
Solutions of Exercises of Chapter 8

Solution 8.1: The graphical representation of y(kh) is represented in figure 1, which gives :

y(kh) = {0, 0.5, 1.5, 3, 3, 2.5, 1.5, 0, 0, 0, ...}

Figure 1: Graphical evaluation of the output of a discrete system.
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Solution 8.2:

1. The sampling frequency should be chosen between 20 to 50 times the closed-loop bandwidth. There-
fore, it can be chosen between 200 to 500 rad/s. Let’s choose it as ωs = 400 rad/s then the sampling
time will be h = 2π/ωs = 15.7ms.

The cutoff frequency of the anti-aliasing filter should be larger than the bandwidth of the system
and smaller than the Nyquist frequency (half of the sampling frequency), i.e. 10 < ωc < 200. A
forth-order butterworth filter with a cutoff frequency of ωc = 100 rad/s is given by:

F (s) =
1(

s
ωc

)4

+ 2.613
(

s
ωc

)3

+ 3.411
(

s
ωc

)2

+ 2.613
(

s
ωc

)
+ 1

2. In order to have between 5 and 10 samples during the rise-time the sampling period can be chosen
2 < h < 4 ms. If we choose h = 3 ms then the sampling frequency will be ωs = 2 ∗ π/h = 2094 rad/s.
The cutoff frequency of the anti-aliasing filter can be chosen as ωc = 1000 rad/s and be applied by
the above butter-worth filter.

Solution 8.3:

(a) We note that the signal w(kh) is equal to :

{..., 0,0, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0, 0, ...} = 2{..., 0,0, 0, 0, 1, 1, 1, 1, 1, 1, 1, ...}
− 2{..., 0,0, 0, 0, 0, 0, 0, 0, 0, 1, 1, ...}

which is the difference between two delayed discrete step signals. The first step signal has a delay of
3 and the second step has a delay of 8. So the Z transform will be:

W (z) = 2z−3 z

z − 1
− 2z−8 z

z − 1
= 2

z5 − 1

z8 − z7

where z/(z − 1) is the Z transform of a step signal. The polynomial division of the numerator of this
rational function by it’s denominator gives :

W (z) = 2(z−3 + z−4 + z−5 + z−6 + z−7)

which has a convergence radius of r = 0. Note that the same result could be obtained directly by
applying the definition of the Z transform.

(b) We know that for a discrete ramp signal we have

Z{kh} =
hz

(z − 1)2
|z| > 1 = r

Using the complex derivative property of the Z transform, we have:

Z{1
2
(kh)2} =

1

2
Z{khkh} = −1

2
hz

d

dz

(
hz

(z − 1)2

)
= −1

2
hz

h(z − 1)2 − 2(z − 1)hz

(z − 1)4
=

h2z(z + 1)

2(z − 1)3
|z| > 1 = r

(c) The partial fraction decomposition is of the form:
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(d) The numerical inversion formula gives, with a1 = −3, a2 = 2, b0 = 0, b1 = 1 and b2 = 3:

w(0) = 0

w(h) = 1− 0(−3)

w(2h) = 3− (0× 2 + 1(−3)) = 6

w(3h) = 0− (0× 0 + 1× 2 + 6(−3)) = 16

w(4h) = 0− (0× 0 + 1× 0 + 6× 2 + 16(−3)) = 36

We deduce:
{w(kh)} = {. . . ,0, 1, 6, 16, 36, . . .}

(e) It is clear that for a > 0 the exponential term e−akh goes to zero when k → ∞. Therefore, as sin(ωkh)
is bounded the signal converges to zero. For a ≤ 0 there will be no limit for the signal when k → ∞.
This can be shown by the final value theorem as well. The Z transform of w(kh) = e−akh sin(ωkh) is:

W (z) =
e−ah sin(ωh)z

z2 + 2e−ah cos(ωh)z + e−2ah

The poles of W (z) are:

e−ah cos(ωh)±
√
e−2ah cos2(ωh)− e−2ah = e−ah

(
cos(ωh)±

√
cos2(ωh)− 1

)
= e−ah

(
cos(ωh)± j sin(ωh)

)
= e−ahe±jωh

The modulus e−ah of these poles is strictly smaller than 1 if and only if a > 0. In this case, the final
value theorem can be employed to give :

lim
k→∞

ω(kh) = lim
z→1

(z − 1)
e−ah sin(ωh)z

z2 − 2e−ah cos(ωh)z + e−2ah
= 0

When a ≤ 0, one hypothesis of the final value theorem is not satisfied. A wrong result, limk→∞ w(kh) =
0, is obtained if this theorem is used, even though this limit does not exist.
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Solution 8.4: The Z transform of a discrete unit step signal is:

U(z) =
z

z − 1

The step response is:

Y (z) = G(z)U(z) =
0.393

z − 0.607

z

z − 1
= c0 +

c1z

z − 0.607
+

c2z

z − 1

The calculation of the coefficients c0, c1 and c2 gives:

c0 = 0

c1 = lim
z→0.607

(
z − 0.607

z

0.393z

(z − 0.607)(z − 1)

)
= −1

c2 = lim
z→1

(
z − 1

z

0.393z

(z − 0.607)(z − 1)

)
= 1

Then
y(kh) = −(0.607)k + 1 , k ≥ 0

Solution 8.5: The ZOH conversion formula leads to:

H(z) = (1− z−1)Z
{
L−1

( γ

s3

)}
The Z transform table, gives:

Z
{
L−1

(
1

s3

)}
=

h2z(z + 1)

2(z − 1)3

Therefore,

H(z) = γ
z − 1

z

h2z(z + 1)

2(z − 1)3
= γ

h2

2

z + 1

(z − 1)2

Solution 8.6: The transfer function H(z) = Y (z)/U(z) is computed as follows:

H(z) = (1− z−1)Z
{
L−1

(
1

s(s+ 1)

)}
=

z − 1

z
Z
{
L−1

(
1

s
− 1

s+ 1

)}
=

z − 1

z

(
z

z − 1
− z

z − e−h

)
= 1− z − 1

z − e−h

=
1− e−h

z − e−h

Introducing U(z) =
z

z − 1
we have:

Y (z) = H(z)U(z) =
1− e−h

z − e−h

z

z − 1
= c0 +

c1z

z − e−h
+

c2z

z − 1

where:

c0 = Y (0) = 0

c1 = lim
z→e−h

(
z − e−h

z

(1− e−h)z

(z − e−h)(z − 1)

)
= −1

c2 = lim
z→1

(
z − 1

z

(1− e−h)z

(z − e−h)(z − 1)

)
= 1
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Therefore:

y(kh) = Z−1(Y (z)) = Z−1

(
− z

z − e−h
+

z

z − 1

)
= 1− e−kh, k ≥ h

The step response of the isolated continuous-time model is:

L−1

(
1

s+ 1

1

s

)
= L−1

(
1

s
− 1

s+ 1

)
= 1− e−t, t ≥ 0

Sampling this signal with the sampling period h, we obtain:

(1− e−t)
∣∣
t=kh

= 1− e−kh, k ≥ 0

This result is identical to the step response of the system given in the figure because the D-A converter
transforms the discrete unit step into, exactly, an analog unit step. This equivalence between signals is not
valid for any input u(kh). For instance, a discrete ramp u(kh) = kh, k ≥ 0 does not yield at the output of
the D-A an analog ramp t, t ≥ 0. When the input u(kh) is a discrete unit step the equivalence remains valid
for any analog element placed between the converters.

Solution 8.7:

Backward Euler: In this method s will be replaced with (z − 1)/zh.

K(s) =
1

s
⇒ Kd(z) =

zh

z − 1

K(s) =
s

s2 + 2
⇒ Kd(z) =

z−1
zh(

z−1
zh

)2
+ 2

=
zh(z − 1)

(1 + 2h2)z2 − 2z + 1

K(s) =
s+ 4

s+ 3
⇒ Kd(z) =

z−1
zh + 4
z−1
zh + 3

=
(1 + 4h)z − 1

(1 + 3h)z − 1

K(s) =
1

s(s+ 8)
⇒ Kd(z) =

1
z−1
zh

(
z−1
zh + 8

) =
z2h2

(z − 1)((1 + 8h)z − 1)

Tustin: In this method s is replaced with
2

h

z − 1

z + 1
.

K(s) =
1

s
⇒ Kd(z) =

h

2

z + 1

z − 1

K(s) =
s

s2 + 2
⇒ Kd(z) =

h
2 (z − 1)(z + 1)(

1 + h2

2

)
z2 − 2

(
h2

2 − 1
)
z + 1 + h2

2

K(s) =
s+ 4

s+ 3
⇒ Kd(z) =

(
1 + 4h

2

)
z + 4h

2 − 1(
1 + 3h

2

)
z + 3h

2 − 1

K(s) =
1

s(s+ 8)
⇒ Kd(z) =

(z + 1)2
(
h
2

)2
(z − 1)

((
1 + 8h

2

)
z + 8h

2 − 1
)

Zero-pole matching: In this method the poles and zeros are mapped by an exponential mapping and
then the steady-state gain is matched in one frequency point (generally at ω = 0).

1. There is only one pole at zero which is mapped to 1.

K(s) =
1

s
⇒ Kd(z) =

1

z − 1
· c

The constant should be computed to match the gain at one frequency. Here, we can’t match
gains at DC, since the gain is infinite. Instead, we choose to match the gains at (for example) the
crossover frequency, ωc = 1.

|Kd(e
jωch)| = |K(jωc)| =

∣∣∣∣ 1

ejh − 1

∣∣∣∣ · c = ∣∣∣∣1j
∣∣∣∣ = 1 ⇒ c = |ejh − 1|
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Therefore,

Kd(z) =
|ejh − 1|
z − 1

2. There are two poles at ±j
√
2 and one zero at zero:

Kd(z) = c · z − e0h

(z − ejh
√
2)(z − e−jh

√
2)

= c · z − 1

z2 − 2z cosh
√
2 + 1

The transfer functions will already match gains at zeros frequency (K(0) = Kd(1) = 0), so we
need to choose another frequency to match. In this case, we take ω = 1 (which is as good as any,
since the ‘best’ frequency to take is application dependent):

|K(j)| =
∣∣∣∣ j

−1 + 2

∣∣∣∣ = |Kd(e
jh)| = c ·

∣∣∣∣ ejh − 1

ej2h − 2ejh cosh
√
2 + 1

∣∣∣∣
Therefore,

c =

∣∣∣∣∣ej2h − 2ejh cosh
√
2 + 1

ejh − 1

∣∣∣∣∣
3. There are one pole at −3 and one zero at −4.

Kd(z) = c · z − e−4h

z − e−3h

Choose the gain c so that the discrete and continuous models match at DC:

|K(0)| = 4/3 = |Kd(1)| = c
1− e−4h

1− e−3h

Therefore,

c =
4

3

1− e−3h

1− e−4h

4. There are one pole at 0, one pole at −8, and one zero at ∞ (deg of denominator - deg of numerator
- 1).

Kd(z) = c
z + 1

(z − 1)(z − e−8h)

We can’t match the gains at zero frequency, so we choose another one, say ω = 1 for convenience:

|K(j)| = 1

|j + 8|
= 0.124 = |Kd(e

jh)| = c

∣∣∣∣ ejh + 1

(ejh − 1)(ejh − e−8h)

∣∣∣∣
Therefore,

c = 0.124

∣∣∣∣ (ejh − 1)(ejh − e−8h)

ejh + 1

∣∣∣∣
Solution 8.8:

Backward Euler: In this method z is replaced with 1/(1−hs). For h = 1 we have the following continuous-
time model approximation.

Gc(s) =
0.04762 + 0.04762(1− s)

1− 0.9048(1− s)
=

0.09524− 0.04762s

0.9048s+ 0.0952

Tustin: In this method z is replaced with
1 + hs/2

1− hs/2
. For h = 1 we have:

Gc(s) =
0.04762(2 + s) + 0.04762(2− s)

(2 + s)− 0.9048(2− s)
=

0.09524

0.9524s+ 0.0952

6



Solution 8.9: The discretized transfer function of the system to be controlled is computed as follows:

H(z) = (1− z−1)Z
{
L−1

(
1

s(s+ 1)

)}
=

z − 1

z
Z
{
L−1

(
1

s
− 1

s+ 1

)}
=

z − 1

z
Z
(
1− e−kh

)
=

z − 1

z

(
z

z − 1
− z

z − e−h

)
= 1− z − 1

z − e−h
=

1− e−h

z − e−h

We deduce that the transfer function in closed loop is:

Y (z)

Yc(z)
=

Kp
1−e−h

z−e−h

1 +Kp
1−e−h

z−e−h

=
Kp(1− e−h)

z − e−h +Kp(1− e−h)

The BIBO stability of the closed loop is guaranteed if and only if the pole at z = e−h −Kp(1 − e−h) is in
the interior of the unit circle:

−1 < e−h −Kp(1− e−h) < 1

Where finally we have that if Kp > 1 the closed loop system is BIBO stable for:

0 < h < − ln
Kp − 1

Kp + 1

If −1 < Kp ≤ 1 the closed-loop system is BIBO stable for any h > 0 and if Kp ≤ −1 the closed-loop system
is unstable for any sampling period.

Solution 8.10: The transfer function of the discretized system to be controlled is computed as follows:

H(z) = (1− z−1)Z
{
L−1

(
4

s(s+ 2)

)}
=

z − 1

z
Z
{
L−1

(
2

s
− 2

s+ 2

)}
=

z − 1

z

(
2

z

z − 1
− 2

z

z − e−0.05

)
= 2

(
1− z − 1

z − e−0.05

)
= 2

1− e−0.05

z − e−0.05
≃ 0.0975

z − 0.95

It follows that the closed loop transfer function is:

Y (z)

Yc(z)
=

Kp
0.0975
z−0.95

1 +Kp
0.0975
z−0.95

=
0.0975Kp

z − 0.95 + 0.0975Kp

For stability we require that:

−1 < −0.95 + 0.0975Kp < 1 ⇔ −0.513 < Kp < 20

Taking only positive gains, we have: 0 < Kp < 20. Therefore the ultimate gain is Ku = 20.

Solution 8.11: Using the backward transformation we obtain:

K(q−1) = KP +
KIh

1− q−1
=

(KP +KIh)−KP q
−1

1− q−1

Note that u(t) = K(q−1)[r(t)− y(t)] or:

(1− q−1)u(t) = [(KP +KIh)−KP q
−1]r(t)− [(KP +KIh)−KP q

−1]y(t)

Comparing the above equation with the control law in an RST controller

S(q−1)u(t) = T (q−1)r(t)−R(q−1)y(t)

leads to:

R(q−1) = (KP +KIh)−KP q
−1

S(q−1) = 1− q−1

T (q−1) = (KP +KIh)−KP q
−1

7



Solution 8.12: In the first step G(z) should be converted to G(q−1) by replacing z with q:

G(q−1) =
0.5q − 0.4

q2 − 1.2q + 0.35
=

0.5q−1 − 0.4q−2

1− 1.2q−1 + 0.35q−2

Therefore, nA = 2, nB = 2.

1. We have nR = nA − 1 = 1 and nS = nB − 1 = 1, therefore, the Bezout equation is:

(1− 1.2q−1 + 0.35q−2)(1 + s1q
−1) + (0.5q−1 − 0.4q−2)(r0 + r1q

−1) = 1− 0.7q−1

By making equal the coefficients of the same power of q on both sides, we obtain:

−1.2 + s1 + 0.5r0 = −0.7

0.35− 1.2s1 − 0.4r0 + 0.5r1 = 0 ⇒ s1 = 1.333, r0 = −1.666, r1 = 1.1667

0.35s1 − 0.4r1 = 0

Then T (q−1) = P (1)/B(1) = 0.3/0.1 = 3.

2. To have an integrator in the controller we should take HS(q
−1) = 1− q−1 and define

A′(q−1) = A(q−1)HS(q
−1) = 1− 2.2q−1 + 1.55q−2 − 0.35q−3

Then nR′ = 2 and we should solve:

(1− 2.2q−1 + 1.55q−2 − 0.35q−3)(1 + s1q
−1) + (0.5q−1 − 0.4q−2)(r0 + r1q

−1 + r2q
−2) = 1− 0.7q−1

Which leads to the following matrix equality using the Sylvester matrix:
1 0 0 0 0

−2.2 1 0.5 0 0
1.55 −2.2 −0.4 0.5 0
−0.35 1.55 0 −0.4 0.5

0 −0.35 0 0 −0.4




1
s′0
r0
r1
r2

 =


1

−0.7
0
0
0


The solution to this equation is:

R(q−1) = 21.667− 26.833q−1 + 8.1667q−2

S(q−1) = 1− 10.333q−1 + 9.333q−2

For an RST controller with integrator the polynomial T (q−1) will be T (q−1) = R(1) = 3.

Solution 8.13: For the MRC problem, we should check first if the zeros of B⋆(q−1) are inside the unit circle.
We have: B⋆(q−1) = 0.5− 0.4q−1 and d = 1, therefore, 0.5z − 0.4 = 0 gives z = 0.8 which is inside the unit
circle. Then, we should compute the closed-loop polynomial Pd(q

−1). We have:

p1 = −2e−ζωnh cos
(
ωnh

√
1− ζ2

)
= −0.7417

p2 = e−2ζωnh = 0.2019

Therefore, Pd(q
−1) = 1− 0.7417q−1 + 0.2019q−2 and we choose P (q−1) = Pd(q

−1)B⋆(q−1).

1. For RST controller design we should solve the following equation:

A(q−1)S(q−1) + q−1B⋆(q−1)R(q−1) = Pd(q
−1)B⋆(q−1)

This equation has a solution if S(q−1) = S′(q−1)B⋆(q−1), that leads to:

A(q−1)S′(q−1) + q−1R(q−1) = Pd(q
−1)
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We have nR = nA − 1 = 1 and nS′ = 1− 1 = 0. Thus R(q−1) = r0 + r1q
−1 and S′(q−1) = 1:

1− 1.2q−1 + 0.35q−2 + r0q
−1 + r1q

−2 = 1− 0.7417q−1 + 0.2019q−2

Solving the equation gives r0 = 0.4583 and r1 = −0.1481. So the final RST controller is:

R(q−1) = 0.4583− 0.1481q−1

S(q−1) = B⋆(q−1)S′(q−1) = 0.5− 0.4q−1

T (q−1) = 1− 0.7417q−1 + 0.2019q−2

2. To add a fixed term HR(q
−1) = 1 + q−1 in the controller, we define R(q−1) = HR(q

−1)R′(q−1) and
we should solve the following Bezout equation:

A(q−1)S′(q−1) + q−1(1 + q−1)R′(q−1) = Pd(q
−1)

In order to have a solution nS′ = 1 and so S′(q−1) = 1 + s′1q
−1 and nR′ = nA − 1 = 1, therefore:

(1− 1.2q−1 + 0.35q−2)(1 + s′1q
−1) + q−1(1 + q−1)(r′0 + r′1q

−1) = 1− 0.7417q−1 + 0.2019q−2

which leads to the following system of linear equations:

−1.2 + s′1 + r′0 = −0.7417

−1.2s′1 + 0.35 + r′0 + r′1 = 0.2019 ⇒ s′1 = 0.2378, r′0 = 0.2205, r′1 = −0.0832

0.35s′1 + r′1 = 0

So the final RST controller is:

R(q−1) = HR(q
−1)R′(q−1) = (1 + q−1)(0.2205− 0.0832q−1) = 0.2205 + 0.1373q−1 − 0.0832q−2

S(q−1) = B⋆(q−1)S′(q−1) = (0.5− 0.4q−1)(1 + 0.2378q−1) = 0.5− 0.2811q−1 − 0.0951q−2

T (q−1) = 1− 0.7417q−1 + 0.2019q−2

Solution 8.14: The Bezout equation is:

A(q−1)S(q−1) +B(q−1)R(q−1) = A(q−1)

We take R(q−1) = R′(q−1)A(q−1) and simplify the Bezout equation as follows:

S(q−1) +B(q−1)R′(q−1) = 1

This equation has many solutions, choosing R′(q−1) = r0 (to obtain the lowest order solutions), we obtain:

S(q−1) = 1−B(q−1)r0 = 1− (0.5q−1 − 0.4q−2)r0

For any value of r0 we have a valid solution. In order to have an integrator in the controller, we pose S(1) = 0
that leads to:

1− 0.5r0 + 0.4r0 = 0 ⇒ r0 = 10

Therefore:

R(q−1) = R′(q−1)A(q−1) = 10− 12q−1 + 3.5q−2

S(q−1) = 1− 5q−1 + 4q−2

T (q−1) = R(1) = 1.5
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Solution 8.15:

1. H(z) using the ZOH method:

H(z) = z−2 z − 1

z
Z
{
L−1

{
2.6

s(s+ 1.3)

}}
= z−2 z − 1

z
Z
{
L−1

{
2

s
+

−2

s+ 1.3

}}
= z−2 z − 1

z

[
2z

z − 1
− 2z

z − 0.85

]
=

0.3z−2

z − 0.85
=

0.3z−3

1− 0.85z−1

2. From H(z) we obtain A(q−1) = 1− 0.85q−1, B(q−1) = 0.3q−3. In order to have an integrator we take
HS(q

−1) = 1− q−1 and

A′(q−1) = (1− 0.85q−1)(1− q−1) = 1− 1.85q−1 + 0.85q−2

Then we should solve the following Bezout equation:

A′(q−1)S′(q−1) +B(q−1)R(q−1) = 1− 0.8q−1

We have nR = nA′ − 1 = 1 and nS′ = nB − 1 = 2, which leads to R(q−1) = r0 + r1q
−1 and

S′(q−1) = 1 + s1q
−1 + s2q

−2.

(1− 1.85q−1 + 0.85q−2)(1 + s1q
−1 + s2q

−2) + 0.3q−3(r0 + r1q
−1) = 1− 0.8q−1

s1 − 1.85 = −0.8 ⇒ s1 = 1.05

0.85− 1.85s1 + s2 = 0 ⇒ s2 = 1.05× 1.85− 0.85 = 1.09

− 1.85s2 + 0.85s1 + 0.3r0 = 0 ⇒ r0 = (1.85× 1.09− 0.85× 1.05)3.33 = 3.76

0.85s2 + 0.3r1 = 0 ⇒ r1 = (−0.85× 1.09)3.33 = −3.095

Therefore:

R(q−1) = 3.76− 3.095q−1

S(q−1) = (1 + 1.05q−1 + 1.09q−2)(1− q−1)

T (q−1) = R(1) = 0.6667

Solution 8.16: The desired bandwidth is 2 rad/s then:

τ = 0.5 ⇒ M(s) =
1

0.5s+ 1
=

2

s+ 2
⇒ Hm(z) = (1− z−1)Z

{
L−1

(
2

s(s+ 2)

)}

Hm(z) = (1− z−1)Z
{
L−1

(
1

s
+

−1

(s+ 2)

)}
= (1− z−1)

(
z

z − 1
− z

z − e−2h

)
=

0.18

z − 0.82

Then we compute the desired closed-loop poles for regulation based on ωn = 4, ζ = 0.8:

p1 = −2e−ζωnh cos(ωnh
√
1− ζ2) = −1.41 ; p2 = e−2ζωnh = 0.527

Then we compute H(q−1):

H(z) =
4(0.8− z)

z(0.5− z)(1.8− z)
=

3.2− 4z

z3 − 2.3z2 + 0.9z
⇒ H(q−1) =

−4q−2 + 3.2q−3

1− 2.3q−1 + 0.9q−2

⇒ A(q−1) = 1− 2.3q−1 + 0.9q−2 , B⋆(q−1) = −4 + 3.2q−1 , d = 2

Note that B⋆(q−1) has a root inside the unit circle at 0.8. We take HS(q
−1) = 1− q−1. Therefore, nS′ = 1

and nR = nA + nHS
− 1 = 2.
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Then we write the Bezout equation:

A(q−1)(1− q−1)S′(q−1)B⋆(q−1) + q−2B⋆(q−1)R(q−1) = P (q−1)B⋆(q−1)

(1− 3.3q−1 + 3.2q−2 − 0.9q−3)(1 + s′1q
−1) + q−2(r0 + r1q

−1 + r2q
−2) = 1− 1.41q−1 + 0.527q−2

− 3.3 + s′1 = −1.41 ⇒ s′1 = 1.89

3.2− 3.3s′1 + r0 = 0.527 ⇒ r0 = 3.564

− 0.9 + 3.2s′1 + r1 = 0 ⇒ r1 = −5.148

− 0.9s′1 + r2 = 0 ⇒ r2 = 1.7

And the final RST controller is given as:

R(q−1) = 3.564− 5.148q−1 + 1.7q−2

S(q−1) = (1 + 1.89q−1)(1− q−1)(3.2q−1 − 4) = −4− 6.76q−1 + 4.712q−2 + 6.05q−3

T (q−1) = 1− 1.41q−1 + 0.527q−2
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