

November 5, 2024

Problem Set 7

Exercise 1. Let D_{2n} be the dihedral group, the group of symmetries of a regular n -gon. This group has $2n$ elements.

- (a) Describe all irreducible complex representations of D_n . Start with the 1-dimensional representations, then consider the complexifications of the symmetries of a regular n -gon, and use the sum of the squares formula to complete the classification. Consider cases of odd and even n .
- (b) Use the character table to find the decompositions of the tensor products $V_i \otimes V_j$ into a direct sum of irreducible representations. (It is enough to consider the case where $\dim V_i > 1, \dim V_j > 1$).

Exercise 2. Use results in representation theory of finite groups over \mathbb{C} to show that every group of order p^2 , where p is a prime, is abelian.

Exercise 3. Let G be a group of invertible upper triangular 2×2 matrices with coefficients in $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$.

- (a) Find the conjugacy classes of G .
- (b) Find a normal subgroup $H \subset G$ such that G/H is abelian.
- (c) Use (a), (b) and the “sum of squares” formula to find the dimensions of the irreducible complex representations of G .
- (d) Use the orthogonality relations to compute the table of characters of G .