Solutions of Exercises of Chapter 8

Solution 8.1: The graphical representation of y(kh) is represented in figure 1, which gives :
y(kh) ={0,0.5,1.5,3,3,2.5,1.5,0,0,0, ...}
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Figure 1: Graphical evaluation of the output of a discrete system.



Solution 8.2:

1. The sampling frequency should be chosen between 20 to 50 times the closed-loop bandwidth. There-
fore, it can be chosen between 200 to 500 rad/s. Let’s choose it as ws = 400 rad/s then the sampling
time will be h = 27 /ws = 15.7ms.

The cutoff frequency of the anti-aliasing filter should be larger than the bandwidth of the system
and smaller than the Nyquist frequency (half of the sampling frequency), i.e. 10 < w. < 200. A
forth-order butterworth filter with a cutoff frequency of w. = 100 rad/s is given by:

1
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(E) +2.613 (:) 43411 (:) 42,613 (w—) 1

2. In order to have between 5 and 10 samples during the rise-time the sampling period can be chosen
2 < h < 4 ms. If we choose h = 3 ms then the sampling frequency will be wy = 2 * 7/h = 2094 rad/s.
The cutoff frequency of the anti-aliasing filter can be chosen as w. = 1000 rad/s and be applied by
the above butter-worth filter.

F(s) =

Solution 8.3:
(a) We note that the signal w(kh) is equal to :

{..,0,0,0,0,2,2,2,2,2,0,0,0,0,...} =2{...,0,0,0,0,1,1,1,1,1,1,1,...}
—2{...,0,0,0,0,0,0,0,0,0,1,1,...}

which is the difference between two delayed discrete step signals. The first step signal has a delay of
3 and the second step has a delay of 8. So the Z transform will be:
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W(z) =223 :

where z/(z — 1) is the Z transform of a step signal. The polynomial division of the numerator of this
rational function by it’s denominator gives :

W) =2z 424 4+27 4254277

which has a convergence radius of » = 0. Note that the same result could be obtained directly by
applying the definition of the Z transform.

(b) We know that for a discrete ramp signal we have

hz
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Using the complex derivative property of the Z transform, we have:
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(c) The partial fraction decomposition is of the form:
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Calculation of the coefficients ¢y, €1, €2 and ¢j :
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(d) The numerical inversion formula gives, with a; = —3,a2 = 2,bp = 0,b1 = 1 and by = 3:
w(0) =0
w(h) =1—0(~3)
w(2h) =3 — (0x2+1(—3)) =6
w(3h) =0—(0x 0+ 1 x 2+ 6(—3)) = 16
w(4h) =0—(0x0+1x0+6x2416(-3)) =36
We deduce:

{w(kh)} ={...,0,1,6,16,36,...}

(e) Tt is clear that for a > 0 the exponential term e~*" goes to zero when k — co. Therefore, as sin(wkh)
is bounded the signal converges to zero. For a < 0 there will be no limit for the signal when k& — oc.
This can be shown by the final value theorem as well. The Z transform of w(kh) = e~**" sin(wkh) is:

e~ sin(wh)z

22 + 2e~% cos(wh)z + e—20h

W(z) =

The poles of W (z) are:

e~ cos(wh) £ \/6*2’1’1 cos?(wh) — e—2ah = e*“h<cos(wh) + +/cos?(wh) — 1)
= e_ah<cos(wh) +j sin(wh)) = e thetivh

The modulus e~*" of these poles is strictly smaller than 1 if and only if @ > 0. In this case, the final

value theorem can be employed to give :

. ) e~ sin(wh)z
kli}HOlo w(kh) = iﬂ(z — 1)22 — 2e—h cos(wh)z + e 20k 0

When a < 0, one hypothesis of the final value theorem is not satisfied. A wrong result, limy_,~, w(kh) =
0, is obtained if this theorem is used, even though this limit does not exist.



Solution 8.4: The Z transform of a discrete unit step signal is:

The step response is:

0.393 z c1z CoZ

Y(z) = RS
(2) = G(x)U(2) 2060721 T 20607 2-1

The calculation of the coefficients cg, ¢; and ¢y gives:
Co = 0

=-1

o (20607 0.3932
1T L S0607 z  (2—0607)(z—1)

o0 — Tim [ 2 -1 0.393z 1
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Then
y(kh) = —(0.607)" +1 |, k>0

Solution 8.5: The ZOH conversion formula leads to:

H(z) =(-2hz{c (%)}

a1 _ hPz(z+1)
e (3)}- %
z—1h%2(z4+1)  h* 241
: 2z—1p3 2 (z-1)2

The Z transform table, gives:

Therefore,

H(z) =~

Solution 8.6: The transfer function H(z) = Y (z)/U(z) is computed as follows:

omo-re{e () - 2o ()

_z—1 z z _q z—1
Tz z2—1 z—eh ) z—eh

Introducing U(z) = Ll we have:
z

where:




Therefore:

y(kh) = 271V (2)) = 27! (— S Z) —1—e* k>h

z—eh  z2-1

The step response of the isolated continuous-time model is:

1 1 1 1
£t )=t (=~ =1l—e' t>0
s+1s s s+1

Sampling this signal with the sampling period h, we obtain:
(1—e)| =l—e¢* k>0

This result is identical to the step response of the system given in the figure because the D-A converter
transforms the discrete unit step into, exactly, an analog unit step. This equivalence between signals is not
valid for any input w(kh). For instance, a discrete ramp w(kh) = kh,k > 0 does not yield at the output of
the D-A an analog ramp ¢,¢ > 0. When the input u(kh) is a discrete unit step the equivalence remains valid
for any analog element placed between the converters.

t=kh

Solution 8.7:
Backward Euler: In this method s will be replaced with (z — 1)/zh.

1 zh
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_s+4 _(1+45)=+45 1
K(s) = s+3 = Kalz) = (1+3§)z+3§—1
1 B +12 (%)
K(S)—m:”(d(z)_ (Zf1)((1+8g),:+8g71)

Zero-pole matching: In this method the poles and zeros are mapped by an exponential mapping and
then the steady-state gain is matched in one frequency point (generally at w = 0).

1. There is only one pole at zero which is mapped to 1.

1 1
K(s)=-=Ky(z)=—— ¢
() =+ = Ka() = ——

The constant should be computed to match the gain at one frequency. Here, we can’t match
gains at DC, since the gain is infinite. Instead, we choose to match the gains at (for example) the
crossover frequency, w, = 1.

1 .
-c:’,‘zl = c=|e/h —1]

J

[Ka(e?")| = | K (jwe)| = | ——




Therefore,
el —1
Kd(Z)=7| pou |

2. There are two poles at +j1/2 and one zero at zero:

Ka(2) z— e z—1
z)=c- =c-
¢ (z — e3hV2)(z — e=ihV2) 22 —2zcoshy/2 + 1

The transfer functions will already match gains at zeros frequency (K (0) = Kg(1) = 0), so we
need to choose another frequency to match. In this case, we take w = 1 (which is as good as any,
since the ‘best’ frequency to take is application dependent):

; ih
KO = | g | = e = | T
—1+2 €32k — 2eih cos hy/2 + 1
Therefore,
_ eI2h — 92eih cos ha/2 + 1
‘= el —1
3. There are one pole at —3 and one zero at —4.
o
Ki(z)=c- o

Choose the gain ¢ so that the discrete and continuous models match at DC:

1— e—4h
|K(0)| =4/3 =|Ka(1)| = o —
Therefore,
41—e3h
c=-———
31—e4h
4. There are one pole at 0, one pole at —8, and one zero at oo (deg of denominator - deg of numerator
- 1).
1
Kq(z)=c G

(z—1)(z —e8)
We can’t match the gains at zero frequency, so we choose another one, say w = 1 for convenience:
e 4+ 1
(= (e — )

. 1 .
|K(j)| = T +8l =0.124 = |K4(e’")| = ¢

Therefore, _ _
(e~ (e — =)

c=0.124 i 11

Solution 8.8:

Backward Euler: In this method z is replaced with 1/(1—hs). For h = 1 we have the following continuous-
time model approximation.

~0.04762 4 0.04762(1 — s)  0.09524 — 0.04762s

Ge(s) = =
(5) 1—0.9048(1 — 5 0.90485 + 0.0952
1+ hs/2
Tustin: In this method z is replaced with 1—&—hs§2 For h =1 we have:
—ns
Guls) = 0.04762(2 + s) + 0.04762(2 — s) 0.09524
o (24 5) — 0.9048(2 — s) ~0.9524s + 0.0952



Solution 8.9: The discretized transfer function of the system to be controlled is computed as follows:

ne -z {e ()} = e (B )

z—1 z—1 z z z—1 1—eh
= Z(l—e ) = — =1- =
z (1=e™) z (z—l z—e—h> z—eh  z—eh
We deduce that the transfer function in closed loop is:
Y(z) Kp; e Y
Y.(z) + K= Loz—ehH Ky(1—eh)

The BIBO stability of the closed loop is guaranteed if and only if the pole at z = e — K,(1 — e™") is in
the interior of the unit circle:

“l<e"—K,(1-e M <1
Where finally we have that if K, > 1 the closed loop system is BIBO stable for:

-1
h<—Iln==2
0<h< nKp_‘_1

If -1 < K,, <1 the closed-loop system is BIBO stable for any h > 0 and if K, < —1 the closed-loop system
is unstable for any sampling period.

Solution 8.10: The transfer function of the discretized system to be controlled is computed as follows:

e () (o)
-1 <zzf1 2Z_§_o_os> 2(1 z—ze—é%)

1—e %% 0.0975

z—e 005" »_0.95

It follows that the closed loop transfer function is:

=2

Y() Kt 0.0975K,,
Ye(z) 1+ K280 2—0.95+ 0.0975K,

For stability we require that:
-1 <-0.954+0.0975K, <1 & —0.513 <K, <20
Taking only positive gains, we have: 0 < K, < 20. Therefore the ultimate gain is K, = 20.

Solution 8.11: Using the backward transformation we obtain:

Kih _(KP—FK[h)—qu*l
1—q¢ 1 1—q71

K@Y =Kp+
Note that u(t) = K(q~1)[r(t) — y(t)] or:
(1 —q u(t) = [(Kp + Krh) — Kpq~'r(t) — [(Kp + Kih) — Kpq~']y(t)
Comparing the above equation with the control law in an RST controller

S(g~Yul(t) = T(g")r(t) — R~ y(t)
leads to:

(q ) (KP+KI) Kpq™*

T(g ") = (KP+K1h) Kpq™*



Solution 8.12: In the first step G(z) should be converted to G(q~1!) by replacing z with ¢:

_ -1 _ -2
G(qil) _ 0.5¢g—04 _ 0.5q 0.4q
¢?—-12¢+035 1-1.2¢71+0.35g—2

Therefore, nqg = 2, ng = 2.
1. We have ng =nyg —1=1and ng = np — 1 = 1, therefore, the Bezout equation is:

(1—1.2¢71 +0.35¢7 ) (1 +s1¢7 ") +(0.5¢g7 — 0.4 H)(ro +7r1¢ ') =1-0.7¢""
By making equal the coefficients of the same power of ¢ on both sides, we obtain:

—1.2+ 51 4+0.5r9 = =0.7
0.35 —1.25;1 —0.4r9 + 0.5y =0 = 51 = 1.333,r9g = —1.666,7r; = 1.1667
0.35s1 —0.4r1 =0

Then T(¢~") = P(1)/B(1) = 0.3/0.1 = 3.
2. To have an integrator in the controller we should take Hg(¢~!) =1 — ¢~! and define

A=A HHs(g ) =1-22¢" 4+ 1.55¢7% — 0.35¢3
Then ng = 2 and we should solve:
(1—-2.2¢7' +1.55¢72 —0.35¢ ) (1 + 514 ") + (0.5¢ 1 = 0.4 %) (ro + 11" +1r2¢73) =1-0.7¢""

Which leads to the following matrix equality using the Sylvester matrix:

1 0 0 0 0 1
—22 1 05 0 0 s) —0.7
155 -22 —04 05 0 o | =] 0

—035 155 0 —04 05 r 0

0 —035 0 0 —04 || r 0

The solution to this equation is:

R(q™Y) = 21.667 — 26.833¢™ ! + 8.1667¢ >
S(g™") =1-10.333¢"" + 9.333¢ 2

For an RST controller with integrator the polynomial T(¢~1) will be T'(¢71) = R(1) = 3.

Solution 8.13: For the MRC problem, we should check first if the zeros of B*(¢~!) are inside the unit circle.
We have: B*(¢~!) = 0.5 — 0.4¢~! and d = 1, therefore, 0.5z — 0.4 = 0 gives z = 0.8 which is inside the unit
circle. Then, we should compute the closed-loop polynomial Py(g~!). We have:

p1 = —2e 9l cos (wnh\/ 1- (2) = —0.7417
Py = e~ 2%@nl — 0.2019

Therefore, Py(q~!) =1 —0.7417¢~! + 0.2019¢2 and we choose P(q~') = Py(q~')B*(¢1).

1. For RST controller design we should solve the following equation:
A NS¢ ) +q "B (R = PalgH)B (g7
This equation has a solution if S(¢7!) = S’(¢71)B*(¢™!), that leads to:

Alg S (¢ +q 'R(g") = Palq™)



We have np =n4 —1=1and ng: =1—1=0. Thus R(¢") =rg +ri¢” ! and S’(¢7}) = 1:
1-1.2¢7'4035¢7 2+ rog ' + 7172 =1—0.7417¢"" 4 0.2019¢ >
Solving the equation gives ro = 0.4583 and r; = —0.1481. So the final RST controller is:
R(g™') = 0.4583 — 0.1481¢ !

S(q—l) = B*(q—l)sl(q—l) 05— 0-461_1
T(g™Y) =1—0.7417¢" +0.2019¢ 2

2. To add a fixed term Hg(q™ ') = 1+ ¢! in the controller, we define R(¢~') = Hr(¢!)R'(¢~!) and
we should solve the following Bezout equation:
A S (@) +a A +q HR (¢7Y) = Pala™)

In order to have a solution ng: = 1 and so S’(¢7!) =1+ sfq¢?

and ngr = ny — 1 = 1, therefore:
(1-1.2¢7' +0.35¢ )1 +shg ) +q ' (L +g )y +righ) =1-0.7417¢" " + 0.2019¢ >

which leads to the following system of linear equations:

—1.2+4 s} +ry = —0.7417
—1.2s] +0.35+ 7 + 71 =0.2019 = s =0.2378,r; = 0.2205,r] = —0.0832
0.35s) +71 =0

So the final RST controller is:

R(g™") = Hr(¢ R (¢7") = (14 ¢~ 1)(0.2205 — 0.0832¢ ) = 0.2205 + 0.1373¢ " — 0.0832¢ 2
S(g™Y) = B*(g7H)S'(¢71) = (0.5 — 0.4¢71)(1 +0.2378¢71) = 0.5 — 0.2811¢g™" — 0.0951¢ 2
T(gY) =1—0.7417¢~" +0.2019¢ 2

Solution 8.14: The Bezout equation is:
Al H)S(@™ ) + Bl R = Ald™)
We take R(¢ 1) = R'(¢71)A(¢™!) and simplify the Bezout equation as follows:
S )+ B YR (¢ =1
This equation has many solutions, choosing R'(¢g~1) = 7o (to obtain the lowest order solutions), we obtain:
S(g™")=1=B(qg )ro=1—(0.5¢"" —0.4¢7*)rg

For any value of 7y we have a valid solution. In order to have an integrator in the controller, we pose S(1) =0
that leads to:
1-05rg4+04rg =0 = 1ro=10

Therefore:
R =R(¢HA(¢") =10 — 12¢"" + 3.5¢2
S(g')=1-5¢""+4¢7?
T(gH)=R(1)=1.5



Solution 8.15:
1. H(z) using the ZOH method:

-1 2.6 z—1 2 -2
H(z) = 222 z) -t _ -2 zlp-1])%
() == z {E {8(5—}—1.3)}} ‘ z {L {S+S+1.3}}
az—1 { 2z 2z ] 0.3272 0.3z73
z

=7 1 2-085| 2-08 1-0852-1

z

2. From H(z) we obtain A(q~1') =1—-0.85¢7 %, B(¢~!) = 0.3¢73. In order to have an integrator we take
Hs(q™) =1 g~ and

A =(1-085¢1)(1—¢ ) =1-1.85¢"" +0.85¢>
Then we should solve the following Bezout equation:
AgHS (¢ + Bl@HR(g™Y) =1 -0.8¢7"

We have ng = na —1 = 1 and ng = ng — 1 = 2, which leads to R(¢™!) = 79 + 71¢"! and
S'(qgY) =14 517 + 52072

(1—1.85¢7 1 4+0.85¢"3) (1 + 817" +52¢72) +0.3¢ 3(rg +r1¢" ) =1-08¢""

51—185=-08 = s =105

0.85—18551 +852=0 = s5=1.05x%x185-0.85=1.09

—1.8589 +0.8551 + 0.3ro =0 = ro=(1.85x 1.09 — 0.85 x 1.05)3.33 = 3.76
0.8552 +0.3r1 =0 = r; =(—0.85x 1.09)3.33 = —3.095

Therefore:
R(qg™') =3.76 — 3.095¢ !
S(g7') = (1+1.05¢"" +1.09¢ *)(1—q )
T(¢™') = R(1) = 0.6667
Solution 8.16: The desired bandwidth is 2 rad/s then:

1 2

T=05 = ME)=jz-7=715 = Hm(Z)=(1—Z1)Z{£l<s(siz)>}

)= 0=z {er (T ) c e (- ) -

Then we compute the desired closed-loop poles for regulation based on w, =4,{ = 0.8:

p1 = =2 cos(wphy/1 — (2) = =141 5 py = e @l =0.527

Then we compute H(q™1):

B —4¢72? 4+ 3.2¢73
1-23¢7140.9¢72

H() = 408-2 _  32-4

= — H -1
205 —2)(18—2) 25— 2322409z (™)

= AlgYH)=1-23¢"'409¢2% , B¢ =-4+32¢" , d=2

Note that B*(¢~!) has a root inside the unit circle at 0.8. We take Hg(q¢~ ') = 1 — ¢~ !. Therefore, ng: = 1
and ngp =n4 +ng, — 1 =2.
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Then we write the Bezout equation:
Al@HA =g S (¢ B (¢7Y) +q7*B* (¢ HR(a™) = P(q ) B* (¢ ")
(1-33¢71+32¢2-09¢ )1 +s\¢ ) +q 2(ro+rqg ' +ro¢g7%) =1—1.41¢g7 " +0.527¢ >
334, =141 = ¢ =189
3.2—-33s) +1r9=0.527 = rg=23.564

— 09+ 3.28’1 +r=0 = ry=-5148
—09s] +12=0 = 1ry=17

And the final RST controller is given as:

R(qg™1) = 3.564 — 5.148¢ ! 4+ 1.7¢7>
S =1+189g (1 —qg H(32¢ " —4)=—-4—-6.76¢"" +4.712¢"2? + 6.05¢ >
T(g ') =1-141¢g71 4+0.527¢72
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