, 360–361
phase-velocity, group-velocity and

group-delay-dispersion, 356–358
pulse duration, group-delay dispersion, 358–360
soliton-type mode-locking, 361–363

frequency-domain description
amplitude vs. frequency, 340

laser linewidth vs. temperature, 47
natural broadening, 46
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cavity mode amplitudes, 342
dye/tunable solid-state lasers, 342
equal-amplitude mode-spectrum, 343
FWHM, 341, 343, 344
Gaussian distribution, 343–344
spectral intensity, 344
time behavior, 341
total electric field, 340
transform-limited pulse, 343

passive mode locking
fast saturable absorber, 351–353
Kerr-lens-mode-locking (KLM), 353–354
slow-saturable-absorber, 354–356
types, 350–351

regimes and systems
active ML and cw pump, 365–366
CPM Rhodamine 6G dye laser, 366
pulsed pump, 364
Ti:sapphire KLM laser, 366–367

time-domain picture
definition, 344–345
fast cavity shutter, 345
repetition rate, 345–346

Molecular transitions, radiative transition rate
electrical dipole moment, 561
electronic wave functions, 563
molecular wave functions, 562
oscillating dipole moment, 561
rotational-vibrational transitions, 562–563

Monochromaticity, 475–476
Moulton, P.F., 275

N2 laser, 456–457
Neodymium lasers

crystalline hosts, 384
Nd:glass, 383–384
Nd:YAG

applications, 382–383
diode-pumping, 382
energy levels, 380, 381
lamp pumping, 382
level notation, 380
nonradiative decay, 381
optical and spectroscopic parameters, 381, 382
pump bands, 381
slope efficiency, 382

Nonradiative decay and energy transfer
combined effects, 56–57
mechanisms

collisional deactivation, 50
cooperative up-conversion process, 55
dipole–dipole interaction, 54–55
multiphonon deactivation, 53
near resonant energy transfer, 52
superelastic collision, 50

thermal activation, 51
Nonstationary beams, 485

Optical Kerr effect, 353, 361–363
Optical parametric generator (OPG), 525
Optical parametric oscillator, 525, 529
Optical pumping, incoherent light source

pump efficiency and rate, 213–215
pump light absorption, 211–212
pumping systems

close-coupled configuration, 208–209
cw lasers, 210, 211
double-ellipse, 209
elliptical cylinder, 208
pulsed lasers, 210
rod-shaped laser medium, 210

Optically dense medium decay
amplified spontaneous emission (ASE)

apparent threshold, 73
directionality property, 72
gas and solid state lasers, 76
Lorentzian line, 72–73
mirrorless lasers, 75
saturation intensity, 74

radiation trapping, 71
Oscillating bandwidth, 476
Otsuka, K., 229
Output coupling efficiency, 266

p-n homojunction laser, 408
Paraxial-ray approximation, 132
Passive optical resonators

cavity photon decay time, 164
concentric and confocal resonator, 165
diffraction losses, 163
dynamically and mechanically stable resonators

geometrical-optics, 188, 189
minimum spot size, 187
misalignment sensitivities, 188–189
pump power, 188
thermal lens, 186, 187

eigenmodes and eigenvalues
Huygens–Fresnel propagation equation, 167–168
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propagation kernel, 168
round-trip phase shift, 169
total single-period phase shift, 168
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finite aperture
beam propagation, 185
diffraction loss vs. Fresnel number, 184–185
equivalent lens-guide structure, 183
Fox–Li iterative procedure, 184
kernel, 186
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geometrical-optics description
counter-propagating spherical waves, 190
magnification factor, 191
round-trip logarithmic loss, 192
single-ended resonator, 191

hard-edge unstable resonators, 196
infinite aperture

amplitude factor, 180
complex amplitude distribution, 176
eigenvalue phase, 180
field distribution, 175
frequency spectrum, 181–182
propagation kernel, 175
q-parameter calculation, 176–177
resonance frequency, 180–181
round-trip matrix, 177
spot size, symmetric resonator, 178–179
standing- and traveling-waves, 182–183

mode electric field, 164
photon lifetime and cavity Q

linewidth, 170, 171
Lorentzian line shape, 170–171
mirror and scattering losses, 169

plane-parallel resonator, 164
positive and negative branch resonators, 189
ring resonator, 166
stability condition

ABCD matrix, 172–173
g1 and g2 parameters, 174
Sylvester’s theorem, 173
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central reflectivity and cavity magnification, 198
field reflectivity, 196
Gaussian reflectivity profile, 197–198
round-trip losses, 197
round-trip magnification, 196–197, 200
super-Gaussian reflectivity profile, 198–199

wave-optics description
coupling losses vs. magnification factor, 195–196
equivalent Fresnel number vs. eigenvalue
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Fox–Li iterative procedure, 193
Huygens–Fresnel diffraction equation, 192–193
intensity profile, 193–194
lowest-order mode, 194, 196
mode intensity distribution, 193
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Patel, C.K.N., 449
Perturbation method, 549
Physical constants and conversion factors, 593–594
Planck hypothesis and field quantization
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Heisenberg uncertainty principle, 25
quantum field theory, 24

Plane-parallel resonator. See Fabry–Perot resonator
Pockels cell, 322–323, 350
Pound–Drever technique, 302, 303
Power quantum efficiency, 214
Preionization techniques, 454
Pulse compression

experimental setup, 536
grating-pair, 540
group delay dispersion (GDD), 539, 540
group velocity dispersion (GVD), 538
instantaneous carrier frequency, 537
optical-fiber compression scheme, 541
self-phase modulation, 536
time behavior, 537

Pulsed laser pumping, 403
Pulsed pumping system, 213
Pump transfer systems

longitudinal pumping
anamorphic prism pair, 220–222
cylindrical lenses, 220–221
cylindrical microlens, 222, 223
double-ended pumping, 219
multimode optical fiber, 223
optical-to-optical efficiency, 223
plane-concave resonator, 219
reshaped beam, 223–224
single-stripe configuration, 220

transverse pumping, 224–225

Q-switching
acousto-optic Q-switches, 324–325
active Q-switching theory

continuous wave pumping, 336–337
critical inversion, 329–330
energy utilization factor (�E/ vs. Ni/Np , 331, 332
laser output pulse peakpower, 330
output energy, 331
time delay, 332–333
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fast-switching, 320
slow-switching, 321

electro-optical Q-switching, 322–323
operating regimes, 328–329
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saturable-absorber Q-switch

saturation intensity, 325, 326
single-mode operation, 327

Q-switching and mode-locking operation, 379
Quantum well (QW) lasers, 215–216
Quantum wires (QWR) and quantum dots (QD)
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gain coefficient vs. emission wavelength, 127
planar array, 128
qualitative behavior, 126, 127

Quasi-three-level laser
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rate equations
population inversion, 263
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space-dependent model
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ground state absorption, 282
minimum threshold power, 281
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pump rate, 280–281
slope and transverse efficiency, 282

space-independent model, 279–280

Radiative efficiency, 214
Ray and wave propagation
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ABCD matrix, 149, 150
field distribution, 148
Fresnel approximation, 149
Huygens principle, 150
monochromatic wave, 147
wave equation, 148, 149

Fabry–Perot interferometer
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intensity transmission vs. incident wave

frequency, 144
multiple-beam interference, 142–143
power transmission, 143–144
spectrometer, 146–147
spherical mirrors, 142
transmission maximum, 144
transmission minima, 145

Gaussian beams
ABCD law, 156–157
free space propagation, 153–155
higher-order modes, 158–159
lowest-order mode, 150–153

matrix formulation, geometrical optics
forward and backward propagation, 136
free-space propagation, 135
optical element, 131–132
paraxial-ray approximation, 132
ray matrix, 133, 134
spherical mirror, 133
spherical wave propagation, 136–137

multilayer dielectric coatings
absorption loss, 140
antireflection coating, 139, 142
high-reflectivity laser mirrors, 139
low index layer, 140, 141
peak reflectivity, 141
power reflectivity, 140
V-coating, 142

wave reflection and transmission

Brewster’s angle, 138–139
electric field reflectivity, 137–138
intensity reflectivity, 138
reflected and refracted beams, 138–139

Rayleigh range, 154
Rayleigh–Jeans and Planck radiation formula, 22–23
Rectangular cavity modes
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Maxwell equation, 19
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Sapphire, 378
Schawlow, A.L., 298, 299, 301
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Schottky theory, 246
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Second-harmonic generation (SHG)
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field variables, 533
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nonlinear crystals, 523, 524
nonlinear optical coefficients, 521, 522
normal (index) surface, 519, 520
phase-matching angle, 521, 522
photon momentum, 519
propagation constant, 518
second harmonic polarization component, 520, 521

Self-phase-modulation (SPM), 362–363
Semiclassical treatment, radiation interaction

electric dipole interaction, 547
Hamiltonian, 547, 548
perturbation method, 549
time-independent Schrödinger wave-equation, 548
transition probability, 549, 551
wave-function, 548, 549
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applications, 425–426
devices and performances
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Fabry–Perot type, 419
Fermi energy, 418
output power vs. input current, 417, 418
stripe-geometry configuration, 416

distributed feedback and distributed Bragg reflector
lasers

Bragg condition, 421, 422
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�=4�shift, 420, 421
refractive index change, 421, 422
uniform grating, 419–421

double-heterostructure laser
band structure, 409, 410
GaAs laser, 412–413
internal quantum efficiency, 411
lattice-matching condition, 410
refractive index, 409, 410
schematic diagram, 409
threshold current density vs. thickness,

410, 411
transverse beam profile, 409, 410

homojunction laser, 407–408
principle of operation

recombination-radiation process, 406
valence and conduction band, 405, 406

quantum well lasers
beam confinement, 414
energy bands, Alx/Ga1�xAs-GaAs, 414, 415
In0.5GaP0.5/In0.5(Ga0.5�xAlx/P MQW structure,

415
structure, 414, 415

vertical cavity surface emitting lasers
bottom emitting design, 423, 424
fabrication, 424–425
schematic representation, 423

Semiconductor quantum wells
absorption and gain coefficients

Bernard–Duraffourg condition, 123
GaAs/AlGaAs, 123
joint density of states, 121–122
vs. photon energy, 124

electronic states
bandgap energy difference, 113
Bloch wave functions, 114
quantum-well state, 115

thermal equilibrium, 118–119
SF6 molecule, 84
Siegman, A.E., 190, 194, 195, 348, 575
Single-longitudinal-mode selection

Fabry–Perot etalons, 292–293
mode-selecting scheme, 291
unidirectional ring resonators

dye laser, 296
Faraday rotator, 294–295
Nd:YAG laser, 296–297
transverse gain distribution, 297

Single-mode and multimode lasers
magnitude, 487, 488
Schwartz inequality, 488
transverse modes, 486

Snell’s law, 132, 139
Solid-state lasers, 205

alexandrite laser

energy level diagram, 392
flashlamp-pumped laser, 394
Franck–Condon principle, 392
optical and spectroscopic parameters, 393

pumping, 393
tunable laser, 391

Cr:LISAF and Cr:LICAF, 396–397
electric dipole transition, 377
Er:YAG and Yb:Er:glass, 386–387
fiber lasers

cladding pumping scheme, 390
conventional single-mode fiber, 389
end-pumped single-mode fibers, 390
pump beam, 389
up-conversion laser scheme, 390, 391

neodymium lasers
crystalline hosts, 384
Nd:glass, 383–384
Nd:YAG, 380–383

rare earth and transition metals, 376, 377
ruby laser

application, 379–380
energy levels, 378
optical and spectroscopic parameters, 379
pump bands, 378

titanium sapphire laser
absorption and fluorescence bands, 395
configuration-coordinate model, 394, 395
continuous wave (CW), 395–36
octahedral configuration, 394
optical and spectroscopic parameters, 393, 395

Tm:Ho:YAG, 387–388
Yb:YAG laser

absorption lines, 385
energy level diagram,

384, 385
longitudinal pumping configuration, 385
optical and spectroscopic parameters, 384, 385
quasi-three-level laser scheme, 384
vs. Nd:YAG, 385–386

Space dependent rate equations
four-level laser

active medium volume, 567
effective volume, 566, 567
minimum pump threshold, 569, 570
outside and inside energy density, 566
plane wave, 565, 566
population inversion, 565, 568
pump rate, 568
saturation power, 569
steady state average population, 568, 569
stimulated process, 565
total number of cavity photons, 566

phonon terminatedvibronic laser, 392

splitting, 3d energy states, 394



Index 619

uniform pumping, 569
quasi-three-level laser

minimum pump threshold, 573
saturation power, 572
stimulated emission and absorption, 571

Stable resonators
dynamically and mechanically stable resonators

geometrical-optics, 188, 189
minimum spot size, 187
misalignment sensitivities, 188–189
one-way matrix, 188
thermal lens, 186, 187

finite aperture
beam propagation, 185
diffraction loss vs. Fresnel number, 184–185
equivalent lens-guide structure, 183
Fox–Li iterative procedure, 184
kernel, 186

infinite aperture
amplitude factor, 180
complex amplitude distribution, 176
eigenvalue phase, 180
field distribution, 175
frequency spectrum, 181–182
propagation kernel, 175
q-parameter calculation, 176–177
quadratic equation, 175–176
resonance frequency, 180–181
round-trip matrix, 177
spot size, symmetric resonator, 178–179
standing- and traveling-waves, 182–183

Sylvester’s theorem, 173

Thermal light source
coherence time, 488
degree of spatial coherence, 488, 489
temporal coherence, 488

Time-independent Schrödinger wave-equation, 548
Tm:Ho:YAG laser, 387–388
Tonks–Langmuir theory, 246, 247
Townes, C.H., 298, 299, 301
Transfer efficiency, 214
Transient laser behavior

acousto-optic Q-switches, 324–325
active mode-locking

electric field, 346–347
FM mode-locking, 349–350
mode-coupling mechanism, 347
noise pulse, 349
Pockels cell electro-optic phase modulator, 350
steady-state pulse duration, 348
types, 346

active Q-switching theory
continuous wave pumping, 336–337

critical inversion, 329–330
energy utilization factor (�E/ vs. Ni/Np, 331, 332
initial inversion, 329, 336
laser output pulse peak power, 330
output energy, 331
time delay, 332–333

cavity dumping, 368–369
dynamic behavior, Q-switching process, 319–321
dynamical instabilities and pulsations, 318–319
electro-optical Q-switching, 322–323
femtosecond mode-locked lasers, cavity dispersion

dispersion compensation, 360–361
phase-velocity, group-velocity and

group-delay-dispersion, 356–358
pulse duration, group-delay dispersion, 358–360
soliton-type mode-locking, 361–363

frequency-domain description of mode-locking
amplitude vs. frequency, 340
cavity mode amplitudes, 342
dye/tunable solid-state lasers, 342
equal-amplitude mode-spectrum, 343
FWHM, 341, 343, 344
Gaussian distribution, 343–344
spectral intensity, 344
time behavior, 341
total electric field, 340
transform-limited pulse, 343

gain switching, 337–338
mode-locking regimes and systems

active ML and cw pump, 365–366
CPM rhodamine 6G dye laser, 366
Ti:sapphire KLM laser, 366–367

operating regimes, Q-switched lasers, 328–329
passive mode locking

fast saturable absorber, 351–353
Kerr-lens-mode-locking (KLM), 353–354
self-focusing, 354
slow-saturable-absorber, 354–356
types, 350–351

relaxation oscillations
damped relaxation oscillation, 315
linearized analysis, 315–317
population inversion, 314–315
step-function pump rate, 313
total inversion and photon number, 313, 314

rotating prisms Q-switch, 323–324
saturable-absorber Q-switch, 325–327
time-domain picture of mode-locking, 344–346

Transition cross section, absorption and gain
coefficient

absorption measurement, 41
Gaussian line, 39–40
homogeneous broadening, 37
inhomogeneous broadening, 38
total line shape function, 39

Third order dispersion (TOD), 359, 361
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Transition probability, 549, 551
Transverse efficiency, 266
Transverse-flow CO2 laser, 452–453
Transversely excited atmospheric pressure (TEA) laser,

453, 454

Unstable resonators
geometrical-optics description

counter-propagating spherical waves, 190
magnification factor, 191
round-trip logarithmic loss, 192
single-ended resonator, 191

hard-edge unstable resonators, 196
positive and negative branch resonators, 189
variable-reflectivity unstable resonators

central reflectivity and cavity magnification, 198
field reflectivity, 196
Gaussian reflectivity profile, 197–198
peak mirror reflectivity, 200

round-trip losses, 197
round-trip magnification, 196–197, 200
super-Gaussian reflectivity profile, 198–199
coupling losses vs. magnification factor, 195–196
equivalent Fresnel number vs. eigenvalue

magnitude, 194–195
Fox–Li iterative procedure, 193
Huygens–Fresnel diffraction equation, 192–193
intensity profile, 193–194
lowest-order mode, 194, 196
mode intensity distribution, 193
transverse modes, 194

Wiener–Kintchine theorem, 554, 555

X-ray lasers, 469–471
X-ray pumping, 206

Young’s interferometer, 480
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