
Solution to the Final Exam
20 January 2023
PHYS-101(en)

1. Toilet paper

a. The free body diagram for the roll of toilet paper is shown in the figure below.

Fa

Fg

T

Ff

N

b. The torque τ⃗ arising from each force is calculated from the formula

τ⃗ = R⃗× F⃗ , (1)

where R⃗ is the position vector from the pivot point G to the point of application of the force. Plugging
in the values for each force gives

τ⃗g = R⃗g × F⃗g = 0× F⃗g = 0 (2)

τ⃗N = R⃗N × N⃗ = −Rî×Nî = 0 (3)

τ⃗f = R⃗f × F⃗f = −Rî× Ff ĵ = −RFf k̂ (4)

τ⃗T = R⃗T × T⃗ = 0× T⃗ = 0 (5)

τ⃗a = R⃗a × F⃗a = Rî× Faĵ = RFak̂. (6)

c. When Fa is weak, the static friction force between the roll and the wall will be sufficient to prevent
the roll from rotating. However, as you pull harder (corresponding to a larger Fa) you will eventually
exceed the maximum possible static friction force and the roll will start to rotate. Thus, we must
calculate the maximum value of the static friction force and also determine the strength of the friction
force Fs required to counteract a given applied force Fa.

The maximum value of the static friction force is given by

Ff ≤ µsN, (7)
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where we still must determine the normal force N . The normal force and the connection between Fs

and Fa can be found by enforcing the conditions required for static equilibrium,∑
τ⃗ = 0 (8)

and ∑
F⃗ = 0. (9)

Substituting equations (2) through (6) into equation (8) gives

0 + 0−RFf k̂ + 0 +RFak̂ = 0 ⇒ Fa = Ff , (10)

where we have taken the k̂ component of the equation.

From the free body diagram in part a, we see that equation (9) is

F⃗a + F⃗g + F⃗f + N⃗ + T⃗ = 0 ⇒ Faĵ +Mgĵ + Ff ĵ +Nî− T
(
sin θî+ cos θĵ

)
= 0. (11)

Taking the î component gives

N − T sin θ = 0 ⇒ N = T sin θ, (12)

while the ĵ component is
Fa +Mg + Ff − T cos θ = 0. (13)

To find the maximum possible value of Fa without the roll rotating, we let equation (7) be an equality
to get

Ff = µsN. (14)

Plugging this and equation (12) into equation (10) gives

Fa = µsN = µsT sin θ ⇒ T =
Fa

µs sin θ
. (15)

Substituting equations (12), (14), and (15) into equation (13) gives

Fa +Mg + µs (T sin θ)− T cos θ = 0 ⇒ Fa +Mg + (µs sin θ − cos θ)
Fa

µs sin θ
= 0. (16)

Solving for Fa gives the final answer of

Faµs sin θ + (µs sin θ − cos θ)Fa = −Mgµs sin θ ⇒ Fa (cos θ − 2µs sin θ) = Mgµs sin θ (17)

⇒ Fa =
µs tan θ

1− 2µs tan θ
Mg. (18)

This can also be written as

Fa =
µs

2

(
1

2 tan θ
− µs

)−1

Mg. (19)

Expressed in this form, we clearly see the reason for the condition given in the problem statement that
1/(2 tan θ) > µs. If this wasn’t the case, the value we found for the magnitude of the applied force Fa

would diverge or be negative.
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d. When the roll is rotating, the net torque no longer has to be zero as the roll can have a non-zero
angular acceleration. However, we know that the center of mass of the roll is fixed by the metal rods
and the contact with the wall. To calculate the force that the rods must exert on the roll to keep it in
place, we enforce ∑

F⃗ = 0. (20)

As in part c, the î component is

N − T sin θ = 0 ⇒ N = T sin θ (21)

and the ĵ component is
Fa +Mg + Ff − T cos θ = 0. (22)

The difference with part c arises from the frictional force, which is now kinetic and is given by

Ff = µcN. (23)

Substituting this and equation (21) into equation (22) gives

Fa +Mg + µc (T sin θ)− T cos θ = 0 ⇒ Fa +Mg + T (µc sin θ − cos θ) = 0. (24)

Solving for T , we find

T =
1

cos θ − µc sin θ
(Fa +Mg) . (25)

Substituting this into equation (21) gives

N =
sin θ

cos θ − µc sin θ
(Fa +Mg) . (26)

However, the problem specifically asks for the vector expressions, not just the magnitudes of the forces.
From the corresponding terms appearing in equation (11) (or the free body diagram in part a), we see
that the final answers are

T⃗ = − sin θî+ cos θĵ

cos θ − µc sin θ
(Fa +Mg) (27)

and

N⃗ =
sin θî

cos θ − µc sin θ
(Fa +Mg) . (28)

These expressions can also be written as

T⃗ = −
(
î+

1

tan θ
ĵ

)(
1

tan θ
− µc

)−1

(Fa +Mg) (29)

and

N⃗ =

(
1

tan θ
− µc

)−1

(Fa +Mg) î. (30)

Thus, since 1/(2 tan θ) > µc, 1/ tan θ > 1/(2 tan θ), and tan θ > 0 (as we know from physical intuition
and the diagram in the problem statement that 0 < θ < π/2), all of the components of T⃗ and N⃗ are
in the expected directions and do not diverge.

e. To determine the angular acceleration from the torque arising from the applied force F⃗a, we can use
Newton’s second law for rotation ∑

τ⃗ = IGα⃗. (31)
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Substituting equations (2) through (6) into equation (31) gives

0 + 0−RFf k̂ + 0 +RFak̂ = IGα⃗ ⇒ R (Fa − Ff ) k̂ = IGαk̂ ⇒ α =
R

IG
(Fa − Ff ) , (32)

where we have used α⃗ = αk̂ from the problem statement and taken the k̂ component of the equation.
Substituting equations (23) and (26) gives the final answer of

α =
R

IG
(Fa − µcN) =

R

IG

(
Fa −

µc sin θ

cos θ − µc sin θ
(Fa +Mg)

)
, (33)

which is indeed a constant.

f. The situation of toilet paper coming off of a roll is similar to the no-slip condition for a rope moving
over a pulley. From this we know that the linear speed of the end of the paper as it moves downwards
must be equal to the tangential velocity of a point on the outer edge of the roll as it rotates around its
center of mass, i.e.

dy

dt
= Rω. (34)

This is the key condition that we will use to relate the rotational motion to the linear motion of the
end of the paper.

The question tells us that we can treat the angular acceleration α as known and constant and the
problem statement gives the formulas

α =
d2ϕ

dt2
(35)

and
ω =

dϕ

dt
. (36)

Combining equations (35) and (36) gives

α =
dω

dt
. (37)

Integrating once in time yields
ω = αt+ C1. (38)

Substituting this into equation (34) gives

dy

dt
= Rαt+RC1. (39)

Using the initial condition on the velocity that dy/dt = 0 at t = 0, we find that C1 = 0, so equation
(39) becomes

dy

dt
= Rαt. (40)

Integrating once more in time yields

y(t) =
Rα

2
t2 + C2. (41)

Applying the initial condition on the position that y(0) = ℓ allows us to find C2 = ℓ, which shows that
the final answer is

y(t) =
Rα

2
t2 + ℓ. (42)
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2. DART mission

a. This problem is simpler than it initially appears. We know both the radius R0 and the period T0 of
the circular orbit that D2 is executing about D1. Thus, D2 travels once around D1 in a time T0 and
travels a total distance of 2πR0. This means its average speed is

v0 =
2πR0

T0
. (1)

Since there are no other forces in the problem, D2 must be executing uniform circular motion, so its
average speed is identical to its instantaneous speed

v0 =
2πR0

T0
. (2)

Since the problem asks for the velocity, so we must determine the direction as well. From the diagram
in the problem statement, we see that D2 moves purely in the ϕ̂ direction so

v⃗0 =
2πR0

T0
ϕ̂. (3)

b. In this part, we apply Newton’s second law as it will enable us to find the mass from the force and the
trajectory of the object (i.e. the acceleration). Newton’s second law for the general gravitational force
is given by

F⃗G = m2a⃗ ⇒ −G
m1m2

R2
0

r̂ = −m2
v20
R0

r̂, (4)

where we know from part a that D2 exhibits uniform circular motion and as such must be experiencing
centripetal acceleration a⃗ = −v20/R0r̂. Taking the r̂ component of equation (4) and solving for m1

gives

m1 =
R0

G
v20 . (5)

Lastly, we substitute (3) to get the final answer of

m1 =
4π2

G

R3
0

T 2
0

. (6)

c. Using the definition of the density and the formula for the volume of a sphere, we can write the density
of D1 as

ρ1 =
m1

4πr31/3
(7)

and the density of D2 as
ρ2 =

m2

4πr32/3
. (8)

Since we can assume the densities of the two are equal ρ1 = ρ2, we can equate these two equations and
find

m1

4πr31/3
=

m2

4πr32/3
⇒ m1

r31
=

m2

r32
⇒ m2 =

(
r2
r1

)3

m1. (9)

d. During an inelastic collision momentum is conserved, but mechanical energy is not. However, since
the collision is perfectly inelastic we know that the objects stick together, meaning they have the same
final velocity. Thus, conservation of momentum can be written as

m2v⃗0 +msv⃗s = (m2 +ms) v⃗a. (10)
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Given the directions of v⃗0 and v⃗s, we can simplify to find that the final answer is

m2v0ϕ̂−msvsϕ̂ = (m2 +ms) v⃗a ⇒ v⃗a =
m2v0 −msvs
m2 +ms

ϕ̂. (11)

e. The orbits before and after the collision are shown in the figure below. From Kepler’s first law we know
that the orbits of astronomical objects are ellipses. While the orbit before is circular (i.e. an ellipse
with equal major and minor axes), the orbit after must be a non-circular ellipse. This is because just
after the collision the inwards gravitational force remains unchanged. However, the collision reduces
the velocity of D2, thereby decreasing the centripetal acceleration needed for uniform circular motion
(i.e. acent = v20/R0). Thus, the gravitational force is larger than needed for uniform circular motion,
so it pulls the object inwards.

̂ϕ̂r
̂z

O

BeforeAfter

f. We can still apply conservation of momentum as we did for equation (10), but the right-hand side must
be modified to account for the ejected material. It becomes

m2v⃗0 +msv⃗s = (m2 +ms −me) v⃗b +mev⃗e. (12)

Given the directions of v⃗0, v⃗s, and v⃗e, we can simplify to find that the final answer is

m2v0ϕ̂−msvsϕ̂ = (m2 +ms −me) v⃗b +meveϕ̂ ⇒ v⃗b =
m2v0 −msvs −meve

m2 +ms −me
ϕ̂. (13)

g. Kepler’s third law can be applied both before and after the collision. However, there are two versions
of Kepler’s third law, which are equivalent. The version (given in the problem statement) uses the
major axis of the ellipse as the distance. Thus, from our diagram in figure e, we see that this version
of Kepler’s third law is given by

T 2
0 = C1 (2R0)

3 (14)

before the collision, and
T 2
2 = C1 (R0 +R2)

3 (15)

after the collision. Note that the constant of proportionality C1 is the same in these two equations. The
other version of Kepler’s third law (which we saw in class) uses the average radius (or more precisely
the length of the semi-major axis) as the distance. Thus, from our diagram in figure e, we see that
this version of Kepler’s third law is given by

T 2
0 = C2R

3
0 (16)

before the collision, and

T 2
2 = C2

(
R0 +R2

2

)3

(17)
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after the collision. Again the constant of proportionality C2 is the same in these two equations, but it
is different than C1. However, the only difference between these two versions of Kepler’s third law is
whether a factor of 23 is included in the constant of proportionality or not. In class we saw that

C2 =
4π2

Gm1
, (18)

so the formulas are equivalent because

C1 =
1

23
4π2

Gm1
. (19)

Thus, we can either combine equations (14) and (15) to eliminate C1 or equations (16) and (17) to
eliminate C2. Either way we find the same answer of

T 2
0

R3
0

= 23
T 2
2

(R0 +R2)
3 . (20)

Solving for R2 gives the final answer of

(R0 +R2)
3
=

(
T2

T0

)2

(2R0)
3 ⇒ R2 = 2

(
T2

T0

)2/3

R0 −R0. (21)

h. This problem is more difficult. To calculate the velocity immediately after the collision from the
measured properties of the modified orbit, we need to use all of the information we have available: R0,
R2, m1, and G. Immediately after the collision, D2 is at its furthest position away from D1 (i.e. it is
at a distance of R0). We also know the position of closest approach, which is a distance of R2. We
can relate the velocity of D2 at these two positions using conserved quantities. To determine what
quantities are conserved in the motion of D2, we must consider the forces on it, which are only the
gravitational force from D1. Thus, if we take the pivot point to be the center of D1, the gravitational
force will not exert a torque (as the direction of the force has no component perpendicular to the
displacement vector from the pivot point to D2). This means that the angular momentum of D2 about
the center of D1 is conserved. Additionally, since there are no non-conservative forces doing work on
D2, the mechanical energy of the system is also conserved. Note that non-conservative forces do work
during the collision, but in this part we are only interested in the motion from just after the collision
until D2 reaches its point of closest approach.
First, we will enforce conservation of angular momentum. Angular momentum is defined to be L⃗ =
R⃗×mv⃗, where R⃗ is the position vector to the object from a pivot. The pivot is the center of D1, which
is also the origin of our coordinate system. Thus, conservation of angular momentum L⃗i = L⃗f can be
written as

R0r̂ × (m2 +ms −me) v⃗c = R2r̂ × (m2 +ms −me) v⃗2 ⇒ R0r̂ × v⃗c = R2r̂ × v⃗2, (22)

where v⃗2 is the velocity of D2 at its point of closest approach. Both v⃗c and v⃗2 are unknown, but we
know that they both are in the ϕ̂ direction. Substituting this fact gives

vcR0r̂ × ϕ̂ = v2R2r̂ × ϕ̂ ⇒ vcR0ẑ = v2R2ẑ ⇒ v2 = vc
R0

R2
, (23)

where we have take the ẑ component of the equation.
To eliminate v2 we will enforce conservation of mechanical energy. Since the problem statement tells us
that D2 does not rotate, the only contributions are translational kinetic energy and potential energy.
If you do not already know it, the general form of the gravitational potential energy can be calculated
from the general gravitational force to be

UG = −
∫

F⃗G · dℓ⃗ = −
∫ (

−G
mamb

r2
r̂
)
· dℓ⃗ = Gmamb

∫
1

r2
dr = Gmamb

(
−1

r

)
= −Gmamb

r
, (24)
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where r is the distance between any two masses ma and mb and we have taken the reference point for
the potential energy to be r = ∞ such that the integration constant is zero. This enables us to write
conservation of mechanical energy Emi = Emf as

m2 +ms −me

2
v2c −

Gm1 (m2 +ms −me)

R0
=

m2 +ms −me

2
v22 −

Gm1 (m2 +ms −me)

R2
. (25)

Plugging in equation (23) and simplifying gives

1

2
v2c −

Gm1

R0
=

1

2

(
vc

R0

R2

)2

− Gm1

R2
⇒ v2c − v2c

R2
0

R2
2

= 2
Gm1

R0
− 2

Gm1

R2
(26)

⇒ v2c

(
1− R2

0

R2
2

)
= 2Gm1

(
1

R0
− 1

R2

)
⇒ v2c

(
R2

2 −R2
0

R2
2

)
= 2Gm1

(
R2 −R0

R0R2

)
(27)

⇒ v2c = 2Gm1
R2 −R0

R0

R2

R2
2 −R2

0

⇒ v2c = 2Gm1
R2 −R0

R0

R2

(R2 −R0) (R2 +R0)
(28)

⇒ vc = ±
√

2Gm1

R0 +R2

R2

R0
. (29)

The problem asks for the velocity, so we consult the picture from part e and write

v⃗c =

√
2Gm1

R0 +R2

R2

R0
ϕ̂, (30)

where we have chosen the positive sign based on the physical intuition that the small satellite won’t
completely reverse the direction of a huge asteroid.

i. We know that the satellite starts with an initial velocity of v⃗i in the reference frame of the Earth and
ends with a final velocity of v⃗s in the reference frame of D1. To calculate the change in velocity ∆v⃗s,
we must convert one of these two velocities into the other reference frame. We will convert the final
velocity into the reference frame of the Earth. To do so, we will first draw a picture of the situation
(shown below) in order to understand how the two frames of reference relate.

rEs
rED

rDs

From this we see that
r⃗Es = r⃗ED + r⃗Ds. (31)

Taking a derivative in time yields a relationship between the velocities

v⃗Es = v⃗ED + v⃗Ds. (32)

Considering the final state just before the satellite impacts D2, we can identify v⃗Es = v⃗Esf as the final
velocity of the satellite in the reference frame of the Earth, v⃗ED = v⃗D1 as the velocity of D1 in the
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reference frame of the Earth, and v⃗Ds = v⃗s as the velocity of satellite in the reference frame of D1.
Making these substitutions allows us to find the final velocity of the satellite in the reference frame of
the Earth to be

v⃗Esf = v⃗D1 + v⃗s. (33)

Given that we already know that the initial velocity of the satellite in the reference frame of the Earth
is v⃗Esi = v⃗i, we can calculate the change in velocity to be

∆v⃗s = v⃗Esf − v⃗Esi = v⃗D1 + v⃗s − v⃗i. (34)

j. This part is a continuous mass transfer problem as the satellite with its engine is behaving as a rocket.
Here we will present the full derivation of the rocket equation, though it would be substantially quicker
to directly start from it (or even its solution).

Since the problem statement tells us that the motion is in a straight line, we will adopt a one-dimensional
coordinate system where ĵ points in the direct of travel of the satellite. Next, at an arbitrary time t,
we consider a system that is composed of the satellite including all the fuel it currently contains, which
we will denote as having a total instantaneous mass mr. The instantaneous speed of the satellite is
vr, so we can draw the momentum diagram shown below at time t. A very short time later at t+∆t,
the satellite has ejected a differential mass element ∆mf of fuel, which slightly alters the mass of the
satellite to mr +∆mr. Note that it is important allow an arbitrary change in the satellite’s mass by
+∆mr. This will help to prevent sign errors later in the derivation (e.g. accidentally accounting for the
fact that the satellite’s mass is decreasing twice) and accommodate more general calculations where the
mass is changing due to several mechanisms. After ejecting the differential mass element, the velocity
of the satellite is also slightly changed to be vr + ∆vr. We must also include the momentum of the
ejected fuel as it is still part of the system. It has a mass of ∆mf and a velocity of −uĵ relative to
the satellite. This means that it has a velocity of (vr − u)ĵ in the inertial laboratory frame. We have
drawn the momentum diagram at time t+∆t below.

time t time t + Δt

̂j

mr

vr
vr + Δvr

Δmf

mr + Δmr

vr − u

From the momentum diagrams, we can apply conservation of mass to the system and see that

mr = mr +∆mr +∆mf ⇒ ∆mf = −∆mr. (35)

Additionally, we see that the total momentum of the system at time t is

p⃗sys(t) = mrvr ĵ, (36)

while at time t+∆t it is

p⃗sys(t+∆t) = (mr+∆mr)(vr+∆vr)ĵ+∆mf (vr−u)ĵ = (mr+∆mr)(vr+∆vr)ĵ−∆mr(vr−u)ĵ, (37)

9



PHYS-101(en) 20 January 2023 - Solution to the Final Exam

making use of equation (35). We can now write down the generalized form of Newton’s second law and
use the limit form of the time derivative according to

F⃗ ext
net =

dp⃗sys
dt

= lim
∆t→0

∆p⃗sys
∆t

= lim
∆t→0

p⃗sys(t+∆t)− p⃗sys(t)

∆t
. (38)

Since we can neglect gravitational interactions with all other astronomical bodies, we have F⃗ ext
net = 0.

Using this and substituting equations (36) and (37) into the ĵ component of equation (38), we find

0 = lim
∆t→0

(mr +∆mr)(vr +∆vr)−∆mr(vr − u)−mrvr
∆t

= lim
∆t→0

mr∆vr +∆mr∆vr +∆mru

∆t
. (39)

We can neglect the ∆mr∆vr term in this expression as it is product of two differential elements. Since
the differential elements are infinitesimally small, a product of two differential elements will be much
smaller than terms that include just one differential element (e.g. ∆mr∆vr ≪ mr∆vr). Thus, equation
(39) becomes

0 = mr

(
lim

∆t→0

∆vr
∆t

)
+

(
lim

∆t→0

∆mr

∆t

)
u. (40)

Converting the limits back into derivatives, we find the differential equation

0 = mr
dvr
dt

+
dmr

dt
u, (41)

which is the standard rocket equation. To solve it, we rearrange and perform a change of variables
from the time t to the mass mr according to

mr
dvr
dt

= −dmr

dt
u ⇒ dvr

dt

dt

dmr
= − u

mr
⇒ dvr

dmr
= − u

mr
. (42)

We can directly integrate this to find the satellite’s speed as a function of its current mass

vr (mr) = −u ln (mr) + C, (43)

where C is an integration constant. Since we know that the satellite impacts the asteroid with a mass
of mr = ms, it must depart Earth with a total mass of mr = ms + mf , where we want to calculate
mf . Fortunately, we also know the change in speed from the start to the finish of this journey

∆vs = vr (ms)− vr (ms +mf ) . (44)

Substituting equation (43) into equation (44) allows us to eliminate the integration constant and find

∆vs = (−u ln (ms) + C)− (−u ln (ms +mf ) + C) = u (ln (ms +mf )− ln (ms)) = u ln

(
ms +mf

ms

)
.

(45)
Rearranging gives the final answer of

ms +mf

ms
= exp

(
∆vs
u

)
⇒ mf = ms

(
exp

(
∆vs
u

)
− 1

)
. (46)

3. Tennis serve
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a. This part can be solved using Newton’s second law or conservation of energy. Since we are interested in
properties of the ball at different positions (as opposed to different times), we guess that conservation
of energy will be the quicker strategy. Since the only force acting on the ball is gravity, which is a
conservative force, mechanical energy is conserved. We can write this as

Emi = Emf ⇒ m

2
v2r +mgyr = 0 +mgy0 ⇒ vr = ±

√
2g (y0 − yr), (1)

where we have ignored the rotational kinetic energy as it stays constant as the ball ascends because
there are no external torques. Given our coordinate system, we know that vr must be positive, so our
final answer is

vr =
√

2g (y0 − yr). (2)

b. After the ball is hit, it experiences ballistic motion as it travels towards the returner. Thus, its
trajectory is parameterized by

x (t) = vx0t+ x0 (3)

y (t) = −g

2
t2 + vy0t+ y0. (4)

Given that the initial position is x0 = 0, we can solve equation (3) for t and find

t =
x

vx0
. (5)

Substituting this into equation (4) gives the trajectory of the ball

y (x) = − g

2v2x0
x2 +

vy0
vx0

x+ y0. (6)

c. The condition for the ball to pass above the net is

y (xn) > h (7)

as we are allowed to use y(x) in our answer. Using > versus ≥ doesn’t matter as they are only different
by a infinitesimal, physically-insignificant amount.

d. The condition for the ball to land before reaching the service line is

y (xf ) < 0 (8)

as we are allowed to use y(x) in our answer. Using < versus ≤ doesn’t matter as they are only different
by a infinitesimal, physically-insignificant amount.

e. This problem is difficult. Formally, we are searching for the minimum value of y0 that still satisfies
equations (7) and (8) and also has vy0 < 0. Here we will show two methods of solving the problem:
the quick way and the rigorous way. The quick way is probably the only that is possible during an
exam (given the time constraints).

First, we will use a big shortcut to enable the quick way to the solution. The shortcut is to imagine the
situation physically and directly deduce/guess that all three conditions must be “marginally satisfied”
(i.e. you can turn the inequality symbol into an equals sign). This is possible as we have a lot of
physical intuition about objects undergoing ballistic motion. It makes sense that, to hit down on the
ball at the minimum possible value of y0, you would want to hit the ball with a value of vy0 that was
barely negative, then have the ball barely pass over the net and land barely before the service line. From

11
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this physical insight, we take vy0 = 0 in equation (6) and substitute it into the marginal satisfied cases
of equations (7) and (8) to find

− g

2v2x0
x2
n + y0 = h (9)

− g

2v2x0
x2
f + y0 = 0 (10)

respectively. Rearranging equation (10) shows that
g

2v2x0
=

y0
x2
f

, (11)

which we can substitute into equation (9) to find

−

(
y0
x2
f

)
x2
n + y0 = h ⇒

(
1− x2

n

x2
f

)
y0 = h ⇒ y0 =

(
1−

(
xn

xf

)2
)−1

h. (12)

Now we will show an alternative method to solve this problem: the rigorous way. First, we will
substitute equation (6) into equations (7) and (8) to write down

− g

2v2x0
x2
n +

vy0
vx0

xn + y0 > h (13)

− g

2v2x0
x2
f +

vy0
vx0

xf + y0 < 0 (14)

respectively. We are seeking the minimum value of y0 for which it is possible to simultaneously satisfy
equations (13) and (14) as well as

vy0 < 0. (15)

The quantities g, xn, xf , and h are fixed known positive quantities, while vx0 and vy0 should be chosen
to minimize y0 while still respecting the three constraints. We can immediately argue that equation (13)
should be marginally satisfied. Imagine you claimed that you had the solution for the minimum y0 and
it occurred for values of vx0 and vy0 that did not marginally satisfy equation (13). For any such solution,
I could take it and simply reduce the value of y0 (keeping vx0 and vy0 unchanged) until equation (13)
was marginally satisfied. My solution would have a lower value of y0 and still respect equation (13)
(but just barely). It would also respect equation (14) because decreasing y0 while maintaining vx0
and vy0 takes you further away from the limit. It would also still satisfy equation (15) as changing y0
has no effect on vy0. Thus, equation (13) must be marginally satisfied. This conclusion is intuitive.
Any trajectory that travels over the net with room to spare and still lands in the green region can
be shifted downwards without deformation, thereby achieving a lower y0 while still satisfying all three
constraints.
Therefore, we should rewrite equation (13) as

− g

2v2x0
x2
n +

vy0
vx0

xn + y0 = h. (16)

We can solve this equation for y0 to find

y0 = h+
g

2v2x0
x2
n +

(−vy0)

vx0
xn, (17)

where we write −vy0 in this way to remind ourselves that vy0 is necessarily negative according to
equation (15). Substituting equation (17) into equation (14) gives

− g

2v2x0
x2
f −

(−vy0)

vx0
xf +h+

g

2v2x0
x2
n+

(−vy0)

vx0
xn < 0 ⇒ h− g

2v2x0

(
x2
f − x2

n

)
− (−vy0)

vx0
(xf − xn) < 0,

(18)

12



PHYS-101(en) 20 January 2023 - Solution to the Final Exam

where we note that xf > xn so both x2
f − x2

n > 0 and xf − xn > 0 (which is important for the coming
argument). Now we will argue that this equation must be marginally satisfied. Imagine you claimed
that you had the solution for the minimum y0 and it occurred for values of vx0 and vy0 that did not
marginally satisfy equation (18). I could take this solution and increase the value of vx0 (keeping vy0
unchanged) until equation (18) was marginally satisfied. My solution would still respect equation (18)
(but just barely). It would also satisfy equation (15) as changing vx0 has no effect on vy0. Crucially,
equation (17) shows that my solution (which has a larger value of vx0) would have a smaller value of
y0 than yours. Thus, equation (18) must be marginally satisfied. This result is intuitive if you imagine
the situation. Due to the previous argument, here we are only considering trajectories that barely
pass over the net. If such a trajectory lands before the service line with room to spare, you could hit
the ball harder in the x direction. This would cause it to travel further before landing, but reach the
horizontal position of the net more quickly. This reduces the vertical distance the ball falls between
being hit and reaching the net, thereby enabling a lower starting position y0.
Therefore, we should rewrite equation (18) as

h− g

2v2x0

(
x2
f − x2

n

)
− (−vy0)

vx0
(xf − xn) = 0. (19)

Solving this equation for vy0 yields

vy0 =
vx0

xf − xn

g

2v2x0

(
x2
f − x2

n

)
− vx0

xf − xn
h =

g

2vx0
(xf + xn)−

vx0
xf − xn

h. (20)

Plugging this into equation (15) gives an lower bound on the horizontal velocity

g

2vx0
(xf + xn)−

vx0
xf − xn

h < 0 ⇒ v2x0
xf − xn

h >
g

2
(xf + xn) ⇒ v2x0 >

g

2h

(
x2
f − x2

n

)
. (21)

Substituting equation (20) into equation (17) gives

y0 = h+
g

2v2x0
x2
n − xn

vx0

g

2vx0
(xf + xn) +

xn

vx0

vx0
xf − xn

h = h− g

2v2x0
xnxf +

xn

xf − xn
h (22)

=
xf − xn

xf − xn
h− g

2v2x0
xnxf +

xn

xf − xn
h =

xf

xf − xn
h− g

2v2x0
xnxf . (23)

From equation (23) we see that, to minimize y0, we want to decrease v2x0 as much as possible. Thus,
equation (21) should be marginally satisfied, becoming

v2x0 =
g

2h

(
x2
f − x2

n

)
. (24)

Substituting this into equation (23) gives

y0 =
xf

xf − xn
h− g

2

(
2h

g

1

x2
f − x2

n

)
xnxf =

(
xf

xf − xn
− xnxf

x2
f − x2

n

)
h (25)

=

(
xf (xf + xn)

x2
f − x2

n

− xnxf

x2
f − x2

n

)
h =

x2
f

x2
f − x2

n

h =

(
1−

(
xn

xf

)2
)−1

h. (26)

This is the final answer, which is consistent with the result of the first method (i.e. equation (12)) as
expected.

f. Plugging the numerical values into equation (12) or (26) gives

y0 =

(
1−

(
12 m
18 m

)2
)−1

(1 m) =

(
1−

(
2

3

)2
)−1

(1 m) =

(
9

9
− 4

9

)−1

(1 m) =
9

5
m = 1.8 m. (27)
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g. While this derivation is long, it is straightforward and follows the same method as in part b. However,
in part b the ball experienced standard ballistic motion, so we could immediately write down x(t) and
y(t). In the presence of drag, these functions are no longer obvious. Instead we must start by writing
down Newton’s second law, which is∑

F⃗ = ma⃗ ⇒ −mgĵ − βv⃗ = m
dv⃗

dt
⇒ − gĵ − β

m
vxî−

β

m
vy ĵ =

dvx
dt

î+
dvy
dt

ĵ. (28)

First we will take the î component to find the differential equation

− β

m
vx =

dvx
dt

. (29)

This can be solved using separation of variables and the chain rule to find

1

vx

dvx
dt

= − β

m
⇒ d

dt
(ln (vx)) = − β

m
⇒ ln (vx) = − β

m
t+C1 ⇒ vx (t) = exp

(
− β

m
t

)
exp (C1) .

(30)
Applying the initial condition for the velocity in the x direction gives

vx (0) = vx0 = exp (C1) ⇒ exp (C1) = vx0, (31)

so equation (30) becomes

vx (t) = vx0 exp

(
− β

m
t

)
. (32)

To find the position x we simply integrate this to find

x (t) = −m

β
vx0 exp

(
− β

m
t

)
+ C2. (33)

Applying the initial condition for the x position gives

x (0) = 0 = −m

β
vx0 + C2 ⇒ C2 =

m

β
vx0, (34)

so equation (33) becomes

x (t) = −m

β
vx0 exp

(
− β

m
t

)
+

m

β
vx0 =

m

β
vx0

(
1− exp

(
− β

m
t

))
. (35)

Similarly to part b, we will need to solve this equation for t and then substitute it into y(t) to find the
trajectory y(x). Rearranging equation (35) gives

β

mvx0
x = 1− exp

(
− β

m
t

)
, (36)

which will be a useful intermediate step. Rearranging further gives

exp

(
− β

m
t

)
= 1− β

mvx0
x ⇒ − β

m
t = ln

(
1− β

mvx0
x

)
⇒ t = −m

β
ln

(
1− β

mvx0
x

)
. (37)

Now we will turn to the ĵ component of equation (28)

−g − β

m
vy =

dvy
dt

⇒ dvy
dt

+
β

m
vy = −g. (38)
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This is a first-order inhomogeneous differential equation with constant coefficients. We can solve it
by writing the solution as a sum of the homogeneous solution vyh(t) and the inhomogeneous solution
vyi(t)

vy(t) = vyh(t) + vyi(t). (39)
We can guess that the inhomogeneous solution will need to be a constant to cancel the right-hand side
of the differential equation (i.e. the inhomogeneous term). Substituting vyi(t) = C for vy in equation
(38) shows that

dvyi
dt

+
β

m
vyi = −g ⇒ 0 +

β

m
C = −g ⇒ C = −mg

β
⇒ vyi(t) = −mg

β
. (40)

To find the homogeneous solution we substitute the whole form of the solution (i.e. equation (39) along
with equation (40)) into the differential equation of equation (38) to see

dvyh
dt

+
dvyi
dt

+
β

m
vyh +

β

m
vyi = −g ⇒ dvyh

dt
+ 0+

β

m
vyh − g = −g ⇒ − β

m
vyh =

dvyh
dt

. (41)

This differential equation has an identical form to equation (29), so we can look at the solution of
equation (30) and write down

vyh (t) = exp

(
− β

m
t

)
exp (C3) . (42)

By substituting this and equation (40) into equation (39), we find the full solution of

vy(t) = exp

(
− β

m
t

)
exp (C3)−

mg

β
. (43)

Applying the initial condition for the velocity in the y direction gives

vy (0) = vy0 = exp (C3)−
mg

β
⇒ exp (C3) = vy0 +

mg

β
, (44)

so equation (43) becomes

vy(t) =

(
vy0 +

mg

β

)
exp

(
− β

m
t

)
− mg

β
. (45)

To find the position y we simply integrate this to get

y (t) = −m

β

(
vy0 +

mg

β

)
exp

(
− β

m
t

)
− mg

β
t+ C4. (46)

Applying the initial condition for the y position gives

y (0) = y0 = −m

β

(
vy0 +

mg

β

)
+ C4 ⇒ C4 =

m

β

(
vy0 +

mg

β

)
+ y0, (47)

so equation (46) becomes

y (t) = −m

β

(
vy0 +

mg

β

)
exp

(
− β

m
t

)
− mg

β
t+

m

β

(
vy0 +

mg

β

)
+ y0 (48)

=
m

β

(
vy0 +

mg

β

)(
1− exp

(
− β

m
t

))
− mg

β
t+ y0. (49)

Similarly to part b, we will now substitute in our solution for t from the x component of the mo-
tion. However, we can save some effort by substituting equation (36) as well as equation (37) (where
appropriate). This yields the final answer of

y (x) =
m

β

(
vy0 +

mg

β

)(
β

mvx0
x

)
− mg

β

(
−m

β
ln

(
1− β

mvx0
x

))
+ y0 (50)

=
1

vx0

(
vy0 +

mg

β

)
x+

m2

β2
g ln

(
1− β

mvx0
x

)
+ y0. (51)
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