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Figure 4.3: Experimental and theoretical regular solution parameters
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Figure 7.8: Temperature-dependent nonequilibrium impurity partition
coeflicients during epitaxy.
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Figure 5.8: Critical layer thicknesses for given lattice parameter mis-
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Preface

The technology of crystal growth has advanced enormously during the past
two decades. Among these advances, the development! and refinement
of molecular beam epitaxy (MBE) has been among the most important.
Crystals grown by MBE are more precisely controlled than those grown by
any other method, and today they form the basis for the most advanced
device structures in solid-state physics, electronics, and optoelectronics.
As an example, Figure 0.1 shows a vertical-cavity surface emitting laser
structure grown by MBE.

Broadly stated, MBE is simply crystallization by condensation or reac-
tion of a vapor in ultra-high vacuum (UHV). The eztremeness of the UHV
environment, however, has several important consequences, both for the
device physicist interested in the properties of the grown material, and for
the materials or surface scientist interested in the growth process itself.

First, MBE surfaces are extremely clean (even cleaner than those com-
monly studied by surface scientists). Base pressures are typically ~ 5 x
10~ 1! Torr, near the background-x-ray-induced ~ 2 x 10~!! Torr detection
limit of conventional ionization gauges. Even then, the residual gas is com-
posed mainly of Hy, which is largely benign. Partial pressures of hydrocar-
bons, which are less benign, are typically less than the ~ 1 x 104 Torr de-
tection limit of common quadrupole mass spectrometers, particularly when
augmented by the now-standard liquid-nitrogen-cooled cryoshrouds. As a
result, the device physicist can grow very-high-purity crystals of controlled
composition, and the materials/surface scientist can study intrinsic crystal
growth apart from extrinsic effects due to impurities or contamination.

Second, crystal growth occurs via the reaction and condensation of
molecules that arrive at the surface via molecular, rather than viscous or
diffusive, flow. In other words, molecules don’t collide with one another
enroute to the substrate, and molecules that miss or leave the substrate

1A.Y. Cho and J.R. Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem. 10,
157 (1975).

xi
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Mirror

Active
Region

Mirror

2 um
Figure 0.1: Vertical-cavity surface emitting laser structure grown by MBE.
The structure is composed of a set of electrically pumped light-emitting
GaAs/Al;Ga;_;As quantum wells sandwiched between two sets of layered
AlAs/Al, Ga;_;As superlattice interference mirrors.”

2Photo courtesy of T.M. Brennan and B.E. Hammons, Sandia National Laboratories,
Albuquerque, NM 87185-5800.

are pumped away nearly immediately. As a result, the device physicist
can grow multilayered structures with extremely abrupt interfaces, and the
materials/surface scientist can study microscopic processes occuring on the
surface apart from the diffusion-controlled mass and/or heat transport to
and from the surface that complicate other forms of crystal growth.
Third, the growing surface is accessible to observation using powerful
real-time surface-science diagnostics which require high vacuum. For exam-
ple, reflection high-energy electron diffraction (RHEED) is routinely used
to monitor the structure and microstructure of growing surfaces,? reflec-
tion mass spectrometry (REMS) and modulated beam mass spectrometry
(MBMS) can be used to monitor the chemistry of growing surfaces, and
reflectance difference spectroscopy (RDS) can be used to monitor the com-
position and optical properties of growing surfaces. As a result, the device
physicist can control and reproduce the state of the surface (and the subse-

2By structure we mean the crystallography of defect-free surfaces; by microstructure
we mean the distribution of point and line defects that interrupt that otherwise perfect
crystallography.
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quent quality of the grown crystal) very precisely, and the materials/surface
scientist can study directly the real-time evolution of surface structure, mi-
crostructure, and composition.

For all these reasons, MBE is interesting both to device physicists as
well as to materials and surface scientists. We do not exaggerate when
we note, however, that historically it has been more interesting to device
physicists. Device physicists have provided, and continue to provide, most
of the impetus for research in MBE. As a result, today’s MBE practitioners
have an enormous number of device “customers” to satisfy. Often, they are
hard-pressed to keep abreast of the latest advances in technology, much less
explore more fundamental aspects of their craft. Indeed, the technology
of MBE is itself rapidly evolving, as is evident from recent monographs
reviewing its current state of the art.®> Figure 0.2 shows, for example, a
schematic of a modern commercial MBE system with all of the advanced
hardware required for operation in a production environment.

This book is intended to begin to bridge the gap separating MBE prac-
titioners from the more fundamental aspects of their craft by gathering
together in a coherent manner the basic materials science principles that
apply to MBE. It has two aims. First, it aims to show how the various as-
pects of MBE “fit” into the perspective of materials science. For this reason,
this book may be a useful supplement to intermediate or advanced courses
in materials science. Second, it aims to treat the most important aspects
of MBE in such depth as to benefit both advanced graduate students as
well as professional researchers. It does not aim to discuss superficially all
aspects of MBE, but rather comprehensively the most basic materials sci-
ence aspects of MBE, and particularly those aspects that add richness and
insight into other methods of crystal growth. Because MBE is the simplest
and most basic method of crystal growth, an appreciation of MBE adds
richness and insight into virtually all other methods. For this reason, this
book may also be a useful supplement to intermediate or advanced courses
in crystal growth.

The book lays heavy emphasis on the statistical and thermodynamic as-
pects of MBE, although some kinetic aspects are also treated. This choice
of emphasis has been unavoidably colored by my own personal preferences
and interests, and circumscribed by limits to my own knowledge and tech-
nical competence. For example, I have deliberately steered clear of many
important topics related to the microscopic physics and chemistry of sur-

3E.H.C. Parker, ed., The Technology and Physics of Molecular Beam Epitary
(Plenum Press, New York, 1985); E. Kasper and J.C. Bean, Eds., Silicon Molecular
Beam Epitazy, Vols. I and II (CRC Press, Boca Raton, 1988); and M.A. Herman and H.
Sitter, Molecular Beam Epitazy: Fundamentals and Current Status (Springer-Verlag,
Berlin, 1989).
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Figure 0.2: Commercial MBE system manufactured by Instruments SA, Riber
Division.® The system is intended to perform epitaxial growth simultaneously on

multiple wafers via evaporation of elemental sources in ultra-high vacuum (UHV).
Some of the major parts of the system are labeled: (A) a UHV growth chamber,
(B) a shutter for an evaporation source, (C) an evaporation source, (D) a rotating
platten station for mounting multiple wafers, (E) a preparation station for wafer
degassing, (F) a shuttle mechanism for transporting wafer plattens, (G) a load-
locking chamber for transferring plattens between atmosphomeric pressure and
UHV, (H) rack-and-pinion mechanisms for transfer of plattens, (I) cryopumps for
maintaining UHV, (J) an ion pump, also for maintaining UHV, (K) a sublimation
well, (L) another cryopump, and (M) a rectangular gate valve.

“Photo courtesy of Riber Division, Instruments SA, 6 Olsen Avenue, Edison, NJ
08820-2419.

faces, such as atomic bonding configurations and reconstructions or atomic
mechanisms for adatom migration. However, I treat in great detail the
macroscopic materials science principles governing surface morphology and
its evolution during MBE.

The book assumes an understanding of solid-state physics and materials
science at the introductory graduate level. It is by no means “easy reading,”
and will need to be supplemented, at times, by intermediate or advanced
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textbooks in materials science such as those by Haasen? or Christian.> This
unfortunately appears so despite my efforts to make liberal use of clarifying
footnotes, exercises, and case studies of technologically important materials
systems. Most readers will find the barrier to entry into this book somewhat
high, but hopefully will exit from it very nearly at the forefront of current
research.

Unlike many other books, this one attempts to cite important original
articles. I have two reasons for doing so. First, such citations are the sci-
entist’s only formal way of respecting intellectual debts. Hence, I apologize
in advance for oversights. They are not intentional, but are caused either
by ignorance or by the “obliteration by incorporation” phenomenon,® in
which the origin of a piece of knowledge becomes obscured as it is incorpo-
rated into the existing body of common knowledge. Second, such citations
make it easier for students to enter new research areas. Through the use
of citation indices,” novices in a particular research area can usually bring
themselves up to date fairly quickly by searching for current articles which
cite in common a few important original works. My experience is that such
bibliographic searching, which goes forward in time, is an important com-
plement to the usual form of bibliographic searching, which goes backward
in time. In a sense, original articles define current research areas, do so
better than current articles, and become outdated much less quickly.

Throughout, I have imposed on the book my own peculiar organizational
structure. The book is not arranged according to the type of crystal that
is being grown (e.g., according to whether the crystal is IV-IV, III-V, II-
VI, or metallic), the way an advanced “users” manual might be. Rather,
it is arranged according to whether the materials science concepts involve
mainly bulk phase equilibria, thin film structure and microstructure, or
surface morphology and composition.

Part I contains most of the thermodynamic foundations of MBE, al-
though thermodynamic arguments and ideas will also be sprinkled liberally
throughout the rest of the book. Crystal growth is, of course, simply a
phase transformation (albeit delicately controlled), and hence the thermo-
dynamics of MBE is in large part the thermodynamics of bulk phase equilib-
ria. Chapter 1 provides an introduction to basic thermodynamic concepts;
Chapter 2 discusses equilibria between elemental phases and Chapter 3

4P. Haasen, Physical Metallurgy (Cambridge Univ. Press, Cambridge, 1978).

5J.W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed. (Perg-
amon Press, Oxford, 1975).

SR.K. Merton, Social Theory and Social Structure (The Free Press, New York, 1968),
pPp. 26-28, 35-38.

7Citation indices, now quite common and easy to use, were pioneered by E. Garfield;
see, e.g., E. Garfield, Citation Indexing — Its Theory and Application in Science, Tech-
nology and Humanities (John Wiley & Sons, New York, 1979).
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discusses equilibria between alloy phases.

Part II gives elementary descriptions of thin films grown either homoepi-
taxially, on substrates of the same material, or heteroepitaxially, on sub-
strates of a different material.® In particular, it describes how the structure
and microstructure of such films depend on substrate, through what are
called “epitaxial constraints.” Chapter 4 discusses short- and long-range
ordering and phase decomposition in epitaxially constrained thin film al-
loys, and Chapter 5 discusses the coherency/semicoherency transition dur-
ing lattice-mismatched epitaxy.

Part III deals with surfaces. Chapter 6 discusses the morphology of
surfaces, both equilibrium (in the absence of growth) and nonequilibrium
(in the presence of growth). Chapter 7 discusses the composition of surfaces,
again both equilibrium and nonequilibrium.

On a more technical note, this book was generated on an IBM-compatible
personal computer using mostly the following software: Epsilon® for pro-
gramming and text editing, [ATEXIO for formatting and typesetting, and
Genplot!! for numerical calculations and graphics. I highly recommend all
three. They have enabled me to “program” virtually every aspect of this
book, and to make both slight and massive changes easily and quickly.

Finally, it gives me great pleasure to acknowledge: colleagues and friends
too numerous to list who have either indirectly, through what they have
taught me, or directly, through thoughtful comments, contributed so much
to this book; colleagues who read and criticized early chapter drafts, Harry
Atwater, Dave Biegelsen, Scott Chalmers, Ben Freund, Kevin Horn, Tom
Klitsner, Jim Mayer, Leo Schowalter, Brian Swartzentruber, and Professor
David Turnbull; an understanding and supportive management at Sandia
National Laboratories, Paul Peercy, Tom Picraux, Harry Weaver, and Del
Owyoung; my loving parents, Ching and Matilda Tsao; Frances Koenig,
who taught me to value; and my wife Sylvia and son Emil, who taught me
value.

Jeffrey Y. Tsao
Albuquerque, New Mexzxico
June, 1992

8See, e.g., E.G. Bauer, B.W. Dodson, D.J. Ehrlich, L.C. Feldman, C.P. Flynn, M.W.
Geis, J.P. Harbison, R.J. Matyi, P.S. Peercy, P.M. Petroff, J.M. Phillips, G.B. Stringfel-
low and A. Zangwill, “Fundamental issues in heteroepitaxy — a Department of Energy,
Council on Materials Science Panel Report,” J. Mater. Res. 5, 852 (1990).

9Lugaru Software Ltd., 5740 Darlington Road, Pittsburgh, PA 15217.

101,, Lamport, BIEX: A Document Preparation System (Addison-Wesley, Reading,
MA, 1986); and D.E. Knuth, The TgXBook (Addison-Wesley, Reading, MA, 1984).

1 Computer Graphic Service, 221 Asbury Road, Ithaca, NY 14850.
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Part 1

Bulk Phase Equilibria

In this first part, we describe the thermodynamic properties of bulk
condensed and vapor phases. Those properties determine the pressures
and temperatures at which various phases or phase mixtures are more or
less stable with respect to each other, and ultimately define the window
in growth conditions within which MBE is preferred over condensation of
unwanted phases. The windows are often sharp and unforgiving, and are
nearly always the primary consideration in choosing growth conditions.
During GaAs MBE, e.g., Asy or As; overpressures must be higher than a
critical, temperature-dependent value, because otherwise the surface readily
decomposes into Ga liquid and As; vapor.

We begin, in Chapter 1, with a concise, general description of free en-
ergies. Free energies are the metrics that determine the relative stability of
phases when these phases are “open” with respect to exchange with their
environment of extensive quantities such as heat, volume or mass. Then, in
Chapters 2 and 3, we show how to calculate free energies for elemental and
alloy bulk and vapor phases. For elemental phases, discussed in Chapter 2,
the free energies determine directly the relative stabilities of the phases.
For alloy phases, discussed in Chapter 3, the free energies determine the
relative stabilities both of phases and of phase mixtures through what is
known as the common tangent construction.
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Chapter 1

Free Energies and Open
Systems

From a thermodynamics point of view, MBE is ultimately just an exceed-
ingly precise, controlled phase transformation from a vapor to a crystalline
solid. As with other phase transformations, there are two basic questions
we would like to answer.

The first question is: why does the transformation occur — why is the
crystalline solid phase favored over the vapor phase as well as over other
possible competing solid or liquid phases? In other words, what quantities
are maximized or minimized for the system to be in equilibrium? We shall
find that the answer depends on whether the system is closed or open to
its external environment: in a closed system, the energy of the system is
minimized, while in an open system, one of a number of free energies is
minimized.

The second question is: by how much does the transformation want to
occur — what is the “driving force” for the transformation? In other words,
if the system is not in equilibrium, by how much is it not in equilibrium?
This question is especially important for transformations, such as MBE,
that occur very far from equilibrium. We shall find, again, that the answer
depends on whether the system is closed or open with respect to its envi-
ronment. If a closed system is not in equilibrium because its energy can be
decreased, then its deviation from equilibrium is the amount by which its
energy can be decreased. If an open system is not in equilibrium because
its free energy can be decreased, then its deviation from equilibrium is the
amount by which its free energy can be decreased.

In nearly all situations of interest to MBE, the system we are concerned
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Figure 1.1: Thermodynamic system embedded in a large, closed environment.

with will be open. Therefore, the metric that will be appropriate to quanti-
fying relative thermodynamic stability will be a free energy, usually what is
known as the Gibbs free energy. In this first chapter, we will introduce that
metric. We begin, in Sections 1.1 and 1.2, with descriptions of the equilib-
rium thermodynamics of closed and open systems. Then, in Section 1.3, we
illustrate the distinction between the two kinds of systems with a concrete
example: an electrical capacitor. When disconnected from a battery, the
capacitor represents a closed system with respect to exchange of electrical
charge; when connected to a battery, it represents an open system with
respect to exchange of electrical charge. Finally, in Section 1.4, we discuss
the nonequilibrium thermodynamics of closed and open systems.

1.1 Closed Systems

Consider, as illustrated in Figure 1.1, a system embedded in a large environ-
ment. The system and its environment are each characterized by internal
energies (U%® and U®"), entropies (S** and $°"") and volumes (V*¥* and
Venv). Let us first treat, in this section, closed systems. Closed systems are
simpler to understand, although they are not as appropriate in describing
MBE as are open systems.

If a system is closed, i.e., isolated in all respects from its external envi-
ronment, then, with one exception, its “extensive” quantities are conserved.
By extensive quantities, we mean those that scale with the size of the sys-
tem, such as internal energy (UY®) or volume (V*¥%). The one extensive
quantity not conserved is the entropy (S%°). Indeed, from the second law
of thermodynamics, we know that a closed system (in which energy is con-
served) will evolve in such a way as to increase and eventually maximize
its entropy.
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1.1. Closed Systems 5

Entropy, however, is not as physically intuitive a concept as is energy,
and so it is often useful to rephrase mathematically this entropy mazimiza-
tion principle in terms of an energy minimization principle. That principle
is: if entropy were conserved, the system would evolve in such a way as to
decrease and eventually minimize its energy.! It is important to keep in
mind, however, that this energy minimization at constant entropy principle
is really only a mathematical trick for telling us the correct direction in
which the system will evolve, and that it has no physical basis. After all,
energy is conserved, and hence cannot be minimized.

To clarify this idea, consider the closed system illustrated at the left
of Figure 1.2, in which a rock sits at the top of a slide. The system has
two kinds of internal energy — the potential energy of the rock and the
thermal energy stored in the rock and the slide. Suppose the rock has mass
m and the slide has a vertical height h, so that the potential energy is
mgh, where g is the gravitational acceleration. Furthermore, suppose the
heat capacity (Cy) of the rock and the slide is constant above a certain
temperature T,, so that the thermal energy increases linearly above that
temperature according to Q, +Cy (T —T,), where Q, is the thermal energy
at T,. Then, as illustrated in the middle panel of Figure 1.2, if the rock is at
the position marked A at the top of the slide, the temperature-dependent
internal energy is U = mgh+ Q, + Cv (T —T,), while if the rock is at the
position marked B at the bottom of the slide, the temperature-dependent
internal energy is only U%Y® = Q, + Cy (T — T,).

Note that although the internal energy depends on whether the rock
is at the top or bottom of the slide, the entropy does not. The entropy
is purely thermal in origin, and increases with temperature according to
TdS®Y® = CydT. Then, as illustrated in the right panel of Figure 1.2, the
temperature-dependent entropy is S%° = S, + Cy In(T/T,), where S, is
the entropy at T,.

Now, suppose we allow the rock to slide down. The potential energy
decreases, so on the energy-temperature diagram we drop from point A to
point By, i.e., UY® decreases. Moreover, suppose that we could somehow
prevent the energy that was released from becoming thermal energy. Then,
since the thermal energy (and hence temperature) would be constant, points
A and B; on the entropy-temperature diagram would overlay each other.
Therefore, if entropy could somehow be kept fixed, the system would evolve
in such a way as to decrease and eventually minimize its internal energy.

Note, though, that we really cannot prevent the energy that was released
from becoming thermal energy, since energy must be conserved. In fact, on

'H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd Ed.
(Wiley & Sons, New York, 1985).
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Figure 1.2: Temperature dependence of the internal energies and entropies of
a closed thermodynamic system composed of a rock on a slide. In the middle
panel, the upper internal energy curve corresponds to the rock at the top of the
slide; the lower internal energy curve corresponds to the rock at the bottom of
the slide. Point A corresponds to the rock on top of the slide, at a particular
temperature. Point B; corresponds to the rock having slid to the bottom of the
slide, assuming conservation of entropy. Point B2 corresponds to the rock having
slid to the bottom of the slide, assuming conservation of energy.

the energy-temperature diagram, the system will really evolve laterally from
point A to point Bs, i.e., energy is constant but the temperature increases.
At the same time, on the entropy-temperature diagram, the entropy rises
from point A to point B,. Therefore, at constant internal energy, the system
will actually evolve in such a way as to increase and eventually maximize
its entropy.

Nevertheless, in telling us the direction in which the system would like to
evolve, the two principles are the same. Entropy maximization at constant
energy and energy minimization at constant entropy, though physically
inequivalent, are mathematically equivalent.

1.2 Open Systems

In Section 1.1, we treated closed systems whose extensive quantities, such
as U®S or V%% are conserved. In this section, we treat open systems.
Such systems are not fully isolated from their external environments, and
so their extensive quantities need not be conserved. If the environment is a
reservoir of heat at a fixed temperature, 7', then entropy will be exchanged
so as to keep the system at the same fixed temperature. If the external
environment is a reservoir of “volume” at a fixed pressure, p, then volume
will be exchanged so as to keep the system at the same fixed pressure.
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1.2. Open Systems 7

In such an open system, it is well known, but perhaps not physically
intuitive, that the equilibrium state of the system is that for which one of a
number of “free energies” is minimal. For example, at constant temperature
the equilibrium state of the system has a minimimal Helmholtz free energy,

F5Y8 = U™s — TS, (1.1)

At constant pressure it has a minimimal enthalpy,
HY® = USS 4 pV'™s, (1.2)
At constant temperature and pressure it has a minimimal Gibbs free energy,
G = US® — T S® 4 pV¥s, (1.3)

Note that the free energies differ from the internal energy by the addition
or subtraction of terms involving extensive quantities, which the system is
free to exchange with its environment, and their conjugate intensive param-
eters. Those terms arise because the equilibrium state of an open system
is that which minimizes the internal energy of the system combined with
that of its environment; they account for possible changes in the internal
energy of that environment. Because changes in the internal energy of the
external environment are due solely to exchange of extensive quantities with
the system, they can be conveniently expressed in terms of those extensive
quantities.

Suppose, for example, that a system can freely exchange entropy and
volume with its environment, and hence is at constant temperature and
pressure. If, due to some transformation, the entropy or volume of the
system changes, then there must be equal and opposite changes in the
surrounding environment — heat must flow or volume must be exchanged.
But by energy conservation, the internal energy of the environment must
then also change, by

dU™ = TdS®™ — pdVe™ = —TdS™* + pdV*®. (1.4)

Therefore, the change in the combined energies of the system and its envi-
ronment is

d(U™® + U™) = dU™® — TdS™® + pdV>*, (1.5)
or, since temperature and pressure are constant,
d(U® + U™) = d(U%® — TS%* 4 pV™¥s), (1.6)

In other words, minimizing the internal energy of the system combined
with its environment, USY® 4+ U®"V | is the same as minimizing the Gibbs free
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energy given by Equation 1.3, of the system alone. The extra terms in the
free energies are merely a convenient way of accounting for thermodynamic
changes in the environment, via thermodynamic variables that have only to
do with the system itself.

1.3 Thermodynamics of a Capacitor

In Sections 1.1 and 1.2, we gave general, but abstract, treatments of the
equilibrium thermodynamics of closed and open systems. In this section,
we concretize the treatments by applying them to the two simple systems
shown in Figure 1.3. Both systems consist of a capacitor whose capacitance
is C, and a dielectric whose incremental motion toward the capacitor incre-
mentally increases the capacitance by dC. Given a charge, @ = CV/, that
is initially placed on the capacitor, we ask whether or not the dielectric will
be attracted to the capacitor.

The system on the left in Figure 1.3 is “closed”: charge, which is the
relevant extensive quantity in this system, is not free to enter or leave the
capacitor. Then, if entropy were constant, the energy of the system, Q?/2C,
would decrease as the capacitance increases according to

o [1Q?] 1> 1,
%[5?] =32 (1.7)

In other words, the dielectric is attracted to the capacitor.

The system on the right in Figure 1.3 is “open”: charge is free to leave
the capacitor, so as to maintain a constant voltage, V', which is the relevant
intensive parameter in this system. Then, if entropy were constant, the
energy of the system would increase as the capacitance increases according
to

a1 ., , 1,
5C [ZCV]V_+2V . (1.8)
At first glance the dielectric would seem not to be attracted to the capacitor.
However, we have neglected the flow of charge from the battery to the
capacitor, which, at constant voltage, has decreased the energy stored in the
external battery by VdQ = d(QV) = d(CV?). If we include that energy,
then the energy of the system combined with its environment does decrease
as the capacitance increases:

o [1 1 1

— |zCVZ-CV?| =_-VZ_Vi=__V2 1.9

aC [2 ]V 2 2 (19)
In both systems, then, the dielectric is attracted to the capacitor. In the

closed system, the metric that gives us that answer is the internal energy
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Closed System Open System
r
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\|<

——=>

Figure 1.3: Thermodynamic systems consisting of capacitors and movable di-
electrics. The system on the left is “closed,” in that charge on the capacitor is
conserved. The system on the right is “open,” in that charge can be exchanged
with the external battery in order to maintain a constant voltage V on the ca-
pacitor.

of the system, USY® . In the open system, however, the metric that gives us
that answer is the free energy of the system, U%Y® — Q%Y3V.

1.4 Driving Forces for Transformations

Thus far, in discussing the direction in which systems evolve, we have elabo-
rated on the mathematical rule that systems tend to decrease and eventually
minimize their energy at constant entropy. In doing so, we have implicitly
couched our arguments in the language of so-called “reversible,” or equilib-
rium, thermodynamics, for which entropy is conserved. In all real systems,
including the capacitor example just considered in Section 1.3, transforma-
tions are to some extent irreversible, in that entropy is not conserved, but
increases. Therefore, to quantify not just the direction in which the system
will evolve, but the “driving force” for that evolution, we return, in this
section, to the physical rule that a system will evolve in such a way as to
increase and eventually maximize its entropy at constant energy.

Since transformations will generally have some degree of irreversibility
and reversibility, it is convenient to write changes in the entropy of the
system as dS®° = dS;7°+dS5¥5. The irreversible part of the entropy change

rev’*

(dS:>®) must be positive, and is not compensated by any corresponding

entropy decrease in the environment. The reversible part (dS5Y3) may be

positive or negative, but must be compensated exactly by a corresponding

change in the entropy of the surrounding environment, i.e., dS*"V = —dS¥s.
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In this language of irreversible thermodynamics, the most basic defini-
tion of the stability of a system is that there should not exist some transfor-
mation for which dS;”° > 0, since otherwise it would be possible to increase
the combined entropy of the system and its environment. Hence, dS;> is
a measure of the degree to which the system deviates from equilibrium.

For example, in a closed system, for which dS®" = —dSSYS = 0 and

dSsys = dU*vs T,

Sys
dsve = -0
T
If the internal energy of a closed system would have decreased in a hy-
pothetical system for which entropy is conserved, then the irreversible en-
tropy is what would actually increase in a real physical system for which
energy must be conserved. Hence, in a closed system the deviation from
equilibrium is exactly the amount by which the internal energy would have
decreased were entropy to have been conserved. Thus, the deviation from
equilibrium can be evaluated in terms of the physically more intuitive con-
cept of energy, rather than in terms of the physically less intuitive concept
of entropy.
In an open system, for which dS°™ = —dSsY$ #£ 0,

rev

(1.10)

dsSyYs = (dS;2° +dSys) — (dS5Y) (1.11)

irr irr rev

1 p
45y — [ =dusvs — B qyevs
(dS™?) (T ? )

1
= ——dG™.
T

If the Gibbs free energy of an open system decreases, then the irreversible
entropy of the system increases. Note that, unlike the internal energy, the
Gibbs free energy need not be conserved, because it includes the entropy of
the system, which may increase irreversibly. Hence, in an open system the
deviation from equilibrium is exactly the amount by which the Gibbs free
energy can decrease.

In an open system, therefore, Gibbs free energies measure the rela-
tive stability of different phases, by telling us how much entropy would be
created if the transformation were to occur. They tell us how far from
equilibrium a given transformation is, and its degree of reversibility. Near-
equilibrium transformations are those for which dG%¥* is approximately
zero. Consequently, dS;>° is also approximately zero, entropy is conserved,

and the transformations are reversible. Far-from-equilibrium transforma-

tions are those for which dG* differs substantially from zero. Then, dS;7°

also differs substantially from zero, entropy is not conserved, and the trans-
formations are irreversible.
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Suggested Reading
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2. L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon Press,
Oxford, 1969).

Exercises

1. Suppose that, instead of the single slide shown in Figure 1.2, there
are many (N) slides all arranged in a circle facing outwards. They
each have their own distinct upper levels, but they all share a common
lower level. Assuming that there is still only a single rock, the entropy
of the system is greater if the rock is on an upper level than if it is on
the lower level, by a configurational entropy term, S22, = kIn(N).
For what temperatures will the equilibrium state of the system be
that for which the rock is on one of the upper levels, rather than on
the lower level?

2. Suppose that the closed single-rock single-slide system shown in Fig-
ure 1.2 were open, in that it exchanges heat with its environment so
as to maintain constant temperature 7. How do the entropies and
internal energies of the system and its environment change as the rock
slides down? How does the Gibbs free energy of the system change
as the rock slides down?

3. Imagine a system divided into two identical halves, each of whose
internal energies are purely thermal in origin. Each half has the same
heat capacity, Cv, hence their internal energies Uy 2 = U, + CvT
and entropies S; 2 = S, + Cy In(T/T,) depend on temperature in
the same way. Suppose one half is at temperature T, but the other
half is at temperature T>. What is the total entropy of the system?
Suppose heat flows between the two halves, until each half has the
same temperature. What is the new temperature? What is the new
total entropy of the system? Show that the entropy has increased,
and calculate by how much. Illustrate the changes graphically on an
S vs. T plot.
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Chapter 2

Elemental Phases

In Chapter 1, we showed that the metrics that govern the relative stabil-
ity of phases contained in open systems are free energies of various kinds.
For MBE and most other forms of crystal growth, both volume and heat
are exchanged with the external environment so as to keep pressure and
temperature constant throughout the system and its environment. Hence,
the metric that measures the relative stabilities of different phases is the
Gibbs free energy defined by Equation 1.3. Describing how to calculate
the Gibbs free energies of different kinds of solid, liquid, and vapor phases
is therefore the essence of this and the next chapter. In this chapter, we
consider elemental phases; in the next chapter we consider alloy phases.

We begin, in Section 2.1, by introducing a standard nomenclature. In
our experience, an inconsistent and complex nomenclature can make ther-
modynamics unnecessarily difficult, and so we have tried to make ours as
simple and self-explanatory as possible. In particular, we focus attention
on molar quantities, such as molar Gibbs free energies, molar entropies and
enthalpies, and molar heat capacities.

Then, in Sections 2.2 and 2.3, we describe how to calculate the molar
Gibbs free energies of various elemental phases. In doing so, it will be use-
ful to distinguish between condensed and vapor phases. In Section 2.2, we
treat condensed phases for which practical calculations are usually based
on thermodynamic heat capacities. In Section 2.3, we treat vapor phases,
for which calculations are usually based on first-principles statistical me-
chanical partition functions.

Finally, in Section 2.4, we present detailed case studies of the phases
of two simple but important elements: Si and Ge. These case studies il-
lustrate nearly all the essential features of the calculation of molar Gibbs
free energies of elemental phases. In particular, we will calculate the mo-

13
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lar Gibbs free energies of the condensed crystalline, amorphous and liquid
phases, as well as of the vapor phase, which is composed of a mixture of
monomers and dimers. In a sense, Figure 2.3 at the end of Section 2.4 is
the main result of this chapter.

2.1 Nomenclature and Preliminaries

Let us first introduce, in this section, a standard nomenclature. Consider
a phase, a, composed exclusively of N, moles (or atoms) of a single com-
ponent, a. The Gibbs free energy of such a phase is the difference between
two terms:

Ga(paTaNa) = Ha(p,T,Na)—TSa(p,T,Na). (21)
The first term, the enthalpy,
H*(p,T,Na) = U*(p, T, Na) +pV*(p, T, Na), (2.2)

is itself actually the free energy at constant pressure. The second term, as
discussed in Chapter 1, is a constant-temperature correction due both to
reversible heat flow into and out of the system and to irreversible entropy
creation. The Gibbs free energy can, in a sense, be thought of as the free
enthalpy at constant temperature.

From the Gibbs free energy of « is derived the molar Gibbs free energy
(the Gibbs free energy per mole or per atom) of a,

«a GQ 1)7 T, Na
¢(p1) = ST, (23)
and the chemical potential of a in a,
o 0G*(p, T, N,
Ha(p,T) = —(aN ), (2.4)

Both ¢g%(p,T) and u%(p,T) have the same units, namely, energy per
mole (or per atom). However, they have very different physical interpre-
tations: g%(p,T) is a property of a phase and is used to compare relative
stabilities of different phases, while u&(p, T') is a property of a component in
a phase, and is used to compare relative propensities of that component to
incorporate into different phases. Later on in this book, when we consider
two-component phases, the distinction between the two will be important.
However, for the single-component phases discussed in this chapter, they
have the same magnitudes, and the distinction is not important. Never-
theless, even in this chapter we will for consistency use molar Gibbs free
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energies in comparing relative stabilities of phases, even though we could
just as well use chemical potentials.

Throughout this book we will adopt the chemist’s language, in which
g% is referred to as a molar quantity and pug is referred to as a partial
molar quantity. However, we will not attach to these two quantities ei-
ther the chemist’s preferred units of kcal/mole or the materials scientist’s
preferred units of kJ/mole. Instead, we will attach to them the physi-
cist’s preferred units of eV/atom. The reason is that ultimately we would
like to understand the energetics of large aggregrates of atoms in terms
of the energetics of individual atoms. Nevertheless, the units are inter-
changeable; the conversion factors are 23.061 (kcal/mole)/(eV/atom) and
96.487 (kJ/mole)/(eV /atom).

We will also adhere strictly to the following nomenclature. Extensive
quantities, such as the Gibbs free energy, will be denoted by uppercase
symbols, such as G. Extensive quantities that have been normalized by
some number of moles (or atoms), such as the molar Gibbs free energy, will
be denoted by the equivalent lowercase symbols, such as g.!

Using this nomenclature, the molar entropies and molar enthalpies of a
are then written as

a

e = T (2.5)
h*(p,T) = w (2.6)

in terms of which the molar Gibbs free energy is
9%, T) = h*(p,T) — Ts*(p, T). (2.7)

To deduce the molar Gibbs free energy of «, then, we first need to
calculate the molar entropies and enthalpies of a. There are two gen-
eral approaches to that calculation: a semi-empirical “thermodynamic”
approach usually applied to complex phases such as condensed phases, and
a first-principles “statistical mechanical” approach usually applied to sim-
ple phases such as monoatomic or diatomic vapor phases. An approach
intermediate between the two may be used for phases of intermediate com-
plexity, such as polyatomic vapor phases.

1To keep our language from becoming cumbersome, though, we will sometimes only
refer to a quantity as a molar quantity if an ambiguity not resolved by context might
otherwise arise. For example, we will occasionally refer to molar Gibbs free energies
simply as Gibbs free energies.
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2.1.1 Heat Capacities and Thermodynamics

First, let us consider the semi-empirical thermodynamics approach to cal-
culating the molar entropies and enthalpies of . In this approach a semi-
empirical heat capacity plays the central role; its integrals define the molar
entropy and enthalpy. To see how, suppose an amount of heat, T'ds®, is
added (per mole or per atom) to . Since the constant-pressure molar heat
capacity is defined as the amount of heat that produces unit temperature
rise, ¢ = Tds*/dT, the molar entropy is

T cx(p, T
s*(p, T) = s%(p, To) +/ MdT'. (2.8)

r, T
As heat is added to the system, the molar enthalpy of the system must
of course also increase, by dh® = T'ds®, so that the constant-pressure mo-
lar heat capacity could equally well have been defined as c; = dh®/dT.
Therefore, the molar enthalpy is

T
WD) =h 0T+ [ T (29)
JT,

Note that although dh®/dT = Tds*/dT, and at constant temperature
dg® = dh® — T'ds*, the molar Gibbs free energy need not be constant. The
reason is that the temperature is not constant, but is increasing as heat is
added. Indeed, we can also write

dg® = d(h® — Ts®) = dh® — Tds® — s*dT = —s*dT, (2.10)

the constant-pressure form of the Gibbs-Duhem relation. It tells us that
for positive entropy, the molar Gibbs free energy decreases with increasing
temperature. Since entropies are always positive, all phases are stabilized
at higher temperatures, although higher entropy phases are stabilized more
than are lower entropy phases.

Equations 2.7, 2.8 and 2.9 determine the molar enthalpies, entropies
and Gibbs free energies of a phase completely in terms of a temperature-
dependent heat capacity per atom, and a pair of molar enthalpy and entropy
“offsets” at a particular reference temperature T,. Hence, in the thermo-
dynamic approach, the main task is to calculate molar heat capacities and
enthalpy and entropy offsets for particular phases.

2.1.2 Partition Functions and Statistical Mechanics

Second, let us consider the first-principles statistical mechanical approach
to calculating the molar entropies and enthalpies of «. In this approach the
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partition function plays the central role; its derivatives define the entropies
and enthalpies. To see how, consider an ideal gas composed of N particles
contained in a volume V. Denote the quantum mechanical energy levels of
the gas as a whole as €;(IV, V'), and the degeneracies of those levels as w;(N).
The partition function, @, is the sum over the occupation probabilities of
those levels, weighted by their degeneracies:

Q=) wi(N)e (MWK, (2.11)
1=0

The “thermodynamic” internal energy is the ensemble average of the level
energies, and can be written as a first derivative of the partition function,

.OO e —Ei/kT
w= Zizo@Ee e [OQ] (2.12)
NY 2, we<i/*T NoT |

Likewise, the pressure of the system is the ensemble average of the change in
the level energies with volume, and can also be written as a first derivative
of the partition function,

_ Eowildei/oV]e /AT [9nQ
B S wie e /KT B Nov |y o

1=0

(2.13)

Hence, for an ideal gas obeying v = kT'/p = T[0v/8T],, the molar enthalpy
can be written as

h = u+pv
lnQ oT olnQ Av
= kT? o kT? —
[NBT]N,V [aT]p+ [Nav]N,T [BTL
dlnQ
_ 2
= kT I:NBT]N,;;. (2.14)

Note that this formulation for the molar enthalpy is strictly true only for
an ideal gas, and that it requires that the partition function be considered
a function of N, p, and T rather than of N, V, and T'.

The constant-pressure molar heat capacity is the derivative of the molar
enthalpy,

_[or] .. ,[8°InQ dlnQ
sz I:'a—T:|p—kT |:N8T2]N'p+2kT|:N8T N’p, (215)

in terms of which the molar entropy can be deduced to be

T
_ Cp 1w OlnQ InQ@
= —dT" = kT k .
s /0 = [N&T]p+ 3 (2.16)
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and the molar Gibbs free energy can be deduced to be

In
g=h—Ts=—kT 9. (2.17)
N
Note that the expression for g is much simpler than those for s, h, or
cp. Therefore, it is often easier in practice to first calculate g, and then

numerically differentiate to get s, h, and c,:

o= -G [Q(T)] (2.18)

d(1/T) | T
s = Z2o(r) (2.19)
6 = ~Talo(T). (2.20)

Equations 2.18, 2.19 and 2.17 determine the molar enthalpy, entropy,
and Gibbs free energy of a phase completely in terms of a temperature-
dependent partition function. Hence, in the statistical mechanical ap-
proach, the main task is to calculate the partition function for particular
phases.

2.2 Condensed Phases

In Subsection 2.1.1 we showed how, given a semi-empirical molar heat ca-
pacity, the other thermodynamic quantities of interest (molar entropies,
enthalpies and Gibbs free energies) could be calculated. In this section,
we describe how to estimate such semi-empirical molar heat capacities for
condensed phases. In general, molar heat capacities of condensed phases
depend negligibly on pressure at the subatmospheric pressures usually as-
sociated with MBE. Therefore, although in Equations 2.8 and 2.9 we ex-
plicitly allowed for the possibility of a pressure-dependent heat capacity, for
condensed phases at subatmospheric pressure we can assume that the heat
capacity is pressure-independent.

There are a number of well-established theories for this pressure-indepen-
dent heat capacity. At constant volume, e.g.,the contribution from lattice
vibrations often obeys quite closely the Debye theory. In that theory,
the excitation of a spectrum of harmonic lattice vibrations is calculated as
a function of temperature. The heat capacity is near-zero at temperatures
so low that nearly all lattice vibrational modes are quantum-mechanically
“frozen out.” Then, it increases rapidly with temperature as successively
higher frequency lattice vibrational modes become excited. Finally, it sat-
urates at temperatures beyond a characteristic Debye temperature ©p at
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which the highest frequency lattice vibrational mode becomes significantly
excited. At those temperatures, energy becomes “equipartitioned” in units
of kT'/2 into each of the six (three potential and three kinetic) degrees of
vibrational freedom per atom, and the constant-volume heat capacity per
atom approaches the classical Dulong-Petit value of 8(6kT/2)/8T = 3k.
In practice, however, experimental constant-volume heat capacities do
not always agree perfectly with the Debye theory. The theory is only ap-
proximate and does not treat, e.g., anharmonicities in lattice vibrations at
high temperature, or electronic contributions at low temperature. Further-
more, the heat capacity at constant pressure, which is of greatest interest
to us, differs in a temperature-dependent way from the heat capacity at
constant volume:
cp = (1 +va,T). (2.21)

In this equation, a variation of what is known as the Nernst-Lindemann
equation, the isobaric volume expansion coefficient is a, = [d(Inv)/dT],
and the isothermal compressibility is k7 = —[d(Inv)/dp]r. The Gruneisen
constant, ¥ = a,v/Krcy, is a nearly temperature-independent dimension-
less constant typically between one and two.

Because of these deviations, in numerical calculations involving heat
capacities it is common to use semi-empirical formulas fit to experimen-
tal data in a particular temperature range. Usually, these are algebraic
polynomials of the form?

cp =a+bT +c/T?. (2.22)

The constant a is positive and usually nearly equal to the Dulong-Petit
value expected for the heat capacity at high temperatures. The constant b is
also positive, as from Equation 2.21 there is a slight tendency for constant-
pressure heat capacities to increase at high temperatures. The constant
¢ is usually negative, because at low temperatures lattice vibrations are
quantum mechanically frozen out and heat capacities decrease.

For thermodynamic calculations in a restricted range of medium-to-high
temperatures, such polynomials are usually sufficiently accurate. However,
for calculations over a wider range of temperatures, and particularly at the
low to medium temperatures at which MBE often occurs, some inaccuracy
is introduced. Our experience has been that for many solids, the following
semi-empirical formula® fits experimental data over a significantly wider

2C.G. Maier and K.K. Kelley, “An equation for the representation of high-temperature
heat content data,” Amer. Chem. Soc. 54, 3243 (1932).

3J.Y. Tsao, “Two semi-empirical expressions for condensed-phase heat capacities,”
J. Appl. Phys. 68, 1928 (1990).
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temperature range:

T2
Cp = (m) (Co+ClT+ ) (223)
The first, “trigonometric” part of the formula describes the low-temperature
region near a semi-empirical critical temperature © within which the heat
capacity is rising sharply. The second, “polynomial” part of the formula
describes the high-temperature region in which the heat capacity is ap-
proximately constant. In practice it is usually sufficient to truncate the
polynomial to linear order, so that only ¢y and ¢; are nonzero.

Importantly, each of the parameters in the formula can be estimated
through simple physical arguments. Such estimates are particularly useful
if the heat capacity of the phase of interest has not been measured (or is
difficult to measure) in the temperature range of interest. Indeed, as we
shall see, the art of calculating phase equilibria is to a large extent the art
of estimating thermodynamic quantities in temperature ranges over which
they are inacessible to measurement.

For example, the semi-empirical critical temperature, O, is the tem-
perature at which the heat capacity rises to half its saturation value, and
is thus related to the Debye temperature. In fact, it is numerically equal to
approximately one-fourth the Debye temperature. The reason it is such a
small fraction of the Debye temperature is that at the Debye temperature,
which corresponds to the energy of the highest frequency vibrational mode,
all lower frequency vibrational modes are excited, and so the heat capacity
has already nearly saturated at the Dulong-Petit value.

The constant ¢y is the approximate saturation value of the heat ca-
pacity, and is thus closely related to the Dulong-Petit value for the heat
capacity at constant volume, 3k = 0.258 meV /(atom - K). The constant c;
determines the high-temperature increase in the heat capacity, and is thus
related to the constant-pressure correction to the heat capacity given in
Equation 2.21, o?v/kr. However, it may also contain contributions due to
lattice vibrational anharmonicities. In order of magnitude, the ratio ¢;/co
typically varies from 107°K~! to 1073 K~!.

As a semi-empirical expression, Equation 2.23 is a significant improve-
ment over Equation 2.22, but it is far from perfect. In particular, it im-
plies that the very-low-temperature heat capacity approaches zero as T2,
rather than as T2 as the Debye theory predicts and as is generally observed.
However, such low temperatures are usually outside the region of interest
even for MBE, and in any case the very-low-temperature region contributes
(nearly) negligibly to the integrals in Equations 2.8 and 2.9 when evaluated
at higher temperatures.
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Finally, an especially useful feature of Equation 2.23 is that, like Equa-
tion 2.22, it defines a heat capacity for which both ¢, and ¢,/T are an-
alytically integrable. Hence, temperature-dependent molar entropies and
enthalpies can be conveniently calculated via Equations 2.8 and 2.9:

7 \1"
s =s(T,) + “© [In(T" + @%)]T + ¢ |T' — ©rarctan [ — (2.24)
2 T, @T T,

and

\17 ¢ T
h = h(Ty)+co [T’ — O arctan (@-)] +31 [T — 0% In(T"™ + e%)]TO )
T T,
(2.25)
Throughout this book, then, condensed-phase heat capacities will be ap-
proximated semi-empirically by Equation 2.23, and entropies and enthaplies
will be approximated semi-empirically by Equations 2.24 and 2.25.

2.3 Vapor Phases

In Subsection 2.1.2, we showed how, given a statistical mechanical partition
function, the other thermodynamic quantities of interest (molar entropies,
enthalpies, and Gibbs free energies) could be calculated. In this section,
we show how to estimate such partition functions for vapor phases. For
simplicity, we restrict ourselves to low-density vapors at the subatmospheric
pressures associated with MBE, and hence which behave as ideal gases.
Consider, then, an ideal gas composed of N identical, non-interacting
molecules occupying a system of volume V. Each molecule considered sepa-
rately will have its own spectrum of quantum-mechanical energy levels, and
hence its own partition function q. The energies of those levels will be all
the possible sums of the energies of its translational, rotational, vibrational,
and electronic quantum-mechanical energy levels. The degeneracies of those
levels will be the corresponding products of the degeneracies of the trans-
lational, rotational, vibrational, and electronic energy levels. From Equa-
tion 2.11, we see that the partition function of an individual molecule can
therefore be written, conveniently, as the product of the translational, ro-
tational, vibrational and electronic partition functions, ¢ = gtragrotQvibQele-
Now, the total partition function for all N atoms is itself the product of
the partition functions for each molecule (less overcounting of permutations
of identical molecules): @ = ¢"/N!. Therefore, InQ =~ (Nlng) — (N InN),

and we can write

2~ Wgura/N) + In(ge) +In(gn) + Inga). (226)
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In other words, the logarithm of the partition function of the vapor as a
whole is essentially a simple sum of the logarithms of the translational,
rotational, vibrational, and electronic partition functions of the individual
molecules themselves. The only deviation is the extra factor of N, which, as
we shall see, converts the volume dependence of the translational partition
function into a pressure dependence.

Note that since only (1/N)InQ enters into Equations 2.16, 2.14 and
2.15, the molar entropy, enthalpy, and heat capacity may themselves be
taken to be a simple sum of translational, rotational, vibrational, and elec-
tronic contributions:

& = ura@T) + cprot(T) + cpyin(T) + cpete(T) (2.27)
= stra(pa T) + srot(T) + svib(T) + sele(T) (228)
h = WT) + [hea(T") + heot(T") + hyin(T") + hete(T')] 7. - (2.29)

Here, we have assumed that, according to the third law of thermodynamics,
the overall entropy offset at zero temperature is zero. In other words,
nonzero entropies at zero temperature arise exclusively from ground-state
degeneracies in the translational, rotational, vibrational, or electronic levels,
and hence are already accounted for. The overall molar enthalpy offset,
however, need mnot be zero, and can only be determined relative to the
molar enthalpy offsets of other phases.

To concretize this discussion, let us consider in the following two sub-
sections two kinds of vapor: one composed purely of monomers and one
composed purely of dimers.

2.3.1 Monomeric Vapors

As a first example, consider the simplest vapor, composed of single atoms.
Such a vapor, having no internal nuclear degrees of freedom, will have only
translational and electronic contributions to its thermodynamic functions.

For the translational contribution, the partition function, in the clas-
sical limit, is known? to be gqyra = (27mkT/h?)3/2V, or, normalized by
N, qua/N = (2rmkT/h?)3/2kT [p. Using Equation 2.16, the translational
contribution to the molar entropy can then be shown to give what is known
as the Sackur-Tetrode equation,® ssacret = (5k/4)In(7?/0% ,.,), where
the critical temperature, O ¢ra, is determined by the pressure, p, and the

4The partition function is the sum over (nondegenerate) translational quantum levels
whose energies are €n,n, ,n, = (h2/8mV2/3)(n2 +n2+n2) where ng,ny,n; € {1,2,...}.
In the classical limit, the discrete sum is approximated by a continuous integral.

50. Sackur, Ann. Physik 36, 598 (1911) and H. Tetrode, Ann. Physik 38, 434 (1912).
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atomic mass, m:

2/5 1 p2 \3/5 2/5 /1 3/5
P p amu
o) = — = 1.593K :
Tara(P) =~ (27rm) (760T0rr> < m )
(2.30)

Therefore, the heat capacity, again in the classical limit, is constant and
given by cp sacTet = T08sactet /0T = 5k/2, which is what is known as the
Dulong-Petit value for an ideal gas. Physically, it arises because energy
is equipartitioned in units of ¥T'/2 into each of the three translational di-
rections. Therefore, the constant-volume heat capacity is ¢, sacTet = 3k/2.
Since pv = kT for an ideal gas, the constant-pressure heat capacity can
then be deduced from Equation 2.21 to be ¢p sacTet = Cv,SacTet + k = 5k/2.

Note that the Sackur-Tetrode equation is in nearly the same logarithmic
form as Equation 2.24, with ¢ ¢ra = 0 and ¢, tra = 5k/2. It can be brought
into ezactly the same form by making two simple assumptions. The first
assumption is that the heat capacity is not constant, but decreases to zero
at (very) low temperatures according to Equation 2.23:

T2
Cp,tra(p7 T) = Co,tra (W) . (2-31)
T,tra

In fact, heat capacities must decrease to zero at zero temperature, lest
the entropy integrand in Equation 2.8 become infinite at zero temperature.
The Sackur-Tetrode equation does not hold at temperatures less than O ¢,
(where it predicts negative entropies, in violation of the third law of ther-
modynamics) because it was derived classically, not quantum mechanically.
Quantum mechanically, even translational degrees of freedom must ulti-
mately be frozen out at temperatures that are low compared to the spacing
of translational energy levels.

The second assumption is that the third law of thermodynamics holds,
viz., syra(To = 0) = 0, so that, from Equation 2.24, the translational con-
tribution to the molar entropy is

T2 + @2
Co,tra T,tra
Stra(T) = —— In : . (2.32)
h 2 @%,tra
The translational contribution to the molar enthalpy, in turn, is
T
htra(T) = Cotra |T — OT tra arctan , (2.33)
T,tra

where the arbitrary integrating constant has been omitted because it
may be incorporated into that already present in Equation 2.29.
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In practice, the semi-empirical Equation 2.32 is nearly indistinguishable
from the Sackur-Tetrode equation, due to difficulties in measuring the ther-
modynamic properties of vapors at extremely low temperatures. However,
Equation 2.32 is physically more satisfying, because it obeys the third law
of thermodynamics, and is mathematically more satisfying, because it is
defined at all positive temperatures. Therefore, we will use Equations 2.31,
2.32 and 2.33 to describe the translational contributions to the molar heat
capacities, entropies and enthalpies of vapor phases just as we will use
Equations 2.23, 2.24 and 2.25 to describe those of condensed phases. The
only difference is that for the vapor phase O ., is not semi-empirical and
can be calculated from first principles according to Equation 2.30, while for
condensed phases O is semi-empirical and is independent of pressure.

For the electronic contribution, the partition function cannot in general
be summed analytically. However, in practice usually only a few excited
electronic levels have low enough energies to contribute significantly to the
heat content. Then, the partition function can be summed over a finite
number of levels,

Gele = Zwi,elee_'si'gle/kTy (234)

and the molar enthalpies, entropies and heat capacities calculated numer-
ically from Equations 2.26, 2.17, 2.18, 2.19 and 2.20. Note that if the
ground electronic level is degenerate, then, according to Equation 2.16, the
zero-temperature molar entropy does not vanish, but rather is k In(wg ele ).

2.3.2 Dimeric Vapors

As a second example, consider the next simplest vapor, composed of dimer
pairs of atoms. For these vapors, the translational and electronic contri-
butions to the thermodynamic functions can be described in the same way
as those for the monomeric vapor, with two differences. First, the dimer
mass, rather than the monomer mass, must be used in Equation 2.30 for
calculating O ¢ra. Second, all thermodynamic quantities must be halved
in order for their units to be per atom rather than per dimer.

In addition, the thermodynamic functions for dimer atoms contain con-
tributions from rotational and vibrational motion. The rotational con-
tribution can be treated in nearly exactly the same way as the transla-
tional contribution was treated. In the rigid-rotor approximation, the ro-
tational partition function can, in the classical limit, readily be evaluated.®

6The partition function is the sum over rotational quantum levels whose degeneracies
are (2J + 1)/2 and whose energies are J(J + 1)kOT ;.o¢, where J € {0,1,2,...}. In the
classical limit, the discrete sum is approximated by a continuous integral.
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Then, Equation 2.16 gives the molar entropy. Finally, to “fix” the zero-
temperature catastrophe, the molar entropy is recast into the semi-empirical
form of Equation 2.24, giving

T2
cprot(T) = Corot <TQ+T> (2.35)
T,rot
c T? + ©2
srot(T) = 2t In ( o2 Tt‘> (2.36)
,To
T
hiot(T) = cCorot [T — O7 rot arctan( - )] , (2.37)
,rot

where the arbitrary integrating constant in the molar enthalpy has again
been omitted, as it may be incorporated into that already present in Equa-
tion 2.29. In these equations,

K2 lamu 1A 2
OT ot = — = 23.93K — 2.38
et T 9Tk ( © )( ) (2.38)

r

is the critical temperature below which rotational motion freezes out, and
Corot = k/2. The critical temperature decreases with increasing rotational
inertia of the molecule, I = ur?, because the spacing of rotational energy
levels decreases. Here, p is what is known as the “reduced” mass of the
dimer (half the mass of each atom of the dimer, one-fourth the mass of the
dimer itself), and 7 is the dimer bond length.

The vibrational contribution can in principle also be fit by a similar
semi-empirical form. However, in the simple harmonic oscillator approxi-
mation, the thermodynamic functions are straightforward to describe ex-
actly, not just semi-empirically”:

OT vib 2 e©T1.vin/T
Cp,v:b(T) = Co,vib ( T ) (e@T,vib/T ~ 1)2 (2.39)
S vi T — .
Svib(T) = Co,vib |:e(‘)’1"1\::b—]/bT/_]_ —In (1 —e eT"”b/T):I (240)
eT,v'b E")T,vib
hvib(T) = Co,vib [ 2 : eeT.vib/T 1 . (2.41)

"The partition function is the sum over (nondegenerate) quantum levels whose ener-
gies are (n+ 3 )kO7 vib/2, where n € {0,1,2,...}. The partition function can be summed
analytically, without approximation by a continuous integral. Therefore, the result is
fully quantum mechanical, not classical, and Equation 2.39 correctly describes the heat
capacity’s approach to zero at low temperature. It essentially reproduces Einstein’s
calculation of the heat capacity of solids.
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In these equations,
@T,vib = hV/k (2.42)

is the temperature associated with a vibration at frequency v and ¢, vib =
k/2. The leading term in the equation for hyj, is due to the zero-point hv /2
vibration of the oscillator.

Note that Ot ;ot and O yip, unlike O yr,, are independent of pressure,
having only to do with internal degrees of freedom of the molecule. Also
note that at typical MBE pressures, Ot ,ip is much higher than O o,
which in turn is much higher than Ot ¢;,. In fact, both O ;o and O tra
are usually so low as to be experimentally unobservable. At all normal
temperatures and pressures, the translational and rotational contributions
to the heat capacity (per atom, not per dimer) are constant and equal to
5k/4 and k/2, respectively, giving a total of 7k/4.

2.4 Two Simple Elements: Si and Ge

In Sections 2.2 and 2.3, we presented general analytic expressions for the
molar heat capacities, entropies, and enthalpies of condensed and vapor
phases. These expressions are characterized by either semi-empirical or
first-principles parameters of various kinds, each of which must ultimately
be estimated or calculated for a particular phase.

In this section, we illustrate such estimations and calculations by con-
sidering as case studies the various phases of Si and Ge. For both of these
elements, four phases occur at normal (subatmospheric) pressures: two
solid (amorphous and crystalline), one liquid, and one vapor. Following
Kubaschewski’s notation,® we denote the liquid phases by braces ({Si} and
{Ge}) and the vapor phases by parentheses ((Si) or (3Siz) and (Ge) or
(3Gez)). We denote solid phases by angled brackets, and by subscripts
outside the brackets if multiple solid phases need to be distinguished ({Si)a,
(Si)c, (Ge)a, and (Ge).). The components themselves, Si and Ge, are not
enclosed by brackets, braces, or parentheses of any sort.

We divide the discussion into three subsections. In Subsection 2.4.1,
we estimate the molar heat capacities of the various condensed and va-
por phases. These molar heat capacities determine the temperature de-
pendences of the molar entropies and enthalpies, up to an “integrating
constant,” or offset. Then, in Subsection 2.4.2, we estimate those molar
entropy and enthalpy offsets. Finally, in Subsection 2.4.3, we gather to-
gether all of these estimates and use them to calculate the molar Gibbs free
energies as functions of pressure and temperature.

80. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th Ed. (Perg-
amon Press, Oxford, 1979).
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2.4.1 Molar Heat Capacities

Let us begin, in this subsection, by estimating the molar heat capacities of
all of the phases listed above as functions of temperature and, for the vapor
phases, also of pressure. Throughout, we will make liberal use of estimates
based on physical arguments. The reason is that the molar heat capacity
of a phase can often only be measured if that phase is the equilibrium one,
since otherwise the phase will have a tendency to transform to a new one
during the measurement. Therefore, it is important to develop methods for
estimating heat capacities in temperature regimes in which they have not
been measured.

Figure 2.1 shows estimated temperature dependences of the heat capac-
ities of the various phases of Si and Ge. For the condensed phases, heat
capacities were calculated using the semi-empirical Equation 2.23. For the
monomer and dimer vapors, heat capacities were calculated using Equa-
tion 2.27. The numerical values for the heat-capacity parameters are given
in Tables 2.1, 2.2 and 2.3, and were estimated in the following ways.

Condensed Phases

For (Si). and (Ge)., the heat capacity parameters were deduced by nonlin-
ear least-squares fits to experimental data. It can be seen from Figure 2.1
that the experimental data are fit by the semi-empirical forms exceedingly
well. In fact, only at very low temperatures (for (Si). less than 50 K and
for (Ge). less than 30 K) does the percentage deviation become significant,
and even then the absolute deviation is, for our purposes, negligible.

As expected, the semi-empirical critical temperatures for (Si). and (Ge),

are nearly equal to one-fourth their respective Debye temperatures, @](DSi)° ~

640K and @g;e)c ~ 374 K. For both (Si). and (Ge)., the ¢y parameters are
essentially equal to the Dulong-Petit value of 3k = 0.258 meV/(atomK).
The ¢, parameters, however, are about one order of magnitude greater
than those (= 2.4 x 107%eV/(atomK?)) that would be calculated from
Equation 2.21, probably due to vibrational anharmonicities in the diamond-
cubic lattice.®

For (Si), and (Ge),, the experimental heat capacities are not accu-
rately known, largely because of the difficulty of forming large thermal
masses of very pure (Si), and (Ge),. High-purity thin films of amorphous
material may be prepared either by MBE at very low temperatures or by
ion-implantation, but usually only on thick substrates whose thermal mass

9P.C. Trivedi, H.O. Sharma and L.S. Kothari, “Lattice anharmonicity of diamond-
structure crystals,” J. Phys. C: Solid State Phys. 10, 3487 (1977).
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Figure 2.1: Measured and estimated temperature dependences of the heat
capacities of the various phases of Si (left) and Ge (right). Experimental data
(open circles) for (Si)c* and (Ge).® are also shown.

2Data below 90 K are from H.-Matsuo Kagaya and T. Soma, Properties of Silicon,
EMIS Datareviews Series No. 4 (INSPEC, 1988); data above 90 K are from D.R. Stull
and H. Prophet, JANAF Thermochemical Tables, 2nd Ed., NSRDS-NBS 37 (U.S.
National Bureau of Standards, June 1971).

bR. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman,

Selected Values of the Thermodynamic Properties of the Elements (American Society
for Metals, Metals Park, Ohio, 1973), pp. 204-209.

would dominate the measurement. Therefore, estimates of various kinds
must be made.

To first order, we expect the heat capacities of the amorphous phases to
be fairly similar to those of the crystalline phases. For example, we expect
the ¢y parameters for the amorphous phases to be very nearly the Dulong-
Petit values, just as they were for the crystalline phases. Here, we estimate
that they are in fact the same as those for the crystalline phases.

To second order, though, we expect differences. Although the amor-
phous phases retain the overall tetrahedral coordination and sp® bonding
of the crystalline phases, their bond lengths and angles nevertheless deviate
locally from those of perfect tetrahedra. Therefore, we expect their vibra-
tional properties to be somewhat different. Indeed, both low-temperature
calorimetry!® and room-temperature sound velocity measurements!! indi-

10M. Mertig, G. Pompe and E. Hegenbarth, “Specific heat of amorphous silicon at low
temperatures,” Solid State Communications 49, 369 (1984).
1151, Tan, B.S. Berry and B.L. Crowder, “Elastic and anelastic behavior of ion-



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

2.4. Two Simple Elements: Si and Ge 29

Phase @T Co Cy
(K) (meV/(atomK)) (107 meV/(atomK?))
(S, | 149 0.241 3.85
(Si) | 134 0.241 5.25
{si} | s2 0.241 3.85
(Ge). | 87 0.246 3.95
(Ge)a 78 0.246 5.91
{Ge} 48 0.246 3.95

Table 2.1: Heat capacity parameters for the condensed phases of Si and Ge.

cate Debye temperatures that are somewhat reduced from those of the crys-
talline phases. The reduction factor is only = 10% for the clean and dense
films prepared by ion implantation, while it exceeds ~ 30% for sputter-
deposited films. Since we expect the cleanest and densest films to be most
representative of the fully relaxed amorphous phases, we estimate the semi-
empirical critical temperatures of the amorphous phases to be reduced from
those of the crystalline phases by only 10%.

Perhaps the most difficult parameters to estimate are the c¢; parameters.
At medium to high temperatures, however, limited measurements'? indi-
cate that the heat capacity of (Ge), exceeds that of (Ge). by an amount that
depends linearly on temperature, =~ 3.92 x 1077 meV/(atomK). Those
measurements, however, were made on films deposited from the vapor under
non-ultra-high-vacuum conditions. For clean, dense films we would expect
the excess to be less. Indeed, by analogy to the reductions in sound veloci-
ties discussed above, we might expect them to be less by one-half or more.
Here, we estimate them to be less by one-half, and hence estimate that the
c¢1 parameters for the amorphous phases are greater than those for the crys-
talline phases by the temperature coefficients 1.96 x 10~°> meV/(atomK)
for Ge and, through scaling with the melting temperatures, by 1.40 x
10~° meV/(atomK) for Si.

For {Si} and {Ge}, experimental heat capacities are only known above
the melting temperature, because it is experimentally very difficult to achieve
significant supercoolings of those two liquids below their freezing tempera-
ture. For both liquids, though, the heats capacities just above the melting
temperature are simple extrapolations of those of the crystalline solids just

implanted silicon,” Appl. Phys. Lett. 20, 88 (1972). For a recent review, see I.R. Cox-
Smith, H.C. Liang and R.O. Dillon, “Sound velocity in amorphous films of germanium
and silicon,” J. Vac. Sci. Technol. A3, 674 (1985).

12H.S. Chen and D. Turnbull, “Specific heat and heat of crystallization of amorphous
germanium,” J. Appl. Phys. 40, 4214 (1969).
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Phase @T,tra Co,tra @T,rot Co,rot: eT,vib Co,vib
(K) (K) (K)

(Si) | 0.215(p/760 Torr) * sk/2 | - 0 - 0
(1Siy) | 0.142 (p/760 Torr)** 5k/4 | 0338 k/2 | 735  k/2
(Ge) | 0.122(p/760 Torr) 4 osk/2 | - 0 - 0
(1Gey) | 0.080 (p/760 Torr)*  5k/4 | 0.110  k/2 | 532  k/2

Table 2.2: Heat capacity parameters for the vapor phases of Si and Ge.

below the melting temperature. Hence, in both cases, it is reasonable to
use the same values for the ¢y and ¢; parameters as those for the crystalline
solids.

However, the vibrational properties of the liquid phases differ substan-
tially from those of the crystalline phases, and so we expect their semi-
empirical critical temperatures to be different. To first order, we can guess
that the semi-empirical critical temperatures, just as the Debye tempera-
tures, will scale as the velocity of sound in the phase. Since sound velocities
in the liquid are approximately 0.55 of the velocities in the crystals,'3 we
estimate that the semi-empirical critical temperatures of the liquids are
approximately 0.55 of the critical temperatures of the crystals.

Vapor Phases

For the vapor phases (Si), (Ge), (3Siz) and (3Gez), the parameters that
enter into the translational, rotational and vibrational contributions to the
heat capacities are given in Table 2.2. The translational critical tempera-
tures follow from Equation 2.30 using masses of 28.08 amu and 56.16 amu
for Si and Sip, and masses of 72.6 amu and 145.2 amu for Ge and Ge,.
The rotational and vibrational temperatures follow from Equations 2.38
and 2.42 using bond lengths and vibrational frequencies of 2.246 A and
510.98 cm™! for Siy,!* and of 2.44 A and 370cm™! for Ge,.!®

The parameters that enter into the electronic contributions to the heat
capacities, viz., the energies and degeneracies of the lowest lying electronic
levels, are listed in Table 2.3. For the Si and Ge monomers, the values were

13V.V. Baidov and M.B. Gitis, “Velocity of sound in and compressibility of molten
germanium and silicon,” Sov. Phys. Semicond. 4, 825 (1970).

14From measurements by R.D. Verma and P.A. Warsop, “The absorption spectrum of
the Siz molecule,” Can. J. Phys. 41, 152 (1963).

15From ab initio pseudopotential self-consistent-field calculations by G. Pacchioni,
“Theoretical investigation of the electronic structure and of the potential energy curves
for the lowest lying states of Gez,” Mol. Phys. 49, 727 (1983).
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Molecule Level Degeneracy Relative energy
((2S+1)LJ) (wi,ele) (eV)
Si 3P 1 0
3P 3 0.00956
3P, 5 0.02769
Ge ) 1 0
3P 3 0.069
3P, 5 0.175
Si, °Yy 3 0
311, 6 0.13
1A, 2 0.48
1, 2 0.66
1 E; 1 0.85
Ge; ’%y 3 0
1, 6 0.06
1A, 2 0.48
1, 2 0.64
et 1 0.57

Table 2.3: Energies and degeneracies for the lowest lying electronic levels of Si,
Ge, Si; and Ges;.

taken from the standard experimental tables of Moore.'® For the Si; and
Ge, dimers, the values were taken from theoretical calculations.!” In all
cases, the usual notation 25tV [ ; where S, L and J are the spin, orbital
and total angular momentum quantum numbers, has been used to denote
the individual electronic levels. Note that the lowest lying electronic levels
of (Si) and (Ge) have unusually low (fractions of an e€V) energies. As a
consequence, their low-temperature heat capacities are unusually high, as
can be seen from Figure 2.1.

16C E. Moore, Atomic Energy Levels Vols. I-III, Circular of the National Bureau of
Standards 467 (June 15, 1949).

17The calculation for Siz is by A.D. Mclean, B. Liu and G.S. Chandler, “Second row
homopolar diatomic molecules. Potential curves, spectroscopic constants, and dissocia-
tion energies at the basis set limit for SCF and limited CI wave functions,” J. Chem.
Phys. 80, 5130 (1984). The calculation for Gez is by G. Pacchioni, “Theoretical investi-
gation of the electronic structure and of the potential energy curves for the lowest lying
states of Geg,” Mol. Phys. 49, 727 (1983).
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2.4.2 Molar Entropy and Enthalpy Offsets

In Subsection 2.4.1, we estimated the molar heat capacities of the various
phases of Si and Ge. These estimates are summarized in Tables 2.1, 2.2 and
2.3, and allow one to deduce the relative temperature dependences of the
molar entropies and enthalpies of the various phases of Si and Ge through
Equations 2.24 and 2.25. However, to deduce the absolute temperature
dependences, we also need to know molar entropy and enthalpy offsets for
each phase at particular temperatures. In this subsection, we estimate
these offsets. They are summarized in Table 2.4, and were deduced in the
following ways. We will first consider the condensed phases and then the
vapor phases.

Condensed Phases

For the crystalline phases, the third law of thermodynamics states that the
entropy at absolute zero of a perfect crystalline substance is zero. There-
fore, we can use as the entropy offset the entropy at 0 K, namely zero. The
enthalpy scale, however, is not fixed by an equivalent law, so, as is custom-
ary, we arbitrarily fix the enthalpy of the equilibrium phases of Si or Ge at
standard temperature and pressure (298 K and 760 Torr) to be zero. Since
both (Si). and (Ge). are the equilibrium phases of Si or Ge at standard
temperature and pressure, we set their enthalpies to zero at 298 K.

For the amorphous solid phases, we can estimate fairly well the molar
enthalpy offsets relative to the molar enthalpies of the crystalline phases.
In particular, the molar enthalpies of the amorphous phases relative to the
molar enthalpies of the crystal phases are fixed by the latent heats of crys-
tallization, which have been measured!'® to be 0.139 eV /atom at ~ 950 K
for Si and to be 0.119 eV/atom at ~ 720 K for Ge. The molar entropy off-
sets, however, can only be tentatively estimated. Based on model-building
studies, Spaepen!? has calculated that the configurational entropy due to
lattice disorder in the amorphous phases is approximately 0.2k. Since at
zero temperature that should be the only contribution to the entropy (the
vibrational contribution should be frozen out), we estimate that the zero-
temperature molar entropy for the amorphous phases is 0.2k.

For the liquid phases, we can deduce experimentally both molar entropy
and enthalpy offsets relative to the molar entropies and enthalpies of the
crystalline phases. In particular, the molar enthalpies of the liquid phases

18F.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate and D.C. Jacobson, “Calori-
metric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion
implantation,” J. Appl. Phys. 57, 1795 (1985).

19F. Spaepen, “On the configurational entropy of amorphous Si and Ge,” Phil. Mag.
30, 417 (1974).
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Phase T, h(T,) T, s(Ty,)
(K) (eV/atom) (K) (eV/(atomK))
(Si). 298 0 0 0
(SiYa | 950 A(SVe 4+0.139 0 0.2k
{si} | 1685 RS 40,525 | 1685 s +0.525/1685
(Si) 0 hShe 4462 0 0
(1Si,) 0 AV 4307 0 0
(Ge). | 298 0 0 0
(Ge)a | 720 AlGe< 1+0.119 0 0.2k
{Ge} | 1213 hfGee 4+0.382 | 1213 (G 40.382/1213
(Ge) 0 h(Gee 4381 0 0
(1Gey) 0 h{G)e 4243 0 0

Table 2.4: s and h offsets for the various phases of Si and Ge.

relative to the molar enthalpies of the crystal phases are fixed by experimen-
tal measurements of the latent heats of fusion at the freezing temperatures.
As summarized in Table 2.4, the latent heats of fusion and freezing tem-
peratures for Si are 0.525 eV and 1685 K and for Ge are 0.382 eV and
1213K.

Note that exactly at the melting temperature, the crystal and liquid
phases coexist, and so their molar Gibbs free energies must be the same.
Hence, if the crystal and liquid phases have different molar enthalpies, they
must also have different molar entropies, in exactly offsetting amounts.
Therefore, ezactly at the melting temperature, T, = TO<{} the entropies of
fusion can be deduced from the molar enthalpies of fusion via

h{} (Ta) — hoc(To)

s(T,) — s0<(T,) -

(2.43)

It is important to keep in mind that we have now fixed the liquid molar
entropy and enthalpy offsets relative to the crystal molar entropies and
enthalpies at the melting temperature. However, the crystal molar entropies
and enthalpies were themselves fixed at different temperatures, namely,
0 K for the entropy and 298 K for the enthalpy. Therefore, to deduce
the absolute molar entropies and enthalpies of the liquid we must first use
Equations 2.8 and 2.9 (along with the heat capacity of the crystal) to deduce
the change in the molar entropy of the crystal between 0 K and the melting
temperature and the change in the molar enthalpy of the crystal between
298 K and the melting temperature. Because of this, our estimates of the
absolute molar entropies and enthalpies of the liquid depend both on the
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measured molar entropies and enthalpies of fusion as well as on the assumed
molar heat capacity of the crystal.

Vapor Phases

For the vapor phases, the entropy offsets are fixed at zero at 0 K by the
third law of thermodynamics.?2® The molar enthalpy offsets can be fixed
relative to the enthalpies of either the crystal or liquid phases. For example,
the molar enthalpies of the vapor phases relative to the molar enthalpies
of the crystal can be fixed by experimental measurements of the latent
heats of sublimation. Equivalently, they can be fixed relative to the molar
enthalpies of the liquid by experimental measurements of the latent heats
of evaporation.

The complication, though, is that experimental determinations of la-
tent heats of sublimation or evaporation are usually not based directly on
calorimetry, but rather indirectly on measurements of the equilibrium va-
por pressure or of its temperature dependence. To see how, note that if, at
a particular temperature, either the crystal or the liquid is in equilibrium
with a certain pressure of vapor, then the molar Gibbs free energies of the
crystal or liquid must equal the molar Gibbs free energy of vapor at that
pressure. For example, if we consider sublimation of the crystal, we can
write

g()c — g() (2.44)
hOe —Ts0e = RO 750, (2.45)

For both the monomer and dimer vapors, we see from Equations 2.32
and 2.30 that the translational contributions to the entropies separate into
the sum of (nearly) pressure-independent and temperature-independent
parts:

0 — 50 2 P
S (pv T) =S (po’T) - gco,tra In <‘"‘) y (246)
o
where the reference pressure, p,, is arbitrary and can be taken, e.g., to
be 760 Torr, and the reference temperature, T,, has been taken to be 0.
Therefore, the pressure dependence can be separated from the molar Gibbs
free energy of the vapor:

2
9", T) = ¢"(po, T) + o raT In (pﬂ) . (2.47)

20Except, as noted above, for a possible degeneracy in the ground electronic level.
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In other words, the equality between the molar Gibbs free energies of
the crystal and the vapor becomes

(2 8% - " p,, T)
po 2co,traT/5 '

(2.48)

This equation, when expanded into its entropy and enthalpy components, is
the basis for what is known as the Rankin-Kirchoff semi-empirical equation,

In(p) =a+6InT — g + T, (2.49)

often used to describe vapor pressures.?!

Since from the heat capacities we know the relative temperature de-
pendences of the molar entropies and enthalpies of both the vapor and
the crystal, Equation 2.48 defines the equilibrium vapor pressures in terms
of the molar entropy and enthalpy offsets between the vapor and crystal.
Therefore, those relative molar entropy and enthalpy offsets (essentially the
latent entropies and heats of sublimation) can be deduced from a compar-
ison between Equation 2.48 and experimental measurements.

In making that comparison, two methods are commonly used. In the
first method, known as the “third-law” method, one assumes that the third
law of thermodynamics holds. Then, the 0 K entropies of the crystal and
vapor are taken to be zero, except for a possible degeneracy of the ground
electronic state.

The difference between the molar enthalpies of the crystal and the vapor
at a reference temperature T, is then used to fit the absolute magnitude
of the equilibrium vapor pressure at a particular temperature, Such fits
are illustrated in Figure 2.2, which shows experimental measurements of
the equilibrium vapor pressures of the crystals (below the freezing tem-
peratures) and of the liquids (above the freezing temperatures), along with
monomer and dimer vapor pressures calculated using Equation 2.48 and the
molar enthalpy offsets listed in Table 2.4. The fits are extremely sensitive to
those molar enthalpy offsets: the higher the latent heat of vaporization, the
lower the equilibrium vapor pressure. Note that the dimer vapor pressures
for both Si and Ge are only a fraction of the monomer vapor pressures, and
hence for practical purposes may be neglected.

It should be noted that the offsets listed in Table 2.4 are the heats of
sublimation at 0 K. At any other temperature those heats will be slightly
different, due to heat capacity differences between the crystal and vapor, or

21 An extensive tabulation of empirical values for the coefficients in this equation for a
number of semiconductors may be found in O. Kubaschewski and C.B. Alcock, Metal-
lurgical Thermochemistry, 5th Ed. (Pergamon Press, Oxford, 1979).
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Figure 2.2: Equilibrium vapor pressures over the crystals (dashed

lines) and liquids (dot-dashed lines). Experimental measurements are shown as
open circles for the monomers Si® and Ge? and as filled circles for the dimers Siz¢
and Ge,.?

2J.L. Souchiere and V.T. Binh, “The evaporation rate of silicon,” Surf. Sci. 168,
52 (1986); and R.L. Batdorf and F.M. Smits, “Diffusion of impurities into evaporating
silicon,” J. Appl. Phys. 30, 259 (1959).

bA.W. Searcy and R.D. Freeman, “Measurement of the molecular weights of vapors
at high temperature. II. The vapor pressure of germanium and the molecular weight of
germanium vapor,” J. Chem. Phys. 23, 88 (1955).

¢J. Drowart, G. De Maria, and M.G. Inghram, “Thermodynamic study of SiC utilizing
a mass spectrometer,” J. Chem. Phys. 29, 1015 (1958).

4J. Drowart, G. De Maria, A.J.H. Boerboom, and M.G. Inghram, “Mass spectrometric
study of inter-group IVB molecules,” J. Chem. Phys. 30, 308 (1959).

between the liquid and vapor. For example, the temperature dependence
of the heat of sublimation is given by

T

AROO(T) = ARVO(T,) + . Acf)<O(T")dT". (2.50)
In the second method, known as the “second-law” method, the latent
heat of sublimation is deduced from the variation with temperature of the
equilibrium vapor pressure, rather than from the absolute magnitude of
the equilibrium vapor pressure. Indeed, using Equations 2.18 and 2.48,
the temperature variation of the equilibrium vapor pressure is seen to be

related to the latent heat of sublimation,

S [k In (pﬁ)] = h0<(T) = hO(p, T). (2.51)
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As illustrated in Figure 2.2, Equation 2.48, using the molar enthalpy off-
sets listed above, reproduces reasonably well both the absolute magnitudes
as well as the temperature variations of the equilibrium vapor pressures.
Therefore, the two methods agree, and that agreement gives confidence in
the experimental measurements themselves.

2.4.3 Molar Gibbs Free Energies

In Subsection 2.4.1, we estimated the molar heat capacities summarized in
Tables 2.1 and 2.2; in Subsection 2.4.2, we estimated the molar entropy and
enthalpy offsets summarized in Table 2.4. In this subsection, we combine
the two to deduce the absolute temperature dependences of the molar en-
tropies, enthalpies, and Gibbs free energies of the various phases of Si and
Ge. For the condensed phases we use Equations 2.7, 2.24 and 2.25, and for
the vapor phases we use Equations 2.7, 2.27, 2.28 and 2.29.

The top four panels of Figure 2.3 show the molar entropies and en-
thalpies. Note that the molar entropies and enthalpies behave quite differ-
ently as functions of temperature. The molar enthalpies are initially flat
at the lower temperatures where the molar heat capacity is low, then in-
crease linearly at the higher temperatures where the molar heat capacity
is high and approximately constant. The molar entropies, in contrast, rise
more quickly at the lower temperatures, then saturate at the higher tem-
peratures due to the inverse temperature dependence of the integrand in
Equation 2.8. However, this saturation of the entropies at high temper-
atures does not imply that entropy becomes increasingly unimportant at
high temperatures. Rather, entropy enters into the molar Gibbs free energy
multiplied by 7', and so continues to be of major importance in determining
phase stability.

As one might expect, the magnitudes of the molar enthalpies and en-
tropies of the solid phases are quite similar, those of the liquid phases are
somewhat higher, and those of the vapor phases are very much higher. In
other words, the difference between solid phases is less than that between
liquid and solid phases, which in turn is much less than that between vapor
and liquid phases.

Note that the zero-temperature molar entropies of the liquid phases do
not vanish. Instead, they are approximately 3K. Such residual entropies
arise from the configurational disorder present even in the “frozen” liquid.
That disorder is analogous to, though much larger than, that of the amor-
phous solids, whose zero-temperature molar entropies were estimated to be
only =~ 0.2K.

The bottom two panels of Figure 2.3 show the molar Gibbs free energies.
At any temperature, the stablest phase is that whose molar Gibbs free
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energy is lowest, and the least stable phase is that whose molar Gibbs free
energy is highest. Therefore, in these examples, the crystalline phases are
the stablest ones at low temperature and the vapor phases are the stablest
ones at high temperature. In between, depending on the pressure of the
vapor, there may be a temperature window in which the liquid is stablest.

The reason for this trend is that, as mentioned earlier, at any particular
temperature the slope of a molar Gibbs free energy curve is the negative of
the molar entropy, and its zero-temperature intercept is the molar enthalpy.
Therefore, since all phases have positive entropy, molar Gibbs free energies
must decrease with increasing temperature, i.e., all phases are stabilized
at higher temperature. However, the molar Gibbs free energies of higher
entropy phases decrease faster than those of lower entropy phases, and so
higher entropy phases ultimately become stabler than lower entropy phases
at high temperature.

Note that the amorphous phases are never the stablest phases. At low
temperatures the crystalline phases are more stable; at high temperatures
the liquid phases are more stable. Despite this, the amorphous phases may
be observed and studied, because at room temperature they transform into
the crystalline phases exceedingly sluggishly. It has even been possible,
through pulsed-laser-annealing experiments, to deduce that the melting
temperature of (Si), is lower than that of (Si). by ~ 225K.?? From Fig-
ure 2.3, such a reduction is expected: the molar Gibbs free energies of
the amorphous phases lie above those of the crystalline phases, and must
intersect those of the liquid phases at lower temperatures.

Note that the temperature at which the molar Gibbs free energies of the
vapor intersect those of the various condensed phases depends on pressure.
That dependence is what determines the vapor pressure of the condensed
phase. Note that above the melting temperature, the vapor and liquid
molar Gibbs free energy curves intersect at a higher temperature than the
vapor and crystal molar Gibbs free energy curves intersect. Hence, to be in
equilibrium with a given vapor pressure, the liquid must be hotter than the
crystal. Equivalently, for a given temperature above the melting tempera-
ture, the liquid has a lower vapor pressure than the (superheated) crystal.
Note that such a lowering of the vapor pressure upon melting is difficult to
observe experimentally, because crystals usually melt at only slight over-
heatings above their melting temperature.

Finally, once we know the molar Gibbs free energies of the various phases
of Si and Ge, we can calculate the “driving force” for MBE. As can be seen
from Figure 2.3, the driving force can be quite large. For example, a typical

22M.O. Thompson, G.J. Galvin, J.W. Mayer, P.S. Peercy, J.M. Poate, D.C. Jacob-
son, A.G. Cullis, and N.G. Chew, “Melting temperature and explosive crystallization of
amorphous silicon during pulsed laser irradiation,” Phys. Rev. Lett. 52, 2360 (1984).
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Figure 2.3: s, h, and g for the various phases of Si (left) and Ge (right).
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growth temperature for Si MBE is 800 K, and a typical effective pressure
for the impinging atoms is 10~6 Torr. Under those conditions the difference
between the molar Gibbs free energies of the vapor and crystal is approxi-
mately 2.5 eV/atom. At that same temperature, the difference between the
molar Gibbs free energies of the liquid and crystal is only approximately
0.25 eV /atom, about one order of magnitude less. The vapor, in a sense, is
much more supercooled than the liquid with respect to the crystal.

Suggested Reading

1.

2.

O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry,
5th Ed. (Pergamon Press, Oxford, 1979).

D.A. McQuarrie, Statistical Mechanics (Harper & Row, New York,
1976).

3. R.A. Swalin, Thermodynamics of Solids, 2nd Ed. (Wiley-Interscience,

New York, 1972).

Exercises

1.

Using Equation 2.21, show, for an ideal gas that obeys pv = kT, that
¢p = ¢y + k. Explain, physically, why c, is greater than c,.

We calculated, using Equation 2.43, molar entropy offsets in terms
of measured molar enthalpy offsets for {Si} and {Ge} relative to the
crystalline phases (Si). and (Ge).. Could we have calculated, in a
similar way, the molar entropy offsets for the amorphous phases (Si),
and (Ge), relative to the crystalline phases (Si). and (Ge).?

Show, using Equations 2.8 and 2.9, that dg/dT is —s, and hence that
Equation 2.19 is correct. Show that [d/d(1/T)][g/T] is h, and hence
that Equation 2.18 is correct.

Expand the right side of Equation 2.48 into molar enthalpy and en-
tropy components, and deduce explicit forms for the coefficients in
Equation 2.49.

Assuming Dulong-Petit heat capacities (neglecting electronic contri-
butions), and given the latent heats of sublimation listed in Table 2.4,
what are the zero-temperature molar enthalpies of formation of (3Si)
and (3Ge;) from (Si) and (Ge), respectively?
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6. Although, at 800 K, the difference between the molar Gibbs free en-
ergies of (Si) at 1078 Torr and (Si). is large (&~ 2.5eV/atom), the
difference between the molar enthalpies of (Si) and (Si). is larger still
(= 5eV/atom). That enthalpy is “liberated” when a Si atom impinges
on and sticks to a Si substrate and ultimately becomes thermal en-
ergy. How does that liberated thermal energy compare to the thermal
energy per atom (= 3kT) of the Si substrate at 800 K?
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Chapter 3

Alloy Phases

In Chapter 2, we described how to calculate the molar Gibbs free energies of
phases composed of a single component or element. For condensed phases it
was sufficient to understand the temperature dependence; for vapor phases
it was necessary to understand both the pressure and temperature depen-
dences.

In this chapter, we introduce alloy phases, i.e., phases composed of more
than one component or element. For these phases, the molar Gibbs free
energies depend on yet another parameter: composition. Therefore, we
begin, in Section 3.1, by introducing a simple and consistent nomenclature
for alloy phases that includes composition. At the same time, we will ask
the general question: given a pressure, temperature, and composition, what
is the equilibrium mix of phases of the system? The answer is determined,
again, by minimizing the Gibbs free energy. We shall find that under some
conditions, the Gibbs free energy is minimized when only a single phase is
present. Under other conditions, though, the Gibbs free energy is minimized
when two phases are present in a particular proportion.

Then, in Section 3.2, we describe the commonly used semi-empirical
expressions for the composition dependence of the molar Gibbs free energies
of various phases. The expressions are classified according to whether they
apply to “perfect” solutions (mixtures of ideal gases), “ideal” solutions
(condensed-phase mixtures of chemically similar components), or “regular”
solutions (condensed-phase mixtures of chemically dissimilar components).

Finally, Sections 3.3 and 3.4 are devoted to detailed case studies of
two particular alloy systems, selected because they are both of current
interest and importance in MBE, and because they each illustrate different
but important aspects of molar Gibbs free energy calculations. In order
of increasing complexity, we consider, in Section 3.3, the alloy phases of

43
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Si;—.Ge,, and then, in Section 3.4, the stoichiometric compound and other
phases of Ga;_ As;.

3.1 Nomenclature and Preliminaries

Let us start by introducing a standard nomenclature. As in Chapter 2,
we have tried to make ours as simple and self-explanatory as possible. We
begin, in Subsection 3.1.1, by describing the properties of the phases them-
selves. Then, given an understanding of those properties, we discuss, in
Subsection 3.1.2, under what conditions two (or more) phases can coerist.

3.1.1 One Phase, Two Components

Consider a phase, a, this time composed of N moles (or atoms) of com-
ponent a and N moles (or atoms) of component b. The total Gibbs free
energy of such a phase is denoted G*(p, T, N, N&). From it are derived
the molar Gibbs free energy of the a phase,

G*(p, T, N3, Ny)

*(p,T,z*) = , 3.1
9°(p, T, z%) No & Ne (3.1)
and the chemical potentials of the two components in the a phase,
0G*(p, T, N3, Ny)
T = | A
8Na Ng
0G*(p, T, N, Ny)
(. Ta") = [ A . (32)
ONg Ne

Notice that the atomic fractions of the two components, z& = N*/(NZ +
Ng) and z¢ = N2/(NZ + Ng), are not independent of each other, but
sum to unity. Therefore, the molar Gibbs free energies and the chemical
potentials can be written as functions of only one of the atomic fractions.
As is customary, we arbitrarily choose zj, which we write as .

As before, it is important to keep in mind that g¢ is a property of a
phase and is used to compare relative stabilities of different phases. In
contrast, uJ and pf are properties of components in a phase, and are used
to compare relative propensities of those components to incorporate into
different phases.

Often, it is convenient to express the two chemical potentials in terms
of the molar Gibbs free energies, rather than the Gibbs free energies:

89*(p, T, z*)

BT = g°(pTya") - (@) L (3.3)
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ag*(p,T,z*)
Oz« ’

These two Equations can be derived from Equations 3.2 (see Exercise 1 at
the end of this chapter) through use of the identity

uﬁ(p, T,z%) = ga(p’ T, "L'a) + (1 - xa) (3'4)

G*(p, T, N, Ng) = (NZ + NS)g(Ny' /[N + Ny])- (3.5)

Mathematically, they imply that the intercepts of the tangent to the molar
Gibbs free energy vs. composition curve with the z = 0 and z = 1 axes
are the chemical potentials themselves. The two Equations thus form the
basis for what is known as the tangent construction for graphically deducing
chemical potentials.

That construction is illustrated in Figure 3.1. Notice that for the hy-
pothetical molar Gibbs free energy curve drawn, as z* approaches 0 (so
that o becomes poor in component b), the chemical potential of b in «, uf,
becomes very negative. In other words, the less of component b the phase a
has, the more that component is attracted to the phase. In real materials
at commonly encountered temperatures, this will often be the case; it is
due to the entropy, described later, gained by mixing the two components
a and b.

Using these equations, the molar Gibbs energy and the slope of the
molar Gibbs free energy can in turn be expressed in terms of u$ and pf:

9, T,z*) = (1 —z%)usT,z*)+ (*)py(p, T,2%) (3.6)
99°(p, T, z* a o a N
(axa ) = /—Lb(p,T,l' ) —/J'a(paT)w ) (37)

Equation 3.6 tells us that the molar Gibbs free energy is the sum of the
chemical potentials of each component, weighted according to the atomic
fraction of those components. Equation 3.7 tells us that the derivative of
the molar Gibbs free energy with respect to composition is the difference
between the two chemical potentials.

3.1.2 Two Phases, Two Components

Suppose, now, that there are two phases: «, an a-rich phase, and 3, a b-rich
phase. Are there conditions under which these two phases can coezist in
equilibrium? The equilibrium condition, of course, is that the total Gibbs
free energy,

G™* = G*(p, T, NS, N2) + G?(p, T, N, Nf), (3.8)

be minimized with respect to transfer of atoms from one phase to the other.
If so, then the change in the total Gibbs free energy should vanish if we
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Figure 3.1: The tangent construction for deducing chemical potentials. On the
left, .a hypothetical molar Gibbs free energy for a phase, g“, is plotted versus
composition, z. The intercepts of the tangent at z = z® with the z = 0 and
z = 1 axes are the two chemical potentials ug(z®) and pf(z®). As z* varies,
the tangents sweep around the arc of the molar Gibbs free energy curve, and the
intercepts of those tangents trace out the chemical potentials at the various z“.
On the right, the two chemical potentials obtained in this way are plotted versus
composition, <.

increase N& while decreasing NP so that the overall number of a atoms is
constant:
oG*  9G* " oGP G 9GP
ON>  ONg  ON&  ONX NP

e —pl =o. (3.9)

Similarly, the change in the total Gibbs free energy should vanish if we
increase IV while decreasing Nf so that the overall number of b atoms is
constant:

G  9G* 9GP  8G*  OGP 3
- = + = - = b — My
ONg  ONg = ONg ANy 9Nf

=0. (3.10)

In other words, the chemical potentials of a in the two phases must be
equal, as must the chemical potentials of b in the two phases. To see why,
remember that the chemical potentials measure the propensity for atoms
to incorporate into a phase. If those propensities were not the same for two
phases, then there would be a tendency for atoms to transfer between the
two phases, and the two phases could not have been in equilibrium.

Now, we know from Equations 3.3 and 3.4 that the chemical poten-
tials are the intercepts of the tangents to the Gibbs free energy curves.
Hence, if the two phases o and 3 are to be in equilibrium with each other,
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Figure 3.2: Hypothetical molar Gibbs free energies for two phases, @ and S,
plotted versus composition, z. Their (common) tangent defines the compositions
z? and xS at which the two phases are in equilibrium with each other. The
intercepts of their (common) tangent with the z = 0 and = 1 axes are their two
(common) chemical potentials. For overall system compositions and molar Gibbs
free energies indicated by the various solid circles, the two phases will be present

in the proportions indicated schematically in the various surrounding panels.

their compositions & and x must be such that the tangents to ¢* and g°
at those compositions have the same intercepts. In other words, as illus-
trated in Figure 3.2, the two phases must share a common tangent.! That
simple geometric construction can be deduced mathematically by equating
Equation 3.3 for u& with the analogous equation for 2, and by equating
Equation 3.4 for pf with the analogous equation for uﬁ :

6ga(pv T7 xa) — g'B(p7 T1 1‘5) - ga(pa T3 ‘Tg)
Oz za zh —x2

99°(p, T,2")]  _ ¢’ T,27) — g°(p, T, 3) (3.11)
P V) xg g . .

Equations 3.11 are the central equations of this section. Their simul-
taneous solution determines the compositions, & and z?, at which two
phases are in equilibrium with each other, in terms of the composition-
dependent molar Gibbs free energies of each phase. If those dependences
are simple, then the equations may sometimes be solved analytically, at

fixed temperature and pressure, for those equilibrium compositions & and

1J.W. Gibbs, “On the equilibrium of heterogeneous substances,” The Collected Works
of J. Willard Gibbs, Vol. I: Thermodynamics (Yale University Press, New Haven, 1957),
pp. 55-353.



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

48 Chapter 3. Alloy Phases

z8. More commonly, however, the equations must be solved numerically.?

Once we know the equilibrium compositions z& and z?, then we also
know, for a given overall system composition, z, what fraction 1 — f, of
the system is o and what fraction f, is 8. As illustrated in Figure 3.2,
if z < 22 or z > zP (the two extreme solid circles in the center panel of
Figure 3.2), then the system will either be pure a or pure 3, respectively.
In other words, pure a at a composition z < & has a lower molar Gibbs
free energy than any mixture of a at composition z® and 3 at composition
z# = 2z — z*. Likewise, pure 3 at a composition z > z? has a lower
molar Gibbs free energy than any mixture of 3 at composition z? and « at
composition z® = 2z — z¥.

If, however, z > 22 and z < z? (the two middle solid circles lying on
the tangent in the center panel of Figure 3.2), then the equilibrium state
of the system will be a mizrture of the o and 8 phases, whose fractions are
given by what is known as the lever rule,

1-f, -2z
f_ = m. (312)

In other words, the ratio between the 8 and « fractions of the system is
equal to the ratio of the differences between the system composition z and
the equilibrium compositions ¢ and z¢. In terms of these fractions, the
overall molar Gibbs free energy of the system is then

g(t)ot =(1- fo)g%(z5,T) + (fo)gﬂ(xg’T)' (3.13)

It is important to keep in mind that two phases need not necessarily be in
equilibrium with each other. Indeed, they will often not be in equilibrium,
particularly if the migration rate of various components between phases is
slow. Then, the overall molar Gibbs free energy of the system will be

gt = (1= fg* (@, T) + ()¢’ (=", T). (3.14)

2The simplest algorithms are based explicitly on the common tangent construction.
For example, in the algorithm implemented by M.O. Thompson and L.R. Doolittle in
PHASES5: A Program for Calculating Binary Phase Diagrams (Cornell Research Foun-
dation, Computer Graphic Service, 221 Asbury Rd., Ithaca, NY 14850), the composition-
dependent molar Gibbs free energies of all the phases of interest are calculated. Then,
their minimal envelope is determined. That minimal envelope will be characterized, in
general, by various maxima and minima separated by points of inflection. Straddling
the leftmost point of inflection must lie the leftmost pair of equilibrium compositions.
That pair is found by numerically searching for the common tangent nearest that point
of inflection that lies below all other points on the rninimal envelope. Then, working
rightward, successive pairs of equilibrium compositions are found straddling successive
points of inflection.
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The actual fraction of the system that is in the [ phase, f, need not be
that given by the lever rule, and the actual compositions z® and z# of those
phases need not be those determined by Equations 3.11. When this is so,
g'°t will be greater than g'°*, and the amount by which it is greater is a
measure of the deviation of the system from equilibrium.

Another way of looking at this is to note that if two phases are not in
equilibrium with each other, then Equations 3.9 and 3.10 are, by definition,
not satisfied. Then, either the chemical potential of a in « differs from that
of a in 83, or the chemical potential of b in « differs from that of b in 3 (or
both). Hence, there will be a driving force for a or b atoms (or both) to
transfer between the o and 8 phases, and the two phases could not have
been in equilibrium with each other.

3.2 Models of Solutions

In Section 3.1, we discussed how, given dependences of the molar Gibbs
free energies of two (or more) phases on composition, various quantities of
experimental interest could be calculated. For example, the compositions
of phases in equilibrium with each other can be calculated using the com-
mon tangent construction, and the degree to which a mixture of phases
at a given composition deviates from equilibrium is the difference between
Equations 3.13 and 3.14.

In this Section, we discuss how the molar Gibbs free energies of various
phases depend on composition. This question has long occupied a promi-
nent place in materials science and solid-state physics. Ultimately, rapid
advances in theory and computational hardware may allow it to be an-
swered by first-principles calculations. Indeed, in many cases it is already
possible to predict the order of magnitude of alloy heats of formation.® Ex-
cept in a few model systems, however, such calculations are not yet accurate
enough for quantitative work. Therefore, it is common to describe experi-
mentally determined composition dependences of the molar Gibbs free en-
ergies of alloys by simple semi-empirical expressions. These expressions are
usually algebraic, and contain parameters fit either to experimental data
or, occasionally, to first-principles calculations.

The various expressions currently in common use are summarized in
Table 3.1. In discussing them, we will find it convenient to classify them
according to the strength of the interaction between the two components.
“Perfect” solutions are those in which the two components do not inter-
act at all with each other, and are discussed in Subsection 3.2.1. “Ideal”

3See, e.g., A.R. Miedema, P.F. de Chatel, and F.R. de Boer, “Cohesion in alloys —
fundamentals of a semi-empirical model,” Physica 100B, 1 (1980).
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Typ(‘ of hmix Smix

Solution

Perfect 0 0

Ideal 0 Smix,ideal

Strictly Smix,ideal

Regular Qz(1 —z)

Quasi Smix,ideal

Regular (1 — z) +Qsz(1 — z)
Sub Smix,ideal

Regular  Qj symz(1 — ) +Q symz(1 — )

+Qhasy (. — 0.5)z(1 —z)  +8Qs.a5y(z — 0.5)2(1 — )

Table 3.1: Molar enthalpies and entropies of mixing for various semi-empirical
models of solutions. The ideal entropy of mixing, Smix,ideal, 1S given by Equa-
tion 3.24, and the molar Gibbs free energy of mixing is gmix = Pmix — T'Smix- €2,
Qy and §2s are regular solution parameters, as discussed in the text.

solutions are those in which the two components interact with each other
in the same way as they do among themselves, and are discussed in Sub-
section 3.2.2. “Regular” solutions are those in which the two components
interact differently with each other than they do among themselves, and
are discussed in Subsection 3.2.3.

3.2.1 “Perfect” Solutions

We start, in this subsection, by considering alloy phases for which the two
components do not interact at all with each other. Then, as we might
expect, the molar Gibbs free energy of the solution phase is the average
of the molar Gibbs free energies of the pure-component phases, weighted
according to mole fraction.

For example, for an ideal-gas mixture, (a;-;b;), of noninteracting monom
components a and b, we have

gD = (1= a)g (e, ) + (), T)
= (1-2)g®([1 —2]p,T) + (z)g" (zp,T).  (3.15)

where we have made use of the proportionality between the partial pressures
and mole fractions, p® = (1 — z)p and p» = zp, where p is the total
pressure. If the pressure dependences of the molar Gibbs free energies are
factored out through use of Equation 2.48, then we have the explicit form

. 2 1-
gt = (1-x) {g(“)(po,T) + zc0haT In [—( - x)p]}
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+Ho) [0t + 2t (2)]. o)

Po

For an ideal-gas mixture, (aj_zb;), of noninteracting nonmonomeric
components, the proportionality between the partial pressures and mole
fractions is somewhat more complicated. For example, suppose component
a is monomeric, but component b is dimeric. The total pressure is still the
sum of the partial pressures, p = p( + p(*2)| but the mole fractions are

9p(b2) (a)
= ——————-p b 1l—-zxz= _p bo) (317)
p(a) + 2p( 2) p(a) + 2p( 2)
and the partial pressures are
1-z z/2
(@) = (b2) = 1=, 3.18
P T—2? P T—2/2” (3.18)
Hence, the molar Gibbs free energy of the mixture becomes
ga1-ba) = (1 Zg)g® (p(a),T> + (2)g3b2) (p(bz)’T)
1-zlp (4 [w/ 2lp
= (1= (a) [___._ T 3b2) T
(1= a)g (V222 1) + gt (222
(3.19)

If the pressure dependences of the molar Gibbs free energies are factored
out through use of Equation 2.48, then, just as in Equation 3.16, we have
the explicit form

a 2 (a 1—zx)p
gt = (1-2) {g(”(po,T) + zcotaTIn [—( > ) J }
o
2
+ @) {00, T) + Zelhirin [ CL2PT (5.00)
5 Po
Note that the translational heat capacity parameter for b dimers, cf,it::) , Is

half that for b monomers, cf,t,’t)ra.

To deduce the chemical potentials of a and b, we must begin with the
total Gibbs free energy. For example, for monomeric components, we have

G@1-sbe) = N(@i-2be) g@) (p(a) ) 4 N(B1-2be) g (&) (p(®) ), (3.21)

where the partial pressure of a, p(® = (1 — z)p, is independent of the
bs)

number of b atoms, Nt()a"’ =) and the partial pressure of b, p(P) = zp, is
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independent of the number of a atoms, Néa“’b‘). From Equation 3.2, the
chemical potentials of a and b in (a;_.b,) are then found to be

a a a a 2 a 1-z P
et = g, T) = g™ (p,, T) + Ze f)t)raln[%]
aj_zbg ) b p
ui, 1 ) g(b)(p(b),T) = g(b)(pm]) + 5cf) t)ra In [p—] (3.22)

where ¢, tra = 5/2 for monomeric components, and we have identified the
molar Gibbs free energies of the pure-component phases ¢‘*(p,,T) and
gd®)(po, T) with ,u(a)(po,T) and ,uf)b)(po,T), respectively.

It can be seen that the chemical potentials of each component are pro-
portional to simple logarithms of that component’s partial pressure, and are
independent of the presence or absence of the other component. It is impor-
tant to note, though, that they can be indirectly dependent on the presence
or absence of the other component if instead of considering the two partial
pressures to be the independent variables, the total pressure and the mole
fraction are considered to be the independent variables. Then, for a fixed
total pressure, increasing the mole fraction increases the partial pressure of
one component, but decreases the partial pressure of the other component
thereby changing both chemical potentials.

3.2.2 “Ideal” Solutions

In Subsection 3.2.1, we considered alloy phases for which the two compo-
nents do not interact at all with each other. In this subsection, we consider
alloy phases for which the two components do interact with each other.
Then, the molar Gibbs free energies will not be the average of the molar
Gibbs free energies of the pure-component phases, weighted according to
mole fraction. For example, for a solid-phase solution (a;_,b;) of compo-
nents a and b, we must write

ay_ a a;_zbg

=) = (1 2)g" + (2)g™® + gfir=", (3.23)
where gr(:i‘x"b’) is the additional molar Gibbs free energy associated with
the mixing.

Such a molar Gibbs free energy of mixing will exist even if the two
components interact with each other in the same way that they interact
with themselves. At minimum, even if they are chemically identical, each
component will, when confined to a condensed phase, exclude the other
component from occupying the same atomic volume. Unlike the compo-
nents of ideal gases, the components of condensed phases cannot, upon
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mixing, occupy the same volume. Condensed-phase volumes are additive
upon mizing, while vapor-phase volumes are not. Therefore, component
a, previously confined to an initial volume V() is, upon mixing, free to
diffuse into a larger volume V{* 4+ V() The partition function associ-
ated with the mixing is the degeneracy of the system, i.e., the number of
ways N, “a” atoms can position themselves on N, + IV}, lattice sites, less
overcounting for permutations among the (indistinguishable) “a” atoms:
(Na+ Np)!/(N,!Np!). In the absence of a temperature dependence, the en-
tropy is, from Equation 2.16, proportional to the logarithm of the partition
function. Hence, using Stirling’s approximation,

- _ k (Na + Np)!
Smix,ideal = Na T Nb n Na!Nb!
k
- N, + Ny [(N3+Nb)ln(Na+Nb)—NalnNa—Nblan]
= —k[(1-2)In(1-z)+zlnz]. (3.24)

Equation 3.24 is the configurational entropy associated with the random
mixing of two components into a condensed-phase. For an ideal condensed-
phase mixture, then, the molar Gibbs free energy of mixing is given by

—zbg
gr(:ilx ) = —T'Smix,ideal - (3.25)

Note that In(z) and In(1 — z) are negative quantities, so that the entropy
of mixing is positive.

From Equations 3.3, 3.4, 3.23 and 3.24, the chemical potentials of a and
b in (a;_.b;) are then found, after some algebra, to be

ugal—zb:)(z’ T) —
a;_zba
“l(a ' )(‘T’T) =

¢*(T) + kT In(1 - z)

¢N(T) + kT In(x). (3.26)
Note that Equations 3.26, which apply to components in condensed phases,
are quite similar to Equation 2.47, which applies to components in vapor
phases. Physically, the reason is that in both cases the logarithmic parts of
the chemical potentials arise from entropies of mixing, one due to mixing
of a component into a condensed-phase lattice, the other due to mixing of
a vapor into the vacuum.

3.2.3 “Regular” Solutions

In Subsection 3.2.2, we considered alloy phases for which the two compo-
nents interact with each other, but in the same way that they interact with
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themselves. In this subsection, we consider the more usual case: condensed-
phase alloys for which the two components interact with each other substan-
tially and differently from the way they interact among themselves. Then,
the molar Gibbs free energy of mixing will contain contributions additional
to that due to the ideal entropy of mixing. For these alloys, it is common
to represent those additional contributions with semi-empirical formulas fit
to experimental data. Usually, these are algebraic polynomials of the form*

<al -z bz>
Imix

—T'Smix,ideal + (1 — z) [b+ c(2x — 1) + d(2z — 1)*> + - -] .(3.27)

The z(1 — ) factor in the second term on the right side of Equation 3.27
guarantees that that term will vanish in the absence of mixing, i.e., for the
pure-component phases at x = 0 and ¢ = 1. The polynomial factor in
that term consists of even and odd powers of 2z — 1 that are, respectively,
symmetric and antisymmetric with respect to x = 0.5. In its most general
form, the b, ¢, and d coefficients in the expansion may also depend on
temperature.

Strictly and Quasi-Regular Solutions
If only the first term (b) is nonzero, then Equation 3.27 reduces to what is
known as the regular solution expression,®

(a1-2bz) _ —TSmix.ideal + Qz(1 — z). (3.28)

gmix,reg

For such a regular solution, the chemical potentials of a and b can then be
deduced, again using Equations 3.3 and 3.4 (and again after some algebra),
to be

plei-=b=) (2 T) = ¢g@(T)+ kT In(1 — z) 4 Qa?
p-=P) (2 T) = g®NT)+kTin(z)+ Q1 —z)®.  (3.29)

If, furthermore, the interaction parameter €2 is independent of tempera-
ture, then Qz(1 —x) may be considered a mixing enthalpy, and the solution
is sometimes called “strictly” regular. Physically, strictly regular solutions
are those in which the two components are chemically only slightly dissimi-
lar. Then, they will mix very nearly randomly, and the mixing entropy will

40. Redlich and A.T. Kister, “Algebraic representation of thermodynamic properties
and the classification of solutions,” Ind. Eng. Chem. 40, 345 (1948).

5J.H. Hildebrand, J.M. Prasnitz and R.L. Scott, Regular and Related Solutions: The
Solubility of Gases, Liquids, and Solids (Van Nostrand Reinhold, New York, 1970).
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be very nearly the ideal entropy of mixing itself. In fact, for a truly ran-
dom mixture, it is straightforward to calculate the composition-dependent
probability that an atom of one component will be surrounded by various
numbers of atoms of the other component. Then, if the atoms interact only
with their nearest neighbors, Q2 can be shown to be the difference between
nearest-neighbor interactions between like (¢, +€pb) and unlike (e,1,) com-
ponents, 2 = €,1, — %(eaa + ebb). Note, though, that atoms rarely interact
only with their nearest neighbors, and so this simple interpretation of 2 can
be at best qualitative. However, 2 is still a useful semi-empirical measure
of the chemical “dissimilarity” between two components of an alloy.

If, instead, the interaction parameter depends linearly on temperature,
Q = Q) — TQs, then the solution is sometimes called “quasi-regular,” or
“simple.”® The temperature-independent part of the Gibbs free energy
of mixing can still be considered an enthalpy of mixing. However, the
temperature-dependent part must now be considered an entropy of mixing
over and above the ideal entropy of mixing, in part due to non-neglible
deviations from randomness.

If the interaction parameter depends nonlinearly on temperature, then
the enthalpic and entropic contributions to the molar Gibbs free energy of
mixing are difficult to distinguish. One way of doing so is to assume that
the heat capacity of the solution deviates from the weighted average of the
heat capacities of the pure-component phases predicted by what is known
as the Neumann-Kopp rule. That deviation defines a “heat capacity of
mixing,”

Cpumix = €70 (2,T) = [(1= ) (1) + (@)P(T)], (3.30)

which, in the regular solution approximation, would be written as
cpmix = X(T)z(1 — z). (3.31)

If x(T') were independent of temperature, then the temperature-dependent
entropy and enthalpy of mixing would be, by analogy to Equations 2.8 and
2.9,

Smix = [Smix(To) + xIn(T/T,)] (1 — z) (3.32)
hmix = [hmix(To) + x(T = T,)] z(1 — z). (3.33)

If, instead, x(T) has the more general temperature dependence given by
Equation 2.23, then the entropy and enthalpy of mixing take the more com-
plicated forms given by Equations 2.24 and 2.25. Notice that the entropies
and enthalpies of mixing may both be negative or positive, depending on
the sign of the heat capacity of mixing.

SE.A. Guggenheim, Thermodynamics (North-Holland, Amsterdam, 1959).
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Sub-Regular Solutions

Finally, return to Equation 3.27, if the first two terms (b and ¢) are nonzero,
then that equation reduces to what is known as the sub-regular solution
expression,”’
gzt = [(hsym — T aym) + (2 = 0.5) (D sy — T a0y)] 2(1 = ).
(3.34)
This equation is also sometimes referred to as Margules’ equation. It is
the simplest expression for which the interaction parameter depends on
composition. Physically, such a composition dependence might arise if the
two components had different atomic sizes, if that size mismatch led to
long-range elastic strains in the mixture, and if those strains were the dom-
inant contribution to the heat of mixing. Then, if the elastic properties of
the mixture were a weighted average of the elastic properties of the pure-
component phases, the interaction parameter would itself be expected to
be a weighted average of the pure-component interaction parameters.?

3.3 A Nearly Ideal Solution: SiGe

In Section 3.2, we discussed the various commonly used semi-empirical ex-
pressions for the composition dependences of the molar Gibbs free energies
of alloy phases. In this and the next Section, we illustrate that discussion
through two detailed case studies of the thermodynamic equilibria between
the various alloy phases based on Si and Ge and on Ga and As.

We begin, in this Section, with Si and Ge alloys. In particular, we
consider the equilibria between the (monomeric) (Si;—,Ge;) vapor phase,
the {Si;—.Ge;} liquid phase, and the (Si;_,Ge;) crystal phase. We will
start, in Subsection 3.3.1, by discussing the composition and temperature-
dependent molar Gibbs free energy functions of these phases. Then, in
Subsection 3.3.2, we discuss the z-T phase diagrams deduced from these
molar Gibbs free energy functions using the common tangent construction.
Finally, in Subsection 3.3.2, we discuss z-p phase diagrams deduced in a
similar way, and use them to understand the kinetic competition between
condensation and sublimation of SiGe alloys.

"H.K. Hardy, “A ‘sub-regular’ solution model and its application to some binary alloy
systems,” Acta Met. 1, 202 (1953).
8 A.W. Lawson, “On simple binary solid solutions,” J. Chem. Phys. 15, 831 (1947).
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3.3.1 Free Energies

Let us start by estimating the composition, pressure, and temperature
dependences of the molar Gibbs free energies of the (Si;_.Ge,) vapor,
{Si;_.Ge,} liquid, and (Si;_,Ge,) crystal alloy phases of Si and Ge.

The (Si;_,Ge,) vapor phase is just a mixture of two ideal gases, and
hence can be considered to be a “perfect” solution. Therefore, its molar
Gibbs free energy is the weighted sum of the molar Gibbs free energies of
the pure-component vapors:

g8 (0,p,T) = (1 - 2)g (1 = 2)p, T) + (2)g'%) (ap, T) . (3.35)

In this expression, the molar Gibbs free energies of the pure-component
vapor phases can be taken to be those calculated in Chapter 2.

The {Si;—.Ge,} liquid and (Si;_,Ge,) crystal phases are somewhat
more complicated. From the “shapes” of the experimentally measured
boundaries between those phases, it has long been known® that both phases
are nearly, but not quite, ideal. To describe their small degree of nonide-
ality, it is common to use a strictly regular solution model for their molar
Gibbs free energies of mixing, so that

g{SinGez}(l‘vT) = (1- m)g{Si}(T) + (x)g{Ge}(T) — T 'Smix,ideal

+ QiSii-=Gezlg (1 _ g) (3.36)
g =G (2, T) = (1-2)g"(T) + (2)g'%)(T) — Tsmix.idea

+ QSh-2Gez) (1 — ). (3.37)

In fact, experimental data have thus far not been sufficient to deter-
mine uniquely both of the regular solution interaction parameters. There-
fore, here we use the crystal interaction parameter estimated from ab initio
calculations,!® Q(Sii-=Gez) — 0,045 eV /atom. Then, a value for the liquid
interaction parameter of Q{Si1-=Gez} = 0,069 eV /atom is found to fit the
experimental liquid-solid phase diagram quite accurately,!! as illustrated
in the left half of Figure 3.3. Note that these interaction parameters are
comparable to thermal energies at rather modest (~ 300°C) temperatures,
and hence are quite small.

9C.D. Thurmond, “Equilibrium thermochemistry of solid and liquid alloys of germa-
nium and of silicon. I. The solubility of Ge and Si in elements of Groups III, IV and V,”
J. Phys. Chem. 57 827 (1953).

10A. Qteish and R. Resta, “Thermodynamic properties of Si-Ge alloys,” Phys. Rev.
B37, 6983 (1988). We neglect the slight dependence of the interaction parameter on
composition and temperature found in those calculations.

1 These values are numerically very nearly those (Q{Si1-zGez} = 0.067 eV /atom
and Q(Si1-zGez) = 0,037 eV/atom) found empirically in R.W. Olesinski and G.J. Ab-
baschian, “The Ge-Si (germanium-silicon) system,” Bull. Alloy Phase Diagrams 5, 180
(1984).
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3.3.2 Phase Equilibria

In Subsection 3.3.1, we estimated the composition, pressure, and temper-
ature dependences of the molar Gibbs free energies of the various alloy
phases of Si and Ge. From these molar Gibbs free energies, we can calcu-
late, using the common tangent rule, which phase or combination of phases
minimizes the total Gibbs free energy (and hence represents the equilib-
rium configuration of the system) for a given overall system composition.
Usually, if a particular combination of phases minimizes the total Gibbs
free energy at one overall system composition, it will also do so within a
range of overall system compositions. Of special interest then are the crit-
ical compositions that separate the compositions for which one or another
combination of phases is the equilibrium configuration of the system. Like
the molar Gibbs free energies, those critical compositions change with tem-
perature and pressure, thereby defining “phase boundaries” in z-T-p space.
For ease of presentation, it is usually convenient to illustrate those bound-
aries on z-T phase diagrams at fixed p, or on z-p phase diagrams at fixed
T.

In this subsection, we consider z-T phase diagrams at fixed p. Fig-
ures 3.3 and 3.4 illustrate such phase diagrams at fixed pressures ranging
from 10° Torr to 10~ Torr. To make the derivation of the diagrams more
concrete, we also show the molar Gibbs free energies of the three phases of
interest at 1600 K and 1300 K, and the common tangents at those temper-
atures.

At the highest pressure, 10° Torr, there are three distinct regions in
which, at equilibrium, the system contains only one phase (vapor, liquid,
or crystal). At high temperatures the vapor is stablest, at intermediate
temperatures the liquid is stablest, and at low temperatures the crystal is
stablest.

Between these one-phase regions lie two regions in which, at equilib-
rium, the system contains two phases (liquid plus vapor and crystal plus
liquid). In these two-phase regions, the molar Gibbs free energies of none
of the phases lie completely below the others. Instead, the molar Gibbs free
energies of two of the phases intersect. When this is the case, there will
always be a range of compositions around that intersection within which
the molar Gibbs free energy is minimized if the two phases coexist. That
range is bounded by the critical compositions given by the common tangent
construction described algebraically by Equations 3.11. Two of the critical
composition boundaries have special names: that dividing the pure liquid
from the two-phase liquid plus crystal region is called the liquidus, and that
dividing the pure crystal from the two-phase liquid plus crystal region is
called the solidus.
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Figure 3.3: z-T phase diagrams for Si;—.Ge, at pressures of 10° Torr (left)
and 1073 Torr (right). Above and below each phase diagram are also shown the
molar Gibbs free energies of the various phases at 1600 K and 1300 K, their com-
mon tangents, and the critical compositions (open circles) determined by those
common tangents. The solid circles in the left diagram represent experimental
measurements.”

¢H. Storh and W. Klemm, “Uber zweistoff systeme mit germanium. 1.” Z. Anotr.
Chem. 241, 305 (1939); and F.X. Hassion, A.J. Goss and F.A. Trumbore, “On the
germanium-silicon phase diagram,” J. Phys. Chem. 59, 1118 (1955).

At all pressures, there is also a two-phase crystal plus crystal region at
very low temperatures. The reason is that at low enough temperatures,
the contribution of the entropy of mixing to the molar Gibbs free energy
of mixing [Equation 3.28] becomes negligible. Then, a positive interaction
parameter causes the molar Gibbs free energy of mixing of the crystalline
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Figure 3.4: z-T phase diagrams for Si;_,Ge, at pressures of 10~® Torr (left)
and 107° Torr (right). Above and below each phase diagram are also shown
the molar Gibbs free energies of the various phases at 1600 K and 1300 K, their
common tangents, and the critical compositions (open circles) determined by
those common tangents.

solid to bow upward at intermediate compositions. The molar Gibbs free
energy will then be minimized if the crystal decomposes into two crystals (c’
and ¢”) of different compositions. At higher temperatures, the contribution
of the entropy of mixing outweighs that of the mixing enthalpy, causing the
molar Gibbs free energy of mixing to bow downward, and this “miscibility”
gap vanishes. The critical temperature at which the miscibility gap vanishes
therefore occurs when 8%gpnix/9z% = 0, or when

Q

Timise = == 3.38
2% (3.38)
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For an estimated interaction parameter of Q{Si1-=Ge=) = 0,045 eV /atom,
the miscibility temperature is approximately 261 K. Note, though, that the
phase separation would be extremely slow and difficult to observe at those
temperatures, due to the sluggishness of solid-state diffusion.

As the pressure decreases, the vapor becomes increasingly stable relative
to the liquid and crystal. Consider the top panels of Figures 3.3 and 3.4,
which show the molar Gibbs free energies of the various phases at 1600 K.
At 10° Torr the molar Gibbs free energy of the vapor is so high that it is off
the scale of the figure. At 10~2 Torr it has moved downward far enough to
intersect the molar Gibbs free energies of the crystal; a two-phase vapor plus
crystal region then opens up at compositions straddling that intersection.
At 1078 Torr it lies well below the molar Gibbs free energies of the crystal
and the liquid, so that only the vapor phase is stable. Finally, at 10~° Torr,
it has moved so low that it is again off the scale of the figure.

A similar behavior can be seen in the bottom panels of Figures 3.3
and 3.4, which show the molar Gibbs free energies of the various phases at
1300 K. At this temperature, the molar Gibbs free energies of the vapor are
all higher than they were at 1600 K, both absolutely, and relative to the
molar Gibbs free energies of the crystal and liquid. Only at 10~6 Torr has
it decreased enough to intersect the molar Gibbs free energy of the crystal,
and by 1072 Torr although it lies well below the molar Gibbs free energies
of the crystal, it is still visible on the scale of the figure.

The consequence of this increasing stability of the vapor at lower pres-
sures is that the vapor-phase regions in the z-T' diagrams move downward in
temperature with decreasing pressure, impinging first on the liquid-phase
regions, and then on the crystalline-phase regions. In fact, at pressures
below 10~8 Torr, as shown in Figure 3.4, the liquid-phase regions vanish
entirely. Then, as the temperature of the system is raised or lowered, crys-
tal sublimes directly into vapor,'? and vapor condenses directly into crystal,
bypassing the liquid phase.

3.3.3 Condensation and Sublimation

In Subsection 3.3.2, we discussed z-T phase diagrams at fixed p in the SiGe
alloy system. There, we found that, at low enough pressures, the liquid
phase is absent entirely from the phase diagram: crystal sublimes directly
into vapor, and vapor condenses directly into crystal. In this subsection, we

12 A sampling of the vapor (e.g., through a small orifice in an effusion cell) under such
“Knudsen” conditions is a classic method for indirectly measuring the thermodynamic
properties of condensed phases. The method depends on the thermodynamic properties
of the vapor being well understood, and on the vapor and condensed phases being truly
in equilibrium with each other.
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Figure 3.5: z-p phase diagrams for Si;_,Ge, at temperatures of 1300 K (left)
and 1600 K (right). On the left diagram, the open circles correspond to stable
(A and B) and unstable (C and D) vapors at various pressures. The filled circles
indicate the compositions of the crystals that would condense from those vapors,
and the compositions and pressures of the vapors that would then sublime from
those crystals.

examine these sublimation and condensation processes in more detail. To
do so, let us consider the z-p diagrams at fixed T illustrated in Figure 3.5.
In particular, consider a system at a temperature of 1300 K, so that the
phase diagram on the left of Figure 3.5 applies.

First suppose the system to be composed of vapor at a composition and
pressure corresponding to the point labeled A in that Figure. Since that
point lies clearly in the one-phase vapor region, the vapor is stable with
respect to the crystal.

Now suppose we increase the pressure of the vapor, so that the vapor
has a composition and pressure corresponding to the point labeled B in
Figure 3.5. The system is now just on the boundary of the two-phase
crystal plus vapor region. The vapor can now coezist with crystal. However,
if the crystal is to neither grow nor shrink at the expense of the vapor,
its composition and pressure would have to correspond to a point on the
leftmost boundary of the two-phase region. In other words, the composition
of the crystal would not be the same as that of the vapor, but would instead
be much more Si-rich.

Now suppose we increase the pressure even further, so that the vapor
has a composition and pressure corresponding to the point labeled C in
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Figure 3.5. Since the system is now clearly in a two-phase crystal plus va-
por region, the pure vapor is unstable with respect to decomposition into a
mixture of crystal and vapor, and the system would not be in equilibrium.
To understand how this decomposition will actually occur, it is helpful to
adopt a kinetic point of view, in which the equilibrium between crystal and
vapor is considered to be a balance between simultaneous, independent pro-
cesses of condensation and sublimation. At equilibrium, condensation and
sublimation are balanced; but away from equilibrium, they are imbalanced,
and net condensation or sublimation occurs.

That view is illustrated in Figure 3.6, which also shows an expanded
(and linearized) portion of the z-p diagram around point C of Figure 3.5.
In a sense, decomposition of vapor into crystal plus vapor can be thought
of as occurring by sequential condensation and sublimation. First, vapor
condenses out into crystal. If the sticking coefficients are unity for both
species, as they are for Si and Ge, then the composition of the crystal will
initially be (nearly) the same as that of the vapor.!®> Then, the crystal
sublimes partially back into vapor. Because of the higher vapor pressure of
Ge, the vapor that sublimes will be Ge rich, and so the crystal left behind
will be Ge poor. The steady-state composition of the net condensing crystal
is therefore determined by a competition between congruent condensation
of vapor and incongruent sublimation of crystal.

If we denote the compositions and pressures of the incoming (condens-
ing) and outgoing (subliming) vapors as &}, , Pin, oy, and Poyt, respectively,
and denote the steady-state composition of the growing crystal as z¢, then
that competition can be written mathematically as

x;/npin - xgutpout = xc(pin - pout)- (339)

The left side of the equation is proportional to the net rate at which Ge
atoms are transferred from the vapor to the crystal, i.e., the condensation
rate minus the sublimation rate. The right side of the equation is pro-
portional to the net rate at which the crystal grows, weighted by the Ge
fraction in the crystal. In the limit ¢ — 0, so that pure Si is condens-
ing, this equation states that x} pin = TJ,,Pout, i.e., Ge condensation just
balances Ge sublimation.

Note that there is only one “unknown” in this equation: the sublimation
pressure, pout. Given poyt, the phase diagram determines uniquely the
compositions, z¢ and xy,, of the crystal and vapor that are in equilibrium
with each other. Therefore, the problem is to find the sublimation pressure
that self-consistently satisfies Equation 3.39, or its slightly more convenient

13In this semi-quantitative treatment, we neglect the mass (and hence composition)
dependence of the conversion factor between pressure and incident flux.
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Figure 3.6: Kinetic (and expanded) view of the decomposition, depicted in Fig-
ure 3.5, of vapor (point C) into Si-rich crystal (point C’) and Ge-rich vapor (point
C?, ).

form,
v

Pout = M (3_40)

Pin Tgyy — Z€
An example of such a self-consistent solution is shown graphically on the
right side of Figure 3.6. As poyu: decreases, the left side of Equation 3.40
decreases. At the same time, 3, the equilibrium composition of the vapor
at pout, approaches z} , so the right side of Equation 3.40 increases. At the
Pout shown in Figure 3.6, Equation 3.40 just balances, and the compositions
of the growing crystal and the subliming vapor are given by the points C’
and C”.

For a vapor initially at the composition and pressure corresponding to
point C in Figures 3.5 and 3.6, then, the growing crystal is much more Si rich
than the condensing vapor itself. However, as the ambient pressure of the
vapor increases through the sequence of points B, C, and D on Figure 3.5,
the composition of the growing crystal approaches increasingly closely that
of the condensing vapor. The reason is that p,, becomes increasingly
neglible compared to pj,, and the left side of Equation 3.40 approaches
zero. Then, z° must approach z} , and the transformation from vapor to

crystal becomes increasingly “congruent.” In practice, MBE of Si and Ge
nearly always occurs under those conditions.
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3.4 A Stoichiometric Compound: GaAs

In Section 3.3, we presented a detailed case study of alloy phases based on
Si and Ge. In that case, there were only three phases of interest, vapor,
liquid and crystal, all of which are continuous solutions throughout the
entire composition range.

In this Section, we present a detailed case study of the thermodynamic
equilibria between the various alloy phases based on Ga and As. In particu-
lar, we consider five phases: the {Ga;_;As;} liquid phase, the (Ga;_,As;)
vapor phase, the (Gaj_;As;), nearly pure-Ga orthorhombic crystalline
phase, the (Gaj_,As;), nearly pure-As rhombohedral crystalline phase,
and the (Ga;_,As;). nearly stoichiometric zincblende-structure compound
phase.!4

Note that, unlike in the Si-Ge system, in the Ga—-As system only the
vapor and liquid phases form continuous solutions throughout the entire
composition range. For the crystalline phases we must consider not just
one, but three phases. The reason is that orthorhombic crystalline Ga and
rhombohedral crystalline As have different lattice structures and symme-
tries. Since the two structures are inequivalent, and cannot be transformed
one into the other by changing composition, the two phases must be consid-
ered distinct. In fact, Ga is only very slightly soluble in crystalline As, and
As is only very slightly soluble in crystalline Ga. Instead, when “forced” to
mix, Ga and As form a nearly stoichiometric compound crystalline phase.
This phase has yet another lattice structure and symmetry, and hence must
be considered yet another distinct phase.

We will start, in Subsection 3.4.1, by discussing the composition, pres-
sure and temperature-dependent molar Gibbs free energy functions of these
five phases. Then, in Subsection 3.4.2, we discuss the z-T' phase diagrams
deduced from these free energy functions using the common tangent con-
struction. In Subsection 3.4.3, we use both z-T as well as z-p diagrams to
define an “MBE window,” the window in temperature and As-overpressure
within which the stoichiometric compound coexists solely with the vapor,
and not with any other unwanted phase. Then, in Subsection 3.4.4, we use
p-T diagrams to understand what is known as the congruent sublimation
temperature, below which the stoichiometric GaAs compound sublimes di-
rectly into the vapor, bypassing the liquid. Finally, in Subsection 3.4.5, we

1 Vapor-solid-liquid equilibria in ternary III-I1I-V or III-V-V alloys, such as AlGaAs or
InAsSb, are somewhat more difficult to treat; see, e.g., R. Heckingbottom, “Thermody-
namic aspects of molecular beam epitaxy: high temperature growth in the GaAs/GaAlAs
System,” J. Vac. Sci. Technol. B3, 572 (1985), and H. Seki and A. Koukitu, “Thermo-
dynamic analysis of molecular beam epitaxy of III-V semiconductors,” J. Cryst. Growth
78, 342 (1986).
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discuss in more detail the vapor pressures of Ga and Asy over the various
condensed phases and phase mixtures, both above and below the congruent
sublimation temperature.

3.4.1 Free Energies

Let us begin, in this subsection, by asking what the thermodynamic prop-
erties of these five phases are. Just as we did for the Si-Ge system, here we
follow the usual prescription of characterizing the thermodynamic proper-
ties of the various phases first at their end point compositions, and then at
intermediate compositions.

End Point Compositions

At its end point composition, the zincblende phase is the exactly stoichio-
metric (Gag sAso.5)c compound. At their end point compositions, the va-
por, liquid, and rhombohedral and orthorhombic crystalline phases become
the three phases of pure Ga [(Ga), {Ga}, and (Ga),] and the three phases
of pure As [(3Asz), {As}, and (As),].

Note that for the Ga vapor phase, we consider only the most significant
species: monomeric Ga. For the As vapor phase, however, we consider only
the second most significant species: dimeric As. Although tetrameric As
should, at commonly encountered MBE temperatures, be much more abun-
dant than dimeric As in equilibrium, in fact As is found experimentally to
sublime preferentially as dimeric As from GaAs surfaces under normal MBE
conditions.!® Therefore, dimeric and tetrameric As are not in equilibrium
with each other during GaAs MBE, and we cannot treat the vapor phase
as if it were composed mainly of tetrameric As. Instead, we consider here
the opposite extreme, in which tetrameric As is absent entirely.

Note that such “constrained” equilibria can only be an approximate
description of GaAs MBE. It will, e.g., describe GaAs MBE in which the
As source is tetrameric only to the extent that the temperature dependence
of the incorporation rate of incident Ass into growing GaAs is similar to
that of incident As,. In fact, this approximation is not a bad one. The
incorporation rates of both species depend mainly on Ga surface coverage,
and their saturated (high Ga surface coverage) incorporation rates differ by
at most a factor of two.'6

15 An upper bound of 1% has been placed on the Ass to As; ratio in vapors sublimed
from GaAs; see, e.g., C.T. Foxon, J.A. Harvey and B.A. Joyce, “The evaporation of GaAs
under equilibrium and nonequilibrium conditions using a modulated beam technique,”
J. Phys. Chem. Solids 34, 1693 (1973).

16C.T. Foxon and B.A. Joyce, “Interaction kinetics of Asy and Ga on {100} GaAs
surfaces using a modulated molecular beam technique,” Surf. Sci. 50, 434 (1975); and
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Phase Or ¢ 1
(K) (meV/(at-K)) (1075 meV/(atomK?))
(Ga), 66 0.276 0.00
{Ga} 66 0.276 0.00
{GaosAsos)e | 82.6  0.250 1.22
(AsYa 84 0257 123
{As} 84  0.257 4.23

Table 3.2: Heat capacity parameters for the condensed phases of Ga and As at
their end point compositions.

Such constrained equilibria will also describe GaAs MBE only in the
absence of other condensed phases that might “catalyze” the formation
of Ass.!” Therefore, a general treatment of phase equilibria during GaAs
MBE would need to include tetrameric As as a constituent of the vapor
phase in the presence of these other condensed phases, but exclude them
(as we do here) in their absence.

To estimate the thermodynamic properties of these seven phases, we fol-
low the procedure outlined in Chapter 2. Each phase is characterized both
by a temperature-dependent heat capacity, and by enthalpy and entropy
offsets at particular temperatures.

For the condensed phases, the heat capacities can be described by our
standard form [Equation 2.23], using the parameters listed in Table 3.2.
For (Ga), and {Ga} the parameters are an approximate combined fit to
experimental values for both phases from 40 K to 302.92 K'® and from
302.92 K to 2476 K.!° For (As), and {As} the parameters are an approx-
imate combined fit to experimental values for both phases from 57.2 K to
291 K?° and from 298.15 K to 1200 K.2! For (Gag sAs.5)., the parameters

C.T. Foxon and B.A. Joyce, “Interaction kinetics of Asp and Ga on {100} GaAs surfaces,”
Surf. Sci. 64, 293 (1977).

17Bulk (As)q is known to sublime preferentially as Asg; (Gaj_zAsz)q epitaxially
oriented to a (Gag.5Asg.5)c substrate may or may not sublime preferentially as Asy.

18Y.S. Touloukian and E.H. Buyco, Thermophysical Properties of Matter Vol. 4, Spe-
cific Heat of Metallic Elements and Alloys (IFI/Plenum, New York, 1970).

I9M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald and
A.N. Syverud, JANAF Thermochemical Tables, 3rd Ed., Part 11, Cr-Zr, J. Phys. Chem.
Ref. Data 14, Suppl. No. 1 (1985), p. 1204.

20y S. Touloukian and E.H. Buyco, Thermophysical Properties of Matter, Vol. 4,
Specific Heat of Metallic Elements and Alloys (IFI/Plenum, New York, 1970).

21R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley and D.D. Wagman,
Selected Values of the Thermodynamic Properties of the Elements (American Society
for Metals, Metals Park, Ohio, 1973), pp. 204-209.
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Phase 6T,t.ra, Co,tra eT,rot Co,rot @T,vib Co,vib
() (K) (K)
(Ga) | 0.125(p/760Torr)"* 5k/2 | — 0 - 0
(3Asp) | 0.079 (p/760 Torr)’*  5k/4 | 0144  k/2 | 618  k/2

Table 3.3: Heat capacity parameters for the vapor phases (Ga) and (3As;).

are a fit to experimental values from 4 K to 1500 K.?? In all cases, the
usual caveat applies — the heat capacities of nonequilibrium phases (e.g.,
crystals above their melting temperatures or liquids below their freezing
temperatures) are estimates only.

For the vapor phases, the translational, rotational, and vibrational con-
tributions to the heat capacities can be described by Equations 2.31, 2.35
and 2.39, using the parameters listed in Table 3.3. The parameters for
As; are based on a bond length of 2.104 Aand a ground-electronic-state
vibrational stretching frequency of 429.55 cm™!.22 The electronic contri-
butions can be described by Equations 2.34 and 2.20, using the energies and
degeneracies listed in Table 3.4. As always, care must be taken to halve
thermodynamic quantities having to do with dimers, in order for their units
to be per atom rather than per dimer.

For all the phases, we use the enthalpy and entropy offsets listed in
Table 3.5. Most of the values are those recommended by Tmar and co-
workers.?*  Some, though, have been modified slightly according to the
methods used in the Si-Ge system discussed in Chapter 2. The principal
modification is to the enthalpy of formation of (3As;). We find that it must
be approximately 3% lower than Tmar’s value in order for the congruent
sublimation temperature of GaAs, described later in this section, to agree
with its approximate experimental value of 898 K.

Intermediate Compositions

Just as it was in the Si-Ge system, in the Ga-As system the vapor phase is
just a mixture of two ideal gases, and hence can be considered a “perfect”
solution. However, in this system the vapor phase is somewhat more com-
plicated, as we assume that it is composed of monomeric Ga and dimeric

22].S. Blakemore, “Semiconducting and other major properties of gallium arsenide,”
J. Appl. Phys. 53, R123 (1982).

235.N. Suchard and J.E. Melzer, Eds., Spectroscopic Data Vol. 2: Homonuclear Di-
atomic Molecules (IFI/Plenum, New York, 1976), p. 43.

24M. Tmar, A. Gabriel, C. Chatillon, and I. Ansara, “Critical analysis and optimiza-
tion of the thermodynamic properties and phase diagrams of the III-V compounds. II.
The Ga-As and In-As systems,” J. Cryst. Growth 69, 421 (1984).
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Molecule Level Degeneracy Relative energy
(VL)) (i) (V)
Ga 3P1/2 2 0
3P3/2 4 0.102
281/ 2 3.07
Asy v 3 0
3yt 3 1.81

Table 3.4: Energies and degeneracies of the lowest lying electronic levels of Ga
and Ass.

As. Therefore, its molar Gibbs free energy is that given by Equation 3.20:

g(Gal_IAs,) —
2 (Ga 1-
(1-12) {g(Ga)(po,T) -+ —cf,(ir;T In [(_:c)p] }
5 Po
2 (LAs x/2
+ (z) {g(%“?’(po,T) + gcf,j-;‘,‘;):rln [(——]{)—)2] } . (3.41)

Exactly at their end point compositions (z = 0 for (Ga;_yAsz),, z =1
for (Gaj_zAs;)a, and z = 0.5 for (Ga;_;As;).), the molar Gibbs free
energies of the three crystalline phases can be readily calculated from the
parameters in Tables 3.2, 3.3, 3.4 and 3.5. Away from those end point
compositions, however, the molar Gibbs free energies increase extremely
rapidly — in other words, compositional “defects” in these three phases
are energetically quite costly. Therefore, we will treat these three phases,
as illustrated in Figures 3.7 and 3.8, as if their Gibbs free energies rise so
steeply that their compositions are essentially “pinned” at those end point
compositions.

Finally, from the shape of the experimental liquidus boundary dividing
{Ga;_,As;} from a two-phase mixture of {Ga;_,As;} and (Ga;_;As;)c,
the {Ga;_As,} liquid has long been known to be fairly well represented
by a quasi-regular (or “simple”) solution model.2®> More recent analyses in-
dicate that a sub-regular solution model improves the representation some-
what, especially in the extremely As-rich portion of the phase diagram.?®
For our purposes, then, we assume such a sub-regular solution model,

g{Gal_IAsI} —

25M.B. Panish, “A thermodynamic evaluation of the simple solution treatment of the
Ga-P, In-P and Ga-As systems,” J. Cryst. Growth 27, 6 (1974).

26 A.E. Schultz, The relationship between (gallium, indium) arsenic and its melt for
the bulk and thin film cases, Ph.D Thesis (U. of Wisconsin-Madison, 1988).



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

70 Chapter 3. Alloy Phases

Phase T, h(T,) T, s(Ty)
(X) (eV/at) (K) (eV/(at-K))
(Ga), 298 0 0 0
{Ga} 302.9 h{G2)y 40.0578 | 302.9 (G2 40.0578/302.9
(Ga) 0 h(G2)v +2.70 0 0
(GagsAsos)c | 298 -0.424 0 0
(As)q 298 0 0 0
{As} 1090  h{Asla +0.2533 | 1090  s¢As)e 4+ 0.2533/1090
(1As,) 0 h{As)a 4 0.952 0 0

Table 3.5: s and h offsets for the various phases of Ga and As.

(1 - 2)g'% + (2)g'4} — Tsmix ideal
+ .’L'(l _ .’l?) (Q{Gal—xAsx} _ TQ{Gal—IASz})

h,sym s,sym

+a(l-a)(z - %) (Qﬁf’;:; shsa} _ Tngg:;—xf*s:}) . (3.42)

Following Brebrick,?” we note that of the four interaction parameters
(two symmetric and two antisymmetric), only one may be chosen freely
to fit the “shape” of the phase boundaries to experimental data. The
other three are then determined by the known enthalpy (Ahy,) and entropy
(Asym = Ahy, /Tyy) of fusion of the zincblende compound, and by the known
eutectic temperature (T, = 1079 K) and composition (z, = 0.976) at which
the As-rich liquid coexists in equilibrium with the zincblende compound
and As-rich solid:

1 {Gay_.zAs;} _

4 h,sym

h<T(n;laO.5Aso.5)c + Ahy, — 0.5 (h;ﬁa} + h;ﬁs})

(Q{Gzn,zAsi} — T, QlGa1-cAs }) _

h,sym s,sym

Ll B

g%ia"'sAS”'S)“ + T Smix,ideat (0.5) — 0.5 [Q{Tia} + g;“:s}] (3.43)

1
[Q{Gal-f“s’} -~ TCQ{Gal—zAS=}] ze(l = ze)(ze = 5) =

h,asy s,asy

1 s
2(1 = me)gg "M + 2w — S)og (3.44)

27R.F. Brebrick, “Quantitative fits to the liquidus line and high temperature thermo-
dynamic data for InSb, GaSb, InAs and GaAs,” Met. Trans. 8A, 403 (1977).
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{Gaj_-Asz} Q{Gal_IAs,} Q{Ga,_IAsx} Q{Gal_IAsz}
h,sym s,sym h,asy S,asy
(eV/atom) (meV/(atomK)) (eV/atom) (meV/(atomK))
0.031 0.27 -0.011 0

Table 3.6: Mixing enthalpies and entropies for liquid {Ga;_zAs;}.

_ [Q{Gal_,As,} _ TeQ{Ga.,,As,}] ze(1 — z0)

h,sym s,sym
A G
+ Tesmix,ideal(xe) - (‘Te)g}‘e s} + (1 - Zl?e)g;; a}‘ (345)
The values found for the four interaction parameters are listed in Ta-
ble 3.6. It was not found necessary to invoke a nonzero Qig:,}_’As’} in order

to reproduce the experimentally measured liquidus boundaries dividing the
one-phase liquid from the two-phase liquid plus solid regions, as can be seen
in the left side of Figure 3.7.

From these molar Gibbs free energies, we can now calculate, using the
common tangent construction, which phase or combination of phases min-
imizes the total Gibbs free energy (and hence represents the equilibrium
configuration of the system) for a given overall system composition, pres-
sure and temperature. As is customary, we will illustrate the resulting
phase diagrams as z-T cuts at fixed p, as z-p cuts at fixed T, and as p-T
cuts at fixed z.28

3.4.2 Phase Equilibria

In Subsection 3.4.1, we estimated the composition, pressure, and tempera-
ture dependences of the molar Gibbs free energies of the various alloy phases
of Ga and As. In this subsection, we discuss the z-T" phase diagrams that
are deduced from those free energy functions using the common tangent
construction. For example, Figures 3.7 and 3.8 illustrate z-T phase dia-
grams at four fixed pressures ranging from 1.5 x 103 Torr to 10~° Torr. To
make the derivation of the diagrams more concrete, we also show the molar
Gibbs free energies of the five phases of interest at 1000 K and 850 K, and
the common tangents at those temperatures.

At the highest pressure, 1.5 x 103 Torr, there should, for each of the five
phases, be a distinct region in which, at equilibrium, the system contains
only that phase ((Gaj-;As;), {Gaj_,As;}, (Gaj_zAs;)c, (Gaj—zAsg)q OF
(Gaj—Asz)y). As expected, the (Ga;_,As;) phase can be seen in Fig-
ure 3.7 at the highest temperatures, and the {Ga;_,As;} phase can be

28]. van den Boomgaard and K. Schol, “The p-T-z phase diagrams of the systems
In-As, Ga-As and In-P,” Philips Res. Rep. 12, 127 (1957).
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Figure 3.7: z-T phase diagrams for Ga;_,As, at pressures of 1.5x 10* Torr (left)
and 107! Torr (right). Above and below each diagram are also shown the mo-
lar Gibbs free energies of the various phases at 1000 K and 850 K, and their
common tangents. The solid circles in the left diagram represent experimental
measurements.®

2J.C. DeWinter and M.A. Pollack, “Ga-As liquidus at temperatures below 650 C,” J.
Appl. Phys. 58, 2410 (1985); R.N. Hall, “Solubility of III-V compound semiconductors
in column III liquids,” J. Electrochem. Soc. 110, 385 (1963); and V.W. Késter and B.
Thoma, “Aufbau der Systeme Gallium-Antimon, Gallium-Arsen and Aluminium-Arsen,”
Z. Metallkd. 46, 291 (1955).

seen at intermediate temperatures. The three crystalline phase regions,
however, are infinitesimally narrow, as we have forced their compositions
to be pinned at their end point compositions.?® The (Ga;_,As;), single-

290n the scale of Figures 3.7 and 3.8, the three crystalline phase regions would have
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Figure 3.8: z-T phase diagrams for Ga;_,As, at pressures of 10~® Torr (left)
and 10~° Torr (right). Above and below each diagram are also shown the molar
Gibbs free energies of the various phases at 1000 K and 850 K, and their common
tangents.

phase “region” is essentially a vertical line at z = 0 from 0 K to 302.9 K (the
melting temperature of (Ga),). The (Ga;_;As;), single-phase “region” is
essentially a vertical line at z = 1 from 0 K to approximately 1090 K (the
melting temperature of (As),). The (Ga;_,As;). single-phase “region” is
essentially a vertical line at x = 0.5 from 0 K to 1513.5 K (the melting
temperature of (Gag sAsps)c)-

As we saw in the Si-Ge system, as the pressure decreases, the vapor

appeared infinitesimally narrow even had we not forced their compositions to be pinned
at their end point compositions, but had instead used realistic composition dependences
for their molar Gibbs free energies.
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becomes increasingly stable relative to the liquid and crystalline phases.
Then, the vapor-phase regions in the z-T diagrams move downward in
temperature with decreasing pressure, impinging first on the liquid-phase
regions and then on the crystalline-phase regions.

To see how, ¢onsider the top panels of Figures 3.7 and 3.8, which show
the molar Gibbs free energies of the various phases at 1000 K. At 1.5 x
103 Torr the molar Gibbs free energy of the vapor is so high that it is
visible only in the upper right portion of the figure. At 107! and 10~° Torr
it has moved downward far enough to intersect the molar Gibbs free energy
of the liquid; a two-phase compound plus vapor region then opens up at
compositions straddling that intersection. Below 10~° Torr, it lies just
below the molar Gibbs free energies of both compound and liquid, so that
only the vapor phase is stable.

A similar behavior can be seen in the bottom panels of Figures 3.7 and
3.8, which show the molar Gibbs free energies of the various phases at
850 K. At this temperature, though, the molar Gibbs free energies of the
vapor are all higher than they were at 1000 K, both absolutely, and relative
to the molar Gibbs free energies of the crystal and liquid. Therefore, the
equivalent intersections between the molar Gibbs free energies of the vapor
and the liquid occur at lower pressures.

3.4.3 The MBE “Window”

In Subsection 3.4.2, we discussed z-T phase diagrams in the Ga-As alloy
system. In this subsection, we use these as well as z-p and p-T" diagrams
to understand the preferred environmental conditions for GaAs MBE.

To do so, we note that, by definition, GaAs MBE is condensation of the
vapor into (GagsAsps)c. At the same time, however, condensation of the
vapor into other condensed phases such as {Ga;_,As;} or (Gaj;_;As;)q
must be avoided. Avoiding such condensation can only be guaranteed,
however, if the two-phase mixture of (GagsAsps)c and (Ga;—As;), both
of which must be present during MBE, actually minimizes the molar Gibbs
free energy. Otherwise, another mix of phases will have some tendency to
form. In other words, MBFE will be thermodynamically preferred if it occurs
at an overall system composition, temperature and pressure for which the
equilibrium miz of phases is (GagsAsp ). and (Gaj_ As;).

These compound plus vapor two-phase “windows” in which MBE is
preferred are shown as shaded regions in Figures 3.7 and 3.8. Consider,
e.g., the 10~ Torr diagram shown in the left half of Figure 3.8. The MBE
window is bounded on the left by a Ga-rich liquid plus GaAs compound two-
phase region. In other words, the overall system must be As rich; otherwise
it will tend to “decompose” into a Ga-rich liquid and GaAs compound, as
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Ga droplets

| 11pm
1um

Figure 3.9: In situ scanning electron microscope image of Ga
droplets (black ovals) formed® during GaAs MBE under Ga-rich growth condi-
tions at 610°C. The gray ovals are GaAs mounds formed by previous experimental
sequences. The image is foreshortened by about 20 times in the vertical direction.

%N. Inouye, “MBE monolayer growth control by in-situ electron microscopy,” J. Cryst.
Growth 111, 75 (1991).

illustrated in Figure 3.9, into Ga-rich liquid plus As-rich vapor. The reason
is that at these temperatures the vapor pressure of Ga over liquid Ga is so
low that excess Ga cannot re-evaporate into the vapor. Note, though, that
since the compound is very nearly stoichiometric, a Ga-rich overall system
can be avoided by maintaining an overpressure of As-rich vapor.

The MBE window is bounded on the bottom by a GaAs compound plus
As-rich crystal two-phase region. The reason is that at temperatures so low
that the vapor pressure of (As), is lower than the impinging As pressure,
excess As will tend to condense into crystalline As, rather than sublime
from the growing surface,3° as illustrated in Figure 3.10. Finally, the MBE
window is bounded on the top by a Ga-rich liquid plus As-rich vapor two-
phase region. The reason is that at temperatures so high that the vapor
pressure of Ga over the GaAs compound is higher than the vapor pressure
of Ga over the Ga-rich liquid, the GaAs compound, even as it grows, will
itself tend to decompose.

These MBE windows can also be seen in z-p phase diagrams. Consider,
e.g., the 1000 K diagram shown in the right half of Figure 3.11. Again,

30Note, though, that this low-temperature boundary to the MBE window is not as
well defined as the others, due to the possibility that the As-rich crystal sublimes as As
tetramers, which we have disallowed. Because (%AS4) is more stable than (%Asz), the
boundary will move down in temperature, and the MBE windows would be even wider
than those shown.
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Figure 3.10: Plan-view transmission electron micrograph of hexagonal As
precipitates formed” after a 20 min. 620°C anneal of a GaAs layer grown by MBE

at 190°C.

@7. Liliental-Weber, G. Cooper, R. Mariella, Jr., and C. Kocot, “The role of As in
molecular-beam epitaxy GaAs layers grown at low temperature,” J. Vac. Sci. Technol.
B9, 2323 (1991).

the MBE window is bounded on the left by a Ga-rich liquid plus GaAs
compound two-phase region. The reason is the same as that given above:
at these high pressures, excess Ga condenses into Ga-rich liquid, rather than
reevaporating into the vapor. The origins of the top and bottom boundaries
are also the same as before, but reversed: the window is bounded on the
top by a GaAs compound plus As-rich crystal two-phase region, and on the
bottom by a Ga-rich liquid plus As-rich vapor two-phase region.

Notice that the MBE windows in this system are actually quite large.
As illustrated in Figure 3.8, at a typical overpressure of 10~° Torr, the
temperature may range from roughly 350°C to 730°C. As illustrated in
Figure 3.11, at a typical growth temperature of =~ 577°C, the overpressure
may range from roughly 3 x 10~7 Torr to 3 x 107! Torr. In terms of MBE
growth windows, GaAs is a relatively forgiving compound, a fact that is
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Figure 3.11: z-p phase diagrams for Ga;_,As, at temperatures of 850 K (left)
and 1000 K (right).

in part responsible for the ease and success with which it can be grown.
Other III-V compounds alloys are not so forgiving. For example, the MBE
growth window for InSb epitaxy is much narrower,3! due to the lower vapor
pressure of solid Sb than of solid As, and the higher vapor pressure of liquid
In than of liquid Ga.

Consider, finally, the p-T" phase diagram shown in Figure 3.12 for a fixed
overall system composition of £ = 0.51. Note that although the overall sys-
tem composition is just slightly As rich, the composition of the equilibrium
vapor at the various phase boundaries is nearly unity, and the vapor can
be considered nearly pure As;. In other words, the phase boundaries are
essentially the critical As, overpressures at which various phase mixtures
coexist. These p-T diagrams can therefore be of great practical use to the
crystal grower, because substrate temperature and As; vapor overpressure
can both be directly and readily controlled.

As in the other diagrams, the MBE window is the GaAs compound
plus As-rich vapor shaded region of the diagram. The upper a + ¢/c + v
boundary defines the As, overpressure beyond which solid As will tend to
form. As illustrated in the upper left part of Figure 3.12, that boundary is
defined by the pressure at which the molar Gibbs free energy of the vapor
just intersects that of the solid at the As-rich side of the diagram. That

31].Y. Tsao, “Phase equilibria during InSb molecular beam epitaxy,” J. Cryst. Growth
110, 595 (1991).
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Figure 3.12: p-T phase diagram for Ga;_,As; at an overall system composition
of z = 0.51. To the left are the molar Gibbs free energies at the pressures and
temperatures indicated by the open circles.

boundary is the vapor pressure of Asy over (As),.

The lower ¢ + v/l + v boundary defines the As; overpressure below
which Ga-rich liquid will tend to form. As illustrated in the lower left
part of Figure 3.12, that boundary is defined by the pressure at which
all three phases coexist, and hence share a common tangent. Below that
critical pressure, the molar Gibbs free energy of the vapor decreases below
that of the compound, and the equilibrium state of a system at z = 0.51
becomes a mixture of Ga-rich liquid and As-rich vapor. Above that critical
pressure, the molar Gibbs free energy of the vapor increases above that of
the compound, and the equilibrium state of a system at z = 0.51 becomes
a mixture of GaAs compound and As-rich vapor.

Finally, the lower ¢ + v/v boundary defines the Ass overpressure above
which the GaAs will tend to grow by condensation from the vapor, rather
than shrink by sublimation into the vapor.

3.4.4 Congruent and Incongruent Sublimation

In Subsection 3.4.3, we discussed the window in temperature and As; over-
pressure within which the GaAs compound coexists stably with an As-rich
vapor. On the p-T diagram of Figure 3.12, the window is bounded at the
bottom either by a liquid plus vapor region above 898 K, or by a pure vapor
region below 898 K. This critical temperature is known as the congruent
sublimation temperature.

In this subsection, we discuss the origin of this critical tempeature. We
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Figure 3.13: Vapor pressures of (Ga) over (Gao.sAso.s)c and {Ga}. Molar Gibbs
free energies of the subliming vapor over the compound at 1200 K (top left) and
810 K (bottom left).

begin by supposing that growth is terminated, the usual overpressure of
vapor As is taken away, and the GaAs compound is held at constant tem-
perature in ultra-high-vacuum. We then ask whether, under such nonequi-
librium, “Langmuir” evaporation conditions, it is still possible to apply
equilibrium phase diagrams.

In fact, it s possible. Recall our arguments at the end of our discus-
sion of the Si-Ge system. There, we adopted a kinetic point of view, in
which the equilibrium between crystal and vapor was considered to be a
dynamic competition between simultaneous, independent processes of con-
densation and sublimation. At equilibrium, condensation and sublimation
are balanced; but away from equilibrium, they are imbalanced, and net
condensation or sublimation occurs.

Imagine that our system is at 810 K, bathed in an ambient As; pressure
of 1072 Torr, so that, as indicated in the lower left panel of Figure 3.13,
the molar Gibbs free energies of the compound and the vapor at x = 0.5
are equal, and the compound and vapor are in equilibrium with each other.
Then, the “condensation” and “sublimation” pressures are just balanced,
and no net growth occurs. Importantly, though, the two pressures are inde-
pendent of each other. If we suddenly remove the “condensation” pressure,
the “sublimation” pressure persists, and the compound will shrink. If we
suddenly decrease the temperature to decrease the “sublimation” pressure,
the condensation pressure persists, and the compound will grow. For ex-
ample, Figure 3.14 shows direct measurements of GaAs sublimation after
GaAs condensation is terminated.

Here, we imagine removing the condensation pressure. Then, under such



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

80 Chapter 3. Alloy Phases

100 T T T T T
~ 80 -
2]
bt
o
2 60} i
'-O- ]
=~
s
40 - 1 Ga off T
a
]
T Ga on
= 20 i
0 1 1 | | 1
0 50 100 150 200 250

Time (s)

Figure 3.14: Reflection high-energy electron diffraction (RHEED) intensity
measurements during a GaAs MBE growth and sublimation sequence® at 938 K.

In the presence of a Ga flux, the oscillations in time indicate bilayer-by-bilayer
condensation; in the absence of a Ga flux, the oscillations indicate bilayer-by-
bilayer sublimation (see Chapter 6 for a discussion of RHEED oscillations). An
As flux was maintained throughout the growth and sublimation sequence. Note
that at this temperature and growth rate sublimation is much slower than growth.

¢J.M. Van Hove and P.I. Cohen, “Mass-action control of AlGaAs and GaAs growth
in molecular beam epitaxy,” Appl. Phys. Lett. 47, 726 (1985).

Langmuir, free evaporation conditions, the sublimation pressure persists,
and will be the same as the condensation pressure at which the compound
and vapor would have been in equilibrium. The molar Gibbs free energy of
the vapor that sublimes is the same as that of the vapor that would have
condensed in equilibrium, and, as indicated in the left panels of Figure 3.13,
just touches that of the compound.

At 810 K, it can be seen that at the sublimation pressure (10~° Torr) for
which the vapor is in equilibrium with the compound, the molar Gibbs free
energy of the vapor lies safely below that of the liquid. Therefore, at this
temperature, the compound will sublime congruently into the stoichiometric
vapor.

At 1200 K, however, it can be seen that at the sublimation pressure
(3 x 1073 Torr) for which the vapor is in equilibrium with the compound,
the molar Gibbs free energy of the vapor intersects that of the Ga-rich
liquid, and on the Ga-rich side lies above it. That means that the vapor,
once formed by sublimation from the compound, itself is unstable with
respect to decomposition into a Ga-rich liquid and an As-rich vapor. At
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this temperature, the compound will not sublime congruently, but rather
will decompose “incongruently” into Ga-rich liquid and As-rich vapor.

Notice that at higher temperatures, the molar Gibbs free energy of the
liquid decreases relative to that of the crystal, because of its higher entropy.
Therefore, at higher temperatures the molar Gibbs free energy of the vapor
subliming from the compound will always cut across that of the liquid, and
sublimation will always be incongruent. At lower temperatures, however,
the molar Gibbs free energy of the liquid increases relative to that of the
crystal. Therefore, at lower temperatures the molar Gibbs free energy of
the vapor subliming from the compound will never cut across that of the
liquid, and sublimation will always be congruent. The critical temperature
below which sublimation is congruent is what is known as the congruent
sublimation temperature, T,s.

Another way to understand the origin of the congruent sublimation tem-
perature is to consider the temperature-dependent sublimation pressures of
Ga over {Ga} liquid and over the (Gag 5Asg 5). compound, as shown in the
right half of Figure 3.13. The sublimation pressure of Ga over {Ga} is de-
termined by the pressure at which the molar Gibbs free energy of the vapor
just intersects that of the liquid on the Ga-rich side. From Equation 2.48,
that pressure can be written as

(Ga)
PiGa {Ga} _ (Ga) Y

o [ Pacat | _ 9(T) — g™V (o, T) (3.46)
Po kT

The sublimation pressure of Ga over (GagsAsg.s)c is determined by the
pressure at which the molar Gibbs free energy of the vapor just intersects
that of the stoichiometric GaAs compound. Therefore, using Equation 3.20,

(Ga) (Ga)
g(Gac,lsAsoj)C — k—Tln p<Gﬂu.5A50.5)c + gln p<GaoAsA50.s)c
Po 4 2po
1 1as
+ 5[99 (o 1) + 634 (p,, )] (3.47)

where we have made use of the fact that for stoichiometric sublimation,
p(® = 2p/3 and p(A%2) = p/3. Solving for the Ga vapor pressure then
gives

G Gap.sA ¢ 1 Ga L1As
1 pEGZ()).sAsoj)c — g( o) (T) T2 g( )(pO’T) + 9(2 2)(me)]
21/3p, 3kT/4 ‘

(3.48)
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At high temperatures Ga has a higher vapor pressure over (Gag 5Aso.5)c
than over {Ga}; therefore, (Ga), once formed by sublimation from the com-
pound, will have a tendency to condense into the liquid. At low temper-
atures, Ga has a lower vapor pressure over (Gag sAsg.s)c than over {Ga};
therefore, (Ga), once formed by sublimation from the compound, will not
have a tendency to condense into the liquid. Physically, the reason is that
disordered {Ga} has a higher entropy than ordered (GagsAsgs).. Con-
sequently, g{G2}, which enters into Equation 3.46, decreases faster with
increasing temperature than does g{Ga0sAsos)e  which enters into Equa-
tion 3.48.

Finally, to determine quantitatively the congruent sublimation temper-
atures, we can equate Equations 3.46 and 3.48, giving, after some algebra,

2
kT ln(21/3) — 5[g{Ga}(T)_}_g(él\SZ)(me) _2g(Gao.5Aso45)c(T)]
1
+ 3191 (T) — o, 7] (3.49)

This equation determines the congruent sublimation temperature in terms
of the molar Gibbs free energy of evaporation of {Ga}, and the molar Gibbs
free energy of formation of (Gag 5Asps). from {Ga} and (%Asz).

The practical significance of the congruent sublimation temperature is
illustrated in Figure 3.15. There, we show experimental measurements of
the ratio between the As and Ga fluxes leaving a GaAs (001) surface under
Langmuir evaporation conditions. At temperatures below the congruent
sublimation temperature, Ga and As leave the surface in equal amounts;
therefore, the surface does not need to be bathed in an As ambient to avoid
formation of Ga-rich liquid. At temperatures above the congruent subli-
mation temperature, however, As preferentially leaves the surface, leaving
behind Ga-rich liquid droplets; therefore, the surface must be bathed in an
As ambient to avoid formation of Ga-rich liquid.

Note that both the pressure of the subliming vapor [essentially the va-
por pressure of (Ga;_,As;) along the Ga-rich part of the {Ga;_,As;} +
(Gag s Asp.5)c liquidus] and its composition can be calculated fairly straight-
forwardly. At a given temperature, one draws the common tangent between
the molar Gibbs free energies of the Ga-rich liquid and the GaAs compound.
Then, the pressure of the vapor is adjusted so that the molar Gibbs free
energy of the vapor shares this common tangent. At that pressure, all three
phases can coexist in equilibrium. The composition, z3., of the vapor is
then given by the composition at which the common tangent just touches
the molar Gibbs free energy of the vapor, and the ratio between the As
and Ga fractions in the vapor is z2,,/(1 — z2,,)- The results of such a
calculation, as shown in Figure 3.15, agree with measurements within the
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Figure 3.15: Left: Ratio between As and Ga fluxes desorbing from GaAs (001)
during Langmuir evaporation. The open circles are from mass spectrometry

measurements;”® the dashed line is the prediction of equilibrium thermodynamics.
The sizes of the data points reflect uncertainties in the relative sensitivities of the
mass spectrometer to Ga and As; fluxes. Right: Schematic illustrations of con-
gruent sublimation of GaAs compound into pure vapor (bottom) and incongruent
sublimation of GaAs compound into Ga-rich liquid and As-rich vapor (top).

@¢C.T. Foxon, J.A. Harvey, and B.A. Joyce, “The evaporation of GaAs under equi-
librium and nonequilibrium conditions using a modulated beam technique,” J. Phys.
Chem. Solids 34, 1693 (1973).

uncertainty of the data.

3.4.5 Vapor Pressures

In Subsection 3.4.4, we discussed the vapor pressures of (Ga) over the pure
compound (Gag sAsps)c and pure liquid {Ga} phases. At temperatures
higher than the congruent sublimation temperature, (Ga) subliming from
(Gag 5Asp 5)c, if uncompensated by incoming As, will condense into {Ga}.
At temperatures lower than the congruent sublimation temperature, (Ga)
subliming from (Gag.5Aso 5)c, even if uncompensated by incoming As, will
not condense into {Ga}.

In this subsection, we discuss the equilibrium vapor pressures of both
As, and Ga over various miztures of phases, i.e., along the the phase bound-
aries shown in Figure 3.12. The phase boundaries of particular interest
are those that bound the MBE window. The vapor pressures along those
boundaries are shown in Figure 3.16. We plot in all cases the pressures
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Figure 3.16: Vapor pressures of (Asz) and (Ga) along the phase-coexistence
lines bounding the MBE window. The molar Gibbs free energy diagrams on

the left correspond, from top to bottom, to conditions for which the equilibrium
mix of condensed phases are: (As), and (Gao.sAso.s)c; (Gao.sAso.s)c; As-rich
{Gai_sAs:} and (Gag.sAso.s)c; and Ga-rich {Ga;_;As;} and (Gag.sAsp.s)c. The
small dots in the lower right panel are experimental measurements of Arthur® and
Panish.®

¢J.R. Arthur, “Vapor pressures and phase equilibria in the Ga-As system,” J. Phys.
Chem. Solids 22, 2257 (1967).

®M.B. Panish, “A thermodynamic evaluation of the simple solution treatment of the
Ga-P, In-P and Ga-As systems,” J. Cryst. Growth 27, 6 (1974).

p(A%2) and %p(ca), rather than p(A52) and p(G?), so as to better illustrate
that p(As2) = %p(Ga) at (and below) the congruent sublimation tempera-
ture.

For example, the vapor pressures over the two-phase mixture a + ¢ are
indicated by the solid lines in the top right panel, and were determined by
the graphical constructions shown in the top left panel. In order for pure
(3Asz) to be in equilibrium with (nearly) pure (As)q, their molar Gibbs
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free energies must be equal:
g(%ASQ) = g(AS)". (3.50)

Then, through use of Equation 2.47, the As, vapor pressure must be

A S 5 AS
I [pi,:?] _ g(T) — g3 (po, T)
Po

. (3.51)

To deduce the Ga vapor pressure, consider the common tangent between
the molar Gibbs free energies of nearly pure (As), and stoichiometric
(Gag.sAsp.5)c. The intersection of that common tangent with z = 0 must
be the molar Gibbs free energy of pure (Ga):

g(AS)a _ g(Gao.sASo.5>c _ g(Gao.sAsoAs)c — g(Ga)
1.0-0.5 0.5—-0.0

(3.52)

Then, again through use of Equation 2.47, the Ga vapor pressure must be

. (3.53)

Po 2 (Ga)T

G a, S S a
" P’ _ 2g(GaosAsos)e _ g(As)a(T) — g(Ga)(p, T)
gC

o,tra

Likewise, the vapor pressures over the two-phase mixture ¢ + [ are in-
dicated by the solid lines in the bottom right panel, and were determined
by the graphical constructions shown in the lower left two panels. Con-
sider again the common tangent, this time between the molar Gibbs free
energies of the {Ga;_;As;} liquid and stoichiometric (GagsAsg.5)c. The
intersections of that common tangent with £ = 0 and £ = 1 must be the
molar Gibbs free energies of pure (Ga) and (3As;):

g(éAsz) _ g(Gao.sAso.s)c g(GaO,SAS()é)c _ g{Gal—zAsz}
10-05 - 0.5 — p{Gai—zAs:]
g{Gal_zAsz} _ g(Ga) _ g(Gao_5A80.5>c _ g{Gﬂl—zAsx} (3 54)
z{Gai-zAs.} 00 0.5 — z{Gai-zAs:} B

Then, again through use of Equation 2.47, the Ga and As; vapor pressures
must be given by

2 (1
gcf)?t?:Z)T In

Po

(Asz)
pl+62 ] —

0.5 [g(Gao,sASo.s)c _ g{Gal_zAsI}]

ay So c zAs
g<G 0.5As0.5) + 05 = x{Gal—xASz} - g(zA 2)(170, T)
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(Ga)
2 a C
2% Prye | _
5 Po

0.5 (g{Gal_zAs,} _ g(Ga0,5Aso,5)c)

g(GaoAsASo.\':)c + - g(Ga) (po’ T)

(3.55)

0.5 — x{GulA,As,}

Below the congruent sublimation temperature, it is no longer possible for
(Gaj_;As;) to be in equilibrium with both (Gag 5Asps). and {Ga;_,As;}.
Instead, {Ga;_,As;}, if formed, will have a tendency to evaporate, leaving
only (GagsAsgs)c. If the vapor has the same composition as the stoi-
chiometric compound, then the two vapor pressures are determined by the
intersection of the molar Gibbs free energy curves of (GagsAsps). and
(Gaj—,As;), as illustrated in the graphical constructions shown in the sec-

ond panel on the left of Figure 3.16. Therefore,
(Ga) (2As2)
g _"'T9°* — +2g : = g(Gao.sAso.s)c_ (3.56)

Together with Equation 2.47 and the condition p(G2) = 2p(As2) for congru-

ent sublimation, the Ga and As; vapor pressures can then be deduced to

be
(As2) (Ga)
In | 22 =[P | =
Po 2170

2g(Gaoshssle — g(Ga)(p, T) — g(3A%)(p,,, T) — 2S5 T In(2)

5 ~o,tra

% [C(Ga) + C(%AS'J)] T ’

o,tra o,tra

(3.57)

and are indicated by the dashed lines in the top right panel.

If the vapor does not have the same composition as the stoichiometric
compound, then the vapor may still be in equilibrium with the compound,
although its overall pressure will be different. Indeed, inside the MBE win-
dow shown in Figure 3.12, and away from the phase coexistence boundaries,
there will be a range of partial pressures of (Ga) and (Asy) with which the
pure compound can coexist. The compound can coexist with every pair of
partial pressures determined by the tangents that pass through the min-
imum of g{GaosAsos)e provided those tangents lie below all other molar
Gibbs free energy curves. As illustrated in Figure 3.17, as these tangents
pivot around the minimum of the molar Gibbs free energy of (Gag s Asg 5)c,
their intercepts with the £ = 0 and x = 1 axes trace out the relationship
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Figure 3.17: Vapor pressures of (Asz) and (Ga) over (Gag.5Aso.5)c. As the com-
mon tangent between (Ga;_zAs;) and (Gao.5Aso.5)c pivots around the minimum
of the molar Gibbs free energy of (Gao.sAso.s)c, the intercepts of the common
tangent trace out the relationship between the molar Gibbs free energies (and
vapor pressures) of (Asz) and (Ga).

between the molar Gibbs free energies (and vapor pressures) of (Asz) and
(Ga).
Algebraically, the constraint on the allowed tangents is

g(3As2) 4 4(Ga) _ 94(GaosAsos)e (3.58)

Combined with Equation 2.47, this constraint forms the basis for what is
known as the “law of mass action:”

Las

(Asa) ] Solrn” T (Ga) |6
In pe” | pe | =
Po Po

2g(Gao.5ASo.5)c — [g(%A”)(po,T) + g(Ga)(Po, T)
T

(3.59)

Finally, the Ass vapor pressures along the various phase boundaries
can also be interpreted as the critical As; overpressures at which various
phase mixtures become stable. Therefore, those vapor pressures can be
used to plot an Asp-overpressure/temperature phase stability diagram, as
shown in Figure 3.18. That diagram is analogous to the p-T" phase diagram
of Figure 3.12, except that it is in terms of the Asy overpressure rather
than the total pressure. As discussed above, the diagrams are very nearly
identical except near and below the congruent sublimation pressure.



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

88 Chapter 3. Alloy Phases

T T

Y e e ~ , o B o T
107 F c+l 4 <«

c+l

NN R

a+c

i

i

aloalyalaals oy

O.lo—e E
1+v 3
107° / 4 F v e
N SR | PR B R IS P T SEEEAY |
200 400 600 800 1000 08 1.0 12 1.4 16 1.8 20
T (C) 1000/T (1/K)

Figure 3.18: p-T (left) and p-1/T (right) plots of critical As; overpressures at
which various phase mixtures are stable.
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Exercises

1. Verify the derivation of Equations 3.3 and 3.4 from Equations 3.2 and
3.5.

2. Derive the molar Gibbs free energy of a perfect solution consisting
of a mixture of monomeric and tetrameric ideal gases. By factoring
out the pressure dependences of the molar Gibbs free energies, de-
rive an explicit form for the molar Gibbs free energy analogous to
Equation 3.16.
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3.

10.

A positive entropy of mixing (over and above the ideal entropy of
mixing) might arise if the two components of a binary condensed-
phase alloy did not mix fully randomly. How might a negative entropy
of mixing arise?

Suppose the equilibrium vapor pressures of Si and Ge had been mea-
sured over the high-temperature {Si;_,Ge,} liquid. Show how such
a measurement could be used to deduce the interaction parameter for
{Si;_.Ge,}. Suppose this measurement were made through a small
hole in a 1”7 diameter, 3” long Knudsen cell. How small would the
hole need to be for the measurement itself not to perturb the pres-
sure in the cell? How long could the measurement go on before the
composition of the alloy in the cell itself began to change significantly?

. Verify Equations 3.26 and 3.29 for the chemical potentials of the com-

ponents of ideal and regular solutions.

. Verify Equation 3.38 for the critical temperature at which the misci-

bility gap of a strictly regular solution vanishes.

Strictly speaking, condensation and sublimation pressures are only
equivalent up to a correction factor that depends on the sticking co-
efficient, i.e., the probability that an impinging molecule from the
vapor will actually “ stick” to the solid. What are those correction
factors for elemental and alloy vapors?

How might the congruent sublimation temperature (or measurements
of the congruent sublimation temperature by Langmuir free evapora-
tion studies) depend on the orientation of the surface?

Along which of the phase boundaries shown in Figures 3.12 and 3.18
will the total pressure deviate most from the As; pressure, and by
how much?

The usual form for the law of mass action is

[p(ca)] [pms?)]% = K,(T), (3.60)

where K,(T) is a temperature-dependent equilibrium constant. Using
Equation 3.59, derive an expression for that equilibrium constant.
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Part 11

Thin Film Structure and
Microstructure

In Part I, we described the thermodynamic properties of bulk condensed
and vapor phases. These properties determine whether epitaxy will occur
at all, and are of primary importance in choosing growth conditions.

In this part, we describe modifications to the thermodynamic properties
of bulk phases when the phases are constrained to grow as epitaxial thin
films. These modifications are of secondary importance in choosing growth
conditions, but are nevertheless crucial in determining the detailed struc-
ture and microstructure of the epitaxial phases as they condense. Indeed,
even if a coarse view reveals only that the desired phase is condensing, a
finer view may reveal a wide range of properties.

We begin, in Chapter 4, by discussing the tendency of epitaxial alloy
phases to order and cluster. Then, in Chapter 5, we discuss the tendency
of lattice-mismatched epitaxial phases to at first grow coherently with their
underlying substrate, but then later to grow semi-coherently, through the
introduction of misfit dislocations.
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Chapter 4

Ordering and Clustering

In this chapter, we discuss the tendency of alloy phases, constrained to
grow as epitaxial thin films, to order and cluster. We would like to know
whether, during MBE of alloy phases, the individual components will tend
on a microscopic scale to attract or repel each other, so that there is short-
range order. We would also like to know whether the individual components
will tend on a macroscopic scale to cluster into ordered or disordered phases
of particular stoichiometries.

For concreteness, our discussion will center on “pseudobinary” II11/V
alloys — alloys composed of binary mixtures of two distinct III/V com-
pounds. These alloys are exceedingly useful to device engineers because
their lattice constants and electronic properties can be tuned continuously
by adjusting the relative fractions of the two III/V compounds. These al-
loys are also characterized by positive enthalpies of mixing, and hence have
a tendency to “unmix.”! Those enthalpies of mixing originate mainly from
microscopic strain caused by the different bond lengths of the two III/V
compounds. Therefore, we begin the chapter by describing, in Section 4.1,
how to estimate the strain in microscopic clusters using what are known
as “valence force field” (VFF) models. If these microscopic clusters are
embedded in an epitaxial thin film on a substrate with a different lattice
constant, then they will also be “externally” strained. In Section 4.2, we
discuss how to estimate that external strain.

In Section 4.3, we introduce a powerful technique, the cluster variation
method, for building a macroscopic description of alloy thermodynamics
from statistical combinations of such microscopic clusters. In Section 4.4,
we apply this method in an approximate way to In;_,Ga,As, a pseudobi-

1E.K. Miiller and J.L. Richards, “Miscibility of III-V semiconductors studied by flash
evaporation,” J. Appl. Phys. 35, 1233 (1964).

93
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nary alloy of current technological interest. We will find that the thermo-
dynamic properties of In;_,Ga,As depend greatly on whether the alloy is
coherent or incoherent with the substrate, i.e., on whether the interface
between the epitaxial film and the substrate is crystallographically perfect
or not.? If the alloy is incoherent with the substrate, then it is free to
adopt the in-plane lattice constant that minimizes its free energy. If the
alloy is coherent with the substrate, then it must adopt the in-plane lattice
constant of the substrate; the resulting elastic strain energy can increase
its overall free energy significantly.

In fact, such coherency constraints greatly suppress the tendency for
alloys to separate into their pure-component “endpoint” phases, and at the
same time greatly enhance their tendency to form ordered compounds at
certain stoichiometric compositions. These tendencies can be understood
quantitatively from the full cluster variation method calculation, but they
can also be understood semiquantitatively through simpler semi-empirical
models. We end the chapter, therefore, with a simple analytical treatment
in Section 4.5 of coherency-constrained clustering and ordering.

4.1 Microscopic Strain

Let us start, in this section, by discussing microscopic strain in pseudobi-
nary III/V alloys. We begin, in Subsection 4.1.1, by introducing a simple
bond stretching and bond bending force field model for calculating the equi-
librium atomic positions of a small alloy cluster. Then, in Subsection 4.1.2,
we use those atomic positions to estimate the strain energy, which is the
dominant contribution to the enthalpy of mixing.

4.1.1 Virtual Crystals and Covalent Radii

Let us begin, in this subsection, by calculating the microscopic bond distor-
tions that occur when two III/V compounds are mixed. For concreteness,
let us consider GaAs and InAs. Bulk alloys in this system are known to
obey Vegard’s law quite accurately: their overall lattice constants are the
averages of the bulk GaAs and InAs lattice constants, weighted by mole
fraction. If we imagine the alloy to be a “virtual crystal,” in that each
atom sits on geometrically perfect zincblende lattice sites,® then its lattice

2D.M. Wood and A. Zunger, “Epitaxial effects on coherent phase diagrams of alloys,”
Phys. Rev. B40, 4062 (1989).

3L. Nordheim, “Electron theory of metals,” Ann. Phys. (Leipzig) 9, 607 and 641
(1931).
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constant can be expressed as
avc = (1 — 7)aGaas,o + TaInas,0s (4.1)

where x is the InAs fraction in the alloy, and agaas.. and aipas,o are the
equilibrium lattice constants of (unstrained) bulk GaAs and InAs, respec-
tively. Indeed, measurements? show that the second-nearest-neighbor dis-
tances between group III atoms (or between group V atoms) in the lattice
are very nearly those — ayc/v/2 — expected for such virtual crystals.

In contrast, however, first-nearest-neighbor distances between group III
and group V atoms deviate significantly from those — v/3avc /4 — expected
for such virtual crystals. Instead, Ga—As bonds are shorter, and In—-As
bonds are longer, than the virtual crystal bonds. That this is so is not
unexpected, since the Ga—As bond in bulk GaAs is shorter than the In-As
bond in bulk InAs, so in some sense the As “prefers” to be nearer to Ga
than to In atoms. Indeed, one might imagine that, instead of occupying
virtual crystal lattice sites, the atoms would occupy sites such that the bulk
Ga—-As and In-As bond lengths, and the associated “covalent radii” of the
Ga, As, and In atoms, were preserved.’

To see which extreme of behavior is closer to the truth, consider the
5-atom Ing 5Gag sAs tetrahedron at the right of Figure 4.1. This tetrahe-
dron is one of the five distinct tetrahdra shown at the top of Figure 4.2
from which, as discussed in Section 4.4, an In;_,Ga,As alloy of arbitrary
composition may be constructed. On the one hand, if the central As atom
occupies the geometric center of the tetrahedron, then the tetrahedral bond
angles associated with the sp® hybridized bonds can be preserved, but at
the expense of InAs bonds that are too short and GaAs bonds that are too
long. On the other hand, if the central As atom moves down slightly, then
the InAs and GaAs bonds can approach their bulk equilibrium values, but
at the expense of In-As-In bond angles that are too acute and Ga—-As-Ga
bond angles that are too obtuse.

The “elastic” energies associated with these kinds of distortions are often
quantified using what are known as valence force field (VFF) models,% in
which the energies of individual bonds and bond angles are considered to be
independent of each other. In the most popular representation for diamond-

4J.C. Mikkelsen, Jr., and J.B. Boyce, “Extended x-ray-absorption fine-structure study
of GalnAs random solid solutions,” Phys. Rev. B28, 7130 (1983).

5L. Pauling and M.L. Huggins, “Covalent radii of atoms and interatomic distances
in crystals containing electron-pair bonds,” Z. Kristallogr. Kristallgeom. Kristallphys.
Kristallchem. 87, 205 (1934).

SM.J.P. Musgrave and J.A. Pople, “A general valence force field for diamond,” Proc.
Roy. Soc. London A268, 474 (1962).
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Figure 4.1: Valence force field potential energies versus As position within a 5-
atom Ing.5Gagp.sAs tetrahedron. Left and right panels show contributions due to
bond bending and bond stretching forces; center panel shows the sum of the two
contributions. The geometric center of the tetrahedron is at z = 0; the actual As
position is shifted downward toward the Ga atoms. The predictions of the virtual
crystal (VCA) and covalent radius (CRA) approximations discussed in the text
are also shown.

structure semiconductors, the “Keating potential,”” the stretching energy
associated with bond ¢ is proportional to the squared deviations of the
squared actual bond length from the squared equilibrium length,

d2 —d2 )?
Ustr,; = Eaz( : l"))

8 d? ’

2,0

(4.2)

and the bending energy associated with adjacent bonds ¢ and j is pro-
portional to the squared deviations of the dot products of actual adjacent
bonds from the dot products of the equilibrium bonds,

36+ 6; (di -dj —dio-djo)°
ndii = — ) J . 3
Ybndiij = g7 diod; (4.3)

The two microscopic stretching and bending force constants, a and 3, are
assumed sufficient to characterize completely the microscopic elastic behav-
ior of both the pure and mixed III-V compounds. Moreover, they can be
used to predict various macroscopic elastic phenomena, and hence can be
deduced from bulk elastic constants. The most commonly used values are
listed in Table 4.1 for a number of diamond-structure materials.

7P.N. Keating, “Effect of invariance requirements on the elastic strain energy of crys-
tals with application to the diamond structure,” Phys. Rev. 145, 637 (1966).
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Material o ,@ ﬂ/a Cl 1 Cl2 C44
(1010 (1010 (1010

(N/m) (N/m) N/m?) N/m?)  N/m?)
C 129.33 84.76 0.655 107.6 12.50 57.68
Si 48.50 13.81 0.285 16.57 6.39 7.96
Ge 38.67 11.35 0.294 12.89 4.83 6.71
AlSb 35.35 6.77 0.192 8.94 4.43 4.16
GaP 47.32 1044 0.221 14.12 6.25 7.05
GaAs 41.19 8.95 0.217 11.81 5.32 5.92
GaSb 33.16 7.22 0.218 8.84 4.03 4.32
InP 43.04 6.24 0.145 10.22 5.76 4.60
InAs 35.18 5.50 0.156 8.33 4.53 3.96
InSb 29.61 4.77 0.161 6.67 3.65 3.02
ZnS 44.92 4.78 0.107 10.40 6.50 4.62
ZnSe 35.24 4.23 0.120 8.10 4.88 4.41
ZnTe 31.35 4.45 0.142 7.13 4.07 3.12
CdTe 29.02 2.43 0.084 5.35 3.68 1.99
CuCl 12.60 1.00 0.079 2.72 1.87 1.57

Table 4.1: Microscopic bond stretching (o) and bond bending (3) force
constants deduced from macroscopic elastic constants (Cy1, Ci2, and Caq) of
various cubic semiconducting materials.”

¢R.M. Martin, “Elastic properties of ZnS structure semiconductors,” Phys. Rev. B1,
4005 (1970).

To calculate the stretching energy of tetrahedra such as that shown at
the right of Figure 4.1, we sum Equation 4.2 over the four bonds to the
central As atom, divide by two because each bond is shared by two atoms,
then multiply by two because there is a pair of atoms per tetrahedron:

4
Ustr = Zustr,i~ (44)
=1

To calculate the bending energy of the tetrahedron, we sum Equation 4.3
over each distinct pair of adjacent bonds, and multiply by two because we
have only accounted for the bonds centered on the group V atoms, but not
those centered on the group III atoms:

4
Ubnd = 2 Z Z Ubnd,ij- (45)

i=1 j<i
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For the particular tetrahedron shown at right in Figure 4.1, the total
elastic energy, per atom-pair, is then

Ua) = Ustr T Ubnd
2 2
~ 3 (d2GaAs - d%}aAs,o) (dIZnAs - dI2nAs,o) ]

~  —~ | ®GaAs 2 + QInAs 3
4 l: dGaAs,o dInAs,o

2 2 2 2 2
(dGaAs cos® 0GaasGa — dGaAs,o cos 0'1‘)

3
+ 1 BGaas

2
dGaAs,o
2 2 2 2 2
(dE,as €OS? Omasin — diyag o COS fr) ]

2
dInAs,o

+ IBInAs (46)

In this equation, the actual and equilibrium GaAs and InAs bond lengths
are denoted dgaas, dGaas,o, dinas and dinas,o; the actual Ga-As-Ga and
In-As-In bond angles are denoted 0gaasga and Oipasin; and the ideal te-
trahedral bond angle is p = 2tan~'(1/v/2) ~ 109.47°. Note that we
have used the symmetry of the tetrahedron to set Ogaasga = 0AsGaas,
O1nasin = Oasinas and Ogaasin = Onasga = Or.

In terms of the vertical displacement, z, of the As atom from the geo-
metric center of the tetrahedron, the actual GaAs and InAs bond lengths
can be written as

2
2 _ [avc avc 2
Biaps = (—2ﬂ) + (5 +2)
2
2 _ [avc ave _ )2
dInAs - (2\/§> +( 4 Z ’ (4'7)

and the actual Ga—As—Ga and In-As-In bond angles can be written as

(avc/4) + 2
(V3avc/4) +2/V3
(av()/4) -2
(V3avc/4) — z/V3’

where ayc/2 is the length of an edge of the cube circumscribing the tetra-
hedron.

Then, substituting back into Equation 4.6, we can calculate, as shown
in the left three panels of Figure 4.1, the distortion energies as a function of
z. The left and right panels show only the bending and stretching energies,
respectively; the center panel shows their total. Those panels illustrate how

Cos(aGaAsGa/2) ~

Q

COS(glnAs]n/z) (48)
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the actual position of the As atom at the center of the tetrahedron is deter-
mined by a competition between bending and stretching forces. Given only
bending forces, the virtual crystal approximation (VCA) holds, and bond
angles are nearly ideally tetrahedral.® Given only stretching forces, the co-
valent radius approximation (CRA) holds, and bond lengths are undistorted
from the bulk pure component compounds. Given both forces, neither holds
exactly, but, as can be seen, the CRA is the better approximation. In this
pseudobinary III/V system, bending forces are about 5 times weaker than
stretching forces, and bond lengths are very nearly preserved upon mixing.
They deviate slightly, however, due to the “steric” constraints provided by
bending forces.

To obtain an analytic form for the position of the As atom, we can
expand Equations 4.6, 4.7, and 4.8 to second order in z, giving

2
N

Ua) = SQGaAs

— _'daso =
2 ayc GA,+\/—

4 3

2
+3 \/3 d z
S QInAs | —/— A - nAs,o = T =
2IA 4 vC InAs, \/3
2
—2<\/§ 2

3
= as_ - _da (o] =
+8ﬂGA[3 7 ave GAS,)+\/§Z

2
3 -
+ gﬂInAs [—3% <?avc - dlnAs,o> - %2] . (49)

Then, solving for du(,)/0z = 0, the equilibrium position can be deduced
to be

L (—\/3) QGaAs + @Inas — BGaas/3 + Binas/3
equ —

2 QGaAs + QInas — /@GaAs + /BInAs

(dlnAs,o - dGaAs,o)-

(4.10)

In the limit 8 — 0, zequ — —(ﬁ/?)(dln/\s,o —dGaAs,0), and the VCA holds;
in the limit @ — 0, zequ — —(dinAs,0 —dGaAs,o)/(2\/§), and the CRA holds.
To see how the bond lengths in these alloys depend on composition,
similar calculations can be performed for 5-atom GaAs, Ing25Gag.75As,

8The angles are not exactly tetrahedral because the Keating representation of the
“valence forces” does not cleanly separate stretching from bending motions, since Equa-
tion 4.3 consists of deviations of dot products (rather than of angles) between adjacent
bonds. Other representations do, but at the expense of not appearing to predict distor-
tion energies as accurately [W.A. Harrison, Electronic Structure and the Properties of
Solids (W .H. Freeman, San Francisco, 1980), pp. 193-197].
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Figure 4.2: Measured and calculated Ga-As and In-As bond lengths in
In;_;Ga,As alloys. Experimental data are from (open circles) X-ray-absorption

fine structure (EXAFS)® measurements; calculations are based on valence-force-
field potentials using either bond bending forces in the virtual crystal approxima-
tion (dashed line), bond stretching forces in the covalent radius approximation
(dotted lines), or both (solid lines).®

2J.C. Mikkelsen, Jr., and J.B. Boyce, “Extended x-ray-absorption fine-structure study
of GalnAs random solid solutions,” Phys. Rev. B28, 7130 (1983).

bT. Fukui, “Calculation of bond length in InGaAs ternary semiconductors,” Jpn. J.
Appl. Phys. 23, L208 (1984).

Ing 75Gag.2sAs and InAs tetrahedra, which are the most probable tetrahe-
dra in the corresponding GaAs, Ing o5Gag 75As, Ing75Gag.osAs and InAs
alloys. The results are shown in Figure 4.2. The dotted and dashed
lines are the stretching-force-only (CRA) and bending-force-only (VCA)
bond lengths; the solid lines are the stretching-force plus bending-force
bond lengths. The predictions agree extremely well with the measurements
shown as open circles. That agreement indicates that, consistent with more
complete calculations,® elastic energies dominate chemical energies in this
alloy system. Indeed, this dominance appears to hold for most isovalent,
though not for heterovalent, mixtures of semiconductors.!?

9T. Ito, “A pseudopotential approach to mixing enthalpies of III-V ternary semicon-
ductor alloys,” Jpn. J. Appl. Phys. 26, 256 (1987).

10W.A. Harrison and E.A. Kraut, “Energies of substitution and solution in semicon-
ductors,” Phys. Rev. B37, 8244 (1988).
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4.1.2 Mixing Enthalpies

In Subsection 4.1.1, we calculated the microscopic distortions that minimize
the sum of the bond stretching and bond bending energies of an As-centered
cluster containing both Ga and In. In this subsection, we make use of those
distortions to calculate the strain energy associated with the cluster, and
then to estimate the mixing enthalpy associated with the alloy as a whole.
To obtain a simplified formula for the energy of the Ing 5Gag s As tetra-
hedron, we insert the equilibrium position of the As atom given by Equa-
tion 4.10 into Equation 4.9. Then, approximating the individual bond
stretching and bending force constants by their averages, @ = (agaas +
ainas)/2 and B = (Bgaas + Binas)/2, we obtain, after some algebra,

af 2
u ~ —— Aao ) 4.11
W= 5 (B0 (411)
where 4
Aao = QInAs,0 — @GaAs,o — %(dInAs,o - dGaAs,o)- (412)

The distortion energy of the tetrahedron calculated in this way is listed
in Table 4.7 on page 132. The energy is proportional to the square of
the difference, Aa,, between the lattice parameters of the component com-
pounds, precisely what one expects from a model based on linear elasticity.
The effective spring constant, 1/[(1/@) + (1/B8)], is the “parallel” sum of
the individual stretching and bending force constants. Since, as mentioned
above, § is approximately 5 times weaker than @, the effective spring con-
stant is dominated by 3. In other words, as with all coupled spring systems,
most of the energy is stored in the weaker and more deformed spring.

If we now imagine building a lattice solely out of Ing 5Gag 5As tetrahe-
dra, then Equation 4.11 can also be used to estimate the enthalpy of mixing
of the Ing 5Gag sAs alloy. On the one hand, it will be an overestimate: our
simple calculation did not account for relaxation of the corner group III
atoms of the tetrahedron away from their virtual crystal positions, which
would decrease the tetrahedron energy. On the other hand, it will be an
underestimate: as discussed later in Section 4.4, a real Ing 5Gag 5As alloy
at finite temperature would also contain some fraction of more highly de-
formed tetrahedra of other compositions, which would increase the energy
of the alloy as a whole.

To see how well this estimate works, let us approximate the alloy as a
strictly regular solution, and identify its interaction enthalpy at z = 1/2
with the VFF elastic energy of the IngsGag sAs tetrahedron: Qyprp =


http://Ino.5Gao.5As
http://Ino.5Gao.5As
http://Ino.5Gao.5As
http://Ino.5Gao.5As

Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

102 Chapter 4. Ordering and Clustering

Material Crystal a, or afc ar =08lna,/0T
Structure (A or A/A) | (107K~1)

C Diamond __ 3.56683 0.87 + 0.0092(T — 273)

Si Diamond 5.43095 3.08 + 0.0019(T — 273)

Ge Diamond 5.64613 6.05 + 0.0036(T — 273)

a-Sn Diamond 6.48920

SiC Wurtzite 3.086/15.117

BN Zincblende 3.6150

BP Zincblende 4.5380

AlP Zincblende 5.4510

AlAs Zincblende 5.6605 3.40 + 0.0064(T — 273)

AlSb Zincblende 6.1355

GaN Zincblende 3.189/5.185

GaP Zincblende 5.4512 5.81

GaAs Zincblende 5.6533 5.35 + 0.0080(T — 273)

GaSb Zincblende 6.0959 6.7

InP Zincblende 5.8686

InAs Zincblende 6.0584 4.33 4+ 0.0038(T — 273)

InSb Zincblende 6.4794

ZnO Rock Salt 4.580

ZnS Zincblende 5.420 6.70 + 0.0128(T" — 313)

ZnS Wurtzite 3.82/6.26

CdS Zincblende 5.8320

CdS Waurtzite 4.16/6.756

CdTe Zincblende 6.482

CdSe Zincblende 6.050

PbS (Galena) | Rock Salt  5.9362 18.81 + 0.0074(T" — 273)

PbTe (Altaite) | Rock Salt  6.4620 19.80

Table 4.2: Crystal structures, room-temperature lattice parameters and
thermal expansion coefficients of various semiconductors.®

2 Adapted from S.M. Sze, Physics of Semiconductor Devices, 2nd Ed. (John Wiley
& Sons, New York, 1981), and R.S. Krishnan, R. Srinivasan and S. Devanarayanan,
Thermal Ezpansion of Crystals (Pergamon Press, Oxford, 1979).

4u(a). Then B
2q,
Qvrr ~ a+ﬂB(Aa")2' (4.13)

This equation can be used to estimate the elastic part of the regular so-
lution interaction parameter for any pseudobinary mixture whose micro-
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scopic elastic constants and lattice parameters are known. Its predictions
are shown in Figure 4.3 for a number of alloys, using the lattice parameters
listed in Table 4.2 and the bond stretching and bending force constants
listed in Table 4.1. Within the (fairly large) uncertainty in the values
deduced from experimental measurements, the equation predicts the regu-
lar solution parameters surprisingly accurately. It represents the physical
basis!! for what is known as the Delta-Lattice-Parameter (DLP) model,
originally based on the empirical observation that heats of mixing are ap-
proximately proportional to the squared mismatches between the lattice
parameters of the constituent components.!?

4.2 Macroscopic Strain

In Section 4.1, we noted that, from a microscopic point of view, pseudobi-
nary III-V alloys can be viewed as a collection of elementary tetrahedra such
as those shown in Figure 4.2. Except for the pure-component tetrahedra,
none are perfectly tetrahedral: their bond lengths and angles deviate from
the CRA lengths and VCA angles, respectively. These internal distortions
give rise to the elastic strain energies listed in Table 4.7 on page 132 even
in tetrahedra embedded in bulk alloys of the same overall composition as
the tetrahedra themselves.

Superimposed on these internal distortions, however, are distortions
due to externally imposed constraints on the dimensions of the tetrahe-
dra. These constraints arise because the tetrahedra, each with an “ideal”
dimension or shape, are all embedded in a macroscopic lattice whose unit
cells have their own (and possibly different) average dimension or shape.
In this section, we discuss these externally imposed distortions. Concep-
tually, they can be decomposed into two components: one that is mainly
volumetric and one that is mainly distortional.

The volumetric component comes about either when alloys are grown
in bulk form, or when epitaxial films are grown coherently on a lattice-
matched substrate. Consider such an alloy, whose overall composition is
Zepi = 0.5, and whose mean (or virtual crystal) lattice parameter is given,
using Equation 4.1, by

Qepio = 0.5aGaAS,O + 0.5a1nAs,o. (4.14)

1P A. Fedders and M.W. Muller, “Mixing enthalpy and composition fluctuations in
ternary III-V semiconductor alloys,” J. Phys. Chem. Solids 45, 685 (1984); J.L. Martins
and A. Zunger, “Bond lengths around isovalent impurities and in semiconductor solid
solutions,” Phys. Rev. B30, 6217 (1984)

12G.B. Stringfellow, “Calculation of regular solution interaction parameters in semi-
conductor solid solutions,” J. Phys. Chem. Solids 34, 1749 (1973).
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Figure 4.3: Regular solution parameters for various pseudobinary alloys.
Values plotted along the bottom axis were calculated using Equation 4.13; values

plotted along the left axis are experimental measurements®; values plotted along
the right axis are the critical temperatures, deduced from Equation 3.38, above
which the constituent components are fully miscible.

¢Adapted from G.B. Stringfellow, “Calculation of ternary and quaternary III-V phase
diagrams,” J. Cryst. Growth 27, 21 (1974).

The only tetrahedron whose “ideal” dimension is also given by Equation 4.14
is the Ing 5Gag 5 As tetrahedron, which will not be externally strained, and
whose excess energy will be due solely to internal distortions. All other
tetrahedra will have “ideal” dimensions different from that given by Equa-
tion 4.14. If embedded in the zpi = 0.5 alloy, they will be constrained
to occupy volumes different from their ideal volume, and will have addi-
tional energies due to the externally imposed volumetric distortions. For
example, an Ing.75Gag 25As tetrahedron has an ideal dimension (neglect-
ing relaxations of corner atoms) of 0.25a4Gaas,0 + 0.75a1nAs,0, and must be
compressed before it can fit into a Ing 5Gag.sAs lattice.

The distortional component comes about when epitaxial films are grown
coherently on a lattice-mismatched substrate. Suppose, for example, that
the substrate is a single (unstrained) crystal of bulk In;_,_,, Ga,,,, As itself,
whose In composition is xs,p and whose mean (or virtual crystal) lattice


http://Ino.5Gao.5As
http://Ino.75Gao.25As
http://Ino.5Gao.5As
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parameter is a weighted average of the two endpoint lattice parameters,

Asub = (1 - xsub)aGaAs,o + TsubQInAs,o (415)

As illustrated in the right half of Figure 4.4, if the epitaxial film is coherent
with the substrate, then its lattice parameter parallel to the interface must
be the same as that of the substrate, independent of the composition of the
epitaxial film itself:

Qepi,|| = Asub = (1 = Zsub)aGaAs,o + TsubInAs,o- (4.16)

In other words, there will be a parallel strain in the film of

— o Qepi,| ~ epi,o
€epi,| = 2 o+ R (417)
Qepi,|| T Qepi,o
where
Gepi,o = (1 - Iepi)aGaAs,o + ZepiQlnAs,o» (4'18)

is the equilibrium (unstrained) lattice parameter of the epitaxial film.

As illustrated in the left half of Figure 4.4, however, its lattice parameter
in a direction perpendicular to the interface will not be the same as the
equilibrium lattice parameters of either the substrate or the epitaxial film.
If the film is locked to a substrate with a smaller lattice parameter, then
the in-plane compressional “squeezing” will force its perpendicular lattice
parameter to increase in order to preserve (approximately) its unit cell
volume. If the film is locked to a substrate with a larger lattice parameter,
then the in-plane tensile “stretching” will force its perpendicular lattice
parameter to decrease, again in order to preserve (approximately) its unit
cell volume.

To understand both the volumetric and distortional components of the
externally imposed strains quantitatively, we write what is known as the
generalized Hooke’s law for cubic crystals,!3

Oy Cll Cl2 Clg 0 0 0 €x

Oy Ci2 Cnp Ci2 0O 0 0 €y

o, | Ci2 Ci2 Cin O 0 0 €

Try - 0 0 0 C44 0 0 Yzy ’ (419)
Tyz 0 0 0 0 C44 0 Yyz

Tz 0 0 0 0 0 C44 Yzx

13Gee, e.g., A.J. Durelli, E.A. Phillips, and C.H. Tsao, Introduction to the Theoret-
ical and Ezrperimental Analysis of Stress and Strain (McGraw-Hill, New York, 1958),
Chap. 4.
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Figure 4.4: Perpendicular (left) and parallel (right) lattice parameters of
In,_;Ga,As at composition zep; grown coherently on substrates having the lattice
parameters of bulk In;_,GazAs at composition zs,». The filled circles represent
In;_;GazAs grown on substrates with compositions zsy, = 0,1/2,1. The open
circles represent In;_.Ga;As grown on “lattice-matched” substrates with com-
positions Tsyb = Tepi, OT, alternatively, to incoherent growth.

where the ¢€;’s and o;’s are the normal strains and stresses, respectively, and
the ;;’s and 7;;’s are the shear strains and stresses, respectively.

If the epitaxial film and its substrate are oriented along one of the (100)
cubic symmetry directions, then this equation reduces to

Oepi,|| _ Cii+Cr2 Cp2 €epi, ||

4.20
Oepi, L 2Cl2 Cll €epi, L ( )

If, in addition, the epitaxial film has a free surface, such that perpendicular
stresses vanish, then

Tepi,L = 2C12€epi || + Cri1€epi,L =0, (4.21)

and the perpendicular strain and lattice parameter of the film are

—2C42
€epi, L = “—C:"fepi,ﬂ
1+e€ i, L 2
ay (xepia xsub) = Qepi,o ‘HE—F’TJQ . (422)
epi,

On average, then, the unit cell of the epitaxial film has parallel and per-
pendicular dimensions given by Equations 4.16 and 4.22, respectively.
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Now consider the microscopic tetrahedra that are embedded within this
epitaxial film. On average, they must be constrained to the same dimen-
sions as the unit cell.' However, each individual tetrahedron has its own
“ideal” size, given approximately by Vegard’s law:

;o = (1 - zi)aGaAs,o + T;AInAs,o) (423)

where z; is the composition of the ith elementary tetrahedron. If they are
all constrained to the average dimension of the unit cell of the epitaxial
film, then they will be strained, according to

¢ _ oQepi,|| T @i
ol =
epi,|| T Qi
Qepi, L. — Q40
€1 = 2—Pn= 0 (4.24)

Qepi, 1. T Qio

The resulting strain energies of the various tetrahedra (per atom pair)
due to these external constraints can then be approximated, through use
of Equation 4.20, by!®

1
Uiext = 5 [20i,||fi,|| + Ui,Lfi,L]
1
= (Cinn+ C'z',lz)fi“ +2C; 126; 1€ + ici,llf?,la (4.25)

where the elastic constants of the individual tetrahedra can be taken to be
Vegard’s law averages of the elastic constants of the pure component binary
alloys:

Cizn = (1 —=24)Cqgaaso,11 + TiClnas,o,11
Ci,12 = (1 - xi)CGaAs,o,12 + xiCInAs,o,12 (426)

4.3 The Cluster Variation Method

In Sections 4.1 and 4.2, we explored the origin of elastic distortion ener-
gies in small microscopic tetrahedra such as those shown in Figure 4.2. In

14Note that the tetrahedra with more In atoms will be somewhat larger than the
average, and those with fewer will be somewhat smaller. Nevertheless, we make the
simplifying approximation, as we did in Section 4.1.1, that the virtual crystal approx-
imation holds for second-nearest-neighbor distances, and that all tetrahedra have the
same dimensions.

15We neglect, in this simple treatment, the strain-induced-splitting of the degeneracies
of tetrahedra differing only by permutations of group III atoms, and treat all tetrahedra
having the same number of In and Ga atoms to be the same.
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this section, we ask: how can we use such microscopic information to de-
duce macroscopic quantities of interest, such as enthalpies and entropies of
mixing, or tendencies toward short- and long-range ordering?

One classic approach to this problem is the cluster variation method
(CVM),¢ in which solids are built by statistically combining a finite num-
ber of independent, elementary clusters. In principal, the method may be
made arbitrarily accurate by choosing arbitrarily large clusters. In prac-
tice, actual implementations of the method represent trade-offs between
accuracy and speed.!” The larger the clusters, the less important the in-
tercluster interaction energies are relative to intracluster energies, and the
more accurate the assumption of cluster independence becomes. However,
the larger the clusters, the more types of elementary clusters (of different
composition) there will be, and the more time-consuming the combinatorics
become.

In this section, we give a brief introduction to the cluster variation
method. The method can be viewed as an increasingly accurate sequence
of approximations, and so it is convenient to illustrate it by applying it to
successively more complex structures: first alloys on 1D linear (in Sub-
section 4.3.1), then 2D triangular (in Subsection 4.3.2) and finally 3D
zincblende (in Subsection 4.3.3) lattices.

The introduction given in this section is somewhat lengthy, both be-
cause the cluster variation method gives insight into so many aspects of
alloy thermodynamics and because a comparable introductory treatment
does not appear to exist elsewhere. However, it will not be necessary to
understand the cluster variation method in detail in order to follow its appli-
cation in Sections 4.4 and 4.5 to In;_,Ga,As, a prototypical pseudobinary
III/V alloy. The casual reader is advised to begin with Section 4.5.

4.3.1 1D Linear Lattice

We start, in this subsection, by illustrating the cluster variation method
usirig a simple one-dimensional linear lattice. We consider, in turn, two
possible ways of constructing this lattice. In the first way, the lattice is
constructed from uncorrelated “points” of atoms, as shown in Figure 4.5.
In the second way, the lattice is constructed from correlated “pairs” of
atoms, as shown in Figure 4.6.

16R. Kikuchi, “A theory of cooperative phenomena,” Phys. Rev. 81, 988 (1951).

17D .M. Burley, “Closed form approximations for lattice systems,” in C. Domb and
M.S. Green, Eds., Phase transitions and critical phenomena (Academic Press, London,
1972), Vol. 2, Chap. 9.



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

4.3. The Cluster Variation Method 109
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x;n B's
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Figure 4.5: Construction of a 1D linear chain of points by the addition of a new
node (open circle) to an existing lattice (filled circles).

Points

Consider first the lowest order “point” approximation, in which the largest
clusters are the individual atoms themselves. We imagine building an en-
semble of n linear chains, each composed of nodes which are either type A
or type B atoms. If the overall fractions of A and B atoms in the ensemble
of chains are zg and r; = 1 — zo, then each node of the ensemble of chains
will have zon A atoms and z;n B atoms.

Now suppose we wish to add another node to this ensemble of n chains.
Since the nodes are all independent, we are free to add A atoms to xon
nodes of the ensemble in any order, and then to add B atoms to the rest
of the z1n nodes of the ensemble, again in any order. The number of
distinguishable ways the atoms may be added is W = n!/[(zon)!(z1n)!]. If
we introduce the CVM notation shown in Table 4.3,

0 = n (4.27)
(¢ = [[@n), (4.28)

then we have the compact expression
W =()/(e). (4.29)

The entropy per node and per chain in the ensemble can then be calcu-
lated, using Stirling’s formula, to be

k
s=- InW = —kz.ri Inz;. (4.30)

As expected, this equation reproduces the entropy of a random mixture of
noninteracting components.

Since, by assumption, the nodes do not interact, the energy per node
and per chain in the ensemble is just a weighted sum of the energies of the
individual A and B atoms:

u= Z;L‘Iu, (4.31)
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Largest Combinatorial Uncorrelated
cluster Factor cluster Identity
Space )=nl! —

(

Point (o) = [[(zin)!
Pair (=) =) (
Triangle (D) =TI(zin) (
Tetrahedron (&) = [J(w;n)!%  (

I

Il

/0
/()"

)/
*)*/()

LASRS

)
)
)

Py

Table 4.3: Heirarchy of CVM approximations showing combinatorial factors and
uncorrelated cluster identities.

Note, though, that although we have assumed that the nodes do not in-
teract directly, we may still allow them to interact indirectly by allowing
the energies u; to depend on the mean composition. For example, if ug
is proportional to the average concentration of B, ug = Qz;/2, and u; is
proportional to the average concentration of A, u; = Qx¢/2, then the molar
energy becomes

u = Qzozy, (4.32)

which reproduces the strictly regular solution model for alloys.

Finally, the free energy of the system, f = u — T's, can be seen to
be a function of two parameters, o and z;. Only one can be chosen
freely, however, since, as listed in Table 4.4, they must together obey the
constitutive “space” relationship

zo+ 1 =1 (4.33)

Therefore, given the overall composition, * = z,, the free energy is given
directly by Equations 4.30 and 4.31.

Pairs

Consider now the next CVM approximation, in which the largest clusters
are pairs of atoms. Again imagine building an ensemble of n linear chains,
whose nodes have zgn A atoms and xin B atoms. This time, however, we
include only those chains for which the overall fractions of AA, AB, BA,
and BB atom pairs (or bonds) assume particular values, say, yo, y1, ¥1, and
Y2.

Note that we have assumed that y; is, by symmetry, the number of
both the AB and the BA atom pairs. Then, as listed in Table 4.4, the
degeneracies of the configurations are 3; = 2 and By = B2 = 1. Also note
that the atom pair fractions y; are not independent of the atom fractions
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Table 4.4: Configurations, fractions, degeneracies and constitutive relations for
empty, point, pair, triangular and tetrahedral clusters.

x;, but must obey the constitutive “point” relations

To = Yo+un
Ty = Y1+ Y2 (4.34)

These relations arise because all AA and AB pairs are associated on the
left with an A atom, and all BA and BB pairs are associated on the left
with a B atom.

Now suppose we wish to add another node to this ensemble of n chains.
In this case, the nodes are not independent, so we are not free to add A
atoms to xon nodes of the ensemble in any order, nor to add B atoms to
the rest of the z;n nodes of the ensemble in any order. Instead, we must
add them in such a way that the fractions of new atom-pairs are also yo,
Y1, Y1, and Y.

A convenient way of doing this is illustrated in Figure 4.6. To the
zon chains in the ensemble having A atoms as their last node we add yon
A atoms and y;n B atoms. The number of distinguishable ways these
additions can be done is (zon)!/[(yon)!(y1n)!]. Then, to the remaining
z1n chains in the ensemble having B atoms as their last node we add y;n
A atoms and yon B atoms. The number of distinguishable ways these
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Figure 4.6: Construction of a 1D linear chain of pairs by the addition of a new
node (open circle) to an existing lattice (filled circles).

additions can be done is (z;n)!/[(y1n)!(y2n)!]. The total number of ways is
the product, or W = [(zon)!(z1n)!]/[(yon)!(y1n)!?(y2n)!].
If we introduce the CVM notation

(=) = [T lwm)™, (4.35)

then we can again write more compactly
[ ]
w={ (4.36)
(-)
Equations 4.29 and 4.36 are now seen to take the same form, which by
induction can be written

The part already filled
The whole to be completed

W = (4.37)

This rule generalizes and simplifies the calculation of combinatoric factors
for even the most complicated lattice and cluster topologies.

The entropy per node and per chain in the ensemble can now be deduced,
again using Stirling’s formula, to be

s = %an =k (Z z;lnz; — Zﬂiyi lnyi) . (4.38)

Note that if the atom pairs were randomly distributed, then yo = 2,
Y1 = Tz, and y2 = 2. Then, we would have }_ Biyilny; = 2> z;Inz;,
and Equation 4.38 would reduce to Equation 4.30, the entropy of mixing
in the point approximation. In a more compact notation, we can write

(#) = (2)*/0), (4.39)

where (#) denotes a pair of “uncorrelated” points. Then,

W= _ A (4.40)
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which again is the point approximation result.

Since, by assumption, individual atoms do interact in the pair approx-
imation, the energy per node and per chain in the ensemble is written as
a weighted sum of the energies of the various kinds of pairs of A and B
atoms:

u = Z ,Biyiui. (4.41)

The free energy of the system, f = u —T's, is then seen to be a function
of five fractions, zg, x1, Yo, y1, and yz. As before, of the two “point”
fractions, at most one can be chosen freely, due to the constitutive “space”
relationship of Equation 4.33. In addition, of the three “pair” fractions, only
one as well can be chosen freely, due to the constitutive “point” relationships
of Equation 4.34.

Now, if the overall composition, £ = x;, were free to vary, then the
equilibrium value of the free energy would be determined by minimizing f
with respect to both x and one of the pair probabilities, say, y;. This might
be the case, e.g., if the lattice were composed not of atoms whose overall
numbers we know, but of spins which are free to flip, as in an Ising model.
Then, z would play the role of the overall magnetization.

For problems in alloy thermodynamics, however, £ = x; is usually fixed,
and is not free to vary. Then, the equilibrium value of the free energy is
determined by minimizing f with respect to one of the pair probabilities,
usually taken to be the unlike pair probability, y;. In other words, we wish
to minimize

f = youo + 2y1u; + youe
+ kT [yolnyo + 2y1 Iny; + y2lnys — (1 — z)In(1 — z) — zIn(z)]
(4.42)

with respect to y;, where yo = 1 — x — y; and y» = = — y;. Taking the
derivative and setting it equal to zero then gives
o 2
——'f— =2u; —ug —ug + kTln (ﬂ—) =0. (4.43)
o Yoy2

This expression can be recast, again using the constitutive point rela-
tions of Equation 4.34, into the form
y?
1 _ e—(2ul—u0—u2)/kT' (444)
Yoy2

If each atom pair is considered, in a loose sense, to be a molecule, then
the equilibrium ratio between the number of AB or BA molecules and the
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product of the numbers of AA and BB molecules is seen to be given by a
Boltzmann factor. This is exactly the “mass-action” law expected for the
chemical reaction

AA+ BB = 24B, (4.45)

which can be derived by equating a forward rate, proportional to the prod-
uct of the concentrations of the AA and BB species, to a backward rate,
proportional to the concentration of the AB or BA species. In this way,
the pair approximation is equivalent!® to what is known as the “quasi-
chemical” treatment!® of alloy thermodynamics, for which Equation 4.44 is
the central assumption.

Equation 4.44 has two limiting behaviors. On the one hand, if 2u; <«
Ug + uz, then AB pairs are highly favored over AA and BB pairs, the A
and B atoms tend to arrange themselves next to each other, and the pair
probability y; approaches (1/2) — 1/(1/4) — (1 — z). On the other hand,
if 2u; > ug + u,, then AA and BB pairs are highly favored over AB pairs,
the A and B atoms tend to segregate away from each other, and the pair
probability y; approaches 0. In between, if 2u; = ug + uz, then AB pairs
are neither favored nor unfavored over AA and BB pairs, the A and B
atoms tend to arrange themselves randomly, and the pair probability ¥,
approaches z(1 — z).

Often, it is useful to characterize these behaviors by a short-range “order
parameter,”

__ ,ran _ 1—=zx
oSRO — Y1 — Y1 _ y1 — z( ) (4.46)

yod — g (1/2) = /(1A —z(1 — ) —z(1 — )’

which is zero if the atoms are arranged randomly, one if the atoms are
ordered, and minus one if the atoms are “anti-ordered.” For the special
case of z = 1/2, Equations 4.38 and 4.41 can be recast, after some algebra,

into the forms
1—n 1—-79 147 1+n
—k 1 1

SRO

®
I

1
v =g (uo + 2uy +uz) + (2uy — up — ug). (4.47)

If the resulting free energy is minimized with respect to 7, then one finds

USRO _ 1 _ e(2u1—ug—u2)/2kT

T 1+ e@ui—uo—uz)/2KT " (4.48)

18R. Kikuchi, “Theory of ternary III-V semiconductor phase diagrams,” Physica 103B,
41 (1981).

19E.A. Guggenheim, “The statistical mechanics of regular solutions,” Proc. Roy. Soc.
(London) A148, 304 (1935).



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

4.3. The Cluster Variation Method 115

For negative 2u; — ug — uz, 0°8° > 0, and A and B atoms order on a
microscopic scale; for positive 2u; — ug — uz, 058° < 0, and A and B atoms
anti-order on a microscopic scale.

4.3.2 2D Triangular Lattice

In Subsection 4.3.1, we illustrated the cluster variation method using a
simple 1D linear lattice. In this subsection, we illustrate the cluster vari-
ation method using the more complicated 2D triangular lattice shown in
Figure 4.7. This lattice may be constructed either from points, pairs or
triangles.

In the lowest order point approximation, the entropies and energies are
the same as those for the 1D linear lattice, and Equations 4.30 and 4.31 for
the entropies and energies can be carried over without modification. In the
pair and triangle approximations, however, the topology of the lattice must
be taken into account, because it imposes correlations between the various
pairs and triangles of atoms. We consider, in turn, these two possible ways
of constructing this lattice.

Pairs

Consider first the pair approximation. As before, we assume that individual
atoms interact pairwise, so that the energy per node and per chain in the
ensemble can, as in Equation 4.41, still be written as a weighted sum of the
energies of the various kinds of pairs of A and B atoms. Also, as before,
we imagine building a large ensemble of n lattices, whose nodes have xgn
A atoms and z;n B atoms, and for which the overall fractions of AA, AB,
BA, and BB atom pairs are yo, y1, ¥1, and y2.

Suppose we wish to add another node to this ensemble of lattices, in
such a way that the node contains xgn A atoms and z;n B atoms, and
each new ensemble of bonds, a-b, a—c and a—d, contains yo AA pairs, y;
AB pairs, y; BA pairs, and y, BB pairs. This we can do in three steps.

First, add node a with respect to node b without regard to correlations
with nodes ¢ and d. The number of ways this can be done is the same as
that for the 1D linear lattice, namely,

wr= o) (4.49)
(-
Second, correct (approximately) for the correlation between a and ¢ by
multiplying by the factor

~—

WII _ (.)/(_)

_ W. (4.50)



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

116 Chapter 4. Ordering and Clustering

(NN NNGNN
NN NN NN NN NN
AV A AV AV AV AV AYAVYAYZ

Figure 4.7: Construction of a 2D triangular lattice by the addition of a new node
(open circle) to an existing lattice (filled circles).

This factor is the ratio between the number of ways atoms should have been
placed on node a with respect to node c, (¢)/(—), and the number of ways
atoms actually were placed on node a with respect to node ¢, ()/(e). Third,
correct (approximately) for the correlation between a and d by multiplying
by the same factor

0/(e)

Another way to look at these two correction factors is to use Equa-
tion 4.39 to rewrite them as

w (.)/(_) (4.51)

W// — W//r — (.)/(_) _ (7"_) (4'52)

0/ (=)
so that, in the spirit of Equation 4.37, they carry the physical meaning that
correlated pairs are being built from uncorrelated pairs. Indeed, the first
combinatorial factor can itself be rewritten as

]

which carries the physical meaning that an uncorrelated point is first added,

and then a correlated pair is built from an uncorrelated pair.
The overall number of ways of adding atoms to node a then becomes

w=wwrwr = [(i)r & (4.54)

(o) L(=) (=)*0?
In other words, again in the spirit of Equation 4.37, we first add an uncor-
related point, then correlate the resulting three uncorrelated pairs.
The entropy per node and per chain in the ensemble can now be calcu-
lated, using Stirling’s formula, to be

s:%an=k(52wilnwi—-32ﬂiyilnyi>. (4.55)
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Aside from the different numerical factors for the point and pair sums in
Equations 4.38 and 4.55, all the arguments in Section 4.3.1 hold.

Triangles

Consider now the triangle approximation. In this case, we assume that
the energies of atoms can be expressed as sums over triangular triplets of
atoms, so that the energy per node and per chain in the ensemble can be
written as a weighted sum of the energies of the various kinds of triangles:

u= Z'yiziui, (4.56)

Here, the overall fractions of Az, A2 B, AB; and Bj triplets are voz9, 7121,
Y222 and 323, with the degeneracies, ;, listed in Table 4.4 on page 111.

Now suppose we wish to add another node to this ensemble of n lattices,
in such a way that (1) the node contains zon A atoms and z;n B atoms,
(2) each new ensemble of pairs, a-b, a—c and a-d, contains yo AA pairs,
y1 AB pairs, y; BA pairs and y, BB pairs, and (3) each new ensemble of
triangles, a-b—c and a-c-d, contains vgzo A3 triangles, y;27 A2B triangles,
Y229 ABs triangles, and y3z3 Bj triangles. Again, we proceed in steps.

First, we add node a with respect to the pair b—c without regard to
correlations with node d. In the spirit of Equation 4.37, the number of
ways this can be done is

=)
W= &) (4.57)

where

(&) = [[lzim)7™ . (4.58)

Second, correct for the correlation within the triangle a—c—d by multi-

plying by the factor
(®)/(=)

The numerator of this factor is the ratio between the number of ways atoms
should have been placed on node a with respect to the pair c-d. The
denominator is the number of ways atoms actually were placed on node a
with respect to the pair c-d, namely, the number of ways the correlated
pair a—c forming one side of the correlated triangle a—b—c could be formed
from the point c.

Again, it is useful to rewrite W/ and W" as

v - G5l
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po_ D) [P
W ‘(Wk)[uﬂhmy (4:60)
where ( )3

w=1r (4.61)

generalizes Equation 4.39 to uncorrelated triangles.

The physical meaning of W’ can now be seen to be the addition of an
uncorrelated point, the decorrelation of the previously correlated pair b—c,
and the correlation of the now uncorrelated triangle a—b—c. The physical
meaning of W” is seen to be the decorrelation of the pairs a-c and c-d,
which had been previously correlated, followed by the correlation of the
now uncorrelated triangle a—c—d.

Finally, then, the overall number of ways of adding atoms to node a
becomes

i 0[O @[ @] ()
W_WW_bJHHmHHWM](M%Y (4.62)

In other words, we first form an uncorrelated point, then for each of the two
triangles that the point belongs to, we uncorrelate all previously correlated
pairs in the triangles and then correlate the triangles.

The entropy per node and per chain in the ensemble can now be calcu-
lated, using Stirling’s formula, to be

°T Slnw =k (3251'?/1' Iny, —2) vzlnz - Zzilnxi) . (4.63)

The free energy of the system, f = u —T's, is a function of nine param-
eters, xo, Z1, Yo, Y1, Y2, 20, 21, 22, and 23. As before, however, of the two
point parameters, only one can be chosen freely, due to the constitutive
space relationship. In addition, none of the three pair parameters can be
chosen freely, because they must obey the constitutive pair relationships

Yo = 20+
Y1 = 21+ 22
Y2 = 22 + 23. (464)

These equations express the fact that each Az or A;B triangle is formed by
coupling an atom to an A, pair, that each A2B or AB; triangle is formed
by coupling an atom to an AB pair, and that each AB; or Bj triangle is
formed by coupling an atom to a Bg pair.

Finally, of the four triangle parameters, only two can be chosen freely,
because of the constitutive point relations listed in Table 4.4 on page 111.
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Therefore, for a fixed overall composition, £ = z;, the equilibrium value
of the free energy is determined by minimizing f with respect to two of
the triangle probabilities, which can be taken to be the mixed triangle
probabilities, z; and z,.

4.3.3 3D Zincblende Lattice

In Subsections 4.3.1 and 4.3.2, we illustrated the cluster variation method
using first a 1D linear lattice and then a 2D triangular lattice. In this
subsection, we illustrate the cluster variation method using a 3D zincblende
lattice, whose projection onto an (001) plane is shown in Figure 4.8. For
a III-V semiconductor, such a lattice would be built from a superposition
of two face-centered-cubic sublattices, one containing group III species and
the other containing group V species. Since we are ultimately interested in
treating pseudobinary III-III-V alloys, we are interested in the entropy of
mixing of group III species on the group III sublattice. Note, though, that
these group III species do not form nearest-neighbor bonds with each other;
instead, they form next-nearest-neighbor bonds mediated by the group V
atoms on the group V sublattice. Therefore, two, three, or four group III
atoms can be considered to form a pair, triangle, or tetrahedron if and only
if they are all bonded to the same group V atom.

Triangles

Consider first the triangle approximation, in which we assume that the
energies of atoms can be expressed as sums over triangular triplets of atoms,
as given by Equation 4.56. Suppose we wish to add another node to an
ensemble of zincblende lattices, in such a way that all the point, pair and
triangle probabilities are preserved. To do so, we use the following simplified
rules,?® generalized from Section 4.3.2:

1. Add an uncorrelated point via the combinatorial factor ()/(e).

2. Enumerate all the largest clusters created by adding that point, re-
gardless of overlap.

3. For each such cluster: (a) uncorrelate all (previously correlated) sub-
clusters via the combinatorial factors (A)/(£), (=)/(#), etc., starting
from large to small; and (b) correlate the cluster itself via the combi-

natorial factors (&)/(&), (R)/(D), (#)/(-), etc.

20The rules are not exact, but must be made recursive when clusters overlap in sub-
clusters larger than pairs.
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We start, then, by adding an uncorrelated point a, via the combinatorial
factor

W' = ()/(e). (4.65)

Then, we note that by adding point a, we have formed three new trian-
gles, a-b—c, a-b-d, and a—e-f, and one new pair, a—g. We do not include
the triangles a-d—g and a-f-g, because these clusters of group III atoms
are not all bonded to a common group V atom. Within triangle a—e—f,
we must uncorrelate the pair e-f and then correlate the triangle via the

combinatorial factor
I

Similarly, within triangle a—b—c, we must uncorrelate the pair b-c and then
correlate the triangle via the combinatorial factor

Within triangle a-b-d, we must now uncorrelate two pairs, a-b (which we
just correlated in correlating the triangle a-b—c) and b-d, before correlating

the triangle:
w" = [ﬂ]z @. (4.68)

(A (B)
Finally, we must correlate the pair a—g via the combinatorial factor
W' = (£)/(-). (4.69)
Altogether, the number of ways of adding an atom at a is
W — Wlwllwlllwllllwlllll — ((_A);s((.))22’ (4‘70)

and the entropy is

s=k (BZﬂiyi Iny; + 2in Inx; — 32%’/‘«';‘ In z,-) . (4.71)

As before, the free energy of the system, f = u — T's, is a function of
nine parameters, o, %1, Yo, Y1, Y2, 20, 21, 22 and z3. However, for a fixed
overall composition, x = z1, the constitutive relations eliminate all but two.
The equilibrium value of the free energy is then determined by minimizing
f with respect to two of the triangle probabilities, e.g., the mixed triangle
probabilities z; and z,.
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Figure 4.8: Top view of the construction of a 3D zincblende lattice by the
addition of a new node (open circle) to an existing lattice (filled circles). For a
III-ITI-V alloy, the filled circles and squares would correspond to group III and
group V atoms, respectively. The atoms in each (001) sheet are represented by
symbols of the same size; the smaller the symbol the deeper the sheet. The solid
lines represent next-nearest-neighbor bonds between group III atoms mediated
by group V atoms.

Tetrahedra

In the tetrahedron approximation we assume that the energies of atoms can
be expressed as sums over tetrahedral quadruplets of atoms,

u = Zéiwiu,—, (4.72)

Here, the overall fractions of A4, A3B, A2B3, A1B3, and B, quadruplets
are Sowp, 6wy, dows, 3wz, and 4wy, respectively, with the degeneracies,
6;, listed in Table 4.4 on page 111.

Suppose we wish to add another node to this ensemble of lattices, in
such a way that all the point, pair, triangle, and tetrahedron probabilities
are preserved. To do so, we again use the rules outlined in Section 4.3.3.

We start by adding an uncorrelated point a, via the combinatorial factor

W' = ()/(s). (4.73)

Then, we note that by adding point a, we have formed one new tetrahedron,
a—b-c—d, one new triangle, a—e-f, and one new pair, a—g. Again, we include
neither the tetrahedron a-d-g-f nor the triangles a-d-g and a- f—g, because
these groups of atoms are not all bonded to a common group V atom.

Within tetrahedron a—b—c-d, we must uncorrelate the triangle b—c-d and
then correlate the tetrahedron via the combinatorial factor

gl e
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where

(&)= % (4.75)

generalizes Equation 4.39 to uncorrelated tetrahedra. Within triangle a—e—
f, we must uncorrelate the pair e~ f before correlating the triangle:

Finally, we must correlate the pair a-¢g via the combinatorial factor

W = (A)(-)- (4.77)

Altogether, the number of ways of adding an atom at a is

W — W’IW”W’”W”” — ((.)3 (478)

and the entropy is

s=k (3Zz,~ Inx; — Zéiwi lnw,—) . (4.79)

Note that, for the peculiar topology of the zincblende lattice, the free energy
of the system,

f= Z biw;u; + kT (Z bjw; Inw; — 3 Z z; In IL‘,’) s (4.80)

contains no pair and triangle probabilities. If it had, though, they could
have beeen eliminated either through the constitutive pair relations listed
in Table 4.4 on page 111 or the constitutive “triangle” relations

20 = wo-+wp
21 = w) +ws
29 = wo+ w3
23 = wp+ ws. (4.81)

The equilibrium value of the free energy is determined by minimizing
f with respect to the five tetrahedron probabilities w; and the two point
probabilities z;, subject to the three constraints embodied in the two con-
stitutive pair relations and the constitutive space relation. In general, this
minimization can be performed through standard techniques based on La-
grange multipliers, one of which can be identified with the chemical po-
tential for species B. This leads to a set of seven nonlinear equations that
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can be solved through a compact procedure called the “natural iteration
method.”?! In essence, that method begins by guessing values for the point
probabilities, using those guesses to calculate the tetrahedron probabilities,
from which the point probabilities can be recalculated, etc.

For the zincblende lattice, however, it is simpler to eliminate directly
two of the five tetrahedra probabilities using the constitutive pair and space
relations. Taking these to be the “pure” cluster probabilities, we then have

wp = 1—1z— (3w + 3wz + w3)
wy = z— (w;+ 3wy + 3w;) (4.82)

Therefore, for a fixed overall composition, £ = z;, the equilibrium value of
the free energy is determined by minimizing f with respect to the remaining
three “mixed” tetrahedron probabilities w;, wo and ws.
Taking derivatives of Equation 4.80 with respect to w;, ws, and ws
gives, after some algebra,
4

wl e—(4u1—3u0—u4)/kT

wiwy

4
w2 e—(4u2—2u0—2u4)/kT
2,,2
WoWy
w4
33 — e—(4u3—u0—SU4)/kT (483)
WoWy

Note that Equations 4.83 are in exactly the “mass-action” form expected
for chemical reactions between “molecular” tetrahedra:

4A3B = 3A4+ By
4A2B2 = 2A4 + 2B4
4AB; = A4+ 3By, (4.84)

and are therefore equivalent, as were Equations 4.44, to a “quasi-chemical”
treatment, though of tetrahedra rather than of pairs. In general, chemical
reactions between pairs, triplets, and quadruplets form the basis for what
are known as the first, second and third quasi-chemical approximations.??
The tetrahedron approximation of the CVM, applied to a zincblende lattice,
is therefore equivalent to the third quasi-chemical approximation. It should
be emphasized, though, that CVM calculations are not always equivalent to

21R. Kikuchi, “Superposition approximation and natural iteration calculation in
cluster-variation method,” J. Chem. Phys. 60, 1071 (1974).

22E.A. Guggenheim, “Statistical mechanics of regular mixtures,” Proc. Roy. Soc. (Lon-
don) A206, 335 (1951).
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quasi-chemical approximations; in this case the equivalence is a consequence
of the peculiar topology of the zincblende lattice, whose combinatorial fac-
tor of Equation 4.78 contains no intermediate subclusters such as triangles
or pairs. Otherwise, an equivalence can only be established by the addi-
tional assumption that those intermediate subclusters are uncorrelated.

Equations 4.83, together with Equations 4.82, form a set of coupled
nonlinear equations which can be solved for the tetrahedra probabilities, w;,
in terms of the tetrahedra energies, u;. To do so, it is convenient to make use
of their equivalence to a quasi-chemical treatment by reformulating them
as chemical rate equations that can be solved by numerical simulation.

If we rewrite Equations 4.84 in terms of reactions between tetrahedra
differing by only the exchange of one atom, then we have

kf
4A3B = 2A4 + 2A2B2
ki
k3
4A5 B, = 2A3B+2ABj;
ky
ki
4AB; = 2A.B, + 2B, (4.85)
ks

The forward and backward reaction rates can be conveniently chosen to be

ki‘ — w0w2e—(2u;—uo—u2)/kT

kl— — wfe—(Zul—Zul)/kT

k;- — wlee—(Zu;—ul—ug)/kT

kz_ — wge—(2u;—2u2)/kT

k;— — w2w4e—(2u;-—u2—u4)/k']’

ky = wie (2ua—2ua)/kT (4.86)

where u}, u3, and uj are activation energies that can be chosen to match
the time-step of the numerical simulation. In practice, the choices

ui = max{(uo+ u2)/2,u1}
uy = max{(u; +us)/2,uz}
uy = max{(uz +u4)/2,us} (4.87)

give convergence to steady-state in a reasonable number of time-steps. Note
also that these choices of rate constants guarantee that in the steady-state,
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defined by setting kf = ki, ki = k; and ki =k, Equations 4.83 will be
satisfied.

In terms of these rates, the time evolution of the tetrahedra probabilities
can be written as

Yowo = —(ki —ky)

nwr = 2k —ky) - (kI —ky)

vowr = —(kf —ky) + 20k —ky) —  (k§ —ky)  (4.88)
Y3wW3 = - (k3 —ky) + 2(ki —k3)

YaWg = - (k§ —k3)

Note that these rate equations are conservative, so that an initial prob-
ability distribution will remain correctly normalized, and an initial overall
composition, * = w; + 3wy + 3ws + wy, will remain constant. In practice,
two convenient initial probability distributions are the completely random
Bernoullian distribution,

4 : »
e G e (489)

and the completely nonrandom linear distribution,
8iw; ora = max{0,1 — 4 |z — z;|}, (4.90)

where z; is the composition of the ¢th cluster.

4.4 A Pseudobinary III-V Alloy: “InGaAs”

In Section 4.3, we described how, given the energies of various elementary
tetrahedra, their occupation statistics could be calculated using the cluster
variation method, and the free energy of an alloy as a whole could be de-
termined. In this section, we apply this procedure in an approximate way
to the pseudobinary alloy In; _,Ga;As. The treatment is only semiquanti-
tative, but will include all the most interesting and important features that
have been observed in alloys of this type, such as short- and long-range
ordering.?® Tables 4.5 and 4.6, e.g., list the ordered alloys that have been
observed thus far in III/V compound semiconductors.

23H. Nakayama and H. Fujita, “Direct observation of an ordered phase in a disordered
In; —GazAs alloy,” Inst. Phys. Conf. Ser. 79, 289 (1985); H.R. Jen, M.J. Cherng and
G.B. Stringfellow, “Ordered structures in GaAsSb alloys grown by organometallic vapor
phase epitaxy,” Appl. Phys. Lett. 48, 1603 (1986); T.S. Kuan, W.I. Wang and E.L.
Wilkie, “Long-range order in In;_;GagzAs,” Appl. Phys. Lett. 51, 51 (1987); and M.A.
Shahid and S. Mahajan, “Long-range atomic order in GazIn;_;AsyP;_y epitaxial layers
[(z,y) = (0.47,1), (0.37,0.82), (0.34,0.71) and (0.27,0.64)],” Phys. Rev. B38, 1344 (1988).
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Growth
Tech- Sub- Struc-
Alloy nique strate ture Reference
GaPAs MOVPE (001) L1, H.R. Jen, D.S. Cao and G.B.
Stringfellow, Appl. Phys. Lett. 54,
1890 (1989).
InPAs MOVPE (001) L1, D.H. Jaw, G.S. Chen and G.B.
Stringfellow, Appl. Phys. Lett. 59,
114 (1991).
GaPSb MOVPE (001) L1, J.R. Pessetto and G.B. Stringfel-
(Weak) low, J. Cryst. Growth 62, 1
(1983).
GaAsSb MOVPE (001) Lig H.R. Jen, M.J. Cherng and G.B.
(110) E1, Stringfellow, J. Cryst. Growth 48,
(221) 1603 (1986).
(311)
GaAsSb MBE (oo1) L1, I.J. Murgatroyd, A.G. Norman
and G.R. Booker, J. Appl. Phys.
67, 2310 (1990); and Y.E. Ihm, N.
Otsuka, J.F. Klem and H. Morkog,
Appl. Phys. Lett. 51, 2013 (1987).
InPSb MOVPE (001) L1, J.R. Pessetto and G.B. Stringfel-
low, J. Cryst. Growth 62, 1
(1983).
InAsSb MOVPE (001) L1, H.R. Jen, K.Y. Ma and G.B.
Stringfellow, Appl. Phys. Lett. 54,
1154 (1989).
Table 4.5: Ordered III/V-V alloys observed to date in layers formed by

any epitaxial growth technique.® The growth techniques referred to are molecular
beam epitaxy (MBE), metal-organic vapor phase epitaxy (MOVPE), liquid-phase
epitaxy (LPE), and vapor-levitation epitaxy (VLE). The structures referred to
are illustrated in Figures 4.9 and 4.10.

2 Adapted from G.B. Stringfellow and G.S. Chen, “Atomic ordering in III/V semicon-
ductor alloys,” J. Vac. Sci. Technol. B9, 2182 (1991).
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Growth
Tech- Sub-
Alloy nique strate

Struc-
ture

Reference

GalnP MOVPE (001)

L1,

J.P. Goral, M.M. Al-Jassim, J.M.
Olsen and A. Kibbler, Mat. Res.
Soc. Symp. Proc. 102, 583 (1988);
T. Suzuki, A. Gomyo, and S.
Iijima, J. Cryst. Growth 93,
396 (1988); and O. Ueda, M.
Takikawa, J. Komeno, and 1.
Umebu, Jpn. J. Appl. Phys. 26,
L1824 (1987).

AlGalnP _ MOVPE (001)

L1,

G.S. Chen, T.Y. Wang, and G.B.
Stringfellow Appl. Phys. Lett. 56,
1463 (1990).

AlGaAs _ MOVPE (001)

(110)

L1o

T.S. Kuan, T.F. Kuech, W.IL
Wang, and E.L. Wilkie, Phys.
Phys. Lett. 54, 201 (1985).

AllnAs MOVPE (001)

L1o

A.G. Norman, R.E. Mallard, I.J.
Murgatroyd, G.R. Booker, A.H.
Moore, and M.D. Scott, Inst.
Phys. Conf. Ser. 87, 77 (1987).

InGaAs LPE (001)

L1,
E1,
DO3,?

H. Nakayama and H. Fujita, Inst.
Phys. Conf. Ser. T9, 289 (1985).

InGaAs MBE (110)

L1g

T.S. Kuan, W.I. Wang, and E.L.
Wilkie, Appl. Phys. Lett. 51, 51
(1987).

InGaAs(P) VLE (001)

L1,

M.A. Shahid and S. Mahajan,
Phys. Rev. Lett. B38, 1344 (1988).

InGaAs(Sb) MOVPE (001)

L1,
E1,

H.R. Jen, M.J. Cherng, and G.B.
Stringfellow, Inst. Phys. Conf.
Ser. 83, 159 (1987).

Table 4.6: Ordered III-III/V alloys observed to date in layers formed by
any epitaxial growth technique.” The growth techniques referred to are molecular
beam epitaxy (MBE), metal-organic vapor phase epitaxy (MOVPE), liquid-phase
epitaxy (LPE) and vapor-levitation epitaxy (VLE). The structures referred to are

illustrated in Figures 4.9 and 4.10.

¢Adapted from G.B. Stringfellow and G.S. Chen, “Atomic ordering in III/V semicon-
ductor alloys,” J. Vac. Sci. Technol. B9, 2182 (1991).
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We begin, in Subsection 4.4.1, by estimating the composition-dependent
energies of the various elementary tetrahedra. Then, in Subsection 4.4.2,
we apply the cluster variation method to estimate the composition and
temperature dependent probabilities of the various elementary tetrahedra.
Then, in Subsection 4.4.3, we estimate from these tetrahedra energies and
probabilities the composition and temperature dependent molar Gibbs free
energy of the alloy as a whole. Finally, in Subsection 4.4.4, we discuss the
tendency of these alloys to order, i.e., for the tetrahedra probabilities to be
peaked at film compositions that match those of the tetrahedra themselves.

4.4.1 Tetrahedra Energies

Let us start, in this subsection, by describing the energetics of the ele-
mentary tetrahedra of which such an alloy is composed. Those energies
can be thought of as arising from the two kinds of distortions discussed in
Sections 4.1 and 4.2. The first kinds are distortions internal to the tetrahe-
dra due to the different equilibrium Ga-As and In-As bond lengths. The
second kinds are distortions of the tetrahedra as a whole due to erternal
constraints imposed by coherency of the epitaxial film with a substrate.
Strictly speaking, these two kinds of distortions are not independent, be-
cause various externally imposed distortions may be more or less compatible
with particular internal distortions.?* In this simplified treatment, however,
we neglect interactions between the two.

Coherency and External Distortions

First, consider the energies of tetrahedra due to external distortions. These
distortions arise, as discussed in Section 4.2, because of macroscopic strains
imposed by coherency with a substrate. The additional energy due to these
distortions is given by Equation 4.25.

Ordering and Internal Distortions

Second, consider the energies of tetrahedra due to internal distortions.
Those energies were estimated in Section 4.1, in a calculation which as-
sumed that the corner group III atoms were pinned at their virtual crystal
positions. In fact, those corner group III atoms will have a tendency to re-
lax away from their virtual crystal positions, thereby decreasing the cluster
energy.

24A.A. Mbaye, D.M. Wood and A. Zunger, “Stability of bulk and pseudomorphic
epitaxial semiconductors and their alloys,” Phys. Rev. B37, 3008 (1988).
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Two extremes of behavior can be imagined. On the one hand, if the
various tetrahedra were distributed randomly, as in a disordered alloy, then
the relaxations of the various corner group III atoms will themselves tend
to be random. Then, since each group III atom belongs to four tetrahedra,
relaxations that decrease the energy of one tetrahedron will just as likely as
not increase the energy of the other three. For this reason, the incoherent
superposition of relaxations of group III atoms characteristic of a disordered
alloy is not expected to greatly reduce the internal distortional energy from
those estimated in Section 4.1 and listed in the first row of Table 4.7.

On the other hand, if the various tetrahedra were distributed in an or-
dered arrangement, then the relaxations of the various corner group III
atoms will themselves tend to be ordered. Relaxations that decrease the
energy of one tetrahedron may be exactly the relaxations required to re-
duce the internal distortion of the adjacent tetrahedra, and so on. For
this reason, the coherent superposition of relaxations of group III atoms
characteristic of an ordered alloy is expected to reduce the internal distor-
tional energy from those estimated in Section 4.1. For example, for the
GaAsSb alloy, calculations indicate that the chalcopyrite and famatinite
structures illustrated in Figure 4.10 may be the least distorted,2® although
the layered tetragonal and layered trigonal ordered compounds are experi-
mentally more commonly observed (see Tables 4.5 and 4.6). Note also that
surface thermodynamics and kinetics effects not taken into account here
may influence which of the ordered structure actually appears.2®

For the disordered alloy, then, we would like to use the cluster energies
calculated in Section 4.1 and listed in the first row of Table 4.7; for the
ordered alloys, we would like to use the reduced values listed in the second
row of Table 4.7; and for partially ordered alloys, we would like to use values
somewhere in between. To incorporate these ideas in a semiquantitative
way, we assume that the energies of the various tetrahedra depend on the
occupation probability of the tetrahedra themselves:

U; int = Uq,int,dis + (ui,int,ord - ui,int,dis)(‘siwi))‘- (491)

In other words, as the probability of particular clusters increases, their
tendency to interact coherently and lower their energy also increases. At low
enough temperatures, this kind of cooperative interaction ultimately leads
to long-range ordering into stoichiometric structures. Note, though, that
only a few of the “wrong” kind of tetrahedra might be expected to destroy

25A.A. Mbaye, D.M. Wood and A. Zunger, “Stability of bulk and pseudomorphic
epitaxial semiconductors and their alloys,” Phys. Rev. B37, 3008 (1988).

26See, e.g., S. Froyen, and A. Zunger, “Surface-induced ordering in GalnP,” Phys. Rev.
Lett. 66, 2132 (1991).
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Figure 4.9: Examples of ordered fcc (or pseudobinary zincblende) structures
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“Reprinted from L.G. Ferreira, S-H Wei and A. Zunger, “First-principles calculation
of alloy phase diagrams: the renormalized-interaction approach,” Phys. Rev. B40, 3197

(1989).
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Figure 4.10: Examples of ordered fcc (or pseudobinary zincblende) structures
and their space groups.®

“Reprinted from L.G. Ferreira, S-H Wei, and A. Zunger, “First-principles calculation
of alloy phase diagrams: the renormalized-interaction approach,” Phys. Rev. B40, 3197
(1989).
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Up,int  Uljint U2iint U3int U4,int
Disordered 0 0.023 0.031 0.023 0
Ordered 0 0.017 0.016 0.017 0

Table 4.7: Estimated internal distortion energies (in eV per atom pair)
of the elementary InGaAs tetrahedra shown in Figure 4.2. The energies listed

in the first row were estimated for a disordered arrangment of tetrahedra, whose
corner atoms, on average, are bound to virtual crystal sites.” The energies listed
in the second row are those (very roughly) estimated for an ordered arrangement
of tetrahedra, whose corner atoms can relax “in-phase” with the corner atoms of
adjacent tetrahedra.’

¢M. Ichimura and A. Sasaki, “Short-range order in III-V ternary alloy semiconduc-
tors,” J. Appl. Phys. 60, 3850 (1986); A. Sher, M. van Schilfgaarde, A.-B. Chen and W.
Chen, “Quasi-chemical approximation in binary alloys,” Phys. Rev. B36, 4279 (1987).

bEstimated very roughly by scaling the results of calculations in the GaAsSb system
by L.G. Ferreira, S-H Wei, and A. Zunger, “First-principles calculation of alloy phase
diagrams: the renormalized-interaction approach,” Phys. Rev. B40, 3197 (1989).

the coherency of the tetrahedron relaxations. Therefore, we expect the
ordering energy to be a highly nonlinear function of the cluster probability
itself. In this treatment, we take A, the nonlinearity parameter, to be eight.

In a sense, we have augmented the tetrahedron approximation of the
CVM, which allows different tetrahedra to have different energies, with a
point, or mean-field approximation of the CVM to allow each tetrahedron’s
energy to depend also on the average tetrahedra populations. We must em-
phasize, though, that this simple, mean-field treatment of long-range order
is only a semiquantitative one. To treat long-range order quantitatively
within the CVM, it is necessary to distinguish between the (up to) four
group III sublattices in the ordered structures, and to account explicitly
for the occupation statistics on each sublattice of the (up to) 16 kinds of
tetrahedra.?’

Total Energies

The internal and external strain energies can now be summed to give

Ui = Uqint + Ui ext.- (4.92)

27W.L. Bragg and E.J. Williams, “The effect of thermal agitation on atomic arrange-
ment in alloys” Proc. Roy. Soc. (London) A145, 699 (1934); H.A. Bethe, “Statistical
theory of superlattices,” Proc. Roy. Soc. (London) A150, 552 (1935); C.M. van Baal,
“Order-disorder transformations in a generalized Ising alloy,” Physica 64, 571 (1973);
and D. de Fontaine, “Configurational thermodynamics of solid solutions,” Solid State
Physics 34, 73 (1979).
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These energies cannot be evaluated directly, since, through Equation 4.91,
they depend on the tetrahedron probabilities, which in turn depend (self-
consistently) on the energies themselves. However, we can get an approxi-
mate idea of how the tetrahedra energies depend on the compositions, Zep;
and zgyp, of the epitaxial film and the substrate by calculating the energies
of a completely disordered alloy, so that the tetrahedra probabilities con-
tribute negligibly to Equation 4.91, and w; int — Ui int,dis- Lhose energies
are plotted in the right column of Figure 4.11 as functions of zp; and Tsub.

Consider first the type 0 tetrahedron at the bottom of that column. All
of its group III atoms are Ga, and so its externally imposed strain energy
is zero when it is embedded in a film of pure GaAs grown undistorted and
lattice-matched to a substrate of pure GaAs. Moreover, its internal distor-
tional strain energy is also zero, since the central As atom is symmetrically
situated within a tetrahedron of equivalent Ga atoms. Therefore, its total
strain energy is zero at Tepi = ZTsyp, = 0.

If now we increase x¢pi, then the average lattice parameter of the epi-
taxial film increases, and the unit cell of the epitaxial film grows. At the
same time, the size of the tetrahedra embedded in the film are tied to those
of the unit cell. Therefore, the type 0O tetrahedra themselves must grow,
even if they would “prefer” not to, and their strain energies must increase.

Note that even as x.p; increases, we can choose either to increase the
substrate lattice parameter at the same rate (zsub, = Tepi) Or to keep it fixed
(zsub = 0). If we increase it at the same rate (open circles in Figure 4.11),
then the unit cell of the epitaxial film remains an undistorted, albeit larger,
cube. The energy of the type 0 tetrahedra increases due to that volume
mismatch. If, however, we keep it fixed (filled near circles in Figure 4.11),
then the unit cell of the epitaxial film is not only larger, but distorted as
well. The energy of the type 0 tetrahedra is therefore also quite high when
Zepi = 1 and xgyp = 0.

Suppose, now, that we fix Tepi at zero, but increase zs,,. Then, the
unit cell of the epitaxial film remains approximately the same size, but it
distorts, as its parallel lattice parameter increases and its perpendicular
lattice parameter decreases. Therefore, its energy increases, reaching a
maximum at T, = 1. If Zepi is now increased, then the volume of the unit
cell increases, but the distortion in the unit cell decreases. Initially, the
strain energy in the type O tetrahedra decreases as the unit cell distortion
decreases, but eventually it increases as the volume mismatch between the
type O tetrahedra and the film unit cell increases.

Similar arguments can be used to understand the dependences of the
energies of the other types of tetrahedra on z.p; and zs,,. In general, the
energy minima for the various tetrahedra occur when both z.p; and zsub
are equal to the composition of the cluster itself. The reasons are that when
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Figure 4.11: Energies of various tetrahedra embedded in disordered In;_,Ga,As
of composition z.pi grown coherently on substrates having the lattice parameters
of bulk In,_;Ga,As at composition syb.
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T; = Tepi, the volume of cluster ¢ is best matched to the volume of the unit
cell of the epitaxial film, and when z¢p; = sy the unit cell of the film
is least distorted. Deviations from Tepi = Zsub = z; along the Tepi = Tsub
diagonal lead to volume mismatches and relatively large increases in energy.
Deviations from zep; = Zsub = x; through changes in 1, lead to distortions
and somewhat smaller increases in energy. Deviations from Zepi = Tsub =
through changes in x¢p;i lead to some of both, and intermediate increases in
energy.

Note that Equation 4.92 includes only the elastic potential energy con-
tribution to the energies of each cluster. In principle, the temperature
dependences of the molar energies and entropies could also be determined
by heat capacity functions for each cluster, via Equations 2.9 and 2.8. How-
ever, in this simple treatment, we make the approximation that the various
tetrahedra all have the same heat capacities. Then, the temperature de-
pendences to their molar energies and entropies are all the same. Since
tetrahedra probabilities depend only on the relative energies, we can ne-
glect those temperature dependences.

4.4.2 Tetrahedra Probabilities

In Subsection 4.4.1, we estimated the energetics of the various elemen-
tary tetrahedra from which the InGaAs alloy may be constructed. In this
subsection, we use these elementary tetrahedra energetics to calculate the
tetrahedra probabilities using the rate equation method outlined in Sec-
tion 4.3.3. These are shown in Figure 4.12 as functions of z.p; and Tsup
at fixed temperatures of 100, 600, and 1100 K. Two opposing tendencies
determine the probability distributions.

The first tendency is energy minimization. For a given composition
of the epitaxial film, the two tetrahedra whose compositions just straddle
Zepi Will be the least volume mismatched, and will usually have the lowest
energies. The film energy will then be minimized if it is composed of a
weighted combination of only those two tetrahedra. For example, if zepi =
3/8, then the type 1 (z; = 1/4) and type 2 (z2 = 1/2) tetrahedra will have
the lowest energies, and the lowest energy film will be that composed of
half type 1 and half type 2 tetrahedra. Therefore, at 100 K (left column
of Figure 4.12), where energy minimization is most important, only two
kinds of tetrahedra are ever significantly populated, and the probability
distribution approaches the linear ramp given by Equation 4.90.

The second, opposing, tendency is entropy maximization. As can be
seen in Figure 4.12, as temperature increases and entropy becomes an in-
creasingly important component of the molar Gibbs free energy, the prob-
abilities “diffuse” away from the tetrahedra whose compositions straddle
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that of the epitaxial film. The probabilities cannot diffuse too far away,
however, since the overall composition of the film is still constrained to
be Y piz;i = xepi. Ultimately, at 1100 K, the probability distribution ap-
proaches the Bernoullian distribution given by Equation 4.89.

4.4.3 Free Energies

In Subsections 4.4.1 and 4.4.2, we estimated the energetics and probabilities
of the various elementary tetrahedra from which the InGaAs alloy may be
constructed. In this subsection, we use these energetics and probabilities
to calculate the molar Gibbs free energy of the film as a whole using Equa-
tion 4.80. These free energies are shown in Figure 4.13 as functions of xy;
and zgyb, again for three fixed temperatures: 100, 600, and 1100 K. These
temperatures are representative of three distinct regimes of behavior.

At the highest temperature, 1100 K, the molar Gibbs free energy is
everywhere and in every direction concave up. Therefore, films cannot
lower their molar Gibbs free energies by decomposing spatially into local
regions, some having higher xey; and others having lower z.p;. Epitaxial
films at this temperature are stable against such macroscopic compositional
clustering.

At the intermediate temperature, 600 K, the molar Gibbs free energy
is concave up with respect to horizontal fluctuations in z.p; (at fixed zsypb),
but concave down with respect to diagonal fluctuations in Zep; (mimicked
by identical flucations in zs,,). Therefore, films cannot lower their molar
Gibbs free energies by composition fluctuations that preserve g1, but can
by fluctuations that do not preserve zg,,. In other words, fluctuations in
which the local regions remain coherent with the substrate are suppressed,
while fluctuations in which the local regions are incoherent (and hence free
to adopt their equilibrium lattice parameter) are not. Epitaxial films at this
temperature are stable against coherent macrosopic clustering, but unstable
against incoherent macrosopic clustering,.

At the lowest temperature, 100 K, the molar Gibbs free energy is, for
some combinations of Zep; and Tsu,, concave down with respect to both
horizontal and diagonal fluctuations in xepi. Therefore, these films can
lower their molar Gibbs free energies both by composition fluctuations that
preserve Tgup, as well as by fluctuations that do not preserve xsyp. These
films at this temperature are not stable against either coherent or incoherent
macroscopic compositional clustering.

Note that the downward concavity of the molar Gibbs free energy at
100 K is most exaggerated at those special compositions (1/4, 1/2, 3/4) for
which we have assumed ordering may take place. The sharpness of those
cusps is a consequence of the cooperative nature of the ordering process.
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100 K 600 K 1100 K

Figure 4.12: 100, 600, or 1100 K probabilities of various tetrahedra embedded
in In;_;GazAs of composition zepi grown coherently on substrates having the
lattice parameters of bulk In;_;Ga;As at composition Zsyp.
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In the Ing 25Gag.75As alloy, for example, the more Ing 25Gag 75As tetrahe-
dra there are, the closer w; approaches unity, the lower the energy uj int
becomes, and the more favored the Ing ,5Gag 75As tetrahedra become. At
higher temperatures or at compositions slightly off Ing 25 Gag. 75As, there are
never enough Ing o5 Gag 75As to “get the process going,” and the tetrahedra
energies are dominated by their disordered values.

Also note that with respect to horizontal fluctuations, the resulting
cusps are even, for intermediate substrate compositions, global minima in
the molar Gibbs free energies. Therefore, films that are constrained to be
coherent with a substrate are unstable against clustering into ordered alloys.
With respect to diagonal fluctuations, however, the cusps are only local
minima. Therefore, films not constrained to be coherent with a substrate
are unstable against clustering into ordered compounds, but those ordered
compounds are themselves unstable against further clustering into (nearly)
pure GaAs and (nearly) pure InAs.

To understand these three temperature regimes more concretely, con-
sider an epitaxial film at z.p; = 0.6 grown on a substrate also at zs,, = 0.6.
Because the film is lattice-matched to the substrate, it is free from macro-
scopic elastic strain. It is, however, also composed preferentially of type
2 and type 3 tetrahedra. Those tetrahedra are internally distorted, and
hence, on a microscopic scale, contain a significant amount of internal dis-
tortional elastic energy.

Suppose we force the film to decompose into macroscopic clusters, of
which in some z.,; = 0 and in others z,; = 1. These clusters are composed
preferentially of type 0 and type 4 tetrahedra, respectively. Neither type
of tetrahedron is internally distorted, and hence both are free of internal
distortional elastic energy. However, they may or may not be externally
distorted, and hence may or may not be free of external distortional elastic
energy.

On the one hand, if the z.p; = 0 and xep; = 1 clusters were each free
to change their average lattice parameters (i.e., free to change zsup), then
the type 0 and type 4 tetrahedra would be free from external distortional
elastic energy. Hence, the decomposition of regions having mainly type 2
and 3 tetrahedra into macroscopic clusters having mainly type 0 and type
4 tetrahedra decreases the overall strain energy and will tend to occur.

Note, though, that the number of ways different tetrahedra can be com-
bined to form a macroscopically uniform alloy at x.p; = 0.6 is larger than
the number of ways they can be combined to form alloys at xepi = 0 and
Zepi = 1. Since at high enough temperatures, entropic contributions to the
molar Gibbs free energies ultimately dominate, there will then be a critical
temperature above which mixing will be favored over decomposition.

On the other hand, if the z.p; = 0 and ep; = 1 clusters were not free to
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Figure 4.13: 100, 600, or 1100 K molar Gibbs free energies of In;_.Ga,As at
composition zep; grown coherently on substrates having the lattice parameters of
bulk In;_,Ga;As at composition xsu,. The filled circles represent In;_,Ga,As
grown on substrates with compositions zsu» = 0,1/2,1. The open circles rep-
resent In;_.Ga;As grown on “lattice-matched” substrates with compositions
ZTsub = Tepi, OF, alternatively, to incoherent growth.

change their average lattice parameters (i.e., not free to change zsyp), then
the type 0 and type 4 tetrahedra would not be free from external distortional
elastic energy. If that energy is higher than the internal distortional elastic
energy of the original type 2 and 3 tetrahedra, then the decomposition
is suppressed. Instead, the film will decompose into macroscopic ordered
clusters, in some of which z.p; = 0.5 and in others x.p; = 0.75. These
clusters are composed preferentially of type 2 and 3 tetrahedra, respectively,
which fit together in such a way as to minimize their internal distortional
elastic energy.

Note, though, that just as before, the number of ways different tetrahe-
dra can be combined to form a macroscopically uniform alloy at xepi = 0.6
is larger than the number of ways they can be combined to form ordered
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alloys at zepi = 0.5 and xep; = 0.75. Since at high enough temperatures,
entropic contributions to the molar Gibbs free energies ultimately domi-
nate, there will then be a critical temperature above which mixing will be
favored over ordering.

4.4.4 Short-Range Ordering

In Subsection 4.4.2, we estimated the probabilities of the various elemen-
tary tetrahedra from which an InGaAs alloy may be constructed. From
Figure 4.12, it can be seen that as the temperature is lowered, the tetrahe-
dra probabilities become less random and more peaked at the film composi-
tions that match those of the tetrahedra themselves. This is a consequence
of the fact that the tetrahedra energies are not the same, but are minimum
for film compositions that match those of the tetrahedra themselves.

In this subsection, we discuss in more detail this deviation from ran-
domness. Now, first suppose the tetrahedra were distributed randomly,
according to Equation 4.89. Then, from the constitutive pair and triangle
relations listed in Table 4.4 on page 111, the “unlike” pair probability would
be

y1 = wi+ 2wz +ws
= z(l-z)P 42221 —2) + 231 - 2)
= z(1-2z), (4.93)

as expected. Since the clusters are not distributed randomly, we expect
deviations from this purely random mixed pair probability.2®

To quantify these deviations from randomness, we define a short-range
order parameter associated with pairs of unlike (next-nearest-neighbor)
group III atoms, analogous to that of Equation 4.46,

SSRO — __ W1 + 2wy + w3 — z(1 — )

= s 4.94
wrd + 2wgd + w§rd — z(1 — ) ( )

where the w?™ are the completely ordered cluster probabilities given by
i g

Equation 4.90. SR is unity if every In atom is surrounded by as many
Ga atoms as possible, zero if every In atom is surrounded by a random
number of Ga atoms, and negative if every In atom is surrounded by as
many In atoms as possible.

28M.T. Czyzyk, M. Podgérny, A. Balzarotti, P. Letardi, N. Motta, A. Kisiel and M.
Kimnal-Starnawska, “Thermodynamic properties of ternary semiconducting alloys,” Z.
Phys. B62, 153 (1986).
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100 K 600 K 1100 K

Figure 4.14: 100, 600, or 1100 K short-range order parameters in In;_,Ga,As
at composition Zep; grown coherently on substrates having the lattice parameters
of bulk In;_;GazAs at composition zs,b. The filled circles represent In;_,Ga;As
grown on substrates with compositions zsu, = 0,1/2,1. The open circles rep-
resent In;_;GazAs grown on “lattice-matched” substrates with compositions
Zsub = Tepi, OT, alternatively, to incoherent growth.

This short-range order parameter is plotted in Figure 4.14 for the three
temperatures 100, 600, and 1100 K. Note that even at the highest tempera-
ture, there is a preference toward bonding between unlike group III atoms,
although the preference becomes more pronounced at the lower tempera-
tures. Note also that the short-range ordering becomes somewhat less pro-
nounced (cusped downward) at compositions corresponding to the various
elementary tetrahedra. This is so even though the unlike pair probability
itself decreases smoothly on both sides of z.p; =1 /2.

The reason is that exactly at those stoichiometric compositions, it is
more difficult to suppress the occupation of composition-straddling tetra-
hedra. For example, at z.p; = 1/2, the film will be dominated by type 2
tetrahedra, but some type 1 and 3 tetrahedra, differing in composition from
Zepi by only 1/4, will also be present. At z.p; = 5/8, the film will be dom-
inated by a mix of type 2 and 3 tetrahedra. The type 1 and 4 tetrahedra,
however, differ in composition from z.p; by 3/8. Since the elastic distortion
energies of the tetrahedra vary with the square of the composition mis-
match, the type 1 and 4 tetrahedra will be suppressed more effectively for
Zepi = 5/8 than the type 1 and 3 tetrahedra were for Tepi = 1/2.

Finally, we are in a position to understand the microscopic origins of
clustering and ordering. In epitaxial films at all temperatures, different
tetrahedra have different energies. Usually, tetrahedra that are most nearly
volume-matched to the average unit cell volume have the lowest energies,
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and hence are most favored. Therefore, films of intermediate composition
will be preferentially composed of tetrahedra of intermediate composition,
and will be short-range ordered in the sense of having an excess of pairs
between unlike next-nearest neighbors.

At high temperatures, a homogeneous film of intermediate composition
will always be favored over macroscopic clusters at endpoint compositions,
because of the increased entropy associated with an increased number of
ways of combining tetrahedra of different compositions. Moreover, because
of the relatively wide distribution of tetrahedra of different compositions,
the tetrahedra will tend to be arranged randomly with respect to one an-
other.

At low temperatures, homogeneous films are no longer favored. As
the occupation probabilities become more and more concentrated among
those tetrahedra whose compositions straddle the composition of the film,
it becomes possible for the tetrahedra to order in such a way that their
internal distortions are minimized. Then, films will have a tendency to form
macroscopic, ordered clusters composed nearly exclusively of tetrahedra of
a certain kind, arranged in a certain way. In coherent films, these ordered
clusters are the stable state of the system, because tetrahedra in disordered
clusters at intermediate compositions have too much internal distortional
energy, and tetrahedra in clusters at endpoint compositions have too much
external distortional energy. In incoherent films, however, the tetrahedra in
clusters at the endpoint compositions have no external distortional energy,
and hence will ultimately form at the expense of both a homogeneous film
or a film composed of ordered clusters.

4.5 Semi-empirical Models

In Sections 4.1-4.4, we have been concerned with developing a microscopic
description of the thermodyamics of coherent and incoherent pseudobinary
III-V alloys. There is of course no substitute for the physical insight that
such a microscopic description gives. However, many of the overall results of
such a description, such as the molar Gibbs free energy, can be understood
using simpler, macroscopic, semi-empirical models. Such models have the
advantage, as discussed in Chapter 3, of being described by analytic equa-
tions that can be more easily used to calculate phase diagrams and other
thermodynamic quantities of interest. In this section, we develop such a
semi-empirical model.

We will begin, in Subsection 4.5.1, by describing semi-empirical, physi-
cally motivated expressions for the molar Gibbs free energies of disordered
and ordered pseudobinary alloys. Then, in Subsection 4.5.2, we use these
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molar Gibbs free energies to calculate equilibrium alloy phase diagrams.

4.5.1 Free Energies

Let us start, in this subsection, by describing and justifying a semi-empirical
expression for the molar Gibbs free energy of an epitaxial pseudobinary alloy
grown coherently on a thick substrate. The three main components of the
molar Gibbs free energy that we need to account for are (1) the enthalpy of
mixing, due to the internal distortional energies of the various tetrahedra,
(2) the entropy of mixing, and (3) the coherency energy, due to the external
distortional energies of the various tetrahedra.

We describe the internal distortions, as discussed in Section 4.1, by an
enthalpy of mixing of the regular solution form

hine = Qxepi(l - $epi)» (4'95)

where the interaction parameter, €2, is identified with that calculated in
Equation 4.13. The description could easily be improved further through
the use of a sub-regular solution form, in order to account for composition-
dependent elastic constants. The description could also easily be improved
by allowing the mixing enthalpy to depend on temperature through a
composition- and temperature-dependent heat capacity.

We describe the entropy of mixing by the ideal solution form:

8 = —k [Tepi In(Tepi) + (1 — Tepi) In(1 — Tepi)] - (4.96)

Finally, we describe the external distortions, following the treatment of
Section 4.2, with a coherency energy of the form?®

hext = Ceﬂ"l]z(.’tepi - .’L‘sub)2azvg/4, (497)
where

2C%.as.12

Cer = (1 —epi) <CGaAs,11 + Cgans,12 — CL

GaAs,11

2C7 A
+ Tepi (CInAs,ll + Crnas,12 — Cn—m (4.98)
InAs,11

is an effective elastic coefficient that varies linearly between that of GaAs
and that of InAs®° and

QAInAs,0 — A@GaAs,o

n=2 (4.99)

QInAs,0 T AGaAs,o

29].W. Cahn, “On spinodal decomposition,” Acta Metall. 9, 795 (1961).

30F.C. Larché, W.C. Johnson, C.S. Chiang, and G. Martin, “Influence of substrate-
induced misfit stresses on the miscibility gap in epitaxial layers: application to III-V
alloys,” J. Appl. Phys. 64, 5251 (1988).
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is the coefficient of linear expansion per unit composition change.

We note in passing that this elastic energy term, present only for coher-
ent epitaxy, can be an important determinant of the overall driving force
for epitaxy. Coherent alloys whose lattice parameters differ from that of
the substrate will have higher molar Gibbs free energies than those that
are lattice matched. Condensation of lattice-matched alloys will therefore
be favored over condensation of lattice-mismatched alloys, as has been ob-
served for both liquid phase epitaxy®!' as well as MBE.3?

We emphasize here that Equation 4.97 only applies under special cir-
cumstances. In particular, it only applies to the geometry we are consid-
ering — namely, a thin epitaxial film whose parallel lattice parameter is
constrained to be that of its infinitely thick substrate but whose perpendic-
ular lattice parameter is free to adjust — if all phases present have some
physical dimension that is large compared to the film thickness. More gen-
eral treatments of coherent phase equilibria are complicated immensely by
the possibility that the elastic coherency energies depend on the details of
the phase morphology, which in turn depend on the relative amounts of the
different phases present.33

Finally, the total molar Gibbs free energy of the disordered alloy is

gdis(xepia msub) = Rint (l.epi) - Ts(-'repi) + hext(weph xsub)y (4-100)

and depends on the compositions of both the epitaxial film and the sub-
strate. As can be seen from the top panels of Figure 4.15, the semi-empirical
expression of Equation 4.100 reproduces surprisingly well the molar Gibbs
free energies deduced from the CVM calculation shown in Figure 4.13.
Now, as discussed in Section 4.4, ordered and disordered phases should
really be treated on a single footing. Doing so requires, however, a mi-
croscopic treatment that is difficult to incorporate into a semi-empirical
model. Instead, we treat ordered alloys as if they were distinct “compound”
phases which exist only within a narrow range of special compositions, as
illustrated in the bottom panels of Figure 4.15. In other words, we write

31G.B. Stringfellow, “The importance of lattice mismatch in the growth of GalnP
epitaxial crystals,” J. Appl. Phys. 43, 3455 (1972); and R.E. Nahory, M.A. Pollack,
E.D. Beebe, J.C. DeWinter, and M. Ilegems, “The liquid phase epitaxy of AlGaAsSb
and the importance of strain effects near the miscibility gap,” J. Electrochem. Soc. 125,
1053 (1978).

32M. Allovon, J. Primot, Y. Gao, and M. Quillec, “Auto lattice matching effect for
AllnAs grown by MBE at high substrate temperature,” J. Electron. Mater. 18, 505
(1989).

33J.W. Cahn and F.C. Larché, “A simple model for coherent equilibrium,” Acta Metall.
11, 1915 (1984); W.C. Johnson and C.S. Chiang, “Phase equilibrium and stability of
elastically stressed heteroepitaxial thin films,” J. Appl. Phys. 64, 1155 (1988).
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Figure 4.15: Semi-empirical molar Gibbs free energies of disordered (top) and
ordered (bottom) In;_,GazAs at composition zep; grown coherently on substrates
having the lattice parameters of bulk In;_,Ga,As at composition Zsyb-

their free energies as

ga (xepiv 3 xsub) =
gg(xepiy xsub) =

g‘y (wepi ) xsub)

h* + A(.’Eepi - 1/4)2 + hext(l'epiy -'rsub)
h? + A(.’L‘epi — 1/2)2 + hext(l'epia -Tsub)
h‘y + A(.’Eepi - 3/4)2 + hext(xepiyxsub)' (4101)

The first terms in these equations are the enthalpies of the ordered com-
pounds, which for InGaAs we identify with those listed in Table 4.7. The
second terms are phenomenological terms reflecting expected sharp depen-
dences of the ordering enthalpies on composition near the special composi-
tions, with A a large constant. The third terms are the energies given by

Equation 4.97.

4.5.2 Phase Diagrams

In Subsection 4.5.1, we described a semi-empirical expression for the molar
Gibbs free energy of a pseudobinary alloy. In this subsection, we use these
free energies and the common tangent prescription described in Chapter 3
to calculate two-dimensional xepi-T cuts through the full three-dimensional
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Figure 4.16: z.pi-T phase diagrams for Ini_GasAs during (right) coherent
epitaxy on a substrate of composition zs,, and during (left) incoherent epitaxy.
Above and below each phase diagram are also shown the molar Gibbs free energies
of the various phases at 600 K and 100 K, their common tangents, and the critical
compositions (open circles) determined by those common tangents.

Zepi-Tsub-1 phase diagram, as illustrated in Figure 4.16, or calculate the
full epi-Tsub-T phase diagram itself, as illustrated in Figure 4.17.

In both cases the common tangents may be drawn in two ways. On the
one hand, if we constrain the epitaxial film to be coherent, then zg,, must
be preserved, and so, as illustrated in the right halves of Figures 4.16 and
4.17, we must take horizontal tangents at constant s,p. On the other hand,
if we do not constrain the epitaxial film to be coherent, then zg,, is free
to accommodate Zepi, and so, as illustrated in the left half of Figures 4.16
and 4.17, we must take diagonal tangents for which zs,p = Tepi.
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Incoherent Phase Equilibria

Consider first the incoherent case for which xs,, = Tepi. Then, Equa-
tion 4.100 reduces to

gd's"“c(xepi) = hint(Tepi) — T'S(Tepi), (4.102)
since hey; vanishes for Tepi = Tsyb.

At high temperatures, the mixing entropy term in Equation 4.102 causes
the molar Gibbs free energy of the disordered phase to be concave up, and
to lie below the molar Gibbs free energies of all of the ordered phases. A
disordered InGaAs alloy cannot, for any composition, lower its molar Gibbs
free energy either by phase-separating into disordered InAs and GaAs rich
clusters or into ordered stoichiometric phases.

At low temperatures, the mixing entropy term becomes small, and is
no longer sufficient to bring the molar Gibbs free energy of the disordered
phase below those of the ordered phases. Therefore, a uniform disordered
alloy can decrease its molar Gibbs free energy by phase-separating into
either a combination of two ordered phases or a combination of an ordered
phase and an InAs or GaAs rich disordered phase.

In addition, however, the (positive) mixing enthalpy term in Equa-
tion 4.102 causes the molar Gibbs free energy of the disordered phase to now
be concave enough down that it becomes, near its endpoint compositions,
lower than those of all of the ordered phases. Therefore, the ordered phases
are themselves unstable with respect to phase separation into pure InAs
and GaAs disordered phases. A miscibility gap opens up that destabilizes
the ordering.

Coherent Phase Equilibria

Consider now the coherent case for which zg,;,, = constant. Then, the
molar Gibbs free energy does not simplify to Equation 4.102, and the full
Equation 4.100 must be used.

In this case, at high temperatures, both the mixing entropy term and
the elastic energy term cause the molar Gibbs free energy of the disordered
phase to be concave up. Because of the contribution from both terms, the
molar Gibbs free energy remains concave up to lower temperatures, and of
course the miscibility gap shifts to lower temperatures.

At low temperatures, the mixing entropy term becomes small, and again
is no longer sufficient to bring the molar Gibbs free energy of the disordered
phase below those of the ordered phases. Therefore, a uniform disordered
alloy can again decrease its molar Gibbs free energy by phase-separating
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N

Figure 4.17: Pseudobinary zepi-zsub-T phase diagrams of In;_,GazAs. In the
usual, “incoherent” diagram on the left, variations in zep; are accompanied by
identical variations in the effective composition of the substrate, zsy,. In the
“coherent” diagram on the right, variations in zep; occur at constant zeup.

into either a combination of two ordered phases or a combination of an
ordered phase and an InAs or GaAs rich disordered phase.

In this case, however, the (positive) mixing enthalpy term is countered
by the elastic energy term, and the molar Gibbs free energy of the disordered
phase remains concave up. Therefore, the ordered phases remain lower in
energy than the disordered phase, even near its endpoint compositions. The
ordered phases are therefore stable with respect to phase separation into
(nearly) pure InAs and (nearly) pure GaAs disordered phases. Coherency
suppresses the miscibility gap. Then, if ordered phases are present, as in this
example, coherency stabilizes them.3* If, however, ordered phases are not
present, then a uniform disordered alloy will persist to lower temperatures
(perhaps even to 0 K) than in the incoherent case.3®
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Figure 4.18: Intermediate stage of building of a 2D lattice of face-centered tri-
angles.
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T. Hill, Introduction to Statistical Thermodynamics (Addison Wesley,
Reading, MA, 1960).

G.B. Stringfellow, Organometallic Vapor-Phase Epitazy: Theory and
Practice (Academic Press, Boston, 1989).

A. Zunger and D.M. Wood, “Structural phenomena in coherent epi-
taxial solids,” J. Cryst. Growth 98, 1 (1989).

Exercises

1.

Calculate the distortion energies of the cluster shown in Figure 4.1
for (a) As atoms forced onto VCA and CRA positions and (b) for an
As atom at its actual equilibrium position.

. From Figure 4.13, it can be seen that there is a greater tendency

toward phase decomposition for strained but coherent epitaxy of In-
GaAs on a GaAs substrate than on an InAs substrate. Why?

What is the limiting value of the order parameter in the pair approx-
imation of the CVM [Equation 4.46] when 2u; > ug + us, i.e., when
AA and BB pairs are greatly preferred over AB pairs?

. Derive Equation 4.48 for the temperature dependence of the order

parameter in the pair approximation of the CVM.

. Calculate the entropy of the two-dimensional face-centered triangular

lattice shown in Figure 4.18 in the point, pair, and triangle CVM
approximations.

. Construct a ball-and-stick 3D zincblende lattice and identify the te-

trahedra, triangles, and pairs associated with adding point a in Fig-
ure 4.8.
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10.

11.

Exercises

Derive Equation 4.83.

Draw envelopes of minimum molar Gibbs free energies for the various
2D cuts shown at the bottom of Figure 4.13, and identify the com-
position ranges within which various phases or phase mixtures are
stable.

. Construct phase decomposition scenarios for which coherency energies

either depend on, or are independent of, the amounts of the different
phases present.

Starting from Equation 4.100, derive expressions for the chemical po-
tentials of InAs and GaAs in coherent and incoherent epitaxial In-
GaAs.

Using Equations 3.59 and 4.100, derive an expression for how much
the vapor pressure of Ga over coherent In;_,Ga,As lattice-matched
to InP differs from that over incoherent In,_,GaAs.
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Chapter 5

Coherency and
Semi-coherency

In Chapter 4, we described how the thermodynamics of epitaxial alloy films
depend on whether those films are coherent or not with their underlying
substrate. Films that are coherent often tend to form ordered compounds
at certain stoichiometric compositions, while films that are not often tend
to separate into their pure-component “endpoint” phases. Coherency with
an underlying substrate is thus a crucial determinant of the compositional
integrity of alloy films.

Coherency is also a crucial determinant of other properties of alloy films.
Consider, e.g., an epitaxial layer whose bulk lattice parameter differs from
that of its substrate. On the one hand, if the layer is coherent with its
substrate, it will be mechanically strained, and its electronic and opto-
electronic properties will be modified through strain-induced changes in
electronic band structure.! On the other hand, if the layer is not coherent
with its substrate, then structural defects must be present, some of which
degrade significantly the performance of semiconductor devices.

In this chapter, we discuss the conditions under which coherency be-
tween film and substrate can be maintained. In particular, we will focus
on the transition from coherency to “semi-coherency.” A coherent interface
is one that is crystallographically perfect, and that separates epitaxial and
substrate atoms in perfect “registry” with each other. If the bulk lattice
parameters of the epitaxial layer and the substrate differ, then the epi-
taxial layer accommodates by developing in-plane strain. A semi-coherent

1G.C. Osbourn, “Strained-layer superlattices from lattice mismatched materials,” J.
Appl. Phys. 53, 1586 (1982).

151
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interface, in contrast, is one for which the registry between epitaxial and
substrate atoms is punctuated by occasional localized regions of disregistry,
i.e., by dislocations. These localized regions of disregistry compensate for
lattice parameter misfit between the epitaxial layer and the substrate, al-
lowing the in-plane strain of the epitaxial layer to relax.

We begin, in Section 5.1, by discussing the energies associated with
those two kinds of interfaces. The energy associated with a coherent inter-
face is due solely to “coherency strain” in the epitaxial film, and increases
linearly with film thickness. The energy associated with a semi-coherent in-
terface is due partly to coherency strain and partly to “misfit” dislocations
at the interface. Much of the energy of the misfit dislocations is due to
the disregistered atoms at the dislocation core, and is independent of film
thickness. Therefore, thin coherent films will tend to have lower energies
than thin semi-coherent films, but thick coherent films will tend to have
higher energies than thick semi-coherent films.?

As a consequence, in the early stages of film growth, an epitaxial film will
usually be coherent with its substrate. Only when the film becomes thick
enough will it tend to become semi-coherent with the substrate, and even
then, it may not actually become semi-coherent. To become semi-coherent,
misfit dislocations must be created at the film/substrate interface, but that
creation may be impeded by kinetic barriers. Therefore, in Section 5.2 we
discuss the forces, or “excess stresses,” acting to create misfit dislocations,
and in Section 5.3 we describe how an understanding of those forces can
be used to develop semi-empirical macroscopic descriptions of the overall
kinetics of strain relaxation.

Note that this chapter deals only with the most common form of het-
eroepitaxy, in which the film has the same crystal structure as the substrate.
Then, provided the lattice parameters of the film and substrate are not too
mismatched, epitaxy will occur, and the orientation of the film will mimic
that of the substrate. From a practical point of view, we need only be con-
cerned with predicting the conditions under which the film will be coherent
or semi-coherent. This chapter also deals only with the simplest form of
heteroepitaxy, in which the film grows as layers, rather than as islands (see,
e.g., Exercise 2 and Chapter 6).

We emphasize, though, that a deposited film need not have the same
crystal structure as the substrate.? In such cases, it is not always easy to
predict (1) whether epitaxy will even occur at all and (2) even if it does,
what the orientation relationship will be between the film and the substrate.

2F.C. Frank and J.H. van der Merwe, “One-dimensional dislocations. II. Misfitting
monolayers and oriented overgrowth,” Proc. R. Soc. London A198, 216 (1949).

3E. Griinbaum, “List of epitaxial systems,” in Epitarial Growth, J.W. Matthews, Ed.
(Academic Press, New York, 1975), pp. 611-673.
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These two questions are among the most basic in the science of epitaxy, and
have been studied for nearly a century, beginning with the work of Barker*
and Royer.> However, they are also exceedingly difficult questions that are
far from being fully answered.

From a purely crystallographic point of view, one anticipates that those
orientation relationships will be favored for which the three dimensional
film and substrate lattices coincide most closely at the two-dimensional
interface.® For example, such purely crystallographic considerations are
evidently responsible” for what are known as the Nishiyama-Wasserman®
and Kurdjumov-Sachs® orientation relationships between fcc and bec crys-
tals found both in solid-phase precipitation reactions!® as well as in vapor-
phase epitaxy.!!

However, it will not always be sufficient to consider the crystallography
of the known equilibrium bulk phases. Occasionally, it will be possible to
epitaxially stabilize crystal phases which are not normally stable in bulk
form.'? Elemental tin, e.g., adopts a metastable diamond structure when
deposited epitaxially on the (001) surfaces of InSb and CdTe.!3

Moreover, the epitaxial film may also be chemically different from the
substrate, and so the orientation relationship will depend not just on crys-
tallography, but on bond chemistry as well. For these reasons, an under-

4T.V. Barker, “Contributions of the theory of isomorphism based on experiments on
the regular growths of crystals of one substance on those of another,” J. Chem. Soc.
Trans. 89, 1120 (1906).

SL. Royer, “Recherches expérimentales sur 1’épitaxie ou orientation mutuelle de
cristaux d’espéces différentes,” Bull. Soc. Franc. Mineral 51, 7 (1928).

SR.W. Balluffi, A. Brokman, and A.H. King, “CSL/DSC lattice model for general
crystal-crystal boundaries and their line defects,” Acta. metall. 30, 1453 (1982); and A.
Zur and T.C. McGill, “Lattice match: an application to heteroepitaxy,” J. Appl. Phys.
55, 378 (1984).

"R. Ramirez, A. Rahman, and I.K. Schuller, “Epitaxy and superlattice growth,” Phys.
Rev. B30, 6208 (1984).

87. Nishiyama, “X-ray investigation of the mechanism of the transformation from
face-centred cubic lattice to body-centred cubic,” Sci. Rep. Tohoku Univ. 23, 638 (1934);
and G. Wasserman, Arch. Fisenhuettenwes. 126, 647 (1933).

9G. Kurdjumov and G. Sachs, “Uber den Mechanismus der Stahlhartung,” Z. Phys.
64, 325 (1930).

10yU. Dahmen, “Orientation relationships in precipitation systems,” Acta Metall. 30,
63 (1982).

1. A. Bruce and H. Jaeger, “Geometric factors in f.c.c. and b.c.c. metal-on-metal
epitaxy III. The alignments of (111) f.c.c.—(110) b.c.c. epitaxed metal pairs,” Phil. Mag.
A38, 223 (1978).

12R. Bruinsma and A. Zangwill, “Structural transitions in epitaxial overlayers,” J.
Physique 47, 2055 (1986).

I3R.F.C. Farrow, D.S. Robertson, G.M. Williams, A.G. Cullis, G.R. Jones, I.M. Young,
and P.N.J. Dennis, “The growth of metastable, heteroepitaxial films of a-Sn by metal
beam epitaxy,” J. Cryst. Growth 54, 507 (1981).
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standing of orientation relationships in epitaxy is an enormously compli-
cated ongoing area of research that will not be treated here.

5.1 Energetics of Misfit Accommodation

Let us begin, in this section, by discussing the energetics of epitaxial films
attached through coherent or semi-coherent interfaces to substrates with
different lattice parameters. We discuss first, in Subsection 5.1.1, the co-
herency strains and energies associated with the epitaxial films. Then, we
discuss, in Subsection 5.1.2, the strain fields and energies associated with
misfit dislocations at the interfaces between the epitaxial films and their
substrates, with particular emphasis on face-centered cubic (fcc) and dia-
mond lattices. Finally, we discuss, in Subsection 5.1.3, the dependence of
both kinds of energies on misfit dislocation density. Minimizing the sum of
the two energies with respect to misfit dislocation density determines how
the overall misfit is partitioned, in equilibrium, between coherency strain
and misfit dislocation density. We will find that for thin, low misfit films,
energy is minimized when the misfit dislocation density is zero. For thick,
high misfit films, however, energy is minimized when the misfit dislocation
density is nonzero.!4

5.1.1 Coherency Strain

Let us start, in this subsection, by discussing the strain energy associated
with epitaxial films that are coherent with their substrates. In particular,
consider the simplest strained heterostructure: a single, thin, planar layer
of one material and a thick substrate of a different material. As illustrated
in Figure 5.1, in the absence of a connection between the two materials,
each is unstrained and will adopt its own bulk lattice parameter — either
Gepi,o OF Asub. Note that we neglect changes in the lattice parameter of a
free-standing film due to surface stresses, changes that may be important
for very thin films.!®

Suppose we exert a compressive in-plane force on the epitaxial layer
and an equal but opposing tensile in-plane force on the substrate. Then,
the in-plane lattice parameter of the epitaxial film will shrink and that of
the substrate will grow. If the bulk lattice parameter of the epitaxial layer
were larger than that of the substrate, as is the case in Figure 5.1, then the

143 H. van der Merwe, “Crystal interfaces. Part II. Finite overgrowths,” J. Appl. Phys.
34, 123 (1963).

I5R.C. Cammarata and K. Sieradzki, “Surface stress effects on the critical film thick-
ness for epitaxy,” Appl. Phys. Lett. 55, 1197 (1989).
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Figure 5.1: Hypothetical simple cubic epitaxial layer and substrate with bulk
lattice parameters 5.0 and 5.5 A, respectively. The epitaxial layer is imagined
to be disconnected from the substrate, and so is free to adopt its bulk lattice
parameter. As a consequence, it is both unstrained and unstressed.

two in-plane lattice parameters can eventually be made to match, and the
epitaxial layer can be joined coherently to the substrate.

Note that if the substrate is much thicker than the epitaxial layer, then
it will experience a much lower average in-plane stress than will the epi-
taxial layer, and its lattice parameter will change much less. Therefore,
we make the usual approximation that all of the lattice parameter misfit
is accommodated by strain in the epitaxial layer, rather than in the sub-
strate. In the general case, though, partitioning of lattice parameter misfits
between film and substrate, and even between layers within a multilayered
film, must be taken into account.!®

Note also that the Hooke’s law energies associated with straining the
epitaxial layer and substrate are each proportional to thickness and to the
square of the change in lattice parameter. Since the changes in lattice
parameter are proportional to applied stress, which is inversely proportional
to thickness, the Hooke’s law energies are themselves inversely proportional
to thickness. Therefore, we can also make the approximation that all of the
strain energy associated with coherently joining the epitaxial layer to the
substrate is in the epitaxial layer, rather than in the substrate. In other
words, just as we saw in Section 4.1.2, most of the energy associated with

167.C. Feng and H.D. Liu, “Generalized formula for curvature radius and layer stresses
caused by thermal strain in semiconductor multilayer structures,” J. Appl. Phys. 54, 83
(1983).
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coupled spring systems is stored in the weaker and more deformed spring.

To calculate the actual strain energy in a fully coherent epitaxial layer,
we follow the discussion in Section 4.2, in which a generalized Hooke’s law
was written in terms of the elastic coefficients C;;. That law is also com-
monly written, for cubic materials, in terms of Poisson’s ratio, v (defined
as the negative of the ratio between lateral and longitudinal strains under
uniaxial longitudinal stress), and the shear modulus, p (defined as the ratio
between applied shear stress and shear strain under pure shear):

€r 1 1 —v —-v Oz
& |=———| v 1 —v oy |. (5.1)
€, 2u(1+v) —-v -V 1 o,

The relationships between the C;, v, and p are
9 1—-v
H 1-2v
v
2 . 5.2
(%) (52)

The shear modulus itself is related to the modulus of elasticity, F, by
2u=E/(1+v).

For concreteness, let us assume, as is common, that the epitaxial film
and its substrate are not only cubic, but are oriented along one of the (100)
cubic symmetry directions.!” Then, the in-plane strains are symmetric and
can be taken to be along the z and y axes. If we denote in-plane quantities
as “parallel,” and out-of-plane quantities as “perpendicular,” then we can

write
()=mm (S T)() o9

which is just the inverse of Equation 4.20.

Equation 5.3 contains two known and two unknown quantities. The
first known quantity is the parallel strain, €, which is determined by the
lattice mismatch. The second known quantity is the perpendicular stress,
o1, which, since the epitaxial layer is free to expand vertically, vanishes.
Therefore, Equation 5.3 determines the two unknown quantities — the
parallel stress, o, and perpendicular strain, €; — in terms of ¢ only:

o = 2u(1+y>e” (5.4)

1—v

Cll

Cl2

170Otherwise, more general expressions are required. See, e.g., J.P. Hirth, “On dislo-
cation injection into coherently strained multilayer structures,” S. Afr. J. Phys. 9, 72
(1986).
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Figure 5.2: Hypothetical simple cubic epitaxial layer and substrate with bulk
lattice parameters 5.5 and 5.0 A, respectively. The epitaxial layer is still imagined
disconnected from the substrate, but has been strained in a direction parallel to
the interface so that its parallel lattice parameter matches that of the substrate.
As a consequence, it develops both a parallel (in-plane) stress and a perpendicular
(out-of-plane) strain.

—2v
€L = 1— VGH' (5'5)

As illustrated in Figure 5.2, if the epitaxial layer is strained in a direction
parallel to the interface so that its parallel lattice parameter matches that
of the substrate, then it must develop a parallel stress. It also develops a
perpendicular strain, in the same direction as that which would preserve
unit-cell volume. In fact, if €; were exactly —2¢, or if 2v/(1 — v) were
exactly 2, then unit-cell volume would be exactly preserved. Poisson’s ratio,
however, lies in the range 0.25-0.35 for most materials, so that 2v/(1 — v)
is actually approximately 1, and unit-cell volume is only approximately
conserved.

The “coherency” energy associated with strain in the epitaxial layer can
now be calculated, per unit area, to be

1 1+v
Ucoh = =h (20'”6” + O'J_E_L) =2u heﬁ, (5.6)
2 1—-v
where h is the thickness of the film.
In an epitaxial film composed of multilayers each with a different lattice
parameter, the multilayer coherency energy will just be a sum of (or integral
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Edge

Epilayer

Figure 5.3: Pure edge (left) and pure screw (right) dislocations lying in an
interface separating an epitaxial film from its substrate.

over) expressions such as Equation 5.6 for each layer:

14+v
Ucoh = 21 (1 — V) Z h,»el-z,”, (5.7)

where h; and ¢; || are the thicknesses and parallel strains of the ith layer.

5.1.2 Misfit Dislocations

In Subsection 5.1.1, we discussed the strain energy associated with epitaxial
films that are coherent with their substrates. In this subsection, we discuss
the energy associated with epitaxial films that are semi-coherent with their
substrates. In particular, consider a single-layer heterostructure in which
the perfect coherent registry between the epitaxial film and substrate is
broken by a localized region of “disregistry.” In the simplest case, as il-
lustrated in the left half of Figure 5.3, the disregistry might consist of a
half plane missing from the epitaxial film. Physically, we might imagine
that the half plane had been “squeezed” upward out of the epitaxial film
by a compressive coherency stress, thereby relieving some (or all) of that
coherency stress.

Geometrically, the disregistry can be thought of as formed by making
what is known as a “Volterra” cut in the epitaxial film perpendicular to
the interface, removing a plane of atoms, and then rejoining the remaining
crystal by inwardly collapsing atoms in the adjacent planes. The disregistry
can then be seen to be equivalent to a negative edge dislocation along the
line labeled [ in the left half of Figure 5.3, with Burgers vector along the line
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labeled b. In a sense, such interface dislocations act to relieve the coherency
strain in the epitaxial layer by concentrating the lattice misfit into localized
regions of disregistry confined mainly to the interface.

Note that pure edge dislocations such as this, whose Burgers vectors
are both perpendicular to the dislocation line and in the plane of the in-
terface, are the most efficient means for relieving coherency strain. Screw
dislocations such as that illustrated in the right half of Figure 5.3, whose
Burgers vectors are parallel to the dislocation line, do not relieve coherency
strain. Likewise, edge dislocations whose Burgers vectors are perpendicular
both to the dislocation line and to the plane of the interface, do not relieve
coherency strain. Therefore, in the general case of “mixed” dislocations,
having both edge and screw character, only that component of the Burg-
ers vector that is both “edgelike” and in the plane of the interface acts
to relieve coherency strain. In particular, if, as illustrated in Figure 5.23
on page 195, X is the angle between (a) the Burgers vector and (b) the
direction that is both normal to the dislocation line and that lies within
the plane of the interface, then only the component,

bedg,| = bcos A, (5.8)

acts to relieve lattice misfit.

Also note that dislocations with partial or full edge character move
most easily by gliding within the plane containing both the dislocation line
and its Burgers vector. The pure edge dislocation illustrated in Figure 5.3,
e.g., will move most easily within the interface between the epilayer and the
substrate. Therefore, such a dislocation, if created at the free surface, would
be unable to glide to the interface between the epilayer and the substrate.
Instead, it would be constrained to glide parallel to that interface.

To be practically effective at relieving misfit strain, then, dislocations
must usually have some component of their Burgers vector out of the inter-
face. Otherwise, they must move by “climbing” out of the plane containing
both the dislocation line and its Burgers vector. Such motion requires the
creation or annihilation of vacancies at the dislocation core, and hence a
diffusive flux of vacancies either away from or toward the dislocation core.
For example, to move the edge dislocation illustrated in the left half of Fig-
ure 5.3 down from the interface by one lattice spacing, a row of vacancies
must be removed from the dislocation core. Such vacancy removal ulti-
mately requires diffusion away from the core, which usually only becomes
significant at fairly high temperatures.!®

18F A. Fitzgerald, P.D. Kirchner, R.E. Proano, G.D. Pettit, J.M. Woodall and D.G.
Ast, “Totally relaxed GezSi;_, layers with low threading dislocation densities grown on
Si substrates,” Appl. Phys. Lett. 59, 811 (1991).
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While acting to relieve misfit strain, interface dislocations also cost en-
ergy, due to the disruption in bonding associated with the disregistered
atoms at their core and to the long-range elastic stress and strain fields
away from their core. For pure edge and screw dislocations, the energies
per unit length associated with the elastic stresses and strains in a cylin-
drical ring surrounding a long straight dislocation core can be shown, in a
continuum model, to be approximately

ﬂb2d
Ue = —=F_ [?)
dg (1 —v) In(R/o)
b2
Uer = "4—ﬂ In(R/r.), (5.9)

where r, and R are the inner and outer radii of the cylinder. The ener-
gies associated with the disregistered core atoms, however, are difficult to
determine. Instead, it is common to adjust the inner “cutoff” radius r, so
that the core energies are included in Equations 5.9. In practice, a value of
ro = b/4 for covalent semiconductors is often used.

For dislocations having mixed character, the energy is the sum of Equa-
tions 5.9, with the edge and screw components of the Burgers vectors used
accordingly. If, as illustrated in Figure 5.23 on page 195, 3 is the angle be-
tween the Burgers vector and the dislocation line, then the edge component
is bsin 8 and the screw component is bcos 3. Therefore,

b2 i 02
Usis = ljl—n (slm_ f + cos? ﬂ) In(4R/b)

ub? (1 —vcos? 3
4 1-v

) In(4R/b). (5.10)

Note that, because of the long-range nature of the elastic stresses and
strains, the dislocation energy diverges logarithmically with the radius of
the outer radius of the cylinder. Therefore, a dislocation embedded in an
infinite crystal has infinite energy. In fact, the long-range elastic stresses
and strains are always disrupted (and bounded) either by free surfaces or
by the stress and strain fields of neighboring dislocations.

For example, if a free surface at z = 0 is placed a distance h away
from a dislocation at z = h, the normal and shear stress components acting
on the surface must vanish, because the surface is free to expand outward
or contract inward. The effect of the surface can be accounted for ap-
proximately by placing an “imaginary” dislocation of the opposite sign at
z = —h, thereby largely cancelling the long-range stress field at distances
much greater than h from the dislocation core. The energy associated with
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Figure 5.4: Dislocation lines lying along [110] (left) and [110] (right) directions.
The edges of the tetrahedra inscribed within each unit cube represent the possible
directions of the Burgers vectors for each of those dislocations.

a dislocation a distance h from a free surface is therefore approximately

ub? (1 —vcos? 3

Ugis =
dis 4m 1—-v

) In(4h/b). (5.11)

Note that the energy is proportional to b2, because the strains around
the dislocations are proportional to b, and the energy is proportional to
the square of the strains. Therefore, dislocations with shorter Burgers
vectors will be more common than those with longer Burgers vectors. For
this reason, the most common Burgers vectors in fcc-based diamond and
zincblende lattices are of the 1(110) type, since these are the shortest lattice
vectors in these crystals.!® Since there are six possible (110) directions,
there are six possible directions for the Burgers vectors. These six directions
are the edges of the tetrahedra shown in Figure 5.4.20

Consider, for example, misfit dislocations lying along either [110] or [110]
directions, as shown in the left and right halves, respectively, of Figure 5.4.
For (001) oriented fcc-lattice-based epitaxial films, these two dislocation
line directions are the most common, as they lie both in the (001) interface
plane as well as in one of the close-packed {111} slip planes within which
dislocations move most readily. Dislocations having these line directions

19Dissociation into “partial dislocations” having shorter Burgers vectors separated by
stacking faults is also possible.

20N. Thompson, “Dislocation nodes in face-centred cubic lattices,” Proc. Phys. Soc.
B66, 481 (1955).
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Epilayer

Substrate

Figure 5.5: Left: [101] threading screw dislocation segments and [110] 60° misfit
dislocation segment with Burgers vector along [101] direction. Right: crossed
grid of two arrays of misfit dislocations along the [110] and [110] directions.

can be one of three types, depending on the directions of their Burgers
vectors. If the Burgers vector of the [ = [110] dislocation illustrated in the
left half of Figure 5.4 lies along the line A-B, parallel to [, then it is screw
in character. If its Burgers vector lies along the line C-D, perpendicular
to [, then it is edge in character. If its Burgers vector lies along any of the
four other lines, A-C, A-D, B-C or B-D, at 60° to [, then it is a “mixed”
60° dislocation. Likewise, the I = [110] dislocation illustrated in the right
half of Figure 5.4 will either be screw, edge, or 60° mixed, depending on
the direction of its Burgers vector.

An example of a commonly observed dislocation configuration is illus-
trated in the left half of Figure 5.5. An [ = [101] screw dislocation with
b = [101]/2 is shown threading up diagonally from the substrate into the epi-
layer. Just at the epilayer/substrate interface, the dislocation has bent over
to form a misfit dislocation segment with [ = [110]. Since Burgers vectors
must be preserved along the length of any particular dislocation, the misfit
dislocation segment is a 60° dislocation with cos 8 = [-b = cos 60° = 1/2. A
plan-view transmission electron micrograph of a crossed grid of such misfit
dislocations is shown in Figure 5.6.
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Figure 5.6: Bright-field plan-view transmission electron micrograph of the
interface between a 200-nm Sip.9Geo.1 layer grown on a Si (001) substrate.® The
misfit dislocations are arranged in a crossed grid running along the (110) direc-
tions within the (001) interface.

Y. Fukuda, Y. Kohama, M. Seki, and Y. Ohmachi, “Misfit dislocation structures at
MBE-grown Si;_,Ge/Si interfaces, Jpn. J. Appl. Phys. 27, 1593 (1988).

5.1.3 Equilibrium Strains and Dislocation Densities

In Subsection 5.1.1 we discussed the strain energy cost associated with
a perfectly coherent interface, and in Subsection 5.1.2 we discussed the
dislocation energy cost associated with a semi-coherent interface. In this
subsection, we ask which of the two interfaces costs the least energy, and
hence will be thermodynamically preferred. To answer this question, let
us calculate how the two kinds of energies depend on misfit dislocation
density. For concreteness, we assume that the semi-coherent interface is
composed, as illustrated in the right half of Figure 5.5, of a crossed-grid of
two identical arrays of dislocations, each having a linear density of py,q.
For a fully coherent interface, for which p,4 = 0, there is only the
coherency strain energy, which we have already calculated to be 2u[(1 +
v)/(1—v)]hf?, where f is the lattice parameter misfit between the epitaxial
layer and the substrate. For a semi-coherent interface, for which py,q > 0,
the misfit will be partially taken up by localized regions of disregistry,
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thereby decreasing the coherency strain energy, but increasing the misfit
dislocation energy.

To see how the coherency strain energy will decrease with misfit dis-
location density, we note that in one dimension, the misfit taken up by
dislocations, fqis, is the lattice displacement parallel to the interface per
dislocation, beqg |, divided by the spacing between dislocations, 1/pmg. In
other words,

fais = pmdbedg,H- (5'12)

Therefore, the dislocation density that would relieve all the misfit in one di-
mension would be pq = f/bedq,)|- If, on average, the strain in the epitaxial
film decreases linearly with the dislocation density, then

€ = f — fais = f — Pmdbedg, - (5.13)

The dependence of the coherency strain energy on misfit dislocation density
can then be written as

1+v

ucoh=2u<1_u

) h (f - pmdbedg,”)z . (5.14)
As indicated by the dashed lines in the left and right halves of Figure 5.7,
the coherency strain energy depends parabolically on dislocation density,
and vanishes when pinq = f/beqg, -

At the same time, the energy associated with the dislocations them-
selves will increase as the misfit dislocation density increases. For most
applications, it is sufficient to approximate the energy associated with each
of the two dislocation arrays to be the dislocation density times the energy
of an isolated dislocation, or

wb? (1 —vcos?p 4h
R pma - (I ZEES P . 5.
Udis =~ Pmd an ( 1—» In b ( 15)

This linear dependence of the dislocation array energy on dislocation den-
sity is shown as the dotted lines in the left and right halves of Figure 5.7.

For more precise calculations, however, we note that interactions be-
tween dislocation should be taken into account. The reason is that when
the dislocation spacing is less than the film thickness, the stress fields of
individual dislocations are not fully screened from each other by the free
surface, and mediate an “interaction” between them.?!

21Gee, e.g., J.P. Hirth and X. Feng, “Critical layer thickness for misfit dislocation
stability in multilayer structures,” J. Appl Phys. 67, 3343 (1990); and J.R. Willis, S.C.
Jain, and R. Bullough, “The energy of an array of dislocations: implications for strain
relaxation in semiconductor heterostructures,” Philos. Mag. A62, 115 (1990).
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Figure 5.7: Areal energy densities, normalized by the product of the shear mod-
ulus and the Burgers vector, as a function of the misfit taken up by dislocations,
Pmdbedg,|- The dotted lines represent the energies of two dislocation arrays; the
dashed lines represent the coherency strain energies; the full lines represent the
sum. The film on the left is thin enough that it is stable when it is coherent with
the substrate; the film on the right is thicker and is stable when it is semi-coherent
with the substrate.

The total areal energy density is the sum of the areal energy densities
associated with the coherency strain and both of the dislocation arrays, or

Utot = Ueoh + 2udis
1+v 2
= 2u (1 — u) h (f — pmdbedg,)|)
ub? (1 —vcos? 4h
+ Pma ( —— )in( ). (5.16)

This dependence of u¢t on pnq displays two distinct kinds of behavior,
as illustrated in Figure 5.7. For thin, low-misfit films, the total energy is
minimum at p,,4 = 0. Misfit dislocations cost more energy than is regained
by release of coherency strain. For thick, high-misfit films, however, the
total energy is minimum at pynq > 0. The introduction of some misfit
dislocations costs less energy than is regained by release of coherency strain.

Mathematically, these two kinds of behaviors arise according to whether
the energy associated with either of the dislocation arrays, utot/2, increases
or decreases for an incremental increase in ppq from pnq = 0. In other
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words, according to whether

ot 14+v ub? (1 —vcos? 3
= =2u{ —— | hb — [ ———— | In(4h/b
[28pmd]pmd=0 It( _.V) edg,||f + o - n(4h/b)
(5.17)

is greater than or less than zero. On the one hand, if it is greater than zero,
then the change in energy upon introducing the first few misfit dislocations
is positive. Misfit dislocations will not tend to form, and the fully strained,
coherent epilayer will be thermodynamically stable. On the other hand, if
it is less than zero, then the change in energy upon introducing the first
few misfit dislocations is negative. Misfit dislocations will tend to form,
and the strain in the epilayer will tend to “relax.”

The critical misfit for a given thickness and the critical thickness for a
given misfit, beyond which misfit dislocations will tend to form, are deter-
mined by the condition (1/2)[0utot/0Pmd]pme=0 = 0, or

b 1—vcos?p
fe = 87rhcos)\( 1+v )ln(4h/b)
b 1 —wvcos?p
he = 87rfcos/\< T )1n(4hc/b) (5.18)

where we have used Equation 5.8, beqg,| = bcos A. These expressions repro-
duce exactly those derived originally by Matthews and Blakeslee?? and more
recently by Ball and van der Merwe.?3 They are illustrated in Figure 5.8
for A\ = 3 = 60°, which is often the case for fcc-lattice-based diamond
and zincblende crystals. Films having thickness/misfit combinations below
the curves are stable against the introduction of misfit dislocations; films
having thickness/misfit combinations above the curves are not.

Also shown in Figure 5.8 are experimental data points corresponding
to Iny _,Ga,As films grown on GaAs substrates and Si;_,Ge, films grown
on Si substrates. As can be seen, the boundary separating the coherent
from the semi-coherent films is given very closely by Equation 5.18. That
equation is also believed to describe the thermodynamic boundary dividing
coherent from semi-coherent epitaxy of metal films.24

Above the critical layer thickness, the energy decreases at first upon the
introduction of the first few misfit dislocations, but eventually increases

22].W. Matthews and A.E. Blakeslee, “Defects in epitaxial multilayers I. Misfit dislo-
cations,” J. Cryst. Growth 27, 118 (1974).

23C.A.B. Ball and J.H. van der Merwe, “The growth of dislocation-free layers,” in
Dislocations in Solids, F.R.N. Nabarro, Ed. (North-Holland, Amsterdam, 1983), Chap.
27.

24Y. Kuk, L.C. Feldman, and P.J. Silvermann, “Transition from the pseudomorphic
state to the nonregistered state in epitaxial growth of Au on Pd (111),” Phys. Rev. Lett.
50, 511 (1983).
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Figure 5.8: Logarithmic (left) and linear (right) plots of critical layer
thicknesses for a given misfit (or, alternatively, critical layer misfits for a given
thickness), as deduced from Equation 5.18. The triangles represent experiments
in which In;_,Ga,As layers were grown on GaAs substrates and then annealed.®
The circles represent experiments in which Si;_;Ge; layers were grown on Si
substrates and then annealed.® The filled data points correspond to structures
that maintained coherency; the open data points correspond to structures that
became semi-coherent.

2P.S. Peercy, B.W. Dodson, J.Y. Tsao, E.D. Jones, D.R. Myers, T.E. Zipperian, L.R.
Dawson, R.M. Biefeld, J.F. Klem and C.R. Hills, “Stability of strained quantum-well
field effect transistors,” IEEE Electron Dev. Lett. 9, 621 (1988).

®D.C. Houghton, C.J. Gibbings, C.G. Tuppen, M.H. Lyons, and M.A.G. Halliwell,
“Equilibrium critical thickness for Sij_,Ge; strained layers on (100) Si,” Appl. Phys.
Lett. 56, 460 (1990).

again. The dislocation density that minimizes u,¢ can be found by solving
for that pyq for which the derivative

0ot

26pmd

—-v
+u_b2 1—vcos?j In ilﬁ

4T 1—-v b
vanishes. In other words, the equilibrium dislocation density is given by

f

Pmd, =
mdequ bcos A

b 1—wvcos?f 1 4h
8mh cos2 \ 1+v "\

1+v
—2p (1—) hbeag, | (f — Pmdbedg,||)

(5.19)
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Figure 5.9: Equilibrium misfit strain (fqis) taken up by dislocations as a function
of thickness at constant misfit (left) or as a function of misfit at constant thickness
(right). Below either the critical thickness (h.) or critical misfit (f.) the strain
taken up by dislocations is zero; above the critical thickness or critical misfit it
becomes an increasingly large fraction of the total misfit (f).

_ _f he
"~ bcos [1 B 7] ’ (5:20)

This equation determines p,,4 self-consistently in terms of p,,q4 itself, and
can be solved iteratively; a reasonable initial guess is pma = f/(2bcos \).
Once determined, the equilibrium p;,4 then determines that portion of the
total misfit, fq;s, that is taken up by dislocations through Equation 5.12.

For a given misfit, f4;s is zero for thicknesses less than the critical layer
thickness, but increases sharply for thicknesses greater than the critical
layer thickness. This dependence is shown in the left half of Figure 5.9.
Note that even for h > h., the equilibrium dislocation density is less than
that which would eliminate all coherency strain. In other words, even
above the critical layer thickness the coherency strain in the epilayer is
only partially, and not fully, relaxed.

Likewise, for a given thickness, pnq4 is zero for misfits less than the
critical layer misfit, but increases logarithmically for misfits greater than
the critical layer misfit. This dependence is shown in the right half of
Figure 5.9. Again, even for f > f., the equilibrium dislocation density is
always less than that which would eliminate all coherency strain.
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5.2 Forces on Dislocations

In Section 5.1, we found that the transition between coherency and semi-
coherency corresponded to the thicknesses and misfits at which introduction
of the first few misfit dislocations became energetically favorable. Ulti-
mately, though, the transition between coherency and semi-coherency also
requires the motion of dislocations to (or near to) the epilayer/substrate
interface. There must then be forces acting on the dislocations to cause
them to move. In this section, we describe the forces acting on dislocations
in strained heterostructures. We will find that the thermodynamic transi-
tion between coherency and semi-coherency also corresponds exactly to the
thicknesses and misfits at which the forces acting to elongate existing mis-
fit dislocations are positive or negative. We will also find that the average
force acting to elongate existing misfit dislocations, the “excess stress” of
the structure, is a natural measure of the driving force for strain relaxation
by misfit dislocation creation.

We will begin, in Subsection 5.2.1, by describing excess stress in a simple
structure: a single strained surface layer grown on a very thick substrate.
Then, in Subsection 5.2.2, we describe excess stress in a more complicated
structure: a single strained layer buried within a very thick substrate. Fi-
nally, in Subsection 5.2.3, we generalize the concept of excess stress to even
very complicated heterostructures, for which the excess stress depends on
depth within the structure.

5.2.1 Strained Surface Layers

We start, in this subsection, by describing excess stress in a simple struc-
ture: a single strained surface layer grown on a very thick substrate. Con-
sider a dislocation “threading” upward through the epilayer/substrate inter-
face and into the epilayer itself, as illustrated in the left half of Figure 5.10.
If the dislocation bends over, then new length of misfit dislocation will be
created at the epilayer/substrate interface. If, in steady state, the shape
of the threading segment as it moves from A-C to B-D does not change,
then the net change in energy is due solely to the new misfit segment C-D,
which we may imagine has moved downward from AB.

The energy gained by moving unit length of that segment a distance
h downward (or, equivalently, by bending the threading dislocation unit
length to the right) is hZ dotted into what is known as the Peach-Koehler
force, dF = (b- &) x [, which describes the force acting on unit length of
dislocation in an external stress field. In particular, the bending force due
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Figure 5.10: Strain relaxation by single (left) and double (right) kinking of a
threading dislocation to form misfit dislocations.

to the coherency stress in the film is

Foon=h3-{(b-5) x I}, (5.21)
where
Ocoh 0 0
o= 0 oOcn O (5.22)
0 0 0

is the stress tensor in the epilayer film, and, using Equation 5.4,

14+v
Ocoh = 0| = 24 (1 — 1/) € (5.23)

is the in-plane stress acting in the epilayer.
For the 60° misfit dislocation segment illustrated in Figure 5.5, whose
Burgers vector is b = [101]b/v/2 and whose line direction within the inter-

face is [ = [110]/+/2, the force is

0
Fooh=[0 0 h]- 0 , (5.24)
_bo'coh/2
with a magnitude of
Feonh = boconh/2. (5.25)
Since for this geometry
bedg,|| = bcos A = bcos60° = b/2, (5.26)

the coherency force can also be written as

Feon = bedg,||acohh’ (527)
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which can be shown to be generally true for arbitrary geometries (see Ex-
ercise 4 at the end of this chapter).

Opposing this force is a line tension associated with the energy required
to create the new misfit dislocation segment C-D. From Equation 5.11, this
force, or the energy per unit length, is

ub? (1 —vcos? B

Fyis = —
d ar 1—v

) In(4h/b), (5.28)

where we have assumed noninteracting dislocations. If we recast this equa-
tion into the form Fyis = beqg, ||0dish, then we can write

ub 1 —vcos?p
4mh cos A 1—-v

Odis = ) In(4h/b). (5.29)
which is an effective stress, o4;s, associated with the dislocation line tension
that opposes the coherency stress, ocon-

The net, or “excess” stress driving the bending of threading dislocations
to form single-kink misfit segments is therefore

os,lf; = Ocoh — Odis
14+v
= 2u (1 — 1/) (f — Pmabedg,|)
ub 1—vcos?j3
yP— ( 1> In(4h/b). (5.30)

When 05K > 0, threading dislocations will tend to bend over to form strain-
relaxing misfit segments. When 05X < 0, threading dislocations that have
bent over to form strain-relaxing misfit segments will tend to straighten.
When ¢5K = 0, threading dislocations will have neither tendency.?®

Note that this excess stress reproduces exactly the variation of energy
with dislocation density found in Equation 5.19, assuming noninteracting
dislocations. Therefore, the condition [05K],  _o = 0 is equivalent to the
condition (1/2)[0usot/0Pmd]pa=0 = O for the thickness/misfit boundary
between coherent and semi-coherent films, and the condition 05X = 0 is
equivalent to the condition (1/2)8utot/dpma = O for the equilibrium mis-
fit dislocation density beyond the critical layer thickness. Physically, the
force required to form new misfit dislocations by bending of existing thread-
ing dislocations is equivalent to that required to increase the density of a

dislocation array by “squeezing” laterally on the dislocation array.

25L.B. Freund, “The driving force for glide of a threading dislocation in a strained
epitaxial layer on a substrate,” J. Mech. Phys. Solids 38, 657 (1990).
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Figure 5.11: Contours of constant single-kink (left) and double-kink (right) ex-

cess stresses on a thickness/equivalent-strain diagram.

As we will discuss later, it is often possible, for kinetic reasons, to grow
coherent epilayers to thicknesses well beyond those for which they should
become semi-coherent. In these cases, the excess stress evaluated at pj,g = 0
is a useful measure for the degree of metastability of the structure. The
critical thickness/misfit relationship for a given degree of metastability, or

a given value of 05X | is then found, from Equation 5.30, to be

SK ;3 _ 1 (1-v oK b 1—vcos’f
fe(oexes h) = 2\14+v) o + 8mwh cos A 1+v In (4h/b)
(5.31)

These metastable critical thicknesses and misfits are illustrated in the
left half of Figure 5.11 for various values of 05K /u. For thin (~ 150 A)
“quantum-well” type structures, which are capped immediately by un-
strained material, it is often possible to grow coherent metastable struc-
tures up to values of 65K /i = 0.04. For thicker structures, the maximum
05K /1 values decrease considerably. In the limit of very thick structures,
grown for very long times, the maximum 05K /u values are zero, and the

equilibrium critical layer thickness boundary holds.

5.2.2 Strained Buried Layers

In Subsection 5.2.1, we described excess stress in a simple structure con-
sisting of a strained surface layer. In this subsection, we describe excess
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stress in a more complicated structure consisting of a strained buried layer.
Consider a dislocation threading upward through this buried strained layer,
as illustrated in the right half of Figure 5.10. The buried strained layer has
thickness hsg;, and is capped by an unstrained layer of thickness hc,,. For
this structure, it is possible for the dislocation to bend twice, thereby reliev-
ing strain only within the buried layer.?6 We can apply all the arguments of
the previous subsection to calculate the net bending force, except that the
line tension force must now be taken twice. The excess stress driving misfit
dislocation formation by this macroscopic “double-kinking” of a threading
dislocation is therefore

DK

Oexc — Ocoh — Odis,1 — Odis,2
1+v
= 2u (m) (f — Pmdbedg,)|)
ub 1—wvcos?p
— In(4R, /b
47 R, cos A ( 1-v n(4R, /b)
ub 1—wvcos?p
- In(4Ry /b 5.32
47 Ry cos A ( 1-v n(4R /b), ( )

where ppnq is now the density of dislocations at each interface surrounding
the buried strained layer.

Note that the stresses associated with the dislocation line tensions are
different for the two dislocations, because they may have different cutoff
“screening” distances for their elastic energies. The cutoff distance for the
dislocation farthest from the free surface will be approximately the distance
to the dislocation closest to the free surface, or h. However, the cutoff
distance for the dislocation closest to the free surface will be the smaller
of the distances to the free surface, hcap, or to the adjacent dislocation, or
approximately heg = hgtrhcap/(Rstr + heap). Therefore,

1+
o-e[:(lg = 2/-"( V) (f - pmdbedg,ll)

1—-v

ub 1—-vcos?pj In 4hgir
4T hgsr cos A 1-v b
pb 1—vcos?p 4heg
4mheg cos A ( 1-v In b (5.33)

In the limit hcap — O (or, to avoid singularities, hcap — b/4), the

26W.D. Nix, D.B. Noble, and J.F. Turlo, “Mechanisms and kinetics of misfit dislocation
formation in heteroepitaxial thin films,” Mat. Res. Soc. Symp. Proc. 188, 315 (1990).
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double-kink excess stress becomes

1+v
gg(lé = 2u (1_——1/) (f - Pmdbedgyll)

b 1—wvcos? 3 4hstr
- 1 5.3
4mhgir cOS A ( 1-v "7 ) (5.34)

and is equivalent to the single-kink excess stress. Effectively, there is no
cap, and the energy of the dislocation elongating along the surface is zero.
In the opposite limit hc,, — 0o, the double-kink excess stress becomes

1+v
T = 2#( ) (f — Pmabedg,||)

1—v

#b 1- I/C052 'B 4hstr
- 27rhstr COS/\ ( 1 — UV ) ln ( b ) . (535)

In this limit, the critical thickness/misfit relationship for a given degree of

metastability, or a given value of ag(lé, can be calculated to be

- DK _ 2
fo(0PK B) = 1 (1-vY oeye " b 1 —wvcos® In 4hgy '
2\1+v m 4mh cos A 1+v b

(5.36)

These metastable critical layer thicknesses are illustrated in the right
half of Figure 5.11. The equilibrium critical layer thickness boundary is
determined by 02X = 0, and is seen to be shifted to the right from the
single-kink curves. Because the line tension enters in twice, for strained
layers having the same thickness and misfit, this double-kink mechanism
for strain relaxation is usually less likely than the single-kink mechanism

discussed earlier.

5.2.3 Generalized Excess Stress

In Subsections 5.2.1 and 5.2.2, we described the excess stresses associated
with two strained layer structures, one in which the layer is at the surface,
another in which the layer is buried. In this subsection, we describe excess
stress in general structures composed of multilayers of different misfits and
thicknesses. Such structures are susceptible to either single-kink or double-
kink relaxation at different depths within the structure. In other words,
dislocations may bend anywhere within a given structure. Then, it is useful
to generalize the driving force for that bending to include a dependence on
depth.?”

27]).Y. Tsao and B.W. Dodson, “Excess stress and the stability of strained heterostruc-
tures,” Appl. Phys. Lett. 53, 848 (1988).
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In doing so, we note that for many applications it is only necessary to
calculate the excess stress in unrelaxed, fully coherent structures. There-
fore, we restrict ourselves to the simplest case of unrelaxed (pma = 0)
structures. Structures that are partially relaxed (pmq # 0) are consider-
ably more difficult to treat.

If we make the approximation that the elastic moduli of the different
layers are equal, then for single-kink relaxation, the depth-dependent excess
stress can be written as

Ton(z) = 2u (1 a V) €K (1) —22 (1 - ”COS?ﬁ) In (4—;) , (5.37)

1-v " 4mzcos A 1-v
where z is the depth from the free surface, and

z dz,
K (2) = e(2')— .
)= [ e (5.39)

the equivalent strain, is the average parallel strain associated with the struc-
ture from the surface to that depth.

Physically, the coherency stress acting to bend a dislocation at a depth
z is an integral of the strains over the length of the dislocation above that
depth. The dislocation line tension stress acting to straighten a dislocation
at a depth z is the energy associated with creating a dislocation at that
depth. If 05X (z) < 0 at a particular depth z, misfit dislocation formation
at that depth leads to an increase in energy. If 05X (z) > 0 at a particular
depth z, misfit dislocation formation at that depth leads to a decrease in
energy.

Note that even if 05X(2) > 0 at a particular depth, a threading dis-
location will not necessarily bend there. Kinetic limitations may prevent
such bending, and there may be other depths in the structure at which the
excess stress is even higher, and which will be even more favored for misfit
dislocation creation.

To illustrate this concept of a depth-dependent excess stress, in Fig-
ures 5.12 and 5.13 we show 05K (2) for two double quantum-well heterostruc-
tures. In the unstrained caps, 05K (2) increases gradually from the surface,
as the line tension stress associated with misfit dislocation creation de-
creases. In the strained layers themselves, 05X (2) increases more quickly,
as the coherency stresses increase. In the unstrained buffers beneath the
strained layers 05K (z) decreases, as the coherency stress associated with
the strained layer is “diluted,” so that the average coherency stress above
a depth z decreases.

In these examples, the single-kink excess stress is maximum at the rear

of the deepest buried strained layers. The rear of that strained layer is
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Figure 5.12: Strains, equivalent strains, and excess stresses in a double buried
quantum-well heterostructure. Both the single- and double-kink excess stresses
maximize at a depth of 800 A, but only the single-kink excess stress exceeds
zero, and even then just barely. Therefore, this structure is stable with respect
to double-kink strain relaxation, but slightly unstable with respect to single-kink
strain relaxation.

therefore the weakest point in the structure, where misfit dislocations are
most likely to form. It is important to emphasize, though, that the rear of
the shallowest buried strained layer is also a weak point, at which misfit
dislocations may form.

The double-kink excess stress can be generalized in a similar way:

1+v ub 1 —vcos?p 4h
DK(,\ _ DK(,\ _ 4n
Texc (2) = 21 (1 - u) equ(?) 27mh cos A ( 1-v In b )’

(5.39)
where z is the depth of the lower kink from the free surface, h is the thickness
of material between the kinks, and

2+h Z,
PK(2) = / e(z')%—l— (5.40)

is the equivalent strain associated with the material between the kinks.
Note that the double-kink excess stress depends not just on depth, but

on the thickness of material between the kinks. It will be maximum when

it is matched to the thicknesses of the buried strained layers. For example,
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Figure 5.13: Strains, equivalent strains, and excess stresses in a double buried
quantum well heterostructure. Both the single- and double-kink excess stresses
maximize at a depth of 800 A, but only the single-kink excess stress exceeds zero.
Therefore, this structure is stable with respect to double-kink strain relaxation,
but unstable with respect to single-kink strain relaxation.

Figures 5.12 and 5.13 show the depth-dependent double-kink excess stress
for the double buried quantum-well heterostructures evaluated at h equal
to the actual thicknesses, hg, of the buried quantum wells. The excess
stresses can be seen to be small everywhere except in the quantum wells
themselves.

Also note that even at their maxima, at the rear of the buried strained
layers, the double-kink excess stresses are less than the single-kink excess
stresses. These particular buried structures will therefore be more likely to
relax by generation of single-kink rather than double-kink misfit disloca-
tions.

If we require a structure to be absolutely stable, both with respect to
single-kink and double-kink relaxation, then we require 05K (2) < 0 and
oDX(z) < 0 for all z. For the single buried strained layer structure shown
in Figure 5.14, whose weakest point is at a depth z = hcap + hstr, Where
hcap is the thickness of the unstrained capping layer, we must then satisfy

both
b 1—vcos?j 4hSK
SK < equ 5.
= 8rhSK cos A ( 1+v ) In ( b (5.41)

equ
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Figure 5.14: Stability curves for structure consisting of a strained layer of thick-
ness hs¢r and misfit fsir, buried underneath a capping layer of thickness hcap and
misfit feap.
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o S TBR VeOST ) jp [ Zean ) (549
4mheyy cos A 1+v b
where
6SK — fsf-rhstr
can hcap + hstr
h(s;(u = hcap + hstr (5.43)
quIl(l = fstr
o = Potr (5.44)

are the single- and double-kink equivalent strains and thicknesses. Note
that we have made the approximation hg;fl = hsprhcap/(Rstr + heap) = hstr
for the double-kink equivalent thicknesses.

Substituting Equations 5.43 into Equation 5.41, we find that for a given
thickness cap, hcap, and a given thickness buried strained layer, hstr, the
critical strained layer misfit below which the structure will be stable with

respect to single-kink relaxation is

cap + Pstr b 1—vcos?p n 4(hcap + hstr
hste 87 (hcap + hstr) cos A 1+v b )

h
fstr =

(5.45)
The resulting critical layer misfits for a given thickness (or, equivalently,
the critical layer thicknesses for a given misfit) are shown as the dashed
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curves in Figure 5.14 for various capping layer thicknesses. Buried strained
layer thickness and misfit combinations that lie to the left of the curves are
stable with respect to single-kink relaxation.

If the cap thickness is zero, then the critical thickness curve (leftmost
solid curve) for simple surface strained layers is obtained. As the cap be-
comes thicker, the critical thickness curves shift to the right, as the un-
strained cap “dilutes” the strain of the buried layer and stabilizes it. Ulti-
mately, for infinitely thick caps, the structure becomes more unstable with
respect to double-kink relaxation than to single-kink relaxation. In this
limit, the critical strained layer misfit below which the structure will be
stable is found by substituting Equations 5.44 into Equation 5.42, or

b 1—vcos?f 4hsy,
fow = 4mhgy, cos A < 1+v ) In ( b ) ' (5.46)

The resulting critical layer misfit for a given thickness (or, equivalently,
the critical layer thickness for a given misfit) is shown as the rightmost
solid curve in Figure 5.14. Buried strained layer thickness and misfit com-
binations that lie to the right of the curve are not stable with respect to
double-kink relaxation.

To the left of the leftmost solid curve, then, structures are absolutely
stable with respect to both single- and double-kink relaxation, regardless
of cap thickness. Within the window between the solid curves, structures
are absolutely stable with respect to double-kink relaxation, but require
stabilization with respect to single-kink relaxation by a finite-thickness cap
layer. To the right of the rightmost solid curve, structures are not stable
with respect to double-kink relaxation, even if they have been stabilized
against single-kink relaxation by an infinitely thick cap layer.

5.3 Relaxation of Strain

In Sections 5.1 and 5.2, we described the thermodynamics of the creation of
misfit dislocations. In particular, we described the driving force, or “excess
stress,” acting to bend vertical dislocation segments into misfit dislocations
lying in the interface between the strained layer and the substrate. Ba-
sically, the sign of oex. determines whether or not misfit dislocations will
have a tendency to form, while the magnitude of o.y. determines the driv-
ing force for them to form. Even if oexe > 0, however, misfit dislocations
will not form instantly during growth.?® Instead, they will form at a finite

28 A.T. Fiory, J.C. Bean, R. Hull, and S. Nakahara, “Thermal relaxation of metastable
strained-layer Ge;Sij_/Si epitaxy,” Phys. Rev. B31, 4063 (1984); and E. Kasper,
“Growth and properties of Si/SiGe superlattices,” Surface Sci. 174, 630 (1986).



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

180 Chapter 5. Coherency and Semi-coherency

rate determined, to first order, by the magnitude of gexc.-

In this section, we discuss the kinetics of the creation of misfit disloca-
tions. We begin, in Subsection 5.3.1, with a brief introduction to the dy-
namics of dislocations in bulk materials, as summarized in what are known
as deformation-mechanism maps. Then, in Subsection 5.3.2, we describe
a simple qualitative model for the dynamics of dislocations in epitaxial
thin films, and use it to simulate, in an approximate way, the evolution of
strain and misfit dislocation density during actual growth and processing
of strained heterostructures. Finally, in Subsection 5.3.3, we discuss the
construction of stability diagrams, which describe the stress-temperature-
time regimes within which strained heterostructures will be metastable to
various amounts of relaxation.

5.3.1 Deformation Mechanism Maps

Let us begin, in this subsection, with a brief introduction to the dynamics of
dislocations in bulk materials. At the outset, we note that the mechanisms
underlying the introduction, motion, and multiplication of dislocations in
bulk materials are exceedingly complex. The mechanisms are many, and
each may be important only under certain conditions. To illustrate this,
let us first consider some of the ways in which bulk materials deform plasti-
cally under the application of externally imposed stresses. The classic way
of representing the plastic deformation of bulk materials is through the use
of deformation-mechanism maps.2? These maps are stress-temperature di-
agrams on which are indicated regimes within which various mechanisms
for plastic deformation are dominant.

Consider, for example, the deformation-mechanism maps illustrated in
Figures 5.15 and 5.16 for Si and Ge, respectively. At relatively low tem-
peratures and high stresses, deformation is dominated by “low-temperature
plasticity,” in which dislocations move mainly by conservative motion, or
glide, within the plane containing both the dislocation line and its Burgers
vector. At relatively high temperatures and moderate stresses, deformation
is dominated by “power-law creep,” in which dislocations are increasingly
able to move by the nonconservative motion, or climb, of dislocations out
of the plane containing both the dislocation line and its Burgers vector.
At the lowest stresses, deformation of polycrystalline materials is domi-
nated by “diffusional flow,” in which, even in the absence of dislocations,
grain boundaries move and change shape via diffusion of matter through
the grains or along the grain boundaries themselves.

29H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps (Pergamon, Oxford,
1982).
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Superimposed on these diagrams are iso-strain rate contours, which in-
dicate the temperature-dependent stresses required to cause a given strain
rate. Generally, lower stresses are required to cause a given strain rate at
higher temperatures, due to increased dislocation mobilities. This increased
dislocation mobility may occur for a number of reasons. For example, the
nucleation rate of microscopic double kinks, by which dislocations glide
laterally on an atomic scale, may increase. The rate at which dislocations
pass through obstacles may increase. The rate at which vacancies diffuse
to and from dislocations may also increase, thereby increasing the rate at
which dislocations climb.

We emphasize that deformation-mechanism maps represent an enor-
mous simplification of a number of complex mechanisms, and can only be
a rough guide to deformation behavior. In particular, their construction
requires the assumption of a particular microstructure, e.g., dislocation
density and, in polycrystalline materials, grain size. As materials deform,
however, their microstructure will change; if the change is severe, the cor-
responding change in the deformation-mechanism map may also be quite
severe. In other words, a complete picture of plastic deformation must
include the time evolution of dislocation densities and other aspects of mi-
crostructure, and how that evolving microstructure in turn influences the
further evolution of dislocation densities.

5.3.2 A Simple Phenomenological Model

In Subsection 5.3.1, we discussed briefly plastic deformation in bulk ma-
terials. The geometry of thin film single-crystal heterostructures is much
simpler than that of a bulk polycrystalline material, and so in principle
should be correspondingly easier to treat. However, this has not yet proven
so. A general treatment of the plastic deformation of thin film strained het-
erostructures must itself include a number of complex microscopic mecha-
nisms. In this subsection, we briefly discuss these microscopic mechanisms,
and then discuss a simple phenomenological model based on these mecha-
nisms.

Consider the microscopic mechanisms illustrated in Figure 5.17. First,
because the initial threading dislocation densities in electronic-grade semi-
conductor substrates are exceedingly low and cannot by themselves account
for the amounts of strain relaxation commonly observed, nucleation of new
dislocation loops must be included.?? These loops are most likely “half-

30p.M.J. Marée, J.C. Barbour, J.F. van der Veen, K.L. Kavanagh, C.W.T. Bulle-
Lieuwma, and M.P.A. Viegers, “Generation of misfit dislocations in semiconductors,”
J. Appl. Phys. 62, 4413 (1987); and R. People and J.C. Bean, “Calculation of critical
layer thickness versus lattice mismatch for Ge;Sij— /Si strained-layer heterostructures,”
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Figure 5.17: Schematic illustrations of possible microscopic deformation mecha-
nisms operative during strain relaxation.

loops” nucleated at the free surface, perhaps catalyzed by defects or other
stress concentrators.?! In compound semiconductors, the situation is even
more complicated, due to possible dependences of the nucleation rate on
surface conditions and chemistry.

Second, the outward “bowing” motion of these dislocation half-loops to
form misfit dislocation segments at the epilayer/substrate interface must be
included.?? This motion will be dominated by glide at low temperatures,
but will increasingly have a climb component at higher temperatures. It
may also be mediated by nucleation of microscopic single kinks at the free
surface in very thin films, or by nucleation of microscopic double kinks in
thicker films.33

Third, the slowing and occasional pinning of these dislocation half-
loops as they move and encounter other dislocation segments must be
included.?* Such pinning has been observed during in situ transmission

Appl. Phys. Lett. 47, 322 (1985) and 49, 229 (1986).

31B.W. Dodson, “Nature of misfit dislocation sources in strained-layer semiconduc-
tor structures,” Appl. Phys. Lett. 53, 394 (1988); C.J. Gibbings, C.G. Tuppen, and
M. Hockly, “Dislocation nucleation and propagation in Sip.95Geo.o5 layers on silicon,”
Appl. Phys. Lett. 54, 148 (1989); and D.J. Eaglesham, E.P. Kvam, D.M. Maher, C.J.
Humphreys, and J.C. Bean, “Dislocation nucleation near the critical thickness in GeSi/Si
strained layers” Phil. Mag. A59, 1059 (1989).

323 W. Matthews, S. Mader, and T.B. Light, “Accommodation of misfit across the
interface between crystals of semiconducting elements or compounds,” J. Appl. Phys.
41, 3800 (1970).

33R. Hull, J.C. Bean, D. Bahnck, L.J. Peticolas, Jr., K.T. Short, and F.C. Unter-
wald, “Interpretation of dislocation propagation velocities in strained GezSi;—/Si(100)
heterostructures by the diffusive kink pair model,” J. Appl. Phys, to be published.

341, B. Freund, “A criterion for arrest of a threading dislocation in a strained epitaxial
layer due to an interface misfit dislocation in its path” J. Appl. Phys. 68, 2073 (1990).
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electron microscopy,®® and is likely to be extremely important in the later
stages of strain relaxation,3¢ when both crossed grids of dislocations have
become quite dense.

Fourth, the unpinning and possible multiplication®? of dislocation half-
loops as they “bow through” obstacles such as other dislocations must be
included. These processes have not been directly observed, but may be
important in the later stages of strain relaxation.

Finally, the way in which all of these microscopic processes depend on
depth within the structure must be included. Treating depth-dependent
strain relaxation would represent a nontrivial extension of existing theories,
but would be particularly important for compositional graded strained het-
erostructures, or for strained heterostructures composed of multiple layers,
each having its own misfit.

As a consequence, all current models treat only some of these processes,
and even then only in simplified ways. For concreteness, let us consider
here one model,®® based on the phenomenology of deformation in bulk
diamond-structure materials.>® The model is not the most complete,° but
is simple and predicts at least qualitatively much of what is known about
strain relaxation.

The model assumes that dislocations multiply at a rate proportional to
(a) the velocity at which they move, (b) the number of dislocations present,
and (c) the excess stress. If the number of dislocations is itself proportional
to the amount of strain relaxation, v, and if the dislocation glide and climb
velocities are both thermally activated and proportional to the excess stress,
then we can write

dy o2

= — exc2(7) (Fge—Qg/kT + [‘Ce_QC/kT) ('y + 'Yo) , (547)
M

35R. Hull and J.C. Bean, “Variation in misfit dislocation behavior as a function of
strain in the GeSi/Si system” Appl. Phys. Lett. 54, 925 (1989).

36B.W. Dodson, “Work hardening and strain relaxation in strained-layer buffers,”
Appl. Phys. Let. 53, 37 (1988).

37W. Hagen and H. Strunk, “A new type of source generating misfit dislocations,”
Appl. Phys. 17, 85 (1978).

38B . W. Dodson and J.Y. Tsao, “Relaxation of strained-layer semiconductor structures
via plastic flow,” Appl. Phys. Lett. 51, 1325-1327 (1987); B.W. Dodson and J.Y. Tsao,
“Erratum: Relaxation of strained-layer semiconductor structures via plastic flow,” Appl.
Phys. Lett. 52, 852 (1988); and R. People, “Comment on ‘Relaxation of strained-layer
semiconductor structures via plastic flow’,” Appl. Phys. Lett. 53, 1127 (1988).

39H. Alexander and P. Haasen, “Dislocations and plastic flow in the diamond struc-
ture,” in Solid State Physics Vol. 22, F. Seitz and D. Turnbull, Eds. (Academic Press,
New York, 1968), pp. 27-158.

40Gee, e.g., D.C. Houghton, “Strain relaxation kinetics in Si1—.Gez /Si heterostruc-
tures,” J. Appl. Phys. 70, 2136 (1991), and Exercise 6 at the end of this chapter.
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or

dt 2
In these equations, I'; and I'; are glide and climb rate prefactors, @, and
Q. are glide and climb activation energies, and +, represents a constant
“source” term.

Note that the form of Equation 5.48 is general, but the actual values of
the kinetic parameters depend on the orientation of the slip planes with re-
spect to the epilayer/substrate interface, and on the direction of slip within
those planes. More general treatments can be formulated by replacing the
excess in-plane stress with the excess stress resolved on the slip plane and
acting in the direction of slip within that plane.*! For (001) oriented films
in the Si;_,Ge, system, approximate fits to relaxation data give*? rate pref-
actors of I'y = 2x 10'° s7! and I = 3 x 10%! s™!, a stress-dependent glide
activation energy of Qg = Qg o[l — Texc(Y)/00], Where Qg , = 16kTy, and
0, =~ 0.1y, a stress-independent climb activation energy of Q. = 30kT},,
and a “source” term of magnitude v, ~ 10~%. Here, T}, is the melting
temperature of the Si;_,Ge, alloy.

Note that the excess stress in Equation 5.48 depends nonlinearly on
the actual equivalent strain, €cq, which in turn depends on the degree of
relaxation, 7:

2
dln('Y + ’Yo) _ chc(’Y) (Fge—Qg/kT + l"ce_Qc/kT) . (5.48)

€equ = fequ -7 (549)

Therefore, Equation 5.48 is a highly nonlinear differential equation whose
full solution requires numerical techniques. However, for practical de-
vice heterostructures which are adversely affected by dislocations, small
amounts of relaxation (7 < 1073) are often of greatest interest. Since these
relaxations are less than the unrelaxed equivalent strains in typical struc-
tures, the excess stresss may be considered independent of the amount of re-
laxation. Then, it is straightforward to integrate Equation 5.48 numerically
to deduce the time-dependent strain relaxation, -y, and by differentiation
to deduce the time-dependent strain relaxation rate, 7.

5.3.3 Time, Temperature and Excess Stress

In Subsection 5.3.2, we described a simple phenomenological model for the
relaxation of excess stress and strain. In this subsection, we illustrate the

411,.B. Freund, “The driving force for glide of a threading dislocation in a strained
epitaxial layer on a substrate,” J. Mech. Phys. Solids 38, 657 (1990).

42R. Hull, J.C. Bean, D.J. Werder, and R.E. Leibenguth, “In situ observations of
misfit dislocation propagation in Ge;Si;_;/Si(100) heterostructures,” Appl. Phys. Lett.
52, 1605 (1988); and B.W. Dodson and J.Y. Tsao, “Non-Newtonian strain relaxation in
highly strained SiGe heterostructures,” Appl. Phys. Lett. 53, 2498 (1988).
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time evolution of excess stress and strain*® in the two simple structures
shown in Figures 5.12 and 5.13. We imagine that, as the two structures are
grown, they are subjected to the hypothetical (but realistic) temperature
cycles shown in Figures 5.18 and 5.19. In each case, growth of a 600-A Si
buffer layer at 750°C commences at ¢ = 0. Toward the end of growth of
this buffer, the temperature is ramped down to 550°C for growth of the two
100-A-thick buried Si,_,Ge, strained layers. During growth of the strained
layers, the single-kink excess stresses (evaluated at the rear of the deepest
strained layer) increase, but during growth of the unstrained spacer and
capping layers they decrease. At the end of growth, the temperature is
ramped down to room temperature (25°C). Finally, we have included the
possibility of a 45-s, 900°C post-growth rapid thermal anneal for dopant
activation or oxide growth.

For the weakly strained structure in Figure 5.18, the final structure has
a single-kink excess stress that is barely positive, and so is fairly resistant
to strain relief by plastic flow. Even the 45-s rapid thermal anneal at 900°C
causes a strain relaxation less than 10~7. Note that this amount of relax-
ation may be considered nearly unobservable, even by dislocation counting,
since it corresponds to on the order of one dislocation per centimeter. Note
also that just after growth of the final strained layer the structure passes
through an intermediate structure for which the single-kink excess stress is
greatest. However, because the growth temperature is low, negligible strain
relaxation occurs.

For the moderately strained structure shown in Figure 5.19, the final
structure has a single-kink excess stress that is larger, and hence is less re-
sistant to strain relief by plastic flow. Indeed, during the 45-s rapid thermal
anneal at 900°C, strain relaxation is significant. Again, note that just after
growth of the final strained layer the structure passes through an interme-
diate structure for which the single-kink excess stress is greatest. However,
because the growth temperature is low, negligible strain relaxation occurs.

5.3.4 Stability Diagrams

From the discussions in Subsections 5.3.1-5.3.3, it is clear that the major
determinant of the stability of coherent strained heterostructures is its ex-
cess stress, convolved with the time-temperature cycle that it experiences
during growth and processing. If the excess stress everywhere in the struc-
ture is at all times less than zero, then the coherent structure is absolutely
stable. If, during some time interval, the excess stress anywhere in the

43J.Y. Tsao and B.W. Dodson, “Time, temperature and excess stress: relaxation in
strained heterostructures,” Surf. Sci. 228, 260 (1990).
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Figure 5.18: Thickness, excess stress (evaluated at the rear of the deepest
strained layer), temperature, strain rate, and strain relaxation in a slightly
metastable double buried quantum-well heterostructure.

structure rises above zero, then some strain relaxation will occur. However,
the amount of strain relaxation may be small if the temperature during
that time interval is low, or if the duration of the time interval is short. In
other words, it is the time at temperature while the excess stress is highest
that determines whether significant strain relaxation will occur.

For a given time duration, then, the two parameters that most directly
determine the amount of strain relaxation that will occur are the excess
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Figure 5.19: Thickness, excess stress (evaluated at the rear of the deep-
est strained layer), temperature, strain rate, and strain relaxation in a highly
metastable double buried quantum-well heterostructure.

stress and temperature.** In this subsection, we describe the use of excess
stress versus temperature stability diagrams for depicting various regimes
of strain relaxation. To illustrate, we show, in Figure 5.20, contours of
constant strain relaxation plotted on a stress-temperature diagram. The
contours were calculated according to the simple phenomenological model
described earlier by Equation 5.48, and so should only be taken as qual-

44].Y. Tsao, B.W. Dodson, S.T. Picraux, and D.M. Cornelison, “Critical stresses for
Sij—,Ge, strained-layer plasticity,” Phys. Rev. Lett. 59, 2455 (1987).
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Figure 5.20: Stress-temperature stability diagrams for strained Si,_,Ge, het-
erostructures, assuming times-at-stress of 10 s (left) and 10 min (right). Struc-
tures lying below the solid lines are absolutely stable. Structures lying below the
dashed lines will have relaxed by less than &~ 10~7. Structures lying below the
dot-dashed lines will have relaxed by less than ~ 1073.

itative guides. Nevertheless, they illustrate how such kinetic models can
be used to construct these “stability” diagrams. Such diagrams are prac-
tical guides to the degree of relaxation that can be expected for a given
structure.

The diagram on the left in Figure 5.20 was calculated assuming a “time-
at-stress” of 10 s. Such a diagram would be appropriate for the growth of
a buried strained quantum well, in which the excess stress of the structure
reaches its maximum just after the buried strained layer has been grown,
but diminishes quickly thereafter upon initiation of growth of the unstrained
capping layer.

The diagram on the right in Figure 5.20 was calculated assuming a time-
at-stress of 10 min. Such a diagram would be appropriate for the growth
of a thick surface strained layer, in which the excess stress of the structure
reaches its maximum gradually during growth, and persists during the cool-
down after growth has terminated.

In both diagrams, structures lying below the solid lines, whose excess
stresses are less than zero, are absolutely stable. Structures lying below
the dashed lines will have relaxed by less than ~ 10~7. This amount of
strain relaxation is essentially negligible, because it corresponds to on the
order of one misfit dislocation per centimeter. Structures lying below the
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dot-dashed lines will have relaxed by less than ~ 1073. This amount of
strain relaxation is not negligible, because it corresponds to on the order of
one misfit dislocation per micrometer. »

Note that the definition of the stress-temperature boundary at which
strain relaxation just becomes observable depends on the sensitivity of the
technique used to measure the relaxation.> On the one hand, if the mea-
surement technique is sensitive to isolated dislocations in a large field of
view, as x-ray topography or etch-pit delineation might be, then at high
temperatures the critical stresses approach zero. On the other hand, if the
measurement technique is less sensitive (e.g., x-ray diffraction or ion-beam
channeling), then the critical stresses may differ significantly from zero, and
various degrees of metastability will be observed.
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Exercises

1. An alternative route to misfit accommodation involves tilting of the
epitaxial layer with respect to the substrate.*® The interface con-

451.J. Fritz, “Role of experimental resolution in measurements of critical layer thickness
for strained-layer epitaxy,” Appl. Phys. Lett. 51, 1080 (1987).

46See, e.g., H. Brooks, “Theory of internal boundaries,” in Metal Interfaces (American
Society of Metals, 1952), pp. 20-64; W.A. Jesser, “On the extension of Frank’s formula to
crystals with different lattice parameters,” Phys. Stat. Sol. A20, 63 (1973); G.H. Olsen
and R.T. Smith, “Misorientation and tetragonal distortion in heteroepitaxial vapor-
grown III-V structures,” Phys. Stat. Sol. A31, 739 (1975); R. Du and C.P. Flynn,
“Asymmetric coherent tilt boundaries formed by molecular beam epitaxy,” J. Phys.
C2, 1335 (1990); and J.E. Ayers, S.K. Ghandhi, and L.J. Schowalter, “Crystallographic
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Figure 5.21: Untilted (left) and tilted (right) epitaxy.

tains, instead of “misfit” dislocations with Burgers vectors parallel to
the interface, “tilting” dislocations with Burgers vectors perpendicu-
lar to the interface, and forms what is known as an asymmetric tilt
boundary.*” Consider the one-dimensional boundary shown in Fig-
ure 5.21, containing a linear array of such tilting dislocations. Show
that the parallel strain in the epitaxial layer decreases with tilt angle,
8, according to
1-f

e=1-— s
cosf

(5.50)
where f is the misfit between the epitaxial layer and the substrate.
Then show that the dislocation density increases with tilt angle ac-
cording to

P 0/beag. 1 (5.51)

where beqg, | is the magnitude of the edge component of the Burgers
vector perpendicular to the interface.

Finally, calculate and compare the dislocation density dependence of
the coherency strain and dislocation array energies, and deduce the
“critical layer thickness” associated with strain relaxation by tilting
dislocations. Is the critical layer thickness greater than or less than
that associated with strain relaxation by misfit dislocations? Does
the total energy increase or decrease at first for small tilts? All other
things equal, which is more likely — strain relaxation by tilting or
misfit dislocations?

2. A second alternative route to misfit accommodation is through the
introduction of islanding or surface roughness.*®* Consider the two

tilting of heteroepitaxial layers,” submitted to J. Cryst. Growth.

473, Amelinckx and W. Dekeyser, “The structure and properties of grain boundaries,”
in Solid State Physics, Vol. 8, F. Seitz and D. Turnbull, Eds. (Academic Press, New
York, 1959), pp. 325-499.

48D.J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge
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Figure 5.22: Uncorrugated (left) and corrugated (right) epitaxial strained layers.

structures in Figure 5.22, the left composed of a planar strained layer
of thickness h, the right composed of a strained layer which has de-
veloped a one-dimensional sinusoidal corrugation Asin(2mwz/A).

Suppose, due to lateral relaxation, that the strain in the corrugated
(dotted) part of the strained layer is reduced to zero.® What is the
total coherency energy, ucon, associated with the entire strained layer?
Suppose that the surface energy per unit area of the strained layer is ~.
What is the surface energy, ugy,f, due to the corrugation? How does
the total energy, ucon+Usurf, depend on A and A? For what values of A
does it decrease with increasing A, and hence for what wavelengths is
the surface unstable to roughening.’® Are corrugations more or less
likely in high or low surface energy systems? How might a surface
that lowers the surface energy make corrugations less likely?°!

3. Even in relaxed films there may be a thermodynamic driving force for
surface roughening. Qualitatively, how does the equilibrium energy

on Si (100),” Phys. Rev. Lett. 64, 1943 (1990); S. Guha, A. Madhukar, and K.C. Ra-
jkumar, “Onset of incoherency and defect introduction in the initial stages of molecular
beam epitaxical growth of highly strained In;_,Ga;As on GaAs (100),” Appl. Phys.
Lett. 57, 2110 (1990); and K. Sakamoto, T. Sakamoto, S. Nagao, G. Hashiguchi, K.
Kuniyoshi, and Y. Bando, “Reflection high-energy electron diffraction intensity oscilla-
tions during GezSij_; MBE growth on Si (001) substrates,” Jpn. J. Appl. Phys. 26,
666 (1987).

49This is a very crude assumption; for better assumptions see, e.g., S. Luryi and
E. Suhir, “New approach to the high quality epitaxial growth of lattice-mismatched
materials,” Appl. Phys. Lett. 49, 140 (1986).

50D.J. Srolovitz, “On the stability of surfaces of stressed solids,” Acta Metall. 37, 621
(1989); and C.W. Snyder, B.G. Orr, D. Kessler, and L.M. Sander, “Effect of strain on
surface morphology in highly strained InGaAs films,” Phys. Rev. Lett. 66, 3032 (1991).

51M. Coppel, M.C. Reuter, E. Kaxiras, and R.M. Tromp, “Surfactants in epitaxial
growth,” Phys. Rev. Lett. 63, 632 (1989).
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per unit volume, utot/h, of a misfitting layer depend on the height
of the film, both below and above the critical layer thickness? Just
at the critical layer thickness, can the film reduce its energy by de-
composing into some regions infinitesimally thicker, and other regions
infinitesimally thinner?

Consider a misfit dislocation lying along the y-axis, as illustrated in
Figure 5.23. Its Burgers vector b can be defined either by the pair
of angles A\ and é, or by the pair of angles @ and 3. Show that the
Burgers vector of the dislocation is

cos A sin asin 3
b=b| sinAcosé | =b cos 3 , (5.52)
sin Asin 8 cos asin 3

and that the Peach-Koehler coherency force acting to create unit
length of the dislocation is

Fon = h3- [(B.a—) xz‘]
= boconhcos A = boonhsinasin
= bedg,|Tconh (5.53)

For a 8 = 60° dislocation with, as illustrated in Figures 5.4 and 5.5,
[ = [110] and b = [101]/2, what are the angles a, A, v, and 67

Consider the double quantum well structure shown in Figures 5.24,
in which two strained quantum wells of thicknesses hg, and strains
fstr are spaced apart by an unstrained layer of thickness hgp,, and
capped by an unstrained layer of thickness hcap. Given hgir and fogr,
what must hca, be in order for the structure to be stable with re-
spect to misfit dislocation formation at a depth z = z;?7 What must
hspa be in order for the structure to be stable with respect to misfit
dislocation formation at a depth z = 2,7 Derive expressions for the
time-evolution of the single-kink excess stresses at z; and 2, during
growth of the structure.
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6. Suppose one considers two types of dislocations, misfit dislocations ly-
ing in the epilayer/substrate interface, with density pnq, and disloca-
tion segments threading upward to the epilayer surface, with density
n¢q. The units of pyq and nyq are cm™! and cm~2, respectively. Sup-
pose that misfit dislocations are created exclusively by lateral bending
of threading segments at velocity v; that threading segments are cre-
ated exclusively by half-loop nucleation at the free surface at a rate

l
%
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v e
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Figure 5.23: Angles commonly used to define misfit dislocations and their Burg-
ers vectors. For convenience, the dislocation line, [, is taken to be oriented along
the y-axis. Left: A is the angle between (a) the Burgers vector and (b) the di-
rection that is both normal to the dislocation line and within the plane of the
interface; 6 is the angle between (a) the dislocation line and (b) the projection of
the Burgers vector onto the plane containing the dislocation that is perpendicular
to the plane of the interface. Right: 3 is the angle between (a) the Burgers vector
and (b) the dislocation line; « is the angle between (a) the slip plane containing
both b and [ and (b) the perpendicular to the plane of the interface; and v is the
angle between (a) the slip plane containing both b and I and (b) the plane of the
interface.
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Figure 5.24: A generic strained double quantum-well heterostructure.

j; that threading segments are pinned with probability n by inter-
actions with misfit dislocations; and that multiplication of threading
segments by interactions with misfit dislocations is negligible. Show
that

/)md =  UNid
Ntd = J — NVNtdPmd (5.54)

are a set of coupled first-order differential equations for the time evo-
lution of the two kinds of dislocation densities.>?

7. Suppose again that the nucleation rate of dislocation half-loops is j

52R. Hull, J.C. Bean, and C. Buescher, “A phenomenological description of strain
relaxation in GezSij—z/Si(100) heterostructures,” J. Appl. Phys. 66, 5837 (1989).
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and that the velocity at which they propagate to form misfit disloca-
tions is v. Suppose the maximum dislocation propagation length is
I, due to pinning by lithographically fabricated boundaries.®®* Show
that the misfit dislocation creation rate in the low velocity limit is
pmd = vjt. What is the misfit dislocation creation rate in the high
velocity limit? Does this rate increase or decrease with a decrease in
the spatial scale of the lithographic patterning?

S3E.A. Fitzgerald, G.P. Watson, R.E. Proano, D.G. Ast, P.D. Kirchner, G.D. Pettit,
and J.M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at
mismatched interfaces by reduction in growth area,” J. Appl. Phys. 65, 2220 (1989).
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Part 111

Surface Morphology and
Composition

In Part I, we described phase transformations from vapors to bulk crys-
tals, and in Part II, we described phase transformations from vapors to
thin epitaxial films. In both parts, we were primarily interested in the
properties of starting and ending states, so as to understand the thermody-
namic competition between different possible transformations. Ultimately,
though, all these transformations are mediated by kinetic processes, many
of which occur on the surface. Therefore, the paths along which various
transformations occur can depend crucially on the properties of the surface.

In this part, we discuss the equilibrium and nonequilibrium properties of
surfaces. Two of the properties most important to MBE are the morphology
and composition of surfaces. In principle, these two aspects of surfaces may
be coupled in a complex, interdependent way. In this book, however, we
neglect these interdependencies. We start, in Chapter 6, by treating surface
morphology assuming that surface composition is unimportant. Then, in
Chapter 7, we treat surface composition assuming that surface morphology
is unimportant.
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Chapter 6

Surface Morphology

We start, in this chapter, by treating surface morphology. At the outset,
it is important to distinguish between two aspects of surface morphology:
structure, the crystallography of defect-free surfaces, and microstructure,
the distribution of point and line defects that interrupt that perfect crystal-
lography. In this chapter we will be mainly concerned with microstructure
and, to a much lesser extent, structure.

It is also important to distinguish between two kinds of surfaces: high-
symmetry singular surfaces, at whose orientations surface free energies are
cusped and have discontinuous first derivatives; and vicinal surfaces miscut
slightly from singular orientations, composed of singular terraces separated
by steps. In this chapter we will be concerned with both of these kinds of
surfaces.

We first ask, in Section 6.1: what are the statistics of defects on singular
and vicinal surfaces in equilibrium with their vapor, i.e., in the absence of
net growth? We will find, not surprisingly, that those statistics depend both
on temperature as well as on the average orientation of the surface. More-
over, those statistics are themselves a major determinant of the orientation
dependences of surface free energies.

We then ask, in Section 6.2: given full knowledge of surface free energies,
what is the equilibrium morphology of crystals, surfaces, and thin films? On
the one hand, in one-material systems, e.g., “homoepitaxial” films of one
material on substrates of the same material, morphology is determined by
the orientation dependence of the surface free energy. On the other hand,
in two-material systems, e.g., for “heteroepitaxial” films of one material
on substrates of a different material, morphology is also determined by
interface and volume free energies.

We finally ask, in Section 6.3: what is the defect microstructure of

201
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Step
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Advacancy
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&2
Adatom
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-~
Advacancy

Figure 6.1: Terraces, ledges, kinks, adatoms, adatom clusters, advacancies, and
advacancy clusters on a Kossel crystal.

surfaces not in equilibrium with their vapor, i.e., in the presence of net
growth? We will find that growth is essentially a competition between
surface defects of various kinds for adatoms arriving from the vapor. This
competition results in a rich and often oscillatory time evolution to the
overall microstructure of the surface.

6.1 Statistics of Adatoms, Kinks, and Steps

Let us start, in this section, by discussing defects on surfaces. Consider
the idealized (001) surface of a cubic elemental crystal. For simplicity,
we suppose it to be “unreconstructed,” in that bonds dangling into free
space do not rehybridize into pairs or higher order atom arrangements.
The important microstructural features of the idealized surface of such a
“Kossel” crystal® are illustrated in Figure 6.1.

At low to medium temperatures, the dominant microstructural features
are terraces, steps and kinks. The terraces can be considered planar defects
in a bulk three-dimensional crystal. Separating terraces of different heights
are ledges, or steps, which are line defects on a two-dimensional surface.
Finally, along these steps there may also be kinks, which are point defects
on one-dimensional steps.

IW. Kossel, Nachr. Ges. Wiss. Gottingen, p. 135 (1927); L.N. Stranski, Z. Phys.
Chem. 136, 259 (1928).
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At higher temperatures, or away from equilibrium, microstructural fea-
tures such as adatoms and advacancies, either isolated or clustered into two-
dimensional islands, become important. We will begin, in Subsection 6.1.1,
by treating adatoms on singular surfaces. Then, in Subsection 6.1.2, we
treat kinks in isolated steps. Finally, in Subsection 6.1.3, we treat interact-
ing steps on vicinal surfaces.

6.1.1 Adatoms on Singular Surfaces

Let us start, in this subsection, by considering adatoms, which we imagine
adding one by one to a flat, singular surface. There are two extreme ways
in which the adatoms can be distributed on this surface. First, they can
cluster together predominantly into a half sheet, as illustrated at the bottom
of Figure 6.2, so as to maximize the number of lateral in-plane bonds and
hence minimize energy. Second, they can distribute randomly, as illustrated
at the top of Figure 6.2, so as to maximize configurational entropy.

To describe qualitatively the competition between these two kinds of
distributions,? consider the number of bonds formed as a new adatom ar-
rives on the surface. The new adatom has four dangling lateral bonds and
one dangling vertical bond, but has also “annihilated” the dangling vertical
bond of the atom underneath it. Therefore, the adatom has associated with
it four “missing” bonds. If each bond has an energy w, then the adatom
has associated with it an energy 4w.

Note, though, that as the adatom coverage, 8, on the surface builds
up, adatoms will occasionally find themselves next to other adatoms. If
the adatoms are distributed randomly, then the sites adjacent to a given
adatom have a probability € of being occupied. Since there are four such
sites, the energy associated with that adatom decreases by 4wf. The energy
per adatom is therefore 4w — 4w, or 4w(1 —6). Altogether, the energy per
surface site is the adatom coverage times the energy per adatom, or

Uadat = 4wO(1 — 6). (6.1)

This energy is exactly that (see Table 3.1 on page 50) associated with a
two-component strictly regular solution in which the two components are
considered to be adatoms and “missing” adatoms. Viewed in this way, the

2See, e.g., K.A. Jackson, “Theory of crystal growth,” in Treatise on Solid State Chem-
istry, Vol. 5, N.B. Hannay, Ed. (Plenum Press, New York, 1975), pp. 233-282; and
D.E. Temkin, “O molekulyarnoi sherokhovatosti granitsy kristall-rasplav (On molecular
roughness of the crystal-melt interface),” in Mekhanizm i kinetika kristallizatsii (Mech-
anism and Kinetics of Crystallization), N.N. Sirota, Ed. (Nauka i Tekhnika, Minsk,
1964), p. 86.
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Figure 6.2: z-T phase diagrams for surface roughening. Above and below each
phase diagram are also shown the normalized molar free energies of the adlayer
phases at kT /w = 2.5 and kT/w = 1.5, their common tangents, and the critical
compositions (open circles) determined by those common tangents.

ideal configurational entropy of mixing per surface site is, by analogy to

Equation 3.24,
Sadat

- =0lné+(1-06)In(1-90). (6.2)
The free energy per surface site, normalized to the bond strength, is then
fadat — Uadat — Tsadat
w w
kT
= 40(1—6‘)+?[01n0+(1—0)ln(1—9)]. (6.3)

This normalized free energy is shown in Figure 6.2 for two different nor-
malized temperatures.
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At low temperatures, the bond energy contribution dominates, and the
free energy curve is basically concave down. Hence, an adlayer having an
average coverage of 1/2 can minimize its free energy by “phase-separating”
into regions having near-zero coverage and other regions having near-unity
coverage. Note that, just as in the discussion of Section 3.1, the # = 0 and
0 = 1 intercepts of the tangents to the free energy curve are the chemical
potentials of the missing adatoms and adatoms, respectively. Therefore,
the two phases can only be in equilibrium on the surface if the chemical
potentials of their two components are equal. In other words, again follow-
ing the discussion of Section 3.1, the “compositions” of the two phases are
determined by the familiar common tangent construction. Physically, the
adlayer minimizes its free energy if most of the adatoms condense into a
smooth sheet having a large number of lateral in-plane bonds, with a few
stray adatoms to increase configurational entropy.

At high temperatures, the entropy contribution dominates, and the free
energy is everywhere concave up. Then, adlayers of any composition are
stable against phase separation into clusters of adatoms and clusters of
missing adatoms. The adatoms are distributed randomly and the surface
appears microscopically “rough.”

The critical temperature separating smooth, phase-separated adlayers
from microscopically rough adlayers is the so-called roughening tempera-
ture. It is essentially the critical temperature above which the miscibility
gap in this two-component solution vanishes. Since the miscibility gap van-
ishes when the free energy curve at § = 0.5 just becomes concave up, the
critical temperature is that temperature at which [82f/86%)p—05 = 0, or
T: adat = 2w/k. Note that the enthalpy of sublimation for this Kossel crys-
tal is the bond energy (w) times the number of bonds per atom (6), divided
by the number of atoms per bond (2). Therefore, Ahg,p, = 3w, and we have

2
Tr,adat ~ §Ahsub- (6'4)

We emphasize that this equation can only give a crude indication of
the actual roughening temperature of real crystal surfaces. Its derivation
neglected, among other things, multilayer roughness, next-nearest-neighbor
and longer-range adatom-adatom interactions, and possible dependences
of adatom energies on cluster sizes due to surface reconstruction effects,
all of which will tend to decrease T} ,qat. Nevertheless, the main idea is
that a critical temperature exists above which the equilibrium surface is
rough. In some cases, though, this temperature may be above the melting
temperature of the crystal, and hence will be unobservable.
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Figure 6.3: A step wandering on the surface of a Kossel crystal due to randomly
distributed kinks.

6.1.2 Kinks in Isolated Steps

In Subsection 6.1.1, we considered adatom “excitations” on a singular sur-
face. In practice, real surfaces nearly always contain steps. If the steps are
far enough apart not to interact, then their energetics are determined by
kink “excitations” along their length. In this subsection, we consider such
kink excitations in isolated steps.

Consider the isolated step shown in Figure 6.3. Along this step there
may be positive or negative kinks that cause the step to wander randomly.3
On the one hand, this kink-induced step wandering is favorable, in that it
increases the entropy of the step. On the other hand, the kinks themselves
are unfavorable, because they cost energy. Indeed, for a simple Kossel crys-
tal, the energy of a single-kink can be calculated, as shown in Fig. 6.4,
to be €xink = w/2, where w is the bond strength. For real crystals, how-
ever, the energy of a single kink may be considerably different, due to the
reconstructed bonds on the surface.

To quantify the statistics of kinks in steps, let us suppose, for simplicity,
that kinks that move steps laterally one lattice unit are much more numer-
ous than those which move steps laterally more than one lattice unit. Note,
though, that this approximation breaks down when kink energies are low
relative to kT (see e.g., Figure 6.5).

If we nevertheless make this approximation, then we are interested in
the probabilities, p;, p— and p,, that an arbitrarily chosen position along
a step contains either plus or minus single kinks, or no kink, respectively.*
Since we have excluded all other possibilities, these must sum to unity:

P+ +P- +po=0. (6.5)

3J. Frenkel, “On the surface motion of particles in crystals and the natural roughness
of crystalline faces,” J. Phys. U.S.S.R. 9, 392 (1945).

4W.K. Burton, N. Cabrera, and F.C. Frank, “The growth of crystals and the equi-
librium structure of their surfaces,” Philos. Trans. R. Soc. London Ser. A 243, 299
(1951).
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Figure 6.4: In moving an atom from position a to position b, two net bonds are
broken, but four kinks are formed. If the bond energy is w, then the energy per
kink is €xjnk = 2'(1)/4 = w/2.

If we also allow for the step to make a nonzero average angle, ¢, with
the underlying lattice, then the difference between the plus and minus kink
probabilities is determined by

P4+ — P— = tan @ = Pext- (6.6)

In a sense, pext defines an “extrinsic” kink probability imposed by the mis-
cut of the step. Then, p;,; = 2p— may be thought of as an “intrinsic” kink
probability. Their sum, pint + Pext = P+ + P—, is the total kink probability.
If we also assume that the kinks do not interact with each other, then the
additional energy of the step due to kinks, per lattice unit along the step,
is the total kink probability, times the kink energy, €. Hence, the total
energy of the step is

Ustep = 6kink(p—+— + P—) + €step) (67)

where €gep is the energy per lattice unit of a straight step without kinks.

Since we have assumed the kinks to be independent of each other, the
configurational entropy associated with the kinks is determined by the num-
ber of ways they may be distinguishably distributed along the length of the
step. Following a simple extension of Equation 3.24 to a three-component
alloy, the ideal entropy of mixing is

SS e
— —%B— =ps lnp+ +p_ lnp— +po lnpo~ (68)

Altogether, the step free energy is fstep = Ustep — T'Sstep, Which we can
rewrite in terms of the extrinsic and intrinsic kink probabilities as
fstep = Estep + 6kink(p-f— + p—)
+ kT[(pext + pint/z) ln(pext + pint/2) + (pint/2) ln(pint/Z)
+ (1 — Pext — pint) 11’1(1 — Pext — Pint )] (69)
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Figure 6.5: Scanning tunneling micrograph of a Si surface misoriented
0.5° from (001) toward [110]. The surface height decreases from upper left to
lower right.” On this surface, alternate single-height steps are referred to as
type SA and SB, and are smooth and rough, respectively, reflecting the relative
energies of kink formation.

%B.S. Swartzentruber, Steps on Si(001): Energetics and Statistical Mechanics (Ph.D
Thesis, U. Wisconsin-Madison, 1992).

For a given extrinsic kink probability, the equilibrium intrinsic kink prob-
ability is that which minimizes fgcp, or

afst(ep
8pint

ekink + KT[(1/2) In(pext + Pint/2) + (1/2) In(pint /2)

- (1/2) ln(l — Pext — pint)]
_— (6.10)



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

6.1. Statistics of Adatoms, Kinks, and Steps 209

Rewriting this in terms of the positive, negative, and missing kink proba-
bilities then gives
p+p- = ple” 2w /KT, (6.11)

Note that this equation reproduces exactly the “quasi-chemical” expression
of Equation 4.44. The reason is that equilibrium between kinks on a step
can be thought of as a balance between forward and backward chemical
reactions, with positive and negative kinks annihilating to form missing
kinks, and missing kinks thermally unbinding to form positive and negative
kinks.

Equations 6.5, 6.6, and 6.11 are sufficient to determine the three equi-
librium kink probabilities, and give, after some algebra,

1—/1— (1 — 4e—2exnk/kT)(1 — tan® ¢)

equ  __
Po = 1 — 4e—¢€xink/kT
pefu — ta;l ¢ + pge—ZEkink/kT + i tan? 1)
equ tand) 2 o —2€k; kT 1 2
P = —— + 4/ p2e2¢kink/kT 4 1 tan® ¢. (6.12)

For the special case of perfectly cut step for which tan ¢ = 0, the energy,
entropy, and free energy of an isolated step simplify to

Ustep = Estep + 26kinkp—
Sste
-—% = 2p_lnp_+(1-2p_)In(1 —2p_)
fstep = Ustep — Tsstep- (613)

These energies, entropies, and free energies, normalized to the energy of
a straight step, are plotted in Figure 6.6 as a function of p_ = p,. For
concreteness, we have assumed that kinks add an additional energy equal
to the energy of the step itself, exink = €step = w/s, as they would in
a Kossel crystal. At all nonzero temperatures, the free energy initially
decreases with increasing p_, due to entropy, and then increases, due to
energy. The kink probabilities at which the free energies minimize are
given by Equations 6.12, which, in the limit tan ¢ = 0, simplify to

1
equ  __
Po T 14 2e—<kink/kT
e—€kink/kT
pr = e o (6.14)

1 + 2e—¢xink/kT "
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Figure 6.6: Dependences of the energy, entropy, and free energy of a step on
the probability of intrinsic kinks. The step is assumed to have no extrinsic kinks,
and a kink is assumed to add an additional energy equal to half the energy of a
straight step. The energies and free energies are normalized to the energy of a
straight step. As the temperature increases, the intrinsic kink probability that
minimizes the free energy of the step increases, and the minimum free energy
decreases.

At a critical temperature, T; gtep, the step free energy vanishes at its
minimum. Above this temperature, steps will form spontaneously on the
surface, and the surface is said to be above its roughening temperature.’
For a Kossel crystal, this critical temperature is T} step = Ahgyb/4.

Note that this temperature is considerably below that given in the pre-
vious subsection by Equation 6.4. Physically, the reason is that, per lattice

5An alternative way of calculating the roughening temperature is to calculate the
temperature at which the free energies of closed step loops vanishes; see, e.g., A. Zangwill,
Physics at Surfaces (Cambridge University Press, Cambridge, 1988), pp. 16-17.
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site, step excitations on terraces are energetically less costly than adatom
and missing adatom excitations. Note also that even this temperature is
only a crude indication of the actual roughening temperature of real crys-
tal surfaces. Its derivation neglected, among other things, the possibility
that kinks may move steps laterally more than one lattice unit, and the
solid-on-solid constraint that prevents steps from crossing each other.

More advanced treatments take both of these effects into account, and
are based on an analogy between noncrossing wandering steps on a surface
and 1D spinless fermion gases,® where the Pauli principle automatically
prohibits crossing.” These treatments also borrow heavily from studies
of domain walls in 2D commensurate adsorbate phases,® which are also
analogous to 1D spinless fermion gases.® The result is that step free energies
approach zero at T} step according to!'®

fstep ~ e—c/ v lT_Trl, (615)

and represent a second-order phase transition from smooth to rough.

6.1.3 Steps on Vicinal Surfaces

In Subsection 6.1.2, we calculated the free energy of an isolated step wan-
dering on a surface. The free energy was decreased below that of a perfectly
straight step due to the configurational entropy associated with the mixing
of positive, negative, and missing kinks. In the absence of step-step inter-
actions, the free energy of a surface depends only on the free energy of the
terraces plus those of the steps. For a surface miscut by an angle 6 away
from the orientation of a singular surface, and hence having a step density
per lattice site of s = tan, the free energy, per lattice site, would then be

fsurf = fterr + fstep tan 0, (6.16)

where fier is the free energy of the singular, unstepped surface, and fsep
is given by Equation 6.13.

In this subsection, we consider the possibility that the steps interact,
and that those interactions give rise to nonlinear dependences of the surface

6C. Jayaprakash, C. Rottman and W.F. Saam, “Simple model for crystal shapes:
step-step interactions and facet edges,” Phys. Rev. B30, 6549 (1984).

7P.G. de Gennes, “Soluble model for fibrous structures with steric constraints,” J.
Chem. Phys. 48, 2257 (1968).

8J.M. Kosterlitz and D.J. Thouless, “Ordering, metastability and phase transitions
in two-dimensional systems,” J. Phys. C6, 1181 (1973).

9H.J. Schulz, B.1. Halperin, and C.L. Henley, “Dislocation interaction in an adsorbate
solid near the commensurate-incommensurate transition,” Phys. Rev. B26, 3797 (1982).

10H.J. Schulz, “Equilibrium shape of crystals,” J. Physique 46, 257 (1985).
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Figure 6.7: Five wandering steps of average spacing l. Two of the steps intersect,
by chance, three times.

free energy on tanf. Consider the array of steps illustrated in Figure 6.7.
On average, they are parallel to each other, but as they wander they oc-
cassionally touch. If we do not allow “overhangs” on the surface, then,
as mentioned above, the steps are not free to cross each other. Each step
is confined by the random wanderings of its immediate neighbors, and its
entropy is reduced.!!

To quantify this entropy reduction, consider again the step intersections
shown in Figure 6.7. On the one hand, if the steps were truly independent,
then each step intersection point would have two equally likely interpreta-
tions: either the steps actually cross, or they bounce back from each other.
On the other hand, if the steps cannot cross, then each step intersection
can have only the second interpretation. Each step intersection, therefore,
has associated with it an entropy decrease of k In 2.

How often, on average, do the steps intersect? Let b? = p,a? + p_a?
be the mean square lateral displacement of the step per lattice unit. Then,
after n lattice units, the step will have wandered laterally on the average
\/nb lattice units. Therefore, we expect a collision whenever y/nb exceeds
the mean spacing between steps, [, or every n = [2/b? lattice units.!2

Altogether, the entropy decrease, per lattice unit, is roughly (1/n)Iln2 =
(b2/1?)In 2. More precise calculations, taking into account the simultaneous

UE E. Gruber and W.W. Mullins, “On the theory of anisotropy of crystal surface
tension,” J. Phys. Chem. Solids 28, 875 (1967); and G.H. Gilmer and J.D. Weeks,
“Statistical properties of steps on crystal surfaces,” J. Chem. Phys. 68, 950 (1978).

12M.E. Fisher and D.S. Fisher, “Wall wandering and the dimensionality dependence
of the commensurate-incommensurate transition,” Phys. Rev. B25, 3192 (1982).
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wandering of all the steps, give an entropy decrease of'3

Asge w2 b%/2  w?b?
—kt—B =% l"{ a2 tan® ¢. (6.17)

The surface free energy is therefore

2 b2
fsurf = fterr + fstep tan ¢ + kT— - tan d), (618)

and contains a cubic dependence on step density.

Suppose, now, that in addition to a short-range repulsion preventing
step-step crossings, there is also longer range repulsion.!* Such a repulsion
might be generated, e.g., by strain fields in the substrate surrounding each
step.!® For simplicity, suppose the repulsion takes the quadratic form

1 1 2A
Atigtep = 4 [(l+:1:)2 LTSl el (

1+2%/1%), (6.19)

where z = £l are, as illustrated in Figure 6.8, the positions of rigid steps
surrounding (and confining) a center, wandering step.

In the presence of this repulsion, the potential energy of the step de-
creases the less it wanders away from x = 0. However, the entropy of the
step also decreases, by Asgep & (72/12)(b%/2?). The actual wandering will
be determined by a balance between the two, or

d(Augtep — TASgtep)  d [2A (1 N 2

2 b2
- =% 12) + kT ] =0. (6.20)

Solving Equation 6.20 then gives the equilibrium alley width within which

the step will wander:
2 2\ 1/4
d= (f- RTb ) l. (6.21)

24 A

13C. Jayaprakash, C. Rottman, and W.F. Saam, “Simple model for crystal shapes:
step-step interactions and facet edges,” Phys. Rev. B30, 6549 (1984); and V.V.
Voronkov, “Free energy of a stepped surface,” in Growth of Crystals, Vol. 15, E.I. Gi-
vargizov and S.A. Grinberg, Eds. (Consultants Bureau, New York, 1988).

140ur treatment follows closely that of N.C. Bartelt, T.L. Einstein, and E.D. Williams,
“The influence of step-step interactions on step wandering,” Surf. Sci. Lett. 240, L591
(1990).

15J.M. Blakely and R.L. Schwoebel, “Capillarity and step interactions on solid sur-
faces,” Surf. Sci. 26, 321 (1971); V.I. Marchenko and A. Ya. Parshin, “Elastic properties
of crystal surfaces,” Sov. Phys. JETP 52, 129 (1980); F.K. Men, W_.E. Packard, and M.B.
Webb, “Si (100) surface under an externally applied stress,” Phys. Rev. Lett. 61, 2469
(1988); and O.L. Alerhand, A.N. Berker, J.D. Joannopoulos, D. Vanderbilt, R.J. Hamers,
and J.E. Demuth, “Finite-temperature phase diagram of vicinal Si(100) surfaces,” Phys.
Rev. Lett. 64, 2406 (1990).
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Figure 6.8: Changes in energy, entropy, and free energy as the width of the
alley (z/a, in units of lattice constants) within which a step is allowed to wander
increases. Both the energy and entropy increase as the width of the alley increases
and approaches the mean step spacing (I/a, in units of lattice constants). The
equilibrium alley width (d/a, in units of lattice constants) is that which minimizes
the free energy. As the ratio between the temperature and the strength of the
interaction between steps (kT'/A) increases, both the equilibrium alley width and
the free energy at that equilibrium alley width increase.
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As illustrated in Figure 6.8, this balance will depend on temperature,
though only weakly, because of the 1/4 power.

Altogether, the change in free energy, per step, due to step-step inter-
actions, is

24 2kTh?
T ) : (6.22)

Afstep = l_2 (1 + 6A

As expected, the free energy change increases with the step-step interaction
strength, A. It also increases with the root-mean-square kink amplitude, b,
since the larger b is, the more “difficult” it is to confine the step.

Finally, we can write the surface free energy, per lattice site, as

fsurf = fterr + (fstep + Afstep) tan 6

24 [72kT6?\
fterr + fstep tan § + F <1 + 6A ) tan® 6. (623)

Note that the first nonlinear term is cubic, rather than quadratic, in step
density. This has consequences, as will be seen in the next section, on the
shape of the equilibrium crystal near the tan # = 0 orientation.

6.2 Equilibrium Morphology

In Section 6.1, we discussed the statistics of adatoms, kinks, and steps.
These statistics are the primary determinants of the orientation depen-
dence of the free energies of vicinal surfaces. In this section, we suppose
that we have been given complete knowledge of surface free energies, and
ask: how do those free energies determine equilibrium morphologies? For
macroscopic crystals of constant volume, we will find, in Subsection 6.2.1,
that the equilibrium shape is determined by the orientation dependence of
the surface free energy through what is known as the Wulff construction.
For “planar” surfaces of constant average orientation, we will find, in Sub-
section 6.2.2, that the equilibrium morphology can be deduced from the
orientation dependence of the surface free energy using a common tangent
construction. Some average orientations will be stable, while others will
tend to break up into combinations of other orientations. Finally, for thin
heteroepitaxial films of one material on substrates of another material, we
will find, in Subsection 6.2.3, that equilibrium morphologies are determined
not only by surface free energies, but by interface and volume free energies
as well.
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6.2.1 Shapes of Crystals: Wulff’s Theorem

We start, in this subsection, by considering a macroscopic crystal of a sin-
gle material whose overall volume is specified. What shape will this crystal
have in equilibrium? We discuss, in turn, three related constructions for
equilibrium crystal shapes. The most basic is known as Wulff’s construc-
tion; from Wulff’s construction may be derived what is known as Herring’s
construction; and from Herring’s construction in turn may be derived what
is known as Andreev’s construction.

Wulff’s Construction

Intuitively, we expect the equilibrium shape of a crystal of constant volume
to be such that those surfaces whose orientations have less energy will have
greater area, while those whose orientations have greater energy will have
lesser area.

For example, consider the rectangular prism illustrated in Figure 6.9,
bounded by rectangular faces of specific surface free energies v, v, and
7.. If the distances of each face from the crystal center are h;, h,, and
h., then the face areas are h,h,, h;h,, and hgh:, and the total surface free
energy is

E = 2yghyh, + 2vyhgh, + 2y hohy. (6.24)

If we require the volume, V = 8h hyh_, to be constant, then we can write
Y=V | vV

FE = —=— + 2v,h;h,. 6.25

ah, T ah, TN (6:25)

To find the distances h, and h, that minimize the energy, we set 0E/0h, =
OFE/0hy = 0, giving

Yehyhz = Yyhoh, = v.hohy = (vzfyy’yz)l/3V2/3 = constant. (6.26)

In other words, the free energies of all the faces of the equilibrium crystal
are equal.

Note also that the areas of the faces are inversely proportional to their
distances from the center of the crystal [e.g., hohy = V/(8h;)]. Therefore,
those distances are in turn proportional to the specific surface free energies:

T % ()
hy hy h, |4 '
In other words, faces of high specific surface free energy lie farther from

the center of the crystal than those of low specific surface free energy, and
therefore have lower relative surface areas.'®

(6.27)

16p, Curie, “Sur la formation des cristaux et sur les constantes capillaires de leurs
différentes faces,” Bull. Soc. Min. de France 8, 145 (1885).
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2h,

2h,

Figure 6.9: Curie’s construction for a rectangular prism of fixed volume but
minimum surface energy.

The generalization of this argument to all convex bodies is known as the
Wulff construction!”: the crystal shape that minimizes total surface free
energy at constant volume is given by the inner envelope of “Wulff” planes
perpendicular to and passing through the radius vectors of the orientation-
dependent molar surface free energy (6, ¢). This construction is illustrated
in two dimensions in Figure 6.10, for a hypothetical (). As can be seen,
this construction places low molar surface free energy orientations nearer to
the center of the crystal, thereby increasing their relative surface areas, and
places higher molar surface free energy orientations farther from the center
of the crystal, thereby decreasing their relative surface areas. Indeed, as
we shall see, orientations with very high molar surface free energies may
by this construction be placed so far from the center of the crystal that
their surface areas vanish entirely, and are no longer represented on the
equilibrium crystal shape.

Herring’s Construction

An equivalent construction, which may be called Herring’s construction,!®

is illustrated in Figure 6.11. One draws spheres passing through the origin
and tangent to the v(6, ¢) plot. The interior envelope of the points on the
spheres diametral to the origin is the equilibrium crystal shape.

To see why, consider the three points labeled O, P, and A on the cir-
cumference of the two-dimensional projection of one such sphere. Point O

17G. Wulff, Z. Kristallogr. Mineral. 34, 449 (1901); H. Hilton, Mathematical Crystal-
lography (Oxford University Press, 1903).

18C. Herring, “Some theorems on the free energies of crystal surfaces,” Phys. Rev. 82,
87 (1951).
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Equilibrium
Crystal

Figure 6.10: Wulff’s construction for a two-dimensional crystal of fixed volume
but minimum surface energy.

is the origin both of the (0, ¢) plot as well as of the equilibrium crystal.
Point A is the point on the (6, ¢) plot that the sphere passes tangentially
through. Point P is the point on the sphere diametral to the origin.

Because OP is a diameter of the sphere, it follows from elementary
geometry that the angle ZOAP is a right angle, and that AP is a Wulff
“plane” perpendicular to the (6, ¢) plot at A. Consequently, P is a possible
point bounding the equilibrium crystal. To see whether it is an actual such
point, we consider two possibilities.

On the one hand, suppose, as illustrated in the left panel of Figure 6.11,
that the (6, ¢) plot passes within the tangent sphere at some other point
B lying between the origin and another point C' on the tangent sphere.
Since, again from elementary geometry, ZOC P must be a right angle, the
plane through C at right angles to OC must pass through P. Hence, the
plane through B at a right angle to OB must intersect the line segment OP
“interior” to the point P, precluding point P from bounding the equilibrium
crystal.

On the other hand, suppose, as illustrated in the right panel of Fig-
ure 6.11, that the (0, $) plot nowhere passes within the tangent sphere.
Then, for every point E on the (6, ¢) plot, there must exist some point
D on the tangent sphere lying between E and the origin. Since, again,
LODP must be a right angle, the plane through D at right angles to OD
must pass through P. Hence, the plane through E at a right angle to OF
must intersect the line through OP “exterior” to the point P, and cannot
preclude point P from bounding the equilibrium crystal.
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7(v)
: 7(19)

Figure 6.11: Herring’s construction for deducing whether orientation A is repre-
sented on the equilibrium crystal shape at P. For the y(6) plot shown on the left,
orientation A is not represented, because the v(6) plot at another orientation B
lies within the tangent circle. For the v(6) plot shown on the right, orientation
A 1is represented, because at every other orientation (e.g., E) the v(6) plot lies
outside the tangent circle.

Altogether, the equilibrium crystal shape is the locus of diametral points
P on all tangent spheres not intersected by other portions of the (6, ¢)
plot. Alternatively, one may find first the locus of diametral points P on all
tangent spheres without regard to intersections with the (8, ¢) plot, and
then take the interior envelope of those points.

Andreev’s Construction

In a sense, Herring’s construction maps points like A in energy-orientation
(8, #,7) space onto points like P in real (z,y, 2) space. In other words, it
tells us where in real space a surface of a particular orientation will appear.
To quantify this mapping, consider the circle shown in Figure 6.12 tangent
to and passing through the v(6) plot at point A. We would like to deduce
the (z, z) coordinates of the point P diametral to point O in terms of v(6)
and v/(6) at point A.

First, let us deduce the = coordinates of point P. Denote the lengths
of the line segments AJ and AP by l; and [y, respectively. Then, the
z-coordinate of the point P is

z = (l1 +12)cos8. (6.28)
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Figure 6.12: Andreev’s construction for deducing the mapping between point A
in energy-orientation space onto point P on the equilibrium crystal in real space.

Now we note that [; is ytan6, and if we let 3 be the angle ZAKO, where
the line through AK is tangent to v(6) at A, then l; is ytan(8 + 0) =
v(tan 8 + tan0)/(1 — tan Btan#). Hence,

tan 3 + tand )

1 —tanBtanf (6.29)

T = ycosf (tan9+

Finally, since tan 8 is the slope of the v(8) plot, we can rewrite it as

O(ycosf)  O(ycosh)/08 —vysinf+ v cosb
d(ysinf)  O(ysinh)/80  ~vycosh+~y'sinf
Inserting this expression for tan 3 into Equation 6.29 then gives, after some
algebra,

tan 3 = (6.30)

9(y/ cos )
d(tanf) -
Second, let us deduce the z-coordinate of point P. By inspection of
Figure 6.12, the z-coordinate is the difference between the lengths of the
line segments OJ and LJ. Since OJ is v/ cosf and LJ is xtan#é, we then
have
¥ ¥ 9(v/ cos )

Y R cosd O(tan 0)

Equations 6.31 and 6.32 are explicit algebraic expressions for the Herring
construction. Note that both are expressed in terms of f = v/ cosé and

z=+v"cosf +ytanfcosf = (6.31)

(6.32)
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= tan#@. The first is the surface free energy per unit area projected onto
a reference surface of orientation § = 0 and the second is the slope of the
misorientation from 6 = 0. In terms of f and s, Equations 6.31 and 6.32
can then be rewritten more conveniently as

_ 9
T 8s
o
2 = f—sa—i. (6.33)

As illustrated in Figures 6.13 and 6.14, the z-coordinate of the surface of
the equilibrium crystal having orientation # = tan~! s is the slope 9f /s,
and the z-coordinate is the intercept of the tangent to f(s) with the s =0
axis. This simple and elegant mapping, originally derived by Andreev,!®
may be called Andreev’s construction.

Note that this mapping of f(s) onto z(z) is essentially a Legendre trans-
formation analogous to those that map energies onto free energies.?° For
example, recall from Chapter 1 that temperature-dependent Helmholtz free
energies can be written as F(T) = U — S(8U/38S), where T = 98U/3S.
Hence, the equilibrium crystal shape may be regarded as a kind of free en-
ergy in which the “extensive” quantity, s, has been replaced by a conjugate
“intensive” quantity, 8f/3s.

Note also that for vicinal surfaces characterized by a terrace and step
structure, s can be regarded as a step density, and 8f/8s can be regarded
as a kind of chemical potential for steps. Viewed in this way, crystals evolve
toward their equilibrium shape because their surfaces represent “open” sys-
tems with respect to interchange of “steps.”

To illustrate the use of this powerful and convenient mapping, consider
the f(s) and corresponding z(z) plots shown in Figures 6.13 and 6.14. In
Figure 6.13, f(s) near s = 0 has been assumed to take the cubic form
derived in Section 6.1.3,

f(s) = a+bs+ds®. (6.34)
Then, the shape of the equilibrium crystal is given by
af 5 z—b\%?
z(x)—f—s£—a—2ds —a—2d< Sd) , (6.35)

where we have used the mapping z = 9f/8s = b + 3ds%?. Hence, the
rounded region of the equilibrium crystal joins the s = 0 facet at z =

19A F. Andreev, “Faceting phase transitions of crystals,” Sov. Phys. JETP 53, 1063
(1982).

20C. Rottman and M. Wortis, “Statistical mechanics of equilibrium crystal shapes:
interfacial phase diagrams and phase transitions,” Phys. Rep. 103, 59 (1984).
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Figure 6.13: Andreev’s construction near an orientation around which the pro-
jected surface free energy per unit area (left) is concave up in tan®, and for
which the tan@ = 0 facet joins the rest of the crystal (right) with a continuous
first derivative.

b with a “critical exponent” of 3/2. Because the misorientation of the
rounded region goes to zero continuously as the facet is approached [2'(z)
is continuous but 2”’(z) is not], the junction can be thought of as a second-
order phase transition.?!

In Figure 6.14, f(s) has been assumed to be concave down except for
cusps at s = 0 and s = £1. Then, the z(z) mapping becomes “reentrant,”
and the s = 0 and s = 1 facets join directly. Because the orientation of the
crystal changes discontinuously [2/(z) is discontinuous], the junction can be
thought of as a first-order phase transition.

6.2.2 Shapes of Surfaces: Facetting

In Subsection 6.2.1, we discussed various constructions and mappings for
deducing the equilibrium shapes of crystals subject to the constraint of
constant volume. Often, however, a different constraint is imposed, that of
constant average surface orientation. In this subsection, we ask: under what
conditions will such a surface be stable, and under what other conditions
will it tend to “facet” into combinations of other orientations? An example
of such facetting is shown in Figure 6.15.

To answer this question it will be convenient to use the quantities in-
troduced in Subsection 6.2.1. These are the surface free energies per unit

21V.L. Pokrovsky and A.L. Talapov, “Ground state, spectrum, and phase diagram of
two-dimensional incommensurate crystals,” Phys. Rev. Lett. 42, 65 (1979).
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Figure 6.14: Andreev’s construction for a crystal with tan@ = 0 and tanf = +1
facets, and between which the projected surface free energy per unit area (left)
is concave down in tané. Then, the tanf = 0 and tan® = +1 facets join (right)
with discontinuous first derivatives.

area projected onto a reference surface of orientation § = 0, f = v/ cos#;
and the slope of the misorientation from # = 0, s = tan §. In terms of these
quantities, we will discuss, in turn, the following questions. First, under
what conditions will a surface be stable against facetting? Second, if a sur-
face is unstable against facetting, what will the misorientations of the new
facetted surfaces be? Third, what is the analogous stability criterion in the
more conventional v(#) representation? Fourth and finally, how can these
ideas be used to generate phase diagrams on which coexistence of surfaces
of differing orientations may be represented?

A Stability Criterion

Let us begin by deriving a criterion for the stability of a surface against
facetting. Consider the surface depicted by the dotted lines in Figure 6.16,
oriented at some angle 6 with respect to the reference surface depicted
by the dashed lines. Suppose that surface breaks up into the hill and
valley structure depicted by the solid lines. If the two new orientations
make angles 6, and 02 with respect to the reference surface, and have areas
projected onto the reference surface of z; and z,, then their projected
vertical heights are h; = x; tan 6, and hy = x, tan ,, respectively.

Under what conditions will the original surface be stable against for-
mation of this hill and valley structure? Since the projected free energy of
the original surface is f(8)(x; + z2), and that of the two new surfaces is
f(61)xy + f(62)x2, the criterion is that there not exist straddling orienta-
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Figure 6.15: Scanning tunneling micrograph of a Si surface cut 6° from
(111) along an azimuth rotated about 10° away from the high symmetry [112]
direction. The scan area is approximately 200 x 300 A. The surface has phase
separated into two facets of different orientations, one containing 7 X 7 recon-
structed terraces separted by straight [112] steps and one rotated azimuthally by
approximately 40° from the [112] direction.®

*J. Wei, X-S Wang, N.C. Bartelt, E.D. Williams, and R.T. Tung, “The precipitation
of kinks on stepped Si(111) surfaces,” J. Chem. Phys. 94, 8384 (1991).

tions 6; and 6, such that

f(8) > f(61)

I Z2

+ f(62)

e _— (6.36)
T+ x9 T + T2

Note that from the relations z; = h;/tan6;, zo = hy/tanf, and
z1 + 2 = (hy + hy)/tané, the fractions of the reference surface that have
the two orientations can be deduced, after some algebra, to be

g _ tanf —tan#,
T1+ 1Ty  tanfs — tané;
tan@ — tan@
_n o _ o landmane (6.37)
T + T2 tanf, — tan 6

These equations are equivalent to a lever rule that determines, given an
average orientation 6, the amounts of two other orientations required for a
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Figure 6.16: Geometry of a surface of average orientation 6 that has facetted
into two surfaces of orientations 6; and 6, relative to a reference surface. The
projected horizontal widths and vertical heights of the two surfaces are 2z;, 2z2,
2hq, and 2h,, respectively.

continuous joining of surfaces. Altogether, the stability criterion is then
f(tan(f) <
tanf — tan 6 tan 6 — tan 6
f(tan6,) (1 _any — rant ) + f(tan#6y) (—an ani ) ,

" tan 0, — tan 6, tanf, — tan 6,
(6.38)

where we consider f to be a function of tan 6 rather than 6. In other words,
a surface of orientation 6 is stable if on an f vs. tan plot, f(tan#) is less
than all lever-rule-weighted sums of f(tan;) and f(tan#,).

The Common Tangent Criterion

Now that we have derived a criterion for stability of a surface against
facetting, let us ask the opposite question. Suppose that the original sur-
face is unstable with respect to breakup? What will be the two straddling
orientations, which can be considered two “phases,” that will coexist sta-
bly in its stead? To answer this question, we imagine making two distinct
concerted variations in the geometries of the two surfaces, and require the
total free energy change to vanish.

First, we imagine varying the projected vertical height of surface 1 by
dhy, while at the same time varying the projected vertical height of surface 2
by dho = —dh,, so that the two surfaces continue to join perfectly. If each
surface is thought of loosely as made up of steps and “missing steps,” then
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this variation can be thought of as moving steps from surface 2 to surface 1,
and at the same time moving missing steps from surface 1 to surface 2.

Since z; and z, are unchanged during this variation, the free energy
changes associated with surfaces 1 and 2 are

o(fizr) _ 0f1 0f1

Oh,  "'9(z,tanf;) Otand; (6:39)
and B fx2) a5 o
2T2) 2 _ 2

8h2 T 8(22 tan 02) - Jtan 02 ’ (640)

where f; and f; are the surface free energies per unit area projected onto
the reference surface. If the sum of these changes is to vanish, then we must

have
oh _ _9f
dtan 6, Otanfy’

In other words, the slopes of the f(tan#) plot at the two orientations 6;
and 6, must be equal.

Second, we imagine varying the projected area of surface 1 by dz;, while
at the same time varying the projected area of surface 2 by dzy = —dz;,
again so that the two surfaces continue to join perfectly. If each surface
is thought of loosely as composed of steps and “missing steps,” then this
variation can be thought of as moving missing steps from surface 1 to
surface 2.

Since h; and h; are unchanged during this variation, the free energy
changes associated with surfaces 1 and 2 are

8(f11:1) _ fl + ( h] ) Bfl

(6.41)

Oz, tan; / d(h,/tanb,)
Oh
= —tanf
fi—tan 1(3tan01>
O(fox2) _ ha 0f2
2 = f,—
Oxo tanf2 / d(h2/tanbs)
Of2
= - tan . 6.42
f2 +tan 2(8tan02) (642)
If the sum of these changes is to vanish, then we must have
of 0fs
— tan@ = f, —tané . 6.43
fi = tanby <8tan01) fa = tanf, (8tan92) (6.43)

In other words, the tan 6 = 0 intercepts of the tangents to the f(tan6) plot
at the two orientations 6, and 6, must be equal.
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Altogether, Equations 6.41 and 6.43 combined tell us that both the
slopes and intercepts of the two tangents must be equal, and so the tan-
gents themselves must coincide. Therefore, the condition for coexistence
of two surfaces of different orientation is that their f(tan6) plots share a
common tangent.?? Another way of viewing the origin of this construction
is to think of the steps as particles. Then, equilibrium between surfaces
of different orientation is analogous to equilibrium with respect to inter-
change of particles, hence equality of chemical potentials.?®> In a sense,
s = tan# is an extensive, rather than an intensive, variable, and can vary
inhomogeneously within an equilibrium system.24

Herring’s Criterion

The common tangent criterion for orientational stability just derived is
a powerful and useful one. It implies that conditions for stability and
coexistence of surface orientations are formally equivalent to the conditions
for stability and coexistence of binary alloy phases. Hence, the arguments
and insights derived from Chapter 3 apply directly.

For example, if the f(tan@) plot is concave up as in the top of Fig-
ure 6.17, then all orientations are stable. If it is concave down, as in the
bottom of Figure 6.17, then only the tan® = 0 and tanf = =1 facets
are stable; all other orientations decompose into a phase mixture of those
facets, in proportions given by the lever rule.

This common tangent criterion in the f(tan6) representation can also
be understood using the more conventional () representation. To see
how, note that the critical shape for the f(tan6) plot dividing these two
extremes of behavior is a straight line:

f(tan8) = A+ Btan§. (6.44)

Note that on a v(6) plot, such straight lines become circles passing through
the origin,
~¥(0) = (cos8) f(tanf) = Acos@ + Bsin¥, (6.45)

with origin at (A/2, B/2) and radius (A/2)? + (B/2)%. Hence, f(tan®)
plots that are concave up correspond to v(8) plots that “bulge” out between
facets less than would a sphere passing through the origin, as in the top
of Figure 6.17, and f(tan®) plots that are concave down correspond to

22A.A. Chernov, “The spiral growth of crystals,” Sov. Phys.-Usp. 4, 116 (1961); and
N. Cabrera, “The equilibrium of crystal surfaces,” Surf. Sci. 2, 320 (1964).

23P. Nozieres, “Surface melting and crystal shape,” J. Phys. 50, 2541 (1989).

24N.C. Bartelt, T.L. Einstein, and C. Rottman, “First-order transitions between sur-
face phases with different step structures,” Phys. Rev. Lett. 66, 961 (1991).
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Figure 6.17: Common tangent criteria for orientational stability. The f(tan ) =
v/ cos 6 plot at top is concave up between tan = 0 and tan § = +1, hence surfaces
whose orientations lie between those angles are stable against facetting into an
inhomogeneous mix of § = 0 and 6 = +m/4 surfaces. The f(tan8) = v/ cos 6 plot
at bottom is concave down between tan® = 0 and tanf = +1, hence surfaces
whose orientations lie between those angles are unstable against facetting into an
inhomogeneous mix of § = 0 and 6 = +n/4 surfaces. The f(tan6) = v/ cos 8 plot
in the middle are straight lines between tan§ = 0 and tan ® = +1, hence surfaces
whose orientations lie between those angles are critically stable against facetting
into an inhomogeneous mix of § = 0 and § = +7/4 surfaces.
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v(6) plots that bulge out between facets more than would a sphere passing
through the origin, as in the bottom of Figure 6.17.25

Now, tangent spheres at orientations that bulge less than spherically
must lie inside the v(6) plot, and hence lie on the equilibrium crystal shape,
while tangent spheres at orientations that bulge more than spherically must
lie outside the () plot, and hence be absent from the equilibrium crystal
shape. As a consequence, we also have Herring’s criterion, originally proved
in a different maner: those orientations are stable that are represented on
the equilibrium crystal shape, and those orientations are unstable that are
not represented on the equilibrium crystal shape.

Temperature-Dependent Phase Equilibria

Let us now illustrate the stability criterion and common tangent construc-
tions just derived with a concrete example. Consider the cubic 2D crystal
shown in Figure 6.18, whose lowest free energy surfaces are (11) and (01)
facets. At low temperatures, we expect the () plot to be deeply cusped
at those orientations, leading to an equilibrium crystal bounded solely by
these facets. As temperature increases, the v(6) plot becomes less and less
cusped. In this case, the (01) facets are shown to roughen first, leading to
an equilibrium crystal bounded by continuously curved surfaces joined to
(11) facets. Then, the (11) facets roughen, leading to an equilibrium crystal
bounded everywhere by continuously curved surfaces.

Another way of looking at the temperature evolution of this system is
to plot, as illustrated in Figure 6.19, f vs tanf and z = f — s(8f/8s)
vs ¢ = 0f/0s diagrams. At low temperatures, the f(tan®) plot is deeply
cusped at tanf = 0 and tanf = +1. Application of the common tangent
construction then leads to the orientational gap shown in the bottom left of
Figure 6.19, and to the first-order facet-facet joining shown in the bottom
right of Figure 6.19. At higher temperatures, the v(8) plot becomes less
and less cusped. As this happens, the orientational gap vanishes, and all
orientations become stable. At the same time, the first-order facet-facet
joining evolves to a second-order joining, and ultimately disappears entirely.

Finally, it is often convenient to plot these orientational gaps (in tan )
and facet-facet phase transition positions (in z = 8f/8s) as temperature-
dependent phase diagrams. The resulting T'(tan #) phase diagram is shown

254(8) plots composed of exactly spherical bulges between facets, as in the middle
of Figure 6.17, are also known as “raspberry” figures; see F.C. Frank, “The geometri-
cal thermodynamics of surfaces,” in W.D. Robertson and N.A. Gjostein, Eds., Metal
Surfaces: Structure, Energetics and Kinetics, Proceedings of a joint seminar of the
American Society for Metals and the Metallurgical Society of AIME, October 27-28,
1962 (American Society for Metals, Metals Park, Ohio, 1963), Chap. 1.
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©
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Figure 6.18: Equilibrium shapes for a hypothetical 2D crystal with both (11)
and (01) facets. As temperature increases (counterclockwise from lower left), the
v(6) plot becomes less and less cusped, and the equilibrium shape becomes less
and less faceted.

in the middle left of Figure 6.19. It maps out the critical values of tan
for which surfaces of a specified average orientation will decompose into
mixtures of orientations. At temperatures below 380 K, only (11) and (01)
facets are stable; all other orientations decompose into lever-rule mixtures
of those orientations. At temperatures above 380 K, orientations near (01)
become stable; all other orientations now decompose into lever-rule mix-
tures of (11) facets and nonsingular orientations near (01). With increasing
temperature above 380 K, orientations farther and farther from (01) become
stable, until at 900 K, even orientations near (11) are stable. Above 900 K,
surfaces of any average orientation will be stable against decomposition into
inhomogeneous mixtures of surfaces of differing orientations.



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

6.2. Equilibrium Morphology 231

T T T T T T T | p— T
25 25} 800 K s
%
o R0 2.0 - -
3)
\ -
ﬁ* 1.5 w18

f(tanv)

o —

[9,] (=]

T

1

I -

[9,] o
1 T

i |

0.0l 1 1 1 1 0.0 ] [ 1 1
T T T T T 1200 1 1 T T T
1200 - - L . a
; Continuously
— Non-Singular —~
\M, 1000 | € . 5 1000 | Curved ]
S soof g B 800 - .
3 n-s (1+1) n-s (1+1) g i
© L _ |
5 800 (' fn-si f(1))n= 5 600
S 400 | | 4 & a0} |(11) (1)) A
g g
o (10) § (11) §(o1) §(11) 0
[ L+ + + +7 4 & 200} (o1) _
2001 "y 1 (01) f(11) }(10)
ou 1 0 1 ] 1
T T T I T
25 251 480 K .
%
o 20 2.0} _
1%
X 15 .
I . N
?:: 1.0 1.0} .
«
-
“os| - 051 i
I !
1 | 1 1 _1 1
00—12 —|1 (I) 1L 2 0.0 -1.0 -05 0.0 05 1.0
tand X

Figure 6.19: Orientational phase diagrams for the hypothetical 2D crystal illus-
trated in Figure 6.18. The left middle diagram shows the mixtures of orientations
that a surface of a specifice average orientation will decompose into. The right
middle diagram shows the horizontal positions at which different facets join on
the equilibrium crystal; solid and dotted lines indicate first- and second-order
phase transitions, respectively. Above and below the diagrams are examples of

the v/ cosf vs tan6 and z = f — s(8f/8s) vs ¢ = 0f /s plots from which these
diagrams were derived.
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The corresponding T'(z) phase diagram is shown in the middle right of
Figure 6.19. It maps out the critical horizontal positions at which different
facets join on the equilibrium crystal. At temperatures below 380 K, (11)
facets join (01) facets in first-order phase transitions. At temperatures
above 380 K, orientations near (01) begin to appear. As a consequence,
(11) facets join continuously curved orientations near (01) in first-order
phase transitions, while the continuously curved orientations near (01) join
(01) facets in second-order phase transitions. With increasing temperature
above 380 K, these alternative orientations near (01) become increasingly
stable, until at 500 K the (01) facets “roughen” and disappear entirely.

Above 500 K, (01) facets are absent from the equilibrium crystal, but
(11) facets are present, and continue to join continuously curved orienta-
tions near (01) in first-order phase transitions. With increasing temperature
above 500 K, though, these continuously curved orientations approach more
and more closely (11) orientations, until at 900 K the (11) facets begin to
join these continuously curved orientations in second-order phase transi-
tions. Finally, at 1000 K, the (11) facet itself “roughens” and disappears
entirely.

6.2.3 Shapes of Thin Films: Growth Modes

Thus far, in Subsections 6.2.1 and 6.2.2, we have been concerned with
single-material systems, e.g., homoepitaxial films of one material on sub-
strates of the same material. Then, the surface free energy and, in par-
ticular, its orientation dependence, plays the most important role in de-
termining the equilibrium morphology. However, for two-material systems,
e.g., heteroepitaxial films of one material on substrates of another material,
interface and volume free energies also play important roles.

In this subsection, we discuss how these energies determine the equi-
librium morphology, or “growth mode,” of the film. We discuss two ap-
proaches in turn. The first approach considers the shape of the thickness-
dependent total free energy. The second approach considers the contact
angles that the film islands make with the substrate, as determined by the
surface and interface energies.

Free Energies

Consider the thickness-dependent total free energy curves shown in Fig-
ure 6.20. Note that these are the total free energies of the system relative

26E.G. Bauer, “Phinomenologische theorie der kristallabscheidung an oberflichen. I
& 11,” Z. Kristallogr. 110, 372, 395 (1958), NASA Technical Translations TT F-11,
888 and 889 (NASA, Washington, D.C., August, 1968).
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Figure 6.20: Thickness dependences of total free energies for the three classical
heteroepitaxial growth modes.

to that of the bare substrate, and include both volume and surface con-
tributions. We assume that there is a nonzero driving force for epitaxy,
and so in each panel the overall trend is for the free energy to decrease
with increasing thickness of the heteroepitaxial layer. We also assume that
fully completed layers, with fully laterally coordinated atoms, have slightly
lower energies than partially completed layers, and so in each panel the free
energies are shown corrugated slightly with a monolayer periodicity.
There are three cases of interest.?” In the top panel of Figure 6.20, the
sum of the free energies associated with the free surface of the epitaxial
film, ve/v, and with the interface between the substrate and the epitaxial
film, 7/, is less than or equal to that associated with the original substrate
surface, vg/y:
Ye/v + Vse < Ys/v+ (646)

Then, the overall free energy decreases faster over the first layer (or two),
before settling down to a steady state slope for thicker films. The overall
shape of the thickness-dependent free energy is then concave up. Therefore,

2"M.H. Grabow and G.H. Gilmer, “Thin film growth modes, wetting and cluster nu-
cleation,” Surf. Sci. 194, 333 (1988).
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for every integral-monolayer thickness, the system is thermodynamically
stable against breakup into inhomogeneous regions, some thicker and some
thinner. This leads to what is known as the ideal Frank-van-der-Merwe
layer-by-layer growth mode.?8

In the bottom panel, the sum of 7./, and v,/ is greater than ,/,:

Ye/v + Ys/e > Ys/v: (647)

Then, the overall free energy increases at first as the first layer (or two)
is deposited, before turning around and decreasing for thicker films. The
overall shape of the thickness-dependent free energy is then concave down.
Systems of uniform thickness are therefore thermodynamically unstable
against breakup into inhomogeneous regions, some very thick and some
completely uncovered. This leads to what is known as the Volmer-Weber
island growth mode.?® It is often observed in “dirty” systems in which im-
purities lower the free energy of the starting surface, but are buried shortly
after heteroepitaxy begins.3°
In the middle panel, the sum of v,,, and /. is, just as in the top panel,
less than ,/y:
Ye/v + Ys/e > Ys/v- (6-48)

Therefore, the surface free energy decreases faster as the first layer (or two)
is deposited. However, because of some constraint that the substrate im-
poses on the epilayer, the energy decreases less steeply as subsequent layers
are deposited. Only for very thick films, when the epilayer decouples from
the substrate, does the energy decrease as steeply as expected for a given
driving force for homoepitaxy. The overall shape of the thickness-dependent
free energy is therefore initially concave up, but then subsequently concave
down. Films thicker than a few layers are therefore unstable to breakup
into inhomogeneous regions, some very thick and some having only one (or
two) layers. This leads to what is known as the Stranski-Krastanov layer
plus island growth mode.3!

28F C. Frank and J.H. van der Merwe, “One-dimensional dislocations. I. Static the-
ory,” Proc. R. Soc. London A198, 205 (1949); F.C. Frank and J.H. van der Merwe, “One-
dimensional dislocations. II. Misfitting monolayers and oriented overgrowth,” Proc. R.
Soc. London A198, 216 (1949); F.C. Frank and J.H. van der Merwe, “One-dimensional
dislocations. III. Influence of the second harmonic term in the potential representation,
on the properties of the model,” Proc. R. Soc. London A200, 125 (1950); and F.C.
Frank and J.H. van der Merwe, “One-dimensional dislocations. IV. Dynamics,” Proc.
R. Soc. London A201, 261 (1950).

29M. Volmer and A. Weber, “Keimbildung in iibersattigten gebilden,” Z. Phys. Chem.
119, 277 (1926).

30B.A. Joyce, “The growth and structure of semiconducting thin films,” Rep. Prog.
Phys. 37, 363 (1974).

311 N. Stranski and L. Krastanow, “Zur theorie der orientierten ausscheidung von
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Figure 6.21: Surface tension forces acting on a heteroepitaxial nucleus on a
substrate.

In practice, the growth mode that often applies to strained-layer het-
eroepitaxy is the Stranski-Krastanov growth mode. Films thinner than the
critical thickness for strain relaxation are strained, and their free energies
do not decrease with increasing thickness as steeply as the free energies of
unstrained films. Films above the critical layer thickness, however, relax,
and their free energies decrease at a rate approaching that for unstrained
homoepitaxy.

Contact Angles

Another way of looking at these three classic growth modes is to consider
the contact angle of a spherical heteroepitaxial cap on the surface.3? If, as
shown in Figure 6.21, the free energies of each interface are considered vec-
tor forces lying within their respective interfaces, then lateral force balance
requires that

Ys/v = Vs/e + Ye/v COS B. (6'49)

The contact angle will therefore be given by

Ys/v — Vs/e

6.50
Ye/v ( )

cos 3 =

If (vs/v — ¥sje)/Yeyv > 1, then there is no contact angle satisfying
Equation 6.50, the cap is unstable, the heteroepitaxial layer wets the sub-
strate, and Frank-van-der-Merwe layer-by-layer growth occurs. If (vs/y —
Ys/e)/Vesv < 1 then there is a finite contact angle satisfying Equation 6.50,
caps having that contact angle are stable, the heteroepitaxial layer does
not wet the substrate, and Volmer-Weber island growth occurs.

ionenkristallen aufeinander,” Ber. Akademie der Wissenschaften und der Literatur,

Mainz. Mathematisch-Naturwissenschaftliche Klasse, 146, 797 (1939).

32R. Kern, G. Le Lay and J.J. Metois, “Basic mechanisms in the early stages of
epitaxy,” in Current Topics in Materials Science, Vol. 3, E. Kaldis, Ed. (North-Holland,
Amsterdam, 1979).
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If (¥s/v = ¥s/e)/Ye/v depends on thickness, then it is possible for the first
few layers to wet the substrate, for subsequent layers to island, and for the
growth mode to be Stanski-Krastanov layer-plus-island. For example, for
an island on a bare substrate, (v5/y — s Je) /e /v may be greater than unity,
so that a wetting epilayer forms. Then, for an island on a wetting epilayer,
(Yw/v — Yw/e)/Ye/vs Where 7,/ is the surface free energy of the wetting
layer and 7y is the interface free energy between the wetting layer and
the epilayer, may be less than unity, so that islands form on the wetting
epilayer.

This can come about in strained heteroepitaxy if the strain and dislo-
cation energies of the epitaxial film are thought of as an effective interface
free energy that is included as part of 4, /e. Then, for very thin (mono-
layer) films, 75/, may be so large that (vs/yv — ¥s/e)/7e/v is greater than
unity and the first epilayer wets the substrate. For very thick, unstrained
films, the free energy of the interface between the first wetting epilayer
and subsequent epilayers (7y/.) would normally vanish, and the surface
free energies of the wetting epilayer (7 /y) and subsequent epilayers (7ve/v)
would be equal. Hence (vw/v —Yw/e)/Ye/v — 1, and islands would be unsta-
ble. For intermediate thickness strained films, however, with a finite 7y e,
(Yw/v = Yw/e)/Ye/v < 1, and islands will be stable.

6.3 Nonequilibrium Morphology

In Section 6.2, we discussed equilibrium shapes of crystals and crystal sur-
faces in the absence of growth. In this section, we discuss nonequilibrium
shapes in the presence of growth. We restrict our attention to homoepitaxy
on simple starting surfaces at or near singular orientations, and composed of
noninteracting arrays of steps. We do not treat the interesting but exceed-
ingly complex cases of epitaxy on starting surfaces well away from singular
orientations or of growth on inhomogeneous, “patterned” starting surfaces
composed of multiple orientations.33 We also do not treat the important
but complex case of heteroepitaxy, in which surface morphology is often
tightly coupled to the transition between coherency and semicoherency (see,
e.g., Exercise 2 in Chapter 5), and in which Stranski-Krastonov layer-plus-
island and Volmer-Weber island growth modes are often observed. Finally,
we also neglect effects due to surface reconstructions in covalently bonded

33W.W. Mullins, “Flattening of a nearly plane solid surface due to capillarity,” J.
Appl. Phys. 30, 77 (1959); W.T. Tsang and A.Y. Cho, “Growth of GaAs-Gaj_,Al:As
over preferentially etched channels by molecular beam epitaxy: a technique for two-
dimensional thin-film definition,” Appl. Phys. Lett. 30, 293 (1977); and E. Kapon, M.C.
Tamargo, and D.M. Hwang, “Molecular beam epitaxy of GaAs/AlGaAs superlattice
heterostructures on nonplanar substrates,” Appl. Phys. Lett. 50, 347 (1987).
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semiconductors,3* or due to the interplay between morphology and compo-
sition that can occur on the surfaces of binary alloys.3®

In modeling nonequilibrium surface morphology, it is useful to distin-
guish between two approaches. In the first approach, surface morphology
is modeled directly. At one extreme, molecular dynamics simulations track
the exact positions {r],72,...} of all atoms as they move in response to
forces between them.3® At the other extreme, continuum models track the
height h of a coarse-grained surface position (z,y). The time evolution of
h(z,y) is determined by various driving (e.g., growth with stochastic noise)
and relaxation (e.g., diffusional) terms.?” In between these two extremes,
Monte Carlo simulations track the column heights n of discrete surface
lattice sites (¢,7). The time evolution of the n(s,j) is determined by the
probabilities of surmounting assumed energy barriers separating various
configurations.3®

In the second approach, surface morphology is not modeled directly.
Instead, the surface is decomposed into defects of various kinds, such as
steps, 2D islands, and adatoms. The time evolution of surface morphology
is then determined by the dynamics of the motion and interactions of these
defects.

In this section, we will take the second approach. Its disadvantage is

34See, e.g., S.A. Barnett and A. Rockett, “Monte Carlo simulations of Si(001) growth
and reconstruction during molecular beam epitaxy,” Surf. Sci. 198, 133 (1988); and H.-
J. Gossman and L.C. Feldman, “Initial stages of silicon molecular-beam epitaxy: effects
of surface reconstruction,” Phys. Rev. B32, 6 (1985).

35A. Madhukar and S.V. Ghaisas, “The nature of molecular beam epitaxial growth
examined via computer simulations,” CRC Critical Reviews in Solid State and Materials
Sciences 14, 1 (1988).

36 M. Schneider, A. Rahman, and I.K. Schuller, “Role of relaxation in epitaxial growth:
a molecular-dynamics study,” Phys. Rev. Lett. 55, 604 (1985); E.T. Gawlinski and J.D.
Gunton, “Molecular-dynamics simulation of molecular-beam epitaxial growth of the sil-
icon (100) surface,” Phys. Rev. B36, 4774 (1987); S. Das Sarma, S.M. Paik, K.E. Khor,
and A. Kobayashi, “Atomistic numerical simulation of epitaxial crystal growth,” J. Vac.
Sci. Technol. B5, 1179 (1987); and D. Srivastava and B.J. Garrison, “Growth mech-
anisms of Si and Ge epitaxial films on the dimer reconstructed Si (100) surface via
molecular dynamics,” J. Vac. Sci. Technol. A8, 3506 (1990).

37M. Kardar, G. Parisi, and Y-C Zhang, “Dynamic scaling of growing interfaces,”
Phys. Rev. Lett. 56, 889 (1986); D.E. Wolf, “Kinetic roughening of vicinal surfaces,”
Phys. Rev. Lett. 67, 1783 (1991); Z.-W. Lai and S. Das Sarma, “Kinetic growth with sur-
face relaxation: continuum versus atomistic models,” Phys. Rev. Lett. 66, 2348 (1991).

38F.F. Abraham and G.H. White, “Computer simulation of vapor deposition on two-
dimensional lattices,” J. Appl. Phys. 41, 1841 (1970); G.H. Gilmer and P. Bennema,
“Simulation of crystal growth with surface diffusion,” J. Appl. Phys. 43, 1347 (1972); S.
Clarke and D.D. Vvedensky, “Origin of reflection high-energy electron-diffraction inten-
sity oscillations during molecular-beam epitaxy: a computational modeling approach,”
Phys. Rev. Lett. 58, 2235 (1987); and P.A. Maksym, “Fast Monte Carlo simulation of
MBE growth,” Semicond. Sci. Technol. 3, 594 (1988).
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that it requires a priort knowledge of the important defect types and the
ways in which they interact, knowledge that is currently far from com-
plete. Its advantage, though, is that it simplifies and brings deeper phys-
ical understanding to a rich statistical behavior. The evolution of surface
morphology is complex and highly nonlinear, often even oscillatory upon
initiation of growth. Indeed, such oscillations, illustrated in Figure 3.14
have been observed by reflection high-energy electron diffraction (RHEED)
and other in situ measurements in a variety of materials, including III-V,3°
IV-IV,40 II-VI*! and I-VII*? compounds, as well as metals*® and high-
T, superconductors.** Similar oscillations have also been observed during

39].J. Harris, B.A. Joyce, and P.J. Dobson, “Oscillations in the surface structure of
Sn-doped GaAs during growth by MBE,” Surf. Sci. 103, L90 (1981); C.E.C. Wood,
“RED intensity oscillations during MBE of GaAs,” Surf. Sci. 108, L441 (1981); J.N.
Eckstein, C. Webb, S.-L. Weng, and K.A. Bertness, “Photoemission oscillations during
epitaxial growth,” Appl. Phys. Lett. 51, 1833 (1987); L.P. Erickson, M.D. Longerbone,
R.C. Youngman, and B.E. Dies, “The observation of oscillations in secondary electron
emission during the growth of GaAs by MBE,” J. Crystal Growth 81, 55 (1987); J.P.
Harbison, D.E. Aspnes, A.A. Studna, L.T. Florez, and M.K. Kelly, “Oscillations in the
optical response of (001) GaAs and AlGaAs surfaces during crystal growth by molecular
beam epitaxy,” Appl. Phys. Lett. 52, 2046 (1988); and J.Y. Tsao, T.M. Brennan, and
B.E. Hammons, “Oscillatory As4 surface reaction rates during molecular beam epitaxy
of AlAs, GaAs and InAs,” J. Crystal Growth 111, 125 (1991).

40T, Sakamoto, N.J. Kawai, T. Nakagawa, K. Ohta, and T. Kojima, “Intensity oscilla-
tions of reflection high-energy electron diffraction during silicon molecular beam epitaxial
growth,” Appl. Phys. Lett. 47, 617 (1985).

411,.A. Kolodziejski, R.L. Gunshor, N. Otsuka, B.P. Gu, Y. Hefetz, and A.V. Nurmikko,
“Use of RHEED oscillations for the growth of 2D magnetic semiconductor superlattices
(MnSe/ZnSe),” J. Cryst. Growth 81, 491 (1987).

42H. Dabringhaus and H.J. Meyer, “Untersuchung der kondensation und verdampfung
von alkalihalogenid-kristallen mit molekularstrahlmethoden. II. Relaxationseffekte auf
der (100)-oberfliche von KCl,” J. Cryst. Growth 16, 31 (1972); and H.J. Meyer and H.
Dabringhaus, “Molecular processes of condensation and evaporation of alkali halides,” in
Current Topics in Materials Science Vol. 1, E. Kaldis, Ed. (North-Holland, Amsterdam,
1978), Chap. 2.

43Y. Namba, R.W. Vook, and S.S. Chao, “Thickness periodicity in the Auger line
shape from epitaxial (111) Cu films,” Surf. Sci. 109, 320 (1981); T. Kaneko, M. Imafuku,
C. Kokubu, R. Yamamoto, and M. Doyama, “The first observation of RHEED intensity
oscillation during the growth of Cu/Mo multi-layered films,” J. Phys. Soc. Jpn. 55, 2903
(1986); S.T. Purcell, B. Heinrich, and A.S. Arrott, “Intensity oscillations for electron
beams reflected during epitaxial growth of metals,” Phys. Rev. B35, 6458 (1987); C.
Koziol, G. Lilienkamp, and E. Bauer, “Intensity oscillations in reflection high-energy
electron diffraction during molecular beam epitaxy of Ni on W (110),” Appl. Phys. Lett.
51, 901 (1987); and D.A. Steigerwald and W.F. Egelhoff, Jr., “Observation of intensity
oscillations in RHEED during the epitaxial growth of Cu and fcc Fe on Cu (100),” Surf.
Sci. 192, L887 (1987).

44T, Terashima, Y. Bando, K. lijima, K. Yamamoto, K. Hirata, K. Hayashi, K. Kami-
gaki, and H. Terauchi, “Reflection high-energy electron diffraction oscillations during
epitaxial growth of high-temperature superconducting oxides,” Phys. Rev. Lett. 65, 2684
(1990).
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Péclet number Growth Regime

L*j/D <« 1 “Diffusional” Step Flow
L?j/D =~ 1 “Convective” Step Flow
L%j/D > 1 2D Nucleation and Growth

L?j/D>1 Statistical Growth

Table 6.1: Magnitudes of Péclet numbers and the corresponding type of growth.

other kinds of crystal growth, such as electrocrystallization*> and gas source
or chemical beam epitaxy.46

To organize our treatment, we consider in the following Subsections the
four regimes of behavior on vicinal (stepped) surfaces indicated in Table 6.1.
These regimes are distinguished by the ratio between the velocity at which
the steps move as they consume adatoms and the velocity at which adatoms
diffuse to the steps. If j is the deposition rate in monolayers per second,
and if L is the average spacing between the steps, then the velocity at
which the steps move is roughly Ustep = JL. If D is the adatom diffusivity,
then the velocity of adatom diffusion to the steps is roughly vaqat = D/L.
The ratio between the velocities is therefore L25/D. This ratio is a kind of
Péclet number, in that it is a dimensionless measure of the relative impor-
tance of convective over diffusional mass flow. Low Péclet numbers imply
high temperatures and a dominance of diffusional mass flow; high Péclet
numbers imply low temperatures and a dominance of convective mass flow.
Another way of understanding the Péclet number is to note that it is also
the ratio between the diffusion time across the terraces, L?/D, and the
adatom arrival time, v, = 1/j. Low ratios imply either low growth rates
or high adatom diffusivities; high ratios imply either high growth rates or
low adatom diffusivities.

6.3.1 Fast Adatoms and “Diffusive” Step Flow

In this subsection, we discuss how surface morphology evolves if Péclet
numbers are much less than unity, so that adatom diffusion to nearby steps
is fast relative both to step flow and to the rate at which adatoms arrive
from the vapor. Then, adatom coverages will be low, adatom-adatom inter-
actions can be neglected, and growth will proceed exclusively by the flow

45V, Bostanov, R. Roussinova, and E. Budevski, “Multinuclear growth of dislocation-
free planes in electrocrystallization,” J. Electrochem. Soc. 119, 1346 (1972).

46W.T. Tsang, T.H. Chiu, J.E. Cunningham, and A. Robertson, “Observations on
intensity oscillations in reflection high-energy electron diffraction during chemical beam
epitaxy,” Appl. Phys. Lett. 50, 1376 (1987).
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Lni1

Xn+1

Figure 6.22: An array of steps at horizontal positions {z,} separated by terraces
of widths {L,}.

of steps across the surface. In other words, adatoms are fast, and it is their
diffusion that mediates step flow.

To understand how the morphology of a surface evolves in this step
flow regime, consider the array of steps illustrated in Figure 6.22. Suppose
adatoms on terrace n have probability p* of attaching at the “up” step n
on the left, and probability p~ = 1 — p* of attaching at the “down” step
n + 1 on the right. If L,, is the width of terrace n in monolayers, then jL,,
adatoms land on that terrace each second, of which p* attach at step n
and p~ attach at step n + 1. Terrace n makes an “up” contribution to the
velocity of step n of jL,pT and a “down” contribution to the velocity of
step n+ 1 of jL,p~. Alternatively, the velocity of step n can be viewed as
containing an “up” contribution from terrace n of jL,p", and a “down”
contribution from step n — 1 of jL,,_;p~. In other words,

p* P
n=vn=jln (=) 4 jLn [—2—). 6.51
’ <p++p“> ’ 1<p++p‘) (651

Since the width of the nth terrace is L,, = £,41 — T, We can also write
+ —_
. P . p
Tp = J(Tnt1 — Tn) (p+—+_p_—) +j(Tn — Tn-1) (m) , (6.52)
which is a set of difference equations for the time evolution of the positions

of the steps in the array.
If the incorporation probabilities are rewritten as

+ 4 + _
p+:(p;p)+(p 2p)
b = (p*;zf)_(p*;p‘)’ (6.53)

then Equation 6.52 can be recast, after some algebra, into the form

Py ] Tn41 — Tp-1 +] P+ - P_ Tn4+l — Tn _ Tp — Tp-—1 .
" 2 pt+p” 2 2

(6.54)
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The first term on the right-hand side of Equation 6.54 is a simple differ-
ence between step positions, while the second term is a difference between
differences. Hence, the continuum equivalent of Equation 6.54 is

. O (pt—p\ &%z
z(n,t) = Ig,ti (m 2’ (6.55)

which is a single differential equation for the evolution of the step positions.
An identical equation may be derived for the evolution of the terrace widths
by inserting Equation 6.51 into L, = 41 — Ty

. 8L [(pt—p )\ 8L
L(n,t) = ]8—TL + 7 (W) W (656)

The first derivative terms in both of these equations give rise to wave
behavior such that, for a fixed horizontal coordinate x, the step index n
decreases as time increases. In particular, as steps move to the right during
growth, the indices of the steps seen by a stationary observer decrease as
on/dt = —j.

The second derivative terms in both of these equations are dispersion
terms that tend to either damp or amplify fluctuations. Suppose, e.g., a
surface at time ¢ = 0 is composed of terraces having average widths of
Layvg, but with an additional small sinusoidal variation of amplitude AL
over step index changes of ny, i.e., L(n) = Layg + ALsin(n/ny). Then, its
time evolution can be shown (see Exercise 8) to be given by

it
L(n,t) = Layg + ALsin 2 (u) et/ (6.57)

ny

where the rate at which the sinusoidal variation decays is*”

1 (2 2 + _ 6.58
TD—J<m) (P*-p7). (6.58)
The decay rate depends inversely on the square of the wavelength of the
perturbation. As a consequence, growth will tend to smoothen short-
wavelength perturbations sooner than long-wavelength ones, and very long-
wavelength perturbations will tend to smoothen exceedingly slowly.*®

47R.L. Schwoebel, “Step motion on crystal surfaces. 1I,” J. Appl. Phys. 40, 614
(1969); and T. Fukui, H. Saito, and Y. Tokura, “Superlattice structure observation
for (AlAs), /,(GaAs), /o grown on (001) vicinal GaAs substrates,” Japan. J. Appl. Phys.
27, L1320 (1988).

48H.-J. Gossman, F.W. Sinden, and L.C. Feldman, “Evolution of terrace size distribu-
tions during thin-film growth by step-mediated epitaxy,” J. Appl. Phys. 67, 745 (1990).
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Note that it is the anisotropy between the up and down step incorpo-
ration probabilities that determines whether the perturbation will grow or
shrink. If p* > p~, then the perturbation decays; if p* < p~, then the
perturbation grows. This can be understood by inspection of Figure 6.22.
If L, is at some instant wider than its neighbors, then if adatoms on that
terrace preferentially attach at the “up” step, L, will decrease and the per-
turbation will decay, while if they preferentially attach at the “down” step,
L, will increase and the perturbation will grow.

Note that although Equation 6.56 describes a wave moving backward in
step index with increasing time, the horizontal position £ & Layg(n + jt) of
a given step index itself moves forward with time as steps flow to the right.
Hence, Equation 6.57 can be rewritten approximately as

L(z,t) = Lavg + ALsin2w ( ) e~t/o, (6.59)

avgTiA

In real space, terrace width perturbations propagate nearly vertically, even
though the steps themselves propagate horizontally to the right. This be-
havior is illustrated in Figure 6.23, which shows the evolution of an array
of steps having an initial Gaussian perturbation centered at x,, = 80.

Finally, we note that, in deriving Equation 6.56, adatoms were assumed
to attach only at adjacent steps. If, instead, adatoms cross adjacent steps
and ultimately attach at more distant steps, then higher order derivatives
appear in Equations 6.55 and 6.56 that can cause perturbations to propa-
gate to the right.4®

6.3.2 Slow Adatoms and “Convective” Step Flow

In Subsection 6.3.1, we discussed how surface morphology evolves if Péclet
numbers are much less than unity, so that adatom diffusion to nearby steps
is fast. In this subsection, we discuss how surface morphology evolves if
Péclet numbers are on the order of unity, so that adatom diffusion to nearby
steps is comparable to the step flow velocity. Then, as we shall see, adatom
annihilation occurs not only by adatom diffusion to steps, but by step flow
over adatoms. As a consequence, there can arise an oscillatory interplay be-
tween accumulation of adatoms between the steps, and sweeping of adatoms
by step flow.

To quantify this, consider the equi-spaced array of steps illustrated in
Figure 6.24, with a space and time-dependent adatom coverage 6(x,t). On
the terrace bounded by steps at x, and xR, the coverage increases with time

495 A. Chalmers, J.Y. Tsao, and A.C. Gossard, “Lateral motion of terrace width
distributions during step-flow growth,” Appl. Phys. Lett. 61, 645 (1992).
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Figure 6.23: Snapshots in time of the terrace widths, L,(t), heights, hn(t) and
lateral positions, x,(t), of an array of steps after successive monolayers have been
deposited. The terraces are on average five lattice parameters wide, but with an
initial Gaussian bunching centered at z, =~ 80. Bottom: The heights h, of the
steps are constant, but their lateral positions =, increase with time as the steps
flow to the right. Top: Even though the steps flow to the right, the perturbation
in the terrace widths propagates vertically up. For clarity, the terrace widths L,
are shown offset by successive monolayers t/7ur,.

due to deposition at a rate j, and the spatial distribution of the coverage
broadens in time due to diffusion at a rate D9%6/9zx?. If evaporation back
into the vapor is negligible, then the coverage evolves according to®°
. } 9%0
O(z,t) =37+ Daxz. (6.60)
At the left step edge, the rate at which adatoms attach will be pro-
portional to the adatom coverage, k} 6(xy,t), where kJ;, is a kinetic rate
constant for successful adatom attachment at an up step. If adatoms can
also detach from steps, then there will be a competing rate, k:et, where
k:et is a kinetic rate constant for successful adatom detachment from an
up step.
The difference between these two rates must be exactly balanced by the
diffusive flow of adatoms into the step, D[80/0z],, . Hence, we have at the
left step

o0
kf0(zr,t) — kF, =D[—] . (6.61)
t ox |,

SOW.K. Burton, N. Cabrera, and F.C. Frank, “The growth of crystals and the equilib-
rium structure of their surfaces,” Philos. Trans. R. Soc. London Ser. A243, 299 (1951).
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Xy Xg

Figure 6.24: Steady-state adatom coverages on an equi-spaced array of “fast”
steps.

Using similar reasoning, we also have at the right step

ko 0(xr,t) — k3, =—D [?] , (6.62)
3 P
where k,;; and kj_, are kinetic rate constants for successful adatom attach-
ment and detachment from the down step. These two boundary conditions
determine, along with Equation 6.60, the time evolution of the adatom
coverage.5!

Note, however, that these boundary conditions are complicated by the
fact that, as adatoms attach at the steps, the steps themselves move, so that
the positions in space at which the boundary conditions must be applied
also move. Since the velocities at which the steps move is determined by
the sum of the attachment rates of adatoms coming from the left and the
right of each step, we have

u(t) = [k:zte(-'L'L’ t) — k;-et] + [kae (2R, t) — Ket]
a6 a6
D|— -D|— . 6.63
[ax] [8:5] ( )
Ty IR
To remove this complication, it is convenient to transform into a coor-
dinate system, '’ = = + f vdt, that itself moves with the steps. Then, the

boundary conditions given by Equations 6.61 and 6.62 may be applied at
fixed zf, and xf, but the differential Equation 6.60 becomes

. 5%0 a6
! — A - .
0(z',t)y =13 +D8m’2 +vax,.

The equation now contains both a “diffusive” term, D8%0/8z'%, as well as
a “convective” term, v90/8z’, due to the motion of the step.52

(6.64)

51R. Ghez and S.S. Iyer, “The kinetics of fast steps on crystal surfaces and its appli-
cation to the molecular beam epitaxy of silicon,” IBM J. Res. Develop. 32, 804 (1988).

52K. Voigtlander, H. Risken, and E. Kasper, “Modified growth theory for high su-
persaturation,” Appl. Phys. A39, 31 (1986); and V. Fuenzalida and I. Eisele, “High
supersaturation layer-by-layer growth: application to Si MBE,” J. Crystal Growth 74,
597 (1986).
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For simplicity, let us now assume that adatom detachment from steps
is negligible, so that k;ret = kj,, = 0. Let us also assume that the local
attachment rates are extremely fast, so that k}, — oo and k3, — oo.
Then, the boundary conditions given by Equations 6.61 and 6.62 simplify
to

6(zy) = 0(zR) = 0, (6.65)

and the step velocity becomes
o0 o0
U(t) =D [3—1'7] " - D [%] " . (666)

Equations 6.64, 6.65 and 6.66 together form a simplified set of equations
for the time evolution of the adatom coverage in a reference frame moving
at velocity v(t).

The behavior of this set of equations is illustrated in Figure 6.25, which
shows numerical simulations of the adatom coverage and step velocity at
various times after the onset of growth. It can be seen that the step velocity
oscillates in time during growth. The reason is that the adatom coverage
initially builds up preferentially in the middle of the terrace, so the step
moves slowly. As the step approaches the high-coverage region of the ter-
race, it accelerates and consumes the adatoms. Then, after most of the
adatoms have been consumed, the step slows and the cycle continues.??

Also shown in Figure 6.25 is the time evolution of a simple measure of the

smoothness of the terrace, I = (1 —20,,4)?%, where 0,,; = f;,“ 6(z',t)dz' /L.
L
This quantity is that which would be measured in a kinematic surface

diffraction experiment under conditions for which diffraction from the un-
covered terrace (1—6,yg) is out of phase with that from the adatoms (favg):

I =[(1 = Oavg) — (Bavg))® = (1 — 20avg)%. (6.67)

The terrace smoothness also oscillates in time during growth, as the steps
alternately accelerate and decelerate through high and low adatom coverage
regions.

Ultimately, the oscillations damp out, and the adatom coverage ap-
proaches a steady-state distribution given by

1 _e—z'Lj/D g

4 —_—e,— — —
f(z',t — o0) = [~ o-L%i/D "L

(6.68)

This distribution is illustrated in the left half of Figure 6.26 for various
values of the Péclet number, L2j/D.

53G.S. Petrich, P.R. Pukite, A.M. Wowchak, G.J. Whaley, P.I. Cohen, and A.S. Arrott,
“On the origin of RHEED intensity oscillations,” J. Cryst. Growth 95, 23 (1989).
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Figure 6.25: Non-steady-state adatom coverage (left), step velocity (middle),
and terrace smoothness (right) during oscillatory flow of an equi-spaced array
of “fast” steps. The adatom coverages are shown as snapshots taken every 0.25
monolayer.

For Péclet numbers less than unity, the step velocity is low relative
to the adatom diffusive velocity. The adatom distribution becomes nearly
symmetric, and approaches

(6.69)

B(a’,t — o00) = [1 - M] L

L2 8D’

However, as the Péclet number increases beyond unity, the step velocity
increases relative to the adatom diffusive velocity. The adatom distribution
becomes more and more skewed, due to “pile-up” in front of the moving
step.

The steady-state average adatom coverage on each terrace is

.
o) = [y
Ty
1+ (e—L2J'/D - 1) D/(L?%g)
1—e-L%/D
1\ 1+e L/ p
- (5) 1-—eL5/D ~ L2

N | =

(6.70)
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Figure 6.26: Left: Steady-state adatom coverages on an array of “fast” steps for
various values of L?j/D, the Péclet number. Right: Dependence of steady-state
average terrace smoothness on the Péclet number.

The steady-state kinematic surface diffraction intensity corresponding to
this average coverage is shown in the right half of Figure 6.26 as a function of
the Péclet number. As can be seen, it decreases quickly as the step velocity
increases relative to the adatom diffusivity, and hence as the average adatom
coverage builds up on each terrace.5*

6.3.3 2D Cluster Nucleation, Growth and Coalescence

In Subsection 6.3.2, we discussed how surface morphology evolves if Péclet
numbers are on the order of unity, so that adatom diffusion to nearby steps
is comparable to the step flow velocity. In this subsection, we discuss how
surface morphology evolves if Péclet numbers are greater than unity, so
that adatom diffusion to nearby steps is slow relative both to step flow
and to the rate at which adatoms arrive from the vapor. Then, adatoms
accumulate and interact on the terraces between the steps, and ultimately
form 2D clusters.

If the clusters are transient, in that they break apart faster than they
grow, then their main consequence will be to impede adatom diffusion.
Adatoms diffusing toward steps will occasionally meet and merge with a

54 H. Neave, P.J. Dobson, B.A. Joyce, and J. Zhang, “Reflection high-energy electron
diffraction oscillations from vicinal surface — a new approach to surface diffusion measure-
ments,” Appl. Phys. Lett. 47, 100 (1985); and T. Nishinaga and K-I Cho,“Theoretical
study of mode transition between 2d-nucleation and step flow in MBE growth of GaAs,”
Japan. J. Appl. Phys. 27, L12 (1988).
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cluster or another adatom. Assuming the cluster itself is relatively im-
mobile, the adatom will be unable to continue its journey until it breaks
free from the cluster. Then, the effective adatom diffusivity decreases with
increasing adatom coverage,? so that step flow becomes less and less “dif-
fusive” and more and more “convective.”

If the clusters are permanent, in that they form stable growing nuclei,
then the kinetics of growth are altered drastically. In a sense, the clusters
take on a life of their own. Their boundaries represent “extrinsic” steps that
compete for adatoms with the intrinsic steps always present on a vicinal
surface. As a consequence, the clusters grow and ultimately coalesce, often
in a complex, oscillatory way.

To understand why, consider epitaxy on a singular surface, or on a
vicinal surface whose terraces are very wide compared to the spacing of
the clusters. Enumerate the layers by n = 0,1,2,..., where n = 0 is the
initially completely occupied substrate surface layer, n = 1 is the first,
initially completely unoccupied epilayer, and so on. Associate with each
of these layers three coverages: a,, the total coverage of mobile adatoms
created by impingement from the vapor; 7n,, the total coverage of nuclei
centers created by interaction between mobile adatoms; and 8,,, the total
coverage of immobile atoms permanently incorporated into clusters. These
coverages are represented in Figure 6.27 by the open circles, filled squares,
and open squares, respectively.

Mobile Adatoms

For simplicity, assume that mobile adatoms are created exclusively by im-
pingement from the vapor (rather than by detachment from clusters). Then,
the rate at which the mobile adatom coverage in layer n increases is equal
to the flux times the exposed coverage of layer n — 1, or (6,1 — 6,)/TML.

Once mobile adatoms in layer n are created, they may diffuse to and
attach at the edges of both layer n — 1 and layer n clusters. The rates at
which they do so will be proportional to the product of the mobile adatom
coverage (ay,), the coverage of layer n — 1 and layer n nuclei centers (7,1
and 7,,), and the capture numbers, or efficiencies, associated with those
nuclei. These capture numbers are essentially the geometric cross sections
that the clusters present to diffusing adatoms, and have been the subject of
considerable study.®® Here, we take them to be constant. The rate at which

55 A.K. Myers-Beaghton and D.D. Vvedensky, “Nonlinear equation for diffusion and
adatom interactions during epitaxial growth on vicinal surfaces,” Phys. Rev. B42, 5544
(1990).

56G. Zinsmeister, “Theory of thin film condensation. Part D: Influence of a variable
collision factor,” Thin Solid Films 7, 51 (1971); J.A. Venables, “Rate equation ap-
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Figure 6.27: Adatom arrival, diffusion and attachment at step edges, accom-
panied by cluster nucleation, growth, and coalescence. The open circles on the
surface represent mobile adatoms; the filled squares represent nuclei centers; and
the open squares represent immobile atoms permanently incorporated into clus-
ters.

adatoms in level n are captured by clusters in level n—1 is then k_;; annn—1,
where k_;, is the kinetic rate constant for attachment at “down” steps; and
the rate at which they are captured by clusters in level n is kJ,a,n,, where
k. is the kinetic rate constant for attachment at “up” steps.

At the same time, mobile adatoms in layer n may also hop over steps
into layers n — 1 and n + 1, while mobile adatoms in layers n — 1 and
n + 1 may hop over steps into layer n. Here, we assume these adatom
exchange rates to be proportional to the mobile adatom coverage in the
layer the adatoms are jumping from and the exposed coverage of the layer
the adatoms are jumping to. Hence, the exchange rate out of layer n is
k:xchan(ﬁn — 0nt1) + kg @n(fn_2 — 0,_1), and the exchange rate into
layer n is k' 4 an—1(0n-1 — 65) + ko, @nt1(6n—1 — 0), where k} , and
k_ . are the rates of hopping over “up” and “down” steps, respectively.

Altogether, the coverage of mobile adatoms evolves in time approxi-
mately as

Gn = M — Qn (ka_unn—l + k;tnn)
T™L
- k:;(chan(on - 0n+1) - ke_xchan(an—2 - gn—l)
+ k;(cha"—l(oﬂAl - en) + ke_xchan+l(0n_1 - en) (6.71)
It increases due to deposition and to exchange from adjacent layers, but

decreases due to incorporation into growing clusters and to exchange into
adjacent layers.

proaches to thin film nucleation kinetics,” Phil. Mag. 27, 697 (1973); B. Lewis and G.J.
Rees, “Adatom migration, capture and decay among competing nuclei on a substrate,”
Phil. Mag. 29, 1253 (1974); and R. Kariotis and M.G. Lagally, “Rate equation modeling
of epitaxial growth,” Surf. Sci. 216, 557 (1989).
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Immobile Adatoms

As mobile adatoms attach at steps, the coverage of immobile atoms per-
manently incorporated into clusters must increase correspondingly. Since,
as illustrated in Figure 6.27, the coverage of immobile atoms in layer n
depends on the attachment of mobile adatoms in layers n and n + 1, we
can write '

0 =kl Qnin + ki Qnt 170 (6.72)

As in Equation 6.71, k}, and k_,, are kinetic rate constants for attachment
of mobile adatoms at up and down steps, respectively.

Note that in this simple treatment we neglected possible anisotropies
in the shapes of the clusters. Such anisotropies can arise from anisotropic
attachment or diffusion rates, and have been observed during growth of
semiconductors having strong and anisotropic surface reconstructions.®”

Nuclei Centers

Finally, the coverage of nuclei centers itself increases, as mobile adatoms
collide to form 2D clusters, and then decreases as the clusters grow, impinge
on each other, and ultimately coalesce. In general, nucleation is a complex
process by which a distribution of clusters of various sizes evolves in time in
response to kinetic adatom attachment and detachment rates and to highly
nonlinear size and shape dependencies to cluster energetics.’® Nucleation
may also be “heterogeneous,” in the sense of being catalyzed by defects on
the surface.®® In this simple treatment, we assume that two adatoms are
sufficient to form a stable cluster, and that the nucleation rate is propor-
tional to the collision rate between adatoms, kpyca?.

Coalescence of clusters is also a complex process that depends on the
distribution of clusters in both size and space. At one extreme, if the nuclei
centers are distributed randomly in space, then their initial coalescence rate
can be shown to be proportional to both the coverage of cluster centers

57R.J. Hamers, “Nucleation and growth of epitaxial layers on Si(001) and Si(111) sur-
faces by scanning tunneling microscopy,” Ultramicroscopy 31, 10 (1989); J.Y. Tsao, E.
Chason, U. Koehler, and R. Hamers, “Dimer strings, anistropic growth, and persistent
layer-by-layer epitaxy,” Phys. Rev. B40, 11951 (1989); and Y.-W. Mo, B.S. Swartzen-
truber, R. Kariotis, M.B. Webb, and M.G. Lagally, “Growth and equilibrium structures
in the epitaxy of Si on Si (001),” Phys. Rev. Lett. 63, 2393 (1989).

58Gee, e.g., D. Walton, “Nucleation of vapor deposits,” J. Chem. Phys. 37, 2182 (1962);
K.F. Kelton, A.L. Greer, and C.V. Thompson, “Transient nucleation in condensed sys-
tems,” J. Chem. Phys. 79, 6261 (1983).

59 Anti-phase boundaries between equivalent reconstruction domains on the surface
are an example. See, e.g., R.J. Hamers, “Nucleation and growth of epitaxial silicon on
Si(001) and Si(111) surfaces studied by scanning tunneling microscopy,” Ultramicroscopy
31, 10 (1989).
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and the rate of change of the coverage of immobile adatoms incorporated
into the clusters, or 29,0,.5° At the other extreme, if their centers are
distributed equally in space, then the initial coalescence rate will be zero,
increasing sharply when the clusters just begin to impinge on each qther.sl
Here, we assume a coalescence rate between these two extremes: 1,6, /(1 —
6,). This form of the coalescence rate guarantees that the coverage of nuclei
centers decreases smoothly to zero as the coverage of immobile adatoms
incorporated into the clusters approaches unity, or that n,, — 0 as 6, — 1.

Altogether, the coverage of nuclei centers evolves in time approximately
as

in = knuca? — ( T ) b,,. (6.73)
1-6,

Note that in deriving Equation 6.73, we have neglected, for simplicity,
elimination of nuclei centers in the absence of growth. More comprehensive
treatments must allow for such effects, which are due to surface tension.
Small clusters, because of their large perimeter length to cluster area ratio,
are thermodynamically less stable than, and will ultimately “ripen” into,
increasingly larger clusters.52

Numerical Solutions

Equations 6.71, 6.72 and 6.73 form a set of coupled rate equations, three
for each layer, describing the evolution of the coverages of mobile adatoms,
immobile adatoms, and nuclei centers. They may be solved analytically
in some simple limiting cases,®3 but in general require numerical integra-

S0R. Vincent, “A theoretical analysis and computer simulation of the growth of epi-
taxial films,” Proc. Roy. Soc. Lond. A321, 53 (1971); and M.J. Stowell, “Thin film
nucleation kinetics,” Phil. Mag. 26, 361 (1972).

613 A. Venables, “Rate equation approaches to thin film nucleation kinetics,” Phil.
Mag. 27, 697 (1973).

62See, e.g., .M. Lifschitz and V.V. Slyozov, “The kinetics of precipitation from super-
saturated solid solutions,” J. Phys. Chem. Solids 19, 35 (1961); C. Wagner, “Theorie
der alterung von niederschlagen durch umlésen,” Z. Electrochem. 65, 581 (1961); P.W.
Voorhees and M.E. Glicksman, “Solution to the multi-particle diffusion problem with
applications to Ostwald ripening — I. Theory,” Acta Met. 32, 2001 (1984); C.V. Thomp-
son, “Coarsening of particles on a planar substrate: interface energy anisotropy and
application to grain growth in thin films,” Acta Met. 36, 2929 (1988); and H.A. At-
water and C.M. Yang, “Island growth and coarsening in thin films — conservative and
nonconservative systems,” J. Appl. Phys. 67, 6202 (1990).

63See, e.g., A.N. Kolmogoroff, Bull. Acad. Sci. URSS (Cl. Sci. Math. Nat.) 3, 355
(1937); M. Avrami, “Kinetics of phase change I. General theory,” J. Chem. Phys. 7,
1103 (1939); M. Avrami, “Kinetics of phase change II. Transformation-time relations for
random distribution of nuclei,” J. Chem. Phys. 8, 212 (1940); M. Avrami, “Kinetics of
phase change III. Granulation, phase change and microstructure,” J. Chem. Phys. 9,
177 (1941); W.B. Hillig, “A derivation of classical two-dimensional nucleation kinetics
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Figure 6.28: Time evolution, from top to bottom, of mobile adatom coverages
(an), nuclei center coverages (1), immobile adatom coverages coverages (6,),
and overall surface smoothness. The kinetic parameters were all taken to be
20/mmL except k..., which was slightly higher (30/mvL) in the left panels, and
slightly lower (15/7um1) in the right panels.

tion. Two examples of time evolutions deduced by numerical integration
are shown in Figure 6.28.

As growth commences, at t/7y, = 0, the mobile adatom coverage in
layer 1 increases from zero at a rate 1/7uy. At a critical coverage, clusters
in layer 1 begin to nucleate and grow, and as they do so, the mobile adatom
coverage in layer 1 begins to decrease while the immobile atom coverage
in layer 1 begins to increase. Finally, the clusters begin to coalesce, the

and the associated crystal growth laws,” Acta Met. 14, 1868 (1966); and D. Kaschiev,
“Growth kinetics of dislocation-free interfaces and growth mode of thin films,” J. Crystal
Growth 40, 29 (1977).



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

6.3. Nonequilibrium Morphology 253

nuclei center coverage decreases, and the rate at which mobile adatoms
incorporate into permanent clusters also decreases.

In the meantime, as clusters in layer 1 form, mobile adatoms begin to
be created in layer 2. In this way, successive layers are born by a burst of
nucleation and growth of clusters, only to die by being covered by a burst
of nucleation and growth of higher level clusters.®* If these bursts are well
separated in time, then growth is smooth, and successive layers are born
only after previous layers have died. If the bursts overlap in time, then
growth is rough, and successive layers are born even before previous layers
have died.

Also shown is the time evolution of a generalization of Equation 6.67
for the smoothness of the surface,

I= {Z(_l)nﬂ[(an +0,) — (any1 + 0n+1)]} . (6.74)

n=0

Just as that defined by Equation 6.67, this quantity is that which would
be measured in a kinematic surface diffraction experiment under conditions
for which diffraction from adjacent exposed surface layers is out of phase.

In both cases shown in Figure 6.28, the smoothness of the surface oscil-
lates in time with a monolayer periodicity. The strength of the oscillations
is, however, very sensitive to the values of the kinetic parameters. For ex-
ample, they are stronger when adatom attachment is faster at down steps
than at up steps (left side of Figure 6.28), rather than vice-versa (right side
of Figure 6.28). The reason is that if adatoms preferentially attach at down
steps, then the mobile adatom coverage in higher layers will be lower, and
cluster nucleation in these higher layers will tend to be suppressed until the
lower layers are fully complete.

Note that the oscillations predicted by Equations 6.71, 6.72 and 6.73,
even when weak, are relatively persistent. In practice, faster decays are
nearly always observed, and are thought to be due to effects such as a
small amount of step flow (see Figure 6.25) or slight nonuniformities in
growth fluxes arriving at the surface (see Exercise 10).

As a final comment, note that this treatment neglected evaporation
of mobile adatoms back into the vapor. At the low to medium tempera-
tures typical of most MBE growth, this assumption is reasonable. At high
temperatures, however, evaporation can become significant. Then, the os-

645, Stoyanov, “Layer growth of epitaxial films and superlattices,” Surf. Sci. 199,
226 (1988); and P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, and A.S. Arrott,
“Birth-death models of epitaxy I. Diffraction oscillations from low index surfaces,” Surf.
Sci. 216, 222 (1989).
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cillations in surface smoothness and in mobile adatom coverages can also
manifest themselves as oscillations in the growth rate itself.6°

6.3.4 Statistical Roughening

In Subsection 6.3.3, we discussed how surface morphology evolves if Péclet
numbers are greater than unity, so that adatom diffusion to nearby steps
is slow relative to the step flow velocity. In this subsection, we discuss
how surface morphology evolves if Péclet numbers are much greater than
unity, so that the rate at which adatoms diffuse, even to adjacent lattice
sites, becomes slower than the rate at which they arrive from the vapor.
In other words, suppose adatoms “stick” wherever they happen to land.
If they arrive randomly, then they will be uncorrelated in space, and it
is sufficient to know the probability p that any particular column on the
surface will have a height n. If they arrive randomly in time according to
Poisson statistics, then this probability will be
oL

__ Ztot —6ior
p(n) = 1 € . (6.75)

In this equation, 6, is the total coverage of deposited atoms, so that
Yoo op(n) =1 and Y o7 np(n) = bt As illustrated in the left half of
Figure 6.29, the column height probabilities are roughly centered at n =
0:0t, but become more and more dispersed as 6, increases. Ultimately, for
large 6;.t, the asymmetric Poissonian distribution approaches a symmetric
Gaussian distribution.66

If we again generalize Equation 6.67 to calculate the smoothness of the
surface, then we can write

I= [Z(—l)"p(n)] = [Z n;(fte_"“"} =e e (6.76)
n=0 n=0

As illustrated in the right half of Figure 6.29, the surface smoothness de-

creases exponentially with increasing total coverage, at a rate four times

faster than the simple deposition rate.
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66E. Chason and J.Y. Tsao, “Adatoms, strings and epitaxy on singular surfaces,” Surf.
Sci. 234, 361 (1990).
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deposition of various average numbers of monolayers 6;ot.
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Exercises

1. Derive Equation 6.12, the equilibrium probabilities of plus, minus and
missing kinks.

2. Show that angles such as ZOAP in Figure 6.11, with origin on the
circumference of a circle and with legs passing through the ends of a
diameter of the circle, are right angles.

3. Consider the facetted 2D crystal illustrated in Figure 6.30 bounded
by four faces of surface energy =, oriented perpendicular to rays along
0 =0,7/2,7,37/2, and four faces of surface energy <1, oriented per-
pendicular to rays along 8 = w/4,3w/4,57/4,7w/4. Show that the
pyramids that make up this polyhedra obey the “common vertex”
relations

ho
hy

bo/2 4+ b1/V2
bo/V2 + by /2. (6.77)

Using these relations, show that the pyramidal heights of the polyhe-
dron with minimum surface energy, E = 4(v,b, + 71b1), at constant
area, A = 4(h,b,/2+ h1by/2), are proportional to the surface energies
of the bases, v,/ho = v1/h1, in agreement with the Wulff construc-
tion.

4. Derive Equations 6.31 for the relationship between the fractional sur-
face areas, z1/(z1 + x2) and z2/(z; + z2), and the tangents of the
orientation angles of those surfaces, tan §; and tan 6.

5. Suppose f(s) in Equation 6.34 were quadratic rather than cubic.
What would be the shape of the equilibrium crystal near the s = 0
facet?

6. What is the functional form of f(s), where f = v/cosf and s
tan @, for an orientation-independent molar surface free energy ~v(8)
constant? Is it concave up or down?

7. Is there an equilbrium island size for Volmer-Weber island growth, or
will larger islands continuously grow in time at the expense of smaller
islands?
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10.

Figure 6.30: Decomposition of a facetted 2D crystal into pyramids.

. Show that 1/7p in Equation 6.57 is given by Equation 6.58.

. Consider a surface whose layer coverages obey a power law, 6, =

[Btot /(1 + Bror)]™. Show that the total coverage of deposited atoms is
Biot = Y nry On. Justify the equation

n=0

I= I:i(_l)n(on—l - on) (6'78)

for the kinematic surface diffraction intensity in an out-of-phase con-
dition, and use it to calculate the smoothness of this surface. Does it
decrease more or less quickly with 6., than if the layer distribution
were distributed according to Poissonian statistics? What if the layer
coverages were distributed according to Gaussian statistics?

Suppose adatoms arrive at a surface with a nonuniformity of 10%.
How might this cause an “artificial” decay in the amplitude of ob-
served growth oscillations and what would be the decay rate?
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Chapter 7

Surface Composition

In Chapter 6, we discussed the equilibrium and nonequilibrium morphology
of a surface assuming that the composition of the surface was unimportant.
In this chapter, we discuss the equilibrium and nonequilibrium composition
of a surface assuming that the morphology of the surface is unimportant.
In both of these chapters, therefore, we neglect possible interdependencies
between morphology and composition, interdependencies that are clearly
present but thus far poorly understood. For example, we do not discuss,
except casually, the various reconstructions of the surfaces of III/V semi-
conductors, and how they might depend on the ratio between the column
III and column V atom coverages on the surface.! Instead, we discuss those
interesting and important aspects of surface composition that are to first
order independent of surface morphology.

We begin, in Section 7.1, by describing a thermodynamic framework

1AY. Cho, “GaAs epitaxy by a molecular beam method: observations of surface
structure on the (001) face,” J. Appl. Phys. 42, 2074 (1971); J.R. Arthur, “Surface
stoichiometry and structure of GaAs,” Surf. Sci. 43, 449 (1974); M.D. Pashley, K.W.
Haberern, W. Friday, J.M. Woodall, and P.D. Kirchner, “Structure of GaAs (001) (2x4)-
c(2x8) determined by scanning tunneling microscopy,” Phys. Rev. Lett. 60, 2176, (1988);
D.K. Biegelsen, R.D. Bringans, J.E. Northrup, and L.-E. Swartz, “Surface reconstruc-
tions of GaAs (100) observed by scanning tunneling microscopy,” Phys. Rev. B41, 5701
(1990); C. Deparis and J. Massies, “Surface stoichiometry variation associated with
GaAs (001) reconstruction transitions,” J. Cryst. Growth 108, 157 (1991); R. Ludeke,
R.M. King, and E.H.C. Parker, “MBE surface and interface studies,” in E.H.C. Parker,
ed., The Technology and Physics of Molecular Beam Epitary (Plenum Press, New York,
1985), pp. 555-628; H.H. Farrell and C.J. Palmstrgm, “Reflection high energy electron
diffraction characteristic absences in GaAs (100) (2x4)—As: a tool for determining sur-
face stoichiometry,” J. Vac. Sci. Technol. B8, 903 (1990); and J.Y. Tsao, T.M. Brennan,
J.F. Klem, and B.E. Hammons, “Surface-stoichiometry dependence of Asy desorption
and Asy4 ‘reflection’ from GaAs (001),” J. Vac. Sci. Techn. AT, 2138 (1989).
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for understanding surface alloys. For simplicity, we develop the framework
within the approximation that the surface is exactly one monolayer thick.
As a consequence, the framework, like those of other monolayer models,
cannot be used to understand phenomena that depend on surface effects
greater than one monolayer deep.? Nevertheless, the framework is intuitive,
leads to a deep physical understanding of the relationship between bulk and
surface alloy phases, and can be easily used in semi-empirical modeling.

Then, in Section 7.2, we apply the framework to equilibria and nonequi-
libria between vapor and monolayer adsorbate phases, treating the adsor-
bate phase as a surface alloy of adsorbates and “missing” adsorbates. In
doing so, we will derive familiar equilibrium constructs, such as adsorption
isotherms and adsorption isobars, as well as discuss less familiar nonequi-
librium phenomena, such as transient and coverage-dependent adsorption
and desorption.

Finally, in Section 7.3, we will apply the framework to the technologi-
cally important phenomena of segregation and trapping of dopants or other
impurities at surfaces during MBE. This phenomenon is especially complex,
in that it involves equilibria and nonequilibria between vapor, surface, and
bulk crystalline phases.

7.1 Monolayer Thermodynamics

In this section, we discuss the equilibrium thermodynamics of the surface of
a bulk alloy. We begin, in Subsection 7.1.1, by establishing a nomenclature
consistent with that introduced in Chapter 3. We then ask, in the first
half of Subsection 7.1.2: given a composition of the bulk alloy, what is
the composition of the surface alloy that is in equilibrium with that bulk
alloy? In general, the surface and bulk compositions will not be the same in
equilibrium, in that one component of the alloy will tend to segregate to the
surface, displacing the other component back into the bulk. We finally ask,
in the second half of Subsection 7.1.2: given the compositions of the surface
and bulk alloys, what is the free energy required to create new surface at
that composition? This free energy is the surface work (also often called
the surface tension), and is minimum if the surface composition is such that
the surface alloy phase is in equilibrium with the bulk alloy phase.

2See, e.g., J.K. Strohl and T.S. King, “A multicomponent, multilayer model of surface
segregation in alloy catalysts,” J. Catal. 118, 53 (1989).
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7.1.1 Surface Free Energies and Chemical Potentials

Let us begin, in this subsection, by establishing our nomenclature. Con-
sider a binary crystalline alloy phase, 3, containing N, moles (or atoms) of
component a and Np, moles (or atoms) of component b. As in Chapter 3,
we write the molar Gibbs free energy of this bulk phase as
GP
P —— | (7.1)
Na + Nb

where G? is the total Gibbs free energy. Again, as in Chapter 3, the
chemical potentials of the two components a and b in 3 are the intercepts
with the 2 = 0 and = = 1 axes of the tangents to ¢g°:

g

I 599"
a ozP
Bgﬁ
/Lg = gﬁ + (1 - xﬂ) 9P B} (72)

where 2 = N, /(N, + Ny) is the composition of 3.

Consider second a surface of the bulk crystal, o, characterized by NJ
exposed atoms of component a and N exposed atoms of component b.
Associate with the exposed atoms on this surface a Gibbs free energy equal
to the difference between the total Gibbs free energy and the Gibbs free
energy of the nonsurface atoms still in the bulk crystal:

G’(NZ,Ng) = G**Y(NZ,NZ, N8, NF) — GP (NP, Nf). (7.3)

In general, G° depends not only on NJ and V¢, but on N? and NE as
well. Here, we neglect this dependence, and note that such a dependence is
nontrivial to include in a way that self-consistently treats bonding within
the surface layer and bonding between the surface layer and the bulk layers
below.3

Let us therefore consider this surface to be a 2D monolayer phase having
its own thermodynamic properties apart from those of the bulk. In this
way, we can adopt the nomenclature and definitions developed originally
for bulk phases. For example, by analogy to Equation 7.1, the molar Gibbs
free energy of the exposed surface atoms can be defined as

GU
24

g EN" N"’ (7.4)

3J.W. Belton and M.G. Evans, “Studies in the molecular forces involved in surface
forination. II. The surface free energies of simple liquid mixtures,” Trans. Faraday Soc.
41, 1 (1945); A. Schuchowitzky, Acta Physicochim. URSS 19 (2-3), 176 (1944); R
Defay and I. Prigogine, “Surface tension of regular solutions,” Trans. Faraday Soc. 46,
199 (1950); and S. Ono and S. Kondo, Handb. Physik 10, 134 (1960).
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and, by analogy to Equations 7.2, the chemical potentials of a and b in o
are the intercepts with the x = 0 and = = 1 axes of the tangents to ¢g°:

ag°
o __ o _ 0
”’a - g Z 8.'1:0
o o 99°
ll«g = g +(1—.’E )'8? (75)

where 27 = N7 /(NZ + N7) is the composition of o.

Furthermore, the composition dependence of the molar Gibbs free en-
ergy of surface phases may be semi-empirically modeled in the same way
that the molar Gibbs free energy of bulk phases is often modeled, as ideal
solutions, or as one of a heirarchy of regular solutions (see Table 3.1). Ex-
amples of such composition-dependent surface and bulk molar Gibbs free
energies for the Ag—Au system are shown in Figure 7.1. In this system, the
molar Gibbs free energies are thought to be characterized by the sub-regular
forms

gheresAtes) = (1 = 2P)glA8) 4 2PgiA g iaealT + QP (1 — 2)2”
g)Agl_Iﬂ Avee( = (1 - xa)g)Ag( + xag)Au( - smix,idealT + Qa(l - Ia)l‘a)
(7.6)

and are linear interpolations between the molar Gibbs free energies of the
pure-component phases, plus entropic and enthalpic “mixing” terms.

Note that in writing these equations, we have extended the notation of
Section 2.4 so that interface phases are represented by mismatched pairs
of brackets, braces, and parentheses to denote the bulk phases the inter-
face is sandwiched between. In this notation, the two phases of interest,
the crystalline bulk and surface phases, are denoted (Ag,_,sAu,s) and
YAg,_,-Auzo(, and their compositions are denoted z” and z°.

For the crystalline solid, g(*8 and ¢{A") are the known molar Gibbs
free energies of the pure-component phases Ag and Au,* and

QlAgi_.8AuB) — A4 BeP 4 CT (7.7)

is a known composition and temperature-dependent interaction parameter.®

4The molar Gibbs free energies of the pure crystals were calculated accord-
ing to the prescription described in Chapter 2, using the heat capacity expression
cp = (co +a1T)T?/(T? + O:‘}) The heat capacity parameters for (Ag) were ¢, =
0.253 meV/(atomK), ¢; = 0.0553 peV/atom/(atomK?), ©7 = 55.4 K; the parame-
ters for (Au) were ¢, = 0.248 meV/(atomK), ¢; = 0.563 peV/atom/(atomK?) and
Or =435 K.

5Following J.L. White, R.L. Orr, and R. Hultgren, “The thermodynamic properties
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Figure 7.1: Left: Molar Gibbs free energies of the crystalline bulk and surface
phases of the Ag-Au system at 700 K. Right: Chemical potentials of Ag and Au
in these phases. As in Figure 3.1, the intercepts of the tangents to the molar
Gibbs free energies with the z = 0 and z = 1 axes are the chemical potentials.
As the tangents sweep around the arc of the molar Gibbs free energy curves,
the intercepts of those tangents trace out the chemical potentials at the various
compositions.

For the crystalline surface at the endpoint compositions, the molar
Gibbs free energies are those for pure crystalline (Ag) and (Au), but offset
upward by their known surface tensions. In other words,

g>Ag( — g(Ag>+7(Ag)Ag(

gHAul = glAw) 4 (Aw)Au( (7.8)

where the experimentally measured values® for v{A8 and (A% the work
per unit area required to form new surfaces of pure crystalline Ag and Au,
have been normalized by the number of atoms per unit area on close-packed
(111) planes.

For the crystalline surface away from the endpoint compositions, the
molar Gibbs free energy has been found to be consistent with a sub-regular
solution behavior that mimics that of the crystalline bulk phase.” In other

of silver-gold alloys,” Acta Metall. 5, 747 (1957) and H. Okamoto and T.B. Massalski, in
Phase Diagrams of Binary Gold Alloys, H. Okamoto and T.B. Massalski, Eds. (ASM In-
ternational, Metals Park, Ohio, 1987), pp. 4-12, the sub-regular solution parameters were
taken to be A = —0.210 eV /atom, B = 0.0347eV /atom and C = 0.0000596 eV /(atomK).

6We use the values y{A8)A8( = 0.50 eV/atom and ~y{AwAu( = 0,63 eV /atom [H.
Jones, “The surface energy of solid metals,” Met. Sci. J. 5, 15 (1971)].

7J.Y. Tsao, “Graphical representation of Ag—Au surface segregation,” Surf. Sci. 262,
382 (1992).
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words,
Q° =0°. (7.9)

As drawn in the left panel of Figure 7.1, the shape of the molar Gibbs free
energy of the surface alloy is the same as that of the bulk alloy, but is offset
upward by amounts that vary linearly from {2848 on one end to ~{AwAu(
on the other end.

7.1.2 Atom Transfers between Surface and Bulk

Having defined, in Subsection 7.1.1, the thermodynamic functions for the
crystalline bulk and surface phases, let us consider, in this subsection, trans-
ferring atoms between the two phases. Such transfers can take place in two
ways, and are discussed separately in the following two subsubsections.

Parallel Tangents and Equilibrium Segregation

In the first way of transferring atoms between the two phases, the overall
number of surface sites is preserved. Then, if we move, e.g., a Au atom from
the bulk to the surface, we must at the same time move a Ag atom from
the surface to the bulk: atom transfers between bulk and surface must be
atom exchanges. Hence, they are accompanied by free energy changes equal
to the difference between (a) the “excess” chemical potentials required to
move a Au atom from the bulk to the surface, or

exc — YA _zo A 2o ( (Ag ,IﬁAuxﬁ)
Hay = llAug1 =t Bay ) (7.10)

and (b) the “excess” chemical potentials required to move a Ag atom from
the bulk to the surface, or

_ )Ag_oAuge(  (Ag,_,sAup)
PR = g T = pag : (7.11)

In other words, they are accompanied by a free energy change of

— )Ag _,:aAllxa( (Ag _:ﬁAuzg>
ugs -y = (el
YAE, _zo Augo( (Ag,__.psAu_g)
- ( Ag ' ~ Hag ' ) . (712)
This free energy change can be rewritten as
e _ YAg, _roAuga( YAg,_zo Augo(
HRw — HRg = (uAu ' ~ Mag )
(Ag,_,pAu_g) (Ag,_,sAu,p)
—( Au ~ Hag | ) (7.13)
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Figure 7.2: Surface and bulk phase equilibria in the Ag-Au system at 700 K.
Left: The two tangents to the molar Gibbs free energies have different slopes and
there is a driving force for Ag or Au atoms to segregate to the surface. Center:
the two tangents are parallel and the surface is in equilibrium with the bulk.

and can be seen to be the difference between the slope of the tangent to
p)AB1—zo Auze ( at 29 and the slope of the tangent to ;L(Agl—z"A“w") at .
When pi§ — pXy is positive, as in the left panel of Figure 7.2, Au surface
atoms will tend to exchange with Ag bulk atoms, and the surface will
become enriched in Ag. When it is negative, then Ag surface atoms will
tend to exchange with Au bulk atoms. When it is zero, as in the right
panel of Figure 7.2, then the surface is in equilibrium with the bulk. In
other words, the crystal and surface phases are in equilibrium with each
other when the tangents to their molar Gibbs free energies have the same
slopes, or, equivalently, when the tangents are parallel.®

Now, according to this parallel tangent criterion, to find the composition
of a surface in equilibrium with a bulk crystal of a particular composition,
we must solve 8g)A81-z7 A7 (/gp0 — 8g<Ag1—z"Au15>/8zﬂ by varying z°
for fixed z?. Equivalently, and sometimes more conveniently, one can (see

8M. Hillert, “The role of interfaces in phase transformations,” in The Mechanism of
Phase Transformations in Crystalline Solids, Monograph and Report Series No. 33 (The
Institute of Metals, London, 1969), pp. 231-247; and M. Guttmann, “Grain boundary
segregation, two dimensional compound formation, and precipitation,” Met. Trans. 8A,
1383 (1977).
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Exercise 1) minimize the function

9g'\AB1_sAUB)
n(z°,2?) = gAer-srAter(_ g0 08 = T (7.14)
Oxh

by varying x° for fixed z?. Both numerical prescriptions are general, and
can be used even if the molar Gibbs free energies of the surface and bulk
are represented by very complicated semi-empirical forms.

For example, consider the relationship between the equilibrium surface
and bulk compositions of strictly regular bulk and surface phases § and
o. In the limit of small z° and z, this relationship can be shown (see
Exercise 4) to be given by

B

Fequ = — = e 1My -0 /kT (7.15)
where v(22( and ~v{*)P( are the surface tensions of the pure a and pure b
phases. The quantity Kequ, the ratio between the equilibrium bulk and
surface compositions, can be thought of as an equilibrium “partition” co-
efficient, in that it describes the physical partitioning of a dilute impurity
between two adjacent phases.

More generally, Equation 7.14 must be solved numerically. For the Ag-
Au system, the resulting dependence of the surface composition on bulk
composition is shown as the segregation isotherm in Figure 7.3. Note that
at all compositions, the surface tends to be enriched in Ag relative to the
bulk. The reason is that, even though g8 -z7Au=2( hag the same shape
as g\A81-20A%0) it offset relative to g 81-=#A%A) increases linearly with
composition because pure Au has a higher surface tension than does pure
Ag. As a consequence, at the same composition, the slope of the tangent to
g) 81—z Auze (il be greater than the slope of the tangent to g{A81-=#A%2)
and is compensated for by a decrease in the composition of g!A8i-=oAuze(,

Surface Work

In the second way of transferring atoms between the crystalline bulk and
surface phases, the overall number of surface sites is not preserved. Instead,
as Ag or Au are transferred from the bulk to the surface, new surface sites
are created to accommodate them. The work per atom required to create
new surface of composition 2% from bulk crystal of composition z° is now
the sum of the changes in the chemical potentials of the two components,
weighted by their mole fractions on the surface:

7(Agl_xﬁ/\uxﬁ)/\gl_zoAuza( =(1- ma)ﬁ,;/e\xgc + z° psxe. (7.16)
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Figure 7.3: Surface segregation isotherm for the Ag-Au system at 700 K,
deduced from the parallel tangent construction illustrated in Figure 7.2. Mea-

sured data are represented by open circles,® triangles,® diamonds,® and filled
circles.®

¢G.C. Nelson, “Determination of the surface versus bulk composition of silver-gold
alloys by low energy ion scattering spectroscopy,” Surf. Sci. 59, 310 (1976).

S.H. Overbury and G.A. Somorjai, “The surface composition of the silver-gold sys-
tem by Auger electron spectroscopy,” Surf. Sci. 55, 209 (1976).

¢M.J. Kelley, D.G. Swartzfager, and V.S. Sundaram, “Surface segregation in the Ag-
Au and Pt-Cu systems,” J. Vac. Sci. Technol. 16, 664 (1979).

4K. Meinel, M. Klaua, and H. Bethge, “Segregation and sputter effects on perfectly
smooth (111) and (100) surfaces of Au-Ag alloys studied by AES,” Phys. Stat. Sol.
A106, 133 (1988).

This equation defines the surface work, y(A81-28Atz8)A81 o Auze (

of the surface and bulk compositions and chemical potentials.
Let us now expand p%<S and Kag using Equations 7.10 and 7.11, and

apply the identities

, in terms

(Ag,_,pAu_p) (Ag,_,sAup)
g(Agl_EﬁAuza) — (1 _ xﬂ)ll’Ag 1 + xﬂ”Au 1
I g R 7 SN (A L)

which can be derived from Equations 7.2 and 7.5. Then, the surface work
can be written as

,Y(Agl_za Au_g)Ag)_goAugo( _

(g>Ag1_.,aAuza< _ g<Ag1_IﬁAu,a>)

(Ag,_.8Au_p) (Ag,_,pAu_p)
= (@ =) (g ) ()
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If we define the “excess” molar Gibbs free energy to be gex¢ = g)A&1-ze Auzo (_
g'A81-2pA%8) then we also have

exc  _ ,Y(AglizﬁAuzg)Aglfngu,u(

A Au A Au
+ (27 — 2P) (u;f“’ﬁ ’ﬁ)—ui\gg“'ﬁ "’)). (7.19)

g

This last expression for the relationship between the excess molar Gibbs
free energy and the surface work can be understood graphically by inspec-
tion of Figure 7.2. If the surface and bulk compositions are the same, as
in the left panel, then 27 = 2 and go*¢ = y{A81-2pAULp) ARz Atzo ( jelf.
Otherwise, as in the right panel, we must add a correction term equal to
the slope of the tangent to g{A81-=#A%:5) times the difference between the
surface and bulk compositions. The surface work can thus be seen to be
the vertical distance between the tangent to the molar Gibbs free energy
of the surface at composition 7, evaluated at x?, and the tangent to the
molar Gibbs free energy of the bulk at composition z?, also evaluated at
z?. Importantly, this graphical interpretation of the surface work holds
whether or not the tangents are parallel, hence whether or not the surface
and bulk are in equilibrium with each other.

To make contact with standard treatments of surface thermodynamics,
note that Equation 7.19 can be rewritten in yet another equivalent form:

exc _ . (Ag, _pAu_g)Ag,__oAugo( exc (A8, _.pAu_g) exc (Ag,_.sAu.g)
g = 'Y 1-28 =B 1-z9 x _+_ zAg l'LAg x x + zAu Au x x .

(7.20)
This equation reproduces the well-established relation® (at constant tem-
perature) between the excess molar Gibbs free energy of the surface, the

surface work, and the excess Ag and Au at the surface, 23, = zP —z% and

IeXC = 40 _ Iﬁ
Au — .

Finally, let us return to Equation 7.16, to understand more clearly the
difference between the work required to transfer atoms to the surface in
the two different ways. In the first way, we form new surface area at fixed
composition. The work required is then ~(A81-28AU0)AB1_co Auze (| [y the
second way, we change the composition of the surface at fixed surface area.
The work required is then 9y(AB1-28AUz0)A8-co Ater (/500 — Haw — Hag
(see Exercise 3). In equilibrium, that work must be zero, as in the discussion
following Equations 7.12 and 7.13.

9A.W. Adamson, Physical Chemistry of Surfaces, 4th Ed. (John Wiley and Sons,
New York, 1982).
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7.2 Adsorption and Desorption

In Section 7.1, we outlined a simple semi-empirical framework for under-
standing surface thermodynamics. The framework hinged on approximat-
ing the outermost exposed atomic monolayer as a phase whose composition
and thermodynamic properties are distinct from those of the bulk. In fact,
this approximation is most inaccurate for the surfaces of condensed alloy
phases, whose composition and thermodynamic properties vary gradually
over more than one atomic layer into the bulk.

In this section, we apply the framework to monolayer adsorbate phases
on one-component bulk solids. We assume, as is often the case, that the
adsorbate component does not indiffuse into the bulk and hence remains on
the surface. Then, the composition of the system does change abruptly be-
tween the outermost surface monolayer and the bulk, and our approximate
treatment is much more realistic. We will begin, in Subsection 7.2.1, by
deriving two important equilibrium constructs: adsorption isotherms and
adsorption isobars. Then, in Subsection 7.2.2, we discuss nonequilibrium
adsorption and desorption.

7.2.1 Adsorption Isotherms and Isobars

Let us start, in this subsection, by deriving the equilibrium adsorbate cov-
erages associated with an ambient vapor at a particular pressure and tem-
perature. Consider a low-vapor-pressure bulk crystal composed of a single
component, “m,” bathed in a vapor composed of a single component, “a.”
As indicated in the left panel of Figure 7.4, the molar Gibbs free energy of
the crystal is denoted ¢{™, and the molar Gibbs free energy of the vapor
is denoted g(®).

In the absence of atoms of component a on the surface, the molar Gibbs
free energy of the surface, ¢'™(, is just offset upward from g¢{™ by the
surface tension, v{™™(  In the presence of a full monolayer of atoms of
component a on the surface, the molar Gibbs free energy of the surface is
denoted g¢'2(.

At intermediate compositions, as discussed in the previous section, the
molar Gibbs free energy is a linearly weighted interpolation between g’™(
and ¢’2(, plus entropy and enthalpy of mixing terms. For example, a strictly
regular solution would be written

gmi-eael — (1 -0)g™( 4 0g"*( 4+ kT[61In6 + (1 — 6) In(1 — )]
+Q6(1 - 6), (7.21)

where 6 is the “composition” of the surface phase. In a sense, the surface
phase can be considered a mixture of surface sites covered by adatoms and
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Figure 7.4: Vapor and surface adsorbate phase equilibria. Left: The two tangents
to the molar Gibbs free energies are parallel, hence there is no driving force for
the coverage of a atoms on the surface to change. Right: Schematic of adsorption
and desorption of a atoms from the vapor onto a surface and from the surface
back into the vapor.

surface sites not covered by adatoms, so that 6 is also the average adatom
coverage on the surface.

To find, given these molar Gibbs free energies, the equilibrium adatom
coverage, we can apply the same arguments we applied in Section 7.1.
Suppose, as illustrated in the left half of Figure 7.4, the surface coverage is
6,, so that the chemical potential of atoms a is the intercept of the tangent
to g'™1-e2¢((g,) with the § = 1 axis,

8g)m1—9ao(
o0 )

and the chemical potential of atoms m is the intercept with the 8 = 0 axis,

u;ml—eaﬂ( — g)mhaao( +(1-6) (7.22)

ag)ml_oaa(

)ml—aao( — )ml—aas( — 9
Hm g 0 )

(7.23)

If we adsorb an atom a from the vapor, then the free energy of the system

. mj_ga
increases by p;)i 1-s2(

— g due to the movement of atom a from the vapor
to the surface phase, but it decreases by g™ — p,znml“’a"( because the m
atom that was covered has moved from the surface phase into the bulk.
The equilibrium condition is therefore

'u;ml—sae( _ ﬂ)ml—oaa( — o(® _ g(m) (7.24)

m b}
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which is equivalent to the parallel tangent construction derived in Sec-
tion 7.1.

Now, recall from Equation 2.47 that the molar Gibbs free energy of an
elemental vapor is

9 (p,T) = ¢ (po, T) + kT'In (pﬂ) , (7.25)

where p, is a reference pressure. Hence, as the pressure of (a) increases, the
molar Gibbs free energy of (a) also increases. As a consequence, the slope
of g(® — g)m( increases, causing the parallel tangent to pivot around the
g'™1-020( curve, and ultimately causing the equilibrium coverage Oequ itself
to increase. For a strictly regular adsorbate phase, this parallel tangent
condition is expressed by combining Equations 7.21, 7.22, 7.23, 7.24 and
7.25, giving

Ocan  0(1-0uqu)/KT _ P Agacs /KT | (7.26)

1- oequ Po

where Agges = (9 (po, T) — ¢2() — (g™ — ¢?™() is the “activation” free
energy of desorption at the reference pressure p,. This equation defines the
coverage of the surface phase in equilibrium with a vapor at pressure p and
temperature 7', and can be used to construct both adsorption isotherms
(the pressure dependence of the coverage at constant temperature) and
adsorption isobars (the temperature dependence of the coverage at constant
pressure).
For example, if Q = 0, so that the solution is ideal, then

p
p+ poe_Aydes/kT ’

Oequ = (7.27)

which reproduces what is known as Langmuir’s isotherm. The adatom
coverage increases linearly at first with increasing pressure, then saturates
beyond a critical temperature-dependent pressure, p,e~29des/kT

If @ # 0, then the solution is nonideal. On the one hand, if Q > 0,
then adatoms and “missing” adatoms repel each other, which is equiva-
lent physically to adatoms attracting each other. The adatom coverage
increases more rapidly at first with increasing pressure, before again sat-
urating beyond a critical temperature-dependent pressure. On the other
hand, if Q < 0, then adatoms and “missing” adatoms attract each other,
which is equivalent physically to adatoms repelling each other. The adatom
coverage increases less rapidly at first with increasing pressure, before again
saturating beyond a critical temperature-dependent pressure.



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

272 Chapter 7. Surface Composition

7.2.2 Sticking Coefficients and Desorption

In Subsection 7.2.1, we discussed the composition, or coverage, of an adsor-
bate surface phase in equilibrium with its vapor. Physically, that equilib-
rium can also be viewed as the balancing of a dynamic competition between
adsorption of atoms or molecules from the vapor and desorption of atoms
or molecules back into the vapor. As a consequence, if we know the ad-
sorption rate, then, at equilibrium, we know the desorption rate as well.
In this subsection, we derive expressions for this desorption rate, as well
as for the rates at which coverages, perturbed away from their equilibrium
values, will return to those equilibrium values.

From the kinetic theory of gases, the rate at which atoms or molecules
in a vapor impinge upon a surface, per lattice site, is pA?/v/2rmkT, where
p and T are the pressure and temperature of the vapor, m is the atomic or
molecular mass, and A\? is the area per lattice site of the surface. If s(6,T)
is the coverage and temperature dependent fraction of impinging atoms or
molecules that “stick” to the surface, then the adsorption rate will be

. pXs(6,7)
Jdes V2rmkT

At equilibrium, atoms or molecules must, by detailed balance, desorb
exactly as fast as they adsorb. Since, at equilibrium, the coverage of a
strictly regular solution surface phase is related to the pressure by Equa-
tion 7.26, the equilibrium desorption rate can also be expressed in terms of
coverage as

(7.28)

. pA%s(0,T)  poA?s(0,T) ( 6
Jdes V2rmkT V2mrmkT \1-10

If we now assume that desorption depends directly on coverage, and only
indirectly on the equilibrium pressure required to achieve that coverage,
then Equation 7.29 holds even away from equilibrium. Hence, the net
adsorption rate for a regular solution surface phase is

> 1=0)/kT = Ajacs/KT (7 29)

9 = jnet

jads - jdes

_ )\223(0,:“} [p e (1 g 0) en(l_e)/kTe—Agdes/kT] ., (7.30)
™m -

which is a first-order differential equation for the time evolution of the
coverage.
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Often, the sticking coefficient decreases linearly with coverage as s(6,T) =

So(1 — 6). Then,
=i  — oA Q(1-8)/kT _—Agaes /kT
= Jnet = —m——x [p(l —0) — pobe 7 Ddes ] - (7.31)
2rmkT

The net adsorption rate can be seen to be the difference between the rate
at which atoms or molecules stick on uncovered portions of the substrate,
and the rate at which atoms or molecules desorb from the covered portions
of the substrate.

If the surface phase is an ideal solution, then €2 = 0, and Equation 7.31
simplifies to

0' . So/\2

= ] —_ —————
net V2mmkT

A surface having initially a coverage of 6;,; approaches exponentially the

equilibrium coverage given by Equation 7.27 with a time constant 7 given
by

[P = 6(p + po)e85/4T] (7.32)

1 so)\2(p+pge_A9d“/kT) _ 30,\2poe—Aydes/kT

= = . 7.33
T 2rmkT V2rmkT (1 — Bequ) (7.33)

In other words,
0= gequ + (0ini - oequ)e_t/T- (734)

Note that for small deviations from the equilibrium coverage at pressure
Pequ, the rate at which the surface will return to its equilibrium coverage is
d(A6)

dt

. . a 'ne
- ]net(eequ + Ag) = ]net(oequ) + A6 [ get] . (7-35)
oequ

Since jpet(fequ) = 0 at equilibrium,

1 dae) _ [J’net]equ (7.36)

T Addt 00

is the “small signal” approach rate back toward the equilibrium coverage.
For an ideal solution surface phase, Equations 7.32 and 7.36 give

1 SoAZ(p + poe~D9des/kT) 5o A2pge~Addes/KT
T = : (7.37)
T 2rmkT V2rmkT (1 — Oequ)

which reproduces Equation 7.33. For a strictly regular solution surface
phase, Equations 7.31 and 7.36 give

2
l _ So)\ ( 1 _ 290611\1) e—Agdes/kT’ (738)
T vV 271'ka gequ kT
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Figure 7.5: Coverage dependences of the small-signal vapor-adsorbate
equilibration rate for CO on Cu(111). The open and filled circles are data
measured® at the various indicated temperatures. The solid lines are the pre-
dictions of Equation 7.39, with a desorption molar Gibbs free energy of Agges =
(0.67 eV) — (37.8kT), a mixing enthalpy of 2, = 0.107 eV, and a mixing entropy
of Qs = 20.7k.

2B.J. Hinch and L.H. Dubois, “First-order corrections in modulated molecular beam
desorption experiments,” Chem. Phys. Lett. 171, 131 (1990).

where .qy is given by Equation 7.26. For a regular solution with both an
enthalpy and entropy of mixing, Q = Qy, — T, and

1 S0A? ( 1 2Qu0equ 2Qseequ) A JET
- —_— — + e~ Agdes/ kT 7.39
T Vv 2rmkT oequ kT k ( )

Examples of such coverage and temperature-dependent small-signal equi-
libration rates are illustrated in Figure 7.5 for CO on Cu(111). In this case
there are both positive enthalpies and entropies of mixing. A positive en-
thalpy of mixing implies a repulsion between adatoms and missing adatoms,
or, equivalently, an attraction between adatoms. Hence, the enthalpic bar-
rier to desorption increases with increasing coverage. A positive entropy of
mixing, however, implies an entropic barrier to desorption that decreases
with increasing coverage. The two effects “compensate” each other to some
extent, although, as illustrated in Figure 7.5, the balance tilts toward in-
creasing the desorption rate with increasing coverage.
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7.3 Surface Segregation and Trapping

In Section 7.1 we discussed the preferential segregation of one compo-
nent from the bulk to the surface. In equilibrium, such segregation oc-
curs when there are differences either between the surface tensions of the
pure-component endpoint materials or between the free energies of mixing
in the surface and bulk phases. Away from equilibrium, such segregation
may or may not be significant, and will depend on the relative kinetics of
crystal growth and interdiffusion between the surface and bulk phases. In
this section, we discuss these dependences.

We will begin, in Subsection 7.3.1, by discussing the important simple
case of segregation of a dilute solute under steady-state growth conditions.!?
This discussion will lead to an expression for the nonequilibrium partitition
coefficient, k, governing the ratio between the solute concentrations in the
bulk and surface phases.

Then, in Subsection 7.3.2, we will make the assumption that, under
non-steady-state conditions, this nonequilibrium partition coefficient still
applies locally to the ratio between solute concentrations in the bulk phase
just adjacent to the surface phase and in the surface phase itself. In this
way, the nonequilibrium partition coefficient can be used to define a bound-
ary condition connecting the non-steady-state evolution of solute concen-
trations in the bulk and surface phases.

7.3.1 Steady-State Compositional Partitioning

In this subsection, we consider steady-state segregation of a dilute solute b
in a host solvent a. As illustrated in Figure 7.6, there are three phases
to consider: the vapor, (aj_;vb,v), at composition z¥, the bulk solid,
(ay_zsbgs), at composition z”, and the surface monolayer dividing the
two, )aj_zobge (, at composition z?.

Between these three phases there are two basic kinetic processes that
compete with each other.!! First, vapor condenses, forming simultaneously
a new surface layer (layer 1 in the right side of Figure 7.6), and transforming
the previous surface layer into a new bulk solid layer (layer 2 in the right side
of Figure 7.6). If condensation is “partitionless,” in that the composition of
the new surface layer mimics the composition of the vapor, then the system

19We do not treat the more complicated case of a nondilute solute; see, e.g., J.M.
Moison, C. Guille, F. Houzay, F. Barthe, and M. Van Rompay, “Surface segregation of
third-column atoms in group III-V arsenide compounds: ternary alloys and heterostruc-
tures,” Phys. Rev. B40, 6149 (1989).

113.J. Harris, D.E. Ashenford, C.T. Foxon, P.J. Dobson, and B.A. Joyce, “Kinetic
limitations to surface segregation during MBE growth of III-V compounds: Sn in GaAs,”
Appl. Phys. A33, 87 (1984).
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Surface ®0 o

Figure 7.6: Left: Schematic molar Gibbs free energies of crystal (a;_,sb,s),
vapor (aj—zvbgv) and surface )aj_go byo ( phases. Right: Schematic of two com-
peting kinetic processes: partitionless growth followed by solute partitioning via
diffusion.

moves from point A to point B in the left side of Figure 7.6. At the same
time, the previous surface layer, possibly enriched in solute, is transformed
into a new bulk layer. Therefore, the system also moves from point C to
point D in the left side of Figure 7.6.

Second, if the previous surface layer (layer 2 in the right side of Fig-
ure 7.6) were enriched in solute, then as it becomes a new bulk layer, it will
also be enriched in solute. As a consequence, solute will tend to diffuse out
into the new surface layer (layer 1 in the right side of Figure 7.6), moving
the system from point D to point E and from B to C on the left side of
Figure 7.6. In other words, partitionless condensation from vapor to sur-
face to bulk solid is followed by partitioning by interdiffusion between the
surface and the bulk solid. Note that, from start to finish, the system has
moved downward from point A to point E in the left side of Figure 7.6, so
that there is a net driving force for condensation.

Two extremes of behavior may be imagined, depending on the ratio
between the rate of growth, j (in ML/s), and the rate of interdiffusion be-
tween bulk and surface layers, D;/a?. As in Section 6.3, this ratio, a?j/D;,
is a kind of Péclet number in that it is a dimensionless measure of the
relative importance of convective over diffusional mass flow. Also as in Sec-
tion 6.3, another way of understanding this Péclet number is to note that it
is also the ratio between the time required for diffusion between the surface
layer and its adjacent bulk layer, a?/D;, and the monolayer growth time,
™L = 1/].
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On the one hand, if a?j/D; < 1, then interlayer diffusion is fast relative
to growth. The surface layer will be in compositional equilibrium with its
adjacent bulk layer, and the ratio between their compositions will be given
by the equilibrium partition coefficient kequ. This extreme of behavior is
therefore characterized by equilibrium solute segregation. On the other
hand, if a?j/D; > 1, then interlayer diffusion is slow relative to growth.
The surface layer and its adjacent bulk layer will not have time during a
monolayer growth cycle to reach composition equilibrium, and the ratio be-
tween their compositions, «, will approach unity. This extreme of behavior
is therefore characterized by nonequilibrium solute trapping.

Periodic and Aperiodic Step-Wise Growth

To quantify the dependence of k on the Péclet number, consider a sim-
ple model in which growth proceeds by the passage of steps on a vicinal
surface.!? Suppose the composition of the surface layer just ahead of a
moving step is 7. At time t = 0, just after the step has passed, that
surface layer has become a bulk layer. If the new bulk layer has preserved
its composition, then

[xﬁ]tzo =z°. (7.40)
During the subsequent time interval 7y, = 1/j until yet another step
passes, solute atoms in the bulk layer will diffuse to the surface layer, at a
rate proportional to the deviation of the composition of the bulk layer from
its equilibrium value, Kequz?. In other words,

Bl‘ﬂ _ —D,;

Tl (2P — Kequz?). (7.41)

From Equations 7.40 and 7.41, the solute concentration in the bulk
decays exponentially with time according to

2P = Kequz® + (27 — nequx”)e_D‘t/“z. (7.42)

Suppose now that once this bulk layer has been covered by yet another sur-
face layer, further interdiffusion becomes negligible. There are two extreme
possibilities for the ways in which the next layer may arrive.

On the one hand, if the steps on the surface are equispaced, then they
pass over the surface periodically, at time intervals separated by mv, = 1/3.

12M.J. Aziz, “Model for solute redistribution during rapid solidification,” J. Appl.
Phys. 53, 1158 (1982).
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Figure 7.7: Dependence of nonequilibrium partition coefficients on the Péclet
number, a*j/D;, for periodic and aperiodic step flow. The equilibrium partition
coefficient in both cases was taken to be 1072,

Then, the steady-state composition of the bulk layer will be that which it
has reached at time my, = 1/, or

P = Kequt® + (27 — mequz”)e_D"/("zj). (7.43)

In other words, when segregation occurs by interdiffusion of solute punctu-
ated by the periodic passage of steps, then the steady-state ratio between
bulk and surface compositions is

B
X _D. 2
Kper = — = Requ + (1 = Kequ)e P+/(a79), (7.44)

As illustrated in Figure 7.7, K is Kequ for a?j/D; much less than unity, but
increases to unity as a?j/D; approaches and exceeds unity.

On the other hand, if the steps on the surface are distributed randomly,
then they pass over the surface aperiodically.!® If this aperiodic passage
obeys a Poisson arrival distribution, then the probability that a step will
pass in an interval dt after time ¢ will be e_‘/"MLdt/TML = ge~9'dt. Hence,
the average composition of the bulk layer will be its composition after time
t, weighted by this probability, or

>
o = / [nequw” + (27 - nequw")e—D"/(“zJ)] je 7tdt
0

131, M. Goldman and M.J. Aziz, “Aperiodic stepwise growth model for the velocity
and orientation dependence of solute trapping,” J. Mater. Res. 2, 524 (1987).
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J

_ 7.45
j+ D;/a? ( )

= Kequ¥’ + (27 — Kequ”)

In other words, when segregation occurs by interdiffusion of solute punctu-
ated by the aperiod passage of steps, then the steady-state ratio between
bulk and surface composition is

K _ ﬁ _ Kequ +ja2/Di (7 46)

T o 1+ ja2/D; '
Again, as illustrated in Figure 7.7, k is Kequ for a?j/D; much less than
unity, but increases to unity as a?;/D; approaches and exceeds unity. The
increase is not as steep, however, as it is for Kper.

A Segregating Dopant: Sb on Si (001)

To illustrate this behavior, consider the well-established!* segregation of Sb
impurities during MBE of Si on Si (001). Figure 7.8 shows measurements
of the partition coefficient k at various growth rates and temperatures. As
temperature increases the partition coefficient initially decreases as Sb in-
terdiffuses more and more quickly to the surface. At high temperatures, Sb
diffusion is so fast that equilibrium is reached, and the partition coefficient
approaches the equilibrium partition coefficient keq,. Finally, as tempera-
ture continues to increase, the surface and bulk phase compositions tend to
equalize, and Keq, itself approaches unity (see Equation 7.15). Therefore,
as temperature continues to increase, ultimately x begins to increase again,
due to an increase in Keqy-

Also shown in Figure 7.8 are the predictions of Equation 7.44 for segre-
gation mediated by periodic step flow. As can be seen, the predictions agree
reasonably well with the data, although there is some disagreement at the
lower growth temperatures for the higher growth rates. The disagreement
may be due to the onset of a 2D nucleation and growth mode, hence the
onset of segregation mediated by aperiodic step flow.

7.3.2 Non-Steady-State Compositional Partitioning

In Subsection 7.3.1, we derived expressions for the nonequilibrium partition
coefficient, k. There, we assumed a steady-state solute concentration in the
surface layer. In other words, we assumed that surface solute depletion due
to incorporation into the bulk was just compensated for by adsorption from
the vapor.

14J.C. Bean, “Arbitrary doping profiles produced by Sb-doped Si MBE,” Appl. Phys.
Lett. 33, 654 (1978).
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Figure 7.8: Temperature dependence of nonequilibrium partition coefficients
for Sb during MBE of Si on Si (001). The data points® and predictions of

Equation 7.44 are for growth rates of 3.0 A/s (open circles and solid line),
1.0 A/s (open triangles and dashed line), and 0.3 A/s (filled circles and dot-
ted line). The diffusivity was assumed to be Arrhenian, and given by D;/a* =
2x10'! exp(—1.67eV/kT), while the equilibrium partition coefficient was assumed
to be kequ = exp(—1.23eV/kT), consistent with the form given by Equation 7.15.

¢H. Jorke, “Surface segregation of Sb on Si (100) during molecular beam epitaxy
growth,” Surf. Sci. 193, 569 (1988).

In this subsection, we relax this assumption, and allow the solute con-
centration in the surface layer to evolve. To do so, recall that the nonequi-
librium partition coefficient, k, is the ratio between solute concentrations in
a bulk layer just adjacent to the surface layer and in the surface layer itself.
It can therefore be thought of as the fraction of solute in the surface layer
that becomes “trapped” in the adjacent bulk layer during each monolayer
growth cycle. If the overall growth velocity is v, then the rate of decrease
of solute in the surface layer due to trapping will be vkz? /a, where a is a
monolayer step height.

At the same time, solute may also adsorb from the vapor onto the

surface, or desorb back into the vapor from the surface. If v,qs = j:‘(’,ls“tea is

the adsorption “velocity” and vgqes = jj‘;‘s“tez”a is the desorption “velocity”
of solute, then the overall rate of change of solute concentration in the

surface layer will bel®

5 = Vet (Voo +0R)2" (7.47)
a a

15C.E.C. Wood and B.A. Joyce, “Tin-doping effects in GaAs films grown by molecular
beam epitaxy,” J. Appl. Phys. 49, 4854 (1978).
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This equation describes the time evolution of the solute concentration in
the surface layer during growth. It increases due to adsorption from the
vapor, and decreases due to a combination of desorption back into the vapor
and trapping in the bulk.

Note, though, that even after the solute has become trapped in the bulk,
it may still diffuse, albeit at rates determined by the bulk diffusivities, which
may be much slower than the diffusivity for exchange between the surface
layer and its adjacent bulk layer. Therefore, the bulk solute concentration
will evolve, after trapping, according to

ozh _ 8%zP
ot Pz

where z is a distance scale perpendicular to the surface in a stationary
reference frame.!®

The boundary condition on this diffusion equation is the solute concen-
tration most recently trapped in the bulk layer just adjacent to the surface,
or

(7.48)

[xﬁ]zzza(t) = kz°. (7.49)

In this equation, z,(t) = za,o—fot vdt is the position of the interface between
the surface layer and its adjacent bulk layer. Equations 7.47, 7.48 and
7.49 together completely describe the time evolution of the overall bulk
solute concentration due to nonequilibrium segregation followed by bulk
diffusion. They are complicated, however, by the boundary condition in
Equation 7.49, which must be applied at a moving surface. It is convenient,
therefore, to transform into a reference frame, 2’ = z + f vdt’, that moves
with the surface.!” In this reference frame, Equation 7.48 becomes

oz 9%zP ozP
a0 = Prgm Ve (7.50)
and Equation 7.49 becomes
[xB]Z,ZO = kx?. (7.51)

To illustrate the use of these equations, Figure 7.9 shows time evolu-
tions of the spatial distributions of solute during growth of a structure

16We neglect electrostatic effects near the surface, which may cause solute “drift” to-
ward or away from the surface. See, e.g., E.F. Schubert,, J.JM. Kuo, R.F. Kopf, A.S.
Jordan, H.S. Luftman, and L.C. Hopkins,, “Fermi-level-pinning-induced impurity redis-
tribution in semiconductors during epitaxial growth,” Phys. Rev. B42, 1364 (1990).

17S.A. Barnett and J.E. Greene, “Si molecular beam epitaxy: a model for tempera-
ture dependent incorporation probabilities and depth distributions of dopants exhibiting
strong surface segregation,” Surf. Sci. 151, 67 (1985).
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Figure 7.9: Four series of snapshots in time of solute composition profiles during
MBE. All four series correspond to a square doping pulse indicated by the dashed
lines, but differ according to whether v4es is much less than or greater than v and
whether « is much less than unity or equal to unity.

having a square pulse of solute. In the absence of bulk diffusion, there
are four extremes of behavior, depending on (1) the relative rate between
the growth velocity and the effective desorption velocity and (2) whether
the nonequilibrium partition coefficient is near-unity or very different from
unity.

Consider first the cases where the effective desorption velocity is much
lower than the growth velocity. Then, a negligible fraction of the solute
atoms that land on the surface leave, and virtually all ultimately incorpo-



Copyright Elsevier 2015 This book has been licensed to Anna Fontcuberta Morral (anna.fontcuberta-morral@epfl.ch)

7.3. Surface Segregation and Trapping 283

rate into the growing crystal. On the one hand, if the partition coefficient
is unity, as in panel (c), then all the solute atoms in the surface layer are
incorporated into the bulk as growth proceeds. The depth profile of the
final solute concentration mimics within one to two monolayers the square
pulsed arrival rate of solute. On the other hand, if the partition coefficient
is much less than unity, as in panel (a), then only a fraction of the solute
atoms in the surface layer is incorporated into the bulk as growth proceeds.
The depth profile of the final solute concentration now tails off gradually,
as solute “rides” and gradually accumulates on the growing surface, and
continues to be incorporated into the crystal even after the square pulse of
solute has ended.

Consider second the cases where the effective desorption velocity is much
higher than the growth velocity. Then, many of the solute atoms that land
on the surface leave, and only a fraction ultimately incorporates into the
growing crystal. That fraction is kv/(vges + KV) = KU/v4es, and increases
linearly with the partition coefficient. The depth profile of the final solute
concentration again mimics the square pulsed arrival rate of solute, because
any solute in the surface layer that does not incorporate in the bulk desorbs
from, rather than “rides” on, the surface.!® Note that as growth proceeds,
there is a competition between desorption and trapping of solute. On the
one hand, if the partition coefficient is much less than unity, as in panel
(b), then most of the solute atoms in the surface layer eventually desorb,
and the absolute concentration of solute in the bulk is low. On the other
hand, if the partition coefficient is unity, as in panel (d), then more of the
solute atoms in the surface layer incorporate into the bulk, and the absolute
concentration of solute in the bulk is higher.

Of the four extremes of behavior just discussed, only one results in
a solute composition profile that is broadened beyond the square solute
arrival pulse. Unfortunately, that extreme is a commonly observed one, in
which appreciable solute segregates to and rides on the surface, rather than
either incorporating or desorbing. It may be circumvented to some extent
by reduced growth temperature, which reduces solute diffusion from the
bulk to the surface.!®

185 S, Iyer, R.A. Metzger, and F.G. Allen, “Sharp profiles with high and low doping
levels in silicon grown by molecular beam epitaxy,” J. Appl. Phys. 52, 5608 (1981).

19H.J. Gossman, E.F. Schubert, D.J. Eaglesham, and M. Cerullo, “Low-temperature
Si molecular beam epitaxy: Solution to the doping problem,” Appl. Phys. Lett. 57, 2440
(1990).
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Exercises

1.

Verify that minimizing Equation 7.14 is equivalent to the parallel
tangent construction.

. Show that, for a given bulk composition, the surface work given by

Equations 7.16 and 7.18 is minimum when the surface composition is
such that the surface and bulk phases are in equilibrium with each
other, i.e., when the parallel tangent construction is satisfied.

Show, beginning with Equation 7.16, that

67(Ag1_IﬁAU:ﬁ>Agl—xﬂ Aux"(/ax” = R — /_Lf\xgc. (7.52)

Note that both p3\ and p%y depend on z7.

. Derive Equation 7.15, the equilibrium partition coefficient between

bulk and surface phases for strictly regular bulk and surface phases.

. Derive Equation 7.26 for the dependence of the equilibrium coverage

of a strictly regular adsorbate phase on pressure.

. For a given Péclet number, the nonequilibrium partition coefficient, ,

is higher for aperiodic than for periodic passage of steps. Physically,
why is this so?

In principle, solute segregation and trapping may occur at a number
of stages in the growth cycle. Solute may ride ahead of the edges of
steps sweeping laterally over terraces by horizontal diffusion follow-
ing kink flow; they may also ride on the surface by vertical diffusion
following step flow. Suppose the horizontal and vertical interdiffu-
sivities at the step edges and at the surface are Dy and Dy, and
that the average terrace width is L/a, in units of lattice spacings.
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Assuming periodic partitionless kink flow followed by horizontal dif-
fusive segregation, what is the nonequilibrium partition coefficient
Kstep associated with segregation ahead of the moving step? Then,
assuming periodic, non-partitionless step flow followed by vertical
diffusive segregation, what is the nonequilibrium partition coefficient
Kterr associated with segregation on top of the growing terraces?
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