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Preface

During the past decade, there has been a significant shift in paradigm in signal
processing, statistics, and applied mathematics that revolves around the concept of
sparsity and the search for “sparse” representations of signals. Early signs of this
(r)evolution go back to the discovery of wavelets, which have now superseded clas-
sical Fourier techniques in a number of applications. The other manifestation of
this trend is the emergence of data-processing schemes that minimize an `1 norm
as opposed to the squared `2 norm associated with the traditional linear methods. A
highly popular research topic that capitalizes on those ideas is compressed sensing.
It is the quest for a statistical framework that would support this change of paradigm
that led us to the writing of this book.

The cornerstone of our formulation is the classical innovation model which is
equivalent to the specification of stochastic processes as solutions of linear stochastic
differential equations (SDE). The nonstandard twist here is that we allow for non-
Gaussian driving terms (white Lévy noise) which, as we shall see, has a dramatic ef-
fect on the type of signal being generated. A fundamental property, hinted in the title
of the book, is that the non-Gaussian solutions of such SDEs admit a sparse repres-
entation in an adapted wavelet-like basis. While a sizable part of the present mater-
ial is an outgrowth of our own research, it is founded on the work of Lévy (1930) and
Gelfand (arguably, the second most famous Soviet mathematician after Kolmogorov)
who derived general functional tools and results that are hardly known by practi-
tioners but, as we argue in the book, are extremely relevant to the issue of sparsity.
The other important source of inspiration is spline theory and the observation that
splines and stochastic processes are ruled by the same differential equations. This
is the reason why we opted for the innovation approach which facilitates the trans-
position of analytical techniques from one field to the other. While the formulation
requires advanced mathematics that are carefully explained in the book, the underly-
ing model has a strong engineering appeal since it constitutes the natural extension
of the traditional filtered-white-noise interpretation of a Gaussian stationary process.

The book assumes that the reader has a good understanding of linear systems
(ordinary differential equations, convolution), Hilbert spaces, generalized functions
(i.e., inner products, Dirac impulses, linear operators), the Fourier transform, ba-
sic statistical signal processing, and (multivariate) statistics (probability density and
characteristic functions). By contrast, there is no requirement for prior knowledge of
splines, stochastic differential equations, and advanced functional analysis (function



Preface v

spaces, Bochner’s theorem, operator theory, singular integrals) since these topics are
treated in a self-contained fashion.

Several people have had a crucial role in the genesis of this book. The idea of defin-
ing sparse stochastic processes originated during the preparation of a talk for Mar-
tin Vetterli’s 50th birthday (which coincided with the anniversary of the launching
of Sputnik) in an attempt to build a bridge between his signals with a finite rate of
innovation and splines. We thank him for his long-time friendship and for convin-
cing us to undertake this writing project. We are grateful to our former collaborator,
Thierry Blu, for his precious help in the elucidation of the functional link between
splines and stochastic processes. We are extremely thankful to Arash Amini, Julien
Fageot, Pedram Pad, Qiyu Sun, and John-Paul Ward for many helpful discussions
and their contributions to mathematical results. We are indebted to Emrah Bostan,
Ulugbek Kamilov, Hagai Kirshner, Masih Nilchian, and Cédric Vonesch for turning
the theory into practice and for running the signal- and image-processing experi-
ments described in Chapters 10 and 11. We are most grateful to Philippe Thévenaz
for his intelligent editorial advice and his spotting of multiple errors and inconsisten-
cies, while we take full responsibility for the remaining ones. We thank Phil Meyler,
Sarah Marsh and Elisabeth Horne from Cambridge University Press.

The authors also acknowledge very helpful and stimulating discussions with Ben
Adcock, Emmanuel Candès, Volkan Cevher, Robert Dalang, Mike Davies, Christine
De Mol, David Donoho, Pier-Luigi Dragotti, Michael Elad, Yonina Eldar, Jalal Fadili,
Mario Figueiredo, Vivek Goyal, Rémy Gribonval, Anders Hansen, Nick Kingsbury,
Gitta Kutyniok, Stamatis Lefkimmiatis, Gabriel Peyré, Rob Novak, Jean-Luc Stark, and
Dimitri Van De Ville, as well as a number of other researchers involved in the field.

The European Research Commission (ERC) and the Swiss National Science Found-
ation provided partial support throughout the writing of the book.



Summary

Sparse stochastic processes are continuous-domain processes that admit a parsi-
monious representation in some matched wavelet-like basis. Such models are relev-
ant for image compression, compressed sensing, and, more generally, for the deriva-
tion of statistical algorithms for solving ill-posed inverse problems.

This book introduces an extended family of sparse processes that are specified by
a generic (non-Gaussian) innovation model or, equivalently, as solutions of linear
stochastic differential equations driven by white Lévy noise. It presents the math-
ematical tools for their characterization. The two leading threads of the exposition
are

– the statistical property of infinite divisibility, which induces two distinct types
of behavior—Gaussian vs. sparse—at the exclusion of any other;

– the structural link between linear stochastic processes and spline functions which
is exploited to simplify the mathematical analysis.

The core of the book is devoted to the investigation of sparse processes, including
the complete description of their transform-domain statistics. The final part devel-
ops signal-processing techniques that are based on these models. This leads to a
reinterpretation of popular sparsity-promoting processing schemes—such as total-
variation denoising, LASSO, and wavelet shrinkage—as MAP estimators for specific
types of sparse processes. It also suggests alternative Bayesian recovery procedures
that minimize the estimation error. The framework is illustrated with the reconstruc-
tion of biomedical images (deconvolution microscopy, MRI, X-ray tomography) from
noisy and/or incomplete data.

The book is mostly self-contained. It is targeted to an audience of graduate stu-
dents and researchers with an interest in signal/image processing, compressed sens-
ing, approximation theory, machine learning, and statistics.
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1 Introduction

1.1 Sparsity: Occam’s razor of modern signal processing?

The hypotheses of Gaussianity and stationarity play a central role in the standard
statistical formulation of signal processing. They fully justify the use of the Fourier
transform as the optimal signal representation and naturally lead to the derivation
of optimal linear filtering algorithms for a large variety of statistical estimation tasks.
This classical view of signal processing is elegant and reassuring, but it is not at the
forefront of research anymore.

Starting with the discovery of the wavelet transform in the late 80s [Dau88,Mal89],
researchers in signal processing have progressively moved away from the Fourier
transform and have uncovered powerful alternatives. Consequently, they have ceased
modeling signals as Gaussian stationary processes and have adopted a more de-
terministic, approximation-theoretic point of view. The key developments that are
presently reshaping the field, and which are central to the theory presented in this
book, are summarized below.

Novel transforms and dictionaries for the representation of signals: New redundant
and non-redundant representations of signals (wavelets, local cosine, curvelets)
have emerged during the past two decades and have led to better algorithms for
data compression, data processing, and feature extraction. The most prominent
example is the wavelet-based JPEG-2000 standard for image compression [CSE00],
which outperforms the widely-used JPEG method based on the DCT (discrete co-
sine transform). Another illustration is wavelet-domain image denoising which
provides a good alternative to more traditional linear filtering [Don95]. The vari-
ous dictionaries of basis functions that have been proposed so far are tailored to
specific types of signals; there does not appear to be one that fits all.

Sparsity as a new paradigm for signal processing: At the origin of this new trend is
the key observation that many naturally-occurring signals and images—in partic-
ular, the ones that are piecewise-smooth—can be accurately reconstructed from a
“sparse” wavelet expansion that involves much fewer terms than the original num-
ber of samples [Mal98]. The concept of sparsity has been systematized and exten-
ded to other transforms, including redundant representations (a.k.a. frames); it is
at the heart of recent developments in signal processing. Sparse signals are easy
to compress and to denoise by simple pointwise processing (e.g., shrinkage) in the
transformed domain. Sparsity provides an equally-powerful framework for dealing
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with more difficult, ill-posed signal-reconstruction problems [CW08, BDE09]. Pro-
moting sparse solutions in linear models is also of interest in statistics: a popular
regression shrinkage estimator is LASSO, which imposes an upper bound on the
`1-norm of the model coefficients [Tib96].

New sampling strategies with fewer measurements: The theory of compressed sens-
ing deals with the problem of the reconstruction of a signal from a minimal, but
suitably chosen, set of measurements [Don06, CW08, BDE09]. The strategy there
is as follows: among the multitude of solutions that are consistent with the meas-
urements, one should favor the “sparsest” one. In practice, one replaces the un-
derlying `0-norm minimization problem, which is NP hard, by a convex `1-norm
minimization which is computationally much more tractable. Remarkably, re-
searchers have shown that this simplification does yield the correct solution un-
der suitable conditions (e.g., restricted isometry) [CW08]. Similarly, it has been
demonstrated that signals with a finite rate of innovation (the prototypical example
being a stream of Dirac impulses with unknown locations and amplitudes) can
be recovered from a set of uniform measurements at twice the “innovation rate”
[VMB02], rather than twice the bandwidth, as would otherwise be dictated by Shan-
non’s classical sampling theorem.

Superiority of nonlinear signal-reconstruction algorithms: There is increasing em-
pirical evidence that nonlinear variational methods (non-quadratic or sparsity-
driven regularization) outperform the classical (linear) algorithms (direct or iter-
ative) that are being used routinely for solving bioimaging reconstruction prob-
lems [CBFAB97, FN03]. So far, this has been demonstrated for the problem of im-
age deconvolution and for the reconstruction of non-Cartesian MRI [LDP07]. The
considerable research effort in this area has also resulted in the development of
novel algorithms (ISTA, FISTA) for solving convex optimization problems that were
previously considered out of numerical reach [FN03, DDDM04, BT09b].

1.2 Sparse stochastic models: The step beyond Gaussianity

While the recent developments listed above are truly remarkable and have res-
ulted in significant algorithmic advances, the overall picture and understanding is
still far from being complete. One limiting factor is that the current formulations
of compressed sensing and sparse-signal recovery are fundamentally deterministic.
By drawing on the analogy with the classical linear theory of signal processing, where
there is an equivalence between quadratic energy-minimization techniques and mini-
mum-mean-square-error (MMSE) estimation under the Gaussian hypothesis, there
are good chances that further progress is achievable by adopting a complementary
statistical-modeling point of view 1. The crucial ingredient that is required to guide

1. It is instructive to recall the fundamental role of statistical modeling in the development of tra-
ditional signal processing. The standard tools of the trade are the Fourier transform, Shannon-type
sampling, linear filtering, and quadratic energy-minimization techniques. These methods are widely used
in practice: They are powerful, easy to deploy, and mathematically convenient. The important conceptual
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such an investigation is a sparse counterpart to the classical family of Gaussian sta-
tionary processes (GSP). This book focuses on the formulation of such a statistical
framework, which may be aptly qualified as the next step after Gaussianity under the
functional constraint of linearity.

In light of the elements presented in the introduction, the basic requirements for
a comprehensive theory of sparse stochastic processes are as follows:

Backward compatibility: There is a large body of literature and methods based on
the modeling of signals as realizations of GSP. We would like the corresponding
identification, linear filtering, and reconstruction algorithms to remain applicable,
even though they obviously become suboptimal when the Gaussian hypothesis is
violated. This calls for an extended formulation that provides the same control of
the correlation structure of the signals (second-order moments, Fourier spectrum)
as the classical theory does.

Continuous-domain formulation: The proper interpretation of qualifying terms
such as “piecewise-smooth”, “translation-invariant”, “scale-invariant”, “rotation-
invariant” calls for continuous-domain models of signals that are compatible with
the conventional (finite-dimensional) notion of sparsity. Likewise, if we intend
to optimize or possibly redesign the signal-acquisition system as in generalized
sampling and compressed sensing, the very least is to have a model that character-
izes the information content prior to sampling.

Predictive power: Among other things, the theory should be able to explain why
wavelet representations can outperform the older Fourier-related types of decom-
positions, including the KLT, which is optimal from the classical perspective of vari-
ance concentration.

Ease of use: To have practical usefulness, the framework should allow for the de-

point is that they are justifiable based on the theory of Gaussian stationary processes (GSP). Specifically,
one can invoke the following optimality results:

The Fourier transform as well as several of its real-valued variants (e.g., DCT) are asymptotically equi-
valent to the Karhunen-Loève transform (KLT) for the whole class of GSP. This supports the use of sinus-
oidal transforms for data compression, data processing, and feature extraction. The underlying notion
of optimality here is energy compaction, which implies decorrelation. Note that the decorrelation is
equivalent to independence in the Gaussian case only.

Optimal filters : Given a series of linear measurements of a signal corrupted by noise, one can readily
specify its optimal reconstruction (LMMSE estimator) under the general Gaussian hypothesis. The cor-
responding algorithm (Wiener filter) is linear and entirely determined by the covariance structure of the
signal and noise. There is also a direct connection with variational reconstruction techniques since the
Wiener solution can also be formulated as a quadratic energy-minimization problem (Gaussian MAP
estimator).

Optimal sampling/interpolation strategies: While this part of the story is less known, one can also in-
voke estimation-theoretic arguments to justify a Shannon-type, constant-rate sampling, which ensures
a minimum loss of information for a large class of predominantly-lowpass GSP [PM62, Uns93]. This is
not totally surprising since the basis functions of the KLT are inherently bandlimited. One can also de-
rive minimum mean-square-error interpolators for GSP in general. The optimal signal-reconstruction
algorithm takes the form of a hybrid Wiener filter whose input is discrete (signal samples) and whose
output is a continuously-defined signal that can be represented in terms of generalized B-spline basis
functions [UB05b].



4 Introduction

rivation of the (joint) probability distributions of the signal in any transformed do-
main. This calls for a linear formulation with the caveat that it needs to accom-
modate non-Gaussian distributions. In that respect, the best thing beyond Gaus-
sianity is infinite divisibility, which is a general property of random variables that
is preserved under arbitrary linear combinations.

Stochastic justification and refinement of current reconstruction algorithms: A con-
vincing argument for adopting a new theory is that it must be compatible with the
state of the art, while it also ought to suggest new directions of research. In the
present context, it is important to be able to establish the connection with determ-
inistic recovery techniques such as `1-norm minimization.

The good news is that the foundations for such a theory exist and can be traced
back to the pioneering work of Paul Lévy, who defined a broad family of “additive”
stochastic processes, now called Lévy processes. Brownian motion (a.k.a. the Wiener
process) is the only Gaussian member of this family, and, as we shall demonstrate,
the only representative that does not exhibit any degree of sparsity. The theory that
is developed in this book constitutes the full linear, multidimensional extension of
those ideas where the essence of Paul Lévy’s construction is embodied in the defin-
ition of Lévy innovations (or white Lévy noise), which can be interpreted as the de-
rivative of a Lévy process in the sense of distributions (a.k.a. generalized functions).
The Lévy innovations are then linearly transformed to generate a whole variety of
processes whose spectral characteristics are controlled by a linear mixing operator,
while their sparsity is governed by the innovations. The latter can also be viewed as
the driving term of some corresponding linear stochastic differential equation (SDE).
Another way of describing the extent of this generalization is to consider the repres-
entation of a general continuous-domain Gaussian process by a stochastic Wiener
integral:

s(t ) =
∫

R
h(t ,τ) dW (τ) (1.1)

where h(t ,τ) is the kernel—that is, the infinite-dimensional analog of the matrix rep-
resentation of a transformation in Rn—of a general, L2-stable linear operator. W is a
random measure which is such that

W (t ) =
∫ t

0
dW (τ)

is the Wiener process, where the latter equation constitutes a special case of (1.1) with
h(t ,τ) = 1{t>τ≥0}. There, 1Ω denotes the indicator function of the set Ω. If h(t ,τ) =
h(t−τ) is a convolution kernel, then (1.1) defines the whole class of Gaussian station-
ary processes. The essence of the present formulation is to replace the Wiener meas-
ure by a more general non-Gaussian, multidimensional Lévy measure. The catch,
however, is that we shall not work with measures but rather with generalized func-
tions and generalized stochastic processes. These are easier to manipulate in the
Fourier domain and better suited for specifying general linear transformations. In
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other words, we shall rewrite (1.1) as

s(t ) =
∫

R
h(t ,τ)w(τ) dτ (1.2)

where the entity w (the continuous-domain innovation) needs to be given a proper
mathematical interpretation. The main advantage of working with innovations is
that they provide a very direct link with the theory of linear systems, which allows
for the use of standard engineering notions such as the impulse and frequency re-
sponses of a system.

1.3 From splines to stochastic processes, or when Schoenberg
meets Lévy

We shall start our journey by making an interesting connection between splines,
which are deterministic objects with some inherent sparsity, and Lévy processes with
a special focus on the compound Poisson process, which constitutes the archetype
of a sparse stochastic process. The key observation is that both categories of signals—
namely, deterministic and random—are ruled by the same differential equation. They
can be generated via the proper integration of an “innovation” signal that carries all
the necessary information. The fun is that the underlying differential system is only
marginally stable, which requires the design of a special anti-derivative operator. We
then use the close relationship between splines and wavelets to gain insight on the
ability of wavelets to provide sparse representations of such signals. Specifically, we
shall see that most non-Gaussian Lévy processes admit a better M-term representa-
tion in the Haar wavelet basis than in the classical Karhunen-Loève transform (KLT)
which is usually believed to be optimal for data compression. The explanation for
this counter-intuitive result is that we are breaking some of the assumptions that are
implicit in the proof of optimality of the KLT.

1.3.1 Splines and Legos revisited

Splines constitute a general framework for converting series of data points (or
samples) into continuously-defined signals or functions. By extension, they also
provide a powerful mechanism for translating tasks that are specified in the continu-
ous domain into efficient numerical algorithms (discretization).

The cardinal setting corresponds to the configuration where the sampling grid is
on the integers. Given a sequence of sample values f [k],k ∈ Z, the basic cardinal
interpolation problem is to construct a continuously-defined signal f (t ), t ∈ R that
satisfies the interpolation condition f (t )

∣∣
t=k = f [k], for all k ∈ Z. Since the general

problem is obviously ill-posed, the solution is constrained to live in a suitable re-
construction subspace (e.g., a particular space of cardinal splines) whose degrees of
freedom are in one-to-one correspondence with the data points. The most basic con-
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Figure 1.1 Examples of spline signals. (a) Cardinal spline interpolant of degree 0
(piecewise-constant). (b) Cardinal spline interpolant of degree 1 (piecewise-linear). (c)
Nonuniform D-spline or compound Poisson process, depending on the interpretation
(deterministic vs. stochastic).

cretization of those ideas is the construction of the piecewise-constant interpolant

f1(t ) =
∑

k∈Z
f [k]β0

+(t −k) (1.3)

which involves rectangular basis functions (informally described as Legos) that are
shifted replicates of the causal 2 B-spline of degree zero

β0
+(t ) =

{
1, for 0 ≤ t < 1
0, otherwise.

(1.4)

Observe that the basis functions {β0
+(t − k)}k∈Z are non-overlapping, orthonormal,

and that their linear span defines the space of cardinal polynomial splines of degree
0. Moreover, since β0

+(t ) takes the value one at the origin and vanishes at all other
integers, the expansion coefficients in (1.3) coincide with the original samples of the
signal. Equation (1.3) is nothing but a mathematical representation of the sample-
and-hold method of interpolation which yields the type of “Lego-like” signal shown
in Figure 1.1a.

A defining property of piecewise-constant signals is that they exhibit “sparse” first-
order derivatives that are zero almost everywhere, except at the points of transition
where differentiation is only meaningful in the sense of distributions. In the case of

2. A function f+(t ) is said to be causal if f+(t ) = 0, for all t < 0.
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Figure 1.2 Causal polynomial B-splines. (a) Construction of the B-spline of degree 0 starting
from the causal Green function of D. (b) B-splines of degree n = 0, . . . ,4 (light to dark), which
become more bell-shaped (and beautiful) as n increases.

the cardinal spline specified by (1.3), we have that

D f1(t ) =
∑

k∈Z
a1[k]δ(t −k) (1.5)

where the weights of the integer-shifted Dirac impulses δ(·−k) are given by the cor-
responding jump size of the function: a1[k] = f [k]− f [k −1]. The main point is that
the application of the operator D = d

dt uncovers the spline discontinuities (a.k.a.
knots) which are located on the integer grid: Its effect is that of a mathematical A-
to-D conversion since the r.h.s. of (1.5) corresponds to the continuous-domain rep-
resentation of a discrete signal commonly used in the theory of linear systems. In the
nomenclature of splines, we say that f1(t ) is a cardinal D-spline 3, which is a special
case of a general nonuniform D-spline where the knots can be located arbitrarily (cf.
Figure 1.1c).

The next fundamental observation is that the expansion coefficients in (1.5) are
obtained via a finite-difference scheme which is the discrete counterpart of differen-
tiation. To get some further insight, we define the finite-difference operator

Dd f (t ) = f (t )− f (t −1).

The latter turns out to be a smoothed version of the derivative

Dd f (t ) = (β0
+∗D f )(t ),

where the smoothing kernel is precisely the B-spline generator for the expansion
(1.3). An equivalent manifestation of this property can be found in the relation

β0
+(t ) = DdD−1δ(t ) = Dd1+(t ) (1.6)

where the unit step 1+(t ) = 1[0,+∞)(t ) (a.k.a. the Heaviside function) is the causal
Green function 4 of the derivative operator. This formula is illustrated in Figure 1.2a.

3. Other brands of splines are defined in the same fashion by replacing the derivative D by some other
differential operator generically denoted by L.

4. We say that ρ(t ) is the causal Green function of the shift-invariant operator L if ρ is causal and sat-
isfies Lρ = δ. This can also be written as L−1δ = ρ, meaning that ρ is the causal impulse response of the
shift-invariant inverse operator L−1.
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Its Fourier-domain counterpart is

β̂0
+(ω) =

∫

R
β0
+(t )e−jωt dt = 1−e−jω

jω
(1.7)

which is recognized as being the ratio of the frequency responses of the operators Dd

and D, respectively.

Thus, the basic Lego component, β0
+, is much more than a mere building block: it

is also a kernel that characterizes the approximation that is made when replacing a
continuous-domain derivative by its discrete counterpart. This idea (and its gener-
alization for other operators) will prove to be one of the key ingredient in our formu-
lation of sparse stochastic processes.

1.3.2 Higher-degree polynomial splines

A slightly more sophisticated model is to select a piecewise-linear reconstruction
which admits the similar B-spline expansion

f2(t ) =
∑

k∈Z
f [k +1]β1

+(t −k) (1.8)

where

β1
+(t ) = (

β0
+∗β0

+
)
(t ) =





t , for 0 ≤ t < 1
2− t , for 1 ≤ t < 2

0, otherwise
(1.9)

is the causal B-spline of degree 1, a triangular function centered at t = 1. Note that
the use of a causal generator is compensated by the unit shifting of the coefficients
in (1.8), which is equivalent to re-centering the basis functions on the sampling loca-
tions. The main advantage of f2 in (1.8) over f1 in (1.3) is that the underlying function
is now continuous, as illustrated in Figure 1b.

In an analogous manner, one can construct higher-degree spline interpolants that
are piecewise-polynomials of degree n by considering B-splines atoms of degree n
obtained from the (n + 1)-fold convolution of β0

+(t ) (cf. Figure 1.2b). The generic
version of such a higher-order spline model is

fn+1(t ) =
∑

k∈Z
c[k]βn

+(t −k) (1.10)

with

βn
+(t ) = (

β0
+∗β0

+∗·· ·∗β0
+︸ ︷︷ ︸

n+1

)
(t ).

The catch though is that, for n > 1, the expansion coefficients c[k] in (1.10) are not
identical to the sample values f [k] anymore. Yet, they are in a one-to-one corres-
pondence with them and can be determined efficiently by solving a linear system of
equations that has a convenient band-diagonal Toeplitz structure [Uns99].



1.3 From splines to stochastic processes, or when Schoenberg meets Lévy 9

The higher-order counterparts of relations (1.7) and (1.6) are

β̂n
+(ω) =

(
1−e−jω

jω

)n+1

and

βn
+(t ) = Dn+1

d D−(n+1)δ(t )

=
Dn+1

d (t )n
+

n!
(1.11)

=
n+1∑

k=0
(−1)k

(
n +1

k

)
(t −k)n

+
n!

.

with (t )+ = max(0, t ). The latter explicit time-domain formula follows from the fact
that the impulse response of the (n + 1)-fold integrator (or, equivalently, the causal

Green function of Dn+1) is the one-sided power function D−(n+1)δ(t ) = t n
+

n! . This eleg-
ant formula is due to Schoenberg, the father of splines [Sch46]. He also proved that
the polynomial B-spline of degree n is the shortest cardinal Dn+1-spline and that its
integer translates form a Riesz basis of such polynomial splines. In particular, he
showed that the B-spline representation (1.10) is unique and stable, in the sense that

‖ fn‖2
L2

=
∫

R
| fn(t )|2 dt ≤ ‖c‖2

`2
=

∑

k∈Z

∣∣c[k]
∣∣2.

Note that the inequality above becomes an equality for n = 0 since the squared L2-
norm of the corresponding piecewise-constant function is easily converted into a
sum. This also follows from Parseval’s identity because the B-spline basis {β0

+(· −
k)}k∈Z is orthonormal.

One last feature is that polynomial splines of degree n are inherently smooth, in
the sense that they are n-times differentiable everywhere with bounded derivatives—
that is, Hölder continuous of order n. In the cardinal setting, this follows from the
property that

Dnβn
+(t ) = DnDn+1

d D−(n+1)δ(t )

= Dn
d DdD−1δ(t ) = Dn

dβ
0
+(t ),

which indicates that the nth-order derivative of a B-spline of degree n is piecewise-
constant and bounded.

1.3.3 Random splines, innovations, and Lévy processes

To make the link with Lévy processes, we now express the random counterpart of
(1.5) as

Ds(t ) =
∑
n

anδ(t − tn) = w(t ) (1.12)

where the locations tn of the Dirac impulses are uniformly distributed over the real
line (Poisson distribution with rate parameter λ) and the weights an are i.i.d. with
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amplitude distribution p A(a). For simplicity, we are also assuming that p A is sym-
metric with finite variance σ2

a = ∫
R a2p A(a) da. We shall refer to w as the innovation

of the signal s since it contains all the parameters that are necessary for its descrip-
tion. Clearly, s is a signal with a finite rate of innovation, a term that was coined by
Vetterli et al. [VMB02].

The idea now is to reconstruct s from its innovation w by integrating (1.12). This
requires the specification of some boundary condition to fix the integration constant.
Since the constraint in the definition of Lévy processes is s(0) = 0 (with probability
one), we first need to find a suitable antiderivative operator, which we shall denote
by D−1

0 . In the event when the input function is Lebesgue integrable, the relevant
operator is readily specified as

D−1
0 ϕ(t ) =

∫ t

−∞
ϕ(τ) dτ−

∫ 0

−∞
ϕ(τ) dτ=





∫ t

0
ϕ(τ) dτ, for t ≥ 0

−
∫ 0

t
ϕ(τ) dτ, for t < 0

It is the corrected version (subtraction of the proper signal-dependent constant) of
the conventional shift-invariant integrator D−1 for which the integral runs from −∞
to t . The Fourier counterpart of this definition is

D−1
0 ϕ(t ) =

∫

R

ejωt −1

jω
ϕ̂(ω)

dω

2π

which can be extended, by duality, to a much larger class of generalized functions
(cf. Chapter 5). This is feasible because the latter expression is a regularized version
of an integral that would otherwise be singular, since the division by jω is tempered
by a proper correction in the numerator: ejωt − 1 = jωt +O(ω2). It is important to
note that D−1

0 is scale-invariant (in the sense that it commutes with scaling), but not
shift-invariant, unlike D−1. Our reason for selecting D−1

0 over D−1 is actually more
fundamental than just imposing the “right” boundary conditions. It is guided by sta-
bility considerations: D−1

0 is a valid right inverse of D in the sense that DD−1
0 = Id

over a large class of generalized functions, while the use of the shift-invariant inverse
D−1 is much more constrained. Other than that, both operators share most of their
global properties. In particular, since the finite-difference operator has the conveni-
ent property of annihilating the constants that are in the null space of D, we see that

β0
+(t ) = DdD−1

0 δ(t ) = DdD−1δ(t ). (1.13)

Having the proper inverse operator at our disposal, we can apply it to formally
solve the stochastic differential equation (1.12). This yields the explicit representa-
tion of the sparse stochastic process:

s(t ) = D−1
0 w(t ) =

∑
n

anD−1
0 {δ(·− tn)}(t )

=
∑
n

an
(
1+(t − tn)− 1+(−tn)

)
(1.14)

where the second term 1+(−tn) in the last parenthesis ensures that s(0) = 0. Clearly,
the signal defined by (1.14) is piecewise-constant (random spline of degree 0) and
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Figure 1.3 Synthesis of different brands of Lévy processes by integration of a corresponding
continuous-domain white noise. The alpha-stable excitation in the bottom example is such
that the increments of the Lévy process have a symmetric Cauchy distribution.

its construction is compatible with the classical definition of a compound Poisson
process, which is a special type of Lévy process. A representative example is shown
in Figure 1.1c.

It can be shown that the innovation w specified by (1.12), made of random im-
pulses, is a special type of continuous-domain white noise with the property that

E{w(t )w(t ′)} = Rw (t − t ′) =σ2
wδ(t − t ′) (1.15)

where σ2
w = λσ2

a is the product of the Poisson rate parameter λ and the variance
σ2

a of the amplitude distribution. More generally, we can determine the correlation
functional of the innovation, which is given by

E{〈ϕ1, w〉〈ϕ2, w〉} =σ2
w 〈ϕ1,ϕ2〉 (1.16)

for any real-valued functions ϕ1,ϕ2 ∈ L2(R) and 〈ϕ1,ϕ2〉 =
∫
Rϕ1(t )ϕ2(t ) dt .

This suggests that we can apply the same operator-based synthesis to other types
of continuous-domain white noise, as illustrated in Figure 1.3. In doing so, we are
able to generate the whole family of Lévy processes. In the case where w is a white
Gaussian noise, the resulting signal is a Brownian motion which has the property
of being continuous almost everywhere. A more extreme case arises when w is an
alpha-stable noise which yields a stable Lévy process whose sample path has a few
really large jumps and is rougher than a Brownian motion .

In the classical literature on stochastic processes, Lévy processes are usually defined
in terms of their increments , which are i.i.d. and infinitely-divisible random vari-
ables (cf. Chapter 7). Here, we shall consider the so-called increment process u(t ) =
s(t )− s(t −1), which has a number of remarkable properties. The key observation is
that u, in its continuous-domain version, is the convolution of a white noise (innov-
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ation) with the B-spline kernel β0
+. Indeed, the relation (1.13) leads to

u(t ) = Dds(t ) = DdD−1
0 w(t ) = (β0

+∗w)(t ). (1.17)

This implies, among other things, that u is stationary, while the original Lévy process
s is not (since D−1

0 is not shift-invariant). It also suggests that the samples of the
increment process u are independent if they are taken at a distance of 1 or more
apart, the limit corresponding to the support of the rectangular convolution kernel
β0
+. When the autocorrelation function Rw (τ) of the driving noise is well-defined and

given by (1.15), we can easily determine the autocorrelation of u as

Ru(τ) = E{u(t )u(t +τ)} = (
β0
+∗ (β0

+)∨∗Rw
)
(y) =σ2

wβ
1
+(τ−1) (1.18)

where (β0
+)∨(t ) = β0

+(−t ). It is proportional to the autocorrelation of a rectangle,
which is a triangular function (centered B-spline of degree 1).

Of special interest to us are the samples of u on the integer grid, which are charac-
terized for k ∈Z as

u[k] = s(k)− s(k −1) = 〈w,β0
+(·−k)〉.

The r.h.s. relation can be used to show that the u[k] are i.i.d. because w is white,
stationary, and the supports of the analysis functions β0

+(·−k) are non-overlapping.
We shall refer to {u[k]}k∈Z as the discrete innovation of s. Its determination involves
the sampling of s at the integers and a discrete differentiation (finite differences),
in direct analogy with the generation of the continuous-domain innovation w(t ) =
Ds(t ).

The discrete innovation sequence u[·] will play a fundamental role in signal pro-
cessing because it constitutes a convenient tool for extracting the statistics and char-
acterizing the samples of a stochastic process. It is probably the best practical way of
presenting the information because

1) we never have access to the full signal s(t ), which is a continuously-defined entity,
and

2) we cannot implement the whitening operator (derivative) exactly, not to mention
that the continuous-domain innovation w(t ) does not admit an interpretation as
an ordinary function of t . For instance, Brownian motion is not differentiable
anywhere in the classical sense.

This points to the fact that the continuous-domain innovation model is a theoretical
construct. Its primary purpose is to facilitate the determination of the joint prob-
ability distributions of any series of linear measurements of a wide class of sparse
stochastic processes, including the discrete version of the innovation which has the
property of being maximally decoupled.

1.3.4 Wavelet analysis of Lévy processes and M-term approximations

Our purpose so far has been to link splines and Lévy processes to the derivative
operator D. We shall now exploit this connection in the context of wavelet analysis.
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Figure 1.4 Dual pair of multiresolution bases where the first kind of functions (wavelets) are
the derivatives of the second (hierarchical basis functions): (a) (unnormalized) Haar wavelet
basis. (b) Faber-Schauder basis (a.k.a. Franklin system).

To that end, we consider the Haar basis {ψi ,k }i∈Z,k∈Z, which is generated by the Haar
wavelet

ψHaar(t ) =





1, for 0 ≤ t < 1
2

−1, for 1
2 ≤ t < 1

0, otherwise.
(1.19)

The basis functions, which are orthonormal, are given by

ψi ,k (t ) = 2−i /2ψHaar

(
t −2i k

2i

)
(1.20)

where i and k are the scale (dilation of ψHaar by 2i ) and location (translation of ψi ,0

by 2i k) indices, respectively. A closely related system is the Faber-Schauder basis
{φi ,k (·)}i∈Z,k∈Z, which is made up of B-splines of degree 1 in a wavelet-like configur-
ation (cf. Figure 1.4).

Specifically, the hierarchical triangle basis functions are given by

φi ,k (t ) =β1
+

(
t −2i k

2i−1

)
. (1.21)

While these functions are orthogonal within any given scale (because they are non-
overlapping), they fail to be so across scales. Yet, they form a Schauder basis, which
is a somewhat weaker property than being a Riesz basis of L2(R).

The fundamental observation for our purpose is that the Haar system can be ob-
tained by differentiating the Faber-Schauder one, up to some amplitude factor. Spe-
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cifically, we have the relations

ψi ,k = 2i /2−1Dφi ,k (1.22)

D−1
0 ψi ,k = 2i /2−1φi ,k . (1.23)

Let us now apply (1.22) to the formal determination of the wavelet coefficients of
the Lévy process s = D−1

0 w . The crucial manipulation, which will be justified rig-
orously within the framework of generalized stochastic processes (cf. Chapter 3), is
〈s,Dφi ,k〉 = 〈D∗s,φi ,k〉 = −〈w,φi ,k〉 where we have used the adjoint relation D∗ =−D
and the right inverse property of D−1

0 . This allows us to express the wavelet coeffi-
cients as

Yi ,k = 〈s,ψi ,k〉 =−2i /2−1〈w,φi ,k〉
which, up to some scaling factors, amounts to a Faber-Schauder analysis of the in-
novation w = Ds. Since the triangle functions φi ,k are non-overlapping within a
given scale and the innovation is independent at every point, we immediately de-
duce that the corresponding wavelet coefficients are also independent. However, the
decoupling is not perfect across scales due to the parent-to-child overlap of the tri-
angle functions. The residual correlation can be determined from the correlation
functional (1.16) of the noise, according to

E{Yi ,k Yi ′,k ′ } = 2(i+i ′)/2−2E
{〈w,φi ,k〉〈w,φi ′,k ′〉}∝〈φi ,k ,φi ′,k ′〉.

Since the triangle functions are non-negative, the residual correlation is zero iff. φi ,k

and φi ′,k ′ are non-overlapping, in which case the wavelet coefficients are independ-
ent as well. We can also predict that the wavelet transform of a compound Poisson
process will be sparse (i.e., with many vanishing coefficients) because the random
Dirac impulses of the innovation will intersect only few Faber-Schauder functions,
an effect that becomes more and more pronounced as the scale gets finer. The level
of sparsity can therefore be expected to be directly dependent upon λ (the density of
impulses per unit length).

To quantify this behavior, we applied Haar wavelets to the compression of sampled
realizations of Lévy processes and compared the results with those of the “optimal”
textbook solution for transform coding. In the case of a Lévy process with finite vari-
ance, the Karhunen-Loève transform (KLT) can be determined analytically from the
knowledge of the covariance function E{s(t )s(t ′)} = C

(|t | + |t ′| − |t − t ′|) where C is
an appropriate constant. The KLT is also known to converge to the discrete cosine
transform (DCT) as the size of the signal increases. The present compression task
is to reconstruct a series of 4096-point signals from their M largest transform coef-
ficients, which is the minimum-error selection rule dictated by Parseval’s relation.
Figure 1.5 displays the graph of the relative quadratic M-term approximation errors
for the three types of Lévy processes shown in Figure 1.3. We also considered the
identity transform as baseline, and the DCT as well, whose results were found to be
indistinguishable from those of the KLT. We observe that the KLT performs best in the
Gaussian scenario, as expected. It is also slightly better than wavelets at large com-
pression ratios for the compound Poisson process (piecewise-constant signal with
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Figure 1.5 Haar wavelets vs. KLT: M-term approximation errors for different brands of Lévy
processes. (a) Gaussian (Brownian motion). (b) Compound Poisson with Gaussian jump
distribution and e−λ = 0.9. (c) Alpha-stable (symmetric Cauchy). The results are averages
over 1000 realizations.

Gaussian-distributed jumps). In the latter case, however, the situation changes dra-
matically as M increases since one is able to reconstruct the signal perfectly from a
fraction of the wavelet coefficients, in reason of the sparse behavior explained above.
The advantage of wavelets over the KLT/DCT is striking for the Lévy flight (SαS distri-
bution with α= 1). While these findings are surprising at first, they do not contradict
the classical theory which tells us that the KLT has the minimum basis-restriction
error for the given class of processes. The twist here is that the selection of the M
largest transform coefficients amounts to some adaptive reordering of the basis func-
tions, which is not accounted for in the derivation of the KLT. The other point is that
the KLT solution is not defined for the third type of SαS process whose theoretical
covariances are unbounded—this does not prevent us from applying the Gaussian
solution/DCT to a finite-length realization whose `2-norm is finite (almost surely).
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This simple experiment with various stochastic models corroborates the results ob-
tained with image compression where the superiority of wavelets over the DCT (e.g.,
JPEG2000 vs. JPEG) is well-established.

1.3.5 Lévy’s wavelet-based synthesis of Brownian motion

We close this introductory chapter by making the connection with a multiresol-
ution scheme that Paul Lévy developed in the 1930s to characterize the properties
of Brownian motion. To do so, we adopt a point of view that is the dual of the one
in Section 1.3.4: it essentially amounts to interchanging the analysis and synthesis
functions. As first step, we expand the innovation w in the orthonormal Haar basis
and obtain

w =
∑

i∈Z

∑

k∈Z
Zi ,kψi ,k with Zi ,k = 〈w,ψi ,k〉.

This is acceptable 5 under the finite-variance hypothesis on w . Since the Haar basis
is orthogonal, the coefficients Zi ,k in the above expansion are fully decorrelated, but
not necessarily independent, unless the white noise is Gaussian or the corresponding
basis functions do not overlap. We then construct the Lévy process s = D−1

0 w by
integrating the wavelet expansion of the innovation, which yields

s(t ) =
∑

i∈Z

∑

k∈Z
Zi ,k D−1

0 ψi ,k (t )

=
∑

i∈Z

∑

k∈Z
2i /2−1Zi ,kφi ,k (t ). (1.24)

The representation (1.24) is of special interest when the noise is Gaussian, in which
case the coefficients Zi ,k are i.i.d. and follow a standardized Gaussian distribution.
The formula then maps into Lévy’s recursive mid-point method of synthesizing Brow-
nian motion which Yves Meyer singles out as the first use of wavelets to be found in
the literature (see [JMR01, pp. 20–24]). The Faber-Schauder expansion (1.24) stands
out as a localized, practical alternative to Wiener’s original construction of Brownian
motion which involves a sum of harmonic cosines (KLT-type expansion).

1.4 Historical notes: Paul Lévy and his legacy

Paul Lévy is a highly original thinker who ended up being one of the most influ-
ential figures of modern probability theory [Tay75, Loè73]. Among his many con-
tributions to the field are the introduction of the characteristic function as an ana-
lytical tool, the characterization of the limit of sums of independent random vari-
ables with unbounded variance (stable distributions), and the investigation of infin-
itely divisible laws which ultimately led to the specification of the complete family of
additive—or Lévy—processes. In this latter respect, Michel Loève singles out his 1934

5. The convergence in the sense of distributions is ensured since the wavelet coefficients of a rapidly-
decaying test function ϕ are rapidly-decaying as well.
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report on the integration/summation of independent random components [Lév34]
as one of the most important probability papers ever published. There, Lévy is bold
enough to make the transition from a discrete to a continuous indexing in a running
sum. This results in the construction of a random function that is a generalization
of Brownian motion and one of the earliest instance of a non-Gaussian stochastic
process. If one leaves the mathematical technicalities aside, this is very much in the
spirit of (1.2), except for the presence of the more general weighting kernel h.

During his tenure as professor at the prestigious École Polytechnique in Paris from
1920 to 1959, Paul Lévy only supervised four Ph.D. students 6. Every one of them
turned out to be a brilliant scientist whose work is intertwined with the material
presented in this book.

The first, Wolfgang Döblin (Ph.D. 1938 at age 23; co-advised by Maurice Fréchet),
was a German jew who acquired the French citizenship in 1936. Döblin was an ex-
traordinarily gifted mathematician. His short career ended tragically on the front of
World War II when he took his own life to avoid being captured by the German troops
entering France. Yet, during the year he served as a French soldier, he was able to
make fundamental contributions to the theory of Markov processes and stochastic
integration that predate the work of Itô; these were discovered in 2000 in a sealed en-
velop deposited at the French Academy of Sciences—see [BY02] as well as [Pet05] for
a romanced account of Döblin’s life.

Lévy’s second student, Michel Loève (Ph.D. 1941; co-advised by Maurice Fréchet),
is a prominent name in modern probability theory. He was a famous professor at
Berkeley who is best known for the development of the spectral representation of
second-order stationary processes (the Karhunen-Loève transform).

The third student is Benoit B. Mandelbrot (Ph.D. 1952) who is universally recog-
nized as the inventor of fractals. In his early work, Mandelbrot introduced the use
of non-Gaussian random walks—that is, Lévy processes—into financial statistics. In
particular, he showed that the rate of change of prices in markets were much better
characterized by alpha-stable distributions (which are heavy tailed) than by Gaus-
sians [Man63]. Interestingly, it is also statistics, albeit Gaussian ones, that led him
to the discovery of fractals when he characterized the class of self-similar processes
known as fractional Brownian motion (fBm). While fBm corresponds to a fractional-
order integration of white Gaussian noise, the construction is somewhat technical for
it involves the resolution of a singular integral 7. The relevance to the present study
is that an important subclass of sparse processes is made up by the non-Gaussian
cousins of fBms and their multidimensional extension (see Section 7.5).

Lévy’s fourth and last student, Georges Matheron (Ph.D. 1958), is the founding
father of the field of geostatistics. Being interested in the prediction of ore concen-
tration, he developed a statistical method for the interpolation of random fields from

6. Source: Mathematics Genealogy Project at http://genealogy.math.ndsu.nodak.edu/.
7. Retrospectively, we cannot help observing the striking parallel between the stochastic integral that

defines fBm and the Lévy-Khinchine representation of alpha-stable laws (an area in which Mandelbrot
was obviously an expert) which involves the same kind of singularity (see the Lévy density v(a) ∝ 1/a1+α
in the last line of Table 4.1).
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nonuniform samples [Mat63]. His method, called kriging, uses the prior knowledge
that the field is a Brownian motion and determines the interpolant that minimizes
the mean-square estimation error. Interestingly, the solution, which is specified by
a space-dependent regression equation, happens to be a spline function whose type
is determined by the correlation structure (variogram) of the underlying field. There
is also an intimate link between kriging and data-approximation methods based on
radial basis functions and/or reproducing-kernel Hilbert spaces [Mye92]—in partic-
ular, thin-plate splines that are associated with the Laplace operator [Wah90]. While
the Gaussian hypothesis is implicit to Matheron’s work, it is arguably the earliest link
established between splines and stochastic processes.



2 Roadmap to the monograph

The writing of this book was motivated by our desire to formalize and extend the
ideas presented in Section 1.3 to a class of differential operators much broader than
the derivative D. Concretely, this translates into the investigation of the family of
stochastic processes specified by the general innovation model that is summarized
in Figure 2.1. The corresponding generator of random signals (upper part of the dia-
gram) has two fundamental components: (1) a continuous-domain noise excitation
w , which may be thought of as being composed of a continuum of i.i.d. random
atoms (innovations), and (2) a deterministic mixing procedure (formally described
by L−1) which couples the random contributions and imposes the correlation struc-
ture of the output. The concise description of the model is Ls = w where L is the
whitening operator. The term “innovation” refers to the fact that w represents the
unpredictable part of the process. When the inverse operator L−1 is linear shift-
invariant (LSI), the signal generator reduces to a simple convolutional system which
is characterized by its impulse response (or, equivalently, its frequency response). In-
novation modeling has a long tradition in statistical communication theory and sig-
nal processing; it is the basis for the interpretation of a Gaussian stationary process
as a filtered version of a white Gaussian noise [Kai70, Pap91].

In the present context, the underlying objects are continuously-defined. The in-
novation model then results from defining a stochastic process (or random field when
the index variable r is a vector in Rd ) as the solution of a stochastic differential equa-
tion (SDE) driven by a particular brand of noise. The nonstandard aspect here is that
we are considering the innovation model in its greatest generality, allowing for non-
Gaussian inputs and differential systems that are not necessarily stable. We shall
argue that these extensions are essential for making this type of modeling compat-
ible with the latest developments in signal processing pertaining to the use of wave-
lets and sparsity-promoting reconstruction algorithms. Specifically, we shall see that
it is possible to generate a wide variety of sparse processes by replacing the tradi-
tional Gaussian input by some more general brand of (Lévy) noise, within the lim-
its of mathematical admissibility.We shall also demonstrate that such processes ad-
mit a sparse representation in a wavelet basis under the assumption that L is scale-
invariant. The difficulty there is that scale-invariant SDEs are inherently unstable
(due to the presence of poles at the origin); yet, we shall see that they can still result
in a proper specification of fractal-type processes, albeit not within the usual frame-
work of stationary processes. The nontrivial aspect of these generalizations is that
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s(x)

White Lévy noise Generalized
stochastic process

Shaping filter

(appropriate boundary conditions)

Whitening operator

L−1

L

w(x)

w(r) s(r)

Figure 2.1 Innovation model of a generalized stochastic process. The process is generated
by application of the (linear) inverse operator L−1 to a continuous-domain white-noise
process w . The generation mechanism is general in the sense that it applies to the complete
family of Lévy noises, including Gaussian noise as the most basic (non-sparse) excitation.
The output process s is stationary iff. L−1 is shift-invariant.

they necessitate the resolution of instabilities—in the form of singular integrals. This
is required not only at the system level, to allow for non-stationary processes, but also
at the stochastic level because the most interesting sparsity patterns are associated
with unbounded Lévy measures.

Before proceeding with the statistical characterization of sparse stochastic pro-
cesses, we shall highlight the central role of the operator L and make a connection
with spline theory and the construction of signal-adapted wavelet bases.

2.1 On the implications of the innovation model

To motivate our approach, we start with an informal discussion, leaving the tech-
nicalities aside. The stochastic process s in Figure 2.1 is constructed by applying the
(integral) operator L−1 to some continuous-domain white noise w . In most cases of
interest, L−1 has an infinitely-supported impulse response which introduces long-
range dependencies. If we are aiming at a concise statistical characterization of s, it
is essential that we somehow invert this integration process, the ideal being to apply
the operator L which would give back the innovation signal w that is fully decoupled.
Unfortunately, this is not feasible in practice because we do not have access to the
signal s(r ) over the entire domain r ∈ Rd , but only to its sampled values on a lattice
or, more generally, to a series of coefficients in some appropriate basis. Our analysis
options are essentially two fold, as described in Sections 2.1.1 and 2.1.2.

2.1.1 Linear combination of sampled values

Given the sampled values s(k),k ∈ Zd , the best we can aim at is to implement a
discrete version of the operator L, which is denoted by Ld. In effect, Ld will act on
the sampled version of the signal as a digital filter. The corresponding continuous-
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domain description of its impulse response is

Ldδ(r ) =
∑

k∈Zd

dL[k]δ(r −k)

with some appropriate weights dL. To fix ideas, Ld may correspond to the numerical
version of the operator provided by the finite-difference method of approximating
derivatives.

The interest is now to characterize the (approximate) decoupling effect of this dis-
crete version of the whitening operator. This is quite feasible when the continuous-
domain composition of the operators Ld and L−1 is shift-invariant with impulse re-
sponse βL(r ) which is assumed to be absolutely integrable (BIBO stability). In that
case, one readily finds that

u(r ) = Lds(r ) = (βL ∗w)(r ) (2.1)

where

βL(r ) = LdL−1δ(r ). (2.2)

This suggests that the decoupling effect will be the strongest when the convolution
kernel βL is the most localized (minimum support) and closest to an impulse 1. We
call βL the generalized B-spline associated with the operator L. For a given operator
L, the challenge will be to design the most localized kernel βL, which is the way of
approaching the discretization problem that best matches our statistical objectives.
The good news is that this is a standard problem in spline theory, meaning that we
can take advantage of the large body of techniques available in this area, even though
they have been hardly applied to the stochastic setting so far.

2.1.2 Wavelet analysis

The second option is to analyze the signal s using wavelet-like functions {ψi (· −
rk )}. For that purpose, we assume that we have at our disposal some real-valued “L-
compatible” generalized wavelets which, at a given resolution level i , are such that

ψi (r ) = L∗φi (r ). (2.3)

Here, L∗ is the adjoint operator of L and φi is some smoothing kernel with good loc-
alization properties. The interpretation is that the wavelet transform provides some
kind of multiresolution version of the operator L with the effective width of the ker-
nelsφi increasing in direct proportion to the scale; typically, φi (r ) ∝φ0(r /2i ). Then,
the wavelet analysis of the stochastic process s reduces to

〈s,ψi (·− r0)〉 = 〈s,L∗φi (·− r0)〉
= 〈Ls,φi (·− r0)〉
= 〈w,φi (·− r0)〉 = (φ∨

i ∗w)(r0) (2.4)

1. One may be tempted to pretend that βL is a Dirac impulse, which amounts to neglecting all discret-
ization effects. Unfortunately, this is incorrect and most likely to result in false statistical conclusions. In
fact, we shall see that the localization deteriorates as the order of the operator increases, inducing higher
(Markov) orders of dependencies.
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where φ∨
i (r ) = φi (−r ) is the reversed version of φi . The remarkable aspect is that

the effect is essentially the same as in (2.1) so that it makes good sense to develop a
common framework to analyze white noise.

This is all nice in principle as long as one can construct “L-compatible” wave-
let bases. For instance, if L is a pure nth-order derivative operator—or by exten-
sion, a scale-invariant differential operator—then the above reasoning is directly ap-
plicable to conventional wavelets bases. Indeed, these are known to behave like
multiscale versions of derivatives due to their vanishing-moment property [Mey90,
Dau92, Mal09]. In prior work, we have linked this behavior, as well as a number
of other fundamental wavelet properties, to the polynomial B-spline convolutional
factor that is necessarily present in every wavelet that generates a multiresolution
basis of L2(R) [UB03]. What is not so widely known is that the spline connection ex-
tends to a much broarder variety of operators—not necessarily scale-invariant—and
that it also provides a general recipe for constructing wavelet-like basis functions that
are matched to some given operator L. This has been demonstrated in 1D for the en-
tire family of ordinary differential operators [KU06]. The only significant difference
with the conventional theory of wavelets is that the smoothing kernels φi are not
necessarily rescaled versions of each other.

Note that the “L-compatible” property is relatively robust. For instance, if L = L′L0,
then an “L-compatible” wavelet is also L′-compatible with φ′

i = L0φi . The design
challenge in the context of stochastic modeling is thus to come up with a suitable
wavelet basis such that φi in (2.3) is most localized—possibly, of compact support.

2.2 Organization of the monograph

The reasoning of Section 2.1 is appealing because of its conceptual simplicity and
generality. Yet, the precise formulation of the theory requires some special care be-
cause the underlying stochastic objects are infinite-dimensional and possibly highly
singular. For instance, we are faced with a major difficulty at the onset because the
continuous-domain input of our model (the innovation w) does not admit a conven-
tional interpretation as a function of the domain variable r . This entity can only be
probed indirectly by forming scalar products with test functions in accordance with
Laurent Schwartz’ theory of distributions, so that the use of advanced mathematics
is unavoidable.

For the benefit of readers who would be unfamiliar with concepts used in this
book, we provide the relevant mathematical background in Chapter 3, which also
serves the purpose of introducing the notation. The first part is devoted to the defin-
ition of the relevant function spaces, with special emphasis on generalized functions
(a.k.a. tempered distributions) which play a central role in our formulation. The
second part reviews the classical, finite-dimensional tools of probability theory and
shows how some concepts (e.g., characteristic function, Bochner’s theorem) are ex-
tendable to the infinite-dimensional setting within the framework of Gelfand’s theory
of generalized stochastic processes [GV64].
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Chapter 4 is devoted to the mathematical specification of the innovation model.
Since the theory gravitates around the notion of Lévy exponents , we start with a sys-
tematic investigation of such functions, denoted by f (ω), which are fundamental to
the (classical) study of infinitely divisible probability laws. In particular, we discuss
their canonical representation given by the Lévy-Khintchine formula. In Section 4.4,
we make use of the powerful Minlos-Bochner theorem to transfer those representa-
tions to the infinite-dimensional setting. The fundamental result of our theory is that
every admissible continuous-domain innovation for the model in Figure 2.1 belongs
to the so-called family of white Lévy noises. This implies that an innovation pro-
cess is completely characterized by its Lévy exponent f (ω). We conclude the chapter
with the presentation of mathematical criteria for the existence of solutions of Lévy-
driven SDEs (stochastic differential equations) and provide the functional tools for
the complete statistical characterization of these processes. Interestingly, the clas-
sical Gaussian processes are covered by the formulation (by setting f (ω) = − 1

2ω
2),

but they turn out to be the only non-sparse members of the family.

Besides the random excitation w , the second fundamental component of the in-
novation model in Figure 2.1 is the inverse L−1 of the whitening operator L. It must
fulfill some continuity/boundedness condition in order to yield a proper solution of
the underlying SDE. The construction of such inverses (shaping filters) is the topic
of Chapter 5, which presents a systematic catalog of the solutions that are currently
available, including recent constructs for scale-invariant/unstable SDEs.

In Chapter 6, we review the tools that are available from the theory of splines in
relation to the specification of the analysis kernels in Equations (2.1) and (2.3). The
techniques are quite generic and applicable to any operator L that admits a proper
inverse L−1. Moreover, by writing a generalized B-spline as βL = LdL−1δ, one can
appreciate that the construction of a B-spline for some operator L implicitly provides
the solution of two innovation-related problems at once: 1) the formal inversion of
the operator L (for solving the SDE) and 2) the proper discretization of L through
a finite-difference scheme. The leading thread in our formulation is that these two
tasks should not be dissociated—this is achieved formally via the identification of βL

which actually results in simplified and streamlined mathematics. Remarkably, these
generalized B-splines are also the key for constructing wavelet-like basis functions
that are “L-compatible.”

In Chapter 7, we apply our framework to the functional specification of a variety
of generalized stochastic processes, including the classical family of Gaussian sta-
tionary processes and their sparse counterparts. We also characterize non-stationary
processes that are solutions of unstable SDEs. In particular, we describe higher-order
extensions of Lévy processes, as well as a whole variety of fractal-type processes.

In Chapter 8, we rely on our functional characterization to obtain a maximally-
decoupled representation of sparse stochastic processes by application of the dis-
cretized version of the whitening operator or by suitable wavelet expansion. Based
on the characteristic form of these processes, we are able to deduce the transform-
domain statistics and to precisely assess residual dependencies. These ideas are il-
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lustrated with examples of sparse processes for which operator-like wavelets outper-
form the classical KLT (or DCT) and result in an independent component analysis.

An implicit property of the innovation model is that the statistical distribution of
the inner product between a sparse stochastic process and a particular basis function
(e.g., wavelet) is uniquely characterized by a “modified” Lévy exponent. Our main
point in Chapter 9 is to use this result to show that the sparsity of the input noise
is transferred to the transformed domain. Apart from a shaping effect that can be
quantified, the resulting probability density function remains within the same family
of infinite-divisible laws.

In the final part of the book, we illustrate the use of these stochastic models (and
the corresponding analytical tools) with the formulation of algorithms for the re-
covery of signals and images from incomplete, noisy measurements. In Chapter
10, we develop a general framework for the discretization of linear inverse prob-
lems in a B-spline basis, which is analogous to the finite-element method for solving
PDEs. The central element is the “projection” of the continuous-domain stochastic
model onto the (finite dimensional) reconstruction space in order to specify the prior
statistical distribution of the signal. This naturally yields the maximum a posteri-
ori solution to the signal-reconstruction problem. The framework is illustrated with
the derivation of practical algorithms for magnetic resonance imaging, deconvolu-
tion microscopy, and tomographic reconstruction. Remarkably, the resulting MAP
estimators are compatible with the non-quadratic regularization schemes (e.g., `1-
minimization, LASSO, and/or non-convex `p relaxation) that are currently in favor in
imaging. To get a handle on the quality of the reconstruction, we then rely on the in-
novation model to investigate the extent to which one is able to “optimally” denoise
sparse signals. In particular, we demonstrate the feasibility of MMSE reconstruction
when the signal belongs to the class of Lévy processes, which provides us with a gold
standard against which to compare other algorithms.

In Chapter 11, we present alternative wavelet-based reconstruction methods that
are typically faster than the fixed-scale techniques of Chapter 10. These methods
capitalize on the orthonormality of the wavelet basis which provides a direct control
of the norm of the signal. We show that the underlying optimization task is amenable
to iterative thresholding algorithms (ISTA or FISTA) which are simple to deploy and
well-suited for large-scale problems. We also investigate the effect of cycle spinning,
which is a fundamental ingredient for making wavelets competitive in terms of im-
age quality. Our closing topic is the use of statistical modeling for the improvement
of standard wavelet-based denoising—in particular, the optimization of the wavelet-
domain thresholding functions and the search of a consensus solution across mul-
tiple wavelet expansions in order to minimize the global estimation error.



3 Mathematical context and
background

In this chapter we summarize some of the mathematical preliminaries for the re-
maining chapters. These concern the function spaces used in the book, duality, gen-
eralized functions, probability theory, and generalized random processes. Each of
these topics is discussed in a separate section.

For the most part, the theory of function spaces and generalized functions can
be seen as an infinite-dimensional generalization of linear algebra (function spaces
generalize Rn , and continuous linear operators generalize matrices). Similarly, the
theory of generalized random processes involves the generalization of the idea of a
finite random vector in Rn to an element of an infinite-dimensional space of gener-
alized functions.

To give a taste of what is to come, we briefly compare finite- and infinite-dimen-
sional theories in Tables 3.1 and 3.2. The idea, in a nutshell, is to substitute vectors
by (generalized) functions. Formally, this extension amounts to replacing some fi-
nite sums (in the finite-dimensional formulation) by integrals. Yet, in order for this
to be mathematically sound, one needs to properly define the underlying objects as
elements of some infinite-dimensional vector space, to specify the underlying no-
tion(s) of convergence (which is not an issue in Rn), while ensuring that some basic
continuity conditions are met.

The impatient reader who is not directly concerned by those mathematical issues
may skip what follows the tables at first reading and consult these sections later
as he may feel the need. Yet, he should be warned that the material on infinite-
dimensional probability theory from Subsection 3.4.4 to the end of the chapter is
fundamental to our formulation. The mastery of those notions also requires a good
understanding of function spaces and generalized functions which are covered in the
first part of the chapter.

3.1 Some classes of function spaces

By the term function we shall intend elements of various function spaces. At a min-
imum, a function space is a set X along with some criteria for determining, first,
whether or not a given “function” ϕ=ϕ(r ) belongs to X (in mathematical notation,
ϕ ∈ X ) and, secondly, given ϕ,ϕ0 ∈ X , whether or not ϕ and ϕ0 describe the same
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finite-dimensional theory (linear algebra) infinite-dimensional theory (functional
analysis)

Euclidean space RN , complexification CN function spaces such as the Lebesgue space
Lp (Rd ) and the space of tempered distribu-

tions S ′(Rd ), among others.

vector x = (x1, . . . , xN ) in RN or CN function f (r ) in S ′(Rd ), Lp (Rd ), etc.

bilinear scalar product
〈x , y〉 =∑N

n=1 xn yn 〈ϕ, g 〉 = ∫
ϕ(r )g (r ) dr

ϕ ∈S (Rd ) (test function), g ∈S ′(Rd ) (gen-
eralized function), or
ϕ ∈ Lp (Rd ), g ∈ Lq (Rd ) with 1

p + 1
q = 1, for

instance.

equality: x = y ⇐⇒ xn = yn various notions of equality (depends on the
space), such as

⇐⇒ 〈u, x〉 = 〈u, y〉, ∀u ∈RN weak equality of distributions: f = g ∈
S ′(Rd ) ⇐⇒ 〈ϕ, f 〉 = 〈ϕ, g 〉 for all ϕ ∈
S (Rd ),

⇐⇒ ‖x − y‖2 = 0 almost-everywhere equality: f = g ∈
Lp (Rd ) ⇐⇒ ∫

Rd | f (r )− g (r )|p dr = 0.

linear operators RN →RM continuous linear operators S (Rd ) →
S ′(Rd )

y = Ax ⇒ ym =∑N
n=1 amn xn g = Aϕ⇒ g (r ) = ∫

Rd a(r , s)ϕ(s) ds for some

a ∈S ′(Rd×Rd ) (Schwartz’ kernel theorem)

transpose adjoint
〈x ,Ay〉 = 〈ATx , y〉 〈ϕ,Ag 〉 = 〈A∗ϕ, g 〉

Table 3.1 Comparison of notions of linear algebra with those of functional analysis and the
theory of distributions (generalized functions). See Sections 3.1-3.3 for an explanation.

finite-dimensional infinite-dimensional

random variable X in RN generalized stochastic process s in S ′

probability measure PX on RN probability measure Ps on S ′
PX (E) = Prob(X ∈ E) = ∫

E pX (x) dx (pX is
a generalized [i.e., hybrid] pdf)

Ps (E) = Prob(s ∈ E) = ∫
E Ps (dg )

for suitable subsets E ⊂RN for suitable subsets E ⊂S ′

characteristic function characteristic functional
P̂X (ω) = E{ej〈ω,X 〉} = ∫

RN ej〈ω,x〉pX (x) dx ,

ω ∈RN
P̂s (ϕ) = E{ej〈ϕ,s〉} = ∫

S ′ ej〈ϕ,g 〉Ps (dg ),
ϕ ∈S

Table 3.2 Comparison of notions of finite-dimensional statistical calculus with the theory
of generalized stochastic processes. See Sections 3.4 for an explanation.
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object in X (in mathematical notation, ϕ=ϕ0). Most often, in addition to these, the
space X has additional structure (see below).

In this book we shall largely deal with two types of function spaces: complete
normed spaces such as Lebesgue Lp spaces, and nuclear spaces such as the Schwartz
space S and the space D of compactly supported test functions, as well as their du-
als S ′ and D′, which are spaces of generalized functions. These two categories of
spaces (complete-normed and nuclear) cannot overlap, except in finite dimensions.
Since the function spaces that are of interest to us are infinite-dimensional (they do
not have a finite vector-space basis), the two categories are mutually exclusive.

The structure of each of the afore-mentioned spaces has two aspects. First, as a
vector space over the real numbers or its complexification, the space has an algebraic
structure. Second, with regard to the notions of convergence and taking of limits, the
space has a topological structure. The algebraic structure lends meaning to the idea
of a linear operator on the space, while the topological structure gives rise to the
concept of a continuous operator or map, as we shall see shortly.

All the spaces considered here have a similar algebraic structure. They are either
vector spaces overR, meaning for anyϕ,ϕ0 in the space and any a ∈R, the operations
of additionϕ 7→ϕ+ϕ0 and multiplication by scalarsϕ 7→ aϕ are defined and map the
space (denoted henceforth by X ) into itself. Or, we may take the complexification of
a real vector space X , composed of elements of the form ϕ = ϕr + jϕi with ϕr ,ϕi ∈
X and j denoting the imaginary unit. The complexification is then a vector space
over C. In the remainder of the book, we shall denote a real vector space and its
complexification by the same symbol. The distinction, when important, will be clear
from the context.

For the spaces with which we are concerned in this book, the topological structure
is completely specified by providing a criterion for the convergence of sequences. 1

By this we mean that, for any given sequence (ϕi ) in X and any ϕ ∈ X , we are
equipped with the knowledge of whether or not ϕ is the limit of (ϕi ). A topological
space is a set X with topological structure. For normed spaces, the said criterion is
given in terms of a norm, while in nuclear spaces it is given in terms of a family of
seminorms, as we shall discuss below. But before that, let us first define linear and
continuous operators.

An operator is a mapping from one vector space to another; that is, a rule that
associates an output function A{ϕ} ∈Y (also written as Aϕ) to each input ϕ ∈X .

D E FI N I T I O N 3.1 (Linear operator) An operator A : X → Y where X and Y are
vector spaces is called linear if for any ϕ,ϕ0 ∈X and a,b ∈R (or C),

A{aϕ+bϕ0} = aA{ϕ}+bA{ϕ0}. (3.1)

D E FI N I T I O N 3.2 (Continuous operator) Let X ,Y be topological spaces. An oper-
ator A : X → Y is called sequentially continuous (with respect to the topologies of

1. This is in contrast with those topological spaces where one needs to consider generalizations of the
notion of a sequence involving partially ordered sets (the so-called nets or filters). Spaces in which a
knowledge of sequences suffices are called sequential.
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X and Y ) if, for any convergent sequence (ϕi ) in X with limit ϕ ∈X , the sequence(
Aϕi

)
converges to Aϕ in Y , that is,

lim
i

A{ϕi } = A{lim
i
ϕi }.

The above definition of continuity coincides with the stricter topological definition
for spaces we are interested in.

We shall assume that the topological structure of our vector spaces is such that the
operations of addition and multiplication by scalars in R (or C) are continuous. With
this compatibility conditions our object is called a topological vector space.

Having defined the two types of structure (algebraic and topological) and their re-
lation with operators in abstract terms, let us now show concretely how the topolo-
gical structure is defined for some important classes of spaces.

3.1.1 About the notation: mathematics vs. engineering

So far, we have considered a function in abstract terms as an element of a vec-
tor space: ϕ ∈ X . The more conventional view is that of map ϕ : Rd → R (or C) that
associates a valueϕ(r ) to each point r = (r1, . . . ,rd ) ∈Rd . Following the standard con-
vention in engineering, we shall therefore also use the notation ϕ(r ) [instead of ϕ(·)
or ϕ] to represent the function using r as our generic d-dimensional index variable,
the norm of which is denoted by |r |2 = ∑d

i=1 |ri |2. This is to be contrasted with the
point values (or samples) of ϕ which will be denoted using subscripted index vari-
ables; i.e., ϕ(rk ) stands for the value of ϕ at r = rk . Likewise, ϕ(r − r 0) = ϕ(· − r0)
refers to the function ϕ shifted by r0.

A word of caution is in order here. While the engineering notation has the advant-
age of being explicit, it can also be felt as being abusive because the point values of
ϕ are not necessarily well defined, especially when the function presents discontinu-
ities, not to mention the case of generalized functions that do not have a pointwise
interpretation. ϕ(r ) should therefore be treated as an alternative notation for ϕ that
reminds us of the domain of the function and not interpreted literally.

3.1.2 Normed spaces

A norm on X is a map X → R, usually denoted as ϕ 7→ ‖ϕ‖ (with indices used if
needed to distinguish between different norms), which fulfils the following proper-
ties for all a ∈R (or C) and ϕ,ϕ0 ∈X .

‖ϕ‖ ≥ 0 (nonnegativity).

‖aϕ‖ = |a| ‖ϕ‖ (positive homogeneity).

‖ϕ+ϕ0‖ ≤ ‖ϕ‖+‖ϕ0‖ (triangular inequality).

‖ϕ‖ = 0 implies ϕ= 0 (separation of points).

By relaxing the last requirement we obtain a seminorm.

A normed space is a vector space X equipped with a norm.
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A sequence (ϕi ) in a normed space X is said to converge to ϕ (in the topology of
X ), in symbols

lim
i
ϕi =ϕ,

if and only if

lim
i

‖ϕ−ϕi‖ = 0.

Let (ϕi ) be a sequence in X such that for any ε> 0 there exists an N ∈Nwith

‖ϕi −ϕ j ‖ < ε for all i , j ≥ N .

Such a sequence is called a Cauchy sequence. A normed space X is complete if it does
not have any holes, in the sense that, for every Cauchy sequence in X , there exists
an ϕ ∈ X such that limi ϕi =ϕ (in other words if every Cauchy sequence has a limit
in X ). A normed space that is not complete can be completed by introducing new
points corresponding to the limits of equivalent Cauchy sequences. For example, the
real line is the completion of the set of rational numbers with respect to the absolute-
value norm.

Examples
Important examples of complete normed spaces are the Lebesgue spaces. The

Lebesgue spaces Lp (Rd ), 1 ≤ p ≤∞, are composed of functions whose Lp (Rd ) norm,
denoted as ‖ ·‖p , is finite, where

‖ϕ(r )‖Lp =
{(∫

Rd |ϕ(r )|p dr
) 1

p for 1 ≤ p <∞
esssupr∈Rd |ϕ(r )| for p =∞

and where two functions that are equal almost everywhere are considered to be equi-
valent.

We may also define weighted Lp spaces by replacing the shift-invariant Lebesgue
measure (dr ) by a weighted measure w(r )dr in the above definitions. In that case,
w(r ) is assumed to be a measurable function that is (strictly) positive almost every-
where. In particular, for w(r ) = 1+|r |α with α> 0 (or, equivalently, w(r ) = (1+|r |)α),
we denote the associated norms as ‖ · ‖p,α, and the corresponding normed spaces
as Lp,α(Rd ). The latter spaces are useful when characterizing the decay of functions
at infinity. For example, L∞,α(Rd ) is the space of functions that are bounded by a
constant multiple of 1

1+|r |α almost everywhere.

Some remarkable inclusion properties of Lp,α(Rd ), 1 ≤ p ≤∞, α> 0 are

α>α0 implies Lp,α(Rd ) ⊂ Lp,α0 (Rd ).

L∞, d
p +ε(Rd ) ⊂ Lp (Rd ) for any ε> 0.

Finally, we define the space of rapidly decaying functions, R(Rd ), as the intersec-
tion of all L∞,α(Rd ) spaces, α> 0, or, equivalently, as the intersection of all L∞,α(Rd )
with α ∈ N. In other words, R(Rd ) contains all bounded functions that essentially
decay faster than 1/|r |α at infinity for all α ∈ R+. A sequence ( fi ) converges in (the
topology of) R(Rd ) if and only if it converges in all L∞,α(Rd ) spaces.
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The causal exponential ρα(r ) = 1[0,∞)(r )eαr with Re(α) < 0 that is central to linear
systems theory is a prototypical example of function included in R(R).

3.1.3 Nuclear spaces

Defining nuclear spaces is neither easy nor particularly intuitive. Fortunately, for
our purpose in this book, knowing the definition is not necessary. We shall simply
assert that certain function spaces are nuclear, in order to use certain results that are
true for nuclear spaces (specifically, the Minlos-Bochner theorem, see below). For
the sake of completeness, a general definition of nuclear spaces is given at the end
of this section, but this definition may safely be skipped without compromising the
presentation.

Specifically, it will be sufficient for us to know that the spaces D(Rd ) and S (Rd ),
which we shall shortly define, are nuclear, as are the Cartesian products and powers
of nuclear spaces, and their closed subspaces.

To define these spaces, we need to identify their members, as well as the criterion
of convergence for sequences in the space.

The space D(Rd )
The space of compactly supported smooth test functions is denoted by D(Rd ). It

consists of infinitely differentiable functions with compact support in Rd . To define
its topology, we provide the following criterion for convergence in D(Rd ):

A sequence (ϕi ) of functions in D(Rd ) is said to converge (in the topology of D(Rd ))
if

1) There exists a compact (here, meaning closed and bounded) subset K of Rd such
that all ϕi are supported inside K .

2) The sequence (ϕi ) converges in all of the seminorms

‖ϕ‖K ,n = sup
r∈K

|∂nϕ(r )| for all n ∈Nd .

Here, n = (n1, . . . ,nd ) ∈Nd is what is called a multi-index, and ∂n is shorthand for
the partial derivative ∂n1

r1
· · ·∂nd

rd
. We take advantage of the present opportunity also

to introduce two other notations: |n| for
∑d

i=1 |ni | and r n for the product
∏d

i=1 r ni
i .

The space D(Rd ) is nuclear (for a proof, see for instance [GV64]).

The Schwartz space S (Rd )
The Schwartz space or the space of so-called smooth and rapidly decaying test func-

tions, denoted as S (Rd ), consists of infinitely differentiable functions ϕ on Rd , for
which all of the seminorms defined below are finite:

‖ϕ‖m,n = sup
r∈Rd

|r m∂nϕ(r )| for all m,n ∈Nd .

In other words, S (Rd ) is populated by functions that, together with all of their deriv-
atives, decay faster than the inverse of any polynomial at infinity.
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The topology of S (Rd ) is defined by positing that a sequence (ϕi ) converges in
S (Rd ) if and only if it converges in all of the above seminorms.

The Schwartz space has the remarkable property that its complexification is in-
variant under the Fourier transform. In other words, the Fourier transform, defined
by the integral

ϕ(r ) 7→ ϕ̂(ω) =F {ϕ}(ω) =
∫

Rd
e−j〈r ,ω〉ϕ(r ) dr ,

and inverted by

ϕ̂(ω) 7→ϕ(r ) =F−1{ϕ̂}(r ) =
∫

Rd
ej〈r ,ω〉ϕ̂(ω)

dω

(2π)d
,

is a continuous map from S (Rd ) into itself. Our convention here is to use ω ∈ Rd as
the generic Fourier-domain index variable.

In addition, both S (Rd ) and D(Rd ) are closed and continuous under differen-
tiation of any order and multiplication by polynomials. Lastly, they are included
in R(Rd ) and hence in all the Lebesgue spaces, Lp (Rd ), which do not require any
smoothness.

General definition of nuclear spaces∗

Defining a nuclear space requires us to define nuclear operators. These are op-
erators that can be approximated by operators of finite rank in a certain sense (an
operator between vector spaces is of finite rank if its range is finite-dimensional).

We first recall the notation `p (N), 1 ≤ p < ∞, for the space of p-summable se-
quences; that is, sequences c = (ci )i∈N for which

∑

i∈N
|ci |p

is finite. We also denote by `∞(N) the space of all bounded sequences.
In a complete normed space Y , let (ψi )i∈N be a sequence with bounded norm (i.e.,

‖ψi‖ ≤ M for some M ∈ R and all i ∈N). We then denote by Mψ the linear operator
`1(N) →Y which maps a sequence c = (ci )i∈N in `1 to the weighted sum

∑

i∈N
ciψi

in Y (the sum converges in norm by the triangular inequality).
An operator A : X → Y , where X ,Y are complete normed spaces, is called nuc-

lear if there exists a continuous linear operator

Ã : X → `∞ : ϕ 7→ (
ai (ϕ)

)
,

an operator

Λ : `∞ → `1 : (ci ) 7→ (λi ci )

where
∑

i |λi | <∞, and a bounded sequenceψ= (ψi ) in Y , such that we can write

A = Mψ Λ Ã.
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This is equivalent to the following decomposition of A into a sum of rank 1 operators:

A :ϕ 7→
∑

i∈N
λi ai (ϕ)ψi

The continuous linear operator X →Y :ϕ 7→λi ai (ϕ)ψi is of rank 1 because it maps
X into the one-dimensional subspace of Y spanned by ψi ; compare (ψi ) with a
basis and

(
ai (ϕ)

)
with the coefficients of Aϕ in this basis.

More generally, given an arbitrary topological vector space X and a complete nor-
med space Y , the operator A : X →Y is said to be nuclear if there exists a complete
normed space X1, a nuclear operator A1 : X1 → Y , and a continuous operator B :
X →X1, such that

A = A1B.

Finally, X is a nuclear space if any continuous linear map X → Y , where Y is a
complete normed space, is nuclear.

3.2 Dual spaces and adjoint operators

Given a space X , a functional on X is a map f that takes X to the scalar field R
(orC). In other words, f takes a functionϕ ∈X as argument and returns the number
f (ϕ).

When X is a vector space, we may consider linear functionals on it, where lin-
earity has the same meaning as in Definition 3.1. When f is a linear functional, it is
customary to use the notation 〈ϕ, f 〉 in place of f (ϕ).

The set of all linear functionals on X , denoted as X ∗, can be given the structure
of a vector space in the obvious way by the identity

〈ϕ, a f +b f0〉 = a〈ϕ, f 〉+b〈ϕ, f0〉,

where ϕ ∈X , f , f0 ∈X ∗, and a,b ∈ R (or C) are arbitrary. The resulting vector space
X ∗ is called the algebraic dual of X .

The map from X ×X ∗ to R (or C) that takes the pair (ϕ, f ) to their so-called scalar
product 〈ϕ, f 〉 is then bilinear in the sense that it is linear in each of the argumentsϕ
and f . Note that the reasoning about linear functionals works both ways so that we
can also switch the order of the pairing. This translates into the formal commutativity
rule 〈 f ,ϕ〉 = 〈ϕ, f 〉 with a dual interpretation of the two sides of the equality.

Given vector spaces X ,Y with algebraic duals X ∗,Y ∗ and a linear operator A :
X →Y , the adjoint or transpose of A, denoted as A∗, is the linear operator Y ∗ →X ∗

defined by

A∗ f = f ◦A

for any linear functional f : Y → R (or C) in Y ∗, where ◦ denotes composition. The
motivation behind the above definition is to have the identity

〈Aϕ, f 〉 = 〈ϕ,A∗ f 〉 (3.2)
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hold for all ϕ ∈X and f ∈Y ∗.

If X is a topological vector space, it is of interest to consider the subspace of X ∗

composed of those linear functionals on X that are continuous with respect to the
topology of X . This subspace is denoted as X ′ and called the topological or continu-
ous dual of X . Note that, unlike X ∗, the continuous dual generally depends on the
topology of X . In other words, the same vector space X with different topologies
will generally have different continuous duals.

As a general rule, in this book we shall adopt some standard topologies and only
work with the corresponding continuous dual space, which we shall call simply the
dual. Also, henceforth, we shall assume the scalar product 〈·, ·〉 to be restricted to
X ×X ′. There, the space X may vary but is necessarily paired with its continuous
dual.

Following the restrictions of the previous paragraph, we sometimes say that the
adjoint of A : X → Y exists, to mean that the algebraic adjoint A∗ : Y ∗ → X ∗, when
restricted to Y ′, maps into X ′, so that we can write

〈Aϕ, f 〉 = 〈ϕ,A∗ f 〉,

where the scalar products on the two sides are now restricted to Y ×Y ′ and X ×X ′,
respectively.

One can define different topologies on X ′ by providing various criteria for con-
vergence. The only one we shall need to deal with is the weak-∗ topology, which
indicates (for a sequential space X ) that ( fi ) converges to f in X ′ if and only if

lim
i
〈ϕ, fi 〉 = 〈ϕ, f 〉 for all ϕ ∈X .

This is precisely the topology of pointwise convergence for all “points” ϕ ∈X .

We shall now mention some examples.

3.2.1 The dual of Lp spaces

The dual of the Lebesgue space Lp (Rd ), 1 ≤ p <∞, can be identified with the space
Lp ′ (Rd ) with 1 < p ′ ≤∞ satisfying 1/p +1/p ′ = 1, by defining

〈ϕ, f 〉 =
∫

Rd
ϕ(r ) f (r ) dr (3.3)

for ϕ ∈ Lp (Rd ) and f ∈ Lp ′ (Rd ). In particular, L2(Rd ), which is the only Hilbert space
of the family, is its own dual.

To see that linear functionals described by the above formula with f ∈ Lp ′ are con-
tinuous on Lp , we can rely on Hölder’s inequality, which states that

|〈ϕ, f 〉| ≤
∫

Rd
|ϕ(r ) f (r )| dr ≤ ‖ϕ‖Lp ‖ f ‖Lp′ (3.4)

for 1 ≤ p, p ′ ≤∞ and 1/p+1/p ′ = 1. The special case of this inequality for p = 2 yields
the Cauchy-Schwarz inequality.
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3.2.2 The duals of D and S

In this subsection, we give the mathematical definition of the duals of the nuclear
spaces D and S . A physical interpretation of these definitions is postponed until the
next section.

The dual of D(Rd ), denoted as D′(Rd ), is the so-named space of distributions over
Rd (although we shall use the term distribution more generally to mean any general-
ized function in the sense of the next section). Ordinary locally integrable functions 2

(in particular, all Lp functions and all continuous functions), can be identified with
elements of D′(Rd ) by using (3.3). By this, we mean that any locally integrable func-
tion f defines a continuous linear functional on D(Rd ) where, forϕ ∈D(Rd ), 〈ϕ, f 〉 is
given by (3.3). However, not all elements of D′(Rd ) can be characterized in this way.
For instance, the Dirac functional δ (a.k.a. Dirac impulse), which maps ϕ ∈D(Rd ) to
the value 〈ϕ,δ〉 = ϕ(0), belongs in D′(Rd ) but cannot be written as an integral à la
(3.3). Even in this and similar cases, we may sometimes write

∫
Rd ϕ(r ) f (r ) dr , keep-

ing in mind that the integral is no longer a true (i.e., Lebesgue) integral, but simply
an alternative notation for 〈ϕ, f 〉.

In similar fashion, the dual of S (Rd ), denoted as S ′(Rd ), is defined and called the
space of tempered (or Schwartz) distributions. Since D ⊂ S and any sequence that
converges in the topology of D also converges in S , it follows that S ′(Rd ) is (can be
identified with) a smaller space (i.e., a subspace) of D′(Rd ). In particular, not every
locally-integrable function belongs in S ′. For example, locally-integrable functions
of exponential growth have no place in S ′ as their scalar product with Schwartz test
functions via (3.3) is not in general finite (much less continuous). Once again, S ′(Rd )
contains objects that are not functions on Rd in the true sense of the word. For ex-
ample, δ also belongs in S ′(Rd ).

3.2.3 Distinction between Hermitian and duality products

We use the notation 〈 f , g 〉L2 =
∫
Rd f (r )g (r ) dr to represent the usual (Hermitian-

symmetric) L2 inner product. The latter is defined for f , g ∈ L2(Rd ) (the Hilbert space
of complex finite-energy functions); it is equivalent to Schwartz’ duality product only
when the second argument is real-valued (due to the presence of complex conjuga-
tion). The corresponding Hermitian adjoint of an operator A is denoted by AH . It is
defined as 〈AH f , g 〉L2 = 〈 f ,Ag 〉L2 = 〈 f ,Ag 〉 which implies that AH = A∗. The distinc-
tion between both types of adjoints is only relevant when considering signal expan-
sions or analyses in terms of complex basis functions.

The classical Fourier transform is defined as

f̂ (ω) =F { f }(ω) =
∫

Rd
f (r )e−j〈r ,ω〉 dr

for any f ∈ L1(Rd ). This definition admits a unique extension, F : L2(Rd ) → L2(Rd ),
which is an isometry map (Plancherel’s theorem). The fact that the Fourier trans-
form preserves the L2 norm of a function (up to a normalization factor) is a direct

2. A function on Rd is called locally integrable if its integral over any closed bounded set is finite.
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consequence of Parseval’s relation

〈 f , g 〉L2 =
1

(2π)d
〈 f̂ , ĝ 〉L2 ,

whose duality product equivalent is 〈 f , ĝ 〉 = 〈 f̂ , g 〉.

3.3 Generalized functions

3.3.1 Intuition and definition

We begin with some considerations regarding the modeling of physical phenom-
ena. Let us suppose that the object of our study is some physical quantity f that var-
ies in relation to some parameter r ∈Rd representing space and/or time. We assume
that our way of obtaining information about f is by making measurements that are
localized in space-time using sensors (ϕ,ψ, . . .). We shall denote the measurement of
f procured by ϕ as 〈ϕ, f 〉. 3 Let us suppose that our sensors form a vector space, in
the sense that for any two sensors ϕ,ψ and any two scalars a,b ∈ R (or C), there is a
real or virtual sensor aϕ+bψ such that

〈aϕ+bψ, f 〉 = a〈ϕ, f 〉+b〈ψ, f 〉.

In addition, we may reasonably suppose that the phenomenon under observation
has some form of continuity, meaning that

lim
i
〈ϕi , f 〉 = 〈ϕ, f 〉,

where (ϕi ) is a sequence of sensors that tend to ϕ in a certain sense. We denote the
set of all sensors by X . In the light of the above notions of linear combinations and
limits defined in X , mathematically, the space of sensors then has the structure of a
topological vector space.

Given the above properties and the definitions of the previous sections, we con-
clude that f represents an element of the continuous dual X ′ of X . Given that our
sensors, as previously noted, are assumed to be localized in Rd , we may model them
as compactly supported or rapidly decaying functions on Rd , denoted by the same
symbols (ϕ,ψ, . . .) and, in the case where f also corresponds to a function on Rd ,
relate the observation 〈ϕ, f 〉 to the functional form of ϕ and f by the identity

〈ϕ, f 〉 =
∫

Rd
ϕ(r ) f (r ) dr .

We exclude from consideration those functions f for which the above integral is un-
defined or infinite for some ϕ ∈X .

However, we are not limited to taking f to be a true function of r ∈Rd . By requiring
our sensor or test functions to be smooth, we can permit f to become singular; that
is, to depend on the value of ϕ and/or of its derivatives at isolated points/curves

3. The connection with previous sections should already be apparent from this choice of notation.
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inside Rd . An example of a singular generalized function f , which we have already
noted, is the Dirac distribution (or impulse) δ that measures the value of ϕ at the
single point r = 0 (i.e., 〈ϕ,δ〉 =ϕ(0)).

Mathematically, we define generalized functions as members of the continuous
dual X ′ of a nuclear space X of functions, such as D(Rd ) or S (Rd ).

Implicit to the manipulation of generalized functions is the notion of weak equality
(or equality in the sense of distributions). Concretely, this means that one should
interpret the statement f = g with f , g ∈X ′ as

〈ϕ, f 〉 = 〈ϕ, g 〉 for all ϕ ∈X .

3.3.2 Operations on generalized functions

Following (3.2), any continuous linear operator D → D or S → S can be trans-
posed to define a continuous linear operator D∗ → D∗ or S ∗ → S ∗. In particular,
since D(Rd ) and S (Rd ) are closed under differentiation, we can define derivatives of
distributions.

First, note that, formally,

〈∂nϕ, f 〉 = 〈ϕ,∂n∗ f 〉.
Now, using integration by parts in (3.3), for ϕ, f in D(Rd ) or S (Rd ) we see that ∂n∗ =
(−1)|n|∂n . In other words, we can write

〈ϕ,∂n f 〉 = (−1)|n|〈∂nϕ, f 〉. (3.5)

The idea is then to use (3.5) as the defining formula in order to extend the action of
the derivative operator ∂n for any f ∈D′(Rd ) or S ′(Rd ).

Formulas for scaling, shifting (translation), rotation, and other geometric trans-
formations of distributions are obtained in a similar manner. For instance, the trans-
lation by r0 of a generalized function f is defined via the identity

〈ϕ, f (·− r0)〉 = 〈ϕ(·+ r0), f 〉.
More generally, we give the following definition.

D E FI N I T I O N 3.3 (Dual extension principle) Given operators U,U∗ : S (Rd ) →S (Rd )
that form an adjoint pair on S (Rd )×S (Rd ), we extend their action to S ′(Rd ) →
S ′(Rd ) by defining U f and U∗ f so as to have

〈ϕ,U f 〉 = 〈U∗ϕ, f 〉,
〈ϕ,U∗ f 〉 = 〈Uϕ, f 〉,

for all f . A similar definition gives the extension of adjoint pairs D(Rd ) → D(Rd ) to
operators D′(Rd ) →D′(Rd ).

Examples of operators S (Rd ) →S (Rd ) that can be extended in the above fashion
include derivatives, rotations, scaling, translation, time-reversal, and multiplication
by smooth functions of slow growth in the space-time domain. The other funda-
mental operation is the Fourier transform which is treated in the next section.
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Temporal or spatial domain Fourier domain

f̂ (r ) =F { f }(r ) (2π)d f (−ω)

f ∨(r ) = f (−r ) f̂ (−ω) = f̂ ∨(ω)

f (r ) f̂ (−ω)

f (ATr ) 1
|detA| f̂ (A−1ω)

f (r − r0) e−j〈r0,ω〉 f̂ (ω)

ej〈r ,ω0〉 f (r ) f̂ (ω−ω0)

∂n f (r ) (jω)n f̂ (ω)

r n f (r ) j|n|∂n f̂ (ω)

(g ∗ f )(r ) ĝ (ω) f̂ (ω)

g (r ) f (r ) (2π)−d (ĝ ∗ f̂ )(ω)

Table 3.3 Basic properties of the (generalized) Fourier transform.

3.3.3 The Fourier transform of generalized functions

We have already noted that the Fourier transform F is a reversible operator that
maps the (complexified) space S (Rd ) into itself. The additional relevant property is
that F is self-adjoint: 〈ϕ,Fψ〉 = 〈Fϕ,ψ〉, for all ϕ,ψ ∈S (Rd ). This helps us specify-
ing the generalized Fourier transform of distributions in accordance with the general
extension principle in Definition 3.3.

D E FI N I T I O N 3.4 The generalized Fourier transform of a distribution f ∈ S ′(Rd ) is
the distribution f̂ =F { f } ∈S ′(Rd ) that satisfies

〈ϕ, f̂ 〉 = 〈ϕ̂, f 〉

for all ϕ ∈ S , where ϕ̂ = F {ϕ} is the classical Fourier transform of ϕ given by the
integral

ϕ̂(ω) =
∫

Rd
e−j〈r ,ω〉ϕ(r ) dr .

For example, since we have
∫

Rd
ϕ(r ) dr = 〈ϕ,1〉 = ϕ̂(0) = 〈ϕ̂,δ〉,

we conclude that the (generalized) Fourier transform of δ is the constant function 1.

The fundamental property of the generalized Fourier transform is that it maps
S ′(Rd ) into itself and that it is invertible with F−1 = 1

(2π)d F where F { f } = F { f ∨}.
This quasi self-reversibility—also expressed by the first row of Table 3.3—implies that
any operation on generalized functions that is admissible in the space/time domain
has its counterpart in the Fourier domain, and vice versa. For instance, the multiplic-
ation with a smooth function in the Fourier domain corresponds to a convolution in
the signal domain. Consequently, the familiar functional identities concerning the



38 Mathematical context and background

classical Fourier transform such as the formulas for change of variables, differenti-
ation, among others, also hold true for this generalization. These are summarized in
Table 3.3.

In addition, the reader can find in Appendix A a table of Fourier transforms of some
important singular generalized functions in one and several variables.

3.3.4 The kernel theorem

The kernel theorem provides a characterization of continuous operators X →X ′

(with respect to the nuclear topology on X and the weak-∗ topology on X ′). We
shall state a version of the theorem for X = S (Rd ), which is the one we shall use.
The version for D(Rd ) is obtained by replacing the symbol S with D everywhere in
the statement of the theorem.

T H E O R E M 3.1 (Schwartz’ kernel theorem: first form) Every continuous linear oper-
ator A : S (Rd ) →S ′(Rd ) can be written in the form

ϕ(r ) 7→ A{ϕ}(r ) =
∫

Rd
ϕ(s)a(r , s) ds, (3.6)

where a(·, ·) is a generalized function in S ′(Rd ×Rd ).

We can interpret the above formula as some sort of continuous-domain matrix-
vector product, where r , s play the role of the row and column indices, respectively
(see the list of analogies in Table 3.1). This characterization of continuous linear
operators as infinite-dimensional matrix-vector products partly justifies our earlier
statement that nuclear spaces “resemble” finite-dimensional spaces in fundamental
ways.

The kernel a ∈S ′(Rd ×Rd ) associated with the linear operator A can be identified
as

a(·,r ′) = A{δ(·− r ′)}, (3.7)

which corresponds to making the formal substitution ϕ = δ(·− r ′) in (3.6). One can
therefore view a(·,r ′) as the generalized impulse response of A.

An equivalent statement of Theorem 3.1 is as follows.

T H E O R E M 3.2 (Schwartz’s kernel theorem: second form) Every continuous bilinear
form l : S (Rd )×S (Rd ) →R (or C) can be written as

l (ϕ1,ϕ2) =
∫

Rd×Rd
ϕ1(r )ϕ2(s)a(r , s) ds dr , (3.8)

where the kernel a is some generalized function in S ′(Rd ×Rd ).

One may argue that the signal-domain notation that is used in both (3.6) and (3.8)
is somewhat abusive since A{ϕ} and a do not necessarily have an interpretation as
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classical functions (see statement on the notation in Section 3.1.1). The purists there-
fore prefer to denote (3.8) as

l (ϕ1,ϕ2) = 〈ϕ1 ⊗ϕ2, a〉 (3.9)

with (ϕ1 ⊗ϕ2)(r , s) =ϕ1(r )ϕ2(s) for all ϕ1,ϕ2 ∈S (Rd ).
The connection between the representations (3.6)-(3.9) is clarified by relating the

continuous bilinear form l to the underlying continuous linear operator A : S (Rd ) →
S ′(Rd ) by means of the identity

l (ϕ1,ϕ) = 〈ϕ1,Aϕ〉,

where Aϕ ∈ S ′(Rd ) is the generalized function specified by (3.6) or, equivalently, by
the inner “integral” (duality product) with respect to s in (3.8).

3.3.5 Linear shift-invariant (LSI) operators and convolutions

Let Sr0 denote the shift operatorϕ 7→ϕ(·−r0). We call an operator U shift-invariant
if USr0 = Sr0 U for all r0 ∈Rd .

As a corollary of the kernel theorem, we have the following characterization of lin-
ear shift-invariant (LSI) operators S → S ′ (and a similar characterization for those
D →D′).

C O R O L L A RY 3.3 Every continuous linear shift-invariant operator S (Rd ) → S ′(Rd )
can be written as a convolution

ϕ(r ) 7→ (ϕ∗h)(r ) =
∫

Rd
ϕ(s)h(r − s) ds

with some generalized function h ∈S ′(Rd ).

The idea there is that the kernel (or generalized impulse response) in (3.6) is a func-
tion of the relative displacement only: a(r , s) = h(r − s) (shift-invariance property).

Moreover, in this case we have the convolution-multiplication formula

F {h ∗ϕ} = ϕ̂ĥ. (3.10)

Note that the convolution of a test function and a distribution is in general a distri-
bution. The latter is smooth (and therefore equivalent to an ordinary function), but
not necessarily rapidly decaying. However,ϕ∗h will once again belong continuously
to S if ĥ, the Fourier transform of h, is a smooth (infinitely differentiable) function
with at most polynomial growth at infinity because the smoothness of ĥ translates
into h having rapid decay in the spatio-temporal domain, and vice versa. In particu-
lar, we note that the condition is met when h ∈R(Rd ) (since r n h(r ) ∈ L1(Rd ) for any
n ∈Nd ). A classical situation in dimension d = 1 where the decay is guaranteed to be
exponential is when the Fourier transform of h is a rational transfer function of the
form

ĥ(ω) =C0

∏M
m=1(jω− zm)

∏N
n=1(jω−pn)



40 Mathematical context and background

with no purely imaginary pole (i.e., with Re(pn) 6= 0, 1 ≤ n ≤ N ). 4

Since any sequence that converges in some Lp space, with 1 ≤ p ≤ ∞, also con-
verges in S ′, the kernel theorem implies that any continuous linear operator S (Rd ) →
Lp (Rd ) can be written in the form specified by (3.6).

In defining the convolution of two distributions, some caution should be exerted.
To be consistent with the previous definitions, we can view convolutions as continu-
ous linear shift-invariant operators. The convolution of two distributions will then
correspond to the composition of two LSI operators. To fix ideas, let us take two dis-
tributions f and h, with corresponding operators A f and Ah . We then wish to identify
f ∗h with the composition A f Ah . However, note that, by the kernel theorem, A f and
Ah are initially defined S → S ′. Since the codomain of Ah (the space S ′) does not
match the domain of A f (the space S ), this composition is a priori undefined.

There are two principal situations where we can get around the above limitation.
The first is where the range of Ah is limited to S ⊂S ′ (i.e., Ah maps S to itself instead
of the much larger S ′). This is the case for the distributions with a smooth Fourier
transform that we discussed previously.

The second situation where we may define the convolution of f and h is when the
range of Ah can be restricted to some space X (i.e, Ag : S → X ), and furthermore,
A f has a continuous extension to X ; that is, we can extend it as A f : X →S ′.

An important example of the second situation is when the distributions in ques-
tion belong to the spaces Lp (Rd ) and Lq (Rd ) with 1 ≤ p, q ≤∞ and 1/p +1/q ≤ 1. In
this case, their convolution is well-defined and can be identified with a function in
Lr (Rd ), 1 ≤ r ≤∞, with

1+ 1

r
= 1

p
+ 1

q
.

Moreover, for f ∈ Lp (Rd ) and h ∈ Lq (Rd ), we have

‖ f ∗h‖Lr ≤ ‖ f ‖Lp ‖h‖Lq .

This result is Young’s inequality for convolutions. An important special case of this
identity, most useful in derivations, is obtained for q = 1 and p = r :

‖h ∗ f ‖Lp ≤ ‖h‖L1‖ f ‖Lp . (3.11)

The latter formula indicates that Lp (Rd ) spaces are “stable” under convolution with
elements of L1(Rd ) (stable filters).

3.3.6 Convolution operators on Lp (Rd )

While the condition h ∈ L1(Rd ) in (3.11) is very useful in practice and plays a cent-
ral role in the classical theory of linear systems, it does not cover the entire range of
bounded convolution operators on Lp (Rd ). Here we shall be more precise and char-
acterize the complete class of such operators for the cases p = 1,2,+∞. In harmonic

4. For M or N = 0, we shall take the corresponding product to be equal to 1.
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analysis, these operators are commonly referred to as Lp Fourier multipliers using
(3.10) as starting point for their definition.

D E FI N I T I O N 3.5 (Fourier multiplier) An operator T : Lp (Rd ) → Lp (Rd ) is called a
Lp Fourier multiplier if it is continuous on Lp (Rd ) and can be represented as T f =
F−1{ f̂ H }. The function H :Rd →C is the frequency response of the underlying filter.

The first observation is that the definition guarantees linearity and shift-invariance.
Moreover, since S (Rd ) ⊂ Lp (Rd ) ⊂ S ′(Rd ), the multiplier operator can be written
as a convolution T f = h ∗ f (see Corollary 3.3) where h ∈ S ′(Rd ) is the impulse re-
sponses of the operator T: h = F−1{H } = Tδ. Conversely, we also have that H = ĥ =
F {h}.

Since we are dealing with a linear operator on a normed vector space, we can rely
on the equivalence between continuity (in accordance with Definition 3.2) and the
boundedness of the operator.

D E FI N I T I O N 3.6 (Operator norm) The norm of the linear operator T : Lp (Rd ) →
Lp (Rd ) is given by

‖T‖Lp = sup
f ∈Lp (Rd )\{0}

‖T f ‖Lp

‖ f ‖Lp

.

The operator is said to be bounded if its norm is finite.

It practice, it is often sufficient to work out bounds for the extreme cases (e.g.,
p = 1,+∞) and to then invoke the Riesz-Thorin interpolation theorem to extend the
results to the p values in-between.

T H E O R E M 3.4 (Riesz-Thorin) Let T be a linear operator that is bounded on Lp1 (Rd )
as well as on Lp2 (Rd ) with 1 ≤ p1 ≤ p2. Then, T is also bounded for any p ∈ [p1, p2] in
the sense that there exist constants Cp = ‖T‖Lp <∞ such that

‖T f ‖Lp ≤Cp‖ f ‖Lp

for all f ∈ Lp (Rd ).

The next theorem summarizes the main results that are available on the charac-
terization of convolution operators on Lp (Rd ).

T H E O R E M 3.5 (Characterization of Lp Fourier multipliers) Let T be a Fourier-multiplier
operator with frequency response H : Rd → C and (generalized) impulse response
h =F−1{H } = T{δ}. Then, the following statements apply:

1) The operator T is an L1 Fourier multiplier if and only if there exists of a finite
complex-valued Borel measure denoted byµh such that H(ω) = ∫

Rd e−j〈ω,r 〉µh(dr ).
2) The operator T is an L∞ Fourier multiplier if and only if H is the Fourier trans-

form of a finite complex-valued Borel measure, as stated in 1).
3) The operator T is an L2 Fourier multiplier if and only if H = ĥ ∈ L∞(Rd ).
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The corresponding operator norms are

‖T‖L1 = ‖T‖L∞ = ‖µh‖TV

‖T‖L2 =
1

(2π)d/2
‖H‖L∞ ,

where ‖µh‖TV is the total variation of the underlying measure. Finally, T is an Lp

Fourier multiplier for the whole range 1 ≤ p ≤ +∞ if the condition on H in 1) or 2) is
met with

‖T‖Lp ≤ ‖µh‖TV = sup
‖ϕ‖L∞≤1

〈ϕ,h〉. (3.12)

We note that the above theorem is an extension upon (3.11) since being a finite
Borel measure is less restrictive a condition than h ∈ L1(Rd ). To see this, we invoke
Lebesgue’s decomposition theorem stating that a finite measure µh admits a unique
decomposition as

µh =µac +µsing,

where µac is an absolutely-continuous measure and µsing a singular measure whose
mass is concentrated on a set whose Lebesgue measure is zero. If µsing = 0, then
there exists a unique function h ∈ L1(Rd )—the Radon-Nikodym derivative of µh with
respect to the Lebesgue measure—such that

∫

Rd
ϕ(r )µh(dr ) =

∫

Rd
ϕ(r )h(r ) dr = 〈ϕ,h〉.

We then recall Hölder’s inequality (3.4) with (p, p ′) = (∞,1),

|〈ϕ,h〉| ≤ ‖ϕ‖L∞‖h‖L1 ,

to see that the total variation norm defined by (3.12) reduces to the L1 norm: ‖µh‖TV =
‖h‖L1 . Under those circumstances, there is an equivalence between (3.11) and (3.12).

More generally, when µsing 6= 0, we can make the same kind of association between
µh and a generalized function h which is no longer in L1(Rd ). The typical case is when
µsing is a discrete measure which results in a generalized function hsing =

∑
k hkδ(·−

rk ) that is a sum of Dirac impulses. The total variation ofµh is then given by ‖µh‖TV =
‖hac‖L1 +

∑
k |hk |.

Statement 3) in Theorem 3.5 is a consequence of Parseval’s identity. It is consistent
with the intuition that a “stable” filter should have a bounded frequency response,
as a minimal requirement. The class of convolution kernels that satisfy this condi-
tion are sometimes called pseudo-measures. These are more-general entities than
measures because the Fourier transform of a finite measure is necessarily uniformly
continuous in addition to being bounded.

The last result in Theorem 3.5 is obtained by interpolation between Statements 1)
and 2) using the Riesz-Thorin theorem. The extent to which the TV condition on h
can be relaxed for p 6= 1,2,∞ is not yet settled and considered to be a difficult math-
ematical problem. A limit example of a 1-D convolution operator that is bounded
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for 1 < p < ∞ (see Theorem 3.6 below), but fails to meet the necessary and suffi-
cient TV condition for p = 1,∞, is the Hilbert transform. Its frequency response is
HHilbert(ω) = −jsign(ω), which is bounded since |HHilbert(ω)| = 1 (all-pass filter), but
which is not uniformly continuous because of the jump at ω = 0. Its impulse re-
sponse is the generalized function h(r ) = 1

πr , which is not included in L1(R) for two
reasons: the singularity at r = 0 and the lack of sufficient decay at infinity.

The case of the Hilbert transform is covered by Mikhlin’s multiplier theorem which
provides a sufficient condition on the frequency response of a filter for Lp stability.

T H E O R E M 3.6 (Mikhlin) A Fourier-multiplier operator is bounded in Lp (Rd ) for 1 <
p <∞ if its frequency response H : Rd →C satisfies the differential estimate

∣∣ωn∂n H(ω)
∣∣≤Cn for all |n| ≤ (d/2)+1.

Mikhlin’s condition, which can absorb some degree of discontinuity at the origin,
is easy to check in practice. It is stronger than the minimal boundedness requirement
for p = 2.

3.4 Probability theory

3.4.1 Probability measures

Probability measures are mathematical constructs that permit us to assign num-
bers (probabilities) between 0 (almost impossible) to 1 (almost sure) to events. An
event is modeled by a subset A of the universal set ΩX of all outcomes of a certain
experiment X , which is assumed to be known. The symbol PX (A) then gives the
probability that some element of A occurs as the outcome of experiment X . Note
that, in general, we may assign probabilities only to some subsets of ΩX . We shall
denote the collection of all subsets ofΩX for which PX is defined as SX .

The probability measure PX then corresponds to a function SX → [0,1]. The
triple (ΩX ,SX ,PX ) is called a probability space.

Frequently, the collectionSX contains open and closed sets, as well as their count-
able unions and intersections, collectively known as Borel sets. In this case we call
PX a Borel probability measure.

An important application of the notion of probability is in computing the “average”
value of some (real- or complex-valued) quantity f that depends on the outcome in
ΩX . This quantity, the computation of which we shall discuss shortly, is called the
expected value of f , and is denoted as E{ f (X )}.

An important context for probabilistic computations is when the outcome of X
can be encoded as a finite-dimensional numerical sequence, which implies that we
can identify ΩX with Rn (or a subset thereof). In this case, within the proper math-
ematical setting, we can find a (generalized) function pX , called the probability dis-
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tribution 5 or density function (pdf) of X , such that

PX (A) =
∫

A
pX (x) dx

for suitable subsets A of Rn . 6

More generally, the expected value of f : X →C is here given by

E{ f (X )} =
∫

Rn
f (x)pX (x) dx . (3.13)

We say “more generally” because PX (A) can be seen as the expected value of the
indicator function 1A(X ). Since the integral of complex-valued f can be written as
the sum of its real and imaginary parts, without loss of generality we shall consider
only real-valued functions where convenient.

When the outcome of the experiment is a vector with infinitely many coordinates
(for instance a function R→R), it is typically not possible to characterize probabilit-
ies with probability distributions. It is nevertheless still possible to define probability
measures on subsets of ΩX , and also to define the integral (average value) of many a
function f : ΩX → R. In effect, a definition of the integral of f with respect to prob-
ability measure PX is obtained using a limit of “simple” functions (finite weighted
sums of indicator functions) that approximate f . For this general definition of the
integral we use the notation

E{ f (X )} =
∫

ΩX

f (x) PX (dx),

which we may also use, in addition to (3.13), in the case of a finite-dimensionalΩX .
In general, given a function f : ΩX → ΩY that defines a new outcome y ∈ ΩY for

every outcome x ∈ ΩX of experiment X , one can see the result of applying f to the
outcome of X as a new experiment Y . The probability of an event B ⊂ ΩY is the
same as the combined probability of all outcomes of X that generate an outcome in
B . Thus, mathematically,

PY (B) =PX ( f −1(B)) =PX ◦ f −1(B),

where the inverse image f −1(B) is defined as

f −1(B) = {x ∈ΩX : f (x) ∈ B}.

PY =PX ( f −1·) is called the push-forward of PX through f .

5. Probability distributions should not be confused with the distributions in the sense of Schwartz (i.e.,
generalized functions) that were introduced in Section 3.3. It is important to distinguish the two usages,
in part because, as we describe here, in finite dimensions a connection can be made between probability
distributions and positive generalized functions.

6. In classical probability theory, pdfs are defined as the Radon-Nikodym derivative of a probability
measure with respect to some other measure, typically the Lebesgue measure (as we shall assume). This
requires the probability measure to be absolutely continuous with respect to the latter measure. The defin-
ition of the generalized pdf given here is more permissive, and also includes measures that are singular
with respect to the Lebesgue measure (for instance the Dirac measure of a point, for which the general-
ized pdf is a Dirac distribution). This generalization relies on identifying measures on the Euclidean space
with positive linear functionals.
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3.4.2 Joint probabilities and independence

When two experiments X and Y with probabilities PX and PY are considered
simultaneously, one can imagine a joint probability space (ΩX ,Y ,SX ,Y ,PX ,Y ) that
supports both X and Y , in the sense that there exist functions f : ΩX ,Y → ΩX and
g :ΩX ,Y →ΩY such that

PX (A) =PX ,Y ( f −1(A)) and PY (B) =PX ,Y (g−1(B))

for all A ∈SX and B ∈SY .
The functions f , g above are assumed to be fixed, and the joint event that A occurs

for X and B for Y , is given by

f −1(A)∩ g−1(B).

If the outcome of X has no bearing on the outcome of Y and vice-versa, then X
and Y are said to be independent. In terms of probabilities, this translates into the
probability factorization rule

PX ,Y ( f −1(A)∩ g−1(B)) =PX (A) ·PY (B) =PX ,Y ( f −1(A)) ·PX ,Y (g−1(B)).

The above ideas can be extended to any finite collection of experiments X1, . . . , XM

(and even to infinite ones, with appropriate precautions and adaptations).

3.4.3 Characteristic functions in finite dimensions

In finite dimensions, given a probability measure PX on ΩX = Rn , for any vector
ω ∈ Rn , we can compute the expected value (integral) of the bounded function x 7→
ej〈ω,x〉. This permits us to define a complex-valued function on Rn by the formula

p̂X (ω) = E{ej〈ω,x〉} =
∫

Rn
ej〈ω,x〉pX (x) dx =F {pX }(ω), (3.14)

which corresponds to a slightly different definition of the Fourier transform of the
(generalized) probability distribution pX . The convention in probability theory is
to define the forward Fourier transform with a positive sign for j〈ω, x〉, which is the
opposite of the convention used in analysis.

One can prove that p̂X , as defined above, is always continuous at 0 with p̂X (0) = 1,
and that it is positive-definite (see Definition B.1 in Appendix B).

Remarkably, the converse of the above fact is also true. We record the latter result,
which is due to Bochner, together with the former observation, as Theorem 3.7.

T H E O R E M 3.7 (Bochner) Let p̂X : Rn → C be a function that is positive-definite, ful-
fills p̂X (0) = 1, and is continuous at 0. Then, there exists a unique Borel probability
measure PX on Rn , such that

p̂X (ω) =
∫

Rn
ej〈ω,x〉PX (dx) = E{ej〈ω,x〉}.

Conversely, the function specified by (3.14) with pX (r ) ≥ 0 and
∫
Rn pX (r ) dr = 1 is

positive-definite, uniformly continuous, and such that |p̂X (ω)| ≤ p̂X (0) = 1.
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The interesting twist (which is due to Lévy) is that the positive-definiteness of p̂X

and its continuity at 0 implies continuity everywhere (as well as boundedness).
Since, by the above theorem, p̂X uniquely identifies PX . It is called the character-

istic function of probability measure PX (recall that the probability measure PX is
related to the density pX by PX (E) = ∫

E pX (x) dx for sets E in theσ-algebra overRn).
The next theorem characterizes weak convergence of measures on Rn in terms of

their characteristic functions.

T H E O R E M 3.8 (Lévy’s continuity theorem) Let (PXi ) be a sequence of probability
measures on Rn with respective sequence of characteristic functions (p̂Xi ). If there ex-
ists a function p̂X such that

lim
i

p̂Xi (ω) = p̂X (ω)

pointwise onRn , and if, in addition, p̂X is continuous at 0, then p̂X is the characteristic
function of a probability measure PX on Rn . Moreover, PXi converges weakly to PX ,
in symbols

PXi

w−→PX ,

meaning for any continuous function f :Rn →R,

lim
i
EXi { f } = EX { f }.

The reciprocal of the above theorem is also true; namely, if PXi

w−→ PX , then
p̂Xi (ω) → p̂X (ω) pointwise.

3.4.4 Characteristic functionals in infinite dimensions

Given a probability measure PX on the continuous dual X ′ of some test function
space X , one can define an analogue of the finite-dimensional characteristic func-
tion, dubbed the characteristic functional of PX and denoted as P̂X , by means of
the identity

P̂X (ϕ) = E{ej〈ϕ,X 〉}. (3.15)

Comparing the above definition with (3.14), one notes that Rn , as the domain of the
characteristic function p̂X , is now replaced by the space X of test functions.

As was the case in finite dimensions, the characteristic functional fulfills two im-
portant conditions:

Positive-definiteness: P̂X is positive-definite, in the sense that for any N (test)
functions ϕ1, . . . ,ϕN , for any N , the N ×N matrix with entries pi j = P̂X (ϕi −ϕ j )
is nonnegative definite.

Normalization: P̂X (0) = 1.

In view of the finite-dimensional result (Bochner’s theorem), it is natural to ask
if a condition in terms of continuity can be given also in the infinite-dimensional
case, so that any functional P̂X fulfilling this continuity condition in addition to the
above two, uniquely identifies a probability measure on X ′. In the case where X is a
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nuclear space (and, in particular, for X =S (Rd ) or D(Rd ), cf. Subsection 3.1.3) such
a condition is given by the Minlos-Bochner theorem.

T H E O R E M 3.9 (Minlos-Bochner) Let X be a nuclear space and let P̂X : X →C be a
functional that is positive-definite in the sense discussed above, fulfills P̂X (0) = 1, and
is continuous X →C. Then, there exists a unique probability measure PX on X ′ (the
continuous dual of X ), such that

P̂X (ϕ) =
∫

X ′
ej〈ϕ,x〉PX (dx) = E{ej〈ϕ,X 〉}.

Conversely, the characteristic functional associated to some probability measure PX

on X ′ is positive-definite, continuous over X , and such that P̂X (0) = 1.

The practical implication of this result is that one can rely on characteristic func-
tionals to indirectly specify infinite-dimensional measures (most importantly, prob-
abilities of stochastic processes)—which are difficult to pin down otherwise. Op-
erationally, the characteristic functional P̂X (ϕ) is nothing but a mathematical rule
(e.g., P̂X (ϕ) = e−

1
2 ‖ϕ‖2

2 ) that returns a value in C for any given function ϕ ∈ S . The
truly powerful aspect is that this rule condenses all the information about the stat-
istical distribution of some underlying infinite-dimensional random object X . When
working with characteristic functionals, we shall see that computing probabilities
and deriving various properties of the said processes are all reduced to analytical de-
rivations.

3.5 Generalized random processes and fields

In this section, we present an introduction to the theory of generalized random
processes, which is concerned with defining probabilities on function spaces, that
is, infinite-dimensional vector spaces with some notion of limit and convergence.
We have made the point before that the theory of generalized functions is a nat-
ural extension of finite-dimensional linear algebra. The same kind of parallel can
be drawn between the theory of generalized stochastic processes and conventional
probability calculus (which deals with finite-dimensional random vector variables).
Therefore, before getting into more detailed explanations, it is instructive to have a
look back at Table 3.2, which provides a side-by-side summary of the primary prob-
abilistic concepts that have been introduced so far. The reader is then referred to
Table 3.4, which presents a comparison of finite- and infinite-dimensional “innova-
tion models”. To give the basic idea, in finite dimensions, an “innovation” is a vector
in Rn of independent identically distributed (i.i.d.) random variables. An “innova-
tion model” is obtained by transforming such a vector by means of a linear operator
(a matrix), which embodies the structure of dependencies of the model. In infinite
dimensions, the notion of an i.i.d. vector is replaced by that of a random process with
independent values at every point (which we shall call an “innovation process”). The
transformation is achieved by applying a continuous linear operator which consti-
tutes the generalization of a matrix. The characterization of such models is made
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possible by their characteristic functionals, which, as we saw in the previous section,
are the infinite-dimensional equivalents of characteristic functions of random vari-
ables.

finite-dimensional infinite-dimensional

standard Gaussian i.i.d. vector W =
(W1, . . . ,WN )

standard Gaussian white noise w

p̂W (ω) = e−
1
2 |ω|2 ,ω ∈RN P̂w (ϕ) = e−

1
2 ‖ϕ‖2

2 , ϕ ∈S

multivariate Gaussian vector X Gaussian generalized process s
X = AW s = Aw (for continuous A : S ′ →S ′)
p̂X (ω) = e−

1
2 |ATω|2 P̂s (ϕ) = e−

1
2 ‖A∗ϕ‖2

general i.i.d. vector W = (W1, . . . ,WN ) with
exponent f

general white noise w with Lévy exponent
f

p̂W (ω) = e
∑N

n=1 f (ωn ) P̂w (ϕ) = e
∫
Rd f

(
ϕ(r )

)
dr

linear transformation of general i.i.d. ran-
dom vector W (innovation model)

linear transformation of general white
noise s (innovation model)

X = AW s = Aw
p̂X (ω) = p̂W (ATω) P̂s (ϕ) = P̂w (A∗ϕ)

Table 3.4 Comparison of innovation models in finite- and infinite-dimensional settings.
See Sections 4.3-4.5 for a detailed explanation.

3.5.1 Generalized random processes as collections of random variables

A generalized stochastic process 7 is essentially a randomization of the idea of a gen-
eralized function (Section 3.3) in much the same way as an ordinary stochastic pro-
cess is a randomization of the concept of a function.

At a minimum, the definition of a generalized stochastic process s should permit
us to associate probabilistic models with observations made using test functions. In
other words, to any test function ϕ in some suitable test-function space X is asso-
ciated a random variable s(ϕ), also often denoted as 〈ϕ, s〉. This is to be contrasted
with an observation s(t ) at time t , which would be modeled by a random variable in
the case of an ordinary stochastic process. We shall denote the probability measure
of the random variable 〈ϕ, s〉 as Ps,ϕ. Similarly, to any finite collection of observa-
tions 〈ϕn , s〉, 1 ≤ n ≤ N , N ∈ N, corresponds a joint probability measure Ps,ϕ1:ϕN

on RN (we shall only consider real-valued processes here, and therefore assume the
observations to be real-valued).

Moreover, finite families of observations 〈ϕn , s〉, 1 ≤ n ≤ N , and 〈ψm , s〉, 1 ≤ m ≤ M ,
need to be consistent or compatible to ensure that all computations of the probability

7. We shall use the terms random/stochastic process and field almost interchangeably. The distinction,
in general, lies in the fact that for a random process, the parameter is typically interpreted as time, while
for a field, the parameter is typically multi-dimensional and interpreted as spatial or spatio-temporal loc-
ation.
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of an event involving finite observations yield the same value for the probability. In
modeling physical phenomena, it is also reasonable to assume some weak form of
continuity in the probability of 〈ϕ, s〉 as a function of ϕ.

Mathematically, these requirements are fulfilled by the kind of probabilistic model
induced by a cylinder-set probability measure. In other words, a cylinder-set prob-
ability measure provides a consistent probabilistic description for all finite sets of
observations of some phenomenon s using test functions ϕ ∈ X . Furthermore, a
cylinder-set probability measure can always be specified via its characteristic func-
tional P̂s (ϕ) = E{ej〈ϕ,s〉}, which makes it amenable to analytic computations.

The only conceptual limitation of such a probability model is that, at least a priori,
it does not permit us to associate the sample paths of the process with (generalized)
functions. Put differently, in this framework, we are not allowed to interpret s as a
random entity belonging to the dual X ′ of X , since we have not yet defined a proper
probability measure on X ′. 8 Doing so involves some additional steps.

3.5.2 Generalized random processes as random generalized functions

Fortunately, the above existence and interpretation problem is fully resolved by
taking X to be a nuclear space, thanks to the Minlos-Bochner theorem (Theorem
3.9). This allows for the extension of the underlying cylinder-set probability measure
to a proper (by which here we mean countably additive) probability measure on X ′

(the topological dual of X ).
In this case, the joint probabilities Ps,ϕ1:ϕN , ϕ1, . . . ,ϕN ∈X , N ∈N, corresponding

to the random variables 〈ϕn , s〉 = 〈s,ϕn〉 for all possible choices of test functions, col-
lectively define a probability measure Ps on the infinite-dimensional dual space X ′.
This means that we can view s as an element drawn randomly from X ′ according to
the probability law Ps .

In particular, if we take X to be either S (Rd ) or D(Rd ), then our generalized ran-
dom process/field will have realizations that are distributions in S ′(Rd ) or D′(Rd ),
respectively. We can then also think of 〈ϕ, s〉 as the measurement of this random ob-
ject s by means of some sensor (test function) ϕ in S or D.

Since we shall rely on this fact throughout the book, we reiterate once more that
a complete probabilistic characterization of s as a probability measure on the space
X ′ (dual to some nuclear space X ) is provided by its characteristic functional. The
truly powerful aspect of the Minlos-Bochner theorem is that the implication goes
both ways: any continuous positive-definite functional P̂s : X →Cwith proper nor-
malization identifies a unique probability measure Ps on X ′. Therefore, to define a
generalized random process s with realizations in X ′, it suffices to produce a func-
tional P̂s : X →Cwith the noted properties.

8. In fact, X ′ may very well be too small to support such a description (while the algebraic dual, X ∗,
can support the measure—by Kolmogorov’s extension theorem—but is too large for many practical pur-
poses). An important example is that of white Gaussian noise, which one may conceive of as associating
a Gaussian random variable with variance ‖ϕ‖2

2 to any test function ϕ ∈ L2. However, the “energy” of
white Gaussian noise is clearly infinite. Therefore it cannot be modeled as a randomly chosen function in
(L2)′ = L2.
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3.5.3 Determination of statistics from the characteristic functional

The characteristic functional of the generalized random process s contains com-
plete information about its probabilistic properties, and can be used to compute all
probabilities, and to derive or verify the probabilistic properties related to s.

Most importantly, it can yield the N th-order joint probability density of any set of
linear observations of s by suitable N -dimensional inverse Fourier transformation.
This follows from a straightforward manipulation in the domain of the (joint) char-
acteristic function and is recorded for further reference.

P R O P O S I T I O N 3.10 Let y = (Y1, . . . ,YN ) with Yn = 〈ϕn , s〉 where ϕ1, . . . ,ϕN ∈ X be a
set of linear measurements of the generalized stochastic process s with characteristic
functional P̂s (ϕ) = E{ej〈ϕ,s〉} that is continuous over the function space X . Then,

p̂(Y1:YN )(ω) = P̂s,ϕ1:ϕN (ω) = P̂s

(
N∑

n=1
ωnϕn

)

and the joint pdf of y is given by

p(Y1:YN )(y) =F
−1

{p̂(Y1:YN )}(y) =
∫

RN
P̂s

(
N∑

n=1
ωnϕn

)
e−j〈y ,ω〉 dω

(2π)N
,

where the observation functions ϕn ∈ X are fixed and ω = (ω1, . . . ,ωN ) plays the role
of the N -dimensional Fourier variable.

Proof The continuity assumption over the function space X (which need not be
nuclear) ensures that the manipulation is legitimate. Starting from the definition of
the characteristic function of y = (Y1, . . . ,YN ), we have

p̂(Y1:YN )(ω) = E
{
exp

(
j〈ω,y〉)}

= E
{

exp
(
j

N∑
n=1

ωn〈ϕn , s〉)
}

= E
{

exp
(
j〈

N∑
n=1

ωnϕn , s〉)
}

(by linearity of duality product)

= P̂s

(
N∑

n=1
ωnϕn

)
(by definition of P̂s (ϕ))

The density p(Y1:YN ) is then obtained by inverse (conjugate) Fourier transformation.

Similarly, the formalism allows one to retrieve all first- and second-order moments
of the generalized stochastic process s. To that end, one considers the mean and
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correlation functionals defined and computed as

Ms (ϕ) = E{〈ϕ, s〉} = (−j)
d

dω
P̂s,ϕ(ω)

∣∣
ω=0

= (−j)
d

dω
P̂s (ωϕ)

∣∣
ω=0.

Bs (ϕ1,ϕ2) = E{〈ϕ1, s〉〈ϕ2, s〉} = (−j)2 ∂2

∂ω1∂ω2
P̂s,ϕ1,ϕ2 (ω1,ω2)

∣∣
ω1,ω2=0

= (−j)2 ∂2

∂ω1∂ω2
P̂s (ω1ϕ1 +ω2ϕ2)

∣∣
ω1,ω2=0.

When the space of test functions is nuclear (X = S (Rd ) or D(Rd )) and the above
quantities are well defined, we can find generalized functions ms (the generalized
mean) and Rs (the generalized autocorrelation function) such that

Ms (ϕ) =
∫

Rd
ϕ(r )ms (r ) dr , (3.16)

Bs (ϕ1,ϕ2) =
∫

Rd
ϕ1(r )ϕ2(s)Rs (r , s) dr . (3.17)

The first identity is simply a consequence of Ms being a continuous linear functional
on X , while the second is an application of Schwartz’ kernel theorem (Theorem 3.2).

3.5.4 Operations on generalized stochastic processes

In constructing stochastic models, it is of interest to separate the essential ran-
domness of the models (the “innovation”) from their deterministic structure. Our
way of approaching this objective is by encoding the random part in a characteristic
functional P̂w , and the deterministic structure of dependencies in an operator U
(or, equivalently, in its adjoint U∗). In the following paragraphs, we first review the
mathematics of this construction, before we come back to, and clarify, the said inter-
pretation. The concepts presented here in an abstract form are illustrated and made
intuitive in the remainder of the book.

Given a continuous linear operator U : X →Y with continuous adjoint U∗ : Y ′ →
X ′, where X ,Y need not be nuclear, and a functional

P̂w : Y →C

that satisfies the three conditions of Theorem 3.9 (continuity, positive-definiteness,
and normalization), we obtain a new functional

P̂s : X →C

fulfilling the same properties by composing P̂w and U as per

P̂s (ϕ) = P̂w (Uϕ) for all ϕ ∈X . (3.18)

Writing

P̂s (ωϕ) = E{ejω〈ϕ,s〉} = p̂〈ϕ,s〉(ω)
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Figure 3.1 Definition of linear transformation of generalized stochastic processes using
characteristic functionals. In this book, we shall focus on innovation models where w is a
white noise process. The operator L = U−1∗ (if it exists) is called the whitening operator of s
since Ls = w .

and

P̂w (ωUϕ) = E{ejω〈Uϕ,w〉} = p̂〈Uϕ,w〉(ω)

for generalized processes s and w , we deduce that the random variables 〈ϕ, s〉 and
〈Uϕ, w〉 have the same characteristic functions and therefore follow

〈ϕ, s〉 = 〈Uϕ, w〉 in probability law.

The manipulation that led to Proposition 3.10 shows that a similar relation exists,
more generally, for any finite collection of observations 〈ϕn , s〉 and 〈Uϕn , w〉, 1 ≤ n ≤
N , N ∈N.

Therefore, symbolically at least, by the definition of the adjoint U∗ : Y ′ →X ′ of U,
we may write

〈ϕ, s〉 = 〈ϕ,U∗w〉.

This seems to indicate that, in a sense, the random model s, which we have defined
using (3.18), can be interpreted as the application of U∗ to the original random model
w . However, things are complicated by the fact that, unless X and Y are nuclear
spaces, we may not be able to interpret w and s as random elements of Y ′ and X ′,
respectively. Therefore the application of U∗ : Y ′ →X ′ to s should be understood to
be merely a formal construction.

On the other hand, by requiring X to be nuclear and Y to be either nuclear or
completely normed, we see immediately that P̂s : X → C fulfills the requirements
of the Minlos-Bochner theorem, and thereby defines a generalized random process
with realizations in X ′.

The previous discussion suggests the following approach to defining generalized
random processes: take a continuous positive-definite functional P̂w : Y → C on
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some (nuclear or completely normed) space Y . Then, for any continuous operator
U defined from a nuclear space X into Y , the composition

P̂s = P̂w (U·)

is the characteristic functional of a generalized random process s with realizations in
X ′.

In subsequent chapters, we shall mostly focus on the situation where U = L−1∗ and
U∗ = L−1 for some given (whitening) operator L that admits a continuous inverse in
the suitable topology, the typical choice of spaces being X =S (Rd ) and Y = Lp (Rd ).
The underlying hypothesis is that one is able to invert the linear operator U and to
recover w from s, which is formally written as w = Ls; that is,

〈ϕ, w〉 = 〈ϕ,Ls〉, for all ϕ ∈Y .

The above ideas are summarized in Figure 3.1.

3.5.5 Innovation processes

In a certain sense, the most fundamental class of generalized random processes
we can use to play the role of w in the construction of Section 3.5.4 are those with
independent values at every point in Rd [GV64, Chap. 4, pp. 273-288]. The reason is
that we can then isolate the spatiotemporal dependency of the probabilistic model
in the mixing operator (U∗ in Figure 3.1), and attribute randomness to independent
contributions (innovations) at geometrically distinct points in the domain. We call
such a construction an innovation model.

Let us attempt to make the notion of independence at every point more precise in
the context of generalized stochastic processes, where the objects of study are, more
accurately, not pointwise observations, but rather observations made through scalar
products with test functions. To qualify a generalized process s as having independ-
ent values at every point, we therefore require that the random variables 〈ϕ1, w〉 and
〈ϕ2, w〉 be independent whenever the test functions ϕ1 and ϕ2 have disjoint sup-
ports.

Since the joint characteristic function of independent random variables factorizes
(is separable), we can formulate the above property in terms of the characteristic
functional P̂w of w as

P̂w (ϕ1 +ϕ2) = P̂w (ϕ1)P̂w (ϕ2).

An important class of characteristic functionals fulfilling this requirement are those
that can be written in the form

P̂w (ϕ) = e
∫
Rd f (ϕ(r )) dr . (3.19)

To have P̂w (0) = 1 (normalization), we require that f (0) = 0. The requirement of
positive-definiteness narrows down the class of admissible functions f much further,
practically to those identified by the Lévy-Khinchine formula. This will be the subject
of the greater part of our next chapter.
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3.5.6 Example: Filtered white Gaussian noise

In the above framework, we can define white Gaussian noise or innovation on Rd

as a random element of the space of Schwartz generalized functions, S ′(Rd ), whose
characteristic functional is given by

P̂w (ϕ) = e−
1
2 ‖ϕ‖2

2 .

Note that this functional is a special instance of (3.19) with f (ω) =− 1
2ω

2. The Gaus-
sian appellation is justified by observing that, for any N test functions ϕ1, . . . ,ϕN ,
the random variables 〈ϕ1, w〉, . . . ,〈ϕN , w〉 are jointly Gaussian. Indeed, we can apply
Proposition 3.10 to obtain the joint characteristic function

P̂ϕ1:ϕN (ω) = exp

(
−1

2

∥∥∥∥∥
N∑

n=1
ωnϕn

∥∥∥∥∥

2

2

)
.

By taking the inverse Fourier transform of the above expression, we find that the ran-
dom variables 〈ϕn , w〉, n = 1, . . . , N , have a multivariate Gaussian distribution with
mean 0 and covariance matrix with entries

Cmn = 〈ϕm ,ϕn〉.
The independence of 〈ϕ1, w〉 and 〈ϕ2, w〉 is obvious whenever ϕ1 and ϕ2 have dis-
joint support. This justifies calling the process white. 9 In this special case, even
mere orthogonality of ϕ1 and ϕ2 is enough for independence, since for ϕ1 ⊥ ϕ2 we
have Cmn = 0.

From Formulas (3.16) and (3.17), we also find that w has 0 mean and “correlation
function” Rw (r , s) = δ(r − s), which should also be familiar. In fact, this last expres-
sion is sometimes used to formally “define” white Gaussian noise.

A filtered white Gaussian noise is obtained by applying a continuous convolution
(i.e., LSI) operator U∗ : S ′ →S ′ to the Gaussian innovation in the sense described in
Section 3.5.4.

Let us denote the convolution kernel of the operator U : S →S (the adjoint of U∗)
by h. 10 The convolution kernel of U∗ : S ′ → S ′ is then h∨. Following Section 3.5.4,
we find the following characteristic functional for the filtered process U∗w = h∨∗w :

P̂U∗w (ϕ) = e−
1
2 ‖h∗ϕ‖2

2 .

In turn, it yields the following mean and correlation functions

mU∗w (r ) = 0,

RU∗w (r , s) = (
h ∗h∨)

(r − s),

as expected.

9. Our notion of whiteness in this book goes further than having a white spectrum. By whiteness, we
mean that the process is stationary and has truly independent (not merely uncorrelated) values over dis-
joint sets.

10. Recall that, for the convolution to map back into S , h needs to have a smooth Fourier transform,
which implies rapid decay in the temporal or spatial domain. This is the case, in particular, for any rational
transfer function that lacks purely imaginary poles.
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3.6 Bibliographical pointers and historical notes

Sections 3.1 and 3.2
Recommended references on functional analysis, topological vector spaces, and

duality are the books by Schaefer [Sch99] and Rudin [Rud73].
Much of the theory of nuclear spaces was developed by Grothendieck [Gro55] in

his thesis work under the direction of Schwartz. For detailed information, we refer to
Pietsch [Pie72].

Section 3.3
For a comprehensive treatment of generalized functions, we recommend the books

of Gelfand and Shilov [GS64] and Schwartz [Sch66] (the former being more access-
ible while maintaining rigor). The results on Fourier multipliers are covered by Hör-
mander [Hör80] and Mikhlin et al. [MP86].

A historical precursor to the theory of generalized functions is the “operational
method” of Heaviside, appearing in his collected works in the last decade of the 19th
century [Hea71]. The introduction of the Lebesgue integral was a major step that
gave a precise meaning to the concept of the almost-everywhere equivalence of func-
tions. Dirac introduced his eponymous distribution as a convenient notation in the
1920s. Sobolev [Sob36] developed a theory of generalized functions in order to define
weak solutions of partial differential equations. But it was Laurent Schwartz [Sch66]
who put forth the formal and comprehensive theory of generalized functions (dis-
tributions) as we use it today (first edition published in 1950). His work was further
developed and exposed by the Russian school of Gelfand et al.

Section 3.4
Kolmogorov is the founding father of the modern axiomatic theory of probability

which is based on measure theory. We still recommend his original book [Kol56]
as the main reference for the material presented here. Newer and more advanced
results can be found in the encyclopedic works of Bogachev [Bog07] and Fremlin
[Fre03, Fre04a, Fre04b, Fre06, Fre08] on measure theory.

Paul Lévy defined the characteristic function in the early 1920s and is respons-
ible for turning the Fourier-Stieltjes apparatus into one of the most useful tools of
probability theory [Lév25, Tay75]. The foundation of the finite-dimensional Fourier
approach is Bochner’s theorem, which appeared in 1932 [Boc32].

Interestingly, it was Kolmogorov himself who introduced the characteristic func-
tional in 1935 as an equivalent (infinite-dimensional) Fourier-based description of
a measure on a Banach space [Kol35]. This tool then laid dormant for many years.
The theoretical breakthrough came when Minlos proved the equivalence between
this functional and the characterization of probability measures on duals of nuclear
spaces (Theorem 3.9)—as hypothesized by Gelfand [Min63, Kol59]. This powerful
framework now constitutes the infinite-dimensional counterpart of the traditional
Fourier approach to probability theory.

What is lesser known is that Laurent Schwartz, who also happened to be Paul
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Lévy’s son in law, revisited the theory of probability measures on infinite-dimensional
topological vector spaces, including developments from the French school, in the fi-
nal years of his career [Sch73b,Sch81b]. These later works are highly abstract, as one
may expect from their author. This makes for an interesting contrast with Paul Lévy
who had a limited interest in axioms and whose research was primarily guided by an
extraordinary intuition.

Section 3.5
The concept of generalized stochastic processes, including the characterization

of continuously-defined white noises, was introduced by Gelfand in 1955 [Gel55].
Itô contributed to the topic by formulating the correlation theory of such processes
[Itô54]; see also, [Itô84]. The basic reference for the material presented here is [GV64,
Chapter 3].

The first applications of the characteristic functional to the study of stochastic
processes have been traced back to 1947; they are due to Le Cam [LC47] and Boch-
ner [Boc47], who both appear to have (re)discovered the tool independently. Le Cam
was concerned with the practical problem of modeling the relation between rain-
fall and riverflow, while Bochner was aiming at a fundamental characterization of
stochastic processes. Another early promoter is Bartlett who, in collaboration with
Kendall, determined the characteristic functional of several Poisson-type processes
that are relevant to biology and physics [BK51]. The framework was consolidated by
Gelfand [Gel55] and Minlos in the 1960s. They provided the extension to generalized
functions and also addressed the fundamental issue of the uniqueness and consist-
ency of this infinite-dimensional description.



4 Continuous-domain innovation
models

The stochastic processes that we wish to characterize are those generated by lin-
ear transformation of non-Gaussian white noise. If we were operating in the discrete
domain and restricting ourselves to a finite number of dimensions, we would be able
to use any sequence of i.i.d. random variables wn as system input and rely on con-
ventional multivariate statistics to characterize the output. This strongly suggests
that the specification of the mixing matrix (L−1) and the probability density func-
tion (pdf) of the innovation is sufficient to obtain a complete description of a linear
stochastic process, at least in the discrete setting.

But our goal is more ambitious since we place ourselves in the context of conti-
nuously-defined processes. Then, the situation is not quite as straightforward be-
cause: 1) we are dealing with infinite dimensional objects, 2) it is much harder to
properly define the notion of continuous-domain white noise, and 3) there are the-
oretical restrictions on the class of admissible innovations. While this calls for an
advanced mathematical machinery, the payoff is that the continuous-domain form-
alism lends itself better to analytical computations, by virtue of the powerful tools of
functional and harmonic analysis. Another benefit is that the non-Gaussian mem-
bers of the family are necessarily sparse as a consequence of the theory which rests
upon the powerful characterization and existence theorems by Lévy-Khintchine, Min-
los, Bochner, and Gelfand-Vilenkin.

As in the subsequent chapters, we start by providing some intuition in the first sec-
tion and then proceed with a more formal characterization. Section 4.2 is devoted to
an in-depth investigation of Lévy exponents which are intimately tied to the family
of infinitely divisible distributions in the classical (scalar) theory of probability. What
is nonstandard here and fundamental to our argumentation is the link that is made
between infinite divisibility and sparsity in 4.2.3. In Section 4.3, we apply those res-
ults to the Fourier-domain characterization of a multivariate linear model driven by
an infinitely divisible noise vector, which primarily serves as preparation for the sub-
sequent infinite-dimensional generalization. In Section 4.4, we extend the formu-
lation to the continuous domain which results in the proper specification of white
Lévy noise w (or non-Gaussian innovations) as a generalized stochastic process (in
the sense of Gelfand and Vilenkin) with independent “values” at every point. The
fundamental result is that a given brand of noise (or innovations) is uniquely spe-
cified by its Lévy exponent f (ω) via its characteristic functional P̂w (ϕ). Finally, in
Section 4.5, we characterize the statistical effect of the mixing operator L−1 (general
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Figure 4.1 Examples of canonical, infinitely divisible probability density functions and
corresponding observations of a continuous-domain white-noise process through an array of
non-overlapping rectangular integration windows: (a) Gaussian distribution (not sparse), (b)
Laplace distribution (moderately sparse), (c) Compound-Poisson distribution (finite rate of
innovation), (d) Cauchy distribution (ultra-sparse = heavy-tailed with unbounded variance).

linear model) and provide mathematical conditions on f and L that ensure that the
resulting process s = L−1w is well-defined mathematically.

4.1 Introduction: From Gaussian to sparse probability
distributions

Intuitively, a continuous-domain white-noise process is formed by the juxtaposi-
tion of a continuum of i.i.d. random contributions. Since these atoms of randomness
are infinitesimal, the realizations (a.k.a. sample paths) of such processes are highly
singular (discontinuous), meaning that they do not admit a classical interpretation
as (random) functions of the index variable r ∈ Rd . Consequently, the random vari-
ables associated with the sample values w(r0) are undefined. The only concrete way
of observing such noises is by probing them through some localized analysis win-
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dow ϕ(·− r0) centered around some location r0. This produces some scalar quantity
X = 〈ϕ(·−r0), w〉 which is a conventional random variable with some pdf pX (ϕ). Note
that pX (ϕ) is independent upon the position r0, which reflects the fact that w is sta-
tionary. In order to get some sense about the variety of achievable random patterns,
we propose to convert the continuous-domain process w into some corresponding
i.i.d. sequence Xk (discrete white noise) by selecting a sequence of non-overlapping
rectangular windows:

Xk = 〈rect(·−k), w〉.

The concept is illustrated in Figure 4.1. The main point that will be made clearer in
the sequel is that there is a one-to-one correspondence between the pdf of Xk —the
so-called canonical pdf pid(x) = pX (rect)(x)—and the complete functional descrip-
tion of w via its characteristic functional, which we shall investigate in Section 4.4.
What is more remarkable (and distinct from the discrete setting) is that this canon-
ical pdf cannot be arbitrary; the theory dictates that it must be part of the family of
infinitely divisible(id) laws (see Section 4.2).

The prime example of an id pdf is the Gaussian distribution illustrated in Figure
4.1a. As already mentioned, it is the only non-sparse member of the family. All other
distributions either exhibit a mass density at the origin (like the compound-Poisson
example in Figure 4.1c with Prob(x = 0) = e−λ = 0.75 and Gaussian amplitude distri-
bution), or a slower rate of decay at infinity (heavy-tail behavior). The Laplace prob-
ability law of Figure 4.1b results in the mildest possible form of sparsity—indeed, it
can be proven that there is a gap between the Gaussian and the other members of the
family in the sense that there is no id distribution with p(x) = e−O(|x|1+ε) with 0 < ε< 1.
In other words, a non-Gaussian pid(x) is constrained to decay like e−λ|x| or slower—
typically, like O(1/|x|r ) with r > 1 (inverse polynomial/algebraic decay). The sparsest
example in Figure 4.1 is provided by the Cauchy distribution pCauchy(x) = 1

π(x2+1)
which is part of the symmetric-alpha-stable (SαS) family (here, α= 1). The SαS dis-
tributions with α ∈ (0,2) are notorious for their heavy-tail behavior and the fact that
their moments E{|x|p } are unbounded for p >α.

4.2 Lévy exponents and infinitely divisible distributions

The investigation of sparse stochastic processes requires a solid understanding of
the classical notions of Lévy exponents and infinite divisibility, which constitute the
pillars of our formulation. This section provides a self-contained presentation of the
required mathematical background. It also brings out the link with sparsity.

D E FI N I T I O N 4.1 (Lévy exponent) A continuous, complex-valued function f :R→C

such that f (0) = 0 is a valid Lévy exponent iff. it is conditionally positive-definite of
order one, so that

N∑
m=1

N∑
n=1

f (ωm −ωn)ξmξn ≥ 0
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under the condition
∑N

m=1 ξm = 0 for every possible choice ofω1, . . . ,ωN ∈R, ξ1, . . . ,ξN ∈
C and N ∈Z+.

The importance of Lévy exponents in mathematical statistics is that they are tigh-
tly linked with the property of infinite divisibility.

D E FI N I T I O N 4.2 (Infinite divisibility) A random variable X with generic pdf pid is
infinitely divisible (id) iff., for any N ∈Z+, there exist i.i.d. random variables X1, . . . , XN

such that X has the same distribution as X1 +·· ·+XN .

The foundation of the theory of such random variables is that their characteristic
functions are in one-to-one correspondence with Lévy exponents. While the better
known formulation of this equivalence is provided by the Lévy-Khintchine theorem
(Theorem 4.2), we first like to express it in functional terms, building upon the work
of three giants in harmonic analysis: Lévy, Bochner, and Schoenberg.

T H E O R E M 4.1 (Lévy-Schoenberg) Let p̂id(ω) = E{ejωX } = ∫
R ejωx pid(x) dx be the char-

acteristic function of an infinitely divisible (id) random variable X . Then,

f (ω) = log p̂id(ω)

is a Lévy exponent in the sense of Definition 4.1. Conversely, if f is a valid Lévy expo-
nent, then the inverse Fourier integral

pid(x) =
∫

R
e f (ω)e−jωx dω

2π

yields the pdf of an id random variable.

The proof is given in the supplementary material in Section 4.2.4. As for the lat-
ter implication, we observe that the condition f (0) = 0 ⇔ p̂id(0) = 1 implies that∫
R pid(x) dx = 1, while the positive-definiteness ensures that pid(x) ≥ 0 so that it is

a valid pdf.

4.2.1 Canonical Lévy-Khintchine representation

The second, more explicit statement of the announced equivalence with id distri-
butions capitalizes on the property that Lévy exponents admit a canonical repres-
entation in terms of a Lévy measure µv or some equivalent density v , which is the
notational choice 1 that we are favoring here.

D E FI N I T I O N 4.3 (Lévy measure/density) A (positive) measure µv on R\{0} is called
a Lévy measure if it satisfies the admissibility condition

∫

R
min(a2,1)µv (da) =

∫

R
min(a2,1)v(a) da <∞. (4.1)

1. In most mathematical texts, the Lévy-Khintchine decomposition is formulated in terms of a Lévy
measure µv rather than a density. Even though Lévy measures need not always have a density in the sense
of the Radon-Nikodym derivative with respect to the Lebesgue measure (i.e., as an ordinary function),
following Bourbaki we may still identify them with positive linear functionals, which we represent nota-
tionally as integrals against a “generalized” density: µv (E) = ∫

E v(a) da for any set in the Borel algebra on
R\{0}.
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The corresponding density function v :R→R+, which is such that µv (da) = v(a) da,
is called the Lévy density.

We observe that, as in the case of a pdf, the density v is not necessarily an ordinary
function for it may include isolated Dirac impulses (discrete part of the measure) as
well as a singular component.

T H E O R E M 4.2 (Lévy-Khintchine) A probability distribution pid is infinitely divisible
(id) if and only if its characteristic function can be written as

p̂id(ω) =
∫

R
pid(x)ejωx dx = exp

(
f (ω)

)
(4.2)

with

f (ω) = jb′
1ω− b2ω

2

2
+

∫

R\{0}

(
ejaω−1− jaω1|a|<1(a)

)
v(a) da (4.3)

where b′
1 ∈ R and b2 ∈ R+ are some arbitrary constants, and where v is an admissible

Lévy density; 1|a|<1(a) is the indicator function of the set Ω = {a ∈ R : |a| < 1} (i.e.,
1Ω(a) = 1 if a ∈Ω and 1Ω(a) = 0 otherwise).

The admissibility condition (4.1) guarantees that the right-hand-side integral in
(4.3) is well-defined; this follows from the bounds |ejaω−1− jaω| < a2ω2 and |ejaω−
1| < min(|aω|,2). An important aspect of the theory is that this allows for (non-
integrable) Lévy densities with a singular behavior around the origin; for instance,
v(a) =O(1/|a|2+ε) with ε ∈ [0,1) as a → 0.

The connection with Theorem 4.1 is that the Lévy-Khintchine expansion (4.3) pro-
vides a complete characterization of the conditionally positive-definite functions of
order one, as specified in Definition 4.1. This theme is further developed in Appendix
B, which contains the proof of the above statement and also makes interesting links
with theoretical results that are fundamental to machine learning and approximation
theory.

In Section 4.4, we shall indicate how id distributions (or, equivalently, Lévy expo-
nents) can be used to specify an extended family of continuous-domain white-noise
processes. In that context, we shall typically require that pid has a well-defined first-
order absolute moment and/or that it is symmetric with respect to the origin, which
leads to the following simplifications of the canonical representation.

C O R O L L A RY 4.3 Let pid be an infinitely divisible pdf whose characteristic function is
given by p̂id(ω) = e f (ω). Then, depending on the properties of pid

(
or, equivalently, on

the Lévy density v
)
, the Lévy exponent f admits the following Lévy-Khintchine-type

representations:

1) pid id symmetric
(
i.e., pid(x) = pid(−x)

)
if and only if

f (ω) =−b2ω
2

2
+

∫

R\{0}

(
cos(aω)−1

)
v(a) da (4.4)

with v(a) = v(−a).
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2) pid id with
∫
R |x|pid(x) dx <∞ if and only if

f (ω) = jb′′
1ω− b2ω

2

2
+

∫

R\{0}

(
ejaω−1− jaω

)
v(a) da (4.5)

with
∫
|a|>1 |a|v(a) da <∞.

3) pid id with
∫
R\{0} |a|v(a) da <∞ if and only if

f (ω) = jb1ω− b2ω
2

2
+

∫

R\{0}

(
ejaω−1

)
v(a) da (4.6)

where b1 ∈ R, b2 ∈ R+, b1 = b′′
1 − ∫

R\{0} a v(a) da and v(a) ≥ 0 is an admissible Lévy
density.

These are obtained by direct manipulation of (4.3) with b′′
1 = b′

1 +
∫
|a|≥1 a v(a) da.

Equation (4.4) is valid in all generality, provided that we interpret the integral as a
Cauchy principal-value limit (see Appendix A.3) to handle potential (symmetric) sin-
gularities around the origin. The Lévy-Khintchine formulas (4.4) and (4.5) are fun-
damental because they give an explicit, constructive characterization of the noise
functionals that are central to our formulation. From now on, we rely on Corollary
4.3 to specify admissible Lévy exponents: The parameters (b1,b2, v) will be referred
to as the Lévy triplet of f (ω).

For completeness, we also mention the less classical (but equivalent) representa-
tion of the Lévy exponent as

f (ω) = jb1ω− b2ω
2

2
+ v̂(ω)− v̂(0) (4.7)

where v̂(ω) = F {v}(ω) is the (conjugate) Fourier transform of v in the sense of gen-
eralized functions. The idea there is to rely on the powerful theory of generalized
functions to seamlessly absorb the (potential) singularity 2 of v at a = 0. The inter-
ested reader can refer to Appendix A for complementary explanations.

Below is a summary of known criteria for identifying admissible Lévy exponents,
some being more operational than others [GV64, pp. 275-282]. These are all con-
sequences of Bochner’s theorem, which provides a Fourier-domain equivalence bet-
ween continuous, positive-definite functions and probability density functions (or
positive Borel measures). See Appendix B for an overview and discussion of the func-
tional notion of positive definiteness and corresponding mathematical tools.

P R O P O S I T I O N 4.4 The following statements on f are equivalent:

1) f (ω) is a continuous, conditionally positive-definite function of order one.

2) pid(x) =F
−1

{e f (ω)}(x) is an infinitely divisible distribution.

3) f admits a Lévy-Kintchine representation as in Theorem 4.2.

4) Let pXτ (x) =F
−1

{eτ f (ω)} for τ≥ 0. Then, {pXτ }τ∈R+ is a family of valid pdfs; that is,
pXτ (x) ≥ 0 and

∫
R pXτ (x) dx = 1 for all τ≥ 0.

2. This corresponds to interpreting v as the generalized function associated with the finite part of the
classical Lévy measure: 〈ϕ, v〉 = f.p.

∫
Rϕ(a)µv (da).
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5) p̂Xτ (ω) = eτ f (ω) is a continuous, positive-definite function of ω ∈ R with p̂Xτ (0) = 1
for any τ ∈ [0,∞).

Interestingly, it was Schoenberg (the father of splines) who first established the
equivalence between Statements 1) and 5) (see proof of the direct part in Section
4.2.4). The equivalence between 4) and 5) follows from Bochner’s theorem (The-
orem 3.7). The fact that 2) implies 4) is a side product of the proof in Appendix
4.2.4, while the converse implication is a direct consequence of 3). Indeed, if f (ω)
has a Lévy-Khintchine representation, then the same is true for τ f (ω), which also
implies that the whole family of pdfs {pXτ }τ∈R+ is infinitely divisible. The latter is
uniquely specified by f and therefore in one-to-one correspondence with the ca-
nonical id distribution pid(x) = pXτ (x)

∣∣
τ=1. Another important observation is that

p̂Xτ (ω) = (
e f (ω)

)τ = (
p̂id(ω))τ so that pXτ in Statement 4) may be interpreted as the

τ-fold (possibly, fractional) convolution of pid.

In our work, we sometimes need to limit ourselves to some particular subset of
Lévy exponents.

D E FI N I T I O N 4.4 (p-admissibility) A Lévy exponent f with derivative f ′ is called p-
admissible if it satisfies the inequality

| f (ω)|+ |ω| | f ′(ω)| ≤C |ω|p (4.8)

for some constant C > 0 and 0 < p ≤ 2.

P R O P O S I T I O N 4.5 The generic Lévy exponents

1) f1(ω) = ∫
R\{0}

(
ejaω−1

)
v1(a) da with

∫
R |a|v1(a) da <∞

2) f2(ω) = ∫
R\{0}

(
cos(aω)−1

)
v2(a) da with

∫
R a2v2(a) da <∞

3) f3(ω) = ∫
R\{0}

(
ejaω−1− jaω

)
v3(a) da with

∫
R a2v3(a) da <∞

are p-admissible with p1 = 1, p2 = 2, and p3 = 2, respectively.

Proof The first result follows from the bounds |ejaω−1| ≤ |a| · |ω| and | dejaω

dω | < |a|.
The second is based on

∣∣cos(aω)−1
∣∣≤ |aω|2 and |sin(aω)| ≤ |aω|. Specifically,

| f2(ω)| ≤
∫

R
|aω|2 v2(a) da = |ω|2

∫

R
a2 v2(a) da

|ω|| f ′
2(ω)| = |ω|

∣∣∣∣
∫

R\{0}
a sin(aω) v2(a) da

∣∣∣∣

≤ |ω|
∫

R
|a| |aω|v2(a) da = |ω|2

∫

R
a2v2(a) da.

As for the third exponent, we also use the inequality |ejaω− 1− jaω| ≤ |aω|2, which
yields

| f3(ω)| ≤
∫

R\{0}
|aω|2 v3(a) da = |ω|2

∫

R
a2 v3(a) da
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|ω| | f ′
3(ω)| = |ω|

∣∣∣∣
∫

R\{0}
ja(ejaω−1) v3(a) da

∣∣∣∣

≤ |ω|
∫

R
|a| |aω|v3(a) da = |ω|2

∫

R
a2v3(a) da,

which completes the proof.

Since the p-admissibility property is preserved through summation, this covers a
large portion of the Lévy exponents specified in Corollary 4.3.

Examples: The power law fα(ω) =−|ω|α with 0 <α≤ 2 is Lévyα-admissible; it gen-
erates the symmetric α-stable (SαS) id distributions [Fel71]. Note that fα(ω) fails to
be conditionally positive-definite for α > 2, meaning that the inverse Fourier trans-
form of e−|ω|

α
exhibits negative values and is therefore not a valid pdf. The upper

acceptable limit is α= 2 and corresponds to the Gaussian law. More generally, a Lévy
exponent that is symmetric and twice-differentiable at the origin (which is equival-
ent to the variance of the corresponding id distribution being finite) is p-admissible
with p = 2; this follows as a direct consequence of Corollary 4.3 and Proposition 4.5.

Another fundamental instance, which generates the complete family of id com-
pound Poisson distributions, is

fPoisson(ω) =λ
∫

R\{0}

(
ejaω−1

)
p A(a) da

where λ> 0 is the Poisson rate and p A(a) ≥ 0 the amplitude pdf with
∫
R p A(a) da = 1.

In general, fPoisson(ω) is p-admissible with p = 1 provided that E{|A|} =∫
R |a|p A(a) da <

∞ (cf. Proposition 4.5). If, in addition, p A is symmetric with a bounded variance, then
the Poisson range of admissibility extends to p ∈ [1,2]. Further examples of sym-
metric id distributions are documented in Table 4.1. Their Lévy exponent is simply
obtained by taking f (ω) = log p̂X (ω).

The relevance of id distributions for signal processing is that any linear combina-
tion of independent id random variables is id as well. Indeed, let X1 and X2 be two
independent id random variables with Lévy exponents f1 and f2, respectively; then,
it is not difficult to show that a1X1+a2X2, where a1 and a2 are arbitrary constants, is
id with Lévy exponent f (ω) = f1(a1ω)+ f2(a2ω).

4.2.2 Deciphering the Lévy-Khintchine formula

From a harmonic-analysis perspective, the Lévy-Khintchine representation is clo-
sely related to Bochner’s theorem stating that a positive-definite function g can al-
ways be expressed as the Fourier transform of a positive finite Borel measure; i.e.,
g (ω) = ∫

R ejωa v(a) da with v(a) ≥ 0 and g (0) = ∫
R v(a) da <∞. Here, the additional

requirement is that f (0) = 0 (conditional positive-definiteness of order one), which
is enforced by proper subtraction of a linear correction in jaωwithin the integral, the
latter being partly compensated by the addition of the component jωb1. The side
benefit of this regularization is that it enlarges the set of admissible densities to those
satisfying

∫
Rmin(a2,1)v(a) da <∞, which allows for a singular behavior around the

origin. As for the linear and quadratic terms outside the integral, they map into the
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Type pX (x) Var(X ) p̂X (!) =
Z

R
pX (x)ej!x dx Lévy density v(a)

Gaussian
1p

2ºæ2
e°

x2

2æ2 æ2 e°
!2æ2

2 N/A

Compound Poisson e°∏±(x)+ (1°e°∏)p A,∏(x) e∏(p̂ A (!)°1) ∏ p A(a) 2 L1(R)

exp

µ
∏

Z

R
(ej!a °1)p A(a) da

∂

Laplace (∏ 2R+)
∏

2
e°∏|x|

2

∏2

∏2

∏2 +!2

e°∏|a|

|a|

Sym Gamma r 2R+
2

1
2 °r |x|r° 1

2 K 1
2 °r (|x|)

°(r )
p
º

2r

µ
1

1+!2

∂r r e°|a|

|a|

Hyperbolic secant æ0 2R+
sech

≥
ºx

2æ0

¥

2æ0
æ2

0 sech(!æ0) = 1

cosh(!æ0)

1

2

1

a sinh ºa
2æ0

Meixner r, s 2R+ 2r°2

ØØ°( r
2 + j x

2s )
ØØ2

sº°(r )
s2r

µ
1

cosh(s!)

∂r r

2

1

a sinh ºa
2s

Cauchy s 2R+ 1

º

s

s2 +x2 N/A e°s|!| s

ºa2

Sym Student r 2R+ 1

B
°
r, 1

2

¢
µ

1

x2 +1

∂r+ 1
2 r ∑ 1 : N/A

r > 1 : 1
2r°2

p
º21°r |!|r K°r (|!|)
°

°
r + 1

2

¢
B

°
r, 1

2

¢ unknown

SÆS, Æ 2 (0,2], s 2R+ pÆ(x;Æ, s) N/A e°|s!|
Æ CÆ,s

|a|1+Æ

Table 4.1 Primary families of symmetric, infinitely divisible probability laws. The special
functions Kα(x), Γ(z), and B(x, y) are defined in Appendix C.

singular point distribution b1δ
′(a)+b2δ

′′(a) (weighted derivatives of Dirac impulses)
that is concentrated at the origin a = 0 and excluded from the (classical) Lebesgue in-
tegral. For the complete details, we refer the reader to the second half of Appendix
B. The proposed treatment relies on Gelfand and Vilenkin’s distributional character-
ization of conditionally positive-definiteness of order n in Theorem B.4. Despite the
greater generality of the result, we find its proof more enlightening and of lesser tech-
nical nature than the traditional derivation of the Lévy-Khintchine formula, which is
summarized in Section 4.2.4-B, for completeness.

From a statistical perspective, the exponent f specified by the Lévy-Khintchine
formula is the logarithm of the characteristic function of an id random variable. This
means that breaking f into additive subparts is in fact equivalent to factorizing the
pdf into convolutional factors. Specifically, let p̂X (ω) = e

∑N
n=1 fn (ω) be the character-

istic function of a (compound) id distribution where the fn are valid Lévy exponents.
Then, p̂X (ω) =∏N

n=1 p̂Xn (ω) with p̂Xn (ω) = e fn (ω) = E{ejωXn }, which translates into the
convolution relation

pX (x) = (
pX1 ∗pX2 ∗·· ·∗pXN

)
(x).

The statistical interpretation is that X = X1 +·· ·+ XN where the Xn are independent
with id pdf pXn . The infinitely divisible property simply translates into the fact that,
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for a given f (ω) and any N > 0, X can be always be broken down into N independent
and identically distributed components with Lévy exponent f (ω)/N . Indeed, it is
easy to see from the Lévy representation that the admissibility of f (ω) implies that
τ f (ω) is a valid Lévy exponent as well for any τ≥ 0.

To further our understanding of id distributions, it is instructive to characterize the
atoms of the Lévy-Khintchine representation. Focusing on the simplest form (4.6),
we identify three types of elementary constituents with the third type being motiv-
ated by the decomposition of a (continuous) Lévy density into a weighted “sum” of
Dirac impulses: v(a) = ∫

R v(τ)δ(a−τ) dτ≈∑
n λnδ(a−τn) withλn = v(τn)(τn−τn−1):

1) Linear term f1(ω) = jb1ω. This corresponds to the (degenerate) pdf of a constant
X1 = b1 with pX1 (x) = δ(x −b1).

2) Quadratic term f2(ω) = −b2ω
2

2 . As already mentioned, this leads to the centered
Gaussian with variance b2 given by

pX2 (x) =F
−1

{e−b2ω
2/2}(x) = 1√

2πb2

exp

(
− x2

2b2

)
.

3) Exponential (or Poisson) term f3(ω) =λ(ejτω−1), which is associated with the ele-
mentary Lévy triplet

(
0,0,λδ(a−τ)

)
. Based on the Taylor-series expansion p̂X3 (ω) =

eλ(z−1) = e−λ
∑+∞

m=0
(λz)m

m! with z = ejωτ, we readily obtain the pdf by (generalized)
inverse Fourier transformation:

pX3 (x) =
∞∑

m=0

e−λλm

m!
δ(x −mτ).

This formula coincides with the continuous-domain representation of a Poisson
distribution 3 with Poisson parameterλ and gain factor τ; that is, Prob(X3 = τm) =
e−λλm

m! .

More generally, when v(a) =λp(a) where p(a) ≥ 0 is some arbitrary pdf with
∫
R p(a) da =

1, we can make a compound-Poisson 4 interpretation with

fPoisson(ω) =λ
∫

R
(ejaω−1)p(a) da =λ(

p̂(ω)−1
)
,

where p̂(ω) = ∫
R ejaωp(a) da is the characteristic function of p = p A . Using the fact

that p̂(ω) is bounded, we apply the same type of Taylor-series argument and express
the characteristic function as

e fPoisson(ω) = e−λ
∞∑

m=0

(
λp̂(ω)

)m

m!
= p̂Y (ω).

3. The standard form of the discrete Poisson probability model is Prob(N = n) = e−λλn

n! with n ∈ N.
It provides the probability of a given number of independent events (n) occurring in a fixed space/time
interval when the average rate of occurrence is λ. The Poisson parameter is equal to the expected value of
N , but also to its variance: λ= E{N } = Var{N }.

4. The compound Poisson probability model has two components: The first is a random variable N
that follows a Poisson distribution with parameter λ, and the second a series of i.i.d. random variables
A1, A2, A3, . . . with pdf p A which are drawn at each trial of N . Then, Y =∑N

n=1 An is a compound-Poisson
random variable with Poisson parameter λ and amplitude pdf p A . Its mean and variance are given by
E{Y } =λE{A} and Var{Y } =λVar(A), respectively.
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Finally, by using the property that p̂(ω)m is the characteristic function of the m-fold
convolution of p, we get the general formula of the compound-Poisson pdf with Pois-
son parameter λ and amplitude distribution p as

pY (x) = e−λ
(
δ(x)+ λ

1!
p(x)+ λ2

2!
(p ∗p)(x)+ λ3

3!
(p ∗p ∗p)(x)+·· ·

)
. (4.9)

Thus, in essence, the Lévy-Khintchine formula is a description of the Fourier trans-
form of a distribution that is the convolution of three components: an impulse δ(·−
b1) (shifting), a Gaussian of variance b2 (smoothing), and a compound-Poisson dis-
tribution (spreading). The effect of the first term is a simple re-centering of the pdf
around b1. The third compound-Poisson component is itself obtained via a suit-
able composition of m-fold convolutions of some primary pdf p. It is much more
concentrated at the origin than the Gaussian, because of the presence of the Dirac
distribution with weight e−λ, but also heavier-tailed because of the spreading effect
of the m-fold convolution.

The additional linear correction terms in (4.3) and (4.5) allow for a wider variety of
distributions that have the common property of being limits of compound-Poisson
distributions.

P R O P O S I T I O N 4.6 Every id distribution is the weak limit of a sequence of Poisson
distributions.

Proof Let p̂id be the characteristic function of some id distribution pid and consider
an arbitrary sequence τn ↓ 0. Then,

p̂Xn (ω) = exp
(
τ−1

n (p̂id(ω)τn −1)
)

is the characteristic function of a compound-Poisson distribution with parameter

λ= τ−1
n and amplitude distribution p(x) =F

−1
{p̂id(ω)τn }(x). Moreover, we have that

p̂Xn (ω) = exp
(
τ−1

n (eτn log p̂id(ω) −1)
)
= exp

(
log p̂id(ω)+O(τn)

)

for every ω as n → ∞. Hence, p̂Xn (ω) → exp
(
log p̂id(ω)

) = p̂id(ω) so that pXn con-
verges weakly to pid by Lévy’s continuity theorem (Theorem 3.8).

The id pdfs for which v ∉ L1(R) are generally smoother than the compound-Poisson
ones for they do not display a singularity (Dirac impulse) at the origin, unlike (4.9).
Yet, depending of the degree of concentration (or singularity) of v around the ori-
gin, they will typically exhibit a peaky behavior around the mean. While this class
of distributions is responsible for the additional level of complication in the Lévy-
Khintchine formula—as compared to the simpler Poisson version (4.6)—, we argue
that it is highly relevant for applications because of the many possibilities that it of-
fers. Somewhat surprisingly, there are many families of id distributions with singular
Lévy density that are more tractable mathematically than their compound-Poisson
cousins found in Table 4.1; at least, when considering their pdf.
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4.2.3 Gaussian vs. sparse categorization

The family of id distributions allows for a range of behaviors that varies between
the purely Gaussian and sparse extremes. In the context of Lévy processes, these are
often referred to as the diffusive and jump modes. To make our point, we consider
two distinct scenarios.

Finite variance case
We first assume that the second moment m2 = ∫

R a2 v(a) da of the Lévy dens-
ity is finite, which also implies that

∫
|a|>1 |a|v(a) da < ∞ because of the admissib-

ility condition. Hence, the corresponding Lévy-Khintchine representation is (4.5).
An interesting non-Poisson example of infinitely-divisible probability laws that falls
into this category (with non-integrable v) is the Laplace density with Lévy triplet(
0,0, v(a) = e−|a|

|a|
)

and p(x) = 1
2 e−|x| (see Figure 4.1b). This model is particularly rel-

evant in the context of sparse signal recovery because it provides a tight connection
between Lévy processes and total-variation regularization [UT11, Section VI].

Now, if the Lévy density is absolutely integrable
(
i.e., v ∈ L1(R)

)
, we can pull the

linear correction out of the Lévy-Khintchine integral and represent f using Expan-
sion (4.6) with v(a) = λp A(a) and

∫
R p A(a) da = 1. This implies that we can decom-

pose X into the sum of two independent Gaussian and compound-Poisson random
variables. The variances of the Gaussian and Poisson components are σ2 = b2 and
λE{A2}, respectively. The Poisson component is sparse because its probability dens-
ity function exhibits the mass distribution e−λδ(x) at the origin shown in Figure 4.1c,
meaning that the chances for a continuous amplitude distribution of getting zero are
overwhelmingly higher than any other value, especially for smaller values of λ> 0. It
is therefore justifiable to use 0 ≤ e−λ < 1 as our Poisson sparsity index.

Infinite variance case
We now turn our attention to the case where the second moment of the Lévy dens-

ity is unbounded, which we like to label as “super-sparse”. To justify this termino-
logy, we invoke the Ramachandran-Wolfe theorem which states that the pth moment
E{|x|p } with p ∈R+ of an infinitely divisible distribution is finite iff.

∫
|a|>1 |a|p v(a) da <

∞ [Ram69,Wol71]. For p ≥ 2, the latter is equivalent to
∫
R |a|p v(a) da <∞ because of

the Lévy admissibility condition. It follows that the cases that are not covered by the
previous scenario (including the Gaussian + Poisson model) necessarily give rise to
distributions whose moments of order p are unbounded for p ≥ 2. The prototypical
representatives of such heavy-tail distributions are the alpha-stable ones (see Figure
4.1d) or, by extension, the broad family of infinitely divisible probability laws that are
in their domain of attraction. It has been shown that these distributions precisely
fulfill the requirement for `p compressibility [AUM11], which is a stronger form of
sparsity than the presence of a mass probability density at the origin.
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4.2.4 Proofs of Theorems 4.1 and 4.2

For completeness, we end this section on Lévy exponents with the proofs of the
two key theorems in the theory of infinitely divisible distributions. The Lévy-Schoen-
berg theorem is central to our formulation because it makes the link between the id
property and the fundamental notion of positive definiteness. In the case of the Lévy-
Khintchine theorem, we have opted for a sketch of proof which is adapted from the
literature. The main intent there was to provide additional insights on the nature of
the singularities of the Lévy density and their effect on the form of the exponent.

A. Proof of Theorem 4.1 (Lévy-Schoenberg)

Let p̂id(ω) = ∫
R ejωx pid(x) dx be the characteristic function of an id random vari-

able. Then, by definition,
(
p̂id(ω)

)1/n is a valid characteristic function for any n ∈Z+.
Since the convolution of two pdfs is a pdf, we can also take integer powers, which
results into

(
p̂id(ω)

)m/n being a characteristic function. For any irrational number
τ> 0, we can specify a sequence of rational numbers m/n that converges to τ so that(
p̂id(ω)

)m/n → (
p̂id(ω)

)τ with the limit function being continuous. This implies that
p̂Xτ (ω) = (

p̂id(ω)
)τ is a characteristic function for any τ≥ 0 by Lévy’s continuity the-

orem (Theorem 3.8). Moreover, p̂Xτ (x) = (
p̂Xτ/s (ω)

)s must be non-zero for any finite
τ, owing to the fact that lims→∞ p̂Xτ/s (ω) = 1. In particular, p̂id(ω) = p̂Xτ (ω)

∣∣
τ=1 6= 0

so that we can write it as p̂id(ω) = e f (ω) where f (ω) is continuous with Re
(

f (ω)
) ≤ 0

and f (0) = 0. Hence, p̂Xτ (ω) = (
p̂id(ω)

)τ = eτ f (ω) = ∫
R ejωx pXτ (x) dx, where pXτ (x) is

a valid pdf for any τ ∈ [0,∞), which is Statement 4) in Proposition 4.4. By Bochner’s
theorem (Theorem 3.7), this is equivalent to eτ f (ω) being positive-definite for any
τ ≥ 0 with f (ω) continuous and f (0) = 0. The first part of Theorem 4.1 then follows
as a corollary of the next fundamental result, which is due to Schoenberg.

T H E O R E M 4.7 (Schoenberg correspondence) The function f (ω) is conditionally posi-
tive-definite of order one if and only if eτ f (ω) is positive-definite for any τ> 0.

Proof We only give the easier part (if statement) and refer to [Sch38, Joh66] for the
complete details. The property that eτ f (ω) is positive-definite for every τ > 0 is ex-
pressed as

N∑
m=1

N∑
n=1

ξmξneτ f (ωm−ωn ) ≥ 0,

for every possible choice of ω1, . . . ,ωN ∈ R, ξ1, . . . ,ξN ∈ C and N ∈ Z+. In the more
restricted setup of Definition 4.1 where

∑N
n=1 ξn = 0, this can also be restated as

1

τ

N∑
m=1

N∑
n=1

ξmξn
(
eτ f (ωm−ωn ) −1

)≥ 0.

The next step is to take the limit

lim
τ→0

N∑
m=1

N∑
n=1

ξmξn
eτ f (ωm−ωn ) −1

τ
=

N∑
m=1

N∑
n=1

ξmξn f (ωm −ωn) ≥ 0,
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which implies that f (ω) is conditionally positive-definite of order one.

This also makes the second part of Theorem 4.1 easy because p̂id(ω) = e f (ω) can
be factorized into a product of N identical positive-definite subparts with Lévy expo-
nent 1

N f (ω).

B. Sketch of proof of Theorem 4.2 (Lévy-Khintchine)

We start from the equivalence of the id property and Statement 4) in Proposition
4.4 established above. This result is restated as

eτ f (ω) −1

τ
=

∫

R
(ejωx −1)

pXτ (x)

τ
dx,

the limit of which as τ→ 0 exists and is equal to f (ω). Next, we define the measure
Kτ( dx) = x2

x2+1
pXτ (x)
τ dx, which is bounded for all τ> 0 because x2

x2+1
≤ 1 and pXτ is a

valid pdf. We then express the Lévy exponent as

f (ω) = lim
τ→0

(
eτ f (ω) −1

τ

)
= lim
τ→0

∫

R
(ejωx −1)

pXτ (x)

τ
dx

= lim
τ→0

∫

R

(
ejωx −1− jxω

1+x2

)
x2 +1

x2 Kτ( dx)+ jω lim
τ→0

a(τ)

where

a(τ) =
∫

R

x

1+x2

pXτ (x)

τ
dx.

The technical part of the work, which is quite tedious and not included here, is to
show that the above integrals are bounded and that the two limits are well defined in
the sense that a(τ) → a0 and Kτ → K (weakly) as τ ↓ 0 with K being a finite measure.
This ultimately yields Khintchine’s canonical representation

f (ω) = jωa0 +
∫

R

(
ejωx −1− jxω

1+x2

)
x2 +1

x2 K ( dx)

where a0 ∈ R and K is some bounded Borel measure. A potential advantage of Kh-
intchine’s representation is that the corresponding measure K is not singular. The
connection with the standard Lévy-Khintchine formula is b2 = K (0+)−K (0−) and
v(x) dx = x2+1

x2 K ( dx) for x 6= 0. It is also possible to work out a relation between a
and b1, which depends upon the type of linear compensation in the canonical rep-
resentation.

The above manipulation shows that the coefficients of the linear and quadratic
terms of the Lévy-Khintchine formula (4.3) are primarily due to the non-integrable
part of g (x) = limτ↓0

pXτ (x)
τ = x2+1

x2 k(x) where k(x) dx = K ( dx).
By convention, the classical Lévy density v is assumed to be zero at the origin so

that it differs from g by a point distribution that is concentrated at the origin. By
invoking a basic theorem in distribution theory stating that a distribution entirely
localized at the origin can always be expressed as a linear combination of the Dirac
impulse and its derivatives, we can write that g (x)−v(x) = b0δ(x)+b′

1δ
′(x)+b2δ

′′(x),
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where the higher-order derivatives of δ are excluded because of the admissibility
condition.

For the indirect part of the proof, we start from the integral of the Lévy-Khintchine
formula and consider the sequence of distributions whose exponent is

fn(ω) =
∫

|a|<1/n

(
ejaω−1− jaω1|a|<1(a)

)
v(a) da

=−jω
∫

1/n<|a|<1
av(a) da

︸ ︷︷ ︸
an

+
∫

|a|>1/n

(
ejaω−1

)
v(a) da.

Since the leading constant an is finite and
∫
|a|>1/n v(a) da <∞ for any fixed n (due

to the admissibility condition on v), this corresponds to the exponent of a shifted
compound-Poisson distribution whose characteristic function is e fn (ω). This allows

us to deduce that p̂n(ω) = e−b′
1 jω− b2

2 ω2+ fn (ω) is a valid characteristic function for any
n ∈ Z+. Finally, we have the convergence of the sequence p̂n(ω) → e f (ω) as n → ∞
where f (ω) is given by (4.3). Since f (ω)—and therefore, e f (ω)—is continuous around
ω= 0, we infer that e f (ω) is a valid pdf (by Lévy’s continuity theorem). The continuity
of f is established by bounding the Lévy-Khintchine integral and invoking Lebesgue’s
dominated converge theorem. The id part is obvious.

4.3 Finite-dimensional innovation model

To set the stage for the infinite-dimensional extension to come in Section 4.4, it is
instructive to investigate the structure of a purely discrete innovation model whose
input is the random vector u = (U1, . . . ,UN ) of i.i.d. infinitely divisible random vari-
ables. The generic N th-order pdf of the discrete innovation variable u is

p(U1:UN )(u1, . . . ,uN ) =
N∏

n=1
pid(un) (4.10)

where pid(x) = F
−1

{e f (ω)}(x) and f is the Lévy exponent of the underlying id distri-
bution. Since p(U1:UN )(u1, . . . ,uN ) is separable due to the independence assumption,
we can write its characteristic function as the product of individual id factors

p̂(U1:UN )(ω) = E(U1:UN ){ej〈ω,u〉} =
N∏

n=1
e f (ωn )

= exp

(
N∑

n=1
f (ωn)

)
(4.11)

where ω = (ω1, . . . ,ωN ) is the frequency variable. The N -dimensional output sig-
nal x = (X1, . . . , XN ) is then specified as the solution of the matrix-vector innovation
equation

u = Lx



72 Continuous-domain innovation models

where the N × N whitening matrix L is assumed to be invertible. This implies that
x = Au is a linear transformation of the excitation noise with A = L−1. Its N th-order
characteristic function is obtained by simple (linear) change of variable

p̂(X1:XN )(ω) = E(U1:UN ){ej〈ω,Au〉} = E(U1:UN ){ej〈ATω,u〉}

= p̂(U1:UN )(ATω)

= exp

(
N∑

n=1
f
(
[ATω]n

)
)

. (4.12)

Based on this equation, we can determine any marginal distribution by setting the
appropriate frequency variables to zero. For instance, we find that the first-order pdf
of Xn , the nth component of x, is given by

pXn (x) =F
−1

{
e fn (ω)

}
(x)

where

fn(ω) =
N∑

m=1
f
(
anmω

)

with weighting coefficients anm = [A]nm = [L−1]nm . The key observation here is that
fn is an admissible Lévy exponent, which implies that the underlying distribution
is infinitely divisible (by Theorem 4.1), with the same being true for all the margin-
als and, by extension, the distribution of any linear measurement(s) of x. While this
provides a general mechanism for characterizing the probability law(s) of the discrete
signal x within the classical framework of multivariate statistics, it is a priori diffi-
cult to perform the required computations (matrix inverse and inverse Fourier trans-
forms) analytically, except in the Gaussian case where the exponent is quadratic. In-
deed, in this latter situation, (4.12) simplifies to p̂(X1:XN )(ω) = e−

1
2 ‖ATω‖2

2 , which is the
Fourier transform of a multivariate Gaussian distribution with zero mean and cov-
ariance matrix E{xxT } = AAT .

As we shall see in the next two sections, these results are transposable to the infi-
nite-dimensional setting (cf. Table 3.4). While this may look as an unnecessary com-
plication at first sight, the payoff is a theory that lends itself better to an analytical
treatment using the powerful tools of harmonic analysis. The essence of the gener-
alization is to replace the frequency variable ω by a generic test function ϕ ∈S (Rd ),
the sums in (4.11) and (4.12) by Lebesgue integrals and the matrix inverses by Green’s
functions which can often be specified explicitly. To make an analogy, it is concep-
tually and practically easier to formulate a comprehensive (deterministic) theory of
linear systems using Fourier analysis and convolution operators than by relying on
linear algebra, with the same applying here. At the end of the exercise, it is still pos-
sible to come back to an finite-dimensional signal representation by projecting the
continuous-domain model onto a suitable set of basis functions, as will be shown in
Chapter 10.
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4.4 White Lévy noises or innovations

Having gained a solid understanding of Lévy exponents, we can now move to the
specification of a corresponding family of continuous-domain white-noise processes
to drive the innovation model in Figure 2.1. To that end, we rely of Gelfand’s theory
of generalized stochastic processes [GV64], which was briefly summarized in Section
3.5. This powerful formalism allows for the complete and remarkably concise de-
scription of a generalized stochastic process by its characteristic functional. While
the latter is not widely used in the standard formulation of stochastic processes, it
lends itself quite naturally to the specification of generalized white-noise processes
in terms of Lévy exponents, in direct analogy with what we have done before for id
distributions.

D E FI N I T I O N 4.5 (White Lévy noise or innovation) A generalized stochastic process
w over D′(Rd ) is called a white Lévy noise (or innovation) if its characteristic func-
tional is given by

P̂w (ϕ) = E{ej〈ϕ,w〉} = exp

(∫

Rd
f
(
ϕ(r )

)
dr

)
(4.13)

where f is a valid Lévy exponent and ϕ is a generic test function in D(Rd ) (the space
of infinitely differentiable functions of compact support).

Equation (4.13) is very similar to (4.2) and its multivariate extension (4.11). The
key difference is that the frequency variable is now replaced by the generic test func-
tion ϕ ∈ D(Rd ) (which is a more general infinite-dimensional entity) and that the
sum inside the exponential in (4.11) is substituted by an integral over the domain
of ϕ. The fundamental point is that P̂w (ϕ) is a continuous, positive-definite func-
tional on D(Rd ) with the key property that P̂w (ϕ1+ϕ2) = P̂w (ϕ1)P̂w (ϕ2) whenever
ϕ1 and ϕ2 have non-overlapping support (i.e., ϕ1(r )ϕ2(r ) = 0). The first part of the
statement ensures that these generalized processes are well-defined (by the Minlos-
Bochner theorem), while the separability property implies that they take independ-
ent values at all points, which partially justifies the “white noise” nomenclature. Re-
markably, Gelfand and Vilenkin have shown that there is also a converse implica-
tion [GV64, Theorem 6, p. 283]: Equation (4.13) specifies a continuous, positive-
definite functional on D(Rd ) (and hence defines an admissible white-noise process)
if and only if f is a Lévy exponent. This ensures that the Lévy family constitutes the
broadest possible class of acceptable white-noise inputs for our innovation model.

4.4.1 Specification of white noise over Schwartz’ space S

In the present work, which relies a lot on convolution operators and Fourier ana-
lysis, we find it more convenient to define generalized stochastic processes with re-
spect to test functions in the nuclear space S (Rd ), rather than the smaller space
D(Rd ) used by Gelfand and Vilenkin. This requires a minimal restriction on the class
of admissible Lévy densities in reference to Definition 4.3 to compensate for the lack
of compact support of the functions in S (Rd ).
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T H E O R E M 4.8 (Lévy-Schwartz admissibility) A white Lévy noise specified by (4.13)
with ϕ ∈ S (Rd ) is a generalized stochastic process over S ′(Rd ) provided that f (·) is
characterized by the Lévy-Khintchine formula (4.3) with Lévy triplet

(
b1,b2, v

)
where

the Lévy density v(a) ≥ 0 satisfies
∫

R
min(a2, |a|ε)v(a) da <∞ for some ε> 0. (4.14)

Proof By the Minlos-Bochner theorem (Theorem 3.9), it suffices to show that P̂w (ϕ)
is a continuous, positive-definite functional over S (Rd ) with P̂w (0) = 1, where the
latter follows trivially from f (0) = 0. The positive definiteness is a direct consequence
of the exponential nature of the characteristic functional and the conditional posit-
ive definiteness of the Lévy exponent

(
see Section 4.4.3 and the paragraph following

Equation (4.20)
)
.

The only delicate part is to prove continuity in the topology of S (Rd ). To that end,
we consider a series of functionsϕn that converge toϕ in S (Rd ). First, we recall that
S (Rd ) ⊂ Lp (Rd ) for all 0 < p ≤ +∞. Moreover, the convergence in S (Rd ) implies
the convergence in all the Lp spaces. Indeed, if we select k > 0 such that kp > 1 and
ε0 > 0, we have, for n sufficiently large,

|ϕn(r )−ϕ(r )| ≤ ε0

(‖r ‖2 +1)k

which implies that

‖ϕn −ϕ‖p
Lp

≤ εp
0

∫
dr

(‖r ‖2 +1)kp
.

Since the right-hand-side integral is convergent and independent of n, we conclude
that limn→∞ ‖ϕn −ϕ‖Lp = 0.

Since continuity is preserved through the composition of continuous maps and
the exponential function is continuous, we only need to establish the continuity of
F (ϕ) = logP̂w (ϕ). The continuity of the Gaussian part is obvious since

∫
ϕn dr →∫

ϕ dr and ‖ϕn‖L2 →‖ϕ‖L2 . We therefore concentrate on the functional

G(ϕ) =
∫

Rd

∫

R\{0}

(
ejaϕ(r ) −1− jaϕ(r )1|a|≤1(a)

)
v(a) da dr

that corresponds to the non-Gaussian part of the Lévy-Khintchine representation of
f . Next, we write

|G(ϕn)−G(ϕ)| ≤
∫

Rd

∫

|a|>1

∣∣ejaϕn (r ) −ejaϕ(r )∣∣v(a) da dr

+
∫

Rd

∫

0<|a|≤1

∣∣ejaϕn (r ) −ejaϕ(r ) − ja
(
ϕn(r )−ϕ(r )

)∣∣v(a) da dr

= (1)+ (2).

To bound the first integral, we use the inequality

∣∣ejx −ejy ∣∣=
∣∣ejy (ej(x−y) −1)

∣∣≤ min
(
2, |x − y |)≤ 2

( |x − y |
2

)ε
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under the (non-restrictive) condition that ε≤ 1. This yields

(1) ≤ 21−ε
∫

Rd

∫

|a|>1
|a|ε|ϕn(r )−ϕ(r )|εv(a) da dr

= 21−ε
(∫

|a|>1
|a|εv(a) da

)
‖ϕn −ϕ‖εLε

As for the second integral, we use the bound
∣∣ejx −ejy − j(x − y)

∣∣=
∣∣ejy (

ej(x−y) −1− j(x − y)
)+ j(x − y)(ejy −1)

∣∣

≤
∣∣ej(x−y) −1− j(x − y)

∣∣+
∣∣(x − y)(ejy −1)

∣∣

≤ (x − y)2 +|x − y | · |y |.
Therefore,

(2) ≤
∫

Rd

∫

0<|a|≤1
a2(ϕn(r )−ϕ(r )

)2v(a) da dr

+
∫

Rd

∫

0<|a|≤1
a2|ϕn(r )−ϕ(r )| · |ϕ(r )|v(a) da dr

≤
(∫

0<|a|≤1
a2v(a) da

)(
‖ϕn −ϕ‖2

L2
+‖ϕn −ϕ‖L2‖ϕ‖L2

)
.

Since ‖ϕn −ϕ‖Lp → 0 for all p > 0 as ϕn converges to ϕ in S (Rd ), we conclude that

limn→∞ |G(ϕn)−G(ϕ)| = 0, which proves the continuity of P̂w (ϕ).

Note that (4.14), which will be referred to as Lévy-Schwartz admissibility, is a very
slight restriction on the classical condition (ε = 0) for id laws (see (4.1) in Definition
4.3). The fact that ε can be chosen arbitrarily small reflects the property that the
functions in S have a faster-than-algebraic decay. Another equivalent formulation
of Lévy-Schwartz admissibility is

E{|〈ϕ, w〉|ε} <∞ for some ε> 0. (4.15)

which follows from (9.10) and Proposition 9.10 in Chapter 9. Along the same lines, it
can be shown that the finiteness of the εth-order moment in (4.15) for any non-trivial
ϕ0 implies that the same holds true for all ϕ ∈S (Rd ).

From now on, we implicitly assume that the Lévy-Schwartz admissibility condition
is met.

To exemplify the procedure, we select a quadratic exponent which is trivially ad-
missible (since v(a) = 0). This results in

P̂wGauss (ϕ) = exp

(
−b2

2
‖ϕ‖2

L2

)
,

which is the functional that completely characterizes the white Gaussian noise of the
classical theory of stationary processes.

4.4.2 Impulsive Poisson noise

We have already alluded to the fact that the continuous-domain white-noise pro-
cesses w are highly singular and generally too rough to admit an interpretation as
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conventional functions of the index variable r ∈ Rd . The realizations (or sample
paths) are generalized functions that can only be probed indirectly through their
scalar products 〈ϕ, w〉 with test functions or observation windows, as illustrated in
Section 4.1. While the use of such an indirect approach is unavoidable in the math-
ematical formulation, it is possible to provide an explicit pointwise description of a
noise realization in the special case where the Lévy exponent f is associated with a
compound-Poisson distribution [UT11]. The corresponding impulsive Poisson noise
model is

w(r ) =
∑

k∈Z
Akδ(r − rk ) (4.16)

where rk are random point locations in Rd and where the Ak are i.i.d. random vari-
ables with pdf p A . The random events are indexed by k (using some arbitrary order-
ing); they are mutually independent and follow a spatial Poisson distribution. Spe-
cifically, let Π be any finite-measure subset of Rd , then the probability of observing
N (Π) = n events inΠ is

Prob(N (Π) = n) = e−λVol(Π) (λVol(Π))n

n!

where Vol(Π) is the measure (or spatial volume) of Π. This is to say that the Pois-
son parameter λ represents the average number of random impulses per unit hyper-
volume. The link with the formal specification of Lévy noise in Definition 4.5 is as
follows.

T H E O R E M 4.9 The characteristic functional of the impulsive Poisson noise specified
by (4.16) is

P̂wPoisson (ϕ) = E{ej〈ϕ,w〉} = exp

(∫

Rd
fPoisson

(
ϕ(r )

)
dr

)
(4.17)

with

fPoisson(ω) =λ
∫

R
(ejaω−1)p A(a) da =λ(p̂ A(ω)−1), (4.18)

where λ is the Poisson density parameter, p A the amplitude pdf of the Dirac impulses
and p̂ A the corresponding characteristic function.

Proof We select an arbitrary test function ϕ ∈ D(Rd ) of compact support, with its
support included in the centered cubeΠϕ = [−cϕ,cϕ]d . We denote by Nw,ϕ the num-
ber of Poisson points of w in Πϕ; by definition, it is a Poisson random variable with
parameter λVol(Πϕ). The restriction of w toΠϕ corresponds to the random sum

Nw,ϕ∑
n=1

a′
nδ(r − r ′

n),

where we used an appropriate relabeling of the variables
{
(ak ,rk )

∣∣rk ∈Πϕ
}

in (4.16).

Correspondingly, we have 〈ϕ, w〉 =∑Nw,ϕ

n=1 a′
nϕ(r ′

n).
By the order-statistics property of Poisson processes, the r ′

n are independent and
all equivalent in distribution to a random variable r ′ that is uniform onΠϕ.
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Using the law of total expectation, we expand the characteristic functional of w ,
P̂w (ϕ) = E{

ej〈ϕ,w〉}, as

P̂w (ϕ) = E{
E
{
ej〈ϕ,w〉∣∣Nw,ϕ

}}

= E
{
E

{
Nw,ϕ∏
n=1

eja′
nϕ(r ′

n )

∣∣∣∣∣Nw,ϕ

}}

= E
{

Nw,ϕ∏
n=1

E
{

eja′ϕ(r ′)
}}

(by independence)

= E
{

Nw,ϕ∏
n=1

E
{
E
{

ejaϕ(r ′)
∣∣∣a

}}}
(total expectation)

= E




Nw,ϕ∏
n=1

E





∫
Πϕ

ejaϕ(r ′) dr ′

Vol(Πϕ)







 (as r ′ is uniform inΠϕ)

= E
{

Nw,ϕ∏
n=1

∫
R

∫
Πϕ

ejaϕ(r ) dr p A(a) da

Vol(Πϕ)

}
. (4.19)

The last expression has the inner expectation expanded in terms of the pdf p A(a) of
the random variable a. Defining the auxiliary functional

M(ϕ) =
∫

Πφ

∫

R
ejaϕ(r )p A(a) da dr ,

we rewrite (4.19) as

E

{
Nw,ϕ∏
n=1

M(ϕ)

Vol(Πϕ)

}
= E

{(
M(ϕ)

Vol(Πϕ)

)Nw,ϕ
}

.

Next, we use the fact that Nw,ϕ is a Poisson random variable to compute the above
expectation directly:

E

{(
M(ϕ)

Vol(Πϕ)

)Nw,ϕ
}
=

∑
n≥0

(
M(ϕ)

Vol(Πϕ)

)n e−λVol(Πϕ)
(
λVol(Πϕ)

)n

n!

= e−λVol(Πϕ)
∑

n≥0

(
λM(ϕ)

)n

n!

= e−λVol(Πϕ)eλM(ϕ) (Taylor)

= exp
(
λ

(
M(ϕ)−Vol(Πϕ)

))
.

We now replace M(ϕ) by its integral equivalent, noting also that Vol(Πϕ) = ∫
Πϕ

∫
R 1×

p A(a) da dr , whereupon we obtain the expression

P̂w (ϕ) = exp
(
λ

∫

Πϕ

∫

R
(ejaϕ(r ) −1)p A(a) da dr

)
.

As (ejaϕ(r )−1) vanishes outside the support ofϕ (and, therefore, outsideΠϕ), we may
enlarge the domain of the inner integral to all of Rd , which yields (4.17). Finally, we
use the fact that the derived Poisson functional is part of the Lévy family and invoke
Theorem 4.8 to extend the domain of P̂w from D(Rd ) to S (Rd ).



78 Continuous-domain innovation models

The interest of this result is twofold. First, it gives a concrete meaning to the com-
pound Poisson scenario in Figure 4.1c, allowing for a description in terms of con-
ventional point processes. Along the same vein, we can propose a physical analogy
for the elementary Poisson term f3(ω) = λ(eja0ω − 1) in Section 4.2.2 with p A(a) =
δ(a−a0): the counting of photons impinging on the detectors of a CCD camera with
the photon density being constant over Rd and the integration time proportional to
λ. The corresponding process is usually termed “photon noise” in optical imaging.
Second, the explicit noise model (4.16) suggests a practical mechanism for generat-
ing generalized Poisson processes as a weighted sum of shifted Green functions of
L, each Dirac impulse being replaced by the response of the inverse operator in the
innovation model in Figure 2.1.

Note that the above description of generalized compound Poisson processes is
compatible the usual definition of finite-rate-of-innovation signals. Yet, this is by
far not the whole story since the impulsive Poisson noise is the only member of the
Lévy family whose “innovation rate”, as measured by λ, is finite.

4.4.3 Properties of white noise

To emphasize the parallel with the scalar formulation in Section 4.2, we start by
introducing the functional counterpart of Definition 4.1.

D E FI N I T I O N 4.6 (Generalized Lévy exponent) A continuous complex-valued func-
tional F on the nuclear space S (Rd ) such that F (0) = 0, F (ϕ) = F (−ϕ) is called a
generalized Lévy exponent if it is conditionally positive-definite of order one; i.e.,

N∑
m=1

N∑
n=1

F (ϕm −ϕn)ξmξn ≥ 0.

under the condition
∑N

n=1 ξn = 0 for every possible choiceϕ1, . . . ,ϕN ∈S (Rd ), ξ1, . . . ,ξN ∈
C, and N ∈Z+.

This definition is motivated by the infinite-dimensional counterpart of Schoen-
berg’s correspondence theorem (Theorem 4.7) [PR70].

T H E O R E M 4.10 (Prakasa Rao) Let F be a complex-valued functional on the nuclear
space S (Rd ) such that F (0) = 0, F (ϕ) = F (−ϕ). Then, the following conditions are
equivalent.

1) The functional F is conditionally positive definite of order one.

2) For every choice ϕ1, . . . ,ϕN ∈S (Rd ), ξ1, . . . ,ξN ∈C, τ> 0 and N ∈Z+,

N∑
m=1

N∑
n=1

exp
(
τF (ϕm −ϕn)

)
ξmξn ≥ 0.
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3) For every choice ϕ1, . . . ,ϕN ∈S (Rd ), ξ1, . . . ,ξN ∈C and N ∈Z+,

N∑
m=1

N∑
n=1

(
F (ϕm −ϕn)−F (ϕm)−F (−ϕn)

)
ξmξn ≥ 0.

In the white Lévy noise scenario of Definition 4.5, we have that

F (ϕ) =
∫

Rd
f
(
ϕ(r )

)
dr . (4.20)

It then comes as no surprise that the generalized Lévy exponent F (ϕ) inherits the
relevant properties of f , including conditional positive definiteness, with

N∑
m=1

N∑
n=1

F (ϕm −ϕn)ξmξn =
∫

Rd

N∑
m=1

N∑
n=1

f
(
ϕm(r )−ϕn(r )

)
ξmξn

︸ ︷︷ ︸
≥0

dr ≥ 0

subject to the constraint
∑N

n=1 ξn = 0.
The simple additive nature of the mapping (4.20) between generalized Lévy ex-

ponents and the classical ones translates into the following white-noise properties
which are central to our formulation.

1) Independent atoms and stationarity
P R O P O S I T I O N 4.11 A white Lévy noise is stationary and independent at every point.

Proof The stationarity property is expressed by P̂w (ϕ) = P̂w
(
ϕ(·− r0)

)
for all r0 ∈

Rd . It is established by simple change of variable in the defining integral. To invest-
igate the independence at every point, we determine the joint characteristic function
of the random variables X1 = 〈ϕ1, w〉 and X2 = 〈ϕ2, w〉, which is given by p̂X1,X2 (ω1,ω2) =
exp

(
F (ω1ϕ1 +ω2ϕ2)

)
where F is defined by (4.20). When ϕ1 and ϕ2 have non over-

lapping support, we use the fact that f (0) = 0 and decompose the exponent as

F (ω1ϕ1 +ω2ϕ2) = F (ω1ϕ1)+F (ω2ϕ2),

which implies that

p̂X1,X2 (ω1,ω2) = exp
(
F (ω1ϕ1)

)×exp
(
F (ω2ϕ2)

)

= p̂X1 (ω1)× p̂X2 (ω2)

where p̂X (ω) = exp
(
F (ωϕ)

)
, which proves that X1 and X2 are independent. The in-

dependence at every point follows from the fact that one can consider contracting,
Dirac-like sequences of functions ϕ1 and ϕ2 that are non-overlapping and whose
support gets arbitrarily small.

2) Infinite divisibility
P R O P O S I T I O N 4.12 A white Lévy noise is uniquely specified by a canonical id distri-
bution pid(x) = ∫

R e f (ω)−jωx dω
2π where f is the defining Lévy exponent in (4.20). The

latter corresponds to the pdf of the observation X = 〈rect(·− r0), w〉 through a rectan-
gular window at some arbitrary location r0.
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The first part is just a restatement of the functional equivalence between Lévy
noises and id distributions on the one hand, and Lévy exponents on the other. As for
the second part, we recall that the characteristic function of the variable X = 〈ϕ, w〉
is given by

E{ejωX } = E{ejω〈ϕ,w〉} = E{ej〈ωϕ,w〉} = P̂w (ωϕ) = exp
(
F (ωϕ)

)
.

By choosing ϕ(r ) = rect(r − r0) with rect(r ) = 1 for r ∈ (− 1
2 , 1

2 ]d and zero otherwise,
we formally resolve the integral

∫
Rd f

(
ωrect(r )

)
dr = f (ω); this implies that p̂id(ω) =

exp
(

f (ω)
)
, which is the desired result.

Along the same line, we can show that the use of an arbitrary, non-rectangular
analysis window does not fundamentally change the situation in the sense that the
pdf remains infinitely divisible.

P R O P O S I T I O N 4.13 The observation X = 〈ϕ, w〉 of a white Lévy noise with Lévy expo-
nent f through an arbitrary observation windowϕ—not necessarily in S (Rd )—yields
an infinitely divisible random variable X whose characteristic function is p̂X (ω) =
e fϕ(ω) where fϕ(ω) = ∫

Rd f
(
ωϕ(r )

)
dr . The validity of fϕ requires some (mild) tech-

nical condition on f when ϕ ∈ Lp (Rd ) is not rapidly decaying.

This property is investigated in full depth in Chapter 9 and exploited for deriving
transform-domain statistics. The precise statement of this id result for ϕ ∈ Lp (Rd ) is
given in Theorem 9.1.

Another manifestation of the id property is that a continuous-domain Lévy noise
can always be broken down into an arbitrary number of independent and identically
distributed (i.i.d.) components.

P R O P O S I T I O N 4.14 A white Lévy noise w is infinitely divisible in the sense that it can
be decomposed as w = w1+·· ·+wN for any N ∈Z+ where the wn are i.i.d. white-noise
processes.

This simply follows from the property that the characteristic functional of the sum
of two independent processes is the product of their individual characteristic func-
tionals. Specifically, we can write

P̂w (ϕ) =
(
P̂wN (ϕ)

)N

where P̂wN (ϕ) = exp
(∫
Rd f

(
ϕ(r )

)
/N dr

)
is the characteristic functional of a Lévy

noise. The justification is that f (ω)/N is a valid Lévy exponent for any N ≥ 1. In
the impulsive Poisson case, this simply translates into the Poisson density parameter
λ being divided by N .

Interestingly, there is also a converse to the statement in Proposition 4.14 [PR70]:
a generalized process s over S ′(Rd ) is infinitely divisible if and only if its charac-
teristic functional can be written as P̂s (ϕ) = exp

(
F (ϕ)

)
where F (ϕ) is a continuous,

conditional positive-definite functional over S (Rd ) (or generalized Lévy exponent)
as specified in Definition 4.6 [PR70, Main theorem]. While this general characteriz-
ation is nice conceptually, it is hardly discriminative since the underlying notion of
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infinite divisibility applies to all concrete families of generalized stochastic processes
that are known to us. In particular, it does not require the “whiteness” property that
is fundamental for defining proper innovations.

3) Flat power spectrum
Strictly speaking, the properties of stationarity and independence at every point

are not sufficient for specifying “white” noise. There is also some implicit idea of
enforcing a flat Fourier spectrum. A simple example that satisfies the two first prop-
erties but fails to meet the latter is the weak derivative of a Lévy noise whose gener-
alized power spectrum (when defined) is not flat but proportional to |ω|2.

The notion of power spectrum is based on second-order moments and does only
make sense when the stochastic process is stationary with a well-defined autocor-
relation. In Gelfand’s theory, the second-order dependencies are captured by the
correlation functional Bw (ϕ1,ϕ2) = E{〈ϕ1, w〉 · 〈ϕ2, w〉}, where it is assumed that the
generalized noise process w is real-valued and that its second-order moments are
well-defined. The latter second-order requirement is equivalent to imposing that
the Lévy exponent f should be twice differentiable at the origin or, equivalently, that
the canonical id distribution pid of the process has a finite second-order moment.

P R O P O S I T I O N 4.15 Let w be a (second-order) white Lévy noise with Lévy exponent f
such that f ′(0) = 0 (zero-mean assumption) and σ2

w = − f ′′(0) < +∞ (finite-variance
assumption). Then,

Bw (ϕ1,ϕ2) =σ2
w 〈ϕ1,ϕ2〉. (4.21)

Formally, this corresponds to the statement that the autocorrelation of a second-
order 5 Lévy noise is a Dirac impulse; i.e.,

Rw (r ) = E{w(r0)w(r0 − r )} =Bw
(
δ(·− r0),δ(·− r0 + r )

)

=σ2
wδ(r )

where r0 ∈ Rd can be arbitrary, as a consequence of the stationarity property. This
also means that the generalized power spectrum of a second-order white Lévy noise
is flat

Φw (ω) =F {Rw (r )}(ω) =σ2
w .

We recall that the term “white” is used in reference to white light, whose electromag-
netic spectrum is distributed over the visible band in a way that stimulates all color
receptors of the eye equally. This is in opposition with “colored” noise whose spectral
content is not equally distributed.

Proof We have that Bw (ϕ1,ϕ2) = E{X1X2} where X1 = 〈ϕ1, w〉 and X2 = 〈ϕ2, w〉 are
real-valued random variables with joint characteristic function p̂X1,X2 (ω) = exp

(
F (ω1ϕ1+

5. In the statistical literature, a second-order process usually designates a stochastic process whose
second-order moments are all well defined. In the case of generalized processes, the property refers to the
existence of the correlation functional.
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ω2ϕ2)
)

with ω = (ω1,ω2). We then invoke the moment-generating property of the
Fourier transform which translates into

Bw (ϕ1,ϕ2) = E{X1X2} = (−j)2 ∂
2p̂X1,X2 (ω)

∂ω1∂ω2

∣∣∣∣
ω1=0,ω2=0

.

By applying the chain rule twice, we obtain

∂2p̂X1,X2 (ω)

∂ω1∂ω2
= e fX1,X2 (ω)

(
∂ fX1,X2 (ω)

∂ω1

∂ fX1,X2 (ω)

∂ω2
+ ∂2 fX1,X2 (ω)

∂ω1∂ω2

)

where

fX1,X2 (ω) = log p̂X1,X2 (ω1,ω2) =
∫

Rd
f
(
ω1ϕ1(r )+ω2ϕ2(r )

)
dr

is the cumulant generating function of pX1,X2 . The required first derivative with re-
spect to ωi , i = 1,2 is given by

∂ fX1,X2 (ω)

∂ωi
=

∫

Rd
f ′(ω1ϕ1(r )+ω2ϕ2(r )

)
ϕi (r ) dr ,

which, when evaluated at the origin, simplifies to

∂ fX1,X2 (0)

∂ωi
= f ′(0)

∫

Rd
ϕi (r ) dr =−j E{Xi }. (4.22)

Similarly, we get

∂2 fX1,X2 (0)

∂ω1∂ω2
= f ′′(0)

∫

Rd
ϕ1(r )ϕ2(r ) dr .

By combining those results and using the property that fX1,X2 (0) = 0, we conclude
that

E{X1X2} =− f ′′(0)〈ϕ1,ϕ2〉−
(

f ′(0)
)2〈ϕ1,1〉〈ϕ2,1〉,

which is equivalent to (4.21) under the hypothesis that f ′(0) = 0. It is also clear
from (4.22) that this latter condition is equivalent to the zero-mean property of the
noise; that is, E{〈ϕ, w〉} = 0 for all ϕ ∈ S (Rd ). Finally, we note that (4.21) is compat-
ible with the more general cumulant formula (9.22) if we set n = (1,1), n = 2, and
κ2 = (−j)2 f ′′(0).

Since f (0) = 0 by definition, another way of writing the hypotheses in Proposition

4.15 is f (ω) =−σ2
w

2 ω2 +O(|ω|3), which expresses an asymptotic equivalence with the
symmetric Gaussian scenario (purely quadratic Lévy exponent). This second-order
assumption ensures that the noise has zero-mean and a finite variance σ2

w so that
its correlation functional (4.21) is well defined. In the sequel, it is made implicitly
whenever we are talking of correlations or power spectra.

4) Stochastic counterpart of the Dirac impulse
From an engineering perspective, white noise is often viewed as the stochastic

analog of the Dirac distribution δ whose spectrum is flat in the literal sense (i.e.,
F {δ} = 1). The fundamental difference, of course, is that the generalized function
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δ is a deterministic entity. The simplest way of introducing randomness is by con-
sidering a shifted and weighted impulse Aδ(· − r0) whose location r0 is uniformly
distributed over some compact subset of Rd and whose amplitude A is a random
variable with pdf p A . A richer form of excitation is obtained through the summation
of such i.i.d. elementary contributions which results in the construction of impulsive
Poisson noise, as specified by (4.16). Theorem 4.9 ensures that this explicit way of
representing noise is legitimate in the case where the Lévy density v = λp A is integ-
rable and the Gaussian part absent. We shall now see that this constructive approach
can be pushed to the limit for the non-Poisson brands of innovations, including the
Gaussian ones.

P R O P O S I T I O N 4.16 A white Lévy noise is the limit of a sequence of impulsive Poisson-
noise processes in the sense of the weak convergence of the underlying infinite dimen-
sional measures.

Proof The technical part of the proof uses an infinite-dimensional generalization of
Lévy’s continuity theorem and will be reported elsewhere. The key idea is to consider
the following sequence of Lévy exponents

fn(ω) = n
(
e

1
n f (ω) −1

)= f (ω)+O

(
f 2(ω)

n

)
,

which are of the compound-Poisson type withλn = n and p̂ An (ω) = e
1
n f (ω) and which

converge to f (ω) as n goes to infinity. This suggests forming the corresponding se-
quence of characteristic functionals

P̂wn (ϕ) = exp

(∫

Rd
n

(
e

1
n f

(
ϕ(r )

)
−1

)
dr

)
,

which are expected to converge to P̂w (ϕ) = exp
(∫
Rd f

(
ϕ(r )

)
dr

)
as n → +∞. The

main point for the argument is that these are all of the impulsive-Poisson type for n
fixed (see Theorem 4.9). The crux of the proof is to control the convergence by spe-
cifying some appropriate bound and to verify that some basic equicontinuity condi-
tions are met.

The result is interesting because it gives us some insight into the nature of con-
tinuous domain noise. The limit process involves random Dirac impulses that get
denser as n increases. When the variance of the noise σ2

w = − f ′′(0) is finite, the in-
crease of the average number of impulses per unit volume λn =O(n) is compensated
by a decrease of the variance of the amplitude distribution in inverse proportion:
Var{An} = σ2

w /n. While any of the generalized noise processes in the sequence is
as rough as a Dirac impulse, this picture suggests that the degree of singularity of
the limit object in the non-Poisson scenario can be potentially reduced due to the
accumulation of impulses and the fact that the variance of their amplitude distribu-
tion converges to zero. The particular example that we have in mind is the Gaussian
white noise, which can be obtained as a limit of compound Poisson processes with
contracting Gaussian amplitude distributions.
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4.5 Generalized stochastic processes and linear models

As already mentioned, the class of generalized stochastic processes that are of in-
terest to us are those defined through the generic innovation model Ls = w (linear
stochastic differential equation) where the differential operator L is shift-invariant
and where the driving term w is a continuous-domain white Lévy noise. Having
made sense of the latter, we can now proceed with the specification of the class of
admissible whitening operators L. The key requirement there is that the model be
invertible (in the sense of generalized functions) which, by duality, translates into
some boundedness constraint on the adjoint operator L−1∗. For the time being, we
shall limit ourselves to making some general statements about L and its inverse that
ensure existence while deferring to Chapter 5 for concrete examples of admissible
operators.

4.5.1 Innovation models

The interpretation of the above continuous-domain linear model in the sense of
generalized functions is

∀ϕ ∈S (Rd ), 〈ϕ,Ls〉 = 〈ϕ, w〉. (4.23)

The generalized stochastic process s = L−1w is generated by solving this equation,
which amounts to a linear transformation of the Lévy innovation w . Formally, this
translates into

∀ϕ ∈S (Rd ), 〈ϕ, s〉 = 〈ϕ,L−1w〉 = 〈L−1∗ϕ, w〉 (4.24)

where L−1 is an appropriate right inverse of L. The above manipulation obviously
only makes sense if the action of the adjoint operator L−1∗ is well-defined over Schwartz’
class S (Rd ) of test functions—ideally, a continuous mapping from S (Rd ) into itself
or, possibly, Lp (Rd ) (or some variant) if one imposes suitable restrictions on the Lévy
exponent f to maintain continuity.

We like to refer to (4.23) as the analysis statement of the model, and to (4.24)—or
its shorthand s = L−1w— as the synthesis description. Of course, this will only work
properly if we have an exact equivalence, meaning that there is a proper and unique
definition of L−1. The latter will need to be made explicit on a case-by-case basis with
the possible help of boundary conditions.

4.5.2 Existence and characterization of the solution

We shall now see that, under suitable conditions on L−1∗ (see Theorem 4.17 be-
low), one can completely specify such processes via their characteristic functional
and ensure their existence as solutions of (4.23). We recall that the characteristic
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functional of a generalized stochastic process s is defined as

P̂s (ϕ) = E{ej〈ϕ,s〉}

=
∫

S ′(Rd )
ej〈ϕ,s〉Ps ( ds),

where the latter expression involves an abstract infinite-dimensional integral over
the space of tempered distributions and provides the connection with the defining
measure Ps on S ′(Rd ). P̂s is a functional S (Rd ) → C that associates the complex
number P̂s (ϕ) to each test function ϕ ∈ S (Rd ) and which is endowed with three
fundamental properties: positive definiteness, continuity, and normalization (i.e.,
P̂s (0) = 1). It can also be specified using the more concrete formula

P̂s (ϕ) =
∫

R
ejy dP〈ϕ,s〉(y), (4.25)

which involves a classical Stieltjes integral with respect to the probability law PY =〈ϕ,s〉 =
Prob(Y < y), where Y = 〈ϕ, s〉 is a conventional scalar random variable, once ϕ is
fixed.

For completeness, we also recall the meaning of the underlying terminology in the
context of a generic (normed or nuclear) space X of test functions.

D E FI N I T I O N 4.7 (Positive-definite functional) A complex-valued functional G : X →
C defined over the function space X is said to be positive-definite if

N∑
m=1

N∑
n=1

G(ϕm −ϕn)ξmξn ≥ 0

for every possible choice of ϕ1, . . . ,ϕN ∈X , ξ1, . . . ,ξN ∈C, and N ∈N+.

D E FI N I T I O N 4.8 (Continuous functional) A functional G : X → R (or C) is said
to be continuous (with respect to the topology of the function space X ) if, for any
convergent sequence (ϕi ) in X with limit ϕ ∈ X , the sequence G(ϕi ) converges to
G(ϕ); that is,

lim
i

G(ϕi ) =G(lim
i
ϕi ).

An essential element of our formulation is that Schwartz’ space of test function
S (Rd ) is nuclear (see Section 3.1.3), as required by the Minlos-Bochner theorem
(Theorem 3.9). The latter expresses the one-to-one correspondence (in the form
of an infinite-dimensional Fourier pair) between the characteristic functional P̂s :
S (Rd ) → C and the measure Ps on S ′(Rd ) that uniquely characterizes the gen-
eralized process s. The truly powerful aspect of the theorem is that it suffices to
check that P̂s satisfies the three defining conditions—positive definiteness, con-
tinuity over S (Rd ), and normalization—to prove that it is a valid characteristic func-
tional, which then automatically ensures the existence of the process since the cor-
responding measure over S ′(Rd ) is well defined.

The formulation of our generative model (4.24) in that context is

P̂s (ϕ) = P̂L−1w (ϕ) = P̂w (L−1∗ϕ), (4.26)
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where P̂w (ϕ) is the characteristic functional of the innovation process w .

T H E O R E M 4.17 (Generalized innovation model) Let U = L−1∗ be a linear operator
that satisfies the two conditions

1) Left inverse property: UL∗ϕ=ϕ for all ϕ ∈ S (Rd ) where L∗ is the adjoint of some
given (whitening) operator L;

2) Stability: U is a continuous linear map from S (Rd ) into itself, or, by extension,
S (Rd ) →R(Rd ).

Then, the generalized stochastic process s that is characterized by E{ej〈ϕ,s〉} = P̂s (ϕ) =
exp

(∫
Rd f

(
L−1∗ϕ(r )

)
dr

)
is well-defined and satisfies the innovation model Ls = w,

where w is a Lévy innovation with exponent f .

When f is p-admissible (see Definition 4.4) with p ≥ 1, the second condition can be
substituted by the weaker requirement that U is a continuous linear map from S (Rd )
into Lp (Rd ).

Proof First, we prove that s is a bona fide generalized stochastic process over S ′(Rd )
by showing that P̂s (ϕ) is a continuous, positive-definite functional on S (Rd ) such
that P̂s (0) = 1 (by the Minlos-Bochner theorem).

The Lévy noise functional P̂w (ϕ) = exp
(∫
Rd f

(
ϕ(r )

)
dr

)
is continuous over S (Rd )

by construction (see Theorem 4.8). This, together with the assumption that L−1∗

is a continuous operator on S (Rd ), implies that the composed functional P̂s (ϕ) =
P̂w (L−1∗ϕ) is continuous on S (Rd ). The reasoning is also applicable when L−1∗ is
a continuous operator S (Rd ) → Lp (Rd ) and P̂w (ϕ) is continuous over Lp (Rd )—see
the triangular diagram in Figure 3.1 with X = S (Rd ) and Y = Lp (Rd ). This latter
scenario is covered by Theorem 8.2 which establishes the positive-definiteness and
continuity of P̂w over Lp (Rd ) when f is p-admissible (see Section 8.2). The case
where L−1∗ is a continuous operator S (Rd ) →R(Rd ) is handled in the same fashion
by invoking Proposition 8.1.

Next, for any given set of functionsϕ1, . . . ,ϕN ∈S (Rd ) and coefficients ξ1, . . . , ξN ∈
C, we have

N∑
m=1

N∑
n=1

P̂s (ϕm −ϕn)ξmξn

=
N∑

m=1

N∑
n=1

P̂w
(
L−1∗(ϕm −ϕn)

)
ξmξn

=
N∑

m=1

N∑
n=1

P̂w (L−1∗ϕm −L−1∗ϕn)ξmξn (by linearity)

≥0, (by the positivity of P̂w )

which shows that P̂s is positive definite on S (Rd ). Finally, P̂s (0) = P̂w (L−1∗0) =
P̂w (0) = 1, which completes the first part of the proof.

The above result and stability conditions ensure that the action of the inverse op-
erator L−1 is well-defined over the relevant subset of tempered distributions, which



4.6 Bibliographical notes 87

justifies the formal manipulation made in (4.24). Now, if L−1∗ is a proper left inverse
of L∗, we have that

〈ϕ, w〉 = 〈L−1∗L∗
︸ ︷︷ ︸

Id

ϕ, w〉 = 〈L∗ϕ,L−1w︸ ︷︷ ︸
s

〉 = 〈ϕ,Ls〉,

which proves that the generalized process s = L−1w satisfies (4.23).

The next chapters are devoted to the investigation of specific instances of this
model and to making sure that the conditions for existence in Theorem 4.17 are met.
We shall also discuss the conceptual connection with splines and wavelets. This con-
nection is fundamental to our purpose. In Chapter 9, we shall then use the general-
ized innovation model to show that the primary statistical features of the input noise
are essentially transferred to the signal as well as to the transform domain. The main
point is that the marginal distributions are all part of the same infinitely divisible
family as long as the composition of the mixing procedure (L−1) and the signal ana-
lysis remains linear. On the other hand, the amount of coupling and level of interde-
pendence will strongly depend on the nature of the transformation.

4.6 Bibliographical notes

Sections 4.2 and 4.3
Infinitely divisible distributions were introduced by de Finetti in 1929, and their

primary properties established by Kolmogorov, Lévy, Khintchine, and Feller in the
1930s [BDR02, SVH03, MR06]. They constitute a classical topic in probability the-
ory in tight connection with the central limit theorem [GK68, Fel71]. The general
expression (4.3) for the exponent of the characteristic function of an infinitely divis-
ible random variable was given by Lévy [Lév34]. Shortly after, Khintchine provided a
purely analytical derivation [Khi37b, Khi37a]. The sketch of proof in Section 4.2.4-B
is adapted from [Khi37a] whose translation is given in [MR06].

We have chosen to name Theorem 4.1 after Lévy and Schoenberg because it essen-
tially results from the combination of two fundamental theorems in harmonic ana-
lysis named after these authors [Lév34,Sch38]. While their groundwork dates back to
the 1930s, it took until the late 1960s to reformulate the Lévy-Khintchine character-
ization in terms of the (conditional) positive definiteness of the exponent [Joh66].

The p-admissibility condition was introduced in [UTSss] in order to simplify the
derivation of bounds and continuity properties related to Lévy exponents. The ar-
gumentation concerning the compatibility of infinite divisibility with the notion of
sparsity is also adapted from this paper.

For additional information on id laws, we refer the reader to [SVH03, Sat94, CT04];
these works also contain the ground material for the specification of the symmetric
id distributions in Table 4.1. Further distributional properties relating to decay and
the effect of repeated convolution are exposed in Chapter 9.
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Section 4.4
The specification of white Lévy noise by means of its characteristic functional (see

Definition 4.5) is based on a series of theorems by Gelfand and Vilenkin [GV64]. In-
terestingly, the generic form (4.13) is not only sufficient for defining a (stationary)
innovation, as proven by these authors, but also necessary if one adds the observ-
ability constraint that Xid = 〈rect, w〉 is a well-defined random variable [AU14]. The
restriction of the family to the space of tempered distributions was investigated by
Fageot et al. [Fag13]. Theorem 4.9 is adapted from [UT11].

The abstract characterization of infinite-divisibility and the full generalization of
the Lévy-Khintchine formula for measures over topological vector spaces is covered
in the works of Fernique and Prakasa Rao [Fer67, PR70].

Section 4.5
The innovation or filtered-white-noise model has a long tradition in communica-

tion and statistical signal processing in relation to time-series analysis [BS50, WM57,
Kai70]. The classical assumption is that the excitation noise (innovation) is Gaus-
sian and that the shaping filter is causal with a causal inverse. The innovation, as
defined by Wiener and Masani, then corresponds to the unpredictable part of the
signal; that is, the difference between the value of the signal at give time t and the
optimal linear forecast of that value based on the information available prior to t .
Thanks to the Gaussian hypothesis, one can then formulate a coherent correlation
theory of such processes, using standard Fourier and Hilbert space techniques, in
which continuous-domain white noise only intervenes as a formal entity; that is, a
Gaussian process whose power spectrum is a constant. This purely spectral descrip-
tion of white noise is consistent with the Wiener-Khintchine theorem 6 which explain
its popularity among engineers [Pap91, Yag86].

The non-Gaussian extension of the innovation model that is presented in this chap-
ter is conceptually similar, but relies on the more elaborate definition of continuous-
domain white noise and the functional tools that were developed by Gelfand to for-
mulate his theory of generalized stochastic processes [Gel55, GV64]. A slightly more
restrictive version of the model with Gaussian and/or impulsive Poisson excitation
was presented in [UT11]. The original statement of Theorem 4.17 for d = 1 can be
found in [UTSss]. While the level of generality of this result is sufficient for our pur-
pose, we must warn the reader that the framework cannot directly handle non-linear
transformations because the underlying objects are generalized functions, which are
intrinsically linear. For completeness, we mention the existence of an extended the-
ory of white noise, due to Hida, which is aimed at overcoming this limitation [Hid93,
HS04,HS08]. This theory gives a meaning to certain classes of non-linear white-noise
functionals—in analogy with Itô’s calculus—but it is mathematically quite involved
and beyond the scope of this book.

6. The Wiener-Khintchine theorem states that the autocorrelation function of a 2nd-order stationary
process is the inverse Fourier transform of its power spectrum.



5 Operators and their inverses

In this chapter we review three classes of linear shift-invariant (LSI) operators:
convolution operators with stable LSI inverses, operators that are linked with ordin-
ary differential equations, and fractional operators.

The first class, considered in Section 5.2, is composed of the broad family of mul-
tidimensional operators whose inverses are stable convolution operators—or filters.
Convolution operators play a central role in signal processing. They are easy to char-
acterize mathematically via their their impulse response. The corresponding gener-
ative model for stochastic processes amounts to LSI filtering of a white noise, which
automatically yields stationary processes.

Our second class is the 1-D family of ordinary differential operators with con-
stant coefficients, which is relevant to a wide range of modeling applications. In the
“stable” scenario, reviewed in Section 5.3, these operators admit stable LSI inverses
on S ′ and are therefore included in the previous category. On the other hand, when
the differential operators have one or more zeros on the imaginary axis (the margin-
ally stable/unstable case), they find a non-trivial null-space in S ′, which consists
of (exponential) polynomials. This implies that they are no longer unconditionally
invertible on S ′, and that we can at best identify left- or right-side inverses, which
should additionally fulfill appropriate “boundedness” requirements in order to be
usable in the definition of stochastic processes. However, as we shall see in Section
5.4, obtaining an inverse with the required boundedness properties is feasible but
requires giving up shift-invariance. As a consequence, stochastic processes defined
by these operators are generally non-stationary.

The third class of LSI operators, investigated in Section 5.5, consists of fractional
derivatives and/or Laplacians in one and several dimensions. Our focus is on the
family of linear operators on S that are simultaneously homogeneous (scale-invariant
up to a scalar coefficient) and invariant under shifts and rotations. These operators
are intimately linked to self-similar processes and fractals [BU07, TVDVU09]. Once
again, finding a stable inverse operator to be used in the definition of self-similar
processes poses a mathematical challenge since the underlying system is inherently
unstable. The difficulty is evidenced by the fact that statistical self-similarity is gener-
ally not compatible with stationarity, which means that a non-shift-invariant inverse
operator needs to be constructed. Here again, a solution may be found by extend-
ing the approach used for the previous class of operators. From our first example in
Section 5.1, we shall actually see that one is able to reconcile the classical theory of
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stationary processes with that of self-similar ones by viewing the latter as a limit case
of the former.

Before we begin our discussion of operators, let us formalize some notions of in-
variance.

D E FI N I T I O N 5.1 (Translation invariance) An operator T is shift- (or translation-)
invariant if and only if, for any function ϕ in its domain and any r0 ∈Rd ,

T{ϕ(·− r0)}(r ) = T{ϕ}(r − r0).

D E FI N I T I O N 5.2 (Scale invariance) An operator T is scale-invariant (homogeneous)
of order γ if and only if, for any function ϕ in its domain,

T{ϕ}(r /a) = |a|γT{ϕ(·/a)}(r ),

where a ∈R+ is the dilation factor.

An alternative version of the scale-invariance condition is

T{ϕ(a·)}(r ) = |a|γT{ϕ}(ar ), (5.1)

where a now represents a contraction factor.

D E FI N I T I O N 5.3 (Rotation invariance) An operator T is scalarly rotation-invariant
if and only if, for any function ϕ in its domain,

T{ϕ}(RTr ) = T{ϕ(RT·)}(r ),

where R is any orthogonal matrix in Rd×d (by using orthogonal matrices in the defin-
ition, we take into account both proper and improper rotations, with respective de-
terminants 1 and −1).

5.1 Introductory example: first-order differential equation

To fix ideas, let us consider the generic first-order differential operator L = D−αId
with α ∈ C, where D = d

dr and Id are the derivative and identity operators, respect-
ively. Clearly, L is LSI, but generally not scale-invariant unlessα= 0. The correspond-
ing linear system with (deterministic or stochastic) output s and input w is defined
by the differential equation: d

dr s(r )−αs(r ) = w(r ). Under the classical stability as-
sumption Re(α) < 0 (pole in the left half of the complex plane), its impulse response
is given by

ρα(r ) =F−1
{

1

jω−α

}
(r ) = 1+(r )eαr (5.2)

and is rapidly decaying. This provides us with an explicit characterization of the in-
verse operator, which reduces to a simple convolution with a decreasing causal ex-
ponential:

(D−αId)−1ϕ= ρα∗ϕ.
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ϕ(t)

t

D−1ϕ(t) =

� t

−∞
ϕ(τ)dτD−1∗ϕ(t)

I0ϕ(t) =

� t

0

ϕ(τ)dτ

I∗0ϕ(t)

t

t

(a)

(b)

(c)

(a)

(b)

Figure 5.1 Comparison of antiderivative operators. (a) Input signal. (b) Result of
shift-invariant integrator and its adjoint. (c) Result of scale-invariant integrator I0 and its
Lp -stable adjoint I∗0 ; the former yields a signal that vanishes at the origin, while the latter
enforces the decay of the output as t →−∞ at the cost of a jump discontinuity at the origin.

Likewise, it is easy to see that the corresponding adjoint inverse operator L−1∗ is spe-
cified by

(D−αId)−1∗ϕ= ρ∨
α ∗ϕ,

where ρ∨
α(r ) = ρα(−r ) is the time-reversed version of ρα. Thanks to its rapid decay,

ρ∨
α defines a continuous linear translation-invariant map from S (R) into itself.

This allows us to express the solution of the first-order SDE as a filtered version of
the input noise sα = ρα∗w . It follows that sα is a stationary process that is completely
specified by its characteristic form E{ej〈ϕ,sα〉} = exp

(∫
R f

(
(ρ∨

α ∗ϕ)(r ) dr
)

where f is
the Lévy exponent of the innovation w (see Section 4.5).

Let us now focus our attention on the limit caseα= 0, which yields an operator L =
D that is scale-invariant. Here too, it is possible to specify the LSI inverse (integrator)

D−1ϕ(r ) =
∫ r

−∞
ϕ(τ) dτ= (1+∗ϕ)(r ),

whose output is well-defined pointwise when ϕ ∈S (R). The less-favorable aspect is
that the classical LSI integrator does not fulfill the usual stability requirement due to
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the non-integrability of its impulse response 1+ ∉ L1(R). This implies that D−1∗ϕ =
1
∨
+∗ϕ is generally not in Lp (R). Thus, we are no longer fulfilling the admissibility con-

dition in Theorem 4.17. The source of the problem is the lack of decay of D−1∗ϕ(r )
as r → −∞ when

∫
Rϕ(τ) dτ = ϕ̂(0) 6= 0 (see Figure 5.1b). Fortunately, this can be

compensated by defining the modified antiderivative operator

I∗0ϕ(r ) =
∫ ∞

r
ϕ(τ) dτ− 1+(−r )ϕ̂(0) = (1∨

+∗ϕ)(r )−
∫

R
ϕ(τ) dτ1∨

+(r )

= D−1∗ϕ(r )− (D−1∗ϕ)(−∞)1∨
+(r ) (5.3)

which happens to be the only left inverse of D∗ =−D that is both scale-invariant and
Lp -stable for any p > 0. The adjoint of I∗0 specifies the adjusted 1 integrator

I0ϕ(r ) =
∫ r

0
ϕ(τ) dτ= D−1ϕ(r )− (D−1ϕ)(0), (5.4)

which is the correct scale-invariant inverse of D for our formulation, to be applied
to elements of S ′(R). It follows that the solution of the corresponding (unstable)
SDE can be expressed as s = I0w , which is a well-defined stochastic process as long
as the input noise is Lévy p-admissible with p ≥ 1 (by Theorem 4.17). We note that
the price to pay for the stabilization of the solution is to give up on shift invariance.
Indeed, the adjusted integrator is such that it imposes the boundary condition s(0) =
(I0w)(0) = 0 (see Figure 5.1c), which is incompatible with stationarity, but a necessary
condition for self-similarity. The so-constructed processes are fully specified by their
characteristic form exp(

∫
R f (I0ϕ(r )) dt ), where f is a Lévy exponent. Based on this

representation, we can show that these are equivalent to the Lévy processes that are
usually defined for r ≥ 0 only [Sat94]. While this connection with the classical theory
of Lévy processes is already remarkable, it turns out that the underlying principle is
quite general and applicable to a much broader family of operators, provided that we
can ensure Lp -stability.

5.2 Shift-invariant inverse operators

The association of LSI operators with convolution integrals will be familiar to most
readers. In effect, we saw in Section 3.3.5 that, as a consequence of the Schwartz
kernel theorem, every continuous LSI operator L : S (Rd ) →S ′(Rd ) corresponds to a
convolution

L :ϕ 7→ L{δ}∗ϕ
with a kernel (impulse response) L{δ} ∈S ′(Rd ). 2 Moreover, by the convolution-product
rule, we may also characterize L by a multiplication in the Fourier domain:

L :ϕ 7→F−1{L̂(ω)ϕ̂(ω)}.

1. Any two valid right inverses can only differ by a component (constant) that is in the null space of the
operator. The scale-invariant solution is the one that forces the output to vanish at the origin.

2. A similar result holds for continuous LSI operators D →D′, which will have a convolution kernel in
D′.
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We call L̂ the Fourier multiplier or symbol associated with the operator L.

From the Fourier-domain characterization of L, we see that, if L̂ is smooth and
does not grow too fast, then L maps S (Rd ) back into S (Rd ). This is in particular true
if L{δ} (the impulse response) is an ordinary locally integrable function with rapid
decay. It is also true if L is a 1-D linear differential operator with constant coeffi-
cients, in which case L{δ} is a finite sum of derivatives of the Dirac distribution and
the corresponding Fourier multiplier L̂(ω) is a polynomial in jω.

For operators with smooth Fourier multipliers that are nowhere zero in Rd and not
decaying (or decaying slowly) at ∞, we can define the inverse L−1 : S (Rd ) → S (Rd )
of L by

L−1 :ϕ 7→F−1
{
ϕ̂(ω)

L̂(ω)

}
.

This inverse operator is also linear and shift-invariant, and has the convolution ker-
nel

ρL =F−1
{

1

L̂(ω)

}
, (5.5)

which is in effect the Green’s function of the operator L. Thus, we may write

L−1 :ϕ 7→ ρL ∗ϕ.

For the cases in which L̂(ω) vanishes at some points, its inverse 1/L̂(ω) is not in
general a locally-integrable function, but even in the singular case we may still be
able to regularize the singularities at the zeros of L̂(ω) and obtain a singular “gener-
alized function” whose inverse Fourier transform, per (5.5), once again yields a con-
volution kernel ρL that is a Green’s function of L. The difference is that in this case,
for an arbitrary ϕ ∈S (Rd ), ρL ∗ϕ may no longer belong to S (Rd ).

As in our introductory example, the simplest scenario occurs when the inverse
operator L−1 is shift-invariant with an impulse response ρL that has sufficient decay
for the system to be BIBO-stable (bounded input, bounded output).

P R O P O S I T I O N 5.1 Let L−1ϕ(r ) = (ρL ∗ϕ)(r ) = ∫
Rd ρL(r ′)ϕ(r − r ′) dr ′ with ρL ∈

L1(Rd ) (or, more generally, where ρL is a complex-valued Borel measure of bounded
variation). Then, L−1 and its adjoint specified by L−1∗ϕ(r ) = (ρ∨

L ∗ϕ)(r ) = ∫
Rd ρL(−r ′)

ϕ(r − r ′) dr ′ are both Lp -stable in the sense that

‖L−1ϕ‖Lp ≤ ‖ρL‖L1 ‖ϕ‖Lp

‖L−1∗ϕ‖Lp ≤ ‖ρL‖L1 ‖ϕ‖Lp

for all p ≥ 1. In particular, this ensures that L−1∗ continuously maps S (Rd ) → Lp (Rd ).

The result follows from Theorem 3.5. For the sake of completeness, we shall estab-
lish the bound based on the two extreme cases p = 1 and p =+∞.

Proof To obtain the L1 bound, we manipulate the norm of the convolution integral
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as

‖ρL ∗ϕ‖L1 =
∫

Rd

∣∣∣∣
∫

Rd
ρL(r )ϕ(r ′− r ) dr

∣∣∣∣ dr ′

≤
∫

Rd

∫

Rd

∣∣ρL(r )ϕ(s)
∣∣ dr ds (change of variable s = r ′− r )

=
∫

Rd

∣∣ρL(r )
∣∣ dr

∫

Rd

∣∣ϕ(s)
∣∣ ds = ‖ρL‖L1 ‖ϕ‖L1 ,

where the exchange of integrals is justified by Fubini’s theorem. The corresponding
L∞ bound follows from the simple pointwise estimate

∣∣(ρL ∗ϕ)(r )
∣∣≤ ‖ϕ‖L∞

∫

Rd

∣∣ρL(r ′)
∣∣ dr ′ = ‖ρL‖L1 ‖ϕ‖L∞

for any r ∈ Rd . The final step is to invoke the Riesz-Thorin theorem (Theorem 3.4)
which yields Young’s inequality for Lp functions

(
see (3.11)

)
, and hence proves the

desired result for 1 ≤ p ≤ ∞. The inequality also applies to the adjoint operator
since the latter amounts to a convolution with the reversed impulse response ρ∨

L (r ) =
ρ(−r ) ∈ L1(Rd ). The final statement simply follows from the fact that the convergence
of a sequence of functions in the (strong) topology of S (Rd ) implies convergence in
all Lp norms for p > 0.

Note that the L1 condition in Proposition 5.1 is the standard hypothesis that is
made in the theory of linear systems to ensure the BIBO stability of an analog filter.
It is slightly stronger than the TV condition in Theorem 3.5, which is necessary and
sufficient for both BIBO (p =∞) and L1 stabilities.

If, in addition, ρL(r ) decays faster than any polynomial (e.g., is compactly suppor-
ted or decays exponentially), then we can actually ensure S -continuity so that there
is no restriction on the class of corresponding stochastic processes.

P R O P O S I T I O N 5.2 Let L−1ϕ(r ) = (ρL ∗ϕ)(r ) with |ρL(r )| ≤ Cn
1+‖r ‖n for all n ∈Z+ and

r ∈Rd . Then, L−1 and L−1∗ are S -continuous in the sense thatϕ ∈S ⇒ L−1ϕ,L−1∗ϕ ∈
S with both operators being bounded in an appropriate sequence of semi-norms.

The key here is that the convolution with ρL preserves the rapid decay of the test
functionϕ. The degree of smoothness of the output is not an issue because, for non-
constant functions, the convolution operation commutes with differentiation.

The good news is that the entire class of stable 1D differential systems with ra-
tional transfer functions and poles in the left half of the complex plane falls into the
category of Proposition 5.2. The application of such operators provides us with a
convenient mechanism for solving ordinary differential equations, as detailed in the
next section.

The S -continuity property is important for our formulation. It also holds for all
shift-invariant differential operators whole impulse response is a point distribution;
e.g., (D− Id){δ} = δ′−δ. It is preserved under convolution, which justifies the factor-
ization of operators into simpler constituents.
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5.3 Stable differential systems in 1-D

The generic form of a linear shift-invariant differential equation in 1-D with (de-
terministic or random) output s and driving term w is

N∑
n=0

anDn s =
M∑

m=0
bmDm w (5.6)

where the an and bm are arbitrary complex coefficients with the normalization con-
straint aN = 1. Equation (5.6) thus covers the general 1-D case of Ls = w where L is a
shift-invariant operator with the rational transfer function

L̂(ω) = (jω)N +aN−1(jω)N−1 +·· ·+a1(jω)+a0

bM (jω)M +·· ·+b1(jω)+b0
= pN (jω)

qM (jω)
. (5.7)

The poles of the system, which are the roots of the characteristic polynomial pN (ζ) =
ζN + aN−1ζ

N−1 + ·· ·+ a0 with Laplace variable ζ ∈ C, are denoted by {αn}N
n=1. In the

standard causal-stable scenario where Re(αn) < 0 for n = 1, . . . , N , the solution is ob-
tained as

s(r ) = L−1w(r ) = (ρL ∗w)(r )

where ρL is the causal Green function of L specified by (5.5).

In practice, the determination of ρL is based on the factorization of the transfer
function of the system as

1

L̂(ω)
= qM (jω)

N∏
n=1

1

jω−αn
(5.8)

= bM

∏M
m=1(jω−γm)

∏N
n=1(jω−αn)

, (5.9)

which is then broken into simple constituents, either by serial composition of first-
order factors or by decomposition into simple partial fractions. We are providing
the fully factorized form (5.9) of the transfer function to recall the property that a
stable N th-order system is completely characterized by its poles {αn}N

n=1 and zeros
{γm}M

m=1, up to the proportionality factor bM .

Since the S -continuity property is preserved through the composition of convo-
lution operators, we shall rely on (5.9) to factorize L−1 into elementary operators. To
that end, we shall study the effect of simple constituents (first-order differential op-
erators with stable inverses) before considering their composition into higher-order
operators. We shall also treat the leading polynomial factor qM (jω) in (5.8) separ-
ately because it corresponds to a convolution operator whose impulse response is
the point distribution

∑M
m=0 bmδ

(m). The latter is S -continuous, irrespective of the
choice of coefficients bm

(
or, equivalently, the zeros γm in (5.9)

)
.
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5.3.1 First-order differential operators with stable inverses

The first-order differential operator

Pα = D−αId

corresponds to the convolution kernel (impulse response) (δ′−αδ) and Fourier multi-
plier (jω−α). For Re(α) 6= 0 (the stable case in signal-processing parlance), the inverse
of the Fourier multiplier, (jω−α)−1, is non-zero for all ω ∈ R, with the well-defined
Fourier inverse

ρα(r ) =F−1
{

1

jω−α

}
(r ) =

{
eαr

1[0,∞)(r ) if Re(α) < 0,

−eαr
1(−∞,0](r ) if Re(α) > 0.

Clearly, in either of the causal (Re(α) < 0) or anti-causal (Re(α) > 0) cases, these func-
tions decay rapidly at infinity, and convolutions with them map S (R) back into itself.
Moreover, a convolution with ρα inverts Pα : S (R) →S (R) both from the left and the
right, a reason for which we can write

P−1
α ϕ= ρα∗ϕ (5.10)

for Re(α) 6= 0.

Since Pα and P−1
α ,Re(α) 6= 0, are both S -continuous (continuous from S (R) into

S (R)), their action can be transferred to the space S ′(R) of Schwartz distributions
by identifying the adjoint operator P∗

α with (−P−α), in keeping with the identity

〈Pαϕ,φ〉 =−〈ϕ,P−αφ〉

on S (R). We recall that, in this context, 〈ϕ,φ〉denotes the bilinear form
∫
Rϕ(r )φ(r ) dr ,

not the Hermitian product.

5.3.2 Higher-order differential operators with stable inverses

As noted earlier, the preservation of continuity by composition facilitates the study
of differential systems by permitting us to decompose higher-order operators into
first-order factors. Specifically, let us consider the equivalent factorized representa-
tion of the N th-order differential equation (5.6) given by

Pα1 · · ·PαN {s}(r ) = qM (D){w}(r ) (5.11)

where {αn}N
n=1 are the poles of the system and where qM (D) = ∑M

m=0 bmDm is the
Mth-order differential operator acting on the right-hand side of (5.6). Under the as-
sumption that Re(αn) 6= 0 (causal or anti-causal stability), we can invert the operators
acting on the left-hand side of (5.11), which allows us to express the solution of the
differential equation as

s(r ) = P−1
αN

· · ·P−1
α1

qM (D)
︸ ︷︷ ︸

L−1

{w}(r ). (5.12)
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This translates into the following formulas for the corresponding inverse operator
L−1:

L−1 = P−1
αN

· · ·P−1
α1

qM (D)

= bM P−1
αN

· · ·P−1
α1

Pγ1 · · ·PγN ,

which are consistent with (5.8) and (5.9), respectively. These operator-based ma-
nipulations are legitimate since all the elementary constituents in (5.11) and (5.12)
are S -continuous convolution operators. We also recall that all Lp -stable and, a
fortiori S -continuous, convolution operators satisfy the properties of commutativ-
ity, associativity, and distributivity, so that the ordering of the factors in (5.11) and
(5.12) is immaterial. Interestingly, this divide-and-conquer approach to the problem
of inverting a differential operator is also extendable to the unstable scenarios (with
Re(αn) = 0 for some values of n), the main difference being that the ordering of op-
erators becomes important (partial loss of commutativity).

5.4 Unstable Nth-order differential systems

Classically, a differential system is categorized as being unstable when some of its
poles are in the right complex half-plane, including the imaginary axis. Mathematic-
ally, there is no fundamental reason for excluding the cases Re(αn) > 0 because one
can simply switch to an anti-causal configuration which preserves the exponential
decay of the response, as we did in defining these inverses in Section 5.3.1.

The only tricky situation occurs for purely-imaginary poles of the form αm = jω0

with ω0 ∈R, to which we now turn our attention.

5.4.1 First-order differential operators with unstable shift-invariant inverses

Once again, we begin with first-order operators. Unlike the case of Re(α) 6= 0, for
purely imaginaryα= jω0, Pjω0 is not a surjective operator from S (R) to S (R) (mean-
ing it maps S (R) into a proper subset of itself, not into the entire space), because it
introduces a frequency-domain zero atω0. This implies that we cannot find an oper-
ator U : S (R) → S (R) that is a right inverse of Pjω0 . In other words, we cannot fulfill
Pjω0 Uϕ=ϕ for all ϕ ∈S (R) subject to the constraint that Uϕ ∈S (R).

If we now consider Pjω0 as an operator on S ′(R)
(
as the adjoint of (−P−jω0 )

)
, then

this operator is not one-to-one. More precisely, it has a non-trivial null-space con-
sisting of multiples of the complex sinusoid ejω0x . Consequently, on S ′(R), Pjω0 does
not have a left inverse U′ : S ′(R) →S ′(R) with U′Pjω0 f = f for all f ∈S ′(R).

The main conclusion of concern to us is that Pjω0 : S (R) → S (R) and its adjoint
P∗

jω0
: S ′(R) →S ′(R) are not invertible in the usual sense of the word (i.e., from both

sides). However, we are able to properly invert Pjω0 on its image (range), as we discuss
now.

Let Sjω0 denote the image of S (R) under Pjω0 . This is the same as the subspace of
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S (R) consisting of functions ϕ for which 3

∫ +∞

−∞
e−jω0rϕ(r ) dr = 0.

In particular, for jω0 = 0, we obtain S0, the space of Schwartz test functions with
vanishing 0th-order moment. We may then view Pjω0 as an operator S (R) → Sjω0 ,
and this operator now has an inverse P−1

jω0
from Sjω0 →S (R) defined by

P−1
jω0
ϕ(r ) = (ρjω0 ∗ϕ)(r ), (5.13)

where

ρjω0 (r ) =F−1
{

1

jω− jω0

}
(r ) = 1

2
sign(r )ejω0r . (5.14)

Specifically, this LSI operator satisfies the right and left inverse relations

Pjω0 P−1
jω0
ϕ=ϕ for all ϕ ∈Sjω0

P−1
jω0

Pjω0ϕ=ϕ for all ϕ ∈S (R).

In order to be able to use such inverse operators for defining stochastic processes, we
need to extend P−1

jω0
to all of S (R).

Note that unlike the case of P−1
α with Re(α) 6= 0, here the extension of P−1

jω0
to an

operator S (R) →S ′(R) is in general not unique. For instance, P−1
jω0

may also be spe-
cified as

P−1
jω0,+ϕ(r ) = (ρjω0,+∗ϕ)(r ), (5.15)

with causal impulse response

ρjω0,+(r ) = ejω0r
1+(r ), (5.16)

which defines the same operator on Sjω0 but not on S (R). In fact, we could as well
have taken any impulse response of the form ρjω(r )+ p0(r ), where p0(r ) = c0ejω0r

is an oscillatory component that is in the null space of Pjω0 . By contrast, the Lp -
continuous inverses that we define below remain the same for all of these extensions.
To convey the idea, we shall first consider the extension based on the causal operator
P−1∗

jω0,+ defined by (5.15). Its adjoint is denoted by P−1∗
jω0,+ and amounts to an (anti-

causal) convolution with ρ∨
jω0,+.

To solve the stochastic differential equation Pjω0 s = w , we need to find a left in-
verse of the adjoint P∗

jω0
acting on the space of test functions, which maps S (R) into

the required Lp space (Theorem 4.17). The problem with the “shift-invariant” 4 ex-
tensions of the inverse defined above is that their image inside S ′(R) is not contained
in arbitrary Lp spaces. For this reason, we now introduce a different, “corrected”, ex-
tension of the inverse of P∗

jω0
that maps S (R) to R(R)—therefore, a fortiori, also into

3. To see this, note that (D− jω0Id)ϕ(r ) = ejω0r D{e−jω0rϕ(r )}.
4. These operators are shift-invariant because they are defined by means of convolutions.
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all Lp spaces. This corrected left inverse, which we shall denote as I∗ω0
, is constructed

as

I∗ω0
ϕ(r ) =P−1∗

jω0,+ϕ(r )−
(

lim
y→−∞P−1∗

jω0,+ϕ(y)

)
ρ∨

jω0,+(r )

=(ρ∨
jω0,+∗ϕ)(r )− ϕ̂(−ω0)ρ∨

jω0,+(r ) (5.17)

in direct analogy with (5.3). As in our introductory example, the role of the second
term is to remove the tail of P−1

jω0,+ϕ(r ). This ensures that the output decays fast
enough to belong to R(R). It is not difficult to show that the convolutional definition
of I∗ω0

given by (5.17) does not depend on the specific choice of the impulse response
within the class of admissible LSI inverses of Pjω0 on Sjω. Then, we may simplify the
notation by writing

I∗ω0
ϕ(r ) =(ρ∨

jω0
∗ϕ)(r )− ϕ̂(−ω0)ρ∨

jω0
(r ), (5.18)

for any Green’s function ρjω0 of the operator Pjω. While the left inverse operator I∗ω0

fixes the decay, it fails to be a right inverse of P∗
jω0

unless ϕ ∈ Sjω0 or, equivalently,
ϕ̂(−ω0) = 0.

The corresponding right inverse of Pjω0 is provided by the adjoint of I∗ω0
. It is iden-

tified via the scalar product manipulation

〈ϕ, I∗ω0
φ〉 = 〈ϕ,P−1∗

jω0
φ〉− φ̂(−ω0)〈ϕ,ρ∨

jω0
〉 (by linearity)

= 〈P−1
jω0
ϕ,φ〉−〈ejω0r ,φ〉 (P−1

jω0
ϕ)(0) (using (5.13))

= 〈P−1
jω0
ϕ,φ〉−〈ejω0r (P−1

jω0
ϕ)(0),φ〉.

Since the above is equal to 〈Iω0ϕ,φ〉 by definition, we find that

Iω0ϕ(r ) = P−1
jω0
ϕ(r )−ejω0r (P−1

jω0
ϕ)(0)

= (ρjω0 ∗ϕ)(r )−ejω0r (ρjω0 ∗ϕ)(0), (5.19)

where ρjω0 is defined by (5.14). The specificity of Iω0 is to impose the boundary con-
dition s(0) = 0 on the output s = Iω0ϕ, irrespective of the input function ϕ. This is
achieved by the addition of a component that is in the null space of Pjω. This also
explains why we may substitute ρjω0 in (5.19) by any other Green’s function of Pjω,
including the causal one given by (5.16).

In particular, for jω0 = 0 (that is, for Pjω0 = D), we have

I0ϕ(r ) =
∫ r

−∞
ϕ(t ) dt −

∫ 0

−∞
ϕ(t ) dt =

{ ∫ r
0 ϕ(t ) dt r ≥ 0

−∫ 0
r ϕ(t ) dt r < 0,

while the adjoint is given by

I∗0ϕ(r ) =
∫ ∞

r
ϕ(t ) dt −1(−∞,0](r )

∫ ∞

−∞
ϕ(t ) dt =

{ ∫ ∞
r ϕ(t ) dt r ≥ 0

−∫ r
−∞ϕ(t ) dt r < 0.

These are equivalent to the solution described in Section 5.1 (see Figure 5.1).
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The Fourier-domain counterparts of (5.19) and (5.18) are

Iω0ϕ(r ) =
∫

R
ϕ̂(ω)

ejωr −ejω0r

jω− jω0

dω

2π
, (5.20)

I∗ω0
ϕ(r ) =

∫

R

ϕ̂(ω)− ϕ̂(−ω0)

−jω− jω0
ejωr dω

2π
, (5.21)

respectively. One can observe that the form of the numerator in both integrals is such
that it tempers the singularity of the denominator at ω =ω0. The relevance of these
corrected inverse operators for the construction of stochastic processes is due to the
following theorem.

T H E O R E M 5.3 The operator I∗ω0
defined by (5.18) is continuous from S (R) to R(R)

and extends continuously to a linear operator R(R) →R(R). It is the dual of the oper-
ator Iω0 defined by (5.19) in the sense that 〈Iω0φ,ϕ〉 = 〈φ, I∗ω0

ϕ〉. Moreover,

Iω0ϕ(0) = 0 (zero boundary condition)

I∗ω0
(D− jω0Id)∗ϕ=ϕ (left-inverse property)

(D− jω0Id)Iω0φ=φ (right-inverse property)

for all ϕ,φ ∈S (R).

The first part of the theorem follows from Proposition 5.4 below, which indic-
ates that I∗ω0

preserves rapid decay. The statements in the second part have already
been discussed. The left-inverse property, for instance, follows from the fact that
(D− jω0Id)∗ϕ ∈ S−jω0 , which is the subspace of S (R) for which all the inverses of
P∗

jω0
= −P−jω0 are equivalent. The right-inverse property of Iω0 is easily verified by

applying Pjω0 to (5.19).
To qualify the rate of decay of functions, we rely on the L∞,α norm, defined as

‖ϕ‖L∞,α = esssup
r∈R

∣∣ϕ(r )(1+|r |)α
∣∣ . (5.22)

Hence, the inclusion ϕ ∈ L∞,α(R) is equivalent to

|ϕ(r )| ≤
‖ϕ‖L∞,α

(1+|r |)α a.e.,

which is to say thatϕ has an algebraic decay of orderα. We also recall that R(R) is the
space of rapidly-decaying functions, which is the intersection of all L∞,α(R) spaces
with α> 0. The relevant embedding relations are S (R) ⊂R(R) ⊂ L∞,α(R) ⊂ Lp (R) for
any α > 1 and p ≥ 1. Moreover, since S (R) has the strictest topology in the chain, a
sequence that converges in S (R) is also convergent in R(R), L∞,α(R), or Lp (R).

P R O P O S I T I O N 5.4 Let I∗ω0
be the linear operator defined by (5.17). Then, for all ϕ ∈

L∞,α(R) with α> 1, there exists a constant C such that

‖I∗ω0
ϕ‖L∞,α−1 ≤C ‖ϕ‖L∞,α .

Hence, I∗ω0
is a continuous operator from L∞,α(R) into L∞,α−1(R) and, by restriction of

its domain, from R(R) →R(R) or S (R) →R(R).
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Proof For r < 0, we rewrite (5.17) as

I∗ω0
ϕ(r ) = I∗ω0

ϕ(r )−e−jω0r ϕ̂(−ω0)

=
∫ +∞

r
e−jω0(r−τ)ϕ(τ) dτ−e−jω0r

∫ ∞

−∞
ejω0τϕ(τ) dτ

=−e−jω0r
∫ r

−∞
ejω0τϕ(τ) dτ.

This implies that

|I∗ω0
ϕ(r )| =

∣∣∣∣
∫ r

−∞
ejω0τϕ(τ) dτ

∣∣∣∣

≤
∫ r

−∞

∣∣ϕ(τ)
∣∣ dτ

≤
∫ r

−∞

‖ϕ‖L∞,α

(1+|τ|)α dτ≤C
‖ϕ‖L∞,α

(1+|r |)α−1

for all r < 0. For r > 0, I∗ω0
ϕr = ∫ ∞

r e−jω0(r−τ)ϕ(τ) dτ so that the above upper bound
remains valid.

While I∗ω0
is continuous over R(R), it is not shift-invariant. Moreover, it will gener-

ally spoil the global smoothness of the functions in S (R) to which it is applied due
to the discontinuity at the origin that is introduced by the correction. By contrast, its
adjoint Iω0 preserves the smoothness of the input but fails to return functions that
are rapidly decaying at infinity. This lack of shift-invariance and the slow growth of
the output at infinity appear to be the price to pay for being able to solve unstable
differential systems.

5.4.2 Higher-order differential operators with unstable shift-invariant inverses

Given that the operators I∗ω0
,ω0 ∈R, defined in Section 5.4.1 are continuous R(R) →

R(R), they may be composed to obtain higher-order continuous operators R(R) →
R(R) that serve as left inverses of the corresponding higher-order differential oper-
ators in the sense of the previous section. More precisely, given (ω1, . . . ,ωK ) ∈RK , we
define the composite integration operator

I(ω1:ωK ) = Iω1 ◦ · · · ◦ IωK (5.23)

whose adjoint is given by

I∗(ω1:ωK ) =
(
Iω1 ◦ · · · ◦ IωK

)∗ = I∗ωK
◦ · · · ◦ I∗ω1

. (5.24)

I∗(ω1:ωK ), which maps R(R)
(
and therefore S (R) ⊂ R(R)

)
continuously into R(R), is

then a left inverse of

P∗
(jωK :jω1) = P∗

jω1
◦ · · · ◦P∗

jωK
,

with Pα = D−αId and P∗
α =−P−α. Conversely, I(ωK :ω1) is a right inverse of

P(jω1:jωK ) = Pjω1 ◦ · · · ◦PjωK .
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Putting everything together, with the definitions of Section 5.3.2, we arrive at the
following corollary of Theorem 5.3:

C O R O L L A RY 5.5 For α = (α1, . . . ,αM ) ∈ CM with Re(αn) 6= 0 and (ω1, . . . ,ωK ) ∈ RK ,
the (M +K )th-order operator L−1∗ = P−1∗

(αM :α1)I
∗
(ωK :ω1) maps S (R) continuously into

R(R) ⊆ Lp (R) for any p > 0. It is a left inverse of L∗ = P∗
(jω1:jωK )P

∗
(α1:αM ) in the sense

that

P−1∗
(αM :α1)I

∗
(ωK :ω1)P

∗
(jω1:jωK )P

∗
(α1:αM )ϕ=ϕ

for all ϕ ∈S (R).

We shall now use this result to solve the differential equation (5.11) in the non-
stable scenario. To that end, we order the poles in such a way that the unstable ones
come last with αN−K+m = jωm , 1 ≤ m ≤ K , where K is the number of purely imagin-
ary poles. We thus specify the right-inverse operator

L−1 = I(ωK :ω1)P
−1
(αN−K :α1)qM (D),

which we then apply to w to obtain the solution s = L−1w . In effect , by applying
I(ωK :ω1) last, we are also enforcing the K linear boundary conditions





s(0) = 0
PjωK {s}(0) = 0

...
Pjω2 · · ·PjωK {s}(0) = 0.

(5.25)

To show that s = L−1w is a consistent solution, we proceed by duality and write

〈ϕ,P(α1:αN−K )P(jω1:jωK )s〉 = 〈ϕ, P(α1:αN−K )P(jω1:jωK )L
−1w〉

= 〈P∗
(jω1:jωK )P

∗
(α1:αN−K )ϕ, I(ωK :ω1)P

−1
(αN−K :α1)qM (D)w〉

= 〈P−1∗
(αN−K :α1)I

∗
(ωK :ω1)P

∗
(jω1:jωK )P

∗
(α1:αN−K )︸ ︷︷ ︸

Id

ϕ, qM (D)w〉

= 〈ϕ, qM (D)w〉,
where we have made use of Corollary 5.5. This proves that s satisfies the differential
equation (5.11) with driving term w , subject to the boundary conditions (5.25).

5.4.3 Generalized boundary conditions

In the resolution method presented so far, the inverse operator Iω0 was designed to
impose zero boundary conditions at the origin. In more generality, one may consider
inverse operators Iω0,ϕ0 that incorporate conditions of the form

〈ϕ0, Iω0,ϕ0 w〉 = 0 (5.26)

on the solution s = Iω0,ϕ0 w . This leads to the definition of the right-inverse operator

Iω0,ϕ0ϕ(r ) =(ρjω0 ∗ϕ)(r )−ejω0r 〈ρjω0 ∗ϕ,ϕ0〉
ϕ̂0(−ω0)

, (5.27)
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where ρjω0 is a Green’s function of Pjω0 and ϕ0 is some given rapidly-decaying func-
tion such that ϕ̂0(−ω0) 6= 0. In particular, if we set ω0 = 0 and ϕ0 = δ, we recover the
scale-invariant integrator I0 = I0,δ that was used in our introductory example (Sec-
tion 5.1) to provide the connection with the classical theory of Lévy processes. The
Fourier-domain counterpart of (5.27) is

Iω0,ϕ0ϕ(r ) =
∫

R
ϕ̂(ω)




ejωr −ejω0r ϕ̂0(−ω)
ϕ̂0(−ω0)

j(ω−ω0)


 dω

2π
. (5.28)

The above operator is well-defined pointwise for anyϕ ∈ L1(R). Moreover, it is a right
inverse of (D− jω0Id) on S (R) because the regularization in the numerator amounts
to a sinusoidal correction that is in the null space of the operator. The adjoint of Iω0,ϕ0

is specified by the Fourier-domain integral

I∗ω0,ϕ0
ϕ(r ) =

∫

R



ϕ̂(ω)− ϕ̂(−ω0)

ϕ̂0(−ω0) ϕ̂0(ω)

−j(ω+ω0)


ejωr dω

2π
, (5.29)

which is non-singular, thanks to the regularization in the numerator. The benefi-
cial effect of this adjustment is that I∗ω0,ϕ0

is R-continuous and Lp -stable, unlike its
more conventional shift-invariant counterpart P−1∗

jω0
. The time-domain counterpart

of (5.29) is

I∗ω0,ϕ0
ϕ(r ) =(ρ∨

jω0
∗ϕ)(r )− ϕ̂(−ω0)

ϕ̂0(−ω0)

(
ϕ0 ∗ρ∨

jω0

)
(r ), (5.30)

where ρjω0 is a Green’s function of Pjω0 . This relation is very similar to (5.18), with the
notable difference that the second term is convolved byϕ0. This suggests that we can
restore the smoothness of the output by picking a kernel ϕ0 with a sufficient degree
of differentiability. In fact, by considering a sequence of such kernels in S (R) that
converge to the Dirac distribution (in the weak sense), we can specify a left-inverse
operator that is arbitrarily close to I∗ω0

and yet S -continuous.
While the imposition of generalized boundary conditions of the form (5.26) has

some significant implication on the statistical properties of the signal (non-stationary
behavior), it is less of an issue for signal processing because of the use of analysis
tools (wavelets, finite-difference operators) that stationarize these processes—in ef-
fect, filtering out the null-space components—so that the traditional tools of the
trade remain applicable. Therefore, to simplify the presentation, we shall only con-
sider boundary conditions at zero in the sequel, and work with the operators I∗ω0

and
Iω0 .

5.5 Fractional-order operators

5.5.1 Fractional derivatives in one dimension

In one dimension, we consider the general class of all LSI operators that are also
scale-invariant. To motivate their definition, let us recall that the nth-order derivat-
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ive Dn corresponds to the Fourier multiplier (jω)n . This suggests the following frac-
tional extension, going back to Liouville, whereby the exponent n is replaced by a
nonnegative real number γ:

Dγϕ(r ) =
∫

R
(jω)γϕ̂(ω)ejωr dω

2π
. (5.31)

This definition is further generalized in the next proposition, which gives a complete
characterization of scale-invariant convolution operators in 1-D.

P R O P O S I T I O N 5.6 (see [UB07, Proposition 2]) The complete family of 1-D scale-
invariant convolution operators of order γ ∈ R reduces to the fractional derivative ∂γτ
whose Fourier-based definition is

∂
γ
τϕ(r ) =

∫

R
(jω)

γ
2 +τ(−jω)

γ
2 −τϕ̂(ω)ejωr dω

2π
,

where ϕ̂ is the 1-D Fourier transform of the input function ϕ under the implicit as-
sumption that the inverse Fourier integral on the r.h.s. is convergent.

While the above representation is appealing, it needs to be treated with caution
since the underlying Fourier multipliers are unbounded (at infinity or at zero) which
is incompatible with Lp stability (see Theorem 3.5). The next theorem shows that the
fractional-derivative operators ∂γτ are well-defined over S (R) for γ > −1 and τ ∈ R,
but that they have a tendency to spoil the decay of the functions to which they are
applied.

T H E O R E M 5.7 The differential operator ∂γτ is continuous from S (R) to Lp (R) for γ>
1
p − 1. Moreover, the fractional derivative ∂

γ
τϕ of a test function ϕ ∈ S (R) remains

indefinitely differentiable, but its decay is constrained by

∣∣∂γτϕ(r )
∣∣≤ Const

1+|r |γ+1 .

This is to be contrasted with the effect of Dn for n ∈N, which maps S (R) into itself
and hence preserves rapid decay. To explain the effect, we observe that a fractional
differentiation is equivalent to a convolution. Since ϕ decreases rapidly, the decay of
the output is imposed by the tail of the impulse response. For instance, in the case of
the operator Dγ (with γ non-integer), we have that

Dγ{δ}(r ) = r−γ−1
+
Γ(−γ)

(5.32)

which, for γ > −1, is a generalized function that decays like 1/|r |γ+1. Note that the
(apparent) singularity at r = 0 is not damaging since it is tempered by the finite-part
integral of the definition (see Table A.1 and (5.33) below).

The Fourier-domain characterization in Proposition 5.6 implies that these operat-

ors are endowed with a semigroup property: they satisfy the composition rule ∂γτ∂
γ′

τ′ =
∂
γ+γ′
τ+τ′ for γ′,γ+γ′ ∈ (−1,+∞) and τ,τ′ ∈ R. The parameter τ is a phase factor that

yields a progressive transition between the purely causal derivative Dγ = ∂γ
γ/2 and its
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anti-causal counterpart Dγ∗ = ∂
γ

−γ/2, which happens to be the adjoint of the former.

We also note that ∂0
τ is equivalent to the fractional Hilbert transform operator Hτ in-

vestigated in [CU10]. A special case of the semigroup property is ∂γτ = ∂
γ

γ/2∂
0
τ−γ/2 =

DγHτ−γ/2 ,which indicates that the fractional derivatives of order γ are all related to
Dγ via a fractional Hilbert transform. The latter is a unitary operator (all-pass filter)
that essentially acts as a shift operator on the oscillatory part of a wavelet.

The property that ∂γτ can be factorized as ∂γτ = Dn∂α
τ′ with n ∈ N, α = γ−n, τ′ =

τ−n/2, and Dn : S (R) → S (R), has important consequences for the theory. In par-

ticular, it suggests several equivalent descriptions of the generalized function
rλ+

Γ(λ+1) ,
as in

〈ϕ,
rλ+

Γ(λ+1)
〉 = 〈ϕ,Dn{

rλ+n
+

Γ(λ+n +1)
}〉

= 〈Dn∗ϕ,
rλ+n
+

Γ(λ+n +1)
〉

= (−1)n

Γ(λ+n +1)

∫ ∞

0
rλ+nϕ(n)(r ) dr. (5.33)

The last equality of (5.33) with n = min(0,b−λc) provides an operational definition
that reduces to a conventional integral.

In principle, we can obtain the shift-invariant inverse of the derivative operator ∂γτ
with γ≥ 0 by taking the order to be negative (fractional integrator) and reversing the
sign of τ. Yet, based on (5.32), which is valid for γ ∈R\N, we see that this is problem-
atic because the impulse response becomes more delocalized as γ decreases. As is
the case of the ordinary derivative Dn , this calls for a stabilized version of the inverse.

T H E O R E M 5.8 The fractional integration operator

∂
−γ∗
−τ,pϕ(r ) = 1

2π

∫

R

ϕ̂(ω)−∑bγ+ 1
p c−1

k=0
ϕ̂(k)(0)ωk

k !

(−jω)
γ
2 −τ(jω)

γ
2 +τ

ejωr dω (5.34)

continuously maps S (R) into Lp (R) for p > 0, τ ∈R, and γ ∈R+, subject to the restric-
tion γ+ 1

p 6= 1,2, . . . It is a linear operator that is scale-invariant and is a left inverse of

∂
γ
−τ = ∂γ∗τ . The adjoint operator ∂−γ−τ,p is given by

∂
−γ
−τ,pϕ(r ) = 1

2π

∫

R

ejωr −∑bγ+ 1
p c−1

k=0
(jωr )k

k !

(−jω)
γ
2 −τ(jω)

γ
2 +τ

ϕ̂(ω) dω

and is the proper scale-invariant right inverse of ∂γτ to be applied to generalized func-
tions.

The stabilization in (5.34) amounts to an adjustment of the Fourier transform of
the input (subtraction of an adequate number of terms of its Taylor series at the ori-
gin) to counteract the frequency-domain division by zero. This correction has the
desirable feature of being linear with respect to the input and of preserving scale in-
variance, which is essential for our purpose.
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Proof We only give a sketch of the proof for p ≥ 1, leaving out the derivation of Pro-
position 5.9 which is somewhat technical. The first observation is that the operator
can be factorized as ∂−γ∗−τ,p = ∂α

τ′ (I∗0 )np with α = np −γ and τ′ = τ−np /2 where I∗0 is
the corrected (adjoint) integrator defined by (5.21) with ω0 = 0. The integer order of
pre-integration is np = bγ+ 1

p c−1+1 = bγ+ 1
p c, which implies that the residual degree

of differentiation α is constrained according to

1
p −1 <α= np −γ< 1

p .

This allows us to write ∂−γ∗−τ,pϕ = ∂α
τ′φ where φ = (I∗0 )npϕ is rapidly-decaying by Co-

rollary 5.5. The required ingredient to complete the proof is a result analogous to
Theorem 5.7 which would ensure that ∂α

τ′φ ∈ Lp (R) forα> 1
p −1. The easy scenario is

when ϕ ∈S (R) has np vanishing moments, in which case φ= (I∗0 )npϕ ∈S (R) so that
Theorem 5.7 is directly applicable. In general, however,φ is (only) rapidly decreasing;
this is addressed by the following extension.

P R O P O S I T I O N 5.9 The fractional operator ∂ατ I∗0 is continuous from S (R) to Lp (R) for
p > 0, τ ∈ R, and 1

p −1 < α < 1
p . It also admits a continuous extension R(R) → Lp (R)

for p ≥ 1.

The reason for including the operator I∗0 in the statement is to avoid making expli-
cit hypotheses about the derivative of φ which is rapidly decaying but also exhibits a
Dirac impulse at the origin with a weight

(− ϕ̂(0)
)
. Since I∗0 : R(R) → R(R) (by Pro-

position 5.4), the global continuity result for p ≥ 1 then follows from the chaining of
these elementary operators.

Similarly, we establish the left-inverse property by considering the factorization

∂
γ
−τ = (D∗)np∂−α−τ′

and by recalling that I∗0 is a left-inverse of D∗ =−D. The result then follows from the
identity ∂ατ ∂

−α
−τ = Id, which a special case of the semigroup property of scale-invariant

LSI operators, under the implicit assumption that the underlying operations are well-
defined in the Lp sense.

A final observation that gives insight into the design of Lp -stable inverse operat-
ors is that the form of (5.34) for p = 1 coincides with the finite-part definition (see
Appendix A) of the generalized function

ĝr (ω) = ejωr

(−jω)
γ
2 −τ(jω)

γ
2 +τ

∈S ′(R).
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Specifically, by using the property that ϕ̂ ∈S (R), we have that

∂
−γ∗
−τ,1ϕ(r ) = 1

2π
〈ϕ̂, ĝr 〉

= f.p.
1

2π

∫

R
ϕ̂(ω)

ejωr

(−jω)
γ
2 −τ(jω)

γ
2 +τ

dω

= 1

2π

∫

R

(
ϕ̂(ω)−

bγc∑

k=0

ϕ̂(k)(0)ωk

k !

)
ejωr

(−jω)
γ
2 −τ(jω)

γ
2 +τ

dω

where the finite-part regularization in the latter integral is the same as in Definition
(A.1) of the generalized function xλ+ with −Re(λ)−1 = γ. The catch with (5.34) is that
the number of regularization terms np = bγ+ 1

p c is not solely dependent upon γ, but
also on 1/p.

5.5.2 Fractional Laplacians

The fractional Laplacian of order γ≥ 0 is defined by the inverse Fourier integral

(−∆)
γ
2 ϕ(r ) =

∫

Rd
‖ω‖γϕ̂(ω)ej〈ω,r 〉 dω

(2π)d
,

where ϕ̂(ω) is the d-dimensional Fourier transform ofϕ(r ). For γ= 2, this character-
ization coincides with the classical definition of the negative Laplacian; −∆=−∑

∂2
ri

.
In slightly more generality, we obtain a complete characterization of homogen-

eous shift- and rotation-invariant operators and their inverses in terms of convolu-
tions with homogeneous rotation-invariant distributions, as given in Theorem 5.10.
The idea and definitions may be traced back to [Duc77, GS68, Hör80].

T H E O R E M 5.10 ( [Taf11], Corollary 2.ac) Any continuous linear operator S (Rd ) →
S ′(Rd ) that is simultaneously shift- and rotation-invariant, and homogeneous or scale-
invariant of order γ in the sense of Definition 5.2, is a multiple of the operator

Lγ :ϕ 7→ ρ−γ−d ∗ϕ= (2π)
d
2 F−1 {

ργϕ̂
}

where ργ, γ ∈C, is the distribution defined by

ργ(ω) = ‖ω‖γ

2
γ
2 Γ

(γ+d
2

) (5.35)

with the property that

F {ργ} = (2π)
d
2 ρ−γ−d

(Γ denotes the Gamma function.)

Note that Lγ is self-adjoint, with Lγ∗ = Lγ.
As is clear from the definition of ργ, for γ 6= −d ,−d − 2,−d − 4, . . ., Lγ is simply

a renormalized version of the fractional Laplacianintroduced earlier. For γ = −d −
2m, m = 0,1,2,3, . . ., where the Γ function in the denominator of ργ has a pole, ργ
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is proportional to (−∆)mδ, while the previous definition of the fractional Laplacian
without normalization does not define a scale-invariant operator.

Also note that when Re(γ) > −d
(
Re(γ) ≤ −d , respectively

)
, ργ (its Fourier trans-

form, respectively) is singular at the origin. This singularity is resolved in the manner
described in Appendix A, which is equivalent to the analytical continuation of the
formula

∆ργ = γργ−2,

initially valid for Re(γ)−2 >−d , in the variable γ. For the details of the previous two
observations we refer the reader to Appendix A and Tafti [Taf11, Section 2.2]. 5

Finally, it is important to remark that unlike integer-order operators, unless γ is
a positive even integer, the image of S (Rd ) under Lγ is not contained in S (Rd ).
Specifically, while for any ϕ ∈ S , Lγϕ is always an infinitely differentiable regular
function, in the case of γ 6= 2m, m = 1,2, . . ., it may have slow (polynomial) decay or
growth, in direct analogy with the general 1D scenario characterized by Theorem 5.7.

Put more simply, the fractional Laplacian of a Schwartz’ function is not in general
a Schwartz’ function.

5.5.3 Lp-stable inverses

From the identity

ργ(ω)ρ−γ(ω) = 1

Γ
( d+γ

2

)
Γ
( d−γ

2

) forω 6= 0,

we conclude that up to normalization, L−γ is the inverse of Lγ on the space of Schwartz’
test functions with vanishing moments, in particular for Re(γ) > −d . 6 This inverse
for Re(γ) > −d can further be extended to a shift-invariant left inverse of Lγ acting
on Schwartz’ functions. However, as was the case in Section 5.4.1, this shift-invariant
inverse generally does not map S (Rd ) into a given Lp (Rd ) space, and is therefore not
suitable for defining generalized random fields in S ′(Rd ).

The problem exposed in the previous paragraph is once again overcome by de-
fining a “corrected” left inverse. Here again, unlike the simpler scenario of ordin-
ary differential operators, it is not possible to have a single left-inverse operator that
maps S (Rd ) into the intersection of all Lp (Rd ) spaces, p > 0. Instead, we shall need
to define a separate left-inverse operator for each Lp (Rd ) space we are interested in.
Under the constraints of scale and rotation invariance, such “non-shift-invariant”
left inverses are identified in the following theorem.

5. The difference in factors of (2π)
d
2 and (2π)d between the formulas given here and in Tafti [Taf11] is

due to different normalizations used in the definition of the Fourier transform.
6. Here we exclude the cases where the Gamma functions in the denominator have poles, namely

where their argument is a negative integer. For details see [Taf11, 2.ah].
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T H E O R E M 5.11 ( [Taf11], Theorem 2.aq and Corollary 2.am) The operator

L−γ∗
p :ϕ 7→ ργ−d ∗ϕ−

∑

|k |≤bRe(γ)+ d
p c−d

∂kρ
γ−d

k !

∫

Rd
y kϕ(y) dy (5.36)

with Re(γ)+ d
p 6= 1,2,3, . . . is rotation-invariant and homogeneous of order (−γ) in the

sense of Definition 5.2. It maps S (Rd ) continuously into Lp (Rd ) for p ≥ 1.

The adjoint of L−γ∗
p is given by

L−γ
p :ϕ 7→ ργ−d ∗ϕ−

∑

|k|≤bRe(γ)+ d
p c−d

r k ∂k L−γϕ(0)

k !
.

If we exclude the cases where the denominator of (5.35) has a pole, we may nor-
malize the above operators to find left and right inverses corresponding to the frac-
tional Laplacian (−∆)

γ
2 . The next theorem gives an equivalent Fourier-domain char-

acterization of these operators.

T H E O R E M 5.12 (cf. [SU12, Theorem 3.7]) Let Iγ∗p with p ≥ 1 andγ> 0 be the isotropic
fractional integral operator defined by

Iγ∗p ϕ(r ) =
∫

Rd

ϕ̂(ω)−
∑

|k |≤bγ+ d
p c−d

∂k ϕ̂(0)ωk

k !

‖ω‖γ ej〈ω,r 〉 dω

(2π)d
(5.37)

Then, under the condition that γ 6= 2,4, . . . and γ+ d
p 6= 1,2,3, . . ., Iγ∗p is the unique left

inverse of (−∆)
γ
2 that continuously maps S (Rd ) into Lp (Rd ) for p ≥ 1 and is scale-

invariant. The adjoint operator Iγp , which is the proper scale-invariant right inverse of

(−∆)
γ
2 , is given by

Iγpϕ(r ) =
∫

Rd

ej〈ω,r 〉−
∑

|k |≤bγ+ d
p c−d

j|k |r kωk

k !

‖ω‖γ ϕ̂(ω)
dω

(2π)d
. (5.38)

The fractional integral operators Iγp and Iγ∗p are both scale-invariant of order (−γ),
but they are not shift-invariant.

5.6 Discrete convolution operators

We conclude this chapter by providing a few basic results on discrete convolution
operators and their inverses. These will turn out to be helpful for establishing the
existence of certain spline interpolators which are required for the construction of
operator-like wavelet bases in Chapter 6 and for the representation of autocorrela-
tion functions in Chapter 7.

The convention in this book is to use square brackets to index sequences. This
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allows one to distinguish them from functions of a continuous variable. In other
words, h(·) or h(r ) stands for a function defined on a continuum, while h[·] or h[k]
denotes some discrete sequence. The notation h[·] is often simplified to h when the
context is clear.

The discrete convolution between two sequences h[·] and a[·] over Zd is defined
as

(h ∗a)[n] =
∑

m∈Zd

h[m]a[n −m]. (5.39)

This convolution describes how a digital filter with discrete impulse response h acts
on some input sequence a. If h ∈ `1(Zd ), then the map a[·] 7→ (h∗a)[·] is a continuous
operator `p (Zd ) → `p (Zd ). This follows from Young’s inequality for sequences:

‖h ∗a‖`p ≤ ‖h‖`1‖a‖`p , (5.40)

where

‖a‖`p =
{(∑

n∈Zd |a[n]|p) 1
p for 1 ≤ p <∞

supn∈Zd |a[n]| for p =∞.

Note that the condition h ∈ `1(Zd ) is the discrete counterpart of the (more involved)
TV condition in Theorem 3.5. As in the continuous formulation, it is necessary and
sufficient for stability in the extreme cases p = 1,+∞. A simplifying aspect of the
discrete setting is that the boundedness of the operator for p = ∞ implies all the
other forms of `p -stability because of the embedding `p (Zd ) ⊂ `q (Zd ) for any 1 ≤
p < q ≤∞. The latter property is a consequence of the basic norm inequality

‖a‖`p ≥ ‖a‖`q ≥ ‖a‖`∞
for all a ∈ `p (Zd ) ⊂ `q (Zd ) ⊂ `∞(Zd ).

In the Fourier domain, (5.39) maps into the multiplication of the discrete Fourier
transforms of h and a as

b[n] = (h ∗a)[n] ⇔ B(ω) = H(ω)A(ω)

where we are using capitalized letters to denote the discrete-time Fourier transforms
of the underlying sequences. Specifically, we have that

B(ω) =Fd{b}(ω) =
∑

k∈Zd

b[k]e−j〈ω,k〉,

which is 2π-periodic, while the corresponding inversion formula is

b[n] =F−1
d {B} [n] =

∫

[−π,π]d
B(ω)ej〈ω,n〉 dω

(2π)d
.

The stability condition h ∈ `1(Zd ) ensures that the frequency response H(ω) of the
digital filter h is bounded and continuous.

The task of specifying discrete inverse filters is greatly facilitated by a theorem,
known as Wiener’s lemma, which ensures that the inverse convolution operator is
`p -stable whenever the frequency response of the original filter is non-vanishing.
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T H E O R E M 5.13 (Wiener’s lemma) Let H(ω) = ∑
k∈Zd h[k]e−j〈ω,k〉, with h ∈ `1(Zd ),

be a stable discrete Fourier multiplier such that H(ω) 6= 0 for ω ∈ [−π,π]d . Then,
G(ω) = 1/H(ω) has the same property in the sense that it can be written as 1/H(ω) =∑

k∈Zd g [k]e−j〈ω,k〉 with g ∈ `1(Zd ).

The so-defined filter g identifies a stable convolution inverse of h with the prop-
erty that

(g ∗h)[n] = (h ∗ g )[n] = δ[n]

where

δ[n] =
{

1 for n = 0

0 for n ∈Zd \ {0}

is the Kronecker unit impulse.

5.7 Bibliographical notes

Section 5.2
The specification of Lp -stable convolution operators is a central topic in harmonic

analysis [SW71,Gra08]. The basic result in Proposition 5.1 relies on Young’s inequality
with q = r = 1 [Fou77]. The complete class of functions that result in S -continuous
convolution kernels is provided by the inverse Fourier transform of the space of smooth
slowly increasing Fourier multipliers which play a crucial role in the theory of gener-
alized functions [Sch66]. They extend R(Rd ) in the sense that they also contain point
distributions such as δ and its derivatives.

Section 5.3
The operational calculus that is used for solving ordinary differential equations

(ODEs) can be traced to Heaviside who also introduced the symbol D for the de-
rivative operator. It was initially met with skepticism because Heaviside’s exposi-
tion lacked rigor. Nowadays, the preferred method for solving ODEs is based on the
Laplace transform or the Fourier transform. The operator-based formalism that is
presented Section 5.3 is a standard application of distribution theory and Green’s
functions [Kap62, Zem10].

Section 5.4
The extension of the operational calculus for solving unstable ODE/SDEs is a more

recent development. It was initiated in [BU07] in an attempt to link splines and
fractals. The material presented in this section is based on [UTSss], for the most part.
The generalized boundary conditions of Section 5.4.3 were introduced in [UTAKss].
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Section 5.5
Fractional derivatives and Laplacians play a central role in the theory of splines,

the primary reason being that these operators are scale-invariant [Duc77,UB00]. The
proof of Proposition 5.6 can be found in [UB07, Proposition 2], while Theorem 5.7 is
a slight extension of [UB07, Theorem 3]. The derivation of the corresponding left
and right inverses for p = 2 is carried out in the companion paper [BU07]. These
results were extended to the multivariate setting both for the Gaussian [TVDVU09]
and generalized Poisson setting [UT11]. A detailed investigation of the Lp -stable left
inverses of the fractional Laplacian, together with some unicity results is provided
in [SU12]. Further results and proofs can be found in [Taf11].

Section 5.6
Discrete convolution is a central topic in digital signal processing [OSB99]. The

discrete version of Young’s inequality can be established by using the same tech-
nique as for the proof of Proposition 5.1. In that respect, the condition h ∈ `1(Zd )
is the standard criterion for stability in the theory of discrete-time linear systems
[OSB99, Lat98]. It is necessary and sufficient for BIBO stability (p = ∞) and for the
preservation of absolute summability (p = 1). Wiener’s stated his famous lemma in
1932 [Wie32, Lemma IIe]. Other relevant references are [New75, Sun07].



6 Splines and wavelets

A fundamental aspect of our formulation is that the whitening operator L is nat-
urally tied to some underlying B-spline function, which will play a crucial role in the
sequel. The spline connection also provides a strong link with wavelets [UB03].

In this chapter, we review the foundations of spline theory and show how one can
construct B-spline basis functions and wavelets that are tied to some specific oper-
ator L. The chapter starts with a gentle introduction to wavelets that exploits the
analogy with Legos blocks. This naturally leads to the formulation of a multiresolu-
tion analysis of L2(R) using piecewise-constant functions and a de visu identification
of Haar wavelets. We then proceed in Section 6.2 with a formal definition of our gen-
eralized brand of splines—the cardinal L-splines—followed by a detailed discussion
of the fundamental notion of Riesz basis. In Section 6.3, we systematically cover the
first-order operators with the construction of exponential B-splines and wavelets,
which have the convenient property of being orthogonal. We then address the the-
ory in its full generality and present two generic methods for constructing B-spline
basis functions (Section 6.4) and semi-orthogonal wavelets (Section 6.5). The pleas-
ing aspect is that these results apply to the whole class of shift-invariant differential
operators L whose null space is finite-dimensional (possibly trivial), which are pre-
cisely those that can be safely inverted to specify sparse stochastic processes.

6.1 From Legos to wavelets

It is instructive to get back to our introductory example of piecewise-contant splines
in Chapter 1 (§1.3) and to show how these are naturally connected to wavelets. The
fundamental idea in wavelet theory is to construct a series of fine-to-coarse approx-
imations of a function s(r ) and to exploit the structure of the multiresolution approx-
imation errors, which are orthogonal across scale. Here, we shall consider a series
of approximating signals {si }i∈Z, where si is a piecewise-constant spline with knots
positioned on 2iZ. These multiresolution splines are represented by their B-spline
expansion

si (r ) =
∑

k∈Z
ci [k]φi ,k (r ), (6.1)
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where the B-spline basis functions (rectangles) are dilated versions of the cardinal
ones by a factor of 2i

φi ,k (r ) =β0
+

(
r −2i k

2i

)
=

{
1, for r ∈ [

2i k,2i (k +1)
)

0, otherwise.
(6.2)

The variable i is the scale index that specifies the resolution (or knot spacing) a = 2i ,
while the integer k encodes for the spatial location. The B-spline of degree 0, φ =
φ0,0 = β0

+, is the scaling function of the representation. Interestingly, it is the iden-
tification of a proper scaling function that constitutes the most fundamental step in
the construction of a wavelet basis of L2(R).

D E FI N I T I O N 6.1 (Scaling function) φ ∈ L2(R) is a valid scaling function if and only
if it satisfies the following three properties:

– Two-scale relation

φ(r /2) =
∑

k∈Z
h[k]φ(r −k), (6.3)

where the sequence h ∈ `1(Z) is the so-called refinement mask.
– Partition of unity

∑

k∈Z
φ(r −k) = 1 (6.4)

– The set of functions {φ(·−k)}k∈Z forms a Riesz basis.

In practice, a given brand of (orthogonal) wavelets (e.g., Daubechies or splines)
is often summarized by its refinement filter h since the latter uniquely specifies φ,
subject to the admissibility constraints (6.4) andφ ∈ L2(R). In the case of the B-spline
of degree 0, we have that h[k] = δ[k]+δ[k −1], where

δ[k] =
{

1, for k = 0
0, otherwise

is the discrete Kronecker impulse. This translates into what we jokingly refer to as
the Lego-Duplo relation 1

β0
+(r /2) =β0

+(r )+β0
+(r −1). (6.5)

The fact that β0
+ satisfies the partition of unity is obvious. Likewise, we already ob-

served in Chapter 1 that β0
+ generates an orthogonal system which is a special case

of a Riesz basis.
By considering the rescaled version of such a basis, we specify the subspace of

splines at scale i as

Vi =
{

si (r ) =
∑

k∈Z
ci [k]φi ,k (r ) : ci ∈ `2(Z)

}
⊂ L2(R)

1. The Duplos are the larger-scale versions of the Lego building blocks and are more suitable for smal-
ler children to play with. The main point of the analogy with wavelets is that Legos and Duplos are com-
patible; they can be combined to build more complex shapes. The enabling property is that a Duplo is
equivalent to two smaller Legos placed next to each other, as expressed by (6.5)
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Figure 6.1 Multiresolution signal analysis using piecewise-constant splines with a dyadic
scale progression. Left: multiresolution pyramid. Right: error signals between two successive
levels of the pyramid.

which, in our example, contains all the finite-energy functions that are piecewise-
constant on the intervals

[
2i k,2i (k +1)

)
with k ∈ Z. The two-scale relation (6.3) im-

plies that the basis functions at scale i = 1 are contained in V0 (the original space
of cardinal splines) and, by extension, in Vi for i ≤ 0. This translates into the gen-
eral inclusion property Vi ′ ⊂ Vi for any i ′ > i , which is fundamental to the theory.
A subtler point is that the closure of

⋃
i∈ZVi is equal to L2(R), which follows from

the fact that any finite-energy function can be approximated arbitrarily well by a
piecewise-constant spline when the sampling step 2i tends to zero (i → −∞). The
necessary and sufficient condition for this asymptotic convergence is the partition
of unity (6.4), which ensures that the representation is complete.

Having set the notation and specified the underlying hierarchy of function spaces,
we now proceed with the multiresolution approximation procedure starting from the
fine-scale signal s0(x), as illustrated in Figure 6.1. Given the sequence c0[·] of fine-
scale coefficients, our task is to construct the best spline approximation at scale 1
which is specified by its B-spline coefficients c1[·] in (6.1) with i = 1. It is easy to see
that the minimum-error solution (orthogonal projection of s0 onto V1) is obtained by
taking the mean of two consecutive samples. The procedure is then repeated at the
next coarser scale and so forth until one reaches the bottom of the pyramid, as shown
on the left-hand side of Figure 6.1. The description of this coarsening algorithm is

ci [k] = 1

2
ci−1[2k]+ 1

2
ci−1[2k +1] = (

ci−1 ∗ h̃
)
[2k]. (6.6)
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It is run recursively for i = 1, . . . , imax where imax denotes the bottom level of the pyr-
amid. The outcome is a multiresolution analysis of our input signal s0.

In order to uncover the wavelets, it is enlightening to look at the residual signals
ri (r ) = si−1(r )− si (r ) ∈ Vi−1 on the right of Figure 6.1. While these are splines that
live at the same resolution as si−1, they actually have half the apparent degrees of
freedom. These error signals exhibit a striking sign-alternation pattern due to the
fact that two consecutive samples (ci−1[2k],ci−1[2k + 1]) are at an equal distance
from their mean value (ci [k]). This suggests rewriting the residuals more concisely in
terms of oscillating basis functions (wavelets) at scale i , like

ri (r ) = si−1(r )− si (r ) =
∑

k∈Z
di [k]ψi ,k (r ), (6.7)

where the (non-normalized) Haar wavelets are given by

ψi ,k (r ) =ψHaar

(
r −2i k

2i

)

with the Haar wavelet being defined by (1.19). The wavelet coefficients di [·] are given
by the consecutive half differences

di [k] = 1

2
ci−1[2k]− 1

2
ci−1[2k +1] = (

ci−1 ∗ g̃
)
[2k]. (6.8)

More generally, since the wavelet template at scale i = 1, ψ1,0 ∈V0, we can write

ψ(r /2) =
∑

k∈Z
g [k]φ(r −k) (6.9)

which is the wavelet counterpart of the two-scale relation (6.3). In the present ex-
ample, we have g [k] = (−1)k h[k], which is a general relation that is characteristic of
an orthogonal design. Likewise, in order to gain in generality, we have chosen to ex-
press the decomposition algorithms (6.6) and (6.8) in terms of discrete convolution
(filtering) and downsampling operations where the corresponding Haar analysis fil-
ters are h̃[k] = 1

2 h[−k] and g̃ [k] = 1
2 (−1)k h[−k]. The Hilbert-space interpretation of

this approximation process is that ri ∈ Wi , where Wi is the orthogonal complement
of Vi in Vi−1; that is, Vi−1 =Vi +Wi with Vi ⊥Wi (as a consequence of the orthogonal-
projection theorem).

Finally, we can close the loop by observing that

s0(r ) = simax (r )+
imax∑

i=1

(
si−1(r )− si (r )︸ ︷︷ ︸

ri (r )

)

=
∑

k∈Z
cimax [k]φimax,k (r )+

imax∑

i=1

∑

k∈Z
di [k]ψi ,k (r ), (6.10)

which provides an equivalent, one-to-one representation of the signal in an ortho-
gonal wavelet basis, as illustrated in Figure 6.2.
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Wavelets: Haar transform revisited
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Figure 6.2 Decomposition of a signal into orthogonal scale components. The error signals
ri = si−1 − si between two successive signal approximations are expanded using a series of
properly scaled wavelets.

More generally, we can push the argument to the limit and apply the decomposi-
tion to any finite-energy function

∀s ∈ L2(R), s =
∑

i∈Z

∑

k∈Z
di [k]ψi ,k , (6.11)

where di [k] = 〈s,ψ̃i ,k〉L2 and {ψ̃i ,k }(i ,k)∈Z2 is a suitable (bi-)orthogonal wavelet basis
with the property that 〈ψ̃i ,k ,ψi ′,k ′〉L2 = δk−k ′,i−i ′ .

Remarkably, the whole process described above—except the central expressions in
(6.6) and (6.8), and the equations explicitly involving β0

+—is completely generic and
applicable to any other wavelet basis of L2(R) that is specified in terms of a wavelet
filter g and a scaling function φ (or, equivalently, an admissible refinement filter h).
The bottom line is that the wavelet decomposition and reconstruction algorithm is
fully described by the four digital filters (h, g , h̃, g̃ ) that form a perfect reconstruction
filterbank. The Haar transform is associated with the shortest-possible filters. Its less
favorable aspects are that the basis functions are discontinuous and that the scale-
truncated error decays only like the first power of the sampling step a = 2i (first order
of approximation).

The fundamental point of our formulation is that the Haar wavelet is matched to
the pure derivative operator D = d

dr , which goes hand in hand with Lévy processes
(see Chapter 1). In that respect, the critical observations relating to spline and wave-
let theory are as follows:

– all piecewise-constant functions can be interpreted as D-splines;
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– the Haar wavelet acts as a smoothed version of the derivative in the sense that
ΨHaar = Dφ, where φ is an appropriate kernel (triangle function);

– the B-spline of degree 0 can be expressed asβ0
+ =βD = DdD−1δ, where the finite-

difference operator Dd is the discrete counterpart of D.
We shall now show how these ideas are extendable to a much broader class of differ-
ential operators L.

6.2 Basic concepts and definitions

6.2.1 Spline-admissible operators

Let L : S (Rd ) → S ′(Rd ) be a generic Fourier-multiplier operator with frequency
response L̂(ω). We further assume that L has a continuous extension L : X (Rd ) →
S ′(Rd ) to some larger space of functions X (Rd ) with S (Rd ) ⊂X (Rd ).

The null space of L is denoted by NL and defined as

NL = {p0(r ) : Lp0(r ) = 0}.

The immediate consequence of L being LSI is that NL is shift-invariant as well, in the
sense that p0(r ) ∈ NL ⇔ p0(r − r0) ∈ NL for any r0 ∈ Rd . We shall use this property
to argue that NL generally consists of generalized functions whose Fourier trans-
forms are point distributions. In the space domain, they correspond to modulated
polynomials, which are linear combinations of exponential monomials of the form
ej〈ω0,r 〉r n withω0 ∈Rd and multi-index n = (n1, . . . ,nd ) ∈Nd . It actually turns out that
the existence of a single such element in NL has direct implications on the structure
and dimensionality of the underlying function space.

P R O P O S I T I O N 6.1 (Characterization of null space) If L is LSI and pn (r ) = e〈z0,r 〉r n ∈
NL with z0 ∈ Cd , then NL does necessarily include all exponential monomials of the
form pm (r ) = e〈z0,r 〉r m with m ≤ n. In addition, if NL is finite-dimensional, it can
only consist of atoms of that particular form.

Proof The LSI property implies that pn (r − r0) ∈ NL for any r0 ∈ Rd . To make our
point about the inclusion of the lower-order exponential polynomials in NL, we start
by expanding the scalar term (ri − r0,i )ni as

(ri − r0,i )ni =
ni∑

m=0

(
ni

m

)
r m

i (−1)ni−mr ni−m
0,i =

∑

m+k=ni

ni !

m! k !
(−1)k r m

i r k
0,i .

By proceeding in a similar manner with the other monomials and combining the
results, we find that

(r − r0)n =
∑

m+k=n

n!

m! k !
(−1)|k | r m r k

0

=
∑

m≤n
bm (r0)r m

with polynomial coefficients bm (r0) that depend upon the multi-index m and the
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shift r0. Finally, we note that the exponential factor e〈z0,r 〉 can be shifted by r0 by
simple multiplication with a constant (see (6.12) below). These facts taken together
establish the structure of the underlying vector space. As for the last statement, we
rely on the theory of Lie group that tells us that the only finite-dimensional collec-
tion of functions that are translation-invariant is made of exponential polynomials.
The pure exponentials e〈z0,r 〉 (with n = 0) are special in that respect: They are the
eigenfunctions of the shift operator in the sense that

e〈z0,r−r0〉 =λ(r0) e〈z0,r 〉 (6.12)

with the (complex) eigenvalue λ(r0) = e〈z0,r0〉, and hence the only elements that spe-
cify shift-invariant subspaces of dimension 1.

Since our formulation relies on the theory of generalized functions, we shall focus
on the restriction of NL to S ′(Rd ). This rules out the exponential factors z0 =α0+jω0

in Proposition 6.1 with α0 ∈ Rd \ {0} for which the Fourier-multiplier operator is not
necessarily well-defined. We are then left with null-space atoms of the form ej〈ω0,r 〉r n

withω0 ∈Rd , which are functions of slow growth.

The next important ingredient is the Green’s function ρL of the operator L. Its de-
fining property is LρL = δ, where δ is the d-dimensional Dirac distribution. Since
there are many equivalent Green’s functions of the form ρL + p0 where p0 ∈ NL is
an arbitrary component of the null space, we resolve the ambiguity by defining the
(primary) Green’s function of L as

ρL(r ) =F−1
{

1

L̂(ω)

}
(r ), (6.13)

with the requirement that ρL ∈ S ′(Rd ) is an ordinary function of slow growth. In
other words, we want ρL(r ) to be defined pointwise for any r ∈ Rd and to grow no
faster than a polynomial. The existence of the generalized inverse Fourier transform
(6.13) imposes some minimal continuity and decay conditions on 1/L̂(ω) and also
puts some restrictions on the number and nature of its singularities

(
e.g., the zeros

of L̂(ω)
)
.

D E FI N I T I O N 6.2 (Spline admissibility) The Fourier-multiplier operator L : X (Rd ) →
S ′(Rd ) with frequency response L̂(ω) is called spline admissible if (6.13) is well-defined
and ρL(r ) is an ordinary function of slow growth.

An important characteristic of spline-admissible operators is the rate of growth of
their frequency response at infinity.

D E FI N I T I O N 6.3 (Order of a Fourier multiplier) The Fourier-multiplier L̂(ω) is of
(asymptotic) order γ ∈R+ if there exists a radius R ∈R+ and a constant C such that

C |ω|γ ≤ |L̂(ω)| (6.14)

for all |ω| ≥ R where γ is critical in the sense that the condition fails for any larger
value.
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The order is in direct relation with the degree of smoothness of the Green’s function
ρL. In the case of a scale-invariant operator, it also coincides with the scaling order
(or degree of homogeneity) of L̂(ω). For instance, the fractional derivative operator
Dγ, which is defined via the Fourier multiplier (jω)γ, is of order γ. Its Green’s function
is given by (see Table A.1 in Appendix A)

ρDγ (r ) =F−1
{

1

(jω)γ

}
(r ) = r γ−1

+
Γ(γ)

, (6.15)

whereΓ is Euler’s gamma function (see Appendix C.2) and r γ−1
+ = max(0,r γ−1). Clearly,

the latter is a function of slow growth. It a has single singularity at the origin whose
Hölder exponent is (γ−1), and is infinitely differentiable everywhere else. It follows
that ρDγ is uniformly Hölder-continuous of degree (γ−1). This is one less than the
order of the operator. On the other hand, the null space of Dγ consists of the poly-
nomials of degree N = dγ−1e since dn (jω)γ

dωn ∝ (jω)γ−n is vanishing at the origin up to
order N with (γ−1) ≤ N < γ (see argumentation in Section 6.4.1).

A fundamental result is that all partial differential operators with constant coeffi-
cients are spline-admissible. This follows from the Malgrange-Ehrenpreis theorem
which guarantees the existence of their Green’s function [Mal56,Wag09]. The generic
form of such operators is

LN =
∑

|n|<N
an∂

n

with an ∈ Rd , where ∂n is the multi-index notation for ∂n1+···+nd

∂r
n1
1 ··· ∂r

nd
d

. The correspond-

ing Fourier multiplier is L̂N (ω) = ∑
|n|<N an j|n|ωn , which is a polynomial of degree

N = |n|. The operator is elliptic if L̂N (ω) vanishes at the origin and nowhere else.
More generally, it is called quasi-elliptic of order γ if L̂N (ω) fulfills the growth con-
dition in Definition 6.3. For d = 1, it is fairly easy to determine ρL using standard
Fourier-inversion techniques (see Chapter 5). Moreover, the condition for quasi-
ellipticity of order N is automatically satisfied. When moving to higher dimensions,
the study of partial differential operators and the determination of their Green’s func-
tion becomes more challenging because of the absence of a general multidimen-
sional factorization mechanism. Yet, it is possible to treat special cases in full gen-
erality such as the scale-invariant operators (with homogeneous, but not necessarily
rotation-invariant, Fourier multipliers), or the class of rotation-invariant operators
that are polynomials of the Laplacian (−∆).

6.2.2 Splines and operators

The foundation of our formulation is the direct correspondence between a spline-
admissible operator L and a particular brand of splines.

D E FI N I T I O N 6.4 (Cardinal L-spline) A function s(r ) (possibly of slow growth) is
called a cardinal L-spline if and only if

Ls(r ) =
∑

k∈Zd

a[k]δ(r −k).
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The location of the Dirac impulses specifies the spline discontinuities (or knots).
The term “cardinal” refers to the particular setting where these are located on the
Cartesian grid Zd .

The remarkable aspect in this definition is that the operator L has the role of a
mathematical A-to-D converter since it maps a continuously defined signal s into a
discrete sequence a = (a[k]). Also note that the weighted sum of Dirac impulses in
the r.h.s. of the above equation can be interpreted as the continuous-domain repres-
entation of the discrete signal a—it is a hybrid-type representation that is commonly
used in the theory of linear systems to model ideal sampling (multiplication with a
train of Dirac impulses).

The underlying concept of spline is fairly general and it naturally extends to nonuni-
form grids.

D E FI N I T I O N 6.5 (Nonuninorm spline) Let {rk }k∈S be a set of points (not necessarily
finite) that specifies a (nonuniform) grid in Rd . Then, a function s(r ) (possibly of
slow growth) is a nonuniform L-spline with knots {rk }k∈S if and only if

Ls(r ) =
∑

k∈S
akδ(r − rk ).

The direct implication of this definition is that a (nonuniform) L-spline with knots
{rk } can generally be expressed as

s(r ) = p0(r )+
∑

k∈S
akρL(r − rk ), (6.16)

where ρL = L−1δ is the Green’s function of L and p0 ∈NL is an appropriate null-space
component that is typically selected to fulfill some boundary conditions.

In the case where the grid is uniform, it is usually more convenient to express
splines in terms of localized B-spline functions which are shifted replicates of a simple
template βL, or some other equivalent generator. An important requirement is that
the set of B-spline functions constitutes a Riesz basis.

6.2.3 Riesz bases

To quote Ingrid Daubechies [Dau92], a Riesz basis is the next best thing after an
orthogonal basis. The reason for not enforcing orthogonality is to leave more room
for other desirable features such as simplicity of the construction, maximum loc-
alization of the basis function (e.g., compact support), and, last but not least, fast
computational solutions.

D E FI N I T I O N 6.6 (Riesz basis) A sequence of functions {φk (r )}k∈Z in L2(Rd ) forms a
Riesz basis if and only if there exist two constants A and B such that

A‖c‖`2 ≤ ‖
∑

k∈Z
ckφk (r )‖L2(Rd ) ≤ B‖c‖`2

for any sequence c = (ck ) ∈ `2. More generally, the basis is Lp -stable if there exist two
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constants Ap and Bp such that

Ap‖c‖`p ≤ ‖
∑

k∈Z
ckφk (r )‖Lp (Rd ) ≤ Bp‖c‖`p .

This definition imposes an equivalence between the L2 (Lp , resp.) norm of the
continuously defined function s(r ) = ∑

k∈Z ckφk (r ) and the `2 (`p , resp.) norm of
its expansion coefficients (ck ). This ensures that the representation is stable in the
sense that a small perturbation of the expansion coefficients results in a perturbation
of comparable magnitude on s(r ) and vice versa. Also note that the lower inequality
implies that the functions {φk } are linearly independent (by setting s(r ) = 0), which
is the defining property of a basis in finite dimensions—but which, on its own, does
not ensure stability in infinite dimensions. When A = B = 1, we have a perfect norm
equivalence which translates into the basis being orthonormal (Parseval’s relation).
Finally, we like to point out that the the existence of the bounds A and B ensures that
the (infinite) Gram matrix is positive-definite so that it can be readily diagonalized to
yield an equivalent orthogonal basis.

In the (multi-)integer shift-invariant case where the basis functions are given by
φk (r ) =φ(r −k),k ∈Zd , there is a simpler equivalent reformulation of the Riesz basis
requirement of Definition 6.6.

T H E O R E M 6.2 Let φ(r ) ∈ L2(Rd ) be a B-spline-like generator whose Fourier trans-
form is denoted by φ̂(ω). Then, {φ(r −k)}k∈Zd forms a Riesz basis with Riesz bounds A
and B if and only if

0 < A2 ≤
∑

n∈Zd

|φ̂(ω+2πn)|2 ≤ B 2 <∞ (6.17)

for almost everyω. Moreover, the basis is Lp -stable for all 1 ≤ p ≤+∞ if, in addition,

sup
r∈[0,1]d

∑

k∈Zd

|φ(r −k)| = A2,∞ <+∞. (6.18)

Under such condition(s), the induced function space

Vφ =
{

s(r ) =
∑

k∈Zd

c[k]φ(r −k) : c ∈ `p (Zd )

}

is a closed subspace of Lp (Rd ), including the standard case p = 2.

Observe that the central quantity in (6.17) corresponds to the discrete-domain
Fourier transform of the Gram sequence aφ[k] = 〈φ(·−k),φ〉L2 . Indeed, we have that

Aφ(ejω) =
∑

k∈Zd

aφ[k]e−j〈ω,k〉 =
∑

n∈Zd

|φ̂(ω+2πn)|2 (6.19)

where the r.h.s. follows from Poisson’s summation formula applied to the sampling at
the integers of the autocorrelation function (φ

∨ ∗φ)(r ). Formula (6.19) is especially
advantageous in the case of compactly supported B-splines for which the autocorrel-
ation is often known explicitly (as a B-spline of twice the order) since it reduces the
calculation to a finite sum over the support of the Gram sequence (discrete-domain
Fourier transform).
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Theorem 6.2 is a fundamental result in sampling and approximation theory [Uns00].
It is instructive here to briefly run through the L2 part of the proof which also serves
as a refresher on some of the standard properties of the Fourier transform. In par-
ticular, we like to emphasize the interaction between the continuous and discrete
aspects of the problem.

Proof We start by computing the Fourier transform of s(r ) = ∑
k∈Zd c[k]φ(r − k),

which gives

F {s}(ω) =
∑

k∈Zd

c[k] e−j〈ω,k〉φ̂(ω) (by linearity and shift property)

=C (ejω) · φ̂(ω),

where C (ejω) is recognized as the discrete-domain Fourier transform of c[·]. Next, we
invoke Parseval’s identity and manipulate the Fourier-domain integral as follows

‖s‖2
L2

=
∫

Rd

∣∣C (ejω)
∣∣2 ∣∣φ̂(ω)

∣∣2 dω

(2π)d

=
∑

n∈Zd

∫

[0,2π]d

∣∣C (ej(ω+2πn))
∣∣2 ∣∣φ̂(ω+2πn)

∣∣2 dω

(2π)d

=
∫

[0,2π]d

∣∣C (ejω)
∣∣2 ∑

n∈Zd

∣∣φ̂(ω+2πn)
∣∣2 dω

(2π)d

=
∫

[0,2π]d

∣∣C (ejω)
∣∣2

Aφ(ejω)
dω

(2π)d
.

There, we have used the fact that C (ejω) is 2π-periodic and the nonnegativity of the
integrand to interchange the summation and the integral (Fubini). This naturally
leads to the inequality

inf
ω∈[0,2π]d

Aφ(ejω) · ‖c‖2
`2

≤ ‖s‖2
L2

≤ sup
ω∈[0,2π]d

Aφ(ejω) · ‖c‖2
`2

where we are now making use of Parseval’s identity for sequences, so that

‖c‖2
`2

=
∫

[0,2π]d

∣∣C (ej(ω)
∣∣2 dω

(2π)d
.

The final step is to show that these bounds are sharp. This can be accomplished
through the choice of some particular (bandlimited) sequence c[·].

Note that the almost everywhere part of (6.17) can be dropped when φ ∈ L1(Rd )
because the Fourier transform of such a function is continuous (Riemman-Lebesgue
Lemma).

While the result of Theorem 6.2 is restricted to the classical Lp spaces, there is
no fundamental difficulty in extending it to wider classes of weighted (with negative
powers) Lp spaces by imposing some stricter condition than (6.18) on the decay of
φ. For instance, if φ has exponential decay, then the definition of the function space
Vφ can be extended for all sequences c that are growing no faster than a polynomial.
This happens to be the appropriate framework for sampling generalized stochastic
processes which do not live in the Lp spaces since they are not decaying at infinity.
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6.2.4 Admissible wavelets

The other important tool for analyzing stochastic processes is the wavelet trans-
form whose basis functions must be “tuned” to the object under investigation.

D E FI N I T I O N 6.7 A wavelet function ψ is called L-admissible if it can be expressed
as ψ= LHφ with φ ∈ L1(Rd ).

Observe that we are now considering the Hermitian transpose operator LH = L
∗

which is distinct from the adjoint operator L∗ when the impulse response has some
imaginary component. The reason for this is that the wavelet-analysis step involves
a Hermitian inner product 〈·, ·〉L2 whose definition differs by a complex conjuga-
tion from that of the distributional scalar product 〈·, ·〉 used in our formulation of
stochastic processes when the second argument is complex valued; specifically, 〈 f , g 〉L2 =
〈 f , g 〉 = ∫

Rd f (r )g (r ) dr .
The best matched wavelet is the one for which the wavelet kernel φ is the most

localized—ideally, the shortest-possible support assuming that it is at all possible to
construct a compactly-supported wavelet basis. The very least is that φ should be
concentrated around the origin and exhibit a sufficient rate of decay; for instance,
|φ(r )| ≤ C

1+‖r ‖α for some α> d .
A direct implication of Definition 6.7 is that the wavelet ψ will annihilate all the

components (e.g., polynomials) that are in the null space of L because 〈ψ(·−r0), p0〉 =
〈φ(· − r0),Lp0〉 = 0, for all p0 ∈ NL and r0 ∈ Rd . In conventional wavelet theory, this
behavior is achieved by designing “N th-derivative-like” wavelets with vanishing mo-
ments up to polynomial degree N −1.

6.3 First-order exponential B-splines and wavelets

Rather than aiming for the highest level of generality right away, we propose to first
examine the 1-D first-order scenario in some detail. First-order differential models
are important theoretically because they go hand in hand with the Markov property.
In that respect, they constitute the next level of generalization just beyond the Lévy
processes. Mathematically, the situation is still quite comparable to that of the deriv-
ative operator in the sense that it leads to a nice and self-contained construction of
(exponential) B-splines and wavelets. The interesting aspect, though, is that the un-
derlying basis functions are no longer conventional wavelets that are dilated versions
of a single prototype: they now fall into the lesser-known category of non-stationary 2

wavelets.
The (causal) Green’s function of our canonical first-order operator Pα = (D−αId) is

identical to the impulse response ρα of the corresponding differential system, while
the (one-dimensional) null space of the operator is given by Nα = {a0eαr : a0 ∈ R}.

2. In the terminology of wavelets, the term “non-stationary” refers to the property that the shape of the
wavelet changes with scale, but not with respect to the location, as the more usual statistical meaning of
the term would suggest.
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(a) Green functions (c) Interpolators

(b) B-splines (d) Wavelets
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1

Figure 6.3 Comparison of basis functions related to the first-order differential operator
Pα = D−αI for α= 0,−1,−2,−4 (dark to light). (a) Green’s functions ρα(r ). (b) Exponential
B-splines βα(r ) (c) Augmented spline interpolators ϕint(r ). (d) Orthonormalized versions of
the exponential spline wavelets ψα(r ) = P∗

αϕint(r ).

Some examples of such Green’s functions are shown in Figure 6.3. The case α = 0
(dark curve) is the classical one already treated in Section 6.1.

6.3.1 B-spline construction

The natural discrete approximation of the differential operator Pα = (D−αId) is
the first-order weighted difference operator

∆αs(r ) = s(r )−eαs(r −1). (6.20)

Observe that ∆α annihilates the exponentials a0eαr so that its null space includes
Nα. The corresponding B-spline is obtained by applying ∆α to ρα, which yields

βα(r ) =F−1
{

1−eαe−jω

jω−α

}
(r ) =

{
eαr , for 0 ≤ r < 1

0, otherwise.
(6.21)

In effect, the localization by∆α results in a “chopped off” version of the causal Green’s
function that is restricted to the interval [0,1) (see Figure 6.3b). Importantly, the
scheme remains applicable in the unstable scenario Re(α) ≥ 0. It always results in
a well-defined Fourier transform due to the convenient pole-zero cancellation in the
central expression of (6.21). The marginally unstable case α = 0 results in the rect-
angular function shown in red in Figure 6.3, which is the standard basis function for
representing piecewise-constant signals. Likewise, βα generates an orthogonal basis
for the space of cardinal Pα-splines in accordance with Definition 6.4. This allows us
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to specify our prototypical exponential spline space as V0 = span{βα(· −k)}k∈Z with
knot spacing 20 = 1.

6.3.2 Interpolator in augmented-order spline space

The second important ingredient is the interpolator for the “augmented-order”
spline space generated by the autocorrelation (β

∨
α∗βα)(r ) of the B-spline. Construct-

ing it is especially easy in the first-order case because it involves the simple normal-
ization

ϕint,α(r ) = 1

(β
∨
α ∗βα)(0)

(β
∨
α ∗βα)(r ) (6.22)

Specifically,ϕint,α is the unique cardinal PH
α Pα-spline function that vanishes at all the

integers except at the origin where it takes the value one (see Figure 6.3c). Its classical
use is to provide a sinc-like kernel for the representation of the corresponding family
of splines, and also for the reconstruction of spline-related signals, including special
brands of stochastic processes, from their integer samples [UB05b]. Another remark-
able and lesser known property is that this function provides the proper smoothing
kernel for defining an operator-like wavelet basis.

6.3.3 Differential wavelets

In the generalized spline framework, instead of specifying a hierarchy of multiresol-
ution subspaces of L2(R) (the space of finite-energy functions) via the dilation of a
scaling function, one considers the fine-to-coarse sequence of L-spline spaces

Vi = {s(r ) ∈ L2(R) : Ls(r ) =
∑

k∈Z
ai [k]δ(r −2i k)},

where the embedding Vi ⊇V j for i ≤ j is obvious from the (dyadic) hierarchy of spline
knots, so that s j ∈V j implies that s j ∈Vi with an appropriate subset of its coefficients
ai [k] being zero.

We now detail the construction of a wavelet basis at resolution 1 such that W1 =
span{ψ1,k }k∈Z with W1 ⊥ V1 and V1 +W1 = V0 = span{βα(· −k)}k∈Z. The recipe is to
take ψ1,k (r ) =ψα(r −1−2k)/‖ψα‖L2 where ψα is the mother wavelet given by

ψα(r ) = PH
αϕint,α(r ) ∝∆H

α βα(r ).

There, ∆H
α is the Hermitian adjoint of the finite-difference operator ∆α. Examples

of such exponential-spline wavelets are shown in Figure 6.3d, including the classical
Haar wavelet (up to a sign change) which is obtained for α= 0 (red curve). The basis
functions ψ1,k are shifted versions of ψα that are centered at the odd integers and
normalized to have a unit norm. Since these wavelets are non-overlapping, they form
an orthonormal basis. Moreover, the basis is orthogonal to the coarser spline space
V1 as a direct consequence of the interpolating property of ϕint,α (Proposition 6.6 in
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Section 6.5). Finally, based on fact thatψ1,k ∈V0 for all k ∈Z, one can show that these
wavelets span W1, which translates into

W1 =
{

v(r ) =
∑

k∈Z
v1[k]ψ1,k (r ) : v1 ∈ `2(Z)

}
.

This method of construction extends to the other wavelet subspaces Wi provided
that the interpolating kernel ϕint,α is substituted by its proper counterpart at resol-
ution a = 2i−1 and the sampling grid adjusted accordingly. Ultimately, this results
in a wavelet basis of L2(R) whose members are all Pα-splines—that is, piecewise-
exponential with parameter α—but not dilates of the same prototype unless α = 0.
Otherwise, the corresponding decomposition is not fundamentally different from a
conventional wavelet expansion. The basis functions are equally well localized and
the scheme admits the same type of fast reversible filterbank algorithm, albeit with
scale-dependent filters [KU06].

6.4 Generalized B-spline basis

The procedure of Section 6.3.1 remains applicable for the broad class of spline-
admissible operators (see Definition 6.2) in one or multiple dimensions. The two
ingredients for constructing a generalized B-spline basis are: 1) the knowledge of the
Green’s function ρL of the operator L, and 2) the availability of a discrete approxima-
tion (finite-difference-like) of the operator of the form

Lds(r ) =
∑

k∈Zd

dL[k]s(r −k) (6.23)

with dL ∈ `1(Zd ) that fulfills the null-space matching constraint 3

Ldp0(r ) = Lp0(r ) = 0 for all p0 ∈NL. (6.24)

The generalized B-spline associated with the operator L is then given by

βL(r ) = LdρL(r ) =F−1

{∑
k∈Zd dL[k]e−j〈k ,ω〉

L̂(ω)

}
(r ), (6.25)

where the numerator and denominator in the r.h.s. expression correspond to the fre-
quency responses of Ld and L, respectively. The null-space matching constraint is
especially helpful for the unstable cases where ρL ∉ L1(Rd ): it ensures that the zeros
of L̂(ω) (singularities) are cancelled by some corresponding zeros of L̂d(ω) so that the
Fourier transform of βL remains bounded.

D E FI N I T I O N 6.8 The function βL specified by (6.25) is an admissible B-spline for L
if and only if 1) βL ∈ L1(Rd )∩L2(Rd ), and 2) it generates a Riesz basis of the space of
cardinal L-splines.

3. We want the null space of Ld to include NL and to remain the smallest possible. In that respect,
it is worth noting that the null space of a discrete operator will always be much larger than that of its
continuous-domain counterpart. For instance, the derivative operator D suppresses constant signals,
while its finite-difference counterpart annihilates all 1-periodic functions, including the constants.
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In light of Theorem 6.2, the latter property requires the existence of the two Riesz
bounds A and B such that

0 < A2 ≤
∑

n∈Zd

|β̂L(ω+2πn)|2 =
∣∣∑

k∈Zd dL[k]e−j〈k ,ω〉∣∣2

∑
n∈Zd |L̂(ω+2πn)|2

≤ B 2. (6.26)

A direct consequence of (6.25) is that

LβL(r ) =
∑

k∈Zd

dL[k]δ(r −k) (6.27)

so that βL is itself a cardinal L-spline in accordance with Definition 6.4. The bottom
line in Definition 6.8 is that any cardinal L-spline admits a unique representation in
the B-spline basis {βL(·−k)}k∈Zd as

s(r ) =
∑

k∈Zd

c[k]βL(r −k) (6.28)

where the c[k] are the B-spline coefficients of s.
While (6.25) provides us with a nice recipe for constructing B-splines, it does not

guarantee that the Riesz-basis condition (6.26) is satisfied. This needs to be estab-
lished on a case-by-case basis. The good news for the present theory of stochastic
processes is that B-splines are available for virtually all the operators that have been
discussed so far.

6.4.1 B-spline properties

To motivate the use of B-splines, we shall first restrict our attention to the space VL

of cardinal L-splines with finite energy, which is formally defined as

VL =
{

s(r ) ∈ L2(Rd ) : s(r ) =
∑

k∈Zd

a[k]δ(r −k)

}
. (6.29)

The foundation of spline theory is that there are two complementary ways of rep-
resenting splines using different types of basis functions: Green’s functions versus
B-splines. The first representation follows directly from the Definition 6.4

(
see also

(6.16)
)

and is given by

s(r ) = p0(r )+
∑

k∈Zd

a[k]ρL(r −k), (6.30)

where p0 ∈NL is a suitable element of the null space of L and where ρL = L−1δ is the
Green’s function of the operator. The functions ρL(· −k) are nonlocal and very far
from being orthogonal. In many cases, they are not even part of VL, which raises fun-
damental issues concerning the L2 convergence of the infinite sum 4 in (6.30) and the
conditions that must be imposed upon the expansion coefficients a[·]. The second
type of B-spline expansion (6.28) does not have such stability problems. This is the
primary reason why it is favored by practitioners.

4. Without further assumptions on ρL and a, (6.30) is only valid in the weak sense of distributions.
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Stable representation of cardinal L-splines
The equivalent B-spline specification of the space VL of cardinal splines is

VL =
{

s(r ) =
∑

k∈Zd

c[k]βL(r −k) : c[·] ∈ `2(Zd )

}
,

where the generalized B-spline βL satisfies the conditions in Definition 6.8. The
Riesz-basis property ensures that the representation is stable in the sense that, for
all s ∈VL, we have that

A‖c‖`2 ≤ ‖s‖L2 ≤ B‖c‖`2 . (6.31)

There, ‖c‖`2 =
(∑

k∈Zd |c[k]|2)
1
2 is the `2-norm of the B-spline coefficients c. The fact

that the underlying functions are cardinal L-splines is a simple consequence of the
atoms being splines themselves. Moreover, we can easily make the link with (6.30) by
using (6.27), which yields

Ls(r ) =
∑

k∈Zd

c[k]LβL(r −k) =
∑

k∈Zd

(c ∗dL)[k]︸ ︷︷ ︸
a[k]

δ(r −k).

The less obvious aspect, which is implicit in the definition of the B-spline, is the com-
pleteness of the representation in the sense that the B-spline basis spans the space VL

defined by (6.29). We shall establish this by showing that the B-splines are capable of
reproducing ρL as well as any component p0 ∈NL in the null space of L. The implic-
ation is that any function of the form (6.30) admits a unique expansion in a B-spline
basis. This is also true when the function is not in L2(Rd ), in which case the B-spline
coefficients c are no longer in `2(Zd ) due to the discrete-continuous norm equival-
ence (6.31).

Reproduction of Green’s functions
The reproduction of Green’s functions follows from the special form of (6.25). To

reveal it, we consider the inverse L−1
d of the discrete localization operator Ld specified

by (6.23), whose continuous-domain impulse response is written as

L−1
d δ(r ) =

∑

k∈Zd

p[k]δ(r −k) =F−1
{

1
∑

k∈Zd dL[k]e−j〈k ,ω〉

}
.

The sequence p, which can be determined by generalized inverse Fourier transform,
is of slow growth with the property that (p∗d)[k] = δ[k]. The Green’s function repro-
duction formula is then obtained by applying L−1

d to the B-spline βL and making use
of the left-inverse property of L−1

d . Thus,

L−1
d βL(r ) = L−1

d LdρL(r ) = ρL(r )

results into

ρL(r ) =
∑

k∈Zd

p[k]βL(r −k). (6.32)

To illustrate the concept, let us get back to our introductory example in Section in
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6.3.1 with L = Pα = (D−αId) where Re(α) < 0. The frequency response of this first-
order operator is

P̂α(ω) = jω−α,

while its Green’s function is given by

ρα(r ) =1+(r )eαr =F−1
{

1

jω−α

}
(r ).

On the discrete side of the picture, we have the finite-difference operator ∆α with

∆̂α(ω) = 1−eα−jω,

and its inverse ∆−1
α whose expansion coefficients are

pα[k] =1+[k]eαk =F−1
d

{
1

1−eαe−jω

}
[k],

where F−1
d denotes the discrete-domain inverse Fourier transform 5. The applica-

tion of (6.32) then yields the exponential-reproduction formula

1+(r )eαr =
∞∑

k=0
eαkβα(t −k) (6.33)

where βα is the exponential B-spline defined by (6.21). Note that the range of applic-
ability of (6.33) extends to Re(α) ≤ 0.

Reproduction of null-space components
A fundamental property of B-splines is their ability to reproduce the components

that are in the null space of their defining operator. In the case of our working ex-
ample, we can simply extrapolate (6.33) for negative indices, which yields

eαr =
∑

k∈Z
eαkβα(r −k).

It turns out that this reproduction property is induced by the matching null-space
constraint (6.24) that is imposed upon the localization filter. While the reproduction
of exponentials is interesting in its own right, we shall focus here on the important
case of polynomials and provide a detailed Fourier-based analysis. We start by recall-
ing that the general form of a multidimensional polynomial of total degree N is

qN (r ) =
∑

|n|≤N
an r n

using the multi-index notation with n = (n1, . . . ,nd ) ∈ Nd , r n = r n1
1 · · ·r nd

d , and |n| =
n1 + ·· · +nd . The generalized Fourier transform of qN ∈ S ′(Rd ) (see Table 3.3 and
entry r n f (r ) with f (r ) = 1) is given by

q̂N (ω) =
∑

|n|≤N
(2π)d an j|n|∂nδ(ω),

5. Our definition of the inverse discrete Fourier transform in 1-D is

F−1
d

{
H(ejω)

}
[k] = 1

2π

∫ π
−π H(ejω)ejωk dω with k ∈Z.
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where ∂nδ denotes the nth partial derivative of the multidimensional Dirac impulse
δ. Hence, the Fourier multiplier L̂ will annihilate the polynomials of order N if and
only if L̂(ω)∂nδ(ω) = 0 for all |n| ≤ N . To understand when this condition is met, we
expand L̂(ω)∂nδ(ω) in terms of ∂k L̂(0), |k | ≤ |n| by using the general product rule for
the manipulation of Dirac impulses and their derivatives given by

f (r ) ∂nδ(r − r0) =
∑

k+l=n

n!

k ! l !
(−1)|n|+|l |∂k f (r0) ∂lδ(r − r0).

The latter follows from Leibnitz’ rule for partially differentiating a product of func-
tions as

∂n ( f ϕ) =
∑

k+l=n

n!

k ! l !
∂k f ∂lϕ,

and the adjoint relation 〈ϕ, f ∂nδ(· − r0)〉 = 〈∂n∗( f ϕ),δ(· − r0)〉 with ∂n∗ = (−1)|n|∂n .
This allows us to conclude that the necessary and sufficient condition for the inclu-
sion of the polynomials of order N in the null space of L is

∂n L̂(0) = 0, for all n ∈ N d with |n| ≤ N , (6.34)

which is equivalent to L̂(ω) = O(‖ω‖N+1) around the origin. Note that this behavior
is prototypical of scale-invariant operators such as fractional derivatives and Lapla-
cians. The same condition has obviously to be imposed upon the localization filter
L̂d for the Fourier transform of the B-spline in (6.25) to be nonsingular at the origin.
Since L̂d(ω) is 2π-periodic, we have that

∂n L̂d(2πk) = 0, k ∈Zd ,n ∈Nd with |n| ≤ N . (6.35)

For practical convenience, we shall assume that the B-splineβL is normalized to have
a unit integral 6 so that β̂L(0) = 1. Based on (6.35) and β̂L(ω) = L̂d(ω)/L̂(ω), we find
that

{
β̂L(0) = 1,
∂n β̂L(2πk) = 0, k ∈Zd \{0},n ∈Nd with |n| ≤ N ,

(6.36)

which are the so-called Strang-Fix conditions of order N . Recalling that j|n|∂n β̂L(ω) is
the Fourier transform of r nβL(r ) and that periodization in the signal domain corres-
ponds to a sampling in the Fourier domain, we finally deduce that

∑

k∈Zd

(r −k)nβL(r −k) = j|n|∂n β̂L(0) =Cn , n ∈Nd with 0 < |n| ≤ N , (6.37)

with the implicit assumption that βL has a sufficient order of algebraic decay for the
above sums to be convergent. The special case of (6.37) with n = 0 reads

∑

k∈Zd

βL(r −k) = 1 (6.38)

6. This is always possible thanks to Condition (6.24), which ensures that β̂L(0) 6= 0 due to a proper
cancellation of poles and zeros in the r. h. s. of (6.25).
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and is called the partition of unity. It reflects the fact that βL reproduces the con-
stants. More generally, Condition (6.37)

(
or (6.36)

)
is equivalent to the existence of

sequences pn such that

r n =
∑

k∈Zd

pn [k]βL(r −k) for all |n| ≤ N , (6.39)

which is a more direct statement of the polynomial-reproduction property. For in-
stance, (6.37) with n = (1, . . . ,1) implies that

r

(
∑

k∈Zd

βL(r −k)

)

︸ ︷︷ ︸
p(0,...,0)=1

−
∑

k∈Zd

kβL(r −k) =C(1,...,1),

from which one deduces that p(1,...,1)[k] = k+C(1,...,1). The other sequences pn , which
are polynomials in k , may be determined in a similar fashion by proceeding recurs-
ively. Another equivalent way of stating the Strang-Fix conditions of order N is that
the sums

∑

k∈Zd

knβL(r −k) =
∑

l∈Zd

j|n| ∂n
ω

(
e−j〈ω,r 〉β̂L(−ω)

)∣∣
ω=2πl

are polynomials with leading term r n for all |n| ≤ N . The left-hand-side expression
follows from Poisson’s summation formula 7 applied to the function f (x) = xnβL(r −
x) with r being considered as a constant shift.

Localization
The guiding principle for designing B-splines is to produce basis functions that

are maximally localized on Rd . Ideally, B-splines should have the smallest possible
support which is the property that makes them so useful in applications. When it is
not possible to construct compactly supported basis functions, the B-spline should
at least be concentrated around the origin and satisfy some decay bound with the
tightest possible constants. The primary types of spatial localization, by order of
preference, are

1) Compact support: βL(r ) = 0 for all r ∉ Ω where Ω ⊂ Rd is a convex set with the
smallest-possible Lebesgue measure.

2) Exponential decay: |βL(r − r0)| ≤ C exp(−α|r |) for some r0 ∈ Rd and the largest-
possible α ∈R+.

3) Algebraic decay: |βL(r − r0)| ≤ C 1
1+‖r ‖α for some r0 ∈ Rd and the largest possible

α ∈R+.

By relying on the classical relations that link spatial decay to the smoothness of the
Fourier transform, one can get a good estimate of spatial decay based on the know-
ledge of the Fourier transform β̂L(ω) = L̂d(ω)/L̂(ω) of the B-spline. Since the loc-
alization filter L̂d(ω) acts by compensating the (potential) singularities of L̂(ω), the

7. The standard form of Poisson’s summation formula is
∑

k∈Zd f (k) =∑
l∈Zd f̂ (2πl ): It is valid for any

Fourier pair f , f̂ =F { f } ∈ L1(Rd ) with sufficient decay for the two sums to be convergent.
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guiding principle is that the rate of decay is essentially determined by the degree of
differentiability of L̂(ω).

Specifically, if β̂L(ω) is differentiable up to order N , then the B-spline βL is guar-
anteed to have an algebraic decay of order N . To show this, we consider the Fourier
transform pair r nβL(r ) ↔ j|n|∂n β̂L subject to the constraint that ∂n β̂L ∈ L1(Rd ) for all
|n| < N . From the definition of the inverse Fourier integral, it immediately follows
that

∣∣r nβL(r )
∣∣≤ 1

(2π)d
‖∂n β̂L‖L1 ,

which, when properly combined over all multi-indices |n| < N , yields an algebraic
decay estimate with α= N . By pushing the argument to the limit, we see that expo-
nential decay (which is faster than any order of algebraic decay) requires that β̂L ∈
C∞(Rd ) (infinite order of differentiability), which is only possible if L̂(ω) ∈C∞(Rd ) as
well.

The ultimate limit in Fourier-domain regularity is when β̂L has an analytic exten-
sion that is an entire 8 function. In fact, by the Paley-Wiener theorem (Theorem 6.3
below), one achieves compact support of βL if and only if β̂L(ζ) is an entire function
of exponential type. To explain this concept, we focus on the one-dimensional case
where the B-spline βL is supported in the finite interval [−A,+A]. We then consider
the holomorphic Fourier (or Fourier-Laplace) transform of the B-spline given by

β̂L(ζ) =
∫ +A

−A
βL(r )e−ζr dr (6.40)

with ζ=σ+ jω ∈C, which formally amounts to substituting jω by ζ in the expression
of the Fourier transform of βL. In order to obtain a proper analytic extension, we
need to verify that β̂L(ζ) satisfies the Cauchy-Riemann equation. We shall do so by
applying a dominated-convergence argument. To that end, we construct the expo-
nential bound

∣∣β̂L(ζ)
∣∣≤ eA|ζ|

∫ +A

−A
|βL(r )| dr

≤ eA|ζ|
√∫ +A

−A
1 dr

√∫ +A

−A
|βL(r )|2 dr

= eA|ζ|p2A ‖βL‖L2

where we have applied Cauchy-Schwarz’ inequality to derive the lower inequality.
Since e−ζr for r fixed is itself an entire function and (6.40) is convergent over the
whole complex plane, the conclusion is that β̂L(ζ) is entire as well, in addition to
being a function of exponential type A as indicated by the bound. The whole strength
of the Paley-Wiener theorem is that the implication also works the other way around.

T H E O R E M 6.3 (Paley-Wiener) Let f ∈ L2(R). Then, f is compactly supported in

8. An entire function is a function that is analytic over the whole complex plane C.
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[−A, A] if and only if its Laplace transform

F (ζ) =
∫

R
f (r )e−ζr dr

is an entire function of exponential type A, meaning that there exists a constant C such
that

|F (ζ)| ≤C eA|ζ|

for all ζ ∈C.

The result implies that one can deduce the support of f from its Laplace transform.
We can also easily extend the result to the case where the support is not centered
around the origin by applying the Paley-Wiener theorem to the autocorrelation func-
tion

(
f ∗ f ∨)

(r ). The latter is supported in the interval [−2A,2A], which is twice the
size of the support of f irrespective of its center. This suggest the following expres-
sion for the determination of the support of a B-spline:

support(βL) = limsup
R→∞

log
(

sup|ζ|≤R

∣∣β̂L(ζ)β̂L(−ζ)
∣∣)

R
. (6.41)

It returns twice the exponential type of the recentered B-spline which gives support(βL) =
2A. While this formula is only strictly valid when β̂L(ζ) is an entire function, it can
be used otherwise as an operational measure of localization when the underlying B-
spline is not compactly supported. Interestingly, (6.41) provides a measure that is
additive with respect to convolution and proportional to the order γ. For instance,
the support of an (exponential) B-spline associated with an ordinary differential op-
erator of order N is precisely N , as a consequence of the factorization property of
such B-splines (see Sections 6.4.2 and 6.4.4).

To get some insight into (6.41), let us consider the case of the polynomial B-spline
of order 1 (or degree 0) with βD(r ) =1[0,1)(r ) and Laplace transform

β̂D(ζ) =
(

1−e−ζ

ζ

)
.

The required product in (6.41) is

β̂D(ζ)β̂D(−ζ) = −eζ+2−e−ζ

ζ2 ,

which is analytic over the whole complex plane because of the pole-zero cancellation
at ζ= 0. For R sufficiently large, we clearly have that

max
|ζ|≤R

∣∣β̂D(ζ)β̂D(−ζ)
∣∣= eR +2+e−R

R2 → eR

R2 .

By plugging the above expression in (6.41), we finally get

support(βD) = limsup
R→∞

R −2logR

R
= 1,
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which is the desired result. While the above calculation may look like overkill for the
determination of the already-known support of βD, it becomes quite handy for mak-
ing predictions for higher-order operators. To illustrate the point, we now consider
the B-spline of order γ associated with the (possibly fractional) derivative operator
Dγ whose Fourier-Laplace transform is

β̂Dγ (ζ) =
(

1−e−ζ

ζ

)γ
.

We can then essentially replicate the previous manipulation while moving the order
out of the logarithm to deduce that

support(βDγ ) = limsup
R→∞

γR −2γ logR

R
= γ.

This shows that the “support” of the B-spline is equal to its order, with the caveat
that the underlying Fourier-Laplace transform β̂Dγ (ζ) is only analytic (and entire)
when the order γ is a positive integer. This points to the fundamental limitation that
a B-spline associated with a fractional operator—that is, when L̂(ζ) is not an entire
function—cannot be compactly supported.

Smoothness
The smoothness of a B-spline refers to its degree of continuity and/or differentiab-

ility. Since a B-spline is a linear combination of shifted Green’s functions, its smooth-
ness is the same as that of ρL.

Smoothness descriptors come in two flavors—Hölder continuity versus Sobolev
differentiability—depending on whether the analysis is done in the signal or Fourier
domain. Due to the duality between Fourier decay and order of differentiation, the
smoothness of βL may be predicted from the growth of L̂(ω) at infinity without need
for the explicit calculation of ρL. To that end, one considers the Sobolev spaces W α

2
which are defined as

W α
2 (Rd ) =

{
f :

∫

Rd
(1+‖ω‖2)α| f̂ (ω)|2 dω<∞

}
.

Since the partial differentiation operator ∂n corresponds to a Fourier-domain multi-
plication by (jω)n , the inclusion of f in W α

2 (Rd ) requires that its (partial) derivatives
be well-defined in the L2 sense up to order α. The same is also true for the “Bessel
potential” operators

(
Id−∆)α/2 of order α, or, alternatively, the fractional Laplacians

(−∆)α/2 with Fourier multiplier ‖ω‖α.

P R O P O S I T I O N 6.4 Let βL be an admissible B-spline that is associated with a Fourier
multiplier L̂(ω) of order γ. Then, βL ∈W α

2 (Rd ) for any α< γ−d/2.

Proof Because of Parseval’s identity, the statement βL ∈ W α
2 (Rd ) is equivalent 9 to

βL ∈ L2(Rd ) and (−∆)α/2βL ∈ L2(Rd ). Since the first inclusion is part of the definition,

9. The underlying Fourier multipliers are of comparable size in the sense that there exist two constants
c1 and c2 such that c1(1+‖ω‖2)α ≤ 1+‖ω‖2α ≤ c2(1+‖ω‖2)α.
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it is sufficient to check for the second. To that end, we recall the stability conditions
βL ∈ L1(Rd ) and dL ∈ `1(Rd ), which are implicit to the B-spline construction (6.25).
These, together with the order condition (6.14), imply that

|L̂d(ω)| ≤ ‖dL‖`1

|β̂L(ω)| =
∣∣∣∣

L̂d(ω)

L̂(ω)

∣∣∣∣≤ min

(
‖βL‖L1 ,C

‖dL‖`1

‖ω‖γ
)

.

This latter bound allows us to control the L2 norm of (−∆)α/2βL by splitting the spec-
tral range of integration as

‖(−∆)α/2βL‖2
L2

=
∫

Rd
‖ω‖2α|β̂L(ω)|2 dω

(2π)d

=
∫

‖ω‖<R
‖ω‖2α|β̂L(ω)|2 dω

(2π)d
+

∫

‖ω‖>R
‖ω‖2α|β̂L(ω)|2 dω

(2π)d

≤ ‖βL‖2
L1

∫

‖ω‖<R
‖ω‖2α dω

(2π)d
︸ ︷︷ ︸

I1

+C 2‖d‖2
`1

∫

‖ω‖>R
‖ω‖2α−2γ dω

(2π)d
︸ ︷︷ ︸

I2

.

The first integral I2 is finite due the boundedness of the domain. As for I2, it is con-
vergent provided that the rate of decay of the argument is faster than d , which cor-
responds to the critical Sobolev exponent α= γ−d/2.

As final step of the analysis, we invoke the Sobolev embedding theorems to infer
that βL is Hölder-continuous of order r with r < α− d

2 = (γ−d), which essentially
means that βL is differentiable up to order r with bounded derivatives. One should
keep in mind, however, that the latter estimate is a lower bound on Hölder continuity,
unlike the Sobolev exponent in Proposition 6.4, which is sharp. For instance, in the
case of the 1-D Fourier multiplier (jω)γ, we find that the corresponding (fractional)
B-spline—if it exists—should have a Sobolev smoothness (γ− 1

2 ), and a Hölder reg-
ularity r < (γ−1). Note that the latter is arbitrarily close (but not equal) to the true
estimate r0 = (γ−1) that is readily deduced from the Green’s function (6.15).

6.4.2 B-spline factorization

A powerful aspect of spline theory is that it is often possible to exploit the factor-
ization properties of differential operators to recursively generate whole families of
B-splines. Specifically, if the operator can be decomposed as L = L1L2, where the B-
splines associated to L1 and L2 are already known, then βL = βL1 ∗βL2 is the natural
choice of B-spline for L.

P R O P O S I T I O N 6.5 Let βL1 ,βL2 be admissible B-splines for the operators L1 and L2,
respectively. Then, βL(r ) = (βL1 ∗βL2 )(r ) is an admissible B-spline for L = L1L2 if and
only if there exists a constant A > 0 such that

∑

n∈Zd

∣∣β̂L1 (ω+2πn)β̂L2 (ω+2πn)
∣∣2 ≥ A > 0.
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for all ω ∈ [0,2π]d . When L1 = Lγ2 for γ≥ 0, then the auxiliary condition is automatic-
ally satisfied.

Proof Since βL1 ,βL2 ∈ L1(Rd ), the same holds true for βL (by Young’s inequality).
From the Fourier-domain definition (6.25) of the B-splines, we have

β̂Li (ω) =
∑

k∈Zd dLi [k]e−j〈k ,ω〉

L̂i (ω)
= L̂d,i (ω)

L̂i (ω)
,

which implies that

βL =F−1

{
L̂d,1(ω)L̂d,2(ω)

L̂1(ω)L̂2(ω)

}
=F−1

{
L̂d(ω)

L̂(ω)

}
= LdL−1δ

with L−1 = L−1
2 L−1

1 and Ld = Ld,1Ld,2. This translates into the combined localization
operator Lds(r ) =∑

k∈Zd dL[k]s(r −k) with dL[k] = (d1 ∗d2)[k], which is factorizable
by construction. To establish the existence of the upper Riesz bound for βL, we per-
form the manipulation

AβL (ω) =
∑

n∈Zd

|β̂L(ω+2πn)|2

=
∑

n∈Zd

|β̂L1 (ω+2πn)|2|β̂L2 (ω+2πn)|2

≤
(

∑

n∈Zd

|β̂L1 (ω+2πn)| |β̂L2 (ω+2πn)|
)2

≤
∑

n∈Zd

|β̂L1 (ω+2πn)|2
∑

n∈Zd

|β̂L2 (ω+2πn)|2

≤ B 2
1 B 2

2 <+∞

where the third line follows from the norm inequality ‖a‖`2 ≤ ‖a‖`1 and the fourth
from Cauchy-Schwarz; B1 and B2 are the upper Riesz bounds of βL1 and βL2 , re-
spectively. The additional condition in the proposition takes care of the lower Riesz
bound.

6.4.3 Polynomial B-splines

The factorization property is directly applicable to the construction of the polyno-
mial B-splines (we use the equivalent notation βn

+ = βDn+1 in Section 1.3.2) via the
iterated convolution of a B-spline of degree 0. Specifically,

βDn+1 (r ) = (βD ∗βDn )(r ) = (βD ∗·· ·∗βD︸ ︷︷ ︸
n+1

)(r )

with βD =β0
+ = 1[0,1) and the convention that βD0 =βId = δ.
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6.4.4 Exponential B-splines

More generally, one can consider a generic N th-order differential operator of the
form Pα = Pα1 · · ·PαN with parameter vector α = (α1, . . . ,αN ) ∈ CN and Pαn = D −
αnId. The corresponding basis function is an exponential B-splines of order N with
parameter vectorα, which can be decomposed as

βα(r ) = (
βα1 ∗βα2 ∗·· ·∗βαN

)
(r ) (6.42)

where βα = βPα is the first-order exponential spline defined by (6.21). The Fourier-
domain counterpart of (6.42) is

β̂α(ω) =
N∏

n=1

1−eαn e−jω

jω−αn
, (6.43)

which also yields

βα(r ) =∆αρα(r ), (6.44)

where ∆α = ∆α1 · · ·∆αN

(
with ∆α defined by (6.20)

)
is the corresponding N th-order

localization operator (weighted differences) and ρα the causal Green’s function of
Pα. Note that the complex parameters αn , which are the roots of the characteristic
polynomial of Pα, are the poles of the exponential B-spline, as seen in (6.43). The
actual recipe for localization is that each pole is cancelled by a corresponding (2π-
periodic) zero in the numerator.

Based on the above equations, one can infer the following properties of the expo-
nential B-splines (see [UB05a] for a complete treatment of the topic):

– They are causal, bounded, and compactly supported in [0, N ], simply because
all elementary constituents in (6.42) are bounded and supported in [0,1).

– They are piecewise-exponential with joining points at the integers and a max-
imal degree of smoothness (spline property). The first part follows from (6.44)
using the well-known property that the causal Green’s function of an N th-order
ordinary differential operator is an exponential polynomial restricted to the pos-
itive axis. As for the statement about smoothness, the B-splines are Hölder-
continuous of order (N − 1). In other words, they are differentiable up to or-
der (N −1) with bounded derivatives. This follows from the fact that Dβαn (r ) =
δ(r )−eαnδ(r −1), which implies that every additional elementary convolution
factor in (6.42) improves the differentiability of the resulting B-spline by one.

– They are the shortest elementary constituents of exponential splines (maximally
localized kernels) and they each generate a valid Riesz basis (by integer shifting)
of the spaces of cardinal Pα-splines if and only if αn −αm 6= j2πk,k ∈ Z, for all
distinct, purely imaginary poles.

– They reproduce the exponential polynomials that are in the null space of the
operator Pα, as well as any of its Green’s functions ρα, which all happen to be
special types of Pα-splines (with a minimum number of singularities).

– For α = (0, . . . ,0), one recovers Schoenberg’s classical polynomial B-splines of
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degree (N −1) [Sch46, Sch73a], as expressed by the notational equivalence

βn
+(r ) =βDn+1 (r ) =β(0, · · · ,0)︸ ︷︷ ︸

n+1

(r ).

The system-theoretic interpretation is that the classical polynomial spline of de-
gree n has a pole of multiplicity (n +1) at the origin: It corresponds to an (un-
stable) linear system that is an (n +1)-fold integrator.

There is also a corresponding B-spline calculus whose main operations are

– Convolution by concatenation of parameter vectors:

(βα1 ∗βα2 )(r ) =β(α1:α2)(r ).

– Mirroring by sign change

βα(−r ) =
(

N∏
n=1

eαn

)
β−α(r +N ).

– Complex-conjugation

βα(r ) =βα(r ).

– Modulation by parameter shifting

ejω0rβα(r ) =βα+ jω0 (r )

with the convention that j = (j, . . . , j).

Finally, we like to point out that exponential B-splines can be computed explicitly on
a case-by-case basis using the mathematical software described in [Uns05, Appendix
A].

6.4.5 Fractional B-splines

The fractional splines are an extension of the polynomial splines for all non-integer
degrees α > −1. The most notable members of this family are the causal fractional
B-splines βα+ whose basic constituents are piecewise-power functions of degree α

[UB00]. These functions are associated with the causal fractional derivative operator
Dα+1 whose Fourier-based definition is

Dγϕ(r ) =
∫

R
(jω)γϕ̂(ω)ejωr dω

2π

in the sense of generalized functions. The causal Green’s function of Dγ is the one-
sided power function of degree (γ−1) specified by (6.15). One constructs the corres-
ponding B-splines through a localization process similar to the classical one, repla-
cing finite differences by the fractional differences defined as

∆
γ
+ϕ(r ) =

∫

R
(1−e−jω)γϕ̂(ω)ejωr dω

2π
. (6.45)
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In that respect, it is important to note that (1−e−jω)γ = (jω)γ+O(|ω|2γ) which justi-
fies this particular choice. By applying (6.25), we readily obtain the Fourier-domain
representation of the fractional B–splines

β̂α+(ω) =
(

1−e−jω

jω

)α+1

(6.46)

which can then be inverted to provide the explicit time-domain formula

βα+(r ) = ∆α+1
+ rα+

Γ(α+1)
(6.47)

=
∞∑

m=0
(−1)m

(
α+1

m

)
(r −m)α+
Γ(α+1)

,

where the generalized fractional binomial coefficients are given by
(
α+1

m

)
= Γ(α+2)

Γ(m +1)Γ(α+2−m)
= (α+1)!

m! (α+1−m)!
.

What is remarkable with this construction is the way in which the classical B-spline
formulas of Section 1.3.2 carry over to the fractional case almost literally by merely
replacing n by α. This is especially striking when we compare (6.47) to (1.11), as
well as the expanded versions of these formulas given below, which follow from the
(generalized) binomial expansion of (1−e−jω)α+1.

Likewise, it is possible to construct the (α,τ) extension of these B-splines. They
are associated with the operators L = ∂α+1

τ ←→ (jω)
α+1

2 +τ(−jω)
α+1

2 −τ and τ ∈R [BU03].
This family covers the entire class of translation- and scale-invariant operators in 1-D
(see Proposition 5.6).

The fractional B-splines share virtually all the properties of the classical B-splines,
including the two-scale relation, and can also be used to define fractional wavelet
bases with an order γ= α+1 that varies continuously. They only lack positivity and
compact support. Their most notable properties are summarized below.

– Generalization: For α integer, they are equivalent to the classical polynomial
splines. The fractional B-splines interpolate the polynomial ones in very much
the same way as the gamma function interpolates the factorials.

– Stability: All brands of fractional B-splines satisfy the Riesz-basis condition in
Theorem 6.2.

– Regularity: The fractional splines are α-Hölder continuous; their critical So-
bolev exponent (degree of differentiability in the L2 sense) is α+ 1/2 (see Pro-
position 6.4).

– Polynomial reproduction: The fractional B-splines reproduce the polynomials
of degree N = dα+1e that are in the null space of the operator Dα+1 (see Section
6.2.1).

– Decay: The fractional B-splines decay at least like |r |−α−2; the causal ones are
compactly supported for α integer.

– Order of approximation: The fractional splines have the non-integer order of
approximation α+1, a property that is rather unusual in approximation theory.
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– Fractional derivatives: Simple formulas are available for obtaining the fractional
derivatives of B-splines. In addition, the corresponding fractional spline wave-
lets essentially behave like fractional-derivative operators.

6.4.6 Additional brands of univariate B-splines

To be complete, we briefly mention some additional types of univariate B-splines
that have been investigated systematically in the literature.

- The generalized exponential B-splines of order N that cover the whole class of
differential operators with rational transfer functions [Uns05]. These are para-
meterized by their poles and zeros. Their properties are very similar to those of
the exponential B-splines of the previous section, which are included as a special
case.

- The Matérn splines of (fractional) order γ and parameter α ∈ R+ with L = (D+
αId)γ←→ (jω+α)γ [RU06]. These constitute the fractionalization of the exponen-
tial B-spline with a single pole of multiplicity N .

In principle, it is possible to construct even broader families via the convolution of
existing components. The difficulty is that it may not always be possible to obtain
explicit signal-domain formulas, especially when some of the constituents are frac-
tional.

6.4.7 Multidimensional B-splines

While the construction of B-splines is well understood and covered systematically
in 1-D, the task becomes more challenging in multiple dimensions because of the
inherent difficulty of imposing compact support. Apart from the easy cases where
the operator L can be decomposed in a succession of 1-D operators (tensor-product
B-splines and box splines), the available collection of multidimensional B-splines
is much more restricted than in the univariate case. The construction of B-splines
is still considered an art where the ultimate goal is to produce the most localized
basis functions. The primary families of multidimensional B-splines that have been
investigated so far are

- The polyharmonic B-splines of (fractional) orderγwith L = (−∆)
γ
2 ←→‖ω‖γ [MN90b,

Rab92a, Rab92b, VDVBU05].

- The box splines of multiplicity N ≥ d with L = Du1 · · ·DuN ←→ ∏N
n=1〈jω,un〉 with

‖un‖ = 1, where Dun = 〈∇∇∇,un〉 is the directional derivative along un [dBHR93]. The
box splines are compactly supported functions in L1(Rd ) if and only if the set of
orientation vectors {un}N

n=1 forms a frame of Rd .

We encourage the reader who finds the present list incomplete to work on expanding
it. The good news for the present study is that the polyharmonic B-splines are par-
ticularly relevant for image-processing applications because they are associated with
the class of operators that are scale- and rotation-invariant. They naturally come into
play when considering isotropic fractal-type random fields.
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The principal message of this section is that B-splines—no matter the type—are
localized functions with an equivalent width that increases in proportion to the or-
der. In general, the fractional brands and the non-separable multidimensional ones
are not compactly supported. The important issue of localization and decay is not
yet fully resolved in higher dimensions. Also, since Lds = βL ∗Ls, it is clear that the
search for a “good” B-spline βL is intrinsically related to the problem of finding an
accurate numerical approximation Ld of the differential operator L. Looking at the
discretization issue from the B-spline perspective leads to new insights and some-
times to nonconventional solutions. For instance, in the case of the Laplacian L =∆,
the continuous-domain localization requirement points to the choice of the 2D dis-
crete operator ∆d described by the 3×3 filter mask

Isotropic discrete Laplacian:
1

6




−1 −4 −1
−4 20 −4
−1 −4 −1




which is not the standard version used in numerical analysis. This particular set of
weights produces a much nicer, bell-shaped polyharmonic B-spline than the con-
ventional finite-difference mask which induces significant directional artifacts, es-
pecially when one starts iterating the operator [VDVBU05].

6.5 Generalized operator-like wavelets

In direct analogy with the first-order scenario in Section 6.3.3, we shall now take
advantage of the general B-spline formalism to construct a wavelet basis that is matched
to some generic operator L.

6.5.1 Multiresolution analysis of L2(Rd )

The first step is to lay out a fine-to-coarse sequence of (multidimensional) L-spline
spaces in essentially the same way as in our first-order example. Specifically,

Vi = {s(r ) ∈ L2(Rd ) : Ls(r ) =
∑

k∈Zd

ai [k]δ(r −Di k)}

where D is a proper dilation matrix with integer entries (e.g., D = 2I in the standard
dyadic configuration). These spline spaces satisfy the general embedding relation
Vi ⊇V j for i ≤ j .

The reference space (i = 0) is the space of cardinal L splines which admits the
standard B-spline representation

V0 = {s(r ) =
∑

k∈Zd

c[k]βL(r −k) : c ∈ `2(Zd )},

where βL is given by (6.25). Our implicit assumption is that each Vi admits a similar
B-spline representation

Vi = {s(r ) =
∑

k∈Zd

ci [k]βL,i (r −Di k) : ci ∈ `2(Zd )},
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which involves the multiresolution generators βL,i described in the next section.

6.5.2 Multiresolution B-splines and the two-scale relation

In direct analogy with (6.25), the multiresolution B-splines βL,i are localized ver-
sions of the Green’s function ρL with respect to the grid DiZd . Specifically, we have
that

βL,i (r ) =
∑

k∈Zd

di [k]ρL(r −Di k) = Ld,i L−1δ(r ),

where Ld,i is the discretized version of L on the grid DiZd . The Fourier-domain coun-
terpart of this equation is

β̂L,i (ω) =
∑

k∈Zd di [k]e−j〈ω,Di k〉

L̂(ω)
. (6.48)

The implicit requirement for the multiresolution decomposition scheme to work is
that βL,i generates a Riesz basis. This needs to be asserted on a case-by-case basis.

A particularly favorable situation occurs when the operator L is scale-invariant
with L̂(aω) = |a|γL̂(ω). Let i ′ > i be two multiresolution levels of the pyramid such
that Di ′−i = mI where m is a proportionality constant. It is then possible to relate the
B-spline at resolution i ′ to the one at the finer level i via the simple dilation relation

βL,i ′ (r ) ∝βL,i (r /m).

This is shown by considering the Fourier transform of βL,i (r /m), which is written as

|m|d β̂L,i (mω) = |m|d
∑

k∈Zd di [k]e−j〈ω,mDi k〉

L̂(mω)

= |m|d−γ
∑

k∈Zd di [k]e−j〈ω,Di ′−i Di k〉

L̂(ω)

= |m|d−γ
∑

k∈Zd di [k]e−j〈ω,Di ′k〉

L̂(ω)
,

and found to be compatible with the form of β̂L,i ′ (ω) given by (6.48) by taking di ′ [k] ∝
di [k]. The prototypical scenario is the dyadic configuration D = 2I for which the
B-splines at level i are all constructed through the dilation of the single prototype
βL =βL,0, subject to the scale-invariance constraint on L. This happens, for instance,
for the classical polynomial splines which are associated with the Fourier multipliers
(jω)N .

A crucial ingredient for the fast wavelet-transform algorithm is the two-scale re-
lation that links the B-splines basis functions at two successive levels of resolution.
Specifically, we have that

βL,i+1(r ) =
∑

k∈Zd

hi [k]βL,i (r −Di k),

where the sequence hi specifies the scale-dependent refinement filter. The frequency
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response of hi is obtained by taking the ratios of the Fourier transforms of the cor-
responding B-splines as

ĥi (ω) = β̂L,i+1(ω)

β̂L,i (ω)
(6.49)

=
∑

k∈Zd di+1[k]e−j〈ω,Di+1k〉
∑

k∈Zd di [k]e−j〈ω,Di k〉 (6.50)

which is 2π(DT )−i periodic and hence defines a valid digital filter with respect to the
spatial grid DiZd .

To illustrate those relations, we return to our introductory example in Section 6.1:
the Haar wavelet transform, which is associated with the Fourier multipliers jω (de-
rivative) and (1−e−jω) (finite-difference operator). The dilation matrix is D = 2 and
the localization filter is the same at all levels because the underlying derivative op-
erator is scale-invariant. By plugging those entities into (6.48), we obtain the Fourier
transform of the corresponding B-spline at resolution i as

β̂D,i (ω) = 2−i /2 1−ej2iω

jω
,

where the normalization by 2−i /2 is included to standardize the norm of the B-splines.
The application of (6.49) then yields

ĥi (ω) = 1p
2

1−ej2i+1ω

1−ej2iω

= 1p
2

(1+ej2iω),

which, up to the normalization by
p

2, is the expected refinement filter with coeffi-
cients proportional to (1,1) that are independent upon the scale.

6.5.3 Construction of an operator-like wavelet basis

To keep the notation simple, we concentrate on the specification of the wavelet
basis at the scale i = 1 with W1 = span{ψ1,k }k∈Zd \DZd such that W1 ⊥ V1 and V0 =
V1 +W1, where V0 = span{βL(·−k)}k∈Zd is the space of cardinal L-splines.

The relevant smoothing kernel is the interpolation function ϕint = ϕint,0 for the

space of cardinal LH L-splines, which is generated by (β
∨
L ∗βL)(r ) (autocorrelation of

the generalized B-spline). This interpolator is best described in the Fourier domain
using the formula

ϕint(r ) =F−1

{
|β̂L(ω)|2

∑
n∈Zd |β̂L(ω+2πn)|2

}
(r ), (6.51)

where β̂L (resp., β̂L) is the Fourier transform of the generalized B-spline βL (resp.,
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β
∨
L ). It satisfies the fundamental interpolation property

ϕint(k) = δ[k] =
{

1, for k = 0
0, for k ∈Zd \{0}.

(6.52)

The existence of such a function is guaranteed whenever βL = βL,0 is an admissible
B-spline. In particular, the Riesz basis condition (6.26) implies that the denominator
of ϕ̂int(ω) in (6.51) is non-vanishing.

The sought-after wavelets are then constructed as ψ1,k (r ) = ψL(r − k)/‖ψL‖L2 ,
where the operator-like mother wavelet ψL is given by

ψL(r ) = LHϕint(r ), (6.53)

where LH is the adjoint of L with respect to the Hermitian-symmetric L2 inner product.
Also, note that we are removing the functions located on the next coarser resolution
grid DZd associated with V1 (critically sampled configuration).

The proof of the following result is illuminating because it relies heavily on the
notion of duality which is central to our whole argumentation.

P R O P O S I T I O N 6.6 The operator-like waveletψL = LHϕint satisfies the property 〈s1,ψL(·−
k)〉L2 = 〈s1,ψL(·−k)〉 = 0,∀k ∈Zd \DZd for any spline s1 ∈V1. Moreover, it can be writ-
ten as ψL(r ) = LH

d β̃L(r ) =∑
k∈Zd dL[−k]β̃L(r −k) where {β̃L(·−k)}k∈Zd is the dual basis

of V0 such that 〈βL(·−k), β̃L(·−k ′)〉L2 = δ[k−k ′]. This implies that W1 = span{ψ1,k }k∈Zd \DZd ⊂
V0 and W1 ⊥V1.

Proof We pick an arbitrary spline s1 ∈V1 and perform the inner-product manipula-
tion

〈s1,ψL(·−k0)〉L2 = 〈s1,L∗{ϕint(·−k0)}〉 (by shift-invariance of L)

= 〈Ls1,ϕint(·−k0)〉 (by duality)

= 〈
∑

k∈Zd

a1[k]δ(·−Dk),ϕint(·−k0)〉 (by definition of V1)

=
∑

k∈Zd

a1[k]ϕint(Dk −k0). (by definition of δ)

Due to the interpolation property of ϕint, the kernel values in the sum are vanishing
if Dk −k0 ∈Zd \{0} for all k ∈Zd , which proves the first part of the statement.

As for the second claim, we consider the Fourier-domain expression of ψL:

ψ̂L(ω) = L̂(ω)ϕ̂int(ω) = L̂(ω) β̂L(ω) ̂̃βL(ω)

where

̂̃βL(ω) = β̂L(ω)
∑

n∈Zd |β̂L(ω+2πn)|2

is the Fourier transform of the dual B-spline β̃L. The above factorization implies that
ϕint(r ) = (β̃L ∗β

∨
L )(r ), which ensures the biorthonormality 〈β̃L(· −k),βL(· −k ′)〉L2 =

δ[k] =ϕint(k −k ′) of the basis functions.
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Finally, by replacing β̂L(ω) by its explicit expression (6.25), we show that L̂(ω)β̂L(ω) =
L̂d(ω), where L̂d(ω) = ∑

k∈Zd dL[k]e−〈k ,ω〉 is the frequency response of the (discrete)

operator Ld. This implies that ψ̂L = L̂d
̂̃βL, which is the Fourier equivalent of ψL =

LH
d β̃L.

This interpolation-based method of construction is applicable to all the wavelet
subspaces Wi and leads to the specification of operator-like Riesz bases of L2(Rd )
under relatively mild assumptions on L [KUW13]. Specifically, we have that Wi =
span{ψi ,k }k∈Zd \DZd with

ψi ,k (r ) ∝ LHϕint,i−1(r −Di−1k), (6.54)

where ϕint,i−1 is the LH L-spline interpolator on the grid Di−1Zd . The fact that the
interpolator is specified with respect to the grid of the next finer spline space Vi−1 =
span{βL,i−1(·−Di−1k)}k∈Zd is essential to ensure that Wi ⊂Vi−1. This kernel satisfies
the fundamental interpolation property

ϕint,i−1(Di−1k) = δ[k], (6.55)

which results in Wi being orthogonal to Vi = span{βL,i (· −Di k)}k∈Zd (the reasoning
is the same as in the proof of Proposition 6.6 which covers the case i = 1). For com-
pleteness, we also provide the general expression of the Fourier transform of ϕint,i ,

ϕ̂int,i (ω) = |det(D)|i |β̂L,i (ω)|2
∑

n∈Zd

∣∣β̂L,i
(
ω+2π(DT )−i n

)∣∣2

= |det(D)|i
∣∣L̂d,i (ω)

∣∣2
/
∣∣L̂(ω)

∣∣2

∣∣L̂d,i (ω)
∣∣2

/
∑

n∈Zd

∣∣L̂
(
ω+2π(DT )−i n

)∣∣2

= |det(D)|i |L̂(ω)|−2

∑
n∈Zd

∣∣L̂
(
ω+2π(DT )−i n

)∣∣−2 , (6.56)

which can be used to show that LHϕint,i (·−Di k) ∝ LH
d,i β̃L,i (·−Di k) ∈Vi for any k ∈Zd .

While we have seen that this scheme produces an orthonormal basis for the first-
order operator Pα in Section 6.3.3, the general procedure does only guarantee semi-
orthogonality. More precisely, it ensures the orthogonality between the wavelet sub-
spaces Wi . If necessary, one can always fix the intra-scale orthogonality a posteriori
by forming appropriate linear combinations of wavelets at a given resolution. The
resulting orthogonal wavelets will still be L-admissible in the sense of Definition 6.7.
However, for d > 1, intra-scale orthogonalization is likely to spoil the simple, con-
venient structure of the above construction which uses a single generator per scale,
irrespective of the number of dimensions. Indeed, the examples of multidimensional
orthogonal wavelet transforms that can be found in the literature—either separable,
or non-separable—systematically involve M = (det(D)−1) distinct wavelet generat-
ors per scale. Moreover, unlike the present operator-like wavelets, they do generally
not admit an explicit analytical description.
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In summary, wavelets generally behave like differential operators and it is possible
to match them to a given class of stochastic processes. The wavelet transforms that
are currently most widely used in applications act as multiscale derivatives or Lapla-
cians. They are therefore best suited for the representation of fractal-type stochastic
processes that are defined by scale-invariant SDEs [TVDVU09].

The general theme that emerges is that a signal transform will behave appropri-
ately if it has the ability to suppress the signal components (polynomial or sinusoidal
trends) that are in the null space of the whitening operator L. This will result in a
stationarizing effect that is well-documented in the Gaussian context [Fla89, Fla92].
This is the fundamental reason why vanishing moments are so important.

6.6 Bibliographical notes

Section 6.1
Alfréd Haar constructed the orthogonal Haar system as part of his Ph.D. thesis,

which he defended in 1909 under the supervision of David Hilbert [Haa10]. From
then on, the Haar system remained relatively unnoticed until it was revitalized by
the discovery of wavelets nearly one century later. Stéphane Mallat set the founda-
tion of the multiresolution theory of wavelets in [Mal89] with the help of Yves Meyer,
while Ingrid Daubechies constructed the first orthogonal family of compactly sup-
ported wavelets [Dau88]. Many of the early constructions of wavelets are based on
splines [Mal89, CW91, UAE92, UAE93]. The connection with splines is actually quite
fundamental in the sense that all multiresolution wavelet bases, including the non-
spline brands such as Daubechies’, necessarily include a B-spline as a convolution
factor—the latter is responsible for their primary mathematical properties such as
vanishing moments, differentiability, and order of approximation [UB03]. Further
information on wavelets can be found in several textbooks [Dau92, Mey90, Mal09].

Section 6.2
Splines constitute a beautiful topic of investigation in their own right with hun-

dreds of papers specifically devoted to them. The founding father of the field is
Schoenberg who, during war time, was asked to develop a computational solution
for constructing an analytic function that fits a given set of equidistant noisy data
points [Sch88]. He came up with the concept of spline interpolation and proved that
polynomial spline functions have a unique expansion in terms of B-splines [Sch46].
While splines can also be specified for nonuniform grids and extended in a variety of
ways [dB78, Sch81a], the cardinal setting is especially pleasing because it lends itself
to systematic treatment with the aid of the Fourier transform [Sch73a]. The relation
between splines and differential operators was recognized early on and led to the
generalization known as L-splines [SV67].

The classical reference on partial differential operators and Fourier multipliers is
[Hör80]. A central result of the theory is the Malgrange-Ehrenpreiss theorem [Mal56,
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Ehr54], and its extension stating that the convolution with a compactly supported
generalized function is invertible [Hör05].

The concept of a Riesz basis is standard in functional analysis and approximation
theory [Chr03]. The special case where the basis functions are integer translates of a
single generator is treated in [AU94]. See also [Uns00] for a review of such represent-
ations in the context of sampling theory.

Section 6.3
The first-order illustrative example is borrowed from [UB05a, Figure 1] for the con-

struction of the exponential B-spline, and from [KU06, Figure 1] for the wavelet part
of the story.

Section 6.4
The 1-D theory of cardinal L-splines for ordinary differential operators with con-

stant coefficients is due to Micchelli [Mic76]. In the present context, we are especially
concerned with ordinary differential equations, which go hand-in-hand with the ex-
tended family of cardinal exponential splines [Uns05]. The properties of the relevant
B-splines are investigated in full detail in [UB05a], which constitutes the ground ma-
terial for Section 6.4. A key property of B-splines is their ability to reproduce poly-
nomials. It is ensured by the Strang-Fix conditions (6.37) which play a central role
in approximation theory [dB87, SF71]. While there is no fundamental difficulty in
specifying cardinal-spline interpolators in multiple dimensions, it is much harder
to construct compactly supported B-splines, except for the special cases of the box
splines [dBH82, dBHR93] and exponential box splines [Ron88]. For elliptic operators
such as the Laplacian, it is possible to specify exponentially decaying B-splines, with
the caveat that the construction is not unique [MN90b,Rab92a,Rab92b]. This calls for
some criterion to identify the most-localized solution [VDVBU05]. B-splines, albeit
non-compactly supported ones, can also be specified for fractional operators [UB07].
This line of research was initiated by Unser and Blu with the construction of the frac-
tional B-splines [UB00]. As suggested by the name, the (Gaussian) stochastic coun-
terparts of these B-splines are Mandelbrot’s fractional Brownian motions [MVN68],
as we shall see in Chapters 7 and 8. The association is essentially the same as the
connection between the B-spline of degree 0 (rect) and Brownian motion, or by ex-
tension, the whole family of Lévy processes (see Section 1.3).

Section 6.5
de Boor et al. were among the first to extend the notion of multiresolution ana-

lysis beyond the idea of dilation and to propose a general framework for construct-
ing “non-stationary” wavelets [dBDR93]. Khalidov and Unser proposed a systematic
method for constructing wavelet-like basis functions based on exponential splines
and proved that these wavelets behave like differential operators [KU06]. The ma-
terial in Section 6.5 is an extension of those ideas to the case of a generic Fourier-
mutiplier operator in multiple dimensions; the full technical details can be found
in [KUW13]. Operator-like wavelets have also been specified within the framework
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of conventional multiresolution analysis; in particular, for the Laplacian and its it-
erates [VDVBU05, TVDVU09] and for the various brands of 1-D fractional derivat-
ives [VDVFHUB10], which have the common property of being scale-invariant. Fi-
nally, we mention that each exponential-spline wavelet has a compactly supported
Daubechies’ counterpart that is orthogonal and operator-like in the sense of having
the same vanishing exponential moments [VBU07].



7 Sparse stochastic processes

Having dealt with the technicalities of defining acceptable inverse operators, we
can now apply the framework to characterize—and also generate—relevant families
of sparse processes. As in the previous chapters, we start with a simple example to ex-
pose the key ideas. Then, in Section 7.2, we develop the generalized version of the in-
novation model that covers the complete spectrum of Gaussian and sparse stochastic
processes. We characterize the solution(s) in full generality, while pinpointing the
conditions under which the so-defined processes are stationary or self-similar. In
Section 7.3, we provide a complete description of the stationary processes, including
the CARMA (continuous-time auto-regressive moving average) family which consti-
tutes the non-Gaussian extension of the classical ARMA processes. In Section 7.4, we
turn out attention to non-stationary signals and characterize the important class of
Lévy-type processes that are defined by unstable linear SDEs. Finally, in Section 7.5,
we investigate fractal-type processes (not necessarily Gaussian) that are solution of
fractional, scale-invariant SDEs.

7.1 Introductory example: Non-Gaussian AR(1) processes

A Lévy-driven AR(1) process with parameter α ∈ C is defined by a first-order SDE
with L = Pα = (D−αId), as given by

Pαsα = w

where w is a white Lévy noise excitation. We have already seen that the solution for
Re(α) < 0 is given by sα = P−1

α w = ρα ∗ w where ρα is the impulse response of the
underlying system. We have also shown in Section 5.3.1 that the concept remains
applicable for Re(α) > 0 using the extended definition (5.10) of P−1

α . Since P−1
α is a S -

continuous convolution operator, this results into a well-defined stationary process,
the Gaussian version of which is often referred to as the Ornstein-Uhlenbeck process.

To make the connection with splines, we observe that the first-order impulse re-
sponse can be written as a sum of exponential B-splines

ρα(r ) =
∑

k≥0
eαkβα(r −k), (7.1)

as illustrated in Figure 7.1a. The B-spline generator βα(r ) is defined by (6.21) and is
supported in the interval [0,1). A key observation is that the B-spline coefficients eαk
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Figure 7.1 Spline-based representation of the impulse response and autocorrelation
function of a differential system with a pole at α=−1. (a) The impulse response (dotted line)
is decomposed as a linear combination of the integer shifts of an exponential B-spline (solid
line). (b) The autocorrelation is synthesized by interpolating its sample values at the integers
(discrete autorcorrelation); the corresponding (2nd-order) spline interpolation kernels are
represented using thick lines.

in (7.1) correspond to the impulse response of the digital filter ∆−1
α described by the

transfer function 1
1−eαz−1 , which is the natural discrete counterpart of P−1

α .

The operator version of (7.1) therefore reads ρα = P−1
α δ = ∆−1

α βα, which makes
an interesting connection between the analog and discrete versions of a first-order
operator. We have shown in prior work that this type of relation is fundamental to
the theory of linear systems and that it carries over for higher-order systems [Uns05].

Since the driving term is white, the correlation structure of the process (second-
order statistics) is fully characterized by the (Hermitian-symmetric) autocorrelation
of the impulse response. In the case where α is real-valued and negative, we get

Rρα (r ) = 〈ρα(·+ r ),ρα〉 = (ρ∨
α ∗ρα)(r ) ∝ eα|r | =

∑

k∈Z
eα|k|ϕint,α

(
r −k

)
, (7.2)

which can also be expanded in terms of (augmented-order) B-splines. For simplicity,
we have left out the proportionality factor so that the r.h.s. can be identified as the
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normalized autocorrelation function of the AR(1) process

csα (r ) = E{sα(·+ r ) sα(·)}

E{|sα|2}
= eα|r |.

The rightmost sum in (7.2) expresses the fact that the continuous-domain correlation
function can be reconstructed from the discrete-domain one csα [k] = csα (r )

∣∣
r=k =

eα|k| (the sampled version of the former) by using a Shannon-type interpolation for-
mula, which involves the “augmented order” spline kernel ϕint,α introduced in Sec-
tion 6.3.2.

Let σ2
w < +∞ denote the variance of a zero-mean white input noise w observed

through a normalized observation window ϕ/‖ϕ‖. Then, it is well-known (Wiener-
Khintchine theorem) that the power spectrum of sα is given by

Φsα (ω) =σ2
w F {ρ∨

α ∗ρα}(ω) =σ2
w |ρ̂α(ω)|2,

with ρ̂α(ω) = 1
jω−α . We note, however, that the power spectrum provides a complete

characterization of the process only when the input noise is Gaussian.

7.2 General abstract characterization

The generic solution of the general innovation model (4.23) is given by s = L−1w
where w is a particular brand of white noise with Lévy exponent f (see Definition
4.1) and L−1 a proper right inverse of L. The theoretical results of Section 4.5.2 guar-
antee the existence of this solution as a generalized stochastic process over S ′(Rd )
provided that L−1∗ (the adjoint of L−1) and f satisfy some joint regularity conditions.
The three configurations of interest that balance the range of acceptable innovations
are listed below for further reference.

D E FI N I T I O N 7.1 (Conditions for existence)

Condition S: L−1∗ is a continuous operator S (Rd ) →S (Rd ) and f is Lévy-Schwartz
admissible (see Theorem 4.8);

Condition R: L−1∗ is a continuous operator S (Rd ) →R(Rd ) and f is Lévy-Schwartz
admissible;

Condition Lp : L−1∗ is a continuous operator S (Rd ) → Lp (Rd ) and f is p-admissible
(see Definition 4.4) for some p ∈ [1,2].

When either one of these conditions is satisfied, the couple (L−1∗, f ) is said to be
admissible.

Note that the conditions of Definition 7.1 are given in the order of increasing level
of complexity in the inversion of the whitening operator L when the problem is ill-
posed over S (Rd ).

Now, if (L−1∗, f ) is admissible, then the underlying generalized stochastic pro-
cesses, or random fields when d > 1, are well-defined and completely specified by
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their characteristic functional (see Theorem 4.17)

P̂s (ϕ) = E{ej〈s,ϕ〉} = exp

(∫

Rd
f
(
L−1∗ϕ(r )

)
dr

)
. (7.3)

In order to represent second-order dependencies, Gelfand and Vilenkin define the
correlation functional of a generalized (complex-valued) process s as

Bs (ϕ1,ϕ2) = E{〈s,ϕ1〉 〈s,ϕ2〉}, (7.4)

where 〈s,ϕ2〉 stands for the complex conjugate of 〈s,ϕ2〉.
These two description modes are easy to relate when the process s is real-valued

(see Section 3.5.2). To that end, we observe that Bs (ϕ1,ϕ2) = E{X1X2} where X1 =
〈s,ϕ1〉 and X2 = 〈s,ϕ2〉 = 〈s,ϕ2〉 are (conventional) real-valued random variables. We
then invoke the moment-generating property of the joint characteristic function of
X1 and X2, E{ej(ω1 X1+ω2 X2)} = P̂s (ω1ϕ1 +ω2ϕ2), which yields

Bs (ϕ1,ϕ2) =− ∂2P̂s (ω1ϕ1 +ω2ϕ2)

∂ω1∂ω2

∣∣∣∣∣
ω1=0,ω2=0

. (7.5)

We have already used this mechanism in Section 4.4.3, Proposition 4.15 to determ-
ine the covariance of a white Lévy noise under the standard zero-mean and finite-
variance assumptions. Specifically, we showed that the correlation/covariance form
of the innovation process w is given by

Bw (ϕ1,ϕ2) =σ2
w 〈ϕ1,ϕ2〉, (7.6)

with σ2
w = − f ′′(0). Here, we rely on duality (i.e., 〈L−1w,ϕ〉 = 〈w,L−1∗ϕ〉) to transfer

this result to the output of the general innovation model (4.23) as

Bs (ϕ1,ϕ2) =BL−1w (ϕ1,ϕ2)

=Bw (L−1∗ϕ1,L−1∗ϕ2)

=σ2
w 〈L−1L−1∗ϕ1,ϕ2〉, (7.7)

which is consistent with (7.5) under the implicit assumption that σ2
w = − f ′′(0) and

f ′(0) = 0. Finally, we recover the autocorrelation function of s by making the substi-
tution ϕ1 = δ(·− r1) and ϕ2 = δ(·− r2) in (7.7), which leads to

Rs (r1,r2) = E{s(r1) s(r2)}

=Bs (δ(·− r1),δ(·− r2))

=σ2
w 〈L−1L−1∗δ(·− r1),δ(·− r2)〉. (7.8)

This is justified by the kernel theorem (see Section 3.3.4) which allows one to express
the correlation functional as

Bs (ϕ1,ϕ2) =
∫

Rd

∫

Rd
ϕ1(r1)Rs (r1,r2)ϕ2(r2) dr1dr2,

where Rs (r1,r2) ∈S ′(Rd ×Rd ) is the (generalized) correlation function of the gener-
alized stochastic process s, by definition.
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The bottom line is that the correlation structure of the process is entirely determ-
ined by the impulse response of the Hermitian symmetric operator L−1L−1∗ which
may or may not be shift-invariant.

For formalization purposes, it is useful to categorize stochastic processes based
on whether or not they are invariant to the elementary coordinate transformations.
Invariance here is not meant literally, but probabilistically, in the sense that the ap-
plication of a given spatial transformation (translation, rotation, or scaling) leaves
the probability laws of the process unchanged.

However, since the objects of interest are generalized functions, we need to prop-
erly define the underlying notions. The translation by r0 ∈ Rd of a generalized func-
tion φ ∈S ′(Rd ) is denoted by φ(·− r0), while its scaling by a is written as φ(·/a). The
definition of these operations (see Section 3.3.2) is

〈ϕ,φ(·− r0)〉 = 〈ϕ(·+ r0),φ〉 (translation by r0 ∈Rd )

〈ϕ,φ(T−1·)〉 = |det(T)| 〈ϕ(T·),φ〉 (affine transformation)

for any pair (ϕ,φ) ∈ S (Rd )×S ′(Rd ) where it is implicitly assumed that the (d ×d)
coordinate transformation matrix T is invertible. The scaling by a > 0 is obtained by
selecting T = aI whose determinant is ad .

D E FI N I T I O N 7.2 (Stationary process) A generalized stochastic process s is station-
ary if it has the same probability laws as any of its translated version s(·−r0) or, equi-
valently, if the characteristic functional P̂s (ϕ) = E{ej〈s,ϕ〉} satisfies

P̂s (ϕ) = P̂s
(
ϕ(·+ r0)

)
(7.9)

for any ϕ ∈S (Rd ) and any r0 ∈Rd .

D E FI N I T I O N 7.3 (Isotropic process) A generalized stochastic process s is isotropic
if it has the same probability laws as any of its rotated version s(RT ·) or, equivalently,
if its characteristic functional P̂s (ϕ) = E{ej〈s,ϕ〉} satisfies

P̂s (ϕ) = P̂s
(
ϕ(R·))

for any ϕ ∈S (Rd ) and any (d ×d) rotation matrix R.

D E FI N I T I O N 7.4 (Self-similar process) A generalized stochastic process s is self-
similar of scaling order H if it has the same probability laws as any of its scaled and
renormalized version aH s(·/a) or, equivalently, if P̂s (ϕ) = E{ej〈s,ϕ〉} satisfies

P̂s (ϕ) = P̂s
(
aH+dϕ(a·))

for any ϕ ∈S (Rd ) and any dilation factor a > 0.

The scaling order H is also called the Hurst exponent of the process. Here, the
relevant adjoint relation is 〈ϕ, aH s(·/a)〉 = 〈aH |a|dϕ(a·), s〉, which follows from the
definition of the affine transformation and the linearity of the duality product.

One can readily check that all Lévy noises are stationary and isotropic. Self-similarity,
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by contrast, is a more restrictive property that is only shared by the stable members
of the family for which the exponent f is a homogeneous function of degree α.

Similarly, one can also define weaker forms of invariance by considering the ef-
fect of a transformation on the first and second-order moments only. This leads to
the notions of wide-sense stationarity, isotropy, and self-similarity under the implicit
assumption that the variances are finite (2nd-order process).

D E FI N I T I O N 7.5 (Wide-sense stationarity) A generalized stochastic process s is wide-
sense stationary (WSS) if

E{〈ϕ, s〉} = E{〈ϕ(·+ r0), s〉}
Bs

(
ϕ1,ϕ2

)=Bs
(
ϕ1(·+ r0),ϕ2(·+ r0)

)

for any ϕ,ϕ1,ϕ2 ∈ S (Rd ) and any r0 ∈ Rd , or, equivalently, if its (generalized) mean

E{s(r )} is constant and its (generalized) autocorrelation is a function of the relative
displacement only; that is,

E{s(r1)s(r2)} = Rs (r1 − r2).

If, in addition, Rs (r1 − r2) = Rs (|r1 − r2|), then the process is WSS isotropic.

For the innovation model s = L−1w , we have E{s(r )} = 0 whenever f ′(0) = 0, which
is a property that is shared by all symmetric Lévy exponents (and all concrete ex-
amples considered in this book). This zero-mean assumption facilitates the treat-
ment of second-order processes (with minimal loss in generality).

D E FI N I T I O N 7.6 (Wide-sense self-similarity) A generalized stochastic process s (with
zero mean) is wide-sense self-similar with scaling order H if it has the same second-
order moments as its scaled and renormalized version aH s(·/a) with a > 0. The con-
dition is met if the correlation functional satisfies

Bs
(
ϕ1,ϕ2

)= a2H+2d Bs
(
ϕ1(a·),ϕ2(a·)) (7.10)

for any ϕ1,ϕ2 ∈ S (Rd ) or, equivalently, if the (generalized) autocorrelation function
is such that

a2H Rs
(r1

a
,

r2

a

)= Rs (r1,r2).

Note that wide-sense self-similarity with H 6= 0 implies that Rs (0,0) = E{s2(0)} is
either zero or infinite so that the property is incompatible with wide-sense stationar-
ity (unless s = 0).

In the case of our generalized innovation model, the invariance properties of the
stochastic process are primarily determined by the choice of the operator L. The
precise statement is given in the theorem below, which also makes the link with the
more conventional specification of a linear process in terms of a stochastic integral
against some kernel h.

T H E O R E M 7.1 Let s = L−1w be a generalized stochastic process whose characteristic
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functional is given by (7.3) where (L−1∗, f ) is an admissible pair in reference to Defini-
tion 7.1. We also define the kernel

h(·,r ′) = L−1{δ(·− r ′)} ∈S ′(Rd ×Rd ), (7.11)

Then, depending on the characteristics of L−1 (or, equivalently, L−1∗), the process s
enjoys the following properties.

1) If L−1 is linear shift-invariant, then s is stationary and

h(r ,r ′) = h(r − r ′,0) = ρL(r − r ′)

where ρL = L−1{δ} is the Green’s function of L.

2) If L−1 is shift- and rotation-invariant, then s is stationary isotropic and h(r ,r ′) =
ρL(|r − r ′|) where ρL(|r |) = L−1{δ}(r ) is a purely radial function.

3) If L−1∗ is scale-invariant of order (−γ) and σ2
w =− f ′′(0) <∞, then s is wide-sense

self-similar with Hurst exponent H = γ−d/2.

4) If L−1∗ is scale-invariant of order (−γ) and f is homogeneous 1 of degree 0 <α≤ 2,
then s is self-similar with Hurst exponent H = γ−d +d/α.

Moreover, if h is an ordinary function of Rd ×Rd with h(r , ·) ∈ R(Rd )
(
resp., h(r , ·) ∈

Lp (Rd )
)

for r ∈Rd , then s admits the pointwise representation

s(r ) = 〈h(r , ·), w〉. (7.12)

Proof The existence of the generalized stochastic process s is ensured by Theorem
4.17. Moreover, the kernel theorem (Theorem 3.1) allows one to express the meas-
urement X = 〈ϕ,L−1w〉 = 〈L−1∗ϕ, w〉 as

X = 〈ϕ, s〉 = 〈
∫

Rd
h(r , ·)ϕ(r ) dr , w〉

where h(·, ·) ∈S ′(Rd ×Rd ) is the kernel defined by (7.11).

Statement 1): If L−1 is LSI, then the same holds true for L−1∗ whose impulse re-
sponse is L−1∗{δ}(r ) = h(0,r ) = ρL(−r ). By duality, this is equivalent to L−1{δ}(r ) =
h(r ,0) = ρL(r ) with the property that LL−1{δ} = LρL = δ so that ρL is the Green’s
function of L. From the definition of translation invariance, we have that L−1∗{ϕ(·+
r0)}(r ) = L−1∗{ϕ}(r+r0)}, which is then used to show that

∫
Rd f

(
L−1∗{ϕ(·+r0)}(r )

)
dr =∫

Rd f
(
L−1∗{ϕ}(x)

)
dx with the change of variable x = r + r0. Hence the condition in

Definition 7.2 is fulfilled.

Statement 2): This is a special case of Statement 1) where L−1 is also rotation-
invariant which translates into ρL(r ) = ρL(|r |). The condition in Definition 7.3 is
established by simple change of variable in the exponent of the characteristic func-
tional.

Statement 3): Our strategy there is to verify (7.10) starting from (7.7). The fact that

1. The class of such admissible Lévy exponents are the α-stable ones; the symmetric members of the
family are fα(ω; s0) =−|s0ω|α.
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L−1 is scale-invariant of order (−γ) implies that both L−1 and L−1∗ enjoy the same
property, as expressed by (5.1). Therefore,

Bs
(
ϕ1(a·),ϕ2(a·))=σ2

w 〈L−1∗{ϕ1(a·)},L−1∗{ϕ2(a·)}〉
=σ2

w 〈a−γL−1∗{ϕ1}(a·), a−γL−1∗{ϕ2}(a·)〉 (by scale invariance)

=σ2
w a−2γ〈L−1∗{ϕ1}(a·),L−1∗{ϕ2}(a·)〉 (by bilinearity)

= a−2γa−dσ2
w 〈L−1∗ϕ1,L−1∗ϕ2〉 (change of variable)

= a−2γ−d Bs
(
ϕ1,ϕ2

)
,

so that the condition in Definition 7.6 is satisfied if and only if 2H+2d = 2γ+d , which
we rewrite as H = γ−d/2.

Statement 4): The result is obtained by evaluating the required characteristic ex-
ponent where P̂s (ϕ) is specified by (7.3) with f such that f (aω) = aα f (ω) (α homo-
geneous). Specifically,

logP̂s
(
aH+dϕ(a·))=

∫

Rd
f
(
aH+d L−1∗{ϕ(a·)}(r )

)
dr (by linearity of L−1∗)

=
∫

Rd
f
(
aH+d a−γL−1∗{ϕ}(ar )

)
dr (by scale invariance)

=
∫

Rd
a−d f

(
aH+d−γL−1∗{ϕ}(x)

)
dx (change of variable)

= aαH+αd−αγ−d
∫

Rd
f
(
L−1∗ϕ(r )

)
dr (α-homogeneity of f )

The latter expression is equal to logP̂s
(
ϕ

)
if and only if αH +αd −αγ−d = 0, which

yields H = γ−d +d/α.

As for the final result, we consider the observation X0 = 〈ϕ0, w〉 where ϕ0 = h(r0, ·)
with ϕ0 ∈R(Rd )

(
resp., ϕ0 ∈ Lp (Rd )

)
. Since P̂w admits a continuous extension over

R(Rd ) (see Proposition 8.1 in Chapter 8), we can specify the characteristic function
of X0 as p̂X0 (ω) = E{ejωX0 } = P̂w (ωϕ0). Then, p̂X0 is a continuous, positive-definite
function ofω so that we can invoke Bochner’s theorem (Theorem 3.7), which ensures
that X0 = 〈L−1∗{δ(·−r0)}, w〉 = 〈δ(·−r0),L−1w〉 = s(r0) is a well-defined (conventional)
random variable. The result also extends to ϕ0 ∈ Lp (Rd ) whenever f is p-admissible
(see Theorem 8.2, which will be proven later on).

Since the Lévy innovations w are all intrinsically stationary, there is no distinction
in this model between stationarity and WSS, except for the fact that the latter re-
quires the variance σ2

w to be finite. This is not so for self-similarity, which is a more-
demanding property. In that respect, we note that there is no contradiction between
Statements 3) and 4) in Theorem 7.1 because the second-order moments of α-stable
processes (for which f is homogeneous of order α) are undefined for α < 2 (due to
the unbounded variance of the noise). The intersection occurs for α = 2 (Gaussian
scenario) while larger homogeneity indices (α> 2) are excluded by the Lévy admiss-
ibility condition.

The last result in Theorem 7.1 is fundamental for it tells us when s(r ) can be in-
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terpreted as a conventional stochastic process; that is, as a random function of the
index variable r . With a slight abuse of notation, we may rewrite (7.12) as

s(r ) =
∫

Rd
h(r ,r ′)w(r ′) dr ′ =

∫

Rd
h(r ,r ′)W ( dr ′) (7.13)

which shows the connection with conventional stochastic integration (Itô calculus).
There, W is a random measure over Rd that is formally defined as W (E) = 〈1E , w〉 for
any Borel set E ⊆Rd .

While we have already pointed out the incompatibility between stationarity and
self-similarity, there is a formal way to bypass this limitation by enforcing station-
arity selectively through the test functions whose moments are vanishing (up to a
certain order). Specifically, we shall specify in Section 5.5 processes that fulfill this
quasi-stationarity condition with the help of the Lp -stable, scale-invariant inverse of
L∗ defined in Section 5.5. This construction results in self-similar processes with sta-
tionary increments, the prototypical example being fractional Brownian motion. But
before that, we shall investigate other concrete examples of generalized stochastic
processes, starting with the simpler stationary ones.

7.3 Non-Gaussian stationary processes

If the inverse operator L−1 is shift-invariant with generic impulse response ρL ∈
L1(Rd ), then (7.12) is equivalent to a convolutional system with s(r ) = (ρL∗w)(r ). We
can then apply (7.3) in conjunction with Proposition 5.1 to obtain the characteristic
functional of this process, which reads

P̂s (ϕ) = exp

(∫

Rd
f
(
(ρ∨

L ∗ϕ)(r )
)

dr
)

. (7.14)

More generally, we may consider generalized processes that are obtained by LSI fil-
tering of a innovation process w and are not necessarily solutions of a stochastic
differential equation.

P R O P O S I T I O N 7.2 (Generalized stationary processes) Let s = h ∗w where ‖µh‖TV <
∞ (bounded variation) (resp., h is rapidly decaying) and w is a white-noise process
over S ′(Rd ) whose Lévy exponent f is p-admissible (resp., Lévy-Schwartz admissible).
Then, s is a generalized stochastic process in S ′(Rd ) that is stationary and completely
specified by the characteristic functional P̂s (ϕ) = exp

(∫
R f

(
(h∨∗ϕ)(r )

)
dr

)
. In gen-

eral, the process is non-Gaussian unless f (ω) =−σ2
w

2 |ω|2.

The proof is the same as that of Statement 1) in Theorem 7.1. As for the exist-
ence of the process when f is p-admissible, we rely on the convolution inequality,
‖h∨∗ϕ‖Lp = ‖h ∗ϕ∨‖Lp ≤ ‖µh‖TV ‖ϕ‖Lp , which ensures that the Lp Condition in
Definition 7.1 is satisfied. In that respect, we note that the bounded variation hypo-
thesis on h (which is less stringent than h ∈ L1) is the minimal requirement for sta-
bility when p = 1, while it can be weakened to ‖ĥ‖L∞ <∞ for p = 2 (see Statements
1) and 3) in Theorem 3.5).
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In addition, when h ∈ Lp (Rd )
(
resp., h ∈ R(Rd )

)
, we can invoke the last part of

Theorem 7.1 to show that the point values s(r ) of the process are well defined, so
that s also admits a classical interpretation.

7.3.1 Autocorrelation function and power spectrum

Next, we determine the autocorrelation function of the stochastic process s and
make a link with splines by following essentially the same path as for our introduct-
ory AR(1) example. Our basic requirement is that the whitening operator L is spline-
admissible in the sense of Definition 6.8, which implies the existence of the general-
ized B-spline βL and the interpolation function ϕint specified by (6.51).

Let L̂d(ω) =∑
k∈Zd dL[k]e−j〈ω,k〉 with dL ∈ `1(Zd ) be the transfer function of Ld (the

discrete version of the whitening operator L). Under the condition that L̂d(ω) 6= 0
for ω ∈ [−π,π]d , we invoke Wiener’s lemma (Theorem 5.13), which ensures that the
(discrete) inverse operator L−1

d is Lp -stable. This naturally leads to the generalized
B-spline reproduction formula for the impulse response of the system

ρL(r ) = L−1
d βL(r ) =

∑

k∈Zd

p[k]βL(r −k), (7.15)

with p[k] = ∫
[−π,π]d

ej〈ω,k〉
L̂d(ω)

dω
(2π)d ∈ `1(Zd ). The concept also generalizes for the specific-

ation of the second-order moments.

P R O P O S I T I O N 7.3 The autocorrelation function of the stationary stochastic process
s(r ) = (ρL ∗w)(r ), where w is a white Lévy noise with variance σ2

w , is given by

Rs (r ) = E{s(·+ r ) s(·)} =σ2
w (ρL ∗ρ∨

L )(r ).

Moreover, it satisfies the Shannon-like interpolation formula

Rs (r ) =σ2
w (ρL ∗ρ∨

L )(r ) =
∑

k∈Zd

Rs [k]ϕint
(
r −k

)
,

where the interpolation function is defined by (6.51) and where the expansion coeffi-
cients Rs [k] = E{s(·+k) s(·)} = Rs (r )|r=k correspond to the discrete-domain version of
the correlation.

The power spectrum of the process is the Fourier transform of the autocorrelation
function:

Φs (ω) =F {Rs }(ω) = σ2
w

|L̂(ω)|2
, (7.16)

an expression that is consistent with the interpretation of the signal as a filtered white
noise.
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Proof The first part of the statement is obtained from (7.8) as

E{s(r1) s(r2)} =σ2
w 〈L−1L−1∗δ(·− r1),δ(·− r2)〉

=σ2
w 〈L−1L−1∗δ,δ(·+ r1 − r2)〉 (by shift-invariance)

=σ2
w (ρL ∗ρ∨

L )(−r1 + r2) (by definition of δ)

=σ2
w (ρL ∗ρ∨

L )(r1 − r2). (by Hermitian symmetry)

As expected, this yields a correlation function that only depends on the relative differ-
ence r = (r1 − r2) of the index variables. To establish the validity of the interpolation
formula, we consider (6.51) and manipulate the Fourier-domain expression of ϕint

as

ϕ̂int(ω) = |β̂L(ω)|2
∑

n∈Zd |β̂L(ω+2πn)|2

=
|L̂d(ω)|2
|L̂(ω)|2

∑
n∈Zd

|L̂d(ω+2πn)|2
|L̂(ω+2πn)|2

(from definition of generalized B-spline)

=
1

|L̂(ω)|2∑
n∈Zd

1
|L̂(ω+2πn)|2

= Φs (ω)∑
n∈Zd Φs (ω+2πn)

where the third-line simplification results from the property that L̂d(ω) (transfer func-
tion of a digital filter) is 2π-periodic. The final formula is the ratio of Φs (ω) (the
continuous-domain power spectrum of s given by (7.16)) and its discrete-domain
counterpart

∑
k∈Zd Rs [k]e−j〈ω,k〉 = ∑

n∈Zd Φs (ω+ 2πn) (by Poisson’s summation for-
mula), which proves the desired result.

7.3.2 Generalized increment process

A standard side effect of innovation models is the induction of long-range signal
dependencies due to the non-compact nature (IIR) of the impulse response of the
system L−1. We have already pointed out that those could be partially suppressed by
application of the discrete form of the whitening operator Ld. The good news is that
the resulting output (generalized increment process) will not only be approximately
decoupled but also stationary, irrespective of the properties of the input process.

P R O P O S I T I O N 7.4 (Generalized increment process) Let s = L−1w be a generalized
stochastic process (possibly non-stationary) where the whitening operator L is spline-
admissible with generalized B-spline βL ∈ R(Rd ) such that βL(·− r0) = LdL−1δ(·− r0)
for all r0 ∈ Rd . Then, u = Lds is stationary with characteristic functional P̂u(ϕ) =
exp

(∫
Rd f

(
(β∨

L ∗ϕ)(r )
)

dr
)

where f is the Lévy exponent of the innovation w. Its auto-

correlation function is E{u(·+ r )u(·)} =σ2
w (βL ∗β

∨
L )(r ).
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Note that we can also write an extended version of this result for the class of spline-
admissible operators L with βL ∈ L1(Rd ) which requires that f be p-admissible for
some p ∈ [1,2].

Proof The characterization of the B-spline in the statement of the proposition en-
sures that the composition of Ld and L−1 is LSI with impulse response βL = LdL−1δ.
Since Ld is LSI, the condition is trivially satisfied when L−1 is shift-invariant as well.
Generally, the condition will also be met in the non-stationary scenarios considered
latter in this chapter (see Proposition 7.6), the fundamental reason being that Ld

must annihilate the components that are in the null space of L (see Section 6.4 on
the construction of generalized B-splines). This property allows us to write u = Lds =
LdL−1w =βL∗w . The result then follows as a direct consequence of Propositions 7.2
and 7.3.

An important implication of Proposition 7.4 is that the quality of the decoupling
is solely dependent upon the localization properties of βL. This theme is further de-
veloped in Sections 7.4.4 and 8.3.

7.3.3 Generalized stationary Gaussian processes

In light of Proposition 7.2, we observe that the complete class of stationary Gaus-
sian processes is specifiable via the basic convolutional model s = h ∗wGauss where
wGauss is a zero-mean Gaussian innovation process and h an L2-stable convolution
operator with Fourier multiplier H(ω) = ĥ(ω) ∈ L∞(Rd ). This follows from the p = 2
admissibility of the Gaussian Lévy exponent fGauss(ω) = −σ2

w |ω|2/2, the necessity
and sufficiency of the condition H(ω) ∈ L∞(Rd ) for the convolution operator to be
continuous over L2(Rd ) (see Theorem 3.5), and the last existence result in Theorem
4.17.

The resulting generalized Gaussian process is uniquely specified by its autocorrel-
ation function

RsGauss (r ) =σ2
w (h ∗h

∨
)(r )

or, equivalently, by its spectral density

ΦsGauss (ω) =F
{
RsGauss (r )

}
(ω) =σ2

w |H(ω)|2. (7.17)

Its characteristic functional is given by

P̂sGauss (ϕ) = exp

(
−σ

2
w

2
‖h∨∗ϕ‖2

)
, (7.18)

which, by using Parseval’s identity, can also be rewritten as

P̂sGauss (ϕ) = exp

(
−1

2

∫

Rd
ΦsGauss (ω)|ϕ̂(ω)|2 dω

(2π)d

)
.

The necessary and sufficient condition for the existence of such generalized Gaus-
sian processes is that ΦsGauss (ω) be bounded almost everywhere. This is less restrict-
ive than the requirement ΦsGauss ∈ L2(Rd ) of the classical formulation, which ensures
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that the variance of the process E{|sGauss(r0)|2} is finite. The simplest example that
fits the generic filtered-white-noise model but does not meet the latter condition is
wGauss with h = δ.

7.3.4 CARMA processes

The acronym ARMA traditionally refers to discrete Gaussian processes that are
solution of stable N th-order difference equations driven by discrete white Gaussian
noise. The corresponding discrete system is characterized by a rational transfer func-
tion whose denominator determines the N th-order AR (autoregressive) part of the
filter and the numerator the MA (moving average) part. The Gaussian CARMA(N , M)
(continuous-ARMA) processes are the continuous-domain counterparts of these dis-
crete processes. They are solution of the generic N th-order differential equation

pN (D)s(t ) = qM (D)w(t ), (7.19)

with defining polynomials

pN (ζ) = ζN +aN−1ζ
N−1 +·· ·+a0 =

N∏
n=1

(ζ−αn)

qM (ζ) = bMζ
M +bM−1ζ

M−1 +·· ·+b0 = bM

M∏
m=1

(ζ−γm)

where an ,bm ∈ R, M < N , and D is the derivative operator. Traditionally, the driving
term w is a Gaussian white noise with variance σ2

w . The underlying linear system is
characterized by its poles α= (α1, . . . ,αN ) and zeros γ= (γ1, . . . ,γM ) and is known to
be causal-stable if and only if Re(αn) < 0, for n = 1, . . . , N . Under those conditions,
the solution of (7.19) is given by

sα(t ) = (hα,γ∗w)(t )

with hα,γ(t ) =F−1
{

Hα,γ(ω)
}

(t ) where

Hα,γ(ω) = qM (jω)

pN (jω)
= bM

∏M
m=1(jω−γm)

∏N
n=1(jω−αn)

is the frequency response of the underlying system. The link with the operator form-
alism of Section 5.3.2 is

hα,γ(t ) = bM Pγ1 · · ·PγM P−1
αN

· · ·P−1
α1︸ ︷︷ ︸

L−1

δ(t )

with Pα = D−αId and P−1
α δ(t ) = 1+(t )eαt . Moreover, since M < N , we can decom-

pose Hα,γ(ω) into simple partial fractions and obtain an expression of the impulse
response of the system as a sum of elementary components that decay exponen-
tially, which shows that hα,γ(t ) is rapidly decreasing. We are therefore meeting the
least constraining condition hα,γ ∈ R(R) of Proposition 7.2. This ensures that we
can apply the framework to specify not only Gaussian CARMA processes, but also a
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whole variety of non-Gaussian variants associated with more general Lévy innova-
tions. These extended CARMA processes are stationary and completely character-
ized by the characteristic functional (7.14) with ρL = hα,γ and d = 1 without any re-
striction on the Lévy exponent f . Moreover, since the underlying kernel h(t0,τ) =
hα,γ(t0 −τ) for t0 fixed is bounded and exponentially decreasing, they admit an in-
terpretation as an ordinary stochastic process (by Theorem 7.1).

The autocorrelation function of the process is defined under the additional second-
order hypotheses f ′′(0) =−σ2

w and f ′(0) = 0. It is given by

Rsα (t ) =σ2
w (hα,γ∗h

∨
α,γ)(t )

which is a sum of symmetric exponentials with parameters α. The corresponding
power spectrum is

Φsα (ω) =σ2
w

b2
M

∏M
m=1 |jω−γm |2

∏N
n=1 |jω−αn |2

=σ2
w

∣∣∣∣
qM (jω)

pN (jω)

∣∣∣∣
2

,

which is consistent with (7.17).

7.4 Lévy processes and their higher-order extensions

Lévy processes and their extensions can also be defined in the introduced frame-
work, but their specification is more delicate due to the fact that their underlying SDE
is unstable. This requires the use of the “regularized” bounded inverse operators that
we presented in Section 5.4. As this constitutes a significant departure from the tradi-
tional shift-invariant setting, we shall detail the construction in the next subsection
and provide the connection with the classical theory.

7.4.1 Lévy processes

In the standard time-domain formulation of stochastic processes, the solution of
a linear differential equation is usually expressed as the stochastic integral

s(t ) =
∫ +∞

0
h(t ,τ) dW (τ)

where W is a random measure which is a Brownian motion or, by extension, a Lévy
process. In keeping with the above notation, we shall now show that a Lévy pro-
cess W (t ) can be generated via the integration of white noise as W (t ) = ∫ t

0 w(τ) dτ=∫ t
0 dW (τ) which is consistent with the Lévy innovation w = Ẇ being the derivative

of W (in the “weak” sense of generalized functions).
To establish this connection, we recall the classical definition of Lévy processes.

D E FI N I T I O N 7.7 (Lévy process) The stochastic process W = {W (t ) : t ∈R+} is a Lévy
process if it fulfills the following requirements:

1) W (t ) = 0 almost surely.
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2) Given 0 ≤ t1 < t2 < . . . < tn , the increments W (t2) −W (t1), W (t3) −W (t2), . . . ,
W (tn)−W (tn−1) are mutually independent.

3) For any given step T , the increment process δT W (t ), where δT is the operator that
associates W (t ) to

(
W (t )−W (t −T )

)
, is stationary.

In addition, one typically requires the process to fulfill some form of probabilistic
continuity.

In our framework, the equivalent of the above processes is obtained as solution of
the stochastic differential equation

DW = Ẇ = w (7.20)

subject to the boundary condition W (0) = 0, where D = d
dt is the derivative operator

and W is to be defined as a random element of S ′(R). The driving term w in (7.20) is
a 1-D Lévy innovation, as defined in Section 4.4, with characteristic functional

E{ej〈ϕ,w〉} = P̂w (ϕ) = exp

(∫

R
f (ϕ(r )) dr

)
. (7.21)

We recall that w has the property of independence at every point, meaning that any
pair of random variables 〈ϕ, w〉 and 〈ψ, w〉, for test functions ϕ and ψ of disjoint
support, are independent. In terms of the characteristic functional, this property
translates into having P̂w (ω1ϕ+ω2ψ) factorize as

P̂w (ω1ϕ+ω2ψ) = P̂w (ω1ϕ)P̂w (ω2ψ) for disjointly supported ϕ and ψ. (7.22)

To say that a generalized random process W fulfills (7.20) is, for us, to have

〈D∗ϕ,W 〉 = 〈ϕ, w〉 for all ϕ ∈S (R), (7.23)

where D∗ = −D is the adjoint of D. For W to be fully characterized as a random
element of S ′(R), we need to give a consistent definition of 〈ϕ, s〉 for all ϕ ∈ S (R).
We next show that we find a particular solution of (7.20) by defining

〈ϕ,W 〉 = 〈I∗0ϕ, w〉, (7.24)

where I∗0 is the left inverse S (R) → R(R) of D∗ specified in Section 5.4.1. In view of
(7.24), 〈ϕ,W 〉 is probabilistically characterized by the functional

P̂W (ϕ) = P̂w (I∗0ϕ). (7.25)

To see that (7.24) implies (7.23), note, first, that for any ϕ′ ∈S (R) that can be writ-
ten as D∗ϕ for some ϕ ∈S (R), we have

〈ϕ′,W 〉 = 〈D∗ϕ,W 〉 = 〈I∗0 D∗ϕ, w〉.

Now, since I∗0 is a left inverse S (R) →R(R) of D∗ : S (R) →S (R), we find

〈D∗ϕ,W 〉 = 〈ϕ, w〉

(where ϕ can be arbitrarily chosen), which is the same as (7.23).
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We symbolically represent the particular solution W defined by (7.24) and (7.25)
as

W = I0w (7.26)

where I0 is the adjoint of I∗0 . For completeness, we also determine the corresponding
kernel h(t ,τ) in (7.11) which takes the form

I0{δ(·−τ)}(t ) =1+(t −τ)−1+(−τ). (7.27)

It is the “transpose” of the generalized impulse response of I∗0 given by

I∗0 {δ(·−τ)}(t ) =1+(τ− t )−1+(−t ) =
{

1(0,τ](t ), for τ≥ 0
−1(τ,0](t ), for τ< 0

, (7.28)

which follows from (5.17) withω0 = 0 andϕ being substituted by δ(·−τ). While (7.27)
and (7.28) are equivalent identities with the role of the variables t and τ being inter-
changed, the main point is that the kernel on the right of (7.28) for τ fixed is com-
pactly supported. This allows us to invoke Theorem 7.1 to show that the point values
of the process, W (tn) = 〈1(0,tn ], w〉, are ordinary random variables.

Having defined a particular solution of (7.20) as I0w , let us now show that it is
consistent with the axiomatic definition of a Lévy process given by Definition 7.7.
The zero boundary condition at the origin (Property 1) in Definition 7.7) is imposed
by the operator I0 (see Theorem 5.3 with ω0 = 0). As for the other two properties, we
recall that, for t ≥ 0,

I∗0ϕ(t ) =
∫ +∞

t
ϕ(τ) dτ,

from which we deduce

I∗0δ
∗
Tϕ(t ) =

∫ ∞

t
ϕ(τ)−ϕ(t +T ) dτ=

∫ t+T

t
ϕ(τ) dτ= (

1[−T,0) ∗ϕ
)
(t ).

From there, we see that, for the increment process δT W ,

〈ϕ,δT W 〉 = 〈δ∗Tϕ,W 〉 = 〈I∗0δ∗Tϕ, w〉 = 〈1[−T,0) ∗ϕ, w〉,

which is equivalent to

δT W =W (·)−W (·−T ) =1(0,T ] ∗w

because 1(0,T ] =1∨
[−T,0). Now, since w is stationary, we have that

X t = 〈ϕ(·− t ),δT W 〉 = 〈1[−T,0) ∗ϕ(·− t ), w〉 w= 〈1[−T,0) ∗ϕ, w〉 = 〈ϕ,δT W 〉 = X0

for all t ∈R, where
w= denotes equivalence in law. This proves that δT W is stationary.

Finally, by writing
(
W (tm)−W (tm−1)

) = 〈1(tm−1,tm ], w〉 and using Proposition 3.10 in
combination with (7.22), we see that the joint characteristic function of the incre-
ments U1 = W (t2) −W (t1), U2 = W (t3) −W (t2), . . . , Un−1 = W (tn) −W (tn−1) with
0 ≤ t1 < t2 < . . . < tn separates as

p̂(U1:Un−1)(ω1, . . . ,ωn−1) = P̂w (ω11(t1,t2]) P̂w (ω21(t2,t3]) · · ·P̂w (ωn−11(tn−1,tn ]),
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which implies their independence (second property in Definition 7.7).

We close this section with the demonstration of the use of (7.25) for the determ-
ination of the statistical distribution of the sample values of a Lévy process. In our
formalism, the sampling operation is expressed as

W (t1) = 〈δ(·− t1),W 〉 = 〈I∗0δ(·− t1), w〉 = 〈1(0,t1], w〉.

This allows us to deduce the characteristic function of W (t1) by direct substitution 2

of ϕ=ω1δ(·− t1) in (7.25) as

p̂W (t1)(ω1) = E{ejω1W (t1)} = P̂w (ω11(0,t1])

= exp

(∫

R
f
(
ω11(0,t1](τ)

)
dτ

)
.

Recalling that f (0) = 0, we then use the fact that 1(0,t1](t ) is equal to 1 on its support
of size t1 and zero otherwise to simplify the above integral, which yields

p̂W (t1)(ω1) = et1 f (ω1). (7.29)

This final result is the celebrated Lévy-Khintchine characterizationof a Lévy process
which shows that the pdf of W (t1) is infinitely divisible and that W is non-stationary
because the underlying Lévy exponent t1 f (ω1) is dependent upon the sampling in-
stant t1.

7.4.2 Higher-order extensions of Lévy processes

We saw in (7.20) that Lévy processes can be characterized as solutions of first-
order SDEs involving a simple derivative operator. Naturally, it is of interest to ex-
tend this definition to unstable higher-order SDEs of the same form as (7.19) with K
poles on the imaginary axis. To that end, we adopt the operator notation of Section
5.4.2 and an ordering of the poles where the purely imaginary ones come last with
αN−K−k = jωk , 1 ≤ k ≤ K . We then factorize pN (D) into first-order terms, separating
the unstable terms of the left-hand side, which allows us to rewrite (7.19) as

(Pα1 · · · PαN−K ) (Pjω1 · · · PjωK ) sα = qM (D) w ,

where Pαn = D−αnId and qM (D) is a polynomial in D of degree M . The above SDE
can be solved by inverting each of the first-order operators on the left individually, in
the manner described in Section 5.4.2. The formal solution is thus given by

sα = (IωK · · · Iω1 )︸ ︷︷ ︸
I(ωK :ω1)

(P−1
αN−K

· · · P−1
α1

)
︸ ︷︷ ︸

P−1
(α1:αN−K )

qM (D)w

= I(ωK :ω1)TLSIw (7.30)

2. This is equivalent to pluging ϕ=ω11(0,t1] into P̂w (ϕ), which is legitimate since the latter is a con-
tinuous, positive-definite functional over R(R) (see Proposition 8.1).
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where the elementary inverse operators P−1
αn

and Iωk are defined by (5.10) and (5.19),
respectively. Note that the proposed method of resolution involves the two com-
posite operators I(ωK :ω1) and TLSI = P−1

(α1:αN−K )qM (D), the last of which is linear shift-
invariant and S -continuous. While the ordering of the factors of TLSI is immaterial
(due to the commutativity of convolution), this is not so for the K th-order integra-
tion operator I(ωK :ω1) = IωK · · · Iω1 which is shift-variant and directly responsible for
the boundary conditions. Specifically, the prescribed ordering of the imaginary poles
imposes the K linear boundary conditions at the origin





sα(0) = 0
PjωK sα(0) = 0

...
Pjω2 · · ·PjωK sα(0) = 0,

(7.31)

which are part of the definition of the underlying generalized Lévy process sα.

Finally, we invoke Corollary 5.5 and Theorem 4.17 to get the full characterization
of the N th-order generalized Lévy process in terms of its characteristic functional

P̂sα (ϕ) = exp

(∫

R
f
(
T∗

LSII
∗
(ω1:ωK )ϕ(t )

)
dt

)
, (7.32)

where f is the Lévy-Schwartz exponent of the innovation, I∗(ω1:ωK ) is the composite
stabilized integration operator defined by (5.24) and (5.18), and TLSI is the convolu-
tion operator corresponding to the stable part of the system with Fourier multiplier

T̂LSI(ω) =
qM (jω)

∏K
k=1(jω− jωk )

pN (jω)
= qM (jω)

∏N−K
n=1 (jω−αn)

,

where Re(αn) 6= 0 for 1 ≤ n ≤ N −K . Clearly, the extended filtered-white-noise model
(7.30) is compatible with the definition of CARMA processes of Section 7.3.4 if we
simply set K = 0; it also yields the classical Lévy processes when N = K = 1 and
ω1 = 0. In that respect, we observe that the derived process Pjω1 · · · PjωK sα = TLSIw
is stationary (by Proposition 7.2 and the right-inverse property of I(ωK :ω1)) so that we
may interpret K as the order of stationary deficiency.

7.4.3 Non-stationary Lévy correlations

In Section 7.3.1, we showed that there is a simple relation between the autocor-
relation function of a second-order stationary process and the Green’s function ρL

of the whitening operator of L. We also derived a spline interpolation formula that
connects the continuous- and discrete-domain versions of the autocorrelation func-
tion (see Proposition 7.3). In principle, it is possible to obtain similar results for the
higher-order extensions of the Lévy processes from the previous section, but the cor-
relation formulas are more involved and somewhat harder to get to. We shall illus-
trate the concept by considering the case of an N th-order process with a single order
of non-stationarity (K = 1 andαN = jω0) subject to the boundary condition sα(0) = 0.
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P R O P O S I T I O N 7.5 (Correlation structure of processes with one order of non-station-
arity) Let sα(t ) be an N th-order generalized Lévy process with whitening operator L
that meets the boundary condition sα(0) = 0 imposed by the presence of the pole jω0

on the imaginary axis. The non-stationary correlation of the continuous and discrete-
domain versions of the process is fully specified by

Rsα (t , t ′) = E{sα(t ) sα(t ′)} = vsα (t ′− t )−ejω0t vsα (t ′)−e−jω0t ′vsα (−t )

Rsα [k,k ′] = E{sα[k] sα[k ′]} = vsα [k ′−k]−ejω0k vsα [k ′]−e−jω0k ′
vsα [−k]

where vs (t ) = σ2
wρLL∗ (t ) and where vsα [k] = vsα (t )|t=k . These two entities are linked

through the exponential-spline interpolation formula

vsα (t ) =
∑

k∈Z
vsα [k]ϕint(t −k),

where ϕint(t ) is specified by (6.51). Moreover, vsα (t ) = O(|t |) is a function of slow
growth whose generalized Fourier transform is given by

v̂sα (ω) = σ2
w ,

|L̂(−ω)|2
=Vsα (ejω)ϕ̂int(ω)

where L̂(ω) is the frequency response of L which exhibits a zero at αN = jω0.

Proof From (7.8), we have that Rsα (t1, t2) = σ2
w L−1L−1∗{δ(·− t1)}(t2). Since the sys-

tem has a single singularity on the imaginary axis at jω0, (7.32) implies that L−1∗ =
T∗

LSII
∗
ω0

where TLSI is a BIBO-stable LSI system whose transfer function is T̂LSI(ω) =
j(ω+ω0)

L̂(ω)
. Using the Fourier-domain formula (5.21) of I∗ω0

and the fact that TLSI is a
standard convolution operator, we find that the Fourier transform of T∗

LSII
∗
ω0

{δ(·−t1)}
is given by

T̂LSI(−ω)
e−jωt1 −ejω0t1

−j(ω+ω0)
.

Likewise, we have that L−1 = Iω0 TLSI which, by considering the complex-conjugate
counterpart of Formula (5.20) for Iω0 , yields

L−1L−1∗{δ(·− t1)}(t ) =
∫

R

(
e−jωt1 −ejω0t1

−j(ω+ω0)

)
|T̂LSI(−ω)|2

(
ejωt −e−jω0t

j(ω+ω0)

)
dω

2π

=
∫

R
|T̂LSI(−ω)|2

(
ejω(t−t1) −ejω0t1 ejωt −e−jω0t e−jωt1 +e−jω0(t−t1)

|ω+ω0|2
)

dω

2π
(7.33)

= ρLL∗ (t − t1)−ejω0t1ρLL∗ (t )−e−jω0tρLL∗ (−t1).

The critical step in this derivation is the evaluation of the integral in (7.33) which,
contrary to appearances, is non-singular, due to the presence of the fourth term in
the numerator. To make this explicit, we recall that the proper specification of the
inverse Fourier transform of 1/|L̂(−ω)|2, which has a second-order singularity at ω=
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−ω0, involves a finite-part integral (see Appendix A.3) that can be resolved as follows

ρLL∗ (t ) =F−1
{

1

|L̂(−ω)|2
}

(t )

= p.f.
∫

R
|T̂LSI(−ω)|2 ejωt

|ω+ω0|2
dω

2π

=
∫

R
|T̂LSI(−ω)|2 ejωt −e−jω0t

(
1+ j(ω+ω0)t

)

|ω+ω0|2
dω

2π

where the numerator is corrected by subtracting the first two terms of the Taylor
series of ejωt around ω=−ω0.

This means that, in order to neutralize the singularity in the denominator of (7.33),
we need to correct the three leading exponentials in the numerator by subtracting
their first-order development around ω = −ω0. This is possible by rewriting the nu-
merator as

Numerator = ejω(t−t1) −e−jω0(t−t1) [1+ j(ω+ω0)(t − t1)
]

−ejω0t1
(
ejωt −e−jω0t [

1+ j(ω+ω0)t
])

−e−jω0t (
e−jωt1 −ejω0t1

[
1− j(ω+ω0)t1

])

= ejω(t−t1) −ejω0t1 ejωt −e−jω0t e−jωt1 +e−jω0(t−t1),

which shows that the terms that are required to make the inverse-Fourier integral
non-singular precisely add up to e−jω0(t−t1).

In particular, for N = 1 and ω0 = 0, we find that

RWiener(t , t ′) = σ2
w

2

(|t ′− t |− |t ′|− |t |)

which is the well-known autocorrelation function of Brownian motion (a.k.a. Wiener
process).

7.4.4 Removal of long-range dependencies

The characteristic functional (7.32) provides a complete description of the Lévy
processes and their extensions. While the formula is elegant conceptually, it is not
quite as favorable for the derivation of the joint statistics of these processes. Even in
the simplest case of correlations, the calculations can get quite involved as we just
saw in the previous section. The source of the difficulty is the non-stationary nature
of the operator I∗(ω1:ωK ). Another confounding factor is the induction of long-range
dependencies due to lack of decay of the Green’s function ρL in the non-stable scen-
ario. Fortunately, these dependencies can be suppressed, for the most part, by ap-
plying the decoupling procedure outlined in Proposition 7.4. The practical benefit is
that this produces an equivalent signal—the generalized-increment process—that is
stationary and maximally decoupled, which greatly simplifies the statistical analysis.

For an N th-order generalized Lévy process, it is possible to characterize all relev-
ant quantities explicitly by taking advantage of the functional link with exponential
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B-splines. Specifically, given the poles α ∈ CN of the system, one defines the follow-
ing spline-related entities:

1) the (causal) exponential B-spline with parameterα (poles)

βα(t ) =
∫

R
ejωt

N∏
n=1

(
1−eαn−jω

jω−αn

)
dω

2π
(7.34)

2) the N th-order (causal) finite-difference (or localization) operator

∆αϕ(t ) =∆α1 · · ·∆αNϕ(t ) (7.35)

which is obtained by cascading the first-order operators∆αnϕ(t ) =ϕ(t )−eαnϕ(t−
1) with n = 1, . . . , N .

The important point for our argumentation is that the exponential B-spline βα(t ) is
causal with a compact support of size N and differentiable up to order (N −1) (see
Section 6.4.4).

We recall that the generalized Lévy process sα satisfies the differential equation
(5.6) which is associated with the whitening operator L whose frequency response in
the sense of generalized functions is

L̂(ω) = pN (jω)

qM (jω)
=

∏N
n=1(jω−αn)

bM
∏M

m=1(jω−γm)
.

This suggests considering the generalized exponential B-spline

βL(t ) =∆αρL(t )

= qM (D)βα(t ), (7.36)

where ρL = F−1
{
1/L̂(ω)

}
is the Green’s function of L. The crucial property here is

that βL ∈ R(R) with the shortest possible support. Indeed, βL has the same (min-
imal) support asβα and is bounded (because qM (D) is a differential operator of order
M < N ), independently of the location of the poles in the complex plane. Our next
proposition ensures that the B-spline in (7.36) and the finite-difference operator ∆α
are the appropriate ingredients for decoupling generalized Lévy processes.

P R O P O S I T I O N 7.6 (Approximate inversion by finite differences) Let L−1 be the N th-
order inverse operator defined by

L−1 = IωK · · · Iω1 P−1
αN−K

· · · P−1
α1

qM (D),

with Re(αn) 6= 0 for 1 ≤ n ≤ N−K andαK+k = jωk for 1 ≤ k ≤ K where Iωk and P−1
αn

are
specified by (5.19) and (5.10), respectively. Then, the generalized B-spline βL defined
by (7.36) and (7.34) has the following properties:

∆αL−1ϕ=βL ∗ϕ
L−1∗∆∗

αϕ=β∨
L ∗ϕ

for all ϕ ∈S (R).
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Since βL is maximally localized and close to an impulse, the interpretation is that
∆α yields an approximate inverse of L−1. In other words, ∆α acts as a discrete proxy
for the continuous-domain whitening operator L.

Proof The key is to rely on the factorization property (6.42) of the exponential B-
spline βα and to consider the elementary factors one at a time. To that end, we first
establish that

∆αP−1
α ϕ=βα∗ϕ (7.37)

∆jωk Iωkϕ=βjωk ∗ϕ, (7.38)

as well as the adjoint counterparts of these relations. The first identity is a direct
consequence of the definition of the first-order exponential B-spline

βα(t ) =∆αρα(t ) =F−1
{

1−eα−jω

jω−α

}
(t )

where ρα = F−1
{
1/(jω−α)

}
is the Green’s function of the operator Pα or, equival-

ently, the impulse response of the inverse operator P−1
α . As for the second identity,

we apply the time-domain definition (5.19) of Iωk , which yields

∆jωk Iωkϕ=∆jωk {ρjωk ∗ϕ}− (ρjωk ∗ϕ)(0) ∆jωk {ejωk r }
︸ ︷︷ ︸

=0

=∆jωk {ρjωk }∗ϕ
=βjωk ∗ϕ,

where we have used the fact that ∆jωn annihilates the sinusoidal components that
are in the null space of Pjωk and the associativity of convolution operators such as
∆jωk . By applying (7.37) and (7.38) recursively and making use of the commutativity
of S -continuous LSI operators, we find that

∆αL−1ϕ=∆(α1:αN−1)
(
∆jωK IωK

)
I(ωK−1:ω1)P

−1
αN−K

· · · P−1
α1

qM (D){ϕ}

=βjωK ∗∆(α1:αN−2)
(
∆jωK−1 IωK−1

)
I(ωK−2:ω1)P

−1
αN−K

· · · P−1
α1

qM (D){ϕ}

...

=βjωK ∗·· ·∗βjω1 ∗βαN−K ∗·· ·∗βα1 ∗qM (D){ϕ}

= qM (D){βα1 ∗·· ·∗βαN }∗ϕ
= qM (D){βα}∗ϕ
=βL ∗ϕ.

The adjoint counterpart of this identity is obtained by applying the same divide-and-
conquer strategy.

The idea is now to apply the localization operator∆α to sα in order to partially de-
couple the process and, more importantly, to suppress its non-stationary compon-
ents. This yields the generalized-increment process uα = ∆αsα, which has a much
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Figure 7.2 Example 1: Generation of generalized stochastic processes with whitening
operator L = D

(
pole vectorα= (0)

)
. (a) B-spline functions βL(t ) = rect

(
t − 1

2

)
and

βLL∗ (t ) = tri(t ), (b) Brownian motion, (c) compound-Poisson process with λ= 1/32 and

Gaussian amplitude distribution p A(a) = (2π)−1/2e−a2/2, c) SαS Lévy motion with α= 1.2.

simpler statistical structure than sα. Indeed, by combining the result of Proposition
7.6 with (7.30), we show that

〈ϕ,uα〉 = 〈ϕ,∆αsα〉
= 〈∆∗

αϕ,L−1w〉
= 〈L−1∗∆∗

αϕ, w〉 = 〈β∨
L ∗ϕ, w〉

for all ϕ ∈S (R). This is equivalent to

uα =∆αsα =βL ∗w (7.39)

which is a form that is much more convenient than sα = L−1w because the convo-
lution with βL preserves stationarity. The other favorable aspect is that the gener-
alized B-spline βL (which has a compact support) is much better localized than the
Green’s function ρL, especially in the non-stable scenario where ρL exhibits polyno-
mial growth. We are now in the position to invoke Proposition 7.4 to get the complete
statistical characterization of uα, including its correlation function which is pro-
portional to βLL∗ (t ) = (βL ∗β

∨
L )(t ) where βL is the generalized exponential B-spline

defined by (7.36).

7.4.5 Examples of sparse processes

Examples of realizations of Gaussian versus sparse stochastic processes are shown
in Figures 7.2 to 7.5. These signals were generated using three types of driving innov-
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Figure 7.3 Example 2: Generation of generalized stochastic processes with whitening
operator L = D2 (

pole vectorα= (0,0)
)
. (a) B-spline functions βL(t ) = tri(t ) and βLL∗ (t ) (cubic

B-spline), (b) Gaussian process, (c) generalized Poisson process with λ= 1/32 and Gaussian

amplitude distribution p A(a) = (2π)−1/2e−a2/2, c) generalized SαS process with α= 1.2.

ations: Gaussian (panel b), impulsive Poisson (panel c), and symmetric-alpha-stable
(SαS) with α= 1.2 (panel d).

The relevant operators are:

– Example 1: L = D (Lévy process)
– Example 2: L = D2 (second-order extension of Lévy process)
– Example 3: L = (D−α1Id)(D−α2Id) and α = (j3π/4,−j3π/4) (generalized Lévy

process)
– Example 4: L = (D−α1Id)(D−α2Id) andα= (−0.05+ jπ/2,−0.05− jπ/2) (CAR(2)

process)

The corresponding B-splines (βL and βLL∗ ) are shown in the upper-left panel of each
figure.

The signals that are displayed side-by-side share the same whitening operator, but
they differ in their sparsity patterns which come in three flavors: none (Gaussian), fi-
nite rate of innovation (Poisson), and heavy-tailed statistics (SαS). The Gaussian sig-
nals are uniformly textured, while the generalized Poisson processes are piecewise-
smooth by construction.

Lowpass processes
The classical Lévy processes (Figure 7.2) are obtained by integration of white Lévy

noise. They go hand-in-hand with the B-spline of degree 0 (rect) and its autocorrela-
tion (triangle function) which is a B-spline de degree 1. The Gaussian version (Figure
7.2b) is a Brownian motion. It is quite rough and nowhere differentiable in the clas-
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Figure 7.4 Example 3: Generation of generalized stochastic processes with operator
L = (D−α1Id)(D−α2Id) andα= (j3π/4,−j3π/4). (a) B-spline functions βL and βLL∗ , (b)
Gaussian process, (c) generalized Poisson process with λ= 1/32 and Gaussian amplitude
distribution, c) generalized SαS process with α= 1.2.

sical sense. Yet, it is mean-square continuous due to the presence of the single pole at
the origin. The Poisson version (compound Poisson process) is piecewise-constant,
each jump corresponding to the occurrence of a Dirac impulse. The SαS Lévy motion
exhibits local fluctuations punctuated by large (but rare) jumps, as is characteristic
for this type of process [ST94,App09]. Overall, it is the jump behavior that dominates
making it even sparser than its Poisson counterpart.

The example in Figure 7.3 (second-order extension of a Lévy process) corresponds
to one additional level of integration which yields smoother signals (i.e., one-time
differentiable in the classical sense). The corresponding Poisson process is piecewise-
linear, while the SαS version looks globally smoother than the Gaussian one, except
for a few sharp discontinuities in its slope. The basic B-spline here is a triangle, while
βLL∗ is a cubic B-spline. The signals in Figures 7.2 and 7.3 are non-stationary; the un-
derlying processes have the remarkable property of being self-similar (fractals) due
to the scale invariance of the pure-derivative operators. The Gaussian and SαS pro-
cesses are strictly self-similar in the sense that the statistics are preserved through
rescaling. By contrast, the scaling of the Poisson processes necessitates some corres-
ponding adjustment of the rate parameter λ [UT11].

Bandpass processes
The second-order signals in Figure 7.4 are are non-stationary as well, but no longer

lowpass, nor self-similar. They are real-valued, and C 1-continuous almost every-
where (pair of complex-conjugate poles in the left complex plane). They constitute
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Figure 7.5 Example 4: Generation of generalized stochastic processes with whitening
operator L = (D−α1Id)(D−α2Id) andα= (−0.05+ jπ/2,−0.05− jπ/2). (a) B-spline functions
βL and βLL∗ , (b) Gaussian AR(2) process, (c) generalized Poisson process with λ= 1/32 and
Gaussian amplitude distribution, c) SαS AR(2) process with α= 1.2.

some kind of modulated (or bandpass) counterpart of the Lévy processes which ap-
pears to be much better suited for the modeling of acoustic signals. As in the other
examples, the Gaussian version is looking cluttered. The Poisson signal is somewhat
stereotyped (stretches of pure oscillating regime) and not quite as realistic looking as
its SαS counterpart.

As soon as the poles are moved away from the imaginary axis, the processes be-
come stationary. This is illustrated in Figure 7.5 with some CAR(2) (continuous autore-
gressive) examples, the non-Gaussian versions of which having a marked tendency
to exhibit characteristic bursts associated with the impulse response of the system.
These latter processes are part of the stationary CARMA family characterized in Sec-
tion 7.3.4.

7.4.6 Mixed processes

One can also construct signals with a more intricate structure by simple addition
of independent elementary processes. This results into the mixed process smix =
s1 +·· ·+ sM whose characteristic functional is the product of the characteristic func-
tionals of the individual constituents. It is given by

P̂smix (ϕ) =
M∏

m=1
P̂sm (ϕ) = exp

(∫

R

M∑
m=1

fm
(
L−1∗

m ϕ(t )
)

dt

)

where sm is some elementary process with whitening operator Lm and Lévy function
fm(ω). As a demonstration of concept, we have synthesized some acoustic samples
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by mixing random signals associated with elementary musical notes (pair of poles
at the corresponding frequency). These can be downloaded from the web at http:
//www.sparseprocesses.org/. The Gaussian versions are diffuse, cluttered, and
boring to listen to. The generalized Poisson and SαS samples are more interesting
perceptually—reminiscent of chimes—with the latter sounding less dry and more
realistic. Note that mixing does not gain us anything in the Gaussian case because the
resulting signal is still part of the traditional family of Gaussian ARMA processes (this

follows from Parseval’s relation and the fact that
∑M

m=1
σ2

w

|L̂m (−ω)|2 is expressible as an
equivalent rational power spectrum). This is not so for the non-Gaussian members of
the family, which are not decomposable in general, meaning that the mixing of sparse
processes opens up new modeling perspectives. Interestingly, the Gaussian acoustic
samples are almost impossible to compress using mp3/AAC, while the generalized
Poisson and SαS ones can be faithfully reproduced at a much lower bit rate.

7.5 Self-similar processes

In order to construct self-similar stochastic processes in our framework, we seek
operators L that are scale-invariant, and which have scale-invariant inverses, in the
sense of Definition 5.2. This narrows down the class of suitable operators to the frac-
tional derivatives ∂γτ in 1-D and the fractional Laplacians (−∆)

γ
2 in multiple dimen-

sions if rotation-invariance is required as well. This suggests that self-similar pro-
cesses can be specified as solutions of fractional SDEs. Once again, the definition
of these processes requires the use of regularized bounded inverses which, in this
case, were introduced in Section 5.5. A difference with the Lévy processes is that,
for fractional-order operators, the definition of the inverse depends not only on the
forward operator but also on the innovation—more precisely, on the domain of the
characteristic functional of the innovation.

An alternative non-isotropic multidimensional solution is a separable operator of
the form L = ∂

γ
r1,τ1

· · ·∂γrd ,τd
where ∂

γ
rn ,τ denotes the (γ,τ)-derivative along the co-

ordinate axis rn (see Section 5.5.1). The simplest example is the partial derivative
operator L = ∂r1 · · ·∂rd , which results in the definition of the Mondrian process (see
Section 7.5.3).

We now describe in more detail the first class of self-similar and isotropic pro-
cesses and fields. The generation of these processes, as suggested above, is achieved
by applying the Lp -continuous inverses defined in Section 5.5.3 to self-similar and
rotation-invariant innovations.

For the processes that are defined using these operators to be self-similar in the
strict sense (see Definition 7.4), the innovation to which the operator is applied needs
to be self-similar as well, in the sense that 〈ϕ, w〉 and c〈ϕ, w( ·

a )〉 have the same stat-
istics for some appropriate normalization factor c. This narrows down the class of in-
novations toα-stable noises. More generally, however, we may apply a scale-invariant
operator to a Lévy noise in order to obtain a process/field that is wise-sense self-
similar (see Definition 7.6).

http://www.sparseprocesses.org/
http://www.sparseprocesses.org/
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In the next to sections, we review genuine self-similar models 3 that result from the
application of scale-invariant operators to SαS innovations, and then devote Section
9.4 to the case of Poisson innovations, which yield wide-sense self-similar models.

7.5.1 Stable fractal processes

The class of self-similar and rotation-invariant innovations used in our definition
consists of symmetric α-stable white noises defined (in one and several dimensions)
by the characteristic functional

P̂wα,s0
(ϕ) = e−‖s0ϕ‖αα (7.40)

with α ∈ (0,2], where ‖ · ‖αα denotes αth power of the Lα (quasi-)norm and s0 is an
arbitrary positive normalization constant. Note that the largest domain of definition
of P̂α,s0 on which it remains finite is the Lebesgue space Lα(Rd ). The characteristic
functional P̂wα,s0

is also continuous with respect to the Lα topology (and, a fortiori,
with respect to any finer topology such as those of D,S ⊂ Lα).

The innovation wα,s0 defined by (7.40) is stationary, isotropic, and self-similar with
scaling index

( d
α −d

)
in the following sense:

〈ϕ, wα,s0 (RT·)〉 =〈ϕ(R·), wα,s0〉
=〈ϕ, wα,s0〉 in probability law (rotation-invariance);

〈ϕ, wα,s0 (a−1·)〉 =ad 〈ϕ(a·), wα,s0〉
=ad− d

α 〈ϕ, wα,s0〉 in probability law (self-similarity).

This, in combination with the rotation invariance and scale invariance of degree
(−γ) of the inverse Laplacian operator L−γ∗

α introduced in Theorem 5.11, shows that
the generalized random process/field

sα,H = L
−H−d+ d

α
α wα,s0

defined by the characteristic functional

P̂sα,H (ϕ) = P̂wα,s0
(L

−H−d+ d
α∗

α ϕ) (7.41)

is isotropic and self-similar with Hurst exponent H for H 6= 0,1,2, . . .
(
see Theorem

7.1, Statement 4) with γ = H +d −d/α
)
. Finally, we note that the existence of these

processes is guaranteed since the operator L−γ∗
α used above correctly maps S (Rd )

into Lα(Rd ), per Theorem 5.11.

The random processes/fields sα,H are the so-called fractional stable motions, which
generalize fractional Brownian motions corresponding to the Gaussian case (α= 2).
These processes have been widely applied in stochastic modeling, especially in their

3. These models are studied in more detail in the thesis of P. D. Tafti [Taf11], which is entirely devoted
to the study of self-similar fields, with emphasis on vectorial extensions (flow fields).



178 Sparse stochastic processes

early Gaussian variety known as fractional Brownian motion, as discussed by Man-
delbrot and Van Ness [MVN68] (some examples are shown in the left column of Fig-
ure 7.6). They are remarkable due to their fractal nature and long-range dependen-
cies. Their most significant statistical properties are listed below.

1) Self-similarity: The process sα,H is equivalent in probability law to its scaled ver-
sion aH sα,H ( ·

a ). The property is established by showing that sα,H and aH sα,H ( ·
a )

have the same characteristic functional (see proof of Statement 4) in Theorem
7.1). It also justifies its parameterization by H , the Hurst or self-similarity expo-
nent of the process.

2) Isotropy: The process sα,H is equivalent in probability law to sα,H (RT·), where R
is an arbitrary orthonormal matrix in Rd×d . The proof is similar to that of the
previous property.

3) Non-stationarity and stationary (n + 1)th increments: The process sα,H is non-
stationary since it is the result of applying the non-shift-invariant operator L−γ

α

with γ = H +d − d/α to a stationary white-noise process. However, despite its
non-stationarity, any finite increment of sα,H of order bHc+ 1, as defined in the
following theorem, is stationary.

T H E O R E M 7.7 Let Y = {y0, . . . , yn} be a set of n +1 vectors in Rd and denote by δY

the finite-difference operator defined as the composition of the operators

δyi : f 7→ f − f (·− yi ).

Then, for bHc ≤ n, the random process/field

δ∗Y sα,H

is stationary.

Proof We first observe that the (n + 1)th-order finite-difference operator δY is
shift-invariant and annihilates the moments of a function ϕ up to degree n, so
that

∫

Rd
y kδY ϕ(y) dy = 0

for |k | ≤ n (this is proved easily by induction on n or by differentiation in the Four-
ier domain). From there, according to (5.36) we have

L−γ∗
α δY ϕ= ργ−d ∗ (δY ϕ)

because the correction term for δY ϕ that normally distinguishes L−γ∗
α from the
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shift-invariant inverse is zero in this case. Consequently,

〈ϕ(·−h),δ∗Y sα,H 〉 =〈δY ϕ(·−h), sα,H 〉

=〈L−H−d+ d
α∗

α δY ϕ(·−h), wα〉

=〈L−H−d+ d
α∗

α δY ϕ, wα(·+h)〉 by shift-invariance

=〈L−H−d+ d
α∗

α δY ϕ, wα〉 by the stationarity of wα

=〈ϕ,δ∗Y sα,H 〉 in probability law,

which proves that δ∗Y sα,H is stationary.

4) Variogram and covariance in the finite-variance case (with 0 < H < 1): For α < 2,
fractional stable motions have infinite variance. But for α = 2, the covariance
structure of fractional Brownian fields can be derived from the characteristic func-
tional of its n+1th-order increments. Here, we show this derivation for 0 < H < 1.

P R O P O S I T I O N 7.8 (Self-similar variograms) The variogram and the covariance
function of a fractional Brownian field with 0 < H < 1 are given by

2γs2,H (r , s) = E{|s2,H (r )− s2,H (s)|2} ∝ 2ρ2H (r − s)

and

Rs2,H (r , s) = E{s2,H (r )ss,H (s)} ∝ 2ρ2H (r )−2ρ2H (r − s)+2ρ2H (s),

respectively, where ργ is the γ-homogeneous distribution defined in Theorem 5.10.

Proof Let us temporarily denote by u the increment process

u(h) = s2,H (r +h)− s2,H (s +h) = δr−s s2,H (r +h).

Then, the variogram of s2,H corresponds to the variance of u at 0. To compute it,
we first observe that

〈ϕ,δr−s s2,H (·+ r )〉 = 〈ϕ,δr−s L−H−d/2
2 w(·+ r )〉

= 〈L−H−d/2∗
2 {δ∗r−sϕ(·+ r )}, w〉

= 〈ρH−d/2 ∗ϕ(·+ r )−ρH−d/2 ∗ϕ(·+ s), w〉
= 〈(ρH−d/2(·+ r )−ρH−d/2(·+ s)

)∗ϕ, w〉.

This shows that, for fixed r and s, u is a filtered Gaussian white noise with gener-
alized covariance function
(
ρH−d/2(·+r )−ρH−d/2(·+s)

)∨∗(
ρH−d/2(·+r )−ρH−d/2(·+s)

)∝ 2ρ2H (r−s)−2ρ2H (·),

using the symmetry and convolution properties of ργ. In particular, for the vari-
ance at 0 of u (which is the same as the variance everywhere, due to stationarity),
we have

2γs2,H (r , s) = E{|s2,H (r )− s2,H (s)|2} ∝ 2ρ2H (r − s).
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fBm; H = 0.50
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fBm; H = 1.25
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Version 2: Different excitations

Figure 7.6 Gaussian vs. sparse fractal-like processes: Comparison of fractional Brownian
motion (left column) and generalized Poisson (right column) stochastic processes as the
order inceases. The processes that are side-by-side have the same order γ= H + 1

2 and
identical second-order statistics.

By developing the above result, we then find the generalized covariance

Rs2,H (r , s) = E{s2,H (r )ss,H (s)} ∝ 2ρ2H (r )−2ρ2H (r − s)+2ρ2H (s).

The result of Proposition 7.8 generalizes to all wide-sense self-similar processes
obtained by replacing theα-stable innovation in (7.41) with a general finite-variance
stationary innovation.

7.5.2 Fractional Brownian motion through the looking-glass

To demonstrate the analytical power of the formalism, we now consider the special
case d = 1, α = 2, and H ∈ (0,1). The corresponding self-similar Gaussian process
is fractional Brownian motion (fBm), commonly denoted by BH . The evaluation of
(7.41) then yields

E{ej〈ϕ,BH 〉} = P̂BH (ϕ) = exp

(
−1

2

∫

R

∣∣∣∣
ϕ̂(ω)− ϕ̂(0)

(−jω)γ

∣∣∣∣
2 dω

2π

)
(7.42)

with γ = H + 1
2 , where we have applied (5.38) and used Parseval’s relation to rewrite

‖L−γ∗
2 ϕ‖2

2 in the Fourier domain. It is important to understand that (7.42) completely
characterizes fBm. While there are several equivalent ways of writing the denomin-
ator in the Fourier-domain integral, we have chosen the form |ω|2γ = |(−jω)γ|2. In
terms of operators, this translates into

P̂BH (ϕ) = exp
(
− 1

2‖Iγ∗0,2{ϕ}‖L2

)

where Iγ∗0,2 is the canonical left inverse of the fractional-derivative operator Dγ∗ (see
definitions in Table 7.1). This, in turn, implies that fBm is the solution of the frac-
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Definition Properties

Fractional derivatives of order γ ∈R, γ 6= −1,−2,−3, . . .

Dγ{ϕ}(τ) =
∫

R
ϕ̂(ω)(jω)γejωτ dω

2π
causal, LSI

Dγ∗{ϕ}(τ) =
∫

R
ϕ̂(ω)(−jω)γejωτ dω

2π
anti-causal, LSI

Fractional integrators of order γ ∈ (1− 1
p ,+∞), γ+ 1

p 6= 1,2,3, . . .

I
γ
0,p {ϕ}(τ) =

∫

R

ejωτ−∑bγ−1+ 1
p c

k=0
(jω)k

k !

(jω)γ
ϕ̂(ω)

dω

2π
I
γ
0,p {ϕ}(0) = 0

I
γ∗
0,p {ϕ}(τ) =

∫

R

ϕ̂(ω)−∑bγ−1+ 1
p c

k=0
ϕ̂(k)(0)ωk

k !

(−jω)γ
ejωτ dω

2π
Lp -stable

Table 7.1 Causal scale-invariant operators and their adjoint.

tional stochastic differential equation

DγBH = w (7.43)

where w is a normalized Gaussian white noise.
By writing the explicit form of Iγ∗0,2 with γ ∈ (0.5,1.5), we obtain

Iγ∗0,2{ϕ}(τ) =
∫

R

ϕ̂(ω)− ϕ̂(0)

(−jω)γ
ejωτ dω

2π
(7.44)

= (D−γ+1)∗I∗0 {ϕ}(τ) (7.45)

where I∗0 = I1∗
0,2 is the regularized integrator that we have already encountered during

our investigation of Lévy processes. One can also verify that (7.44) coincides with the
Lp -stable left inverse ∂−γ∗τ,2 of Theorem 5.8 with τ = −γ/2 and p = 2. The interest of
(7.45) is that it suggests a possible representation of fBm as

BH = I0D−H+1/2w

where I0 imposes the boundary condition BH (0) = 0.
To determine the underlying kernel denoted by hγ,2(t ,τ), we recall that h(t ,τ) =

L−1{δ(· −τ)}(t ) = L−1∗{δ(· − t )}(τ). Specifically, by inserting the Fourier transform of
δ(·− t ) into (7.44), we find that

hγ,2(t ,τ) =
∫

R

e−jωt −1

(−jω)γ
ejωτ dω

2π

= 1

Γ(γ)

((− (τ− t )
)γ−1
+ − (−τ)γ−1

+
)

= 1

Γ(γ)

(
(t −τ)γ−1

+ − (−τ)γ−1
+

)
, (7.46)
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Figure 7.7 Comparison of the standard and higher-order fBm-related kernels hγ1,2(1,τ)
(shaded) vs. hγ2,2(1,τ) (dotted line) with γ2 = γ1 +1. (a) (γ1,γ2) = (0.8,1.8), (b) (γ1,γ2) = (1,2),
(c) (γ1,γ2) = (1.2,2.2).

which is consistent with the relation

F−1
{

1

(jω)α+1

}
(t ) = tα+

Γ(α+1)

for α ∉Z (see Table A.1).
Examples of such kernel functions with t = t1 = 1 (fixed) are shown in Figure 7.7—

the ones of interest with γ ∈ (0.5,1.5) have their area shaded. These are represent-
atives of the two main regimes where the functions are either bounded

(
γ ∈ [1,3/2)

)

or unbounded
(
γ ∈ (1/2,1)

)
with two (square-integrable) singularities at τ = 0 and

τ = t1. While hγ,2(t ,τ) is made up of individual atoms (one-sided power functions)
whose energy is infinite, the remarkable twist is that the combination in (7.46) yields
a function of τ that is square-integrable.

P R O P O S I T I O N 7.9 The function hγ,2(t1, ·), where t1 ∈ R is a fixed parameter, belongs
to L2(R) for γ ∈ (0.5,1.5). More generally, the right-hand side of (7.46) defines the ker-
nel hγ,p (t1, ·) ∈ Lp (R) with p > 0 if and only if 1− 1

p < γ< 2− 1
p . On the other hand, none

of these kernels is rapidly decaying, except for h1,2(t1, ·) =1(0,t1] (Brownian motion).

Proof We consider the scenario t1 ≥ 0. First, we note that (7.47) with γ= 1 and t = t1

simplifies to

h1,2(t1, ·) = I∗0 {δ(·− t1)}(τ) =1(0,t1](τ), (7.47)

which is compactly supported and hence rapidly decaying (see Figure 7.7b). For the
other values of γ, we split the range of integration into two parts in order to handle
the singularities separately from the decay of the tail.
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1) τ ∈ [−t1, t1] with t1 > 0 finite.
This part of the Lp -integral will be bounded if

∫ 1
0 τ

p(γ−1) dτ<∞. This happens for
1− 1

p < γ, which is always satisfied for p = 2 since γ= H + 1
2 > 1

2 .

2) τ ∈ (−∞,−t1).
Here, we base our derivation on the factorized representation Iγ0,2 = I0D−γ+1, which
follows from (7.45). The operator D−γ+1 is shift-invariant operator. Its impulse re-
sponse is given by

ρDγ−1 (t ) =F−1
{

1

( jω)γ−1

}
(t ) = tγ−2

+
Γ(γ−1)

,

which is also the Green’s function of Dγ−1. Using (7.47), we then obtain

hγ,2(t1,τ) = (D−γ+1)∗I∗0 {δ(·− t1)}(τ) = (ρ∨
Dγ−1 ∗1(0,t1])(τ)

which implies that hγ,2(t1,τ) decays like 1/|τ|2−γ as τ → −∞ (unless γ = 1, in
which case ρId = δ). It follows that the tail of |hγ,2(t1,τ)|p is integrable provided
that (2 − γ)p > 1 or, equivalently, γ < 2 − 1/p, which corresponds to the whole
range H ∈ (0,1) for p = 2.

Taking advantage of Proposition 7.9, we invoke Theorem 7.1 to show that the gen-
eralized process BH (t ) = I0D−H+1/2w(t ) admits a classical interpretation as a random
function of t . The theorem also yields the stochastic integral representation

BH (t ) = 〈hH+1/2,2(t , ·), w〉

=
∫

R

1

Γ(γ)

(
(t −τ)γ−1

+ − (−τ)γ−1
+

)
dW (τ)

= 1

Γ(γ)

(∫ 0

−∞

(
(t −τ)γ−1 − (−τ)γ−1) dW (τ)+

∫ t

0
(t −τ)γ−1 dW (τ)

)
(7.48)

where the last equation with γ= H +1/2 is the one that was originally used by Man-
delbrot and Van Ness to define fBm. Here, W (τ) = B1/2(τ) is the standard Brownian
motion whose derivative in the sense of generalized functions is w .

While this result is reassuring, the real power of the distributional approach is that
it naturally lends itself to generalizations. For instance, we may extend the definition
to larger values of H by applying an additional number of integrals. The relevant
adjoint operator is In∗

0 = (I∗0 )n , whose Fourier-domain expression is

(I∗0 )n{ϕ}(τ) =
∫

R

ϕ̂(ω)−∑n
k=0

ϕ̂(k)(0)ωk

k !

(−jω)n ejωτ dω

2π
. (7.49)

This formula, which is consistent with the form of Iγ∗2,0 in Table 7.1 with γ= n, follows
from the definition of I∗0 and the property that the Fourier transform of ϕ ∈ S (R)

admits the Taylor series representation ϕ̂(ω) = ∑∞
k=0 ϕ̂

(k)(0)ω
k

k ! , which yields the re-
quired limits at the origin. This allows us to consider the higher-order version of
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(7.43) for γ= H + 1
2 with H ∈R+\N, the solution of which is formally expressed as

BH = InD−(H−n)+ 1
2 w,

where n = dHe. This construction translates into the extended version of fBm spe-
cified by the characteristic functional

E{ej〈ϕ,BH 〉} = P̂BH (ϕ) = exp


−1

2

∫

R

∣∣∣∣∣∣
ϕ̂(ω)−∑dHe

k=0
ϕ̂(k)(0)ωk

k !

(−jω)H+1/2

∣∣∣∣∣∣

2

dω

2π


 , (7.50)

where H ∈R+\N is the Hurst exponent of the process.
The relevant kernels are determined by using the same inversion technique as be-

fore and are given by

hγ,p (t ,τ) = Iγ0,p {δ(·− t )}(τ)

= 1

Γ(γ)
(t −τ)γ−1

+ −
bγ−1+1/pc∑

k=0

t k

k !

(−τ)γ−1−k
+

Γ(γ−k)
, (7.51)

where the case of interest for fBm is p = 2 (see examples in Figure 7.7). For γ= n ∈N,
the expression simplifies to

hn,p (t ,τ) = In∗
0 {δ(·− t )}(τ) =

{
1(0,t ](τ) (t−τ)n

n! , for 0 < t

−1[t ,0)(τ) (t−τ)n

n! , for t < 0,

which, once again, is compactly supported.
The final ingredient for the theory is the extension of Proposition 7.9, which is

proven in exactly the same fashion.

P R O P O S I T I O N 7.10 The kernels defined by (7.51) can be decomposed as

hγ,p (t ,τ) =
(
ρ∨

Dγ−n ∗1(0,t ]
(t −·)n

n!

)
(τ)

where n = bγ− 1+ 1/pc. Moreover, hγ,p (t1, ·) ∈ Lp (R) for any fixed value t = t1 and
γ−1+ 1

p ∈R+\N.

For p = 2, this covers the whole range of non-integer Hurst exponents H = γ−1/2
so that the classical interpretation of BH (t ) remains applicable. Moreover, since In

0 is
a right inverse of Dn , these processes satisfy the extended boundary conditions

Dk BH (0) = BH−k (0) = 0

for k = 0, . . . ,dHe−1.
Similarly, we can fractionally integrate the SαS noise wα to generate stable self-

similar processes that are inherently sparse for α< 2. The operation is acceptable as
long as Iγ0,p meets the Lp -stability requirement of Theorem 5.8 with p =α, which we
restate as

Hα = γ−1+ 1
α ∈R+\N,

Interestingly enough, it is the same condition as in Proposition 7.10. This ensures
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that the so-constructed fractional stable motions (fSm) are well-defined in the gen-
eralized sense (by the Minlos-Bochner theorem), as well as in the ordinary sense (by
Theorem 7.1). Statement 4) of Theorem 7.1 also indicates that the parameter Hα ac-
tually represents the Hurst exponent of these processes, which is consistent with the
analysis of Section 7.5.1 (in particular, (7.41) with d = 1).

It is also possible to define stable fractal processes by considering any other vari-
ant ∂γτ of fractional derivative within the family of scale-invariant operators (see Pro-
position 5.6). Unlike in the Gaussian case where the Fourier phase is irrelevant, the
fractional SDE ∂

γ
τsα,H = wα will specify a wider variety of self-similar processes with

the same overall properties.

7.5.3 Scale-invariant Poisson processes

While not strictly self-similar, the realizations of random fields obtained by solv-
ing a stochastic PDE involving a scale-invariant (homogeneous) operator and a com-
pound Poisson innovation give rise to interesting patterns. After revisiting the clas-
sical compound Poisson process, we review Poisson fields and give two examples of
such processes and fields here; namely, those associated with the fractional Lapla-
cian operator and with the partial derivative ∂r1 · · ·∂rd .

Compound-Poisson processes and fractional extensions
The compound-Poisson process is a Lévy process per (7.26) with a compound-

Poisson innovation as the driving term of its SDE. Its restriction to the positive half of
the real axis finds a simple representation as

∑

k∈Z
Ak1r≥0(r − rk ), (7.52)

where the sequence {rk } forms a Poisson point process in R+ and the amplitudes Ak

are i.i.d. Clearly, realizations of the above process correspond to random polynomial
splines of degree zero with random knots (see Introduction, Figure 1.1). This charac-
terization on the half-axis is consistent with the one given on the full axis in Equation
(1.14) of the Introduction.

More generally, we may define fractional processes with a compound-Poisson in-
novation and the fractional integrators identified in Section 5.5.1, which give rise to
random fractional splines. The subclass of these generalized Poisson processes asso-
ciated with causal fractional integrators finds the following representation as a piece-
wise fractional polynomial on the positive half-axis:

∑

k∈Z
Ak (r − rk )γ−1

+ .

They are whitened by the causal fractional-derivative operator Dγ whose Fourier
symbol is (jω)γ. Some examples of such processes are given in the right column of
Figure 7.6.
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Figure 7.8 Gaussian fBm (top row) vs. sparse generalized Poisson images (bottom row) in 2D.
The fields in each column share the same operator and second-order statistics.

Scale-invariant Poisson fields
As we saw in Section 4.4.2, a compound-Poisson innovation w can be modeled as

an infinite collection of Dirac impulses with random amplitudes, with two important
properties. First, the number of Diracs in any given compact neighbourhood Π is a
Poisson variable with parameter λVol(Π), where λ is a fixed density parameter and
Vol(Π) is the volume (Lebesgue measure) ofΠ. Second, fixingΠ and conditioning on
the number of Diracs therein, the distribution of the position of each Dirac is uniform
inΠ and independent of all the other Diracs (their amplitudes are also independent).
We can represent a realization of w symbolically as

w(r ) =
∑

k∈Z
Akδ(r − rk ),

where Ak are the i.i.d. amplitudes with some generalized probability density p A , the
rk are the positions coming from a Poisson innovation (i.e., fulfilling the above re-
quirements) independent from the Ak , and the ordering (the index k) is insignific-
ant. We recall that, by Theorem 4.9, the characteristic functional of the compound
Poisson process is related to the density of the said amplitudes per

P̂wPoisson (ϕ) = exp

(∫

Rd
λ

∫

R

(
ejaϕ(r ) −1

)
p A(a) da dr

)
.

We shall limit ourselves here to amplitude distributions that have, at a minimum, a
finite first moment.

The combination of P̂wPoisson with the operators noted previously involves no ad-
ditional subtleties compared to the case of α-stable innovations, at least for the pro-
cesses with finite mean that we are considering here. It is, however, noteworthy to
recall that the compound-Poisson Lévy exponents are p-admissible with p = 1 and,
in the special case of symmetric and finite-variance amplitude distributions, for any
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p ∈ [1,2] (see Proposition 4.5). The inverse operator with which P̂wPoisson is com-
posed therefore needs to be chosen/constructed such that it maps S (Rd ) continu-
ously into Lp (Rd ). Such operators were identified in Section 5.4.2 for integer order
SDEs and Sections 5.5.3, 5.5.1 for fractional-order derivatives and Laplacians.

The generic form of such Poisson processes is

sPoisson(r ) = p0(r )+
∑

k∈Z
AkρL(r − rk ),

where ρL is the Green’s function of L and p0(r ) ∈NL is a component in the null space
of the whitening operator. The reason for the presence of p0 is to satisfy the boundary
conditions at the origin that are imposed upon the process.

We provide examples of the outcome of applying inverse fractional Laplacians to
a Poisson field in Figure 7.8. In the next section, we shall look at another interesting
examples, the Mondrian processes.

The Mondrian process
The Mondrian process is the name by which we refer to the process associated

with the innovation model with operator L = ∂r1 · · ·∂rd and a sparse innovation—
typically, a compound-Poisson one [UT11]. The instance of primary interest to us is
the two-dimensional variety with L = ∂r1∂r2 . In this case, the Green’s function of L is
the indicator function of the positive quarter plane given by

ρL(r ) =1r1,r2≥0(r ),

which we may use to define an admissible inverse of L in the positive quarter plane.
Similar to the compound-Poisson processes from Section 7.5.3, the Mondrian pro-
cess finds a simple description in the positive quarter plane as the random sum

∑

k∈Z
Ak1r1,r2≥0(r − rk ),

in direct parallel to (7.52), where the rk are distributed uniformly in any neighbour-
hood in the positive quarter plane (Poisson point distribution).

A sample realization of this process, which bears some resemblance to paintings
by Piet Mondrian, is shown in Figure 7.9.

7.6 Bibliographical notes

Section 7.1
The first-order processes considered in Section 7.1 are often referred to as non-

Gaussian Ornstein-Uhlenbeck processes; one of their privileged area of application
is financial modeling [BNS01]. The representation of the autocorrelation in terms of
B-splines is discussed in [KMU11, Section II.B], albeit in the purely Gaussian con-
text. The fact that exponential B-splines provide the formal connection between or-
dinary continuous-domain differential operators and their discrete-domain finite-
difference counterpart was first made explicit in [Uns05].
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Figure 7.9 Realization of the Mondrian process with λ= 1/30.

Section 7.2
Our formulation heavily relies on Gelfand and Vilenkin’s theory of generalized sto-

chastic processes in which stationarity plays a predominant role [GV64]. The main
analytical tools are the characteristic and the correlation functionals which have been
used with great effect by Russian probabilists in the 70-80’s (e.g., [Yag86]), but which
are lesser known in Western circles. The probable reason is that the dominant para-
digm for the investigation of stochastic processes is measure-theoretic—as opposed
to distributional—meaning that processes are defined through stochastic integrals
(with the help of Itô’s calculus and its non-Gaussian variants) [Øke07, Pro04]. Both
approaches have their advantages and limitations. On one hand, the Itô calculus can
handle certain nonlinear operations on random processes that cannot be dealt with
in the distributional approach. Gelfand’s framework, on the other hand, is ideally
suited for performing any kind of linear operations, including some, such as frac-
tional derivatives, which are much more difficult to define in the other framework.
Theorem 7.1 is fundamental in that respect because it provides the higher-level ele-
ments for performing the translation between the two modes of representations.

Section 7.3
The classical theory of stationary processes was developed for the most part in the

1930s. The concept of (second-order) stationarity is due to Khintchine who estab-
lished the correlation properties of such processes [Khi34]. Other key contributors
include Wiener [Wie30], Doob [Doo37], Cramér [Cra40], and Komolgorov [Kol41].
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Classical text books on stochastic processes are [Bar61, Doo90, Wie64]. The manual
by Papoulis is very popular among engineers [Pap91]. The processes described by
Proposition 7.2 are often called linear processes (under the additional finite-variance
hypothesis) [Bar61]. Their conventional representation as a stochastic integral is

s(t ) =
∫

R
h(t −τ) dW (τ) =

∫ t

−∞
h(t −τ) dW (τ) (7.53)

where W (τ) = 〈1[0,τ), w〉 is a stationary finite-variance process with independent in-
crements (that is, a 2nd-order Lévy process) and where h ∈ L1(R) is such that h(t ) = 0,
for t < 0 (causality). Bartlett provides an expression of their characteristic functional
that is formally equivalent to the result given in Proposition 7.2 [Bar61, Section 5.2,
Eqs. (24)-(25)]. His result can be traced back to 1951 [BK51, Eq. (34)] but does not
address the issue of existence. It involves the auxiliary function

KW (ω) = logE

{
exp

(
jω

∫ 1

0
dW (τ)

)}
,

which coincides with the Lévy exponent f of our formulation (see Proposition 4.12).
A special case of the model is the so-called shot noise which is obtained by taking w
to be a pure Poisson noise [Ric77, BM02].

Implicit to Property 7.3 is the fact that the autocorrelation of a second-order sta-
tionary process is a cardinal L∗L-spline. This observation is the key to prove the equi-
valence between smoothing-spline techniques and linear mean-square estimation
in the sense of Wiener [UB05b]. It also simplifies the identification of the whitening
operator L from sampled data [KMU11].

The Gaussian CARMA processes are often referred to as Gaussian stationary pro-
cesses with rational spectral density. They are the solutions of ordinary stochastic
differential equations and are treated in most books on stochastic processes [Bar61,
Doo90, Pap91]. They are usually defined in terms of a stochastic integral such as
(7.53) where h is the impulse response of the underlying N th-order differential sys-
tem and W (t ) a standard Brownian motion. Alternatively, one can solve the SDE
using state-space techniques; this is the approach taken by Brockwell to character-
ize the extended family of Lévy-driven CARMA processes [Bro01]. Brockwell makes
the assumption that E{|W (1)|ε} <∞ for some ε > 0, which is equivalent to our Lévy-
Schwarz admissibility condition (see (9.10) and surrounding text) and makes the for-
mulations perfectly compatible. The CARMA model can also be extended to N ≤ M ,
in which case it yields stationary processes that are not anymore defined pointwise.
The Gaussian theory of such generalized CARMA processes is given in [BH10]. In
light of what has been said, such results are also transposable to the more general
Lévy setting, since the underlying convolution operator remains S -continuous (un-
der the stability assumption that there is no pole on the imaginary axis).

Section 7.4
The founding paper that introduces Lévy processes—initially called additive proc-

esses—is the very same that uncovers the celebrated Lévy-Khintchine formula and
specifies the family of α-stable laws [Lév34]. We can therefore only concur with
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Loève’s statement about its historical importance (see Section 1.4). Besides Lévy’s
classical monograph [Lév65], other recommended references on Lévy processes are
[Sat94, CT04, App09]. The book by Cont and Tankov is a good starting point, while
Sato’s treatise is remarkable for its precision and completeness.

The operator-based method of resolution of unstable stochastic differential equa-
tions that is deployed in this section was developed by the authors with the help of
Qiyu Sun [UTSss]. The approach provides a rigorous backing for statements such as
“a Lévy process is the integral of a non-Gaussian white noise”, “a continuous-domain
non-Gaussian white noise is the (weak) derivative of a Lévy process”, or “a Lévy pro-
cess is a non-Gaussian process with a 1/ω spectral behavior”, which are intuitively
appealing, but less obvious to relate to the conventional definition. The main ad-
vantage of the framework is that it allows for the direct transposition of deterministic
methods for solving linear differential equations to the stochastic setting, irrespect-
ive of any stability considerations. Most of the examples of sparse stochastic pro-
cesses are taken from [UTAKss].

Section 7.5
Fractional Brownian motion (fBm) with Hurst exponent 0 < H < 1 was introduced

by Mandelbrot and Van Ness in 1968 [MVN68]. Interestingly, there is an early paper
by Kolmogorov that briefly mentions the possibility of defining such stochastic ob-
jects [Kol40]. The multidimensional counterparts of these processes are fractional
Brownian fields [Man01], which are also solution of the fractional SDE (−∆)γ/2s = w
where w is a Gaussian white noise [TVDVU09]. The family of stable self-similar pro-
cesses with 0 < H < 1 is investigated in [ST94], while their higher-order extensions
are briefly considered in [Taf11].

The formulation of fBms as generalized stochastic processes was initiated by Blu
and Unser in order to establish an equivalence between MMSE estimation and spline
interpolation [BU07]. A by-product of this study was the derivation of (7.42) and
(7.50). The latter representation is compatible with the higher-order generalization
of fBm for H ∈R+\Z+ proposed by Perrin et al. [PHBJ+01] with the underlying kernel
(7.51) being the same.

The scale-invariant Poisson processes of Section 7.5.3 were introduced by the au-
thors [UT11]; they are the direct stochastic counterparts of spline functions where
the knots and the strength of the singularities are assigned in a random fashion.
The examples, including the Mondrian process, are taken from that paper on sparse
stochastic processes.
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In order to obtain an uncoupled representation of a sparse process s = L−1w of
the type described in the previous chapters, it is essential that we somehow invert
the integral operator L−1. The ideal scenario would be to apply the differential op-
erator L = (L−1)−1 to uncover the innovation w that is independent at every point.
Unfortunately, this is not feasible in practice because we do not have access to the
signal s(r ) over the entire domain r ∈ Rd , but only to its sampled values on a lattice
or, more generally, to a series of coefficients in some appropriate basis. Our analysis
options, as already alluded to in Chapter 2, are essentially twofold: the application of
a discrete version of the operator, or an operator-like wavelet analysis.

This chapter is devoted to the in-depth investigation of these two modes of rep-
resentations. Like with the other chapters, we start with a concrete example (Lévy
process) to lay down the key ideas in Section 8.1. Our primary tool for deriving the
transform-domain pdfs is the characteristic functional, reviewed in Section 8.2 and
properly extended so that it can handle arbitrary analysis functions ϕ ∈ Lp (Rd ). In
Section 8.3, we investigate the decoupling ability of finite-difference-type operators
and determine the statistical distribution of the resulting generalized increments. In
Section 8.4, we show how a sparse process can be expanded in a matched wavelet
basis and provide the complete multivariate description of the transform-domain
statistics, including general formulas for the wavelet cumulants. Finally, in Section
8.5, we apply these methods to the representation of first-order processes. In partic-
ular, we focus of the sampled version of these processes and adopt a matrix-vector
formalism to make the link with traditional transform-domain signal-processing tech-
niques. Our main finding is that operator-like wavelets generally outperform the
classical sinusoidal transforms (DCT and KLT) for the decoupling of sparse AR(1) and
Lévy processes and that they essentially provide an independent-component analysis
(ICA).

8.1 Decoupling of Lévy processes: finite differences versus
wavelets

To expose the reader to the concepts, it is instructive to get back to our introduct-
ory example in Chapter 1: the Lévy process denoted by W (t ). As we already saw, the
fundamental property of W (t ) is that its increments are independent (see Definition
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7.7). When the Lévy process is sampled uniformly on the integer grid, we have access
to its equispaced increments

u[k] = W (t )|t=k − W (t )|t=k−1 , (8.1)

which are i.i.d. Moreover, due to the property that W (0) = 0 (almost surely), the rela-
tion can be inverted as

W (k) =
k∑

n=1
u[n], (8.2)

which provides a convenient recipe for generating Lévy processes.
To see how this fits the formalism of Chapter 7, we recall that the corresponding

whitening operator is D = d
dt = P0. Its discrete counterpart is the finite-difference

operator Dd = ∆0. This notation is consistent with the pole vector of a (basic) Lévy
process beingα= (0).

According to the generic procedure outlined in Section 7.4.4, we then specify the
increment process associated with W (t ), t ∈R as

u0(t ) =∆0W (t ) = (β0 ∗w)(t ) = 〈β∨
0 (·− t ), w〉, (8.3)

where β0 = βD = β0
+ is the rectangle B-spline defined by (1.4) (or (6.21) with α = 0)

and w is an innovation process with Lévy exponent f . Based on Proposition 7.4,
we deduce that u0(t ), which is defined for all t ∈ R, is stationary with characteristic
functional P̂u0 (ϕ) = P̂w

(
β∨

0 ∗ϕ
)

where P̂w is defined by (7.21). Let us now consider
the random variable U = 〈δ(·−k), s〉 = u[k]. To obtain its characteristic function, we
rely on the theoretical framework of Section 8.2 and simply substitute ϕ = ωδ(· −k)
in P̂u0 (ϕ), which yields

p̂U (ω) = P̂w
(
ωβ∨

0 (·−k)
)= P̂w

(
ωβ∨

0

)
(by stationarity)

= exp

(∫

R
f
(
ωβ∨

0 (t )
)

dt

)

= e f (ω) = p̂id(ω). (8.4)

The disappearance of the integral results from the binary nature of β∨
0 and the fact

that f (0) = 0. This shows that the increments of the Lévy process are infinitely di-
visible (id) with canonical pdf pU = pid, which corresponds to the observation of the
innovation through a unit rectangular window (see Proposition 4.12). Likewise, we
find that the joint characteristic function of U1 = 〈β∨

0 (· − k1), w〉 = u[k1] and U2 =
〈β∨

0 (·−k2), w〉 = u[k2] for any |k1 −k2| ≥ 1 factorizes as

p̂U1,U2 (ω1,ω2) = P̂w
(
ω1β

∨
0 (·−k1)+ω2β

∨
0 (·−k2)

)

= p̂U (ω1) p̂U (ω2)

where p̂U is given by (8.4). Here, we have used the fact that the supports of β∨
0 (·−k1)

and β∨
0 (·−k2) are disjoint together with the independence at every point of w (Pro-

position 4.11). This implies that the random variables U1 and U2 are independent
for all pairs of distinct indices (k1,k2), which proves that the sequence of Lévy incre-
ments {u[k]}k∈Z is i.i.d. with pdf pU = pid. The bottom line is that the decoupling of
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the samples of a Lévy process afforded by (8.1) is perfect, and that this transformation
is reversible.

The alternative is to expand the Lévy process in a wavelet basis that is matched
to the operator L = D. To that end, we revisit the Haar analysis of Section 1.3.4 by
applying the generalized wavelet framework of Section 6.5.3 with d = 1 and (scalar)
dilation D = 2. The required ingredient is the D∗D-interpolator with respect to the
grid 2i−1Z: ϕint,i−1(t ) = β(0,0)(t/2i−1 + 1), which is a symmetric triangular function
of unit height and support [−2i−1,2i−1] (piecewise-linear B-spline). The specialized
form of (6.54) then yields the derivative-like wavelets

ψi ,k (t ) = 2i /2−1D∗ϕint,i−1(t −2i−1k)

= D∗φi (t −2i−1k),

where φi (t ) = 2i /2−1ϕint,i−1(t ) ∝ φ0(t/2i ) is the normalized triangular kernel at res-
olution level i and k ∈Z\2Z. The difference with the classical Haar-wavelet formulas
(1.19) and (1.20) is that the polarity is reversed (since D∗ =−D) and the location index
k restricted to the set of odd integers. Apart from this change in indexing convention,
required by the general (multidimensional) formulation, the two sets of basis func-
tions are equivalent (see Figure 1.4). Next, we recall that the Lévy process can be
represented as s = I0w where I0 is the integral operator defined by (5.4). This allows
us to express its Haar wavelet coefficients as

Vi [k] = 〈ψi ,k , s〉
= 〈D∗φi (·−2i−1k), I0w〉
= 〈I∗0 D∗φi (·−2i−1k), w〉 (by duality)

= 〈φi (·−2i−1k), w〉, (left inverse property of I∗0 )

which is very similar to (8.3), except that the rectangular smoothing kernel β∨
0 is re-

placed by a triangular one. By considering the continuous version Vi (t ) = 〈φi (· −
t ), w〉 of the wavelet transform at scale i , we then invoke Proposition 7.2 to show that
Vi (t ) is stationary with characteristic functional P̂Vi (ϕ) = P̂w (φi ∗ϕ). Moreover,
since the smoothing kernels φi (·−2i−1k) for i fixed and odd indices k are not over-
lapping, we deduce that the sequence of Haar-wavelet coefficients {Vi [k]}k∈Z\2Z is
i.i.d. with characteristic function p̂Vi (ω) = E{ejω〈φi ,w〉} = P̂w (ωφi ).

If we now compare the wavelet situation for i = 1 with that of the Lévy increments,
we observe that the wavelet analysis involves one more layer of smoothing of the
innovation with β0 (since φ1 = ϕint,0 = β0 ∗β∨

0 ), which slightly complicates the stat-
istical calculations. For i > 1, there is an additional coarsening effect which has some
interesting statistical implications (see Section 9.8).

While the smoothing effect on the innovation is qualitatively the same in both
scenarios, there are fundamental differences, too. In the wavelet case, the under-
lying discrete transform is orthogonal, but the coefficients are not fully decoupled
because of the unavoidable inter-scale dependencies, as we shall see in Section 8.4.1.
Conversely, the finite-difference transform (8.1) is optimal for decoupling Lévy pro-
cesses, but the representation is not orthogonal. In this chapter, we show that this
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dual way of expanding signals remains applicable for the complete family of sparse
processes under mild conditions on the whitening operator L. While the considera-
tion of higher-order operators makes us gain in generality, the price to pay is a slight
loss in the decoupling ability of the transforms, because longer basis functions (and
B-splines) tend to overlap more. Those limitations notwithstanding, we shall see that
the derivation of the transform-domain statistics is in all points analogous to the Lévy
scenario. In addition, we shall provide the tools for assessing the residual dependen-
cies that are unavoidable when the random processes are non-Gaussian.

8.2 Extended theoretical framework

Fundamentally, a generalized stochastic process s is only observable indirectly
through its inner products Xn = 〈ϕn , s〉 with some family {ϕn} of test functions. Con-
versely, any linear measurement of a conventional or generalized stochastic process
s is expressible as Y = 〈ψ, s〉 with some suitable kernelψ ∈S ′(Rd ). We also recall that
a generalized stochastic process on S ′(Rd ) is completely characterized by its charac-
teristic functional P̂s (ϕ) = E{ej〈ϕ,s〉} with ϕ ∈ S (Rd ) (see Minlos-Bochner Theorem
3.9). The combination of these two ingredients suggests a simple, powerful mech-
anism for the determination of the characteristic function of the random variable
Y = 〈ψ, s〉 by formal substitution of ϕ=ωψ in the characteristic functional of s. This
leads to

p̂Y (ω) = E{ejωY } = E{ejω〈ψ,s〉} (by definition)

= E{ej〈ωψ,s〉} (by linearity)

= P̂s (ωψ) (by identification)

where ψ is fixed and ω ∈ R plays the role of the Fourier-domain variable. The same
approach is extensible to the determination of the joint pdf of any finite collection of
linear measurements {Yn = 〈ψn , s〉}N

n=1 (see Proposition 3.10).
This is very nice in principle, except that most of the kernels ψn considered in this

chapter are non-smooth and almost systematically outside of S (Rd ). To properly
handle this issue, we need to extend the domain of P̂s to a larger class of (general-
ized) functions, as explained in the next two sections.

8.2.1 Discretization mechanism: Sampling versus projections

For practical purposes, it is desirable to represent a stochastic process s by a finite
number of coefficients that can be stored and processed in a computer. The discret-
ization methods can be divided in two categories. The first is a representation of s in
terms of values that are sampled uniformly, which is formally described as

s[k] = 〈δ(·−k), s〉.
The implicit assumption here is that the process s has a sufficient degree of continu-
ity for its sample values to be well-defined. Since s = L−1w , it is actually sufficient
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that the operator L−1 satisfies some mild regularity conditions. The simplest scen-
ario is when L−1 is LSI with its impulse response ρL belonging to some function space
X ⊆ L1(Rd ). Then,

s[k] = 〈δ(·−k), s〉 = 〈δ(·−k),ρL ∗w〉 = 〈ρ∨
L (·−k), w〉.

Now, if the characteristic functional of the noise admits a continuous extension from
S (Rd ) to X (specifically, X = R(Rd ) or X = Lp (Rd ), as shown in Section 8.2.2),
we obtain the characteristic function of s[k] by substituting ϕ ∈ X by ωρ∨L (· − k)
in P̂w (ϕ). The continuity and positive definiteness of P̂w ensure that the sample
values of the process have a well-defined probability distribution (by Bochner’s The-
orem 3.7) so that they can be interpreted as conventional random variables. The
argument carries over to the non-shift-invariant scenario as well, by replacing the
samples by their generalized increments. This is equivalent to sampling the general-
ized increment process u = Lds, which is stationary by construction (see Proposition
7.4).

The second discretization option is to expand s in a suitable basis whose expansion
coefficients (or projections) are given by

Yn = 〈ψn , s〉
where the ψn are appropriate analysis functions (typically, wavelets). The argument
concerning the existence of the underlying expansion coefficients as conventional
random variables is based on the following manipulation

Yn = 〈ψn , s〉 = 〈ψn ,L−1w〉 = 〈L−1∗ψn , w〉.
The condition for admissibility, which is essentially the same as in the previous scen-
ario, is that φn = L−1∗ψn ∈X , subject to the constraint that P̂w admits an extension
that is continuous and positive-definite over X . This is consistent with the notion of
L-admissible wavelets (Definition 6.7) which asks that ψ= L∗φ with φ ∈X ⊆ L1(Rd ).

8.2.2 Analysis of white noise with non-smooth functions

Having motivated the necessity of extending the domain of P̂w (ϕ) to the largest
possible class of functions X , we now proceed with the mathematics. In particular,
it is crucial to remove the stringent smoothness requirement associated with S (Rd )
(infinite order of differentiability), which is never met by the analysis functions used
in practice. To that end, we extend the basic continuity result of Theorem 4.8 to the
class of functions with rapid decay, which can be done without restriction on the
Lévy exponent f . This takes care, in particular, of the cases whereϕ=ψn is bounded
with compact support, which is typical for an N th-order B-spline or a wavelet basis
function in 1D.

P R O P O S I T I O N 8.1 Let f be a Lévy-Schwartz exponent as specified in Theorem 4.8.
Then, the Lévy noise functional

P̂w (ϕ) = exp

(∫

Rd
f
(
ϕ(r )

)
dr

)
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is continuous and positive-definite over R(Rd ).

The proof is the same as that of Theorem 4.8. It suffices to replace all occurrences
of S (Rd ) by R(Rd ) and to restate the pointwise inequalities of the proof in the “al-
most everywhere” sense. The reason is that the only property that matters in the
proof is the decay of ϕ, while its smoothness is irrelevant to the argumentation.

As we show next, reducing the constraints on the decay of the analysis functions is
possible too by imposing additional conditions on f .

T H E O R E M 8.2 If f is a p-admissible Lévy exponent (see Definition 4.4) for some p ≥ 1,
then the Lévy-noise functional

P̂w (ϕ) = exp

(∫

Rd
f
(
ϕ(r )

)
dr

)

is continuous and positive-definite over Lp (Rd ).

Proof Since the exponential function is continuous with exp(0) = 1, it is sufficient
to show that the functional

F (ϕ) = logP̂w (ϕ) =
∫

Rd
f
(
ϕ(r )

)
dr

is continuous over Lp (Rd ) and conditionally positive-definite of order one (see Defin-
ition 4.6). To that end, we first observe that F (ϕ) is well-defined for all ϕ ∈ Lp (Rd )
with

|F (ϕ)| ≤
∫

Rd

∣∣ f
(
ϕ(r )

)∣∣ dr ≤C‖ϕ‖p
p ,

due to the the p-admissibility of f . This assumption also implies that |ω|
∣∣ f ′(ω)

∣∣ <
C |ω|p , which translates into

| f (ω2)− f (ω1)| =
∣∣∣
∫ ω2

ω1

f ′(ω) dω
∣∣∣

≤C
∣∣∣
∫ ω2

ω1

ωp−1 dω
∣∣∣≤C ′ max(|ω1|p−1, |ω2|p−1) |ω2 −ω1|

≤C ′(|ω1|p−1 +|ω2 −ω1|p−1) |ω2 −ω1|,

where we have used the fact that max(a,b) ≤ |a|+|b−a|. Next, we consider a conver-
gent sequence {ϕn}∞n=1 in Lp (Rd ) whose limit is denoted by ϕ. We then have that

∣∣∣F (ϕn)−F (ϕ)
∣∣≤C ′

∫

Rd

(|ϕ(r )|p−1|ϕn(r )−ϕ(r )|+ |ϕn(r )−ϕ(r )|p)
dr

≤C ′
(
‖ϕ‖p−1

p ‖ϕn −ϕ‖p +‖ϕn −ϕ‖p
p

)

(by Hölder’s inequality with q = p
p−1 )

where the r.h.s. converges to zero as limn→∞ ‖ϕn−ϕ‖p = 0, which proves the continu-
ity of F on Lp (Rd ). The second part of the statement is a direct consequence of the
conditional positive-definiteness of f . Indeed, for every choice ϕ1, . . . ,ϕN ∈ Lp (Rd ),
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ξ1, . . . ,ξN ∈C, and N ∈Z+, we have that

N∑
m=1

N∑
n=1

F (ϕm −ϕn)ξmξn =
∫

Rd

N∑
m=1

N∑
n=1

f
(
ϕm(r )−ϕn(r )

)
ξmξn

︸ ︷︷ ︸
≥0

dr ≥ 0

subject to the constraint
∑N

n=1 ξn = 0.

8.3 Generalized increments for the decoupling of sample values

We recall that the generalized increment process associated with the stochastic
process s = L−1w is defined as

u(r ) = Lds(r ) =
∑

k∈Zd

dL[k]s(r −k)

where Ld is the discrete-domain version of the operator L. It is a finite-difference-like
operator that involves a suitable sequence of weights dL ∈ `1(Zd ).

The motivation for computing u = Lds is to partially decouple s and to remove its
non-stationary components in the event where the inverse operator L−1 would not
be shift-invariant. The implicit requirement for producing stationary increments is
that the continuous-domain composition of the operators Ld and L−1 is shift-invariant
with impulse response βL ∈ L1(Rd ) (see Proposition 7.4). Our next result provides a
general criterion for checking that this condition is met. It ensures that the scheme
is applicable whenever the operator L is spline-admissible (see Definition 6.2) with
associated generalized B-spline βL, the construction of which is detailed in Section
6.4. The key, of course, is in the selection of the appropriate “localization” operator
Ld.

P R O P O S I T I O N 8.3 Let ρL =F−1{1/L̂(ω)} ∈S ′(Rd ) be the Green’s function of a spline-
admissible operator L with frequency response L̂(ω) and associated B-splineβL = LdρL ∈
L1(Rd ). Then, the operator L−1 :ϕ(r ) 7→ ∫

Rd h(r ,r ′)ϕ(r ′) dr ′ is a valid right inverse of
L if its kernel is of the form

h(r ,r ′) = L−1{δ(·− r ′)}(r ) = ρL(r − r ′)+p0(r ;r ′)

where p0(r ;r ′) with r ′ fixed is included in the null space NL of L. Moreover, we have
that

LdL−1ϕ=βL ∗ϕ (8.5)

L−1∗L∗
dϕ=β∨

L ∗ϕ (8.6)

for all ϕ ∈S (Rd ).

Proof The equivalent kernel (see kernel Theorem 3.1) of the composed operator
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LL−1 is

LL−1{δ(·− r ′)} = L
{
h(·,r ′)

}

= L
{
ρL(·− r ′)+p0(·;r ′)

}

= L{ρL(·− r ′)}+L{p0(·;r ′)}︸ ︷︷ ︸
0

= δ(·− r ′),

which proves that LL−1 = Id, and hence that L−1 is a valid right inverse of L. Next, we
consider the composed operator LdL−1 and apply the same procedure to show that

LdL−1{δ(·− r ′)} =βL(·− r ′)

where we have used the property that Ldp0(·;r ′) = 0 since NL is included in the null
space of Ld (see (6.24) and text immediately below). It follows that

LdL−1{ϕ} =
∫

Rd
βL(·− r ′)ϕ(r ′) dr ′ =βL ∗ϕ

which is a well-defined convolution operation since βL ∈ L1(Rd ). Finally, Equation
(8.6), which involves the corresponding left inverse L−1∗ of L∗, is simply the adjoint
of the latter relation.

A nice illustration of the first part of Proposition 8.3 is the specific form (7.51) of
the kernel associated with fractional Brownian motion and its non-Gaussian variants
(see Section 7.5.2).

As far as generalized B-splines are concerned, the proposition implies that the
formal definition βL = LdL−1δ is invariant to the actual choice of the right-inverse
operator L−1 when NL ∩S ′(Rd ) is non-trivial. This general form is an extension of
the usual definition βL = LdρL

(
see (6.25)

)
that involves the (unique) shift-invariant

right inverse of L whose impulse response is ρL.
For now on, we shall therefore assume that the inverse operator L−1 that acts on

the innovation w fulfills the conditions in Proposition 8.3. We can then apply (8.5) to
derive the convolution formula

u = Lds =βL ∗w. (8.7)

Since this relation is central to our argumentation, we want to detail the explicit steps
of its derivation. Specifically, for all ϕ ∈S (Rd ), we have that

〈ϕ,u〉 = 〈ϕ,Lds〉 = 〈ϕ,LdL−1w〉
= 〈L−1∗L∗

dϕ, w〉 (by duality)

= 〈β∨
L ∗ϕ, w〉. (from (8.6))

This in turn implies that the characteristic functional of u = Lds is given by

P̂u(ϕ) = P̂w (β∨
L ∗ϕ). (8.8)

Consequently, the resulting generalized increment process is stationary even when
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the original process s = L−1w is not, which happens when L−1 fails to be shift in-
variant. The intuition for this property is that Ld annihilates the signal components
that are in the null space of L. Indeed, the form of the corrected left-inverse oper-
ators of Chapter 5

(
e.g., the integrator of (5.4)

)
suggests that the non-stationary part

of the signal corresponds to the null-space components (exponential polynomials)
that are added to the solution during the inversion to fulfill the boundary conditions
when the underlying SDE is unstable. The result also indicates that the decoupling
effect will be the strongest when the convolution kernel βL(r ) is the most localized
and closest to an impulse. The challenge is therefore to select Ld such that βL is the
most concentrated around the origin. This is precisely what the designer of “good”
B-splines tries to achieve, as we saw in Chapter 6.

The final step is the discretization where u = Lds is sampled uniformly, which
yields the sequence of generalized increments

u[k] = Lds(r )|r=k = (dL ∗ s)[k].

The practical interest of the last formula is that {u[k]}k∈Zd can be computed from the
sampled values s[k] = 〈δ(·−k), s〉,k ∈Zd of the initial process s via a simple discrete
convolution with dL (digital filtering). In most cases, the mapping from s[·] to u[·]
can also be inverted back, as we saw in the case of the Lévy process

(
see (8.2)

)
.

8.3.1 First-order statistical characterization

To determine the pointwise statistical description of the generalized increment
process u, we consider the random variable U = 〈β∨

L , w〉. Its characteristic function
p̂U (ω) is obtained by plugging ϕ=ωδ into the characteristic functional (8.8). In this
way, we are able to specify its first-order pdf via the inverse Fourier transformation

pU (x) =
∫

R
e

∫
Rd f

(
ωβ∨

L (r )
)

dr e−jωx dω

2π
.

This results in an id pdf with the modified Lévy exponent

fβL (ω) =
∫

Rd
f
(
ωβL(−r )

)
dr

=
∫

Rd
f
(
ωβL(r )

)
dr . (by change of variable)

For instance, in the case of an symmetric-α-stable (SαS) innovation with f (ω) =
− 1
α! |s0ω|α and dispersion parameter s0, we find that pU is SαS as well with new dis-

persion parameter sU = s0‖βL‖Lα where ‖βL‖Lα is the (pseudo) Lα-norm of the B-
spline. In particular, for α= 2, this shows that the generalized increments of a Gaus-
sian process are Gaussian as well with a variance that is proportional to the squared
L2-norm of the B-spline associated with the whitening operator L.

8.3.2 Higher-order statistical dependencies

As already mentioned, the decoupling afforded by Ld is not perfect. In the spatial
(or temporal) domain, the remaining convolution of w with βL induces dependen-
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cies over the spatial neighborhood that intersects with the support of the B-spline.
When this support is greater than the sampling step (T = 1), this introduces resid-
ual coupling among the elements of u[·]. This effect can be accounted for exactly
by considering a K -point neighborhood ΩK (k0) of k0 on the Cartesian lattice Zd

and by defining the corresponding K -dimensional vector u[k0] = (U1, . . . ,UK ) whose
components are the values u[k] with k ∈ ΩK (k0). The K th-order joint pdf of u[k0]
is denoted by p(U1:UK )(u). Since the generalized-increment process u = Lds is sta-
tionary, p(U1:UK )(u) does not depend on the (absolute) location k0. We determine its
K -dimensional Fourier transform (K th-order characteristic function) by making the
substitution ϕ=∑

k∈ΩK ωkδ(·−k) in (8.8), which yields

p̂(U1:UK )(ω) = E{ej〈u,ω〉} = exp

(∫

Rd
f
( ∑

k∈ΩK

ωkβ
∨
L (r −k)

)
dr

)
,

where ω is the K -dimensional frequency variable with components ωk where k ∈
ΩK =ΩK (0). In addition, when the innovation fulfills the second-order conditions of
Proposition 4.15, the autocorrelation function of the generalized-increment process
is given by

RLds (r ) = E
{

u(·+ r )u(·)
}
=σ2

w (βL ∗β
∨
L )(r ). (8.9)

Hence, the correlation between the discretized increments is simply

E

{
u[k1]u[k2]

}
=σ2

w (βL ∗β
∨
L )(k1 −k2).

This points out once more to the importance of selecting the discrete operator Ld

such that the support of βL = LdρL is minimal or decays as fast as possible when a
compact support is not achievable.

This analysis clearly shows that the support of the B-spline governs the range of
dependency of the generalized increments with the property that u[k1] and u[k2] are
independent whenever |k1 − k2| ≥ support(βL). In particular, this implies that the
sequence u[·] is i.i.d. if and only if support(βL) ≤ 1, which is precisely the case of the
first-order B-splines βα with α ∈C, which go hand-in-hand with the Lévy (α= 0) and
AR(1) processes.

8.3.3 Generalized increments and stochastic difference equations

To illustrate the procedure, we now focus on the extended family of generalized
Lévy processes sα of Section 7.4.2. These are solutions of ordinary differential equa-
tions with rational transfer functions specified by their poles α = (α1, . . . ,αN ) and
zeros γ = (γ1, . . . ,γM ) with M < N . The extension over the classical CARMA frame-
work is that the poles can be arbitrarily located in the complex plane so that the un-
derlying system may be unstable. The associated B-spline is given by

(
see (7.36)

)

βL(t ) = qM (D)βα(t ) =
∫

R
ejωt qM (jω)

N∏
n=1

(
1−eαn−jω

jω−αn

)
dω

2π
(8.10)
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where qM (ζ) = bM
∏M

m=1(ζ−γm) and βα is the exponential B-spline defined by (7.34).
The generalized-increment process is then given by

uα(t ) =∆αsα(t ) = (βL ∗w)(t ) (8.11)

where ∆α is the finite-difference operator defined by (7.35). A more-explicit charac-
terization of ∆α is through its weights dα whose representation in the z-transform
domain is

Dα(z) =
N∑

k=0
dα[k]z−k =

N∏
n=1

(1−eαn z−1). (8.12)

By sampling (8.11) at the integers, we obtain

uα[k] = uα(t )|t=k =
N∑

n=0
dα[n]sα[k −n]. (8.13)

In light of this relation, it is tempting to investigate whether or not it is possible to
decorrelate uα[·] even further in order to decribe sα[·] through a discrete ARMA-type
model. Ideally, we would like to come up with an equivalent discrete-domain in-
novation model that is easier to exploit numerically than the defining stochastic dif-
ferential equation (7.19). To that end, we perform the spectral factorization of the
sampled augmented B-spline kernel

BL(z) =
N∑

k=−N
βLL∗ (k)z−k = B+

L (z)B−
L (z) (8.14)

where B+
L (z) = ∑N−1

k=0 b+
L [k]z−k = B−

L (z−1) specifies a causal finite-impulse-response
(FIR) filter of size N . The crucial point for the argument below is that B+

L (ejω)
(
or,

equivalently, BL(ejω)
)

is non-vanishing. To that end, we invoke the Riesz-basis prop-
erty of an admissible B-spline (see Definition 6.8) together with (6.19), which implies
that

BL(ejω) =
∑

n∈Z
|β̂L(ω+2πn)|2 ≥ A2 > 0.

P R O P O S I T I O N 8.4 (Stochastic difference equation) The sampled version sα[·] of a
generalized second-order Lévy process with pole vector α and associated B-spline βL

satisfies the discrete ARMA-type whitening equation

N∑
n=0

dα[n]sα[k −n] =
N−1∑
m=0

b+
L [m]e[k −m]

where dα and b+
L are defined by (8.12) and (8.14), respectively. The driving term e[k]

is a discrete stationary white noise (“white” meaning fully decorrelated or with a flat
power spectrum). However, e[k] is a valid innovation sequence with i.i.d. samples only
if the corresponding continuous-domain process is Gaussian, or, in full generality (i.e.,
in the non-Gaussian case), if it is a first-order Markov or Lévy-type process with N = 1.

Proof Since |B+
L (ejω)| =

√
BL(ejω) is non-vanishing and is a trigonometric polyno-

mial of ejω whose roots are inside the unit circle, we have the guarantee that the
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inverse filter whose frequency response is 1
B+

L (ejω)
is causal-stable. It follows that

Φe (ejω) = σ2
w

∑
n∈Z |β̂L(ω+2πn)|2

BL(ejω)
= σ2

w , which proves the first part of the statement. As
for the second part, we recall that decorrelation is equivalent to independence in the
Gaussian case only. In the non-Gaussian case, the only way to ensure independence
is by restricting ourselves to a first-order process, which results into an AR(1)-type
equation with e[n] = uα1 [n]. Indeed, since the corresponding B-spline is a size 1,
uα1 [·] is i.i.d., which implies that pU

(
uα1 [k]

∣∣{uα1 [k −m]}m∈Z+
) = pU (uα1 [k]). This

is equivalent to sα1 [·] having the Markov property since pS
(
sα1 [k]

∣∣{sα1 [k −m]}m∈Z+
)

= pU (uα1 [k]) = pS
(
sα1 [k]

∣∣sα1 [k −1]
)

.

8.3.4 Discrete whitening filter

The specification of a discrete-domain whitening filter that fully decorrelates the
sampled version s[·] of a second-order stochastic process s(·) is actually feasible in all
generality under the assumption that the operator L is spline-admissible. However,
it is only really useful for Gaussian processes since this is the only scenario where
decorrelation is synonymous with statistical independence. The multidimensional
frequency response of the corresponding discrete whitening filter is

L̂G(ω) = L̂d(ω)√∑
n∈Zd

∣∣β̂L(ω+2πn)
∣∣2

. (8.15)

The Riesz-basis property of the B-spline ensures that the denominator of (8.15) is
non-vanishing so that we may invoke Wiener’s lemma (Theorem 5.13) to show that
the filter is stable. Generally, the support of its impulse response is infinite, unless
the support of the B-spline is unity (Markov property).

8.3.5 Robust localization

We end our discussion of generalized increments with a description of a robust
variant that is obtained by replacing the canonical localization operator Ld by some
shorter filter L̃d. This option is especially useful for decoupling fractal-type processes
that are associated with fractional whitening operators whose discrete counterparts
have an infinite support. The use of ordinary finite-difference operators, in particu-
lar, is motivated by Theorem 7.7 because of their stationarizing effect.

The guiding principle is to select a localization filter L̃d that has a compact support
and is associated with some “augmented” operator L̃ = L0L where L0 is a suitable
differential operator. The natural candidate for L̃ is a (non-fractional) differential
operator of integer order γ̃ ≥ γ whose null space is identical to that of L and whose
B-spline βL̃ has a compact support. This latter function is given by

βL̃ = L̃dρL̃,

where ρL̃ =F−1{1/̂̃L(ω)} is the Green’s function of L̃ whose Fourier symbol is ̂̃L(ω) =
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L̂0(ω)L̂(ω). The subsequent application of L0 then yields the smoothing kernel

φ(r ) = L0βL̃(r ) (8.16)

= L̃dL0ρL̃(r ) = L̃dρL(r ) (8.17)

=
∑

k
dL̃[k]ρL(r −k).

This shows thatφ is a (finite) linear combination of the integer shifts ofρL (the Green’s
function of the original operator L), and hence is a cardinal L-spline (see Definition
6.4).

To describe the decoupling effect of L̃d on the signal s = L−1w , we observe that
(8.17) is equivalent to φ= L̃dL−1δ, which yields

ũ = L̃ds = L̃dL−1w

=φ∗w.

This equation is the same as (8.7), except that we have replaced the original B-spline
βL by the smoothing kernel defined by (8.16). The procedure is acceptable whenever
φ ∈ Lp (Rd ) and its decay at infinity is comparable to that ofβL. We call such a scheme
a robust localization because its qualitative effect is the same as that of the canonical
operator Ld. For instance, we can rely on the results of Chapter 9 to show that the
statistical distributions of ũ and u have the same global properties (sparsity pattern).
The price to pay is a slight loss in decoupling power because the localization of φ
is worse than that of βL, itself being the best that can be achieved within the given
spline space (B-spline property).

To access the remaining dependencies, it is instructive to determine the corres-
ponding autocorrelation function

Rũ(r ) = E
{

ũ(·+ r )ũ(·)
}
=σ2

w (L0L
∗
0 ){βL̃ ∗β

∨
L̃ }(r ) (8.18)

that primarily depends upon the size of the augmented-order B-spline βL̃. Now,
in the special case where L0 is an all-pass operator with |L̂0(ω)|2 = 1, we have that
|β̂L̃(ω)|2 = |β̂L(ω)|2 so that that the autocorrelation functions of u = Lds and ũ = L̃ds
are identical. This implies that the decorrelation effect of the localization filters Ld

and L̃d are equivalent, which justifies replacing one by the other.

Example of fractional derivatives
The fractional derivatives ∂γτ , which are characterized in Proposition 5.6, are scale-

invariant by construction. Since the family is complete, it implicitly specifies the
broadest class of 1-D self-similar processes that are solutions fractional SDEs (see
Section 7.5). Here, we shall focus on the symmetric versions of these derivatives with
τ= 0 and Fourier multiplier L̂(ω) = |ω|γ. The corresponding symmetric fractional B-
splines of degreeα= (γ−1) are specified by the Fourier-domain formula (see [UB00])

β̂α0 (ω) =
∣∣1−e−jω

∣∣α+1

|ω|α+1 . (8.19)



204 Sparse representations

To determine the time-domain counterpart of this equation, we rely on a generalized
version of the binomial expansion, which is due to Thierry Blu.

T H E O R E M 8.5 (Blu’s generalized binomial expansion) Let u, v ∈ R with u + v > − 1
2 .

Then, for any z = ejθ on the unit circle,

(1+ z)u(1+ z−1)v =
∑

k∈Z

(
u + v

u +k

)
z−k ,

with generalized binomial coefficients
(

u

v

)
= u!

u! (u − v)!
= Γ(u +1)

Γ(v +1) Γ(u − v +1)
.

We then apply Theorem 8.5 with u = v = α+1
2 to expand the numerator of (8.19)

and compute the inverse Fourier transform (see Table A.1). This yields

βα0 (t ) =β∂α+1
0

(t ) =
∑

k∈Z
dα,0[k]ρα,0(t −k) (8.20)

where

dα,0[k] = (−1)k

(
α+1
α+1

2 +k

)
(8.21)

and

ρα,0(t ) =F−1
{

1

|ω|α+1

}
(t ) =

{
(−1)n+1

π(2n)! t 2n log |t |, for α= 2n ∈ 2N
−1

2Γ(α+1) sin( π2 α) |t |α, for α ∈R+ \ 2N.

Observe that ρα,0 is the Green’s function of the fractional derivative operator ∂α+1
0 ,

while the dα,0[k] are the coefficients of the corresponding (canonical) localization
filter.

The simplest instance occurs for α= 1 where (8.20) reduces to

β1
0(t ) = 1

2 |t +1|− |t |+ 1
2 |t −1|,

which is the triangular function supported in [−1,1] (symmetric B-spline of degree 1)
shown in Figure 8.1c. In general, however, the fractional B-splines βα0 (t ) with α ∈ R+

are not compactly supported, unlessα is an odd integer. In fact, they can be shown to
decay like O(1/tα+2), which is a behavior that is characteristic of fractional operators.

As far as the implementation of the localization operator Ld is concerned, the most
favorable scenario is when α = 2n + 1 is odd, in which case d2n+1,0[·] is a (modu-
lated) binomial sequence of length 2n+2 that corresponds to the (2n+2)th centered
finite-difference operator. Otherwise, dα,0[·] had an infinite length and decays like
O(1/|k|α+2), which makes the numerical implementation of the filter impractical.
This suggests switching to a robust localization where dα,0 is substituted by d2n+1,0

with (2n −1) <α≤ (2n +1).
To be specific, we now consider the case 0 <α≤ 1 with L = ∂α+1

0 and the augmented-
order operator L̃ = D2 = ∂1−α

0 ∂α+1
0 . The corresponding smoothing kernel is then given
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Figure 8.1 Comparison of kernels related to the symmetric fractional derivative ∂1/2+1
0 with

Fourier multipler |ω|3/2. (a) Fractional B-spline β1/2
0 (t ), (b) localization kernel

φ1/2,1(t ) = ∂1/2
0 β1

0(t ), (c) augmented order B-spline β1
0(t ).

by

φα,1(t ) = ∂1−α
0 β1

0(t ) = 1

Γ(α+1)sin
(
π
2α

)
( 1

2 |t +1|α−|t |α+ 1
2 |t −1|α)

.

This function decays like O(1/|t |−α+2) since the finite-difference operator asymptot-
ically acts as a second-order derivative. The relevant functions for α= 1/2 are shown
in Figure 8.1. The fractional derivative operator ∂1/2

0 is a nonlocal operator. Its ap-
plication to the compactly supported B-spline β1

0 produces a kernel with algebraic-
ally decaying tails. While β1/2

0 andφ1/2,1 are qualitatively similar, the former function
is better localized with smaller secondary lobes, which reflects the superior decoup-
ling performance of the canonical scheme. Yet, this needs to be balanced against the
fact that the robust version uses a three-tap filter (second-order finite difference), as
opposed to the solution (8.21) of infinite support dictated by the theory.

8.4 Wavelet analysis

The other option for uncoupling the information is to analyze the signal s(r ) us-
ing wavelet-like functions. The implicit assumption for the next properties is that we
have a real-valued wavelet basis available that is matched to the operator L. Specific-
ally, the structure of the transform must be such that the basis functionsψ(n)

i ,k at scale
i are translated versions of a fixed number N0 (typically, N0 = 1 or N0 = det(D)−1) of
normalized “mother” wavelets of the form

ψ(n)
i (r ) = L∗φ(n)

i (r ),

where theφ(n)
i with n = 1, . . . , N0 are scale-dependent smoothing kernels whose width

is proportional to the scale ai = det(D)i /d where D is the underlying dilation matrix
(e.g., D = 2I for a standard dyadic scale progression). In the traditional wavelet trans-
form, L is scale-invariant and the wavelets at resolution i are dilated versions of the
primary ones at level i = 0 with φ(n)

i (r ) ∝φ(n)
0 (D−i r ).

Here, for simplicity of notation, we shall focus on the general operator-like design
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of Section 6.5 with N0 = 1 which has the advantage of involving the single mother
wavelet

ψi (r ) = L∗φi (r ),

while the complete set of basis functions is represented by

ψi ,k = L∗φi (·−Di−1k)

= L∗φi ,k (8.22)

with i ∈ Z and k ∈ Zd \ DZd . The technical assumption for the wavelet coefficients
Yi [k] = 〈ψi ,k , s〉 to be well-defined is that L−1∗ψi ,k = φi ,k ∈ X where X = R(Rd ) or,
in the event where f is p-admissible, X = Lp (Rd ) with p ∈ [1,2].

8.4.1 Wavelet-domain statistics

The key observation is that the wavelet coefficients Yi ,k = 〈s,ψi ,k 〉 of the random
signal s at a given scale i can be obtained by first correlating the signal with the wave-
letψi = L∗φi (continuous wavelet transform) and sampling thereafter. Similar to the
case of the generalized increments, this has a stationarizing and decoupling effect.

P R O P O S I T I O N 8.6 (Wavelet-domain pdf) Let vi (r ) = 〈s,ψi (· − r )〉 with ψi = L∗φi

be the i th channel of the continuous wavelet transform of the generalized (station-
ary or non-stationary) stochastic process s = L−1w where w is an innovation process
with Lévy exponent f . Then, vi is a generalized stationary process with characteristic
functional P̂vi (ϕ) = P̂w (φi ∗ϕ) where P̂w is defined by (4.13). Moreover, the char-
acteristic function of the (discrete) wavelet coefficient Yi [k] = 〈s,ψi ,k 〉 = vi (Di−1k) is
given by p̂Yi (ω) = P̂w (ωφi ) = e fφi (ω) and is infinitely divisible with Lévy exponent

fφi (ω) =
∫

Rd
f
(
ωφi (r )

)
dr .

Proof Recalling that s = L−1w , we get

vi (r ) = 〈ψi (·− r ), s〉 = 〈L∗φi (·− r ),L−1w〉
= 〈L−1∗L∗φi (·− r ), w〉
= 〈φi (·− r ), w〉 = (

φ∨
i ∗w

)
(r )

where we have used the fact that L−1∗ is a valid (continuous) left inverse of L∗. Since
φi ∈X , we can invoke Proposition 7.2 to prove the first part.

For the second part, we also use the fact that Yi ,k = 〈ψi ,k , s〉 = 〈φi ,k , w〉. Based on
the definition of the characteristic functional P̂w (ϕ) = E{ej〈ϕ,w〉}, we then obtain

p̂Yi (ω) = E{ejωYi ,k } = E{ejω〈φi ,k ,w〉}

= E{ejω〈φi ,w〉} = E{ej〈ωφi ,w〉} (by stationarity and linearity)

= P̂w (ωφi ) = exp

(∫

Rd
f
(
ωφi (r )

)
dr

)

where we have inserted the explicit form given in (4.13). The result then follows by
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identification. Since P̂w : X → C is a continuous positive-definite functional with
P̂w (0) = 1, we conclude that the function fφi is conditionally positive of order one
(by Schoenberg’s correspondence Theorem 4.7) so that it is a valid Lévy exponent (see
Definition 4.1). This proves that the underlying pdf is infinitely divisible (by Theorem
4.1).

We determine the joint characteristic function of any two wavelet coefficients Y1 =
〈s,ψi1,k1〉 and Y2 = 〈s,ψi2,k2〉 with indices (i1,k1) and (i2,k2) using a similar tech-
nique.

P R O P O S I T I O N 8.7 (Wavelet dependencies) The joint characteristic function of the
wavelet coefficients Y1 = Yi1 [k1] = 〈s,ψi1,k1〉 and Y2 = Yi2 [k2] = 〈s,ψi2,k2〉 of the gener-
alized stochastic process s in Proposition 8.6 is given by

p̂Y1,Y2 (ω1,ω2) = exp

(∫

Rd
f
(
ω1φi1,k1 (r )+ω2φi2,k2 (r )

)
dr

)

where f is the Lévy exponent of the innovation process w. The coefficients are inde-
pendent if the kernelsφi1,k1 andφi2,k2 have disjoint support. Their correlation is given
by

E{Y1Y2} =σ2
w 〈φi2,k2 ,φi2,k2〉 (8.23)

under the assumption that the variance σ2
w =− f ′′(0) of w is finite.

Proof The first formula is obtained by substitution of ϕ = ω1ψi1,k1 +ω2ψi2,k2 in

E{ej〈ϕ,s〉} = P̂w (L−1∗ϕ) and simplification using the left-inverse property of L−1∗. The
statement about independence follows from the exponential nature of the character-
istic function and the property that f (0) = 0, which allows for the factorization of the
characteristic function when the support of the kernels are distinct (independence
of the noise at every point). The correlation formula is obtained by direct application
of (7.7) with ϕ1 =ψi1,k1 = L∗φi1,k1 and ϕ2 =ψi2,k2 = L∗φi2,k2 .

These results provide a complete characterization of the statistical distribution of
sparse stochastic processes in some matched wavelet domain. They also indicate
that the representation is intrinsically sparse since the transformed-domain statist-
ics are infinitely divisible. Practically, this translates into the wavelet-domain pdfs
having heavier tails than a Gaussian (unless the process is Gaussian)—see the gen-
eral argumentation and results of Chapter 9.

It should be noted, however, that the quality of the decoupling depends strongly
on the spread of the smoothing kernels φi which should be chosen to be maximally
localized for best performance. In the case of a first-order system

(
see example in

Section 6.3.3 and the wavelets in Figure 6.3(d)
)
, the basis functions for i fixed are

not overlapping, which implies that the wavelet coefficients within a given scale are
independent. This is not so across scales because of the cone-shaped region where
the support of the kernelsφi1 andφi2 overlap. Incidentally, the inter-scale correlation
of wavelet coefficients is often exploited in practice to improve coding performance
[Sha93] and signal reconstruction by imposing joint sparsity constraints [CNB98].
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8.4.2 Higher-order wavelet dependencies and cumulants

To describe higher-order interactions, we use K -dimensional multi-index vectors
of the form n = (n1, . . . ,nK ) whose entries nk are non-negative integers. We then
define the following multi-index operations and operators:

- Sum of components |n| =∑K
k=1 nk = n

- Factorial n! = n1!n2! · · · nK ! with the convention that 0! = 1

- Exponentiation of a vector z = (z1, . . . , zK ) ∈CK : z n = zn1
1 · · ·znK

K

- Higher-order partial derivative of a function f (ω),ω= (ω1, . . . ,ωK ) ∈RK

∂n f (ω) = ∂|n| f (ω)

∂ω
n1
1 · · ·∂ωnK

K

.

The notation allows for the concise description of the multinomial theorem given by
(

K∑

k=1
jωk

)n

=
∑

|n|=n

n!

n!
jnωn ,

which involves a summation over
(n+K−1

K−1

)
distinct monomials of the formωn =ωn1

1 · · ·
ω

nK
K with n1 +·· ·+nK = n. It also yields a compact formula for the N th-order Taylor

series of a multidimensional function f (ω) with well-defined derivatives up to order
N +1

f (ω0 +ω) =
N∑

n=|n|

∂n f (ω0)

n!
ωn +O(‖ω‖N+1). (8.24)

Let p̂(X1:XK )(ω),ω ∈RK be the multidimensional characteristic function associated
with the K th-order joint pdf p(X1:XK )(x) whose polynomial moments are all assumed
to be finite. Then, if the function f (ω) = log p̂(X1:XK )(ω) is well defined, we can write
the full multidimensional Taylor series expansion

f (ω) = log p̂(X1:XK )(ω) =
∞∑

n=|n|=0

∂n f (0)

n!
ωn

=
∞∑

n=|n|=0
(−j)n∂n f (0)︸ ︷︷ ︸

κn

jnωn

n!
(8.25)

where the internal summation is through all multi-indices whose sum is |n| = n. By
definition, the cumulants of p(X1:XK )(x) are the coefficients of this expansion so that

κn = (−j)|n|∂n f (0).

The interest of these quantities is that they are in one-to-one relation with the (mul-
tidimensional) moments of p(X1:XK ) defined by

mn =
∫

RK
xn p(X1:XK )(x) dx =

∫

RK
xn1

1 · · ·xnK
K p(X1:XK )(x) dx ,

which also happen to be the coefficients of the Taylor-series expansion of p̂(X1:XK )(ω)
aroundω= 0. Since id laws are specified in terms of their Lévy exponent f , it is often
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easier to determine their cumulants rather than their moments. Another advantage
of cumulants is that they provide a direct measure of the deviation from a Gaussian
whose cumulants are zero for orders greater than 2 (since a Gaussian Lévy exponent
is necessarily quadratic).

P R O P O S I T I O N 8.8 (Higher-order wavelet dependencies) Let {(ik ,kk )}K
k=1 be a set of

indices and {Yk }K
k=1 with 〈s,ψik ,kk

〉 andψik ,kk
= L∗φik ,kk

be the corresponding wavelet
coefficients of the generalized stochastic process s in Proposition 8.6. Then, the joint
characteristic function of (Y1, . . . ,YK ) is given by

p̂(Y1:YK )(ω1, . . . ,ωK ) = exp

(∫

RK
f
(
ω1φi1,k1 (r )+·· ·+ωKφiK ,kK (r )

)
dr

)

where f is the Lévy exponent of the innovation process w. The coefficients are inde-
pendent if the kernels φik ,kk

with k = 1, . . . ,K have disjoint support. The wavelet cu-
mulants with multi-index n are given by

κn {Y1 : YK } = κn

∫

Rd
φ

n1
i1,k1

(r ) · · · φnK
iK ,kK

(r ) dr , (8.26)

under the assumption that the innovation cumulants of order n =∑K
k=1 nk ,

κn = (−j)n ∂n f (ω)

∂ωn

∣∣∣∣
ω=0

,

are finite.

Proof Since Yk = 〈L−1w,ψik ,kk
〉 = 〈w,φik ,kk

〉, the first part is obtained by direct sub-
stitution ofϕ=ω1φi1,k1 +·· ·+ωKφiK ,kK in the characteristic functional of the innova-
tion E{e〈w,ϕ〉} = P̂w (ϕ) = exp

(∫
R f

(
ϕ(r )

)
dr

)
. To prove the second part, we start from

the Taylor-series expansion of f , which reads

f (ω) =
∞∑

n=0
κn

(jω)n

n!

where the κn are the cumulants of the canonical innovation pdf pid. Next, we con-
sider the multidimensional wavelet Lévy exponent fY (ω) = log p̂(Y1:YK )(ω) and ex-
pand it as

fY (ω) =
∫

Rd
f
(
ω1φi1,k1 (r )+·· ·+ωKφiK ,kK (r )

)
dr

=
∫

Rd

∞∑
n=0

κn

(
jω1φi1,k1 (r )+·· ·+ jωKφiK ,kK (r ))

)n

n!
dr

(1-D Taylor expansion of f )

=
∫

Rd

∞∑
n=0

κn
1

n!

∑

n=|n|

n!

n!

(
jω1φi1,k1 (r )

)n1 · · ·(jωKφiK ,kK (r )
)nK dr

(Multinomial expansion of inner sum)

=
∞∑

n=|n|=0

jnωn

n!
κn

∫

Rd
φ

n1
i1,k1

(r ) · · ·φnK
iK ,kK

(r ) dr
︸ ︷︷ ︸

.
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The formula for the cumulants of (Y1, . . . ,YK ) is then obtained by identification with
(8.25).

We note that for, N = 2, we recover Proposition 8.8. For instance, under the second-
order hypothesis, we have that

κ1 =−j f ′(0) = 0

κ2 = (−j)2 f ′′(0) =σ2
w

so that (8.26) with n = (1,1) and n = 2 is equivalent to the wavelet-correlation formula
(8.23).

Finally, we mention that the cumulant formula in Proposition 8.8 is directly trans-
posable to the generalized increments of Section 8.3 by merely replacing φik ,kk

by
β∨

L (·−kk ) in (8.26) in accordance with the identity u[kk ] = 〈β∨
L (·−kk ), w〉. In fact, the

result of Proposition 8.8 applies for any linear transform of s that involves a collec-
tion of basis functions {ψk }K

k=1 such that φk = L−1∗ψk ∈ R(Rd ), and more generally
φk ∈ Lp (Rd ) when f is p-admissible.

8.5 Optimal representation of Lévy and AR(1) processes

We conclude the chapter with a detailed investigation of the effect of such signal
decompositions on first-order processes. We are especially interested in the evalu-
ation of performance for data reduction and the comparison with the “optimal” solu-
tions provided by the Karhunen-Loève transform (KLT) and independent-component
analysis (ICA). While ICA is usually determined empirically by running a suitable al-
gorithm, the good news is that it can be worked out analytically for this particular
class of signal models and used as gold standard.

The Gaussian AR(1) model is of special relevance since it has been put forward in
the past to justify two popular source-encoding algorithms: linear predictive coding
(LPC) and DCT-based transform coding [JN84]. LPC, on the one hand, is used for
voice compression in the GSM standard for mobile phones (2G cellular network).
It is also part of the FLAC lossless audio codec. The DCT, on the other hand, was
introduced as an approximation of the KLT of an AR(1) process [Ahm74]. It forms
the core of the widely used JPEG method of lossy compression for digital pictures.
Our primary interest here is to investigate the extent to which these classical tools of
signal processing remain relevant when switching to the non-Gaussian regime.

8.5.1 Generalized increments and first-order linear prediction

The generalized CAR(1) processes of interest to us are solutions of the first-order
SDE (see Section 7.3.4)

(D−α1Id)s(t ) = w(t )
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with a single scalar coefficient α1 ∈ R. The underlying system is causal-stable for
α1 < 0 and results in a stationary output s, which may be Gaussian or not, depending
on the type of innovation w . The unstable scenario α1 → 0 corresponds to the Lévy
processes described in Section 7.4.1.

If we sample s(·) at the integers, we obtain the discrete AR(1) process s[·] that sat-
isfies the first-order difference equation

s[k]−a1s[k −1] = u[k] (8.27)

with a1 = eα1 . From the result in Section 8.3.1 and Proposition 8.4, we know that u[·]
is i.i.d. with an infinite-divisible distribution characterized by the (modified) Lévy
exponent

fU (ω) =
∫

R
f
(
ωβα1 (t )

)
dt =

∫ 1

0
f
(
ωeα1t ) dt .

Here, βα1 (t ) =1[0,1)(t )eα1t is the exponential B-spline associated with the first-order
whitening operator L = D−α1Id (see Section 6.3) and f is the exponent of the con-
tinuous domain innovation w .

To make the link with predictive coding and classical estimation theory, we ob-
serve that s̃[k] = a1s[k −1] is the best (minimum error) linear predictor of s[k] given
the past of the signal {s[k −n]}∞n=1. This suggests one to interprete the generalized
increments u[k] = s[k]− s̃[k] as prediction errors.

For the interest of the reader, we recall that the main idea behind linear predict-
ive coding (LPC) is to sequentially transmit the prediction error u[k], rather than the
sample values of the signal which are inherently correlated. One also typically uses
higher-order AR models to better represent the effect of the sound-production sys-
tem. A refinement for real-world signals is to re-estimate the prediction coefficients
from time to time in order to readapt the model to the data.

8.5.2 Vector-matrix formulation

The common practice in signal processing is to describe finite-dimensional signal
transforms within the framework of linear algebra. To that end, one considers a series
of N consecutive samples Xn = s[n] that are concatenated into the signal vector x =(
X1, . . . , XN ) which, from now on, will be treated as a multivariate random variable.

One also imposes some boundary conditions for the signal values that are outside
the observation window such as, for instance, the periodic extension s[k] = s[k +N ].
Another example is s[0] = 0, which is consistent with the definition of a Lévy process.

In the present scenario, the underlying signal is specified by the discrete AR(1) in-
novation model (8.27) and the Lévy exponent fU of its driving term u[·]. The tran-
scription of this model in matrix-vector form is

Lx = u

where u = (
U1, . . . ,UN

)
with Un = u[n] and L is a Toeplitz matrix with nonzero entries

[L]n,n = 1 and [L]n−1,n = a1 = eα1 .
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Assuming that L is invertible 1, we then solve this linear system of equations, which
yields

x = L−1u (8.28)

where u is i.i.d., in direct analogy with the continuous-domain representation of sig-
nal s = L−1w . Since (8.28) is a special instance of the general finite-dimensional in-
novation model, we can refer to the formulas of Section 4.3 for the complete mul-
tivariate statistical description. For instance, the joint characteristic function of the
signal is given by (4.12) with A = L−1 and f = fU .

8.5.3 Transform-domain statistics

The primary motivation for applying a linear transform to x is to produce the equi-
valent signal representation

y = (Y1, . . . ,YN ) = Tx (8.29)

whose components Yn can be processed or analyzed individually, which is justifiable
when the Yn are (approximately) decoupled. A transform is thereby characterized
by an (N × N ) matrix T = [t1 · · ·tN ]T which is assumed be invertible. If no further
constraint is imposed, then the optimal transform for the present model is T ∝ L−1,
which results in a perfect decoupling, as in LPC. However, there are many applica-
tions such as denoising and coding where it is important to preserve the norm of the
signal, so that one constrains the transform matrix T to be orthonornal. In the se-
quel, we shall describe and compare the solutions that are available for that purpose
and quantify the penalty that is incurred by imposing the orthonormality condition.

But before that, let us determine the transform-domain statistics of the signal in
order to qualify the effect of T. Generally, if we know the N th-order pdf of x, we can
readily deduce the joint pdf of the transform-domain coefficients y = Tx as

p(Y1:YN )(y) = 1

|det(T)|p(X1:XN )(T−1 y). (8.30)

The Fourier equivalent of this relation is

p̂(Y1:YN )(ω) = p̂(X1:XN )(TTω)

where p̂(Y1:YN ) and p̂(X1:XN ) are the characteristic functions of y and x, respectively.
In the case of the innovation model (8.28), we can be completely explicit and ob-
tain closed formulas, including the complete multivariate characterization of the
transform-domain cumulants. To that end, we rewrite (8.29) as y = Au where

A = TL−1 = [a1 · · ·aN ]T = [b1 · · ·bN ] (8.31)

is the composite matrix that combines the effect of noise shaping (innovation model)
and the linear transformation of the data. The row vectors of A are am = (am,1, . . . , am,N )
with am,n = [A]m,n , while its columns vectors are denoted by bn = (a1,m , . . . , aN ,m).

1. This property is dependent upon a proper choice of discrete boundary conditions (e.g., s[0] = 0).
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P R O P O S I T I O N 8.9 Let y = Au where A = [b1 · · ·bN ] is an invertible matrix of size N
and u is i.i.d. with an infinite-divisible pdf with Lévy exponent fU . Then, the joint
characteristic function of y = (Y1, · · · ,YN ) is given by

p̂(Y1:YN )(ω) = exp

(
N∑

n=1
fU

(
[ATω]n

)
)

= exp

(
N∑

n=1
fU

(〈bn ,ω〉)
)

. (8.32)

The corresponding multivariate cumulants with multi-index m = (m1, . . . ,mN ) are

κm {Y1 : YN } = κm{U }
N∑

n=1
am1

1,n · · · ·amN
N ,n (8.33)

= κm{U }
N∑

n=1
bm

n , (8.34)

where am,n = [A]m,n = [bn]m and κm{U } = (−j)m∂m fU (0) is the (scalar) cumulant of
order m =∑N

n=1 mn of the innovation. Finally, the marginal distribution of Yn = 〈x,an〉
is infinite-divisible with Lévy exponent

fYn (ω) =
N∑

m=1
fU

(
an,mω

)
. (8.35)

Proof Since u = (U1, . . . ,UN ) is i.i.d. with characteristic function p̂U (ω) = e fU (ω), we
have that

p̂(U1:UN )(ω) =
N∏

n=1
e fU (ωn ) = exp

(
N∑

n=1
fU (ωn)

)
.

Moreover,

p̂(Y1:YN )(ω) = E
{
ej〈y,ω〉}= E

{
ej〈Au,ω〉}

= E
{

ej〈u,ATω〉
}
= p̂(U1:UN )(ATω).

Combining these two formulas yields (8.32).
The second part is obtained by adapting the proof of Proposition 8.8. In essence,

the idea is to replace the integral over Rd by a sum over n and the basis functions by
the row vectors of A.

As for the last statement, the characteristic function p̂Yn (ω) is obtained by sub-
stitution of ω by ωen in (8.32) where en is the n-th canonical unit vector. Indeed,
setting one of the frequency-domain variables to zero is equivalent to performing
the corresponding marginalization (integration) of the joint pdf. We thereby obtain

p̂Yn (ω) = exp

(
N∑

m=1
fU

(
an,mω

)
)

,

whose exponent is the sought-after quantity. Implicit to this result is the fact that the
infinite-divisibility property is preserved when performing linear combination of id
variables. Specifically, let f1 and f2 be two valid Lévy exponents. Then, it is not hard
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to see that f (ω) = f1(a1ω)+ f2(a2ω) where a1, a2 ∈R are arbitrary constants is a valid
Lévy exponent as well (in reference to Definition 4.1).

Proposition 8.9 in conjunction with (8.31) provides us with the complete charac-
terization of the transform-domain statistics. To illustrate its usage, we shall now
deduce the expression of the transform-domain covariances. Specifically, the covari-
ance between Yn1 and Yn2 is given by the second-order cumulant with multi-index
m = en1 +en2 , whose expression (8.33) with m = 2 simplifies to

E
{(

Yn1 −E{Yn1 }
)(

Yn2 −E{Yn2 }
)}= κ2{U }

N∑
n=1

an1,n an2,n

=σ2
0 〈an1 ,an2〉 (8.36)

where σ2
0 = − f ′′

U (0) is the variance of the innovation and where an1 and an2 are the
n1th and n2th row vectors of the matrix A = [a1 · · ·aN ]T , respectively. In particular,
for n1 = n2 = n, we find that the variance of Yn is given by

Var{Yn} =σ2
0‖an‖2.

Covariance matrix
An equivalent way of expressing second-order moments is to use covariance matrices.

Specifically, the covariance matrix of the random vector x ∈RN is defined as

CX = E
{(

x−E{x}
) (

x−E{x}
)T

}
. (8.37)

It is a (N × N ) symmetric positive-definite matrix. A standard manipulation then
yields

CY = TCX TT

= ACU AT =σ2
0AAT (8.38)

where A is defined by (8.31). The reader can easily verify that this result is equivalent
to (8.36). Likewise, the second-order transcription of the innovation model is

CX = L−1CU L−1T

=σ2
0(LT L)−1. (8.39)

Differential entropy
A final important theoretical quantity is the differential entropy of the random vec-

tor x = (X1, . . . , XN ), which is defined as

H(X1:XN ) = E
{− log p(X1:XN )(x)

}

=−
∫

RN
p(X1:XN )(x) log p(X1:XN )(x) dx . (8.40)

For instance, the differential entropy of the N -dimensional multivariate Gaussian pdf
with mean x0 and covariance matrix CX ,

pGauss(x) = 1√
(2π)N det(CX )

exp
(− 1

2 (x −x0)T C−1
X (x −x0)

)
,
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Probability density function p(x) Differential entropy (−∫
R p(x) log p(x) dx)

Gaussian
1

2πσ2
e−x2/(2σ2) 1

2

(
1+ log(2πσ2)

)

Laplace
1

2λ
e−|x|/λ 1+ log(2λ)

Cauchy
s0

π

1

s2
0 +x2

log(4πs0)

Student
1

B
(
r, 1

2

)
(

1

x2 +1

)r+ 1
2

(r + 1
2 )

(
ψ(r + 1

2 )+ψ(r )
)
+ log

(√
r
2 B

(
r, 1

2

))

B(r, s) and ψ(z) = d
dz logΓ(z) are Euler’s beta and digamma functions, respectively (see Appendix C.2).

Table 8.1 Table of differential entropies.

is given by

H(pGauss) = 1

2

(
N +N log(2π)+ logdet(CX )

)

= 1

2
log

(
(2πe)N det(CX )

)
. (8.41)

The special relevance of this expression is that the Gaussian distribution is known
to have the maximum differential entropy among all densities with a given covari-
ance CX . This leads to the inequality

−H(X1:XN ) +
1

2
log

(
(2πe)N det(CX )

)≤ 0, (8.42)

where the quantity on the left is called the negentropy.

To quantify the effect of the linear transformation T, we calculate the entropy of
(8.30), which, upon change of variables, yields

H(Y1:YN ) =−
∫

RN
p(Y1:YN )(x) log p(Y1:YN )(x) dx

= H(X1:XN ) − log |det(T)| (8.43)

= H(U1:UN ) − log |det(A)|
= N ·HU − log |det(T)|− log |det(L)|, (8.44)

where HU =−∫
R pU (x) log pU (x) dx is the differential entropy of the (scalar) innova-

tion. Equation (8.43) implies that the differential entropy is invariant to orthonormal
transformations (since det(T) = 1), while (8.44) shows that it is primarily determined
by the probability law of the innovation. Some specific formulas for the differential
entropy of id laws are given in Table 8.1.
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8.5.4 Comparison of orthogonal transforms

While the obvious candidate for expanding sparse AR(1) processes is the operator-
like transform of Section 6.3.3, we shall also consider two classical data analysis methods—
principal-component analysis (PCA) and independent-component analysis (ICA)—
which can be readily transposed to our framework.

Discrete Karhunen-Loève transform
The discrete Karhunen-Loève transform (KLT) is the model-based version of PCA.

It relies on the prior knowledge of the covariance matrix of the signal
(
see (8.37)

)
.

Specifically, the KLT matrix TKLT = [h1 · · ·hN ]T is build from the eigenvectors hn of
CX with the eigenvalues λ1 ≥ ·· · ≥ λN being ordered by decreasing magnitude. It
results in a representation that is perfectly decorrelated, with

CKLT = TKLTCX TT
KLT = diag(λ1, · · · ,λN ).

This implies that the solution is optimal in the Gaussian scenario where decorrela-
tion is equivalent to independence. PCA is essentially the same technique, except
that it replaces CX by a scatter matrix that is estimated empirically from the data.

In addition to the decorrelation property, the KLT minimizes any criterion of the
form (see [Uns84, Appendix A])

R(T) =
N∑

n=1
G

(
Var{Yn}

)
(8.45)

where G : R+ → R is an arbitrary, continuous, monotonously decreasing, convex (or
increasing concave) function and Var{Yn} = tT

n CX tn is the variance of Yn = 〈x,tn〉.
Under the finite-variance hypothesis, the covariance matrix of the AR(1) process

is given by (8.39) where L−1 is the inverse of the prediction filter and σ2
0 is the vari-

ance of the discrete innovation u. There are several instances of the model for which
the KLT can be determined analytically based on the fact that the eigenvectors of
σ2

0(LT L)−1 are the same as those of (LT L). Specifically, h is an eigenvector of CX with
eigenvalue λ if and only if

(LT L)h = σ2
0

λ
h.

For the AR(1) model, LT L is tridiagonal. This can then be converted into a set of
second-order difference equations that may be solved recursively. In particular, for
α1 = 0 (Lévy process), the eigenvectors for n = 1, . . . , N correspond to the sinusoidal
sequences

hn[k] = 2p
2N +1

sin

(
π

2n −1

2N +1
k

)
. (8.46)

Depending on the boundary conditions, one can obtain similar formulas for the
eigenvectors when α1 6= 0. The bottom line is that the solutions are generally si-
nusoids, with minor variations in phase and frequency. This is consistent with the
fact that the correlation matrix CX is very close to being circular, and that circular
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matrices are diagonalized by the discrete Fourier transform (DFT). Another “univer-
sal” transform that provides an excellent approximation of the KLT of an AR(1) pro-
cess (see [Ahm74]) is the discrete cosine transform (DCT) whose basis vectors for
n = 1, . . . , N are

gn[k] = 2p
2N

cos

(
πn

N
(k − 1

2
)

)
. (8.47)

A key property is that the DCT is asymptotically optimal in the sense that its per-
formance is equivalent to that of the KLT when the block size N tends to infinity.
Remarkably, this is a result that holds for the complete class of wide sense-stationary
processes [Uns84], which may explain why this transform performs so well in prac-
tice.

Independent-component analysis
The decoupling afforded by the KLT emphasizes decorrelation, which is not neces-

sarily appropriate when the underlying model is non-Gaussian. Instead, one would
rather like to obtain a representation that maximizes statistical independence, which
is the goal pursued by independent-component analysis (ICA). Unlike the KLT, there
is no single ICA but a variety of numerical solutions that differ in terms of the cri-
terion being optimized [Com94]. The preferred measure of independence is mutual
information (MI), with the caveat that it is often difficult to estimate reliably from the
data. Here, we take advantage of our analytic framework to bypass this estimation
step, which is the empirical part of ICA.

Specifically, let

z = (Z1, . . . , ZN ) = TICAx

with TT
ICATICA = I. By definition, the mutual information of the random vector (Z1, . . . ,

ZN ) is given by

I (Z1, . . . , ZN ) =
(

N∑
n=1

HZn

)
−H(Z1:ZN ) ≥ 0 (8.48)

where HZn = −∫
R pZn (z) log pZn (z) dz is the differential entropy of the component

Zn (which is computed from the marginal distribution pZn ), and H(Z1:ZN ) is the N th-
order differential entropy of z

(
see (8.40)

)
. The relevance of this criterion is that

I (Z1, . . . , ZN ) = 0 if and only if the variables Z1, . . . , ZN are statistically independent.
The other important property is that H(Z1:ZN ) = H(Y1:YN ) = H(X1:XN ), meaning that
the joint differential entropy does not dependent upon the choice of transforma-
tion as long as |det(T)| = 1

(
see (8.43)

)
. Therefore, the ICA transform that minimizes

I (Z1, . . . , ZN ) subject to the orthonormality constraint is also the one that minimizes
the sum of the transform-domain entropies. We call this optimal solution the min-
entropy ICA.

The implicit understanding with ICA is that the components of z are (approxim-
ately) independent so that it makes good sense to approximate the joint pdf of z by
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the product of the marginals given by

p(Z1:ZN )(z) ≈
N∏

n=1
pZn (zn) = q(Z1:Zn )(z). (8.49)

As it turns out, the min-entropy ICA minimizes the Kullback-Leibler divergence bet-
ween p(Z1:ZN ) and its separable approximation q(Z1:Zn ). Indeed, the Kullback-Leibler
divergence between two N -dimensional probability density functions p and q is
defined as

D
(
p‖q

)=
∫

RN
log

(
p(z)

q(z)

)
p(z) dz .

In the present context, this simplifies to

D
(
p(Z1:ZN ) ‖

N∏
n=1

pZn

)=
(∫

RN
p(Z1:ZN )(z)

N∑
n=1

log pZn (zn) dz

)
−H(Z1:ZN )

=
(

N∑
n=1

∫

R
pZn (z) log pZn (z) dz

)
−H(Z1:ZN )

=
(

N∑
n=1

HZn

)
−H(Z1:ZN ) = I (Z1, . . . , ZN ) ≥ 0,

with equality to zero if and only if p(Z1:ZN )(z) and its product approximation on the
middle/left-hand-side of (8.49) are equal.

In the special case where the innovation follows an SαS distribution with fU (ω) =
− 1
α! |s0ω|α, we can derive a form of the entropy criterion that is directly amenable to

numerical optimization. Indeed, based on Proposition 8.9, we find that the charac-
teristic function of Yn is given by

p̂Yn (ω) = exp

(
N∑

m=1
− 1

α!

∣∣s0an,mω
∣∣α

)

= exp

(
− 1

α!
sα0 ‖an‖α`α |ω|

α

)
= e−

1
α! |snω|α (8.50)

for which we deduce that Yn is SαS with width parameter

sn = s0‖an‖`α = s0

(
N∑

m=1
aαn,m

) 1
α

.

This implies that pYn is a rescaled version of pU so that its entropy is given by

HYn = HU − log‖an‖`α .

Hence, minimizing the mutual information (or, equivalently, the sum of the entrop-
ies of the transformed coefficients) is equivalent to the optimization of

I (T;α) =−
N∑

n=1
log‖an‖`α

=−
N∑

n=1

1

α
log

(
N∑

m=1
[TL−1]αn,m

)
. (8.51)
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Figure 8.2 Decoupling ability of various transforms of size N = 64 for the representation of
SαS Lévy processes as a function of the stability/sparsity index α. The criterion is the average
mutual information. The Gaussian case α= 2 corresponds to a Brownian motion.

Based on (8.48), (8.44) and the property that |det(L)| = 1, we can actually verify that
(8.51) is the exact formula for the mutual information I (Y1, . . . ,YN ). In particular, for
α= 2 (Gaussian case), we find that

I (T;2) =−
N∑

n=1

1

2
log‖an‖2

2 =−
N∑

n=1

1

2
logVar{Yn},

which is a special instance of (8.45). It follows that, for α= 2, ICA is equivalent to the
KLT, as expected.

Experimental results and discussion
To quantity the performance of the various transforms, we considered a series

of signal vectors of size N = 64, which are sampled versions of Lévy processes and
CAR(1) signals with SαS innovations. The motivation for this particular setup is two-
fold. First, the use of a stable excitation lends itself to a complete analytical treatment
due to the preservation of the SαS property

(
see (8.50)

)
. Second, the model offers a

direct control over the degree of sparsity via the adjustment ofα ∈ (0,2]. The classical
Gaussian configuration is achieved with α= 2, while the distribution becomes more
and more heavy tailed as α decreases with pYn (x) =O(1/xα+1) (see Appendix C.3).

Our quality index is the average mutual information of the transform-domain
coefficients given by 1

N I (Y1, . . . ,YN ) ≥ 0. A value of zero indicates that the transform
coefficients are completely independent. The baseline transformation is the identity,
which is expected to yield the worst results. The optimal performance is achieved by
ICA which is determined numerically for each brand of signals based on the optim-
ization of (8.51).

In Figure 8.2, we compare the performance of the DCT, the Haar wavelet trans-
form, and the ICA gold-standard for the representation of Lévy processes (with a1 =
e0 = 1). We verified that the difference in performance between the DCT and the
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KLT associated with Brownian motion was marginal so that the DCT curve is truly
representative of the best that is achievable within the realm of “classical” sinusoidal
transforms. Interestingly, the Haar wavelet transform is undistinguishable from the
optimal solution for values ofαbelow one, and better than the DCT up to some trans-
ition point. The change of regime of the DCT for larger values ofα is explained by the
property that it converges to the optimal solution for α= 2, the single point at which
ICA and the KLT are equivalent. We did also examine the basis functions of ICA and
found that they were very similar to Haar wavelets. In particular, it appeared that the
ICA training algorithm would almost systematically uncover the N /2 shorter Haar
wavelets, which is not overly surprising since these are basis vectors also shared by
the discrete whitening filter L.

Remarkably, this statistical model supports the (quasi)-optimality of wavelets. Since
mutual information is in direct relation with the transform-domain entropies which
are predictors of coding performance, these results also provide an explanation of
the superiority of wavelets for the M-term approximation of Lévy processes reported
in Section 1.3.4 (see Figure 1.5).

The graph in 8.3 provides the matching results for AR(1) signals with a1 = 0.9. Also
included is a comparison between the Haar transform and the operator-like wavelet
transform that is matched to the underlying AR(1) model. The conclusions are es-
sentially the same as before. Here too, the DCT closely replicates the performance of
the KLT associated with the Gaussian brand of these processes. While the Haar trans-
form is superior to the DCT for the sparser brands of processes (small values of α),
it is generally outperformed by the operator-like wavelet transform, which confirms
the relevance of applying matched basis functions.

The finding that a fixed set of basis functions (operator-like wavelet transform) is
capable of essentially replicating the performance of ICA is good news for applic-
ations. Indeed, the computational cost of the wavelet algorithm is O(N ), as op-
posed to O(N 2) for ICA, not to mention the price of the training procedure (iterat-
ive optimization) which is even more demanding (O(N 2) per iteration of a gradient-
based scheme). A further conceptual advantage is that the operator-like wavelets are
known in analytic form (see Section 6.3.3), while ICA can, at best, only be determined
numerically by running a suitable optimization algorithm.

8.6 Bibliographical notes

Sections 8.1-8.4
The property that finite differences decouple Lévy processes is well known—in

fact, it is the starting point of the definition of such “additive” processes [Lév65].
By contrast, the observation that Haar wavelets have the same kind of ability (on a
scale-by-scale basis) is much more recent [UTSss].

A crucial theoretical aspect is the extension of the domain of the characteristic
functional that carried out in Section 8.2. The proof of Theorem 8.2 is adapted from
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Figure 8.3 Decoupling ability of various transforms for the representation of stable AR(1)
signals of size N = 64 with correlation a1 = 0.9 as a function of the stability/sparsity index α.
The criterion is the average mutual information. The DCT is known to be asymptotically
optimal in the Gaussian case (α= 2).

[UTSss, Theorem 3], while more general results for arbitrary Lévy exponents can be
found in [Fag13].

The material in Section 8.3 is an extension of the results presented in [UTAKss]. In
that respect, we note that the correspondence between continuous-time and discrete-
time ARMA models (the Gaussian part of Proposition 8.4) is a classical result in the
theory of Gaussian stationary processes [Doo90]. The localization of the fractional
derivative operators in Section 8.3.5 is intimately linked to the construction of fac-
tional B-splines with the help of the generalized binomial expansion (see [BU03,
UB00]).

The theoretical results on wavelet-domain statistics in Section 8.4 are an extension
of [UTSss, Section V.D]. In particular, the general cumulant formulas (Proposition
8.8) are new to the best of our knowledge.

Section 8.5
The use of linear transforms for the decorrelation of signals is a classical topic in

signal and image processing [Pra91,JN84,Jai89]. The DCT was introduced by Ahmed
et al. as a practical substitute for the KLT of an AR(1) process [Ahm74]. As part of
his thesis work, Unser proved its asymptotic equivalence with the KLT for the com-
plete class of Gaussian stationary processes [Uns84]. The AR(1) model has frequently
been used for comparing linear transform using various performance metrics de-
rived from the Gaussian hypothesis [PAP72, HP76, Jai79, JN84]. While such measures
clearly point towards the superiority of sinusoidal transforms, they loose their relev-
ance in the context of sparse processes. The derivation of the KLT of a Lévy process
(see (8.46)) can be found in [KPAU13, Appendix II].

Two classical references on ICA are [Com94, HO00]. In practice, ICA is determ-
ined from the data based on the minimization of a suitable contrast that favors in-
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dependence or, by extension, non-Gaussianity/sparsity. There is some empirical
evidence of a link between ICA and wavelets. The first is a famous experiment by
Olshausen and Field who computed ICA from a large collection of natural image
patches and pointed out the similarity between the extracted factors and a direc-
tional wavelet/Gabor analysis [OF96a]. In 1999, Cardoso and Donoho reported a nu-
merical experiment involving a (non-Gaussian) saw-tooth process that resulted in
ICA basis functions that were remarkably similar to wavelets. The characterization
of ICA for SαS processes that is presented in Section 8.5.4 and the demonstration of
the connection with operator-like wavelets is based on the more recent work of Pad
and Unser [PU13].

The source for the calculation of the differential entropies in Table 8.1 is [LR78].



9 Infinite divisibility and
transform-domain statistics

As we saw in Chapter 8, we have at our disposal two primary tools to analyze/cha-
racterize sparse signals: 1) the construction of the generalized-increment process by
application of the discrete version of the whitening operator (localization), and 2)
a wavelet analysis using operator-like basis functions. The goal shared by the two
approaches is to approximately recover the innovations by numerical inversion of
the signal-generation model. While the localization option appears to give the finest
level of control, the wavelet option is interesting as well because of its greater ro-
bustness to modeling errors. Indeed, performing a wavelet transform (especially if
it is orthogonal) is a much stabler operation than taking a discrete derivative, which
tends to amplify high-frequency perturbations.

In this chapter, we take advantage of our functional framework to gain a better un-
derstanding of the true nature of the transform-domain statistics. Our investigation
revolves around the fact that the marginal pdfs are infinitely divisible (id) and that
they can be determined explicitly via the analysis of a common white noise (innov-
ation). We make use of this result to examine a number of relevant properties of the
underlying id distributions and to show that they are, for the most part, invariant to
the actual shape of the analysis window. This implies, among other things, that the
qualitative effect of operator-like filtering is the same in both analysis scenarios, in
the sense that the sparsity pattern of the innovation is essentially preserved.

The chapter is organized as follows: In Section 9.1, we interpret as spectral mix-
ing the observation of white Lévy noise through some general analysis function ϕ ∈
Lp (Rd ). We prove that the resulting pdf is infinitely divisible under mild conditions
onϕ and f . The key idea is that the pdf of Xϕ = 〈ϕ, w〉 is completely characterized by
its modified Lévy exponent

fϕ(ω) =
∫

Rd
f
(
ωϕ(r )

)
dr , (9.1)

where f is the Lévy exponent of the continuous-domain innovations. This also trans-
lates into a correspondence between the Lévy density vϕ(a) of fϕ and the canonical
v(a) that characterizes the innovation (cf. Theorem 4.2).

The central part of the chapter is devoted to the demonstration that fϕ (respect-
ively, vϕ) preserves the primary features of f (respectively, v) and by the same token
those of the underlying pdf. The properties of unimodality, self-decomposability,
and stability are covered in Sections 9.2, 9.3, and 9.4, respectively, while the char-
acterization of the decay and the determination of the moments are carried out in
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Sections 9.5-9.6. The conclusion that follows is that the shape of the analysis win-
dow does not fundamentally change the nature of the transform-domain pdfs. This
is good news for practical applications since it allows us to do some relatively robust
modeling by sticking to a particular family of id distributions (such as the student,
sym gamma, or SαS laws in Table 4.1) whose dispersion and decay parameters can
be tuned to fit the statistics of a given type of signal. These findings also suggest that
the transform-domain statistics are only mildly dependent upon the choice of a par-
ticular wavelet basis as long as the analysis wavelets are matched to the whitening
operator of the process in the sense that ψi = L∗φi with φi ∈ Lp (Rd ).

In the case where the operator is scale-invariant (fractal process), we can be more
specific and obtain a precise characterization of the evolution of the wavelet statistics
across scale. Our mathematical analysis hinges upon the semigroup properties of id
laws which are reviewed in Section 9.7. These results are then used in Section 9.8 to
show that the wavelet-domain pdfs are ruled by a diffusion-like equation. This allows
us to prove that the wavelet-domain pdfs converge to Gaussians—or, more generally,
to stable distributions—as the scale gets coarser.

9.1 Composition of id laws, spectral mixing, and analysis of white
noise

The fundamental aspect of infinite divisibility is that the property is conserved
through basic convolution-based compositions of probability density functions. Spe-
cifically, let pX1 and pX2 be two id pdfs. Then, the id property is maintained for

pY (x) =
(

1
s1

pX1 ( ·
s1

)∗ 1
s2

pX2 ( ·
s2

)
)

(x)⇔ p̂Y (ω) = p̂X1 (s1ω) · p̂X2 (s2ω), where pY can be
interpreted as the pdf of the linear linear combination Y = s1X1 + s2X2 of independ-
ent random variables X1 and X2. Indeed, the resulting Lévy triplet is

(
s1m1 + s1m2,

s2
1b1 + s2

2b2, 1
s1

v1( ·
s1

)+ 1
s2

v2( ·
s2

)
)

where (mi , bi , vi ), i = 1,2 are the Lévy triplets of pX1

and pX2 . Along the same lines, we have the implication that, for any finite τ≥ 0,

f (ω) (p-)admissible ⇒ τ f (ω) is a (p-)admissible Lévy exponent.

The Fourier-domain interpretation here is p̂Xτ (ω) = (
p̂X1 (ω)

)τ, which translates into
a τ-fold (fractional) convolution of pX1 .

In this work, we rely heavily on the property that the composition of id probability
laws can undergo a limit process by considering a mixing that involves a continuum
of independent random contributions (integration of white noise). For instance, we
have already emphasized in Section 4.4.3 that the observation of a white Lévy noise
through a rectangular window results in a reference random variable Xid = 〈rect, w〉
with a canonical id pdf pid(x) (cf. Proposition 4.12). The important question that we
are addressing here is to describe the effect of applying a non-rectangular analysis
window, as in (2.4) or (2.1).

The first step is to determine the pdf of the random variable Xϕ = 〈ϕ, w〉 for an
arbitraryϕ. We have already alluded to the fact that pXϕ is infinitely divisible. Indeed,
the characteristic function of Xϕ is obtained by making the substitution ϕ→ ωϕ in
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the characteristic functional (4.13) of the Lévy noise, which yields

p̂Xϕ (ω) = P̂w (ωϕ) = e fϕ(ω)

where fϕ is defined by (9.1).
The next result shows that fϕ is indeed an admissible Lévy exponent—that is, a

conditionally, positive-definite function of order 1 admitting a Lévy-Khintchine de-
composition with some modified Lévy density vϕ.

T H E O R E M 9.1 Let f (ω) be a valid Lévy function with Lévy triplet
(
b1,b2, v(a)

)
subject

to the constraint that
∫
Rmin(a2, |a|p )v(a) da < ∞ for some p ∈ [0,2]. Then, for any

ϕ ∈ Lp (Rd )∩L2(Rd )∩L1(Rd ), fϕ(ω) = ∫
Rd f

(
ωϕ(r )

)
dr is an admissible Lévy exponent

with Gaussian parameter

b2,ϕ = b2‖ϕ‖2
L2

and modified Lévy density

vϕ(a) =
∫

Πϕ

1

|ϕ(r )| v
(
a/ϕ(r )

)
dr , (9.2)

where Πϕ ⊆ Rd denotes the domain over which ϕ(r ) 6= 0. Moreover, fϕ(ω) (resp., vϕ)
satisfies the same type of admissibility condition as f (ω) (resp., v).

Note that the restriction ϕ ∈ L1(Rd ) is only required for the non-centered scen-
arios where

∫
R av(a) da 6= 0 and b1 6= 0. The corresponding Lévy parameter b1,ϕ

then depends upon the type of Lévy-Khintchine formula. In the case of the fully-
compensated representation (4.5), we have b1,ϕ = b′′

1

∫
Rd ϕ(r ) dr .

L E M M A 9.2 Let v(a) ≥ 0 be a valid Lévy density such that
∫
Rmin(a2, |a|p )v(a) da <∞

for some p ∈ [0,2]. Then, for any givenϕ ∈ Lp (Rd )∩L2(Rd ), the modified density vϕ(a)
specified by (9.2) is Lévy-admissible with
∫

R
min(a2, |a|p )vϕ(a) da < 2‖ϕ‖2

L2

∫

|a|<1
a2v(a) da +2‖ϕ‖p

Lp

∫

|a|≥1
|a|p v(a) da. (9.3)

If, in addition,
∫
R |a|p v(a) da < ∞ for some p ≥ 0, then the result holds for any ϕ ∈

Lp (Rd ) and vϕ satisfies the inequality
∫

R
|a|p vϕ(a) da < 2‖ϕ‖p

Lp

∫

R
|a|p v(a) da. (9.4)

The limit case p = 0 is covered by using the convention that L0(Rd ) is the space
of bounded, compactly-supported functions with ‖ϕ‖0

L0
= ∫

Πϕ
dr where Πϕ = {r :

ϕ(r ) 6= 0}.

Proof of Lemma 9.2. vϕ(a) is nonnegative by construction. To prove that it satisfies
the required bound, we rewrite it as

vϕ(a) =
∫ ∞

−∞
1

|θ|v
(
a/θ

)
µϕ(dθ)

where µϕ is the measure describing the amplitude distribution of ϕ(r ) within the
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range θ ∈ R, with zero contribution at θ = 0 (to avoid dividing by zero). For further
conveniency, we also define the measure µ|ϕ| that specifies the amplitude distribu-
tion of |ϕ(r )|. To check the finiteness of

∫
|a|>1 |a|p vϕ(a) da, we first consider the con-

tribution I1 of the positive values

I1 =
∫ ∞

1
|a|p vϕ(a) da =

∫ ∞

1

∫ ∞

−∞
|a|p
|θ| v

(
a/θ

)
µϕ(dθ) da

=
∫ ∞

−∞

∫ ∞

1

|a|p
|θ| v

(
a/θ

)
daµϕ(dθ)

=
∫ ∞

0

∫ ∞

1/θ
|a′θ|p v(a′) da′µ|ϕ|(dθ)

≤
∫ ∞

0

(∫ 1

min(1,1/θ)
|a′θ|p v(a′) da′+

∫ ∞

1
|a′θ|p v(a′) da′

)
µ|ϕ|(dθ),

where we are relying on Tonelli’s theorem to interchange the integrals and where we
have made the reverse change of variable a′ = a/θ. The crucial step is to note that
a′θ ≥ 1 for the range of values within the first inner integral, which yields

I1 ≤
∫ ∞

0

(∫ 1

min(1,1/θ)
(a′θ)2v(a′) da′+

∫ ∞

1
|a′θ|p v(a′) da′

)
µ|ϕ|(dθ)

≤
∫ ∞

−∞
θ2µϕ(dθ)

∫ 1

0
a2v(a) da +

∫ ∞

−∞
|θ|p µϕ(dθ)

∫ ∞

1
ap v(a) da.

Proceeding in the same fashion for the negative values and recalling that
∫
R |θ|pµϕ(dθ) =

‖ϕ‖p
Lp

, we find that

∫

|a|≥1
|a|p vϕ(a) da ≤ ‖ϕ‖2

L2

∫

|a|<1
a2v(a) da +‖ϕ‖p

Lp

∫

|a|≥1
|a|p v(a) da <∞

where we have used
∫
Rmin(a2, |a|p )v(a) da = ∫

|a|<1 a2v(a) da+∫
|a|≥1 |a|p v(a) da. As

for the quadratic part (I2) of the admissibility condition, we consider the integral

I2 =
∫ 1

0
a2vϕ(a) da

=
∫ 1

0

∫ ∞

−∞
a2

|θ|v
(
a/θ

)
µϕ(dθ) da

=
∫ ∞

0

∫ 1/θ

0
(a′θ)2v(a′) da′µ|ϕ|(dθ)

with the change of variable a′ = a/θ. Since a′ < 1/θ within the bound of the inner
integral, we have

I2 ≤
∫ ∞

0

(∫ 1

0
(a′θ)2v(a′) da′+

∫ max(1,1/θ)

1
|a′θ|p v(a′) da′

)
µ|ϕ|(dθ)

≤
∫ ∞

−∞
θ2µϕ(dθ)

∫ 1

0
a2v(a) da +

∫ ∞

−∞
|θ|p µϕ(dθ)

∫ ∞

1
ap v(a) da

Using the same technique for the negative values, we get
∫

|a|<1
a2vϕ(a) da ≤ ‖ϕ‖2

L2

∫

|a|<1
a2v(a) da +‖ϕ‖p

Lp

∫

|a|≥1
|a|p v(a) da <∞,
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which is then combined with the previous result to yield (9.3). The announced Lp

inequality is obtained in a similar fashion without the necessity of splitting the integ-
rals in subparts.

L E M M A 9.3 Let v(a) ≥ 0 be a Lévy density such that
∫
Rmin(a2, |a|p )v(a) da <∞ for

some p ∈ [0,2]. Then, the non-Gaussian Lévy exponent

g (ω) =
∫

R\{0}

(
ejaω−1− jaω1|a|<1(a)

)
v(a) da

is bounded by
∣∣g (ω)

∣∣≤C2|ω|2 +Cq |ω|q

with C2 =
∫
|a|<1 |a|2v(a) da, q = min(1, p) and Cq = 2

∫
|a|≥1 |a|q v(a) da.

Proof of Lemma 9.3. We rewrite g (ω) as

g (ω) =
∫

|a|<1

(
ejaω−1− jaω

)
v(a) da +

∫

|a|≥1

(
ejaω−1

)
v(a) da

Next, we observe that the condition in the statement implies that
∫

|a|>1
|a|q v(a) da <∞

for all 0 ≤ q ≤ p, and, in particular, q = min(1, p). We then consider the inequalities
∣∣ejx −1− jx

∣∣≤ x2

and
∣∣ejx −1

∣∣≤ min(|x|,2)

≤ 2min(|x|,1)

≤ 2|x|q

where the restriction q ≤ 1 ensures that |x|q ≥ |x| for |x| ≤ 1. By combining these
elements, we construct the upper bound

∣∣g (ω)
∣∣≤

∫

|a|<1

∣∣ejaω−1− jaω
∣∣v(a) da +

∫

|a|≥1

∣∣ejaω−1
∣∣v(a) da

≤
∫

|a|<1
|aω|2v(a) da +2

∫

|a|≥1
|ωa|q v(a) da

≤ |ω|2
∫

|a|<1
|a|2v(a) da +2|ω|q

∫

|a|≥1
|a|q v(a) da.

Proof of Theorem 9.1. First, we use Lemma 9.3 together with the Lévy-Khintchine
formula (4.3) to show that the modified Lévy exponent fϕ is a well-defined function
of ω. This is achieved by establishing the upper bound

∣∣ fϕ(ω)
∣∣≤ A1|ω|+ A2|ω|2 + Aq |ω|q (9.5)
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where q = min(1, p), A1 = |b′
1|‖ϕ‖L1 , A2 =

(
b2
2 +∫

|a|<1 |a|2v(a) da
)
‖ϕ‖2

L2
and A3 =

2
∫
|a|≤1 |a|q v(a) da ‖ϕ‖q

Lq
.

To lay out the technique of proof, we first assume that
∫
|a|>1 |a|v(a) da < ∞ and

consider the Lévy-Khintchine representation (4.5) of f . This yields

fϕ(ω) = jb′′
1

∫

Rd
ϕ(r )ω dr −b2

∫

Rd
|ϕ(r )|2ω

2

2
dr + gϕ(ω)

= jb′′
1

∫

Rd
ϕ(r ) dr

︸ ︷︷ ︸
b1,ϕ

ω−b2‖ϕ‖2
L2︸ ︷︷ ︸

b2,ϕ

ω2

2
+ gϕ(ω)

where

gϕ(ω) =
∫

Rd

∫

R\{0}

(
ejaϕ(r )ω−1− jaϕ(r )ω

)
v(a) da dr ,

with the property that gϕ(0) = 0. Next, we identify vϕ(a) by making the change of
variable a′ = aϕ(r ), while restricting the domain of integration to the subregion of
Rd over which the argument is non-zero:

gϕ(ω) =
∫

Πϕ

∫

R\{0}

(
eja′ω−1− ja′ω

) (
1

|ϕ(r )|v
(
a′/ϕ(r )

))
da′ dr

=
∫

R\{0}

(
eja′ω−1− ja′ω

) ∫

Πϕ

1

|ϕ(r )|v
(
a′/ϕ(r )

)
dr

︸ ︷︷ ︸
vϕ(a′)

da′

where the interchange of integrals is legitimate thanks to (9.5) (by Fubini). Lemma
9.2 ensures that vϕ is admissible in accordance with Definition 4.3.

The scenario
∫
|a|>1 |a|v(a) da = ∞ is trickier because it calls for a more careful

compensation of the singularity of the Lévy density. The classical Lévy-Khintchine
formula (4.4) leads to an integral of the form

g ′
ϕ(ω) =

∫

Rd

∫

R\{0}

(
ejaϕ(r )ω−1− jaϕ(r )ωh

(
a,ϕ(r )

))
v(a) da dr

with h
(
a,ϕ(r )

) = 1|a|<1(a). It turns out that the exact form of the compensation
h
(
a,ϕ(r )

)
is not important as long as it stabilizes the integral by introducing an ap-

propriate linear bias which results in a modification of the constant b′
1. Instead of

the canonical solution, we propose an alternative regularization with h
(
a,ϕ(r )

) =
1|aϕ(r )|<1

(
a
)
, which is compatible with the change of variable a′ = aϕ(r ). The ra-

tionale is that this particular choice is guaranteed to lead to a convergent integral, as
a consequence of Lemma 9.2, so that the remainder of the proof is the same as in the
previous case: change of variable and interchange of integrals justified by Fubini’s
theorem. This also leads to some modified constant b′

1,ϕ which is necessarily finite
since both g ′

ϕ(ω) and fϕ(ω) are bounded.

To carry out the proof of Lemma 9.2, we have exploited the fact that the integration
of f against a function ϕ amounts to a spectral mixing f (ω;µ) = ∫

R f (θω)µ(dθ). This
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results in an admissible Lévy exponent provided that the pth absolute moment of the
measure µ is finite:

∫
R |θ|p µ(dθ) <∞. The equivalence with fϕ(ω) is obtained by de-

fining µϕ((−∞,θ]) = Meas{r : ϕ(r ) < θ and ϕ(r ) 6= 0}, which specifies the amplitude
distribution of ϕ(r ) as r ranges over Rd . To gain further insights into the mixing pro-
cess, we like to view the Lebesgue integral

∫
R f (θω) µ(dθ) as the limit of a sequence

of Lévy exponents fN (ω) = ∑N
n=1 f (θn,Nω)µn,N , each corresponding to a character-

istic function of the form e fN (ω) =∏N
n=1 p̂X (snω)τn with sn = θn,N and τn = µn,N . The

latter is interesting because it provides a convolutional interpretation of the mixing
process, and also because it shows that all that matters is the amplitude distribution
of ϕ, and not its actual spatial structure.

C O R O L L A RY 9.4 (Symmetric Lévy exponents) Let f be an admissible Lévy exponent
and let ϕ ∈ Lp (R) for p ≥ 1 be a function such that its amplitude distribution (or his-
togram) µϕ is symmetric. Then, fϕ(ω) = ∫

Rd f
(
ωϕ(r )

)
dr = ∫

R f (θω)µϕ(dθ) is a valid
symmetric Lévy exponent that admits the canonical representation (4.4) with mod-
ified Lévy parameters

(
bϕ, vϕ(a) = vϕ(−a)

)
, as specified in Theorem 9.1. Conversely,

if f is symmetric to start with, then fϕ stays symmetric for any ϕ, irrespective of its
amplitude distribution.

Proof Based on the Lévy-Khintchine representation of f and by relying on Fubini’s
theorem to justify the interchange of integrals, we get

fϕ(ω) =−b2

2
ω2

∫

Rd
θ2µϕ(dθ)

︸ ︷︷ ︸
‖ϕ‖2

+
∫

R

∫

R

(
e jaθω−1− j aθω

)
v(a) daµϕ(dθ)

=−b2

2
ω2‖ϕ‖2 +

∫

R

∫ ∞

0
2
(

cos(aθω)−1
)
µϕ(dθ)v(a) da

where we have made use of the symmetry assumption µϕ(E) = µϕ(−E). Since the
above formula is symmetric in ω and fϕ(ω) is a valid Lévy exponent (by Theorem
9.1), we can invoke Corollary 4.3, which yields the desired result. The converse part
of Corollary 9.4 is obvious.

The practical relevance of Corollary 9.4 is that we can restrict ourselves to a sym-
metric model of noise without any loss of generality as long as the analysis function
(typically, a wavelet) has a symmetric amplitude distribution µϕ. This is equivalent
to all odd moments of µϕ being zero, including the mean.

One of the cornerstones of our formulation is that the mixing (white-noise integ-
ration) does not fundamentally affect the key properties of the Lévy exponent, as will
be made clear in the sequel.

9.2 Class C and unimodality

D E FI N I T I O N 9.1 An id distribution is said to be of class C if its Lévy density v(a) is
unimodal with mode 0; more precisely, if v ′(a) ≤ 0 for a > 0, and v ′(a) ≥ 0 for a < 0.
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This is again a property that is conserved through basic compositions: linear com-
bination of random variables and Fourier-domain exponentiation (fractional convo-
lution of pdf). Less obvious is the fact that the class-C property is a necessary condi-
tion for the family of distributions pXτ with p̂Xτ (ω) = (

p̂X1 (ω)
)τ to be unimodal for all

τ ∈R+ [Wol78]. Conversely, if pX1 is symmetric and of class C, then the whole family
pXτ is symmetric unimodal. The class-C unimodality equivalence, however, is only
partial. In particular, there exist non-symmetric distributions of class C that are not
unimodal, and some symmetric unimodal id distributions that are not in the class C
for which pXτ (x) is unimodal only for some subrange of τ [Wol78, Section 3]. The key
result for our purpose is as follows.

C O R O L L A RY 9.5 If the Lévy density of an id distribution is symmetric and unim-

odal, then its pdf pX (x) = ∫
R exp

(
− b2

2 ω
2 +∫

R cos(aω)v(a) da
)

e−jxω dω
2π is symmetric

and unimodal as well. Moreover, the property is preserved through the white-noise
integration process with some arbitrary bounded function ϕ ∈ L2(Rd ).

Proof The first part is a restatement of a classical result in the theory of infinitely di-
visible distributions [Wol78, Theorem 1]. As for the second part, we invoke Theorem
9.1 which ensures that the modified Lévy exponent vϕ given by (9.2) is admissible.
Since v(a) = v(−a), vϕ is automatically symmetric as well. We prove its unimodality
by computing the derivative for a > 0 as

v ′
ϕ(a) = d

da

∫

Πϕ

1

|ϕ(r )| v
(
a/|ϕ(r )|) dr

=
∫

Πϕ

1

|ϕ(r )|2 v ′(a/|ϕ(r )|) dr ≤ 0

which follows from the condition v ′(a) ≤ 0 for a > 0 (unimodality of v(a)).

The pleasing observation is that all the examples of id distributions in Table 4.1 are
in this category.

P R O P O S I T I O N 9.6 (Alternative statement) Let f (ω) = f (−ω) be a real-valued ad-
missible Lévy exponent of class C associated with a symmetric unimodal distribution
and ϕ a d-dimensional function such that ‖ϕ‖Lp < ∞ for p ∈ R+. Then, fϕ(ω) =∫
Rd f

(
ωϕ(r )

)
dr is a valid Lévy exponent that retains the symmetry and unimodality

properties.

The interest of the above is more in the constructive proof given below than in the
statement, which is slightly less general than Corollary 9.5.

Proof of Proposition 9.6 The result is obtained as a corollary of two theorems in [GK68]:
(i) the convolution of two symmetric 1 unimodal distributions is unimodal, and (ii) if

1. While translating Gnedenko and Kolmogorov’s book into English, K.L. Chung realized that Lapin’s
theorem on the convolution of unimodal distributions, which does not impose the symmetry condition,
is generally not true. The result for symmetric distributions goes back to Wintner in 1936 (cf. [Wol78] for a
historical account).
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a sequence of unimodal distributions converges to a distribution, then the limit func-
tion is unimodal as well. The idea is then to view the Lebesgue integral as the limit as
n goes to infinity of the sequence of sums

∑n2−1
k=1 f

(
ωsk,n

)
µk,n where µk,n is the meas-

ure of the set Ek,n = {r : k
n ≤ |ϕ(r )| < k+1

n } and sk,n = argminϕ(r ):r∈En,k

∣∣ f
(
ωϕ(r )

)∣∣, re-
calling that the Lévy exponent f is continuous. Each individual term corresponds to
a characteristic function eµk,n f (ωsk,n ) = (

e f (ωsk,n )
)µk,n (Fourier-domain convolutional

factor) that is id (thanks to the rescaling and exponentiation property), symmet-
ric, and unimodal. Finally, we rely on the admissibility condition and Lebesgue’s
dominated-convergence theorem to show that the sequence converges to the limit
fϕ(ω) = fϕ(−ω) which specifies a valid symmetric id distribution.

This proof also suggests that the class-C property is the tightest-possible condition
in the mixing scenario with arbitrary ϕ. Indeed, class C + symmetry is necessary and
sufficient for pXτ (x) to be unimodal for all τ ∈R+ [Wol78].

Another interesting class of id distributions are those that are completely mono-
tonic. We recall that a function (or density) q(x) is completely monotonic on R+ if it
is of class C∞ with alternating derivatives, so that

(−1)n dn q(x)

dxn ≥ 0 for n ∈N, x ≥ 0.

Thanks to Bernstein’s theorem, the symmetric version of completely-monotonic dis-
tributions can be expressed as mixtures of Laplacians; that is,

q(x) =
∫ +∞

0

1

2
λe−λ|x|pZ (λ) dλ (9.6)

for some mixing density pZ (λ) onR+. By making the change of variable θ = 1/λ (scale
of the exponential distribution), we may also express q(x) as

q(x) =
∫ +∞

0

1

2θ
e−|x|/θp1/Z (θ) dθ =

∫ ∞

0
pY (x|θ)p1/Z (θ) dθ

with pZ (λ) dλ= p1/Z (θ) dθ, where pY (x|θ) is the Laplace distribution with standard
deviation θ. The probabilistic interpretation of the above expansion is that of an
exponential scale mixture: q = pX is the pdf of the ratio X = Y /Z of two independent
random variables Y and Z with pdfs pY (standardized Laplacian with λ= 1) and pZ

(under the constraint that Z is positive), respectively.
Complete monotonicity is one of the few simple criteria that ensures that a distri-

bution is infinitely divisible [SVH03, Theorem 10.1]. Moreover, one can readily show
that a symmetric completely monotonic distribution is log-convex, since

d2 log q(x)

dx2 = q ′′(x)

q(x)
−

(
q ′(x)

q(x)

)2

≥ 0. (9.7)

Indeed, based on the canonical form (9.6), we have that

q ′(x)2 =
(∫ +∞

0
−λe−λ|x|

λ

2
pZ (λ) dλ

)2

≤
(∫ +∞

0
e−λ|x|

λ

2
pZ (λ) dλ

)(∫ +∞

0
λ2e−λ|x|

λ

2
pZ (λ) dλ

)
= q(x)q ′′(x)
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where we have made use of Schwarz’ inequality applied to the inner product 〈u, v〉Z =
EZ {λ2 uv} with u(λ) = e−

1
2λ|x| and v(λ) =−λe−

1
2λ|x|.

Note that, unlike monotonicity, complete monotonicity is generally not preserved
through spectral mixing.

A related property at the other end of the spectrum is log-concavity. It is equival-
ent to the convexity of the log-likelihood potential ΦX (x) =− log pX (x), which is ad-
vantageous for optimization purposes and for designing MAP estimators (cf. Chapter
10). The id laws in Table 4.1 that are log-concave are the Gaussian, the Laplace, and
hyperbolic-secant distributions. It should be kept in mind, however, that most id
distributions are not log-concave since the property is incompatible with a slower-
than-exponential decay. The limit case is the symmetric unimodal Laplace distribu-
tion, which is both log-concave and log-convex.

9.3 Self-decomposable distributions

D E FI N I T I O N 9.2 A random variable X is said to be self-decomposable if, for every
λ ∈ (0,1), X = λX + Xλ in law, where X and Xλ are independent random variables
with pdf pX and pXλ

, respectively. The corresponding pX (resp., p̂X ) is also said to
be self-decomposable.

The self-decomposability of X is therefore equivalent to the requirement that its
characteristic function p̂X (ω) = E{ejωX } can be factorized as

p̂X (ω) = p̂X (λω) · p̂Xλ
(ω) (9.8)

where p̂Xλ
(ω) is a valid characteristic function for any λ ∈ (0,1).

All the examples of id distributions in Table 4.1 are self-decomposable. For in-
stance, in the case of the sym-gamma distribution, we have that

p̂λ(ω) = p̂X (ω)

p̂X (λω)
=

(
λ2 + (1−λ2)

1

1+ω2

)r

.

The latter is of the form (p̂0(ω))r where p0(x) =λ2δ(x)+(1−λ2) 1
2 e−|x| is a valid (id) pdf

for any λ ∈ (0,1). The key properties of self-decomposable distributions are [GK68,
SVH03]:

All self-decomposable distributions are infinitely divisible and of class C.

Self-decomposability is preserved through basic composition: multiplication, res-
caling, and exponentiation of characteristic functions.

A self-decomposable distribution is necessarily unimodal [SVH03, Theorem 6.23].
In particular, if pX is symmetric, then max{pX } = pX (0) and p ′

X (x) ≤ 0 for x > 0.

If p̂X (ω) is self-decomposable then p̂Xλ
(ω) = p̂X (ω)

p̂X (λω) is self-decomposable as well
for any λ ∈ (0,1). The converse is true with the weaker requirement that p̂Xλ

(ω)
need only be a valid characteristic function.

A distribution is self-decomposable if and only if its Lévy density v is such that
av(a) is non-increasing on (−∞,0) and on (0,+∞) [SVH03, Theorem 6.12].
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The last property provides a simple operational criterion for testing self-decomposa-
bility when the Lévy density is known explicitly. The requirement is that v(a) should
either be zero or decrease at least as fast as 1/a.

P R O P O S I T I O N 9.7 Let f (ω) be an admissible Lévy exponent associated with a self-
decomposable distribution and let ϕ be a bounded and measurable function over Rd .
Then, fϕ(ω) = ∫

Rd f
(
ωϕ(r )

)
dr is a valid Lévy exponent that retains the self-decompo-

sability property.

Proof First, we invoke Theorem 9.1 which ensures that fϕ is a proper Lévy exponent
to start with. The self-decomposability condition (9.8) is equivalent to

f (ω) = f (λω)+ fλ(ω)

where fλ(ω) is a valid Lévy exponent for any λ ∈ (0,1). Inserting ϕ and taking the
integral on both sides gives

fϕ(ω) =
∫

Rd
f
(
λωϕ(r )

)
dr +

∫

Rd
fλ

(
ωϕ(r )

)
dr

= fϕ(λω)+ fλ,ϕ(ω)

where fλ,ϕ(ω) = ∫
Rd fλ

(
ωϕ(r )

)
dr . Finally, since | fλ(ω)| ≤ | f (ω)| + | f (λω)|, we are

guaranteed that the integration with respect toϕ yields an acceptable Lévy exponent.
This implies that both e fϕ(ω) and e fλ,ϕ(ω) are valid characteristic functions, which es-
tablishes the self-decomposability property.

9.4 Stable distributions

Stability is the most-stringent distributional property in the chain since all stable
distributions are self-decomposable and hence unimodal of class C.

D E FI N I T I O N 9.3 A random variable X is called (strictly) stable if, for every n ∈ Z+,
there exists cn such that X = cn(X1 +·· ·+ Xn) in law, where the Xi are i.i.d. with pdf
pX (x).

The definition clearly implies infinite divisibility. On the side of the Lévy exponent,
the condition translates into the homogeneity requirement f (aω) = aα f (ω) with
α ∈ (0,2] being the stability index. One can then exploit this property to get the com-
plete parametrization of the family of stable distributions. If we add the symmetry
constraint, then the class of homogeneous Lévy exponents reduces to f (ω) ∝−|ω|α.
These exponents are associated with the symmetric-α-stable (SαS) laws whose char-
acteristic function is specified by

p̂(ω;α, s0) = e−|s0ω|α = e fα(s0ω)

with α ∈ (0,2] and s0 ∈R+.
The fundamental point is that stability is preserved through linear combinations,

as a consequence of the definition. This remains true when we switch to a continuum
by integrating stable white noise against some analysis function ϕ.
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P R O P O S I T I O N 9.8 Let f (ω) =−|s0ω|α be a Lévy exponent associated with a SαS dis-
tribution of orderα. Then, the SαS property is preserved for

∫
Rd f

(
ωϕ(r )

)
dr , provided

that ‖ϕ‖Lα <∞ .

Specifically, we have that

∫

Rd
fα

(
s0ωϕ(r )

)
dr =

∫

Rd
−|s0ωϕ(r )|α dr

=−
(

sα0

∫

Rd
|ϕ(r )|α dr

)

︸ ︷︷ ︸
s′α0

|ω|α dr

=−|s′0ω|α

with s′0 = s0‖ϕ‖Lα .

The result also holds in the non-symmetric scenario where the distributions are
parameterized by (α,β,τ). It then requires the additional assumption that ϕ ∈ L1(R)
(for the non-zero-mean case) and

∫
Rd |ϕ(r )| log |ϕ(r )| dr (in the special asymmetric

case where α= 1 and β 6= 0).

Stable laws play a crucial role in the generalized formulation of the central-limit
theorem, the standard (finite-variance) case being α= 2 (Gaussian distribution).

9.5 Rate of decay

A fundamental property of infinitely divisible distributions is that they cannot de-
cay faster than a Gaussian (heavy-tail behavior). The range of behaviors (from faster
to slower decay) can be categorized as follows:

Gaussian with pid(x) = e−O(|x2|);

supra-exponential with pid(x) = e−O(|x| log(|x|+1));

exponential with pid(x) = e−O(|x|) (e.g., the Laplace distribution);

exponential polynomial with pid(x) = O(xθ1 e−θ2(|x|)) for some θ1 > 0 and θ2 > 0
(e.g., the beta and Meixner distributions));

algebraic or inverse polynomial with pid(x) =O(1/|x|θ) (e.g., SαS and Student) for
some θ > 1.

The most-convenient way of probing decay is through the determination of some
generalized moments of the form mX ,θ =

∫
R gθ(x)pX (x) dx = E{gθ(X )} where gθ(x) =

gθ(−x) denotes some suitable family of symmetric functions that are increasing away
from the origin. The typical choices for gθ are eθ|x| (increasing exponential with θ >
0), |x|θ1 eθ2x (exponential polynomial with θ1 ≥ 0,θ2 > 0, and |x|θ (monomial with θ >
0). We also recall that the conventional (polynomial) moments with gn(x) = xn and
n integer can be readily obtained from the Taylor series of the characteristic function
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e f (ω) at the origin, since

E{X n} =
∫

R
an pX (a) da = 1

jn

dn p̂X (ω)

dωn

∣∣∣∣
ω=0

. (9.9)

An interesting theoretical aspect that is further developed in Section 9.6 is that these
quantities are in direct correspondence with the polynomial moments of the Lévy
density v , which are closely linked to the cumulants of pX . In particular, we have the
following relations for the mean and variance of the distribution:

E{X } =
∫

R
xpX (x) dx = b′

1 −
∫

|a|≥1
av(a) da

Var{X } =
∫

R
(x −E{X })2pX (x) dx = b2 +

∫

R
a2v(a) da.

In order to characterize the decay of the distribution, it is actually sufficient to
check if a given type of generalized moment is finite and to determine the range of
exponents θ over which E{gθ(X )} is not well-defined (i.e., infinite). Once more, the
good news is that this information can be deduced directly from the Lévy density
v(a) [Sat94].

D E FI N I T I O N 9.4 A weighting function g (x) on R is called submultiplicative if there
exists a constant C > 0 such that

g (x + y) ≥C g (x) g (y) for x, y ∈R,

and if it is bounded and measurable on any compact subset.

T H E O R E M 9.9 (Kruglov [Kru70]) For an id distribution pX with Lévy density v, we
have the following equivalences for the existence of generalized moments:

∫

R
|x|θpX (x) dx <∞ ⇔

∫

|a|>1
|a|θv(a) da <∞

∫

R
|x|θ1 eθ2|x|pX (x) dx <∞ ⇔

∫

|a|>1
|a|θ1 eθ2|a|v(a) da <∞

∫

R
gθ(x)pX (x) dx <∞ ⇔

∫

|a|>1
gθ(a)v(a) da <∞,

for any family of submultiplicative weighting functions gθ.

The first two equivalences are deduced as special cases of the last one by consid-
ering the weighting sequences gθ(x) = max(1, |x|θ) and gθ1,θ2 (x) = max(1, |x|θ1 )eθ2x ,
which are submultiplicative for θ,θ2 > 0 and θ1 ≥ 0.

As application of Theorem 9.9, we can restate the Lévy-Schwartz admissiblity con-
dition in Theorem 4.8 as

E{|〈1[0,1), w〉|ε} <∞ for some ε> 0. (9.10)

The key here is that Xid = 〈1[0,1), w〉 (the canonical observation of the innovation w) is
an id random variable whose characteristic function is p̂id(ω) = e f (ω) (see Proposition
4.12).
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The direct implication is that pX will have the same decay behavior as v , keeping
in mind that it can be no better than supra-exponential (e.g., when v is compactly
supported), unless we are in the purely Gaussian scenario with v(a) = 0. This also
means that, from a decay point of view, supra-exponential and compact support are
to be placed in the same category.

The fundamental reason for the equivalences in Theorem 9.9 is that the corres-
ponding types of decay (exponential vs. polynomial) are preserved through convo-
lution. In the latter case, this can be quantified quite precisely using a generalized
version of the Young inequality for weighted Lp -spaces (cf. [AG01]):

‖gθ(h ∗q)‖Lp ≤Cθ ‖gθh‖L1 · ‖gθq‖Lp

for any p ≥ 1 and any family of submultiplicative weighting functions gθ(x).
In light of Theorem 9.9, our next result implies that the rate of polynomial decay

and the moment-related properties of pX are preserved through the white-noise in-
tegration process.

P R O P O S I T I O N 9.10 Let v be a Lévy density with a p0th-order of algebraic decay at in-
finity for some p0 ≥ 1 (or better) andϕ a function such that ‖ϕ‖p

Lp
= ∫

Rd |ϕ(r )|p dr <∞
for all p ≥ p0 − 1 with the formal convention that ‖ϕ‖0

L0
= ∫

Πϕ
dr . Then, the trans-

formed density vϕ given by (9.2) will retain the decay of v and belong to the same
general class (e.g., finite-variance vs. infinite-variance density, Poisson, Gaussian or
alpha-stable). In particular, its pth-order absolute moment for any p ≥ 0 is given by

mvϕ,p =
∫

R
|a|p vϕ(a) da = ‖ϕ‖p

Lp
mv,p (9.11)

and is well-defined whenever mv,p , the pth-order absolute moment of v, is bounded.
Likewise, the integration againstϕwill preserve the finiteness of all absolute moments
of the underlying distribution, including those for p ≤ 2.

Proof For the admissiblity of vϕ, we refer to Theorem 9.1. To show that the in-
tegrand in (9.2) is well-defined when ϕ(r ) tends to zero and that vϕ has the same
decay properties at infinity as v , we consider the bound v(a) < C |a|−p0 with p0 ≥
1, which implies that 1

|ϕ(r )| v
(
a/ϕ(r )

) ≤ C |ϕ(r )|p0−1|a|−p0 . It follows that vϕ(a) ≤
C‖ϕ‖p

Lp
|a|−p0 with p = p0 −1, meaning that the rate of decay of v is preserved. To

check the integrability of vϕ, we make the reverse change of variable a =ϕ(r )a′ and
obtain

∫

R

∫

Πϕ

1

|ϕ(r )| v
(
a/ϕ(r )

)
dr da =

∫

R

∫

Πϕ
v(a′) dr da′

=
∫

Πϕ
dr

∫

R
v(a′) da′ = ‖ϕ‖0

L0

∫

R
v(a′) da′.

Likewise, we can readily show that
∫
R |a|p vϕ(a) da = ‖ϕ‖p

Lp

∫
R |a|p v(a) da, assuming

that these latter quantities are well-defined. For the absolute moments of order p <
2, we can refer to Lemma 9.2 and the conservation of the admissibility condition∫
Rmin(a2, |a|p )vϕ(a) da <∞.
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In particular, when v is of the Poisson type, we have that
∫
R v(a) da =λ<+∞, and

it follows that vϕ will be of the Poisson type as well, provided thatϕ is compactly sup-
ported. The fact that the Poisson parameter λ increases in proportion to the support
ofϕ is consistent with the window intersecting more Dirac impulses (components of
the white Poisson noise).

We shall now see that a relation similar to (9.11) holds for the standard integer-
order moments of vϕ and v ; for p > 2, these actually happen to be the cumulants of
the underlying probability distributions.

9.6 Lévy exponents and cumulants

The fact is that with id distributions, it is often simpler to work with cumulants
rather than with ordinary moments, the idea being that cumulants are to the Lévy
exponent what moments are to the characteristic function.

Specifically, let p̂X (ω) = ∫
R pX (x)ejωx dx be the characteristic function of a pdf (not

necessarily id) whose moments mp = ∫
R xp pX (x) dx < ∞ are assumed to be well-

defined for any p ∈ N. The boundedness of the moments implies that p̂X (ω) (the
conjugate Fourier transform of pX ) is infinitely differentiable at the origin. Hence, it
is possible to represent p̂X , as well as its logarithm, by the Taylor series expansions

p̂X (ω) =
∞∑

p=0

(jω)p

p !
mp (9.12)

log p̂X (ω) =
∞∑

n=1

(jω)n

n!
κn (9.13)

where the second formula provides the definition of the κn , which are the cumulants
of pX . This clearly shows that pX is uniquely characterized by its moments (by way
of its characteristic function), or, equivalently, in terms of its cumulants by way of its
cumulant generating function log p̂X (ω). Another equivalent way of expressing this
correspondence is

κn{X } = 1

jn

dn log p̂X (ω)

dωn

∣∣∣∣
ω=0

which is the direct counterpart of (9.9). By equating the Taylor series of the expo-
nential of the right-hand sum in (9.13) with (9.12), one can derive a direct relation
between the moments and the cumulants

mp =
p−1∑
n=0

(
p −1

n

)
mnκp−n ,

with κ0 = 0 and m0 = 1. There is also a converse version of this formula. In practice,
however, it is often more convenient to compute the cumulants from the centered
moments µp = E{(x −E{x})p } of the distribution. For reference purposes, we provide
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the relevant formulas up to order 6:

κ2 =µ2

κ3 =µ3

κ4 =µ4 −3µ2
2

κ5 =µ5 −10µ3µ2

κ6 =µ6 −15µ4µ2 −10µ2
3 +30µ3

2,

while κ1 = m1 is simply the mean of the distribution.
In the case of interest to us where pX is id, log p̂X (ω) = f (ω), which translates into

κn{X } = 1

jn

dn f (ω)

dωn

∣∣∣∣
ω=0

=





b′
1 −

∫
|a|≥1 av(a) da, n = 1

b2 +
∫
R a2v(a) da, n = 2∫

R an v(a) da, n > 2.

This relation is fundamental for it relates the cumulants of the id distribution to the
moments of the Lévy density. It also implies that κ4{X } > 0 whenever v(a) 6= 0, which
translates into the property that all non-Gaussian id distributions are leptokurtic.
This is consistent with id distributions being more peaky than a Gaussian around
the mean and exhibiting fatter tails.

A further theoretical motivation for using cumulants is that they provide a direct
measure of the deviation from Gaussianity since the cumulants of a Gaussian are
necessarily zero for n > 2 (because log ĝσ(ω) =−σ2

2 ω
2).

A final practical advantage of cumulants is that they offer a convenient means of
quantifying—and possibly, inverting—the effect of the white-noise integration pro-
cess.

P R O P O S I T I O N 9.11 Let f be an admissible Lévy exponent and let ϕ ∈ Lp (R) for all
p ≥ 1. Then, the cumulants of fϕ(ω) = ∫

Rd f
(
ωϕ(r )

)
dr are related to those of f (ω) by

κn,ϕ = κn

∫

Rd

(
ϕ(r )

)n dr .

Proof We start by writing the Taylor series expansion of f as

f (ω) =
∞∑

n=1
κn

(jω)n

n!

where the quantities κn are, by definition, the cumulants of the density function

pX (x) = F
−1

{e f (ω)}(x). Next, we substitute ω by ωϕ(r ) and integrate over Rd , which
gives

∫

Rd
f
(
ωϕ(r )

)
dr =

∞∑
n=1

κn
(jω)n

n!

∫

Rd

(
ϕ(r )

)n dr = fϕ(ω).

The last step is to equate the above expression to the expansion of the cumulant gen-
erating function fϕ

fϕ(ω) =
∞∑

n=1
κn,ϕ

(jω)n

n!
,
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which yields the desired result.

A direct implication is that the odd-order cumulants of 〈ϕ, w〉 are zero whenever
the analysis kernel ϕ has a symmetric amplitude distribution. This results in a mod-
ified Lévy exponent fϕ that is real-valued symmetric, which is consistent with Corol-
lary 9.4. In particular, this condition is fulfilled when the analysis kernel has an axis
of anti-symmetry; that this, when there exists r0 such thatϕ(r0+r ) =−ϕ(r0−r ),∀r ∈
Rd .

As for the nonzero even-order cumulants, we can use the relation

κ2m = κ2m,ϕ

‖ϕ‖2m
L2m (Rd )

to recover the cumulants of w from the moments of the observed random variable
〈ϕ, w〉.

9.7 Semigroup property

It turns out that every id pdf is embedded in a semigroup that plays a central role
in the classical theory of Lévy processes. These convolution semigroups define nat-
ural families of id pdfs such as the sym-gamma and Meixner distributions that are
extending the Laplace and hyperbolic-secant distributions, respectively. In Section
9.8, we put the semigroup property to good use to characterize the behavior of the
wavelet-domain statistics across scales.

Let us recall the exponentiation property: if pX1 is id with characteristic function
e f (ω) then pXτ with p̂Xτ (ω) = eτ f (ω) = (

p̂X1 (ω)
)τ is id as well for any τ ∈ R+. A direct

implication is the convolution relation that relates the pdfs at scale τ+τ0 and τ0 with
τ> 0, expressed as

pXτ+τ0
(x) = (

pXτ ∗pXτ0

)
(x).

This suggest that the family of pdfs {pXτ : τ ∈ [0,∞)} is endowed with a semigroup
like structure. To specify the semigroup properties and spell out the implications, we
introduce the family of linear convolution operators Qτ with τ≥ 0

Qτq(x) = (
pXτ ∗q

)
(x)

for any q ∈ L1(R). Clearly, the family {Qτ : τ ≥ 0} is bounded over L1(R) with ‖Qτ‖ =
sup‖q‖L1=1 ‖Qτq‖L1 ≤ 1 (as a consequence of Young’s inequality) and is such that: 1)
Qτ1 Qτ2 = Qτ1+τ2 for τ1,τ2 ∈ [0,∞), 2) Q0 = Id, and 3) limτ↓0 ‖Qτq − q‖L1 = 0 for any
q ∈ L1(R). It therefore satisfies all the properties of a strongly continuous contraction
semigroup. Such semigroups are entirely characterized by their infinitesimal gener-
ator G, which is defined as

Gq(x) = lim
τ↓0

Qτq(x)−q(x)

τ
. (9.14)
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Based on this generator, the members of the group can be represented via the expo-
nential map

Qτ = eτG = Id+τG+ 1

2!
τ2G2 +·· · .

Likewise, we may also write

lim
∆τ→0

pXτ+∆τ (x)−pXτ (x)

∆τ
= GpXτ (x) (9.15)

which implies that pXτ (x) = p(x,τ) is the solution of the partial differential equation

∂

∂τ
p(x,τ) = Gp(x,τ),

with initial condition p(x,0) = pX0 (x) = δ(x). In the present case where Qτ = eτG is
shift-invariant, we have a direct correspondence with the frequency response eτ f (ω).
By transposing Definition (9.14) into the Fourier domain, we identify G as the LSI
operator specified by

Gq(x) = lim
τ↓0

∫

R
q̂(ω)

eτ f (ω) −1

τ
e−jωx dω

2π

=
∫

R
q̂(ω) f (ω)e−jωx dω

2π
(9.16)

where q̂(ω) is the Fourier transform of q(x). The fact that the Lévy exponent f (ω) is
the frequency response of G has some pleasing consequences on the interpretation
of the PDE that rules the evolution of pXτ (x) as a function of τ.

9.7.1 Gaussian case

When f (ω) = − b2
2 ω

2, the operator G boils down to a second derivative along x.
This results in the diffusion-type evolution equation

∂

∂τ
p(x,τ) = b2

∂2

∂x2 p(x,τ),

where ∂2

∂x2 =∆x is the 1D equivalent of the Laplacian. The solution is a Gaussian with

standard deviation
√
τb2.

9.7.2 SαS case

When f (ω) = −sα0 |ω|α, the operator is proportional to the fractional Laplacian of
order α/2, denoted by (−∆x )α/2. Hence, we can write down the fractional diffusion
equation

∂

∂τ
p(x,τ) =−sα0 (−∆x )α/2p(x,τ)

which is quite similar to the Gaussian case, except that the impulse response of G is
no longer a point distribution. Here, the solution is an SαS distribution of order α
and dispersion sτ = τ1/αs0.
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9.7.3 Compound Poisson case

Under the assumption that v = λp A ∈ L1(R) and b1 = b2 = 0, we express the Lévy
exponent as f (ω) = ∫

R(ejaω−1)v(a) da =λ(
p̂ A(ω)−p̂ A(0)

)
, where p̂ A(ω) = ∫

R p A(x)ejωx dx
is the characteristic function of p A(x) ≥ 0 with the normalization constraint p̂ A(0) =
1. It follows that the generator G is a filter characterized by the impulse response

g (x) =F
−1

{ f }(x) =λp A(x)−λδ(x). The corresponding evolution equation is

∂

∂τ
p(x,τ) =λ(

p A ∗p(·,τ)
)
(x)−λp(x,τ)

and involves a convolution with the Poisson amplitude distribution p A .

9.7.4 General iterated-convolution interpretation

By following up on the Poisson example, we propose to describe the action of G
in full generality as a convolution with some impulse response g (x) = G{δ}(x). This
leads to the equivalent form of the evolution equation

∂

∂τ
p(x,τ) = (

g ∗p(·,τ)
)
(x), (9.17)

which is quite attractive from an engineering perspective. In the case where f (ω) =
−b2

ω2

2 +∫
R

(
ejaω−1−jaω

)
v(a) da, we obtain the explicit form of the impulse response

by the formal inverse Fourier transformation

g (x) = G{δ}(x) = b2

2
δ′′(x)+

∫

R

(
δ(x −a)−δ(x)−aδ′(x)

)
v(a) da,

where δ′ and δ′′ are the first and second derivatives of the Dirac impulse. Some fur-
ther simplification is possible if we can split the second component of g (x) in parts,
although this requires some special care because all non-Poisson Lévy densities are
singular around the origin. A first simplification occurs when

∫
R |a|v(a) da < ∞,

which allows us to pull δ′ out of the integral with its weight being b1 =
∫
R av(a) da. To

bypass the singularity issue, we consider the sequence of nonsingular Lévy densities
v1/n(a) = v(a) for |a| > 1/n and zero otherwise, which converges to v(a) as n goes
to infinity. Using the fact that v1/n ∈ L1(R) (as a consequence of the admissibility
condition), we can perform a standard Fourier inversion, which yields

g (x) = b1δ
′(x)+ b2

2
δ′′(x)+ lim

n→∞

(
v1/n(x)−δ(x)

∫

|a|<1/n
v(a) da

)

with the limit component limn→∞ v1/n(x) = v(x) being the original Lévy density. The
above representation is enlightening because the impulse response is now composed
of two terms: a distribution that is completely localized at the origin (linear combin-
ation of Dirac impulse and its derivatives up to order two) plus a smoothing com-
ponent that converges to the initial Lévy density v . The Dirac correction is actually
crucial because it converts an essentially lowpass filter (convolution with v(x) ≥ 0)
into a highpass one which is consistent with the requirement that f (0) = 0.
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We can also use this result to describe the evolution of pXτ for some small incre-
ment ∆τ, like

pXτ+∆τ (x) =F
−1

{
p̂Xτ (ω)

(
1+∆τ f (ω)+ 1

2!
∆τ2 f 2(ω)+·· ·

)}
(x)

= pXτ (x)+∆τ (g ∗pXτ )(x)+ 1

2!
∆τ2(g ∗ g ∗pXτ

)
(x)+O(∆τ3),

where g = G{δ} is the impulse response of the semigroup generator. Since g is rep-
resentable as the sum of a point distribution concentrated at the origin and a Lévy
density v , this partly explains why pXτ will be endowed with the properties of v that
are preserved through convolution; in particular, the rate of decay (exponential vs.
polynomial), symmetry, and unimodality.

9.8 Multiscale analysis

The semigroup property is especially relevant for describing the evolution across
scale of the wavelet-domain statistics of a sparse stochastic process. The premise for
the validity of such an analysis is that the whitening operator L is scale-invariant of
order γ and that the mother wavelet ψ can be written as

ψ(r ) = L∗φ(r ),

where φ ∈ L1(Rd ) is a suitable “smoothing” kernel. We also assume that the wavelets
are normalized to have a constant L2 norm across scales. In the framework of the
continuous wavelet transform, the wavelet at scale a > 0 is therefore given by

ψa(r ) = a−d/2ψ(r /a)

= a−d/2L∗{φ(·)}(r /a)

= L∗
{

a−d/2+γφ(·/a)
}

(r )

= L∗φa(r ) (9.18)

with

φa(r ) = aγ−d/2φ(r /a), (9.19)

where we have made use of the scale-invariance property of L (cf. Definition 5.2 in
Chapter 5). The modified Lévy exponent at scale a can therefore be determined to
be

fφa (ω) =
∫

Rd
f
(
ωaγ−d/2φ(r /a)

)
dr

=
∫

Rd
f
(
ωaγ−d/2φ(r ′)

)|a|d dr ′ (change of variable r ′ = r /a)

= ad fφ
(
aγ−d/2ω

)
. (9.20)
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Thus, we see that there are two mechanisms at play that determine the evolution of
the wavelet distribution across scale. The first is a simple change of amplitude 2 of the
wavelet coefficients with their standard deviation being divided by the factor aγ−d/2

that multiplies ω in (9.20). The second is the multiplication of the Lévy exponent by
τ= ad which induces the kind of convolution semigroup investigated in Section 9.7.

9.8.1 Scale evolution of the pdf

To make the link with the previous results on semigroups explicit, we introduce
the family of id pdfs

pid(x;τ, fφ) =F
−1

{
eτ fφ(ω)

}
(x)

that are tied to the smoothing kernel φ and indexed by the parameter τ ∈ R+. Next,
we consider the random variables associated with the wavelet coefficients of the
stochastic process s(r ) at some fixed location r0 and scale a:

Va = 〈ψa(·− r0), s〉 = 〈φa(·− r0), w〉.

Since the Lévy noise w is stationary, it follows that Va has an id distribution with
modified Lévy exponent fφa , as specified by (9.20). This allows us to express pVa , the
pdf of the wavelet coefficients Va , as

pVa (x) = pid
(
x; ad , fφ(b·))

= |b|−1pid
(
x/b; ad , fφ

)

with b = aγ−d/2. Instead of rescaling the argument of fφ or the pdf, we can also
consider the renormalized wavelet coefficients Ya = Va/aγ−d/2 whose distribution
is characterized by

pYa (x) = pid(x; ad , fφ),

which indicates that the evolution across scale is part of the same extended id fam-
ily. This connection allows us to transpose the results of Section 9.7 into the wavelet
domain and to infer the corresponding evolution equation. These findings are sum-
marized as follows.

P R O P O S I T I O N 9.12 Let s be a sparse process with scale-invariant whitening operator
L of order γ and Lévy exponent f . The continuous wavelet transform at scale a of s is
given by va(r ) = 〈ψa(· − r ), s〉 with the wavelet ψ = L∗φ being L-compatible. Then,
va(r ) is stationary for all a > 0 and its first-order pdf pVa is infinitely divisible with
Lévy exponent given by (9.20).

Moreover, let pYτ denote the pdf of the scale-normalized wavelet coefficients yτ =
2. Let Y = bX where X is a random variable with pdf pX and b a fixed scaling constant. Then,

pY (x) = |b|−1pX (x/b), Var(Y ) = b2Var(X ), and p̂Y (ω) = p̂X (bω). In the present case, X is id with
p̂X (ω) = exp

(
fφ(ω)

)
.
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ad/2−γva with τ= ad . Then, pYτ (x) = pY (x;τ) satisfies the differential evolution equa-
tion

∂

∂τ
pY (x,τ) = (

gφ∗pY (·,τ)
)
(x), (9.21)

where gφ is the generalized function that is the inverse Fourier transform of fφ(ω) =∫
Rd f

(
ωφ(r )

)
dr .

9.8.2 Scale evolution of the moments

Equation (9.21) suggests that the evolution of the wavelet moments E{V p
a } is de-

pendent upon two effects: the first is the dilation of the pdf by aγ−d/2 which trans-
lates into a simple moment proportionality factor (aq(γ−d/2)), while the second is the
fractional convolution (multiplication of the Lévy exponent by ad ) which induces
some additional spreading of the pdf. For the case where p is an integer, we are able
to derive an explicit formula by considering cumulants rather than moments.

Since we know the wavelet-domain Lévy exponent fφa (ω) = log p̂Va (ω), we apply
the technique of Section 9.6 to determine the evolution of the cumulants across scale.
We obtain

κn{Va} = 1

jn

dn log p̂Va (ω)

dωn

∣∣∣∣
ω=0

= 1

jn

dn ad fφ
(
aγ−d/2ω

)

dωn

∣∣∣∣∣
ω=0

= ad
(
aγ−d/2

)n 1

jn

dn fφ
(
ω

)

dωn

∣∣∣∣∣
ω=0

(chain rule of differentiation)

= ad an(γ−d/2)κn{V1}. (9.22)

In the case of the variance (i.e., κ2{Va} = Var{Va}), this simplifies to

Var{Va} = a2γVar{V1}. (9.23)

Not too surprisingly, the result is compatible with the scaling law of the variance of
the wavelet coefficients of a fractional Brownian field: Var{Va} =σ2

0a2H+d where H =
γ− d

2 is the Hurst exponent of the process. The latter corresponds to the special
Gaussian version of the theory with κn{Va} = 0 for n > 2.

The implication of (9.22) is that the evolution of the wavelet cumulants across scale
is linear in a log-log plot. Specifically, we have that

loga κn{Va} = loga κn{V1}+d +n(γ−d/2)

which suggests a simple regression scheme for estimating γ from the moments of the
wavelet coefficients of a self-similar process.

Based on (9.22), we relate the evolution of the kurtosis to the scale as

η4(a) = κ4{Va}

κ2
2{Va}

= a−dη4(1). (9.24)
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This implies that the kurtosis (if initially well-defined) converges to zero as the scale
gets coarser. We also see that the rate of convergence is universal (independent of
the order γ) and that it is faster in higher dimensions.

The normalization ratio for the other cumulants is given by

ηm(a) = κm{Va}

κm/2
2 {Va}

= 1

ad(m/2−1)
ηm(1), (9.25)

which shows that the relative contributions of the higher-order cumulants (with m >
2) tend to zero as the scale increases. This implies that the limit distribution con-
verges to a Gaussian under the working hypothesis that the moments (or cumulants)
of pid are well-defined. This asymptotic behavior happens to be a manifestation of
a generalized version of the central-limit theorem, the idea being that the dilation
of the observation window has an effect that is equivalent to the summation of an
increasing number of i.i.d. random contributions.

9.8.3 Asymptotic convergence to a Gaussian/stable distribution

Let us first investigate the case of a SαS innovation model, which is quite instruct-
ive and also fundamental for the asymptotic theory. The corresponding form of the
Lévy exponent is f (ω) =−|s0ω|α with α ∈ (0,2] and dispersion parameter s0 ∈R+. By
substituting this expression in (9.20), we get

fφa (ω) =−
∫

Rd

∣∣∣s0aγ−d/2ωφ(r )
∣∣∣
α

ad dr

=−
∣∣∣s0aγ−d/2ad/αω

∣∣∣
α

∫

Rd
|φ(r )|α dr

=−
∣∣sa,φω

∣∣α (9.26)

where

sa,φ = s0aγ−d/2+d/α‖φ‖Lα . (9.27)

This confirms the fact that the stability property is conserved in the wavelet domain.
In the particular case of a Gaussian process with α = 2 and s0 = σ0/

p
2, we obtain

sa,φ = s0aγ‖φ‖L2 , which is compatible with (9.23).
The remarkable aspect is that the combination of (9.26) and (9.27) specifies the

limit distribution of the wavelet pdf for a sufficiently large under very general condi-
tions, where α ≤ 2 is the critical exponent of the underlying distribution. The para-
meter s0 is related to the αth moment of the canonical pdf where α is the largest
possible exponent for this moment to be finite, the standard case being α= 2.

Since the derivation of this kind of limit result for α< 2 (generalized version of the
central-limit theorem) is rather technical, we concentrate now on the finite-variance
case (α = 2) which can be established under rather general conditions using a basic
Taylor-series argument.

For simplicity, we consider a centered scenario with modified Lévy triplet b1,φ = 0,
b2,φ = b2‖φ‖2

L2
, and vφ as specified by (9.2) such that

∫
R t vϕ(t ) dt = 0. Note that
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these conditions are automatically satisfied when the variance of the innovations is
finite and f is real-valued symmetric (see Corollary 9.4). Due to the finite-variance
hypothesis, we have that m2,φ = ∫

R t 2vφ(t ) dt <∞. This allows us to write the Taylor
series expansion of fφa (ω/aγ) as

fφa (ω/aγ) = ad fφ
(
aγ−d/2ω/aγ

)

= ad fφ
(
a−d/2ω

)

=−b2,φω
2

2
− m2,φ

2
ω2 +O(a−dω4),

which corresponds to the Lévy exponent of the normalized variable Za =Va/aγ. This
implies that: (1) the variance of Za is given by E{Z 2

a } = b2,φ +m2,φ = Var{V1} and is

independent upon a, and (2), lima→+∞ fφa (ω/aγ) = − b2,φ+m2,φ

2 ω2, which indicates
that the limit distribution of Za is a centered Gaussian (central-limit theorem).

Practically, this translates into the Gaussian approximation of the pdf of the wave-
let coefficients given by

pVa (x) ≈ Gauss
(
0, a2γVar{V1}

)

which becomes more and more accurate as the scale a increases. We note the sim-
plicity of the asymptotic model and the fact that it is consistent with (9.23) which
specifies the general evolution of the variance across scale.

9.9 Notes and pointers to the literature

While most of the results in this chapter are specific to sparse stochastic processes,
the presentation heavily relies on standard results from the theory of infinite divis-
ible laws. Much of this theory gravitates around the one-to-one relation that exists
between the pdf (pid) and the Lévy density (v) that appears in the Lévy-Khintchine
representation (4.2) of the exponent f (ω), the general idea being to translate the
properties from one domain to the other. Two classical references on this subject
are the textbooks by Sato [Sat94] and Steufel-Van Harm [SVH03].

The novel twist here is that the observation of white noise through an analysis win-
dow ϕ results into a modified Lévy exponent fϕ and hence a modified Lévy density
vϕ, as specified by (9.2). The technical aspect is to make sure that both fϕ and vϕ
are admissible, which is the topic of Section 9.1. Determining the properties of the
pdf of Xϕ = 〈ϕ, w〉 then reduces to the investigation of vϕ which can be carried out
using the classical tools of the theory of id laws. An alternative proof of Theorem
9.1 as well as some complementary results on infinite divisibility and tail decay are
reported in [AU14].

Many of the basic concepts such as stability and self-decomposability go back to
the ground work of Lévy [Lév25, Lév54]. The general form of Theorem 9.9 is due
to Kruglov [Kru70] (see also [Sat94, pp. 159-160]), but there are antecedents from
Ramachandran [Ram69] and Wolfe [Wol71].
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The use of semi-groups and potential theory is a fruitful approach to the study
of continuous-time Markov processes, including Lévy processes. The concept ap-
pears to have been pioneered by William Feller [Fel71, see chapters 9 and 10]. Sug-
gested readings on this fascinating topic are [Sat94, Chapter 8], [App09, Chapter 3]
and [Jac01]. The transposition of these tools in Section 9.8 for characterizing the
evolution of the wavelet statistics across scale is new to the best of our knowledge; an
expanded version of this material will be published elsewhere.



10 Recovery of sparse signals

In this chapter, we apply the theory of sparse stochastic processes to the recon-
struction of signals from noisy measurements. The foundation of the approach is
the specification of a corresponding (finite-dimensional) Bayesian framework for
the resolution of ill-posed inverse problems. Given some noisy measurement vec-
tor y ∈RM produced by an imaging or signal acquisition device (e.g., optical or X-ray
tomography, magnetic resonance), the problem is to reconstruct the unknown ob-
ject (or signal) s as a d-dimensional function of the space-domain variable r ∈ Rd

based on the accurate physical modeling of the imaging process (which is assumed
to be linear).

The non standard aspect here is that the reconstruction problem is stated in the
continuous domain. A practical numerical scheme is obtained by projecting the
solution onto some finite-dimensional reconstruction space. Interestingly, the de-
rived MAP estimators result in optimization problems that are very similar to the
variational formulations that are in use today in the field of biomaging, including
Tikhonov regularization and `1-norm minimization.

The proposed framework provides insights of statistical nature and also suggests
novel computational schemes and solutions.

The chapter is organized as follows: In Section 10.1, we present a general method
for the discretization of a linear inverse problem in a shift-invariant basis. The cor-
responding finite-dimensional statistical characterization of the signal is obtained
by suitable “projection” of the innovation model onto the reconstruction space. This
information is then used in Section 10.2 to specify the maximum a posteriori (MAP)
reconstruction of the signal. We also develop an iterative optimization scheme that
alternates between a classical linear reconstructor and a shrinkage estimator that is
specified by the signal prior. In Section 10.3, we apply these techniques to the re-
construction of biomedical images. After reviewing the physical principles of image
formation, we derive practical MAP estimators for the deconvolution of fluorescence
micrographs, for the reconstruction of magnetic resonance images, and for X-ray
computed tomography. We present illustrative examples and discuss the connec-
tions with several reconstruction algorithms currently in favor. In Section 10.4, we
investigate the extent to which such variational methods approximate the minimum-
mean-square-error (MMSE) solution for the simpler problem of signal denoising. To
that end, we present a direct algorithm for the MMSE denoising of Lévy processes
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that is based on belief propagation. This optimal solution is then used as reference
for assessing the performance of non-Gaussian MAP estimators.

10.1 Discretization of linear inverse problems

The proposed discretization approach is inspired by the classical method of res-
olution of PDEs using finite elements. The underlying principle is to reconstruct a
continuously defined approximation of the original signal that lives in some finite-
dimensional subspace spanned by basis functions located on a reconstruction grid
with step size h. The advantages of this strategy are twofold: first, it provides a clean
analytical solution to the discretization problem via the specification of basis func-
tions (splines or wavelets). Second, it offers the same type of error control as finite-
element methods: In other words, one can make the discretization error arbitrarily
small by selecting a reconstruction grid that is sufficiently fine.

To discretize the problem, one represents the unknown signal s as a weighted sum
of basis functions s(r ) = ∑

k∈Ω s[k]βk (r ) with card(Ω) = K , and specifies the linear
(noise-free) forward model y0 = Hs with s = (

s[k]
)

k∈Ω, where the (M × K ) system
matrix H accounts for the image-formation physics. The reconstruction problem
then essentially boils down to inverting this system of equations, which is typically
very large and ill-conditioned (underdetermined or unstable). Another confound-
ing factor is that the measurements are often corrupted by measurement noise. In
practice, the ill-posedness of the reconstruction problem is dealt with by introducing
regularization constraints that favor certain types of solutions.

Here, we assume that the underlying signal s(r ) is a realization of a sparse stochastic
process and take advantage of the continuous-domain innovation model LLs = w to
specify the joint pdf pS (s) of the discrete representation of the signal. We then use
this prior information to derive solutions to the reconstruction problem that are op-
timal in some well-defined statistical sense. We emphasize the maximum a posteri-
ori (MAP) solution (i.e., the signal that best explains the measured data) and propose
some practical reconstruction algorithms. We will also show that minimum-mean-
square error (MMSE) estimators are accessible under certain conditions (e.g., Gaus-
sianity or Markov property).

10.1.1 Shift-invariant reconstruction subspace

Since the original specification of the problem is in the continuous domain, its
proper discretization requires a scheme by which the solution can be expressed in
some reconstruction space with minimal loss of information. For practical purposes,
we would also like to associate the discrete representation of the signal with its equidistant
samples and control the quality of the discretization through the use of a simple res-
olution parameter: the sampling step h. This is achieved within the context of gen-
eralized sampling using “shift-invariant” reconstruction spaces [Uns00].

To simplify the presentation and to set aside the technicalities associated with
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boundary conditions, we start by considering signals that are defined over the in-
finite domain Rd . Our reconstruction space at resolution h is then defined as

Vh =
{

sh(r ) =
∑

k∈Zd

ch[k]β

(
r −hk

h

)
: ch[k] ∈ `∞(Zd ),r ∈Rd

}

which involves a family of shifted basis functions specified by a single B-spline-like
generator β(r ). The basis functions are rescaled to match the resolution (dilation by
h) and positioned on the reconstruction grid hZd . For computational reasons, it is
important that the signal representation in terms of its coefficients ch[k] be stable
and unambiguous (Riesz-basis property). Moreover, for the discretization procedure
to be acceptable, we require that the error between the original signal s(r ) and its
projection onto Vh vanishes as the sampling step h tends to zero. These properties
are fulfilled if and only if β satisfies the following conditions, which are standard in
sampling and approximation theory [Uns00]:

1) Riesz-basis condition: For all ω ∈ Rd ,0 < A ≤ ∑
n∈Zd |β̂(ω+2πn)|2 ≤ B <∞ where

β̂=F {β} is the d-dimensional Fourier transform of β (see Section 6.2.3).

2) Lp stability for p ≥ 1:
∑

k∈Zd

∣∣β(r −k)
∣∣<∞, for all r ∈Rd .

3) Partition of unity:
∑

k∈Zd β(r −k) = 1, for all r ∈Rd .

We note that these conditions are met by the polynomial B-splines. These func-
tions are known to offer the best cost-quality tradeoff among the known families of
interpolation kernels [TBU00]. The computational cost is typically proportional to
the support of a basis function, while the quality is determined by its approximation
order (asymptotic rate of decay of the approximation error). The approximation or-
der of a B-spline of degree n is (n +1), which is the maximum that is achievable with
a support of size n +1 [BTU01].

In practice, it makes good sense to choose β compactly supported so that Condi-
tion 2) is automatically satisfied. Under such a hypothesis, we can extend the rep-
resentation for sequences ch[·] with polynomial growth, which may be required for
handling non-stationary signals such as Lévy processes and fractals.

Our next ingredient is a biorthogonal (generalized) function β̃ such that

〈β(·−k), β̃(·−k ′)〉 = δk−k ′ (10.1)

where β̃ is not necessarily included in Vh . Based on this biorthogonality property, we
specify a signal projector onto the reconstruction space Vh as

PVh s(r ) =
∑

k∈Zd

〈
s,

1

hd
β̃

( ·−hk

h

)〉
β

(
r −hk

h

)
.

Using (10.1), it is not hard to verify that PVh is idempotent (i.e, PVh PVh s = PVh s) and
hence a valid (linear) projection operator. Moreover, the partition of unity guarantees
that the error of approximation decays like ‖s−PVh s‖Lp =O(h) (or even faster ifβ has
an order of approximation greater than one), so that the discretization error becomes
negligible for h sufficiently small.
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To simplify the notation, we shall assume from here on that h = 1 and that the con-
trol of the discretization error is adequate. (If not, we can decrease the sampling step
further which may also be achieved through an appropriate rescaling of the system
of coordinates in which r is expressed.) Hence, our signal reconstruction model is

s1(r ) = PV1 s(r ) =
∑

k∈Zd

s[k]β(r −k) (10.2)

with

s[k] = 〈s, β̃(·−k)〉.

The main point here is that s1(r )—the discretized version of s(r )—is uniquely de-
scribed by its expansion coefficients

(
s[k]

)
k∈Zd so that we can reformulate the re-

construction problem in terms of those quantities. The clear advantage of working
with such a hybrid representation is that it is statistically tractable (countable set of
parameters) and yet continuously defined so that it lends itself to a proper modeling
of the signal-acquisition/measurement process.

Discrete innovation and its statistical characterization
In Chapter 8, we have shown how to obtain the discrete-domain counterpart of the

innovation model Ls = w by applying to the samples of the signal the discrete ver-
sion Ld of the whitening operator L. In the present scenario where the continuous-
domain process s is prefiltered by β̃∨ prior to sampling, we construct a variant of the
generalized increments as

u[k] = Ld(β̃∨∗ s)(r )
∣∣

r=k = (dL ∗ s)[k]

where the right-hand side convolution between dL and s[·] is discrete. Specifically,
dL is the discrete-domain impulse response of Ld

(
i.e., Ld{δ}(r ) = ∑

k∈Zd dL[k]δ(r −
k)

)
while the signal coefficients are given by s[k] in (10.2). Based on the defining

properties s = L−1w and LdL−1δ=βL, where βL is the B-spline associated with L, we
express the discrete innovation u as

u[k] = 〈LdL−1w, β̃(·−k)〉 = 〈βL ∗w, β̃(·−k)〉
= 〈w, (β∨

L ∗ β̃)(·−k)〉.

This implies that u is stationary and that its statistical properties are in direct re-
lation with those of the white Lévy noise w (continuous-domain innovation). Re-
calling that w is specified by its characteristic form P̂w (ϕ) = E{ej〈w,ϕ〉}, we obtain
the joint characteristic function of the innovation values in a K -point neighborhood,
u = (

u[k]
)

k∈ΩK
, by direct substitution of ϕ(r ) = ∑

k∈ΩK ωk
(
β̃∗β∨

L

)
(r −k) where ω =(

ωk
)

k∈ΩK
is the corresponding Fourier-domain indexing vector. Specifically, p̂U (ω),

which is the (conjugate) Fourier transform of the joint pdf pU (u), is given by

p̂U (ω) = P̂w

(
∑

k∈ΩK

ωk
(
β̃∗β∨

L

)
(·−k)

)
(10.3)

where P̂w (ϕ) is determined by its Lévy exponent f through Equation (4.13).
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Since Ld is the best discrete approximation of L, we can expect the samples of u
to be approximately decoupled. Yet, in light of (10.3), we also see that the quality of
the decoupling is dependent upon the extent of the kernel β̃∗β∨

L , which should be as
concentrated as possible. Since βL has minimal support by design, we can improve
the situation only by taking β̃ to be a point distribution. Practically, this suggests the
choice of a discretization model that uses basis functions that are interpolating with
β=ϕint. Indeed, the interpolation condition is equivalent to

〈ϕint,δ(·−k)〉 = δk

so that so the corresponding biorthogonal analysis functionl is β̃(r ) = δ(r ). This is
the solution that minimizes the overlap of the basis functions in (10.3).

Decoupling simplification
To obtain an innovation-domain description that is more directly applicable in

practice, we make the decoupling simplification p̂U (ω) ≈ ∏
k∈ΩK p̂U (ωk ), which is

equivalent to assuming that that the discrete innovation sequence u[·] is i.i.d. This
means that the K th-order joint pdf of the discrete innovation can be factorized as

pU (u) =
∏

k∈ΩK

pU
(
u[k]

)
(10.4)

with the following explicit formula for its first-order pdf:

pU (x) =F
−1

{
P̂w

(
ω(β̃∗β∨

L )
)}

(x). (10.5)

Note that the latter comes as a special case of (10.3) with K = 1. The important prac-
tical point is that pU (x) is infinitely divisible, with modified Lévy exponent

log p̂U (ω) = fβ̃∗β∨
L

(ω) =
∫

Rd
f
(
ω(β̃∗β∨

L )(r )
)

dr . (10.6)

This makes it fall within the general family of distributions investigated in Chapter 9
(by setting ϕ = β∗β∨

L ). Equivalently, we can write the corresponding log-likelihood
function

− log
(
pU (u)

)=
∑

k∈ΩK

ΦU
(
u[k]

)
(10.7)

withΦU
(
u

)=− log pU (u).

10.1.2 Finite-dimensional formulation

To turn the formulation of the previous section into a practical scheme that is
numerically useful, we take a finite section of the signal model (10.2) by restricting
ourselves to a subset of K basis functions with k ∈ Ω over some region of interest
(ROI). In practice, one often introduces problem-specific boundary conditions (e.g.,
truncation of the support of the signal, periodization, mirror symmetric extension)
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that can be enforced by suitable modification of the basis functions that intersect the
boundaries of the ROI. The corresponding signal representation then reads

s1(r ) =
∑

k∈Ω
s[k]βk (r ) (10.8)

whereβk (r ) is the basis function corresponding toβ(r−k) in (10.2) up to the modific-
ations at the boundaries. This model is specified by the K -dimensional signal vector
s = (

s[k]
)

k∈Ω that is related to the discrete innovation vector u = (
u[k]

)
k∈Ω by

u = Ls

where L is the (K ×K ) matrix representation of Ld, the discrete version of the whiten-
ing operator L.

The general form of a linear, continuous-domain measurement model is

ym =
∫

Rd
s1(r )ηm(r ) dr +n[m] = 〈s1,ηm〉+n[m], (m = 1, . . . , M)

with sampling/imaging functions {ηm}M
m=1 and additive measurement noise n[·]. The

sampling function ηm(r ) represents the spatio/temporal response of the mth de-
tector of an imaging/acquisition device. For instance, it can be a 3-D point-spread
function in deconvolution microscopy, a line integral across a 2-D or 3-D specimen
in computed tomography, or a complex exponential (or a localized version thereof)
in the case of magnetic resonance imaging. This measurement model is conveniently
described in matrix-vector form as

y = y0 +n = Hs+n (10.9)

where

y = (y1, . . . , yM ) is the M-dimensional measurement vector

s = (
s[k]

)
k∈Ω is the K -dimensional signal vector

H is the (M ×K ) system matrix with

[H]m,k = 〈ηm ,βk 〉 =
∫

Rd
ηm(r )βk (r ) dr (10.10)

y0 = Hs is the noise-free measurement vector

n is an additive i.i.d. noise component with pdf pN

The final ingredient is the set of biorthogonal analysis functions {β̃k }k∈Ω which
are such that 〈β̃k ,βk ′〉 = δk−k ′ , with k ,k ′ ∈ Ω. We recall that the biorthogonality
with the synthesis functions {βk }k∈Ω is essential for determining the projection of
the stochastic process s(r ) onto the reconstruction space. The other important point
is that the choice β̃ = δ, which corresponds to interpolating basis functions, facilit-
ates the determination of the joint pdf pU (u) of the discrete innovation vector u from
(10.3) or (10.4).

The reconstruction task is now to recover the unknown signal vector s given the
noisy measurements y. The statistical approaches to such problems are all based
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on the determination of the posterior distribution pS|Y which depends on the prior
distribution pS and the underlying noise model. Using Bayes’ rule, we have that

pS|Y (s|y) = pY |S (y|s)pS (s)

pY (y)
= pN

(
y−Hs

)
pS (s)

pY (y)

= 1

Z
pN (y−Hs)pS (s)

where the proportionality factor Z it is not essential to the estimation procedure be-
cause it only depends on the input data y, which is a known quantity. We also note
that Z can be recalculated by imposing the normalization constraint

∫
RK pS|Y (s|y) ds =

1, which is the way it is handled in message-passing algorithms (see Section 10.4.2).
The next step is to introduce the discrete innovation variable u = Ls whose pdf pU (u)
has been derived explicitly. If the linear mapping between u and s is one-to-one 1, we
clearly have that

pS (s) ∝ pU (Ls).

Using this relation together with the decoupling simplification (10.4), we find that

pS|Y (s|y) ∝ pN
(
y−Hs

)
pU (Ls) ≈ pN

(
y−Hs

) ∏

k∈Ω
pU

(
[Ls]k

)
(10.11)

where pU is specified by (10.6) and solely depends on the Lévy exponent f of the
continuous-domain innovation w and the B-spline kernel βL = LdL−1δ associated
with the whitening operator L.

In the standard additive white Gaussian noise scenario (AWGN), we find that

pS|Y (s|y) ∝ exp

(
−‖y−Hs‖2

2σ2

) ∏

k∈Ω
pU

(
[Ls]k

)

where σ2 is the variance of the discrete measurement noise.

Conceptually, the best solution to the reconstruction problem is the MMSE estim-
ator, which is given be the mean of the posterior distribution

sMMSE(y) = E{s|y}.

The estimate sMMSE(y) is optimal in that it is closest (in the mean-square sense) to the
(unknown) noise-free signal s; i.e., E{|sMMSE(y)− s|2} = min

{
E{|s̃(y)−s|2}

}
among all

signal estimators s̃(y). The downside of this estimator is that it is difficult to compute
in practice, except for special cases such as those discussed in Sections 10.2.2 and
10.4.2.

1. A similar proportionality relation can be established for the cases where L has an non-empty null
space via the imposition of the boundary conditions of the SDE. While the rigorous formulation can be
carried out, it is often not worth the effort because it will only result in a very slight modification of the
solution such that s1(r ) satisfies some prescribed boundary conditions (e.g., s1(0) = 0 for a Lévy pro-
cess), which are artificial anyway. The pragmatic approach, which better suits real-world applications,
is to ignore this technical issue by adopting the present stationary formulation, and to let the optimiza-
tion algorithm adjust the null-space component of the signal to produce the solution that is maximally
consistent with the data.
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10.2 MAP estimation and regularization

Among the statistical estimators that incorporate prior information, the most pop-
ular is the maximum a posteriori (MAP) solution, which extracts the mode of the
posterior distribution. Its use can be justified by the fact that it produces the sig-
nal estimate that best explains the observed data. While MAP does not necessarily
yield the estimator with the best average performance, it has the advantage of being
tractable numerically.

Here, we make use of the prior information that the continuous-domain signal
s satisfies the innovation model Ls = w where w is a white Lévy noise. The finite-
dimensional transposition of this model (under the decoupling simplification) is that
the discrete innovation vector Ls = u can be assumed to be i.i.d. 2 where L is the mat-
rix counterpart of the whitening operator L. For a given set of noisy measurements
y = Hs+n with AWGN of varianceσ2, we obtain the MAP estimator through the max-
imization of (10.11). This results into

sMAP = argmin
s∈RK

(
1

2
‖y−Hs‖2

2 +σ2
∑

k∈Ω
ΦU ([Ls]k )

)
, (10.12)

with ΦU (x) =− log pU (x) where pU (x) is given by (10.5). Observe that the cost func-
tional in (10.12) has two components: a data term 1

2‖y−Hs‖2
2 that enforces the con-

sistency between the data and the simulated, noise-free measurements Hs, and a
second regularization term that favors likeliest solutions in reference to the prior
stochastic model. The balancing factor is the variance σ2 which amplifies the in-
fluence of the prior information as the data get noisier. The specificity of the present
formulation is that the potential function is given by the log-likelihood of the infin-
itely divisible random variable U , which has strong theoretical implications, as dis-
cussed in Sections 10.2.1 and 10.2.3.

For the time being, we observe that the general form of the estimator (10.12) is
compatible with the standard variational approaches used in signal processing. The
three cases of interest that correspond to valid id (infinitely divisible) log-likelihood
functions (see Table 4.1) are

1) Gaussian: pU (x) = 1p
2πσ0

e−x2/(2σ2
0) ⇒ ΦU (x) = 1

2σ2
0

x2 +C1

2) Laplace: pU (x) = λ
2 e−λ|x| ⇒ ΦU (x) =λ|x|+C2

3) Student: pU (x) = 1

B
(
r, 1

2

)
(

1

x2 +1

)r+ 1
2

⇒ ΦU (x) = (
r + 1

2

)
log(x2 +1)+C3

where the constants C1, C2, and C3 can be ignored since they do not affect the solu-
tion. The first quadratic potential leads to the classical Tikhonov regularizer, which
yields a stabilized linear solution. The second absolute-value potential produces an

2. The underlying discrete innovation sequence u[k] = Lds(r )
∣∣
r=k is stationary and therefore identic-

ally distributed. It is also independent for Markov and/or Gaussian processes, but only approximatively
so otherwise. To justify the decoupling simplification, we like to invoke the minimum-support property
of the B-spline βL = LdL−1δ ∈ L1(Rd ) where Ld is the discrete counterpart of the whitening operator L.
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Hyperbolic secant a0 +
º2x2

8æ2
0

+O
°
x4¢ ° logæ0 +

º

2æ0
|x| Yes Yes

Meixner r, s 2R+ a0 +
√(1)(r /2)

4s2 x2 +O
°
x4¢ b0 +

º

2s
|x|° (r °1)log |x| Yes No

Cauchy s 2R+ a0 + x2

s2 +O(x4) b0 ° log s +2log |x| Yes No

Sym Student r 2R+ a0 +
°
r + 1

2

¢
x2 +O

°
x4

¢
b0 + (2r +1)log |x| Yes No

SÆS, Æ 2 (0,2], s 2R+ a0 + °
° 3
Æ

¢

2s2°
° 1
Æ

¢ x2 +O
°
x4

¢
b0 °Æ log s + (Æ+1)log |x| Yes No

Γ(z) and ψ(1)(r ) are Euler’s gamma and first-order poly-gamma functions, respectively (see Appendix C).

Table 10.1 Asymptotic behavior of the potential function ΦX (x) for the infinite-divisible
distributions in Table 4.1.

`1-type regularizer; it is the preferred solution for solving deterministic compressed-
sensing and sparse-signal-recovery problems. If L is a first-order derivative operator,
then (10.12) maps into total-variation (TV) regularization which is widely used in
applications [ROF92]. The third log-based potential is interesting as well because
it relates to the limit on an `p relaxation scheme when p tends to zero [WN10]. The
latter has been proposed by several authors as a practical “debiasing” method for im-
proving the sparsity of the solution of a compressed-sensing problem [CW08]. The
connection between log and `p norm relaxation is provided by the limit

log x2 = lim
p→0

x2p −1

p

which is compatible with Student’s prior for x2 À 1.

10.2.1 Potential function

In the present Bayesian framework, the potential function ΦU (x) = − log pU (x) is
determined by the Lévy exponent f (ω) of the continuous-domain innovation w or,
equivalently, by the canonical noise pdf pid(x) in Proposition 4.12. Specifically, pU (x)
is infinitely divisible with modified Lévy exponent fβ̃∗β∨

L
(ω) given by (10.7). While the

exact form of pU (x) is also depends on the B-spline kernel βL, a remarkable aspect of
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the theory is that its global characteristics remain qualitatively very similar to those
of pid(x). Indeed, based on the analysis of Chapter 9 withϕ= β̃∗β∨

L ∈ Lp (Rd ), we can
infer the following properties:

If pid(x) is symmetric and unimodal, then the same is true for pU (x) (by Co-
rollary 9.5). These are very desirable properties for they ensure that ΦU (x) =
ΦU (|x|) is symmetric and increases monotonously away from zero. The pre-
servation of these features is important because most image-processing practi-
tioners would be reluctant to apply a regularization scheme that does not fulfill
these basic monotonicity constraints and cannot be interpreted as a penalty.

In general, pU (x) will not be Gaussian unless pid(x) is Gaussian to start with, in
which caseΦU (x) is quadratic.

If pid(x) is stable (e.g., SαS) then the property is preserved for pU (x) (by Propos-
ition 9.8). This corresponds to a sparse scenario as soon as α 6= 2.

In general, pU (x) will display the same sparsity patterns as pid(x). In particular,
if pid(x) =O(1/|x|p ) with p > 1 (heavy-tailed behavior), then the same holds true
for pU (x). Likewise, its pth-moment will be finite iff.

∫
R |x|p pid(x) dx <∞ (see

Proposition 9.10).

The qualitative behavior of pU (x) around the origin will be the same as that of
pid(x), regarding properties such as symmetry and order of differentiability (or
lack thereof).

An important remark concerning the last point is in order. We have already seen
that compound Poisson distributions exhibit a Dirac delta impulse at the origin and
that the Poisson property is preserved through the noise-integration process when
βL is compactly supported (set p = 0 in Proposition 9.10). Since taking the logarithm
of δ(x) is not an admissible operation, we cannot define a proper potential function
is such cases (finite rate of innovation scenario). Another way to put it is that the
compound Poisson MAP estimator would correspond to u = 0 because the probabil-
ity of getting zero is overwhelmingly larger than that of observing any other value.

Those limitations notwithstanding, we can rely on the properties of infinitely di-
visible laws to make some general statements about the asymptotic form of the po-
tential function. First, ΦU (x) will typically exhibit a Gaussian (i.e., quadratic) beha-
vior near the origin. Indeed, when pU (x) is symmetric and twice-differentiable at the
origin, we can write the Taylor series of the potential as

ΦU (x) =ΦU (0)+
Φ′′

U (0)

2
x2 +O(|x|4) (10.13)

with

Φ′′
U (0) =− d2 log pU (x)

dx2

∣∣∣∣
x=0

=−
p ′′

U (0)

pU (0)
.

By contrast, unless U is Gaussian, the rate of growth of ΦU decreases progressively
away from the origin and becomes less than quadratic. Indeed, by using the tail prop-
erties of id distributions, one can prove that a non-Gaussian id potential cannot grow
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faster than x log(x) as x →∞. A more typical asymptotic trend is O(x) (when pU (x)
has exponential decay), or O

(
log(x)

)
when pU (x) has algebraic decay. These beha-

viors are exemplified in Table 10.1. For the precise specification of these potential
functions including the derivation of their asymptotics, we refer to Appendix C. In
particular, we note that the families of sym-gamma and Meixner distributions give
rise to an intermediate range of behaviors with potential functions falling in-between
the linear solution (Laplace and hyperbolic secant) and the log form that is charac-
teristic of the heavier-tailed laws (Student and SαS).

10.2.2 LMMSE / Gaussian solution

Before addressing the general MAP estimation problem, it is instructive to invest-
igate the Gaussian scenario which admits a closed-form solution. Moreover, under
the Gaussian hypothesis, we can compute a perfectly decoupled representation by
using a modified discrete filter LG that performs an exact whitening 3 of the signal
in the discrete domain (see Section 8.3.4). In the present setting, the Gaussian MAP
estimator is the minimizer of the quadratic cost functional

C2(s,y) = 1

2
‖y−Hs‖2

2 +σ2 1

2
‖LGs‖2

2

sMAP = argmin
s∈RK

C2(s,y)

with LG = C−1/2
ss where Css = E{ssT } is the (K ×K ) symmetric covariance matrix of the

signal. The implicit assumption here is that Css is invertible and E{s} = 0 (zero-mean
signal). The gradient of C2(s,y) is given by

∂C2(s,y)

∂s
=−HT (y−Hs)+σ2LT

GLGs,

and the MAP estimator is found by equating it to zero. This yields the classical linear
solution

sMAP(y) = (
HT H+σ2LT

GLG
)−1

HT y (10.14)

= (
HT H+σ2C−1

ss

)−1
HT y.

Note that the termσ2C−1
ss , which is bounded from above and below (due to the finite-

variance and invertibility hypotheses), acts as a stabilizer. It ensures that the matrix
inverse in (10.14) is well-defined, and hence the solution is unique.

Alternatively, it is also possible to derive the LMMSE estimator (or Wiener filter)
which takes the standard form

sLMMSE(y) = Css HT (
HCss HT +Cnn

)−1
y (10.15)

where Cnn = σ2I is the (N × N ) covariance matrix of the noise. We note that the

3. We recommend the use of the classical discrete whitening filter LG = C−1/2
ss as substitute for L in the

Gaussian case because it results in an exact formulation. However, we do not advise one to do so for non-
Gaussian models because it may induce undesirable long-range dependencies, the difficulty being that
decorrelation alone is no longer synonymous with statistical independence.
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LMMSE solution is also valid for the non-Gaussian, finite-variance scenarios: it pro-
vides the minimum-mean-square-error solution among all linear estimators, irre-
spective of the type of signal model.

It is well known from estimation theory that the Gaussian MAP and LMMSE solu-
tions are equivalent. This can be seen by considering the following sequence of equi-
valent matrix identities:

HT HCss HT +σ2C−1
ss Css HT = HT HCss HT +σ2HT

(
HT H+σ2C−1

ss

)
Css HT = HT (

HCss HT +σ2I
)

Css HT (
HCss HT +σ2I

)−1 = (
HT H+σ2C−1

ss

)−1
HT

where have used the hypothesis that the covariance matrix Css is invertible.
The availability of the closed-form solution (10.14) or (10.15) is nice conceptually,

but it is not necessarily applicable for large-scale problems because the system mat-
rix is too large to be stored in memory and inverted explicitly. The usual numerical
approach is to solve the corresponding system of linear equations iteratively using
the conjugate-gradient (CG) method. The convergence speed of CG can often be im-
proved by applying some problem-specific preconditioner. A particularly favorable
situation is when the matrix HT H +σ2LT

GLG is block-Toeplitz (or circulant) and is
diagonalized by the Fourier transform. The signal reconstruction can then be com-
puted very efficiently with the help of an FFT-based inversion. This strategy is ap-
plicable for the basic flavors of deconvolution, computed tomography, and magnetic
resonance imaging. It also makes the link with the classical methods of Wiener filter-
ing, filtered backprojection or backprojection filtering, which result in direct image
reconstruction.

10.2.3 Proximal operators

The optimization problem (10.12) becomes more challenging when the potential
function ΦU is non-quadratic. To get a better handle on the effect of such a reg-
ularization, it is instructive to consider a simplified scalar version of the problem.
Conceptually, this is equivalent to treating the components of the problem as if they
were decoupled. To that end, we define the proximal operator with weight σ2 as

proxΦU
(y ;σ2) = argmin

u∈R
1

2
|y −u|2 +σ2ΦU (u), (10.16)

which is tied to the underlying stochastic model. SinceΦU (u) =− log pU (u) is bounded
from below and cannot grow faster that O(|u|2), the solution of (10.16) exists for
any y ∈ R. When the minimizer is not unique, we can establish arbitrary prefer-
ence (for instance, pick the smallest solution) and specify ũ = proxΦU

(y ;σ2) as the
proximal estimator of y . This function returns the closest approximation of y , sub-
ject to the penalty induced by σ2ΦU (u). In practice, σ2 is fixed and the mapping
ũ = proxΦU

(y ;σ2) can be either specified analytically or, at least numerically, in the
form of a one-dimensional lookup table that maps y to ũ (shrinkage function).

The proximal operator induces a perturbation of the identity map that is more or
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less pronounced, depending upon the magnitude of σ2 and the characteristics of
ΦU (u). At the points u where isΦU (u) is differentiable, ũ satisfies

−y + ũ +σ2Φ′
U (ũ) = 0, (10.17)

whereΦ′
U (u) = dΦU (u)

du . In particular ifΦU (u) is twice differentiable with 1+σ2Φ′′
U (u) ≥

0, then the above mapping is one-to-one, which implies that ũ(y) is the inverse func-

tion of y(ũ) = prox−1
ΦU

(ũ;σ2) = ũ +σ2Φ′
U (ũ). The quantity

(−Φ′
U (u)

)= p ′
U (u)

pU (u) is some-

times called the score. It is related to the Fisher information E{|Φ′
U (U )|2} ≥ 1/Var{U }

which is minimum in the Gaussian case.
Equation (10.17) can be used to derive the closed-form representation of the two

better-known examples of proximal maps

T1(y) = proxΦ1
(y ;σ2) = sign(y)

(|y |−λσ2)
+ (10.18)

T2(y) = proxΦ2
(y ;σ2) = σ2

0

σ2
0 +σ2

y (10.19)

with Φ1(u) =λ|u| (Laplace law) and Φ2(u) = |u|2/(2σ2
0) (Gaussian). The first is a soft-

threshold (shrinkage operator) and the second, a linear scaling (scalar Wiener filter).
While not all id laws lend themselves to such an analytic treatment, we can never-
theless determine the asymptotic form of their proximal operator. For instance, if
ΦU is symmetric and twice differentiable at the origin, which is the case for most 4

examples in Table 10.1, then

proxΦU
(y ;σ2) = y

1+σ2Φ′′
U (0)

as y → 0.

The result is established by using a basic first-order Taylor series argument: Φ′
U (u) =

Φ′′
U (0)u +O(u2). The required slope parameter is

Φ′′
U (0) =−

p ′′
U (0)

pU (0)
=

∫
Rω

2p̂U (ω) dω∫
R p̂U (ω) dω

, (10.20)

which is computable from the moments of the characteristic function.
To determine the larger-scale behavior, one has to distinguish between the (non-

Gaussian) intermediate scenarios where the asymptotic trend of the potential is pre-
dominantly linear (e.g., Laplace, hyperbolic secant, sym-gamma, and Meixner fam-
ilies), and the distributions with algebraic decay where it is logarithmic (Student and
SαS stable), as made explicit in Table 10.1. (This information can readily be extracted
from the special-function formulas in Appendix C.) For the first exponential and sub-
exponential category, we have that limu→∞ Φ′

U (u) = b1 +O(1/u) with b1 > 0, which
implies that

proxΦU
(y ;σ2) ∼ y −σ2b1 as y →+∞.

This corresponds to a shrinkage-type estimator.

4. Only the Laplace law and its sym-gamma variants with r < 3/2 fail to meet the differentiability re-
quirement.
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Figure 10.1 Normalized Student potentials for r = 2,4,8,16,32 (dark to light) and
corresponding proximity maps. (a) Student potentialsΦStudent(y) with unit signal variance.
(b) Shrinkage operator proxΦStudent

(y ;σ2) for σ2 = 1.

The limit behavior in the second heavy-tailed category is limu→∞Φ′
U (u) = b2/u

with b2 > 0 which translates into the asymptotic identity-like behavior

proxΦU
(y ;σ2) ∼ y as y →∞.

Some examples of normalized potential functions for symmetric Student distri-
butions with increasing asymptotic decay are shown in Figure 10.1, together with
their corresponding proximity maps for a unit signal-to-noise ratio. The proxim-
ity maps nicely fall in-between the best linear (or `2) solution (solid black line) and
the identity map (dotted black line). Since the Student distributions are maximal at
y = 0, symmetric and infinitely differentiable, the thresholding functions are linear
around the origin—as predicted by the theory—and remarkably close to the point-
wise Wiener (LMMSE) solution. For larger values of the input, the estimation pro-
gressively switches to an identity, which is consistent with the algebraic decay of the
Student pdfs, the transition being faster for the heavier-tailed distributions (r small).

In summary, the proximal maps associated with id distributions have two predom-
inant regimes: 1) a linear, Gaussian mode (attenuation) around the origin and 2)
a shrinkage mode as one moves away from the origin. The amount of asymptotic
shrinkage depends on the rate of decay of the pdf—it converges to zero (identity
map) when the decay is algebraic, as opposed to exponential.

10.2.4 Maximum a posteriori (MAP) estimation

We have now all the elements in hand to derive a generic MAP estimation al-
gorithm. The basic idea is to consider the innovation vector u as an auxiliary variable
and to reformulate the MAP estimation as a constrained optimization problem

sMAP = argmin
s∈RK

(
1

2
‖y−Hs‖2

2 +σ2
∑

k∈Ω
ΦU

(
u[k]

)
)

subject to u = Ls.
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Instead of addressing the constrained optimization heads-on, we impose the con-
straint by adding a quadratic penalty term µ

2 ‖Ls−u‖2
2 with µ sufficiently large. To

make the scheme more efficient, we rely on the augmented-Lagrangian (AL) method.
The corresponding AL functional is

LA (s,u,α) = 1

2
‖y−Hs‖2

2 +σ2
∑

k∈Ω
ΦU

(
u[k]

)−αT (Ls−u)+ µ

2
‖Ls−u‖2

2,

where the vector α = (αk )k∈Ω represents the Lagrange multipliers for the desired
constraint.

To find the solution, we handle the optimization task sequentially according to
the alternating-direction method of multipliers (ADMM) [BPCE10]. Specifically, we
consider the unknown variables s and u in succession, minimizing LA (s,u,α) with
respect to each of them, while keeping α and the other one fixed. This is combined
with an update of α to refine the current estimate of the Lagrange multipliers. By
using the index k to denote the iteration number, the algorithm cycles through the
following steps until convergence:

sk+1 ← arg min
s∈RN

LA (s,uk ,αk )

αk+1 =αk −µ(
Lsk+1 −uk)

uk+1 ← arg min
u∈RN

LA (sk+1,u,αk+1).

We now look into the details of the optimization. The first step amounts to the
minimization of the quadratic form in s given by

LA (s,uk ,αk ) = 1

2
‖y−Hs‖2

2 − (Ls−uk )Tαk + µ

2
‖Ls−uk‖2

2 +C1, (10.21)

where C1 =C1(uk ) is a constant that does not dependent on s. By setting the gradient
of the above expression to zero, as in

∂LA (s,uk ,αk )

∂s
=−HT (y−Hs)−LT (

αk −µ(Ls−uk )
)= 0, (10.22)

we obtain the intermediate linear estimate,

sk+1 = (
HT H+µLT L

)−1
(
HT y−zk+1

)
, (10.23)

with zk+1 = LT
(
αk +µuk

)
. Remarkably, this is essentially the same result as the Gaus-

sian solution (10.14) with a slight adjustment of the data term and regularization
strength. Note that the condition Ker(H)∩Ker(L) = {0} is required for this linear solu-
tion to be well-defined and unique.

To justify the update of the Lagrange multipliers, we note that (10.22) can be re-
written as

∂LA (s,uk ,αk )

∂s
=−HT (y−Hs)−LTαk+1 = 0,

which is consistent with the global optimality conditions

Ls?−u? = 0
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−HT (y−Hs?)−LTα? = 0,

where (s?,u?,α?) is a stationary point of the optimization problem. This ensures
thatαk+1 gets closer to the correct vector of Lagrange multipliersα? as uk converges
to u? = Ls?.

As for the third step, we define ũ[k] = [Lsk+1]k and rewrite the AL criterion as

LA (sk+1,u,αk+1) =C2 +
∑

k∈Ω
σ2ΦU

(
u[k]

)+αk u[k]+ µ

2
(ũ[k]−u[k])2

=C3 +
∑

k∈Ω

µ

2

((
ũ[k]− αk

µ

)
−u[k]

)2

+σ2ΦU
(
u[k]

)
,

where C2 and C3 are constants that do not depend on u. This shows that the optim-
ization problem is decoupled and that the update can be obtained by direct applica-
tion of the proximal operator (10.16) in a coordinate-wise fashion, so that

uk+1 = proxΦU

(
Lsk+1 − 1

µα
k+1;

σ2

µ

)
. (10.24)

A few remarks are in order. While there are other possible numerical approaches to
the present MAP-estimation problem, the proposed algorithm is probably the simp-
lest to deploy because it makes use of two very basic modules: a linear solver (akin
to a Wiener filter) and a model-specific proximal operator that can be implemented
as a pointwise nonlinearity. The approach provides a powerful recipe for improving
on some prior linear solution by reapplying the solver sequentially and embedding it
into a proper computational loop. The linear solver needs to be carefully engineered
because it has a major impact on the efficiency of the method. The adaptation to a
given sparse stochastic model amounts to a simple adjustment of the proximal map
(lookup table).

The ADMM is guaranteed to converge to the global optimum when the cost func-
tional is convex. Unfortunately, convexity is not necessarily observed in our case (see
Table 10.1). But, since each step of the algorithm involves an exact minimization, the
cost functional is guaranteed to decrease so that the method remains applicable in
non-convex situations. There is the risk, though, that it gets trapped into a local op-
timum. A way around the difficulty is to consider a warm start that may be obtained
by running the `2 (Gauss) or `1 (Laplace) version of the method.

10.3 MAP reconstruction of biomedical images

In this section, we apply the MAP-estimation paradigm to the reconstruction of
biomedical images. We concentrate on three imaging modalities: deconvolution
microscopy, magnetic resonance imaging (MRI), and X-ray computed tomography
(CT). In each case, we briefly recall the underlying linear image-formation model
and then proceed with the determination of the system matrix H in accordance with
the discretization principle presented in Section 10.1. An important practical aspect
is the selection of an appropriate reconstruction basis. This selection is guided by
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approximation-theoretic and computational considerations. The outcome for each
modality is a generic iterative reconstruction algorithm whose regularization para-
meters (whitening/regularization operator, potential function) can be tuned to the
characteristics of the underlying class of biomedical images. Since our primary in-
tent here is illustrative, we have fixed the regularization operator to the most popular
choice in the field (i.e., magnitude of the gradient) and are presenting practical re-
construction results that highlight the influence of the potential function.

10.3.1 Scale-invariant image model and common numerical setup

A well-documented observation is that natural images tend to exhibit a Fourier
spectrum that is mostly isotropic and roughly decaying like 1/‖ω‖γ with 1/2 ≤ γ ≤
2. The same holds true for many biomedical images, both in 2D and 3D. This is
consistent with the idea of rotation and scale invariance since the objects and ele-
mentary structures in an image can appear at arbitrary orientations and magnifica-
tions. In the biomedical context, it can be argued that natural growth often induces
fractal-like patterns whose appearance is highly irregular despite the simplicity of
the underlying generative rules. Prominent examples of such structures are (mi-
cro)vascular networks, dendritic trees, trabecular bone, cellular scaffolds. The other
important observation is that the wavelet-domain statistics of images are typically
non-Gaussian, with a small proportion of large coefficients (typically corresponding
to contours) and the majority being close to zero (in smooth image regions). This is
the primary reason why sparsity has become such an important topic in signal and
image processing (see Introduction).

Our justification for the present model-based approach is that these qualitative
properties of images are consistent with the stochastic models investigated in Chapter
7 if we take the whitening operator to be (−∆)γ/2, the fractional Laplacian of order
γ. While it could make sense to fit such a model very precisely and apply the cor-
responding (fractional) isotropic localization operator to uncouple the information,
we prefer to rely on a robust scheme that involves shorter filters, as justified by the
analysis of Section 8.3.5. A natural refinement over the series of coordinate-wise dif-
ferences suggested by Theorem 7.7 is to consider the magnitude of the discrete gradi-
ent. This makes the regularization rotation-invariant without adding to the compu-
tational cost and provides an efficient scheme for obtaining a robust estimate of the
absolute value of the discrete increment process. Indeed, working with the absolute
value is legitimate as long as the potential function is symmetric, which is always the
case for the priors used in practice.

Before moving to the specifics of the various imaging modalities, we briefly de-
scribe the common numerical setup used for the experiments. Image acquisition is
simulated numerically by applying the forward model (matrix H) to the noise-free
image s and subsequently adding white Gaussian noise of variance σ2. The images
are then reconstructed from the noisy measurements y by applying the algorithm
described in Section 10.2.4 with L being the discrete gradient operator. The latter
is implemented using forward finite differences while the corresponding LT L is the
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(scalar) discrete Laplacian. Our discretization assumes that the images are extended
using periodic boundary conditions. This lends itself to the use of FFT-based tech-
niques for the implementation of the matrix multiplications required by the linear
step of the algorithm: Equation (10.23) or its corresponding gradient updates.

For each set of measurements, we are presenting three reconstruction results to
compare the effect of the primary types of potential functionsΦU .

Gaussian prior: ΦGauss(x) = Ax2. In this case, the algorithm implements a classical
linear reconstruction. This solution is representative of the level of performance of
the reconstruction methods that are currently in use and that do not impose any
sparsity on the solution.

Laplace prior: ΦLaplace(x) = B |x|. This configuration is at the limit of convexity and
imposes some medium level of sparsity. It corresponds to an `1-type minimization
and is presently very popular for the recovery of sparse signals in the context of
compressed sensing.

Student’s prior: ΦStudent(x) =C log(x2 +ε). This log-like penalty is non-convex and
allows for the kind of heavy-tail behavior associated with the sparsest processes.

The regularization constants A,B ,C are optimized for each experiment by compar-
ison of the solution with the noise-free reference (oracle) to obtain the highest-possible
SNR. The proximal step of the algorithm described by (10.24) is adapted to handle
the discrete gradient operator by merely shrinking its magnitude. This is the nat-
ural vectorial extension dictated by Definition (10.16). The shrinkage function for the
Laplace prior is a soft threshold

(
see (10.18)

)
, while Student’s solution with ε small is

much closer to a hard threshold and favors sparser solutions. The reconstruction is
initialized in a systematic fashion: The solution of the Gaussian estimator is used
as initialization for the Laplace estimator and the output of the Laplace estimator is
used as initial guess for Student’s estimator. The parameter for Student’s estimator is
set to ε= 10−2.

10.3.2 Deconvolution of fluorescence micrographs

The signal of interest in fluorescence microscopy is the 3-D spatial density of the
fluorescent labels that are embedded in a sample [VAVU06]. A molecular label is a
fluorophore which, upon illumination at a specific wavelength, has the ability to re-
emit light at another (typically) longer wavelength. A notable representative is the
green fluorescence protein (GFP) that has its primary excitation peak at 395 nm and
its emission peak at 509 nm.

Physical model of a diffraction-limited microscope
In a standard wide-field microscope, the fluorophores are excited by applying a

uniform beam of light. The optical system includes an excitation filter that is tuned to
the excitation wavelength of the fluorophore and an emission filter that collects back
the re-emitted light. Due to the random nature of photon re-emission, each point in
the sample contributes independently to the light intensity in the image space so that
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Figure 10.2 Visualization of the 3-D PSF of a wide-field microscope in a normalized
coordinate system. (a) Cut through the axial x-z plane with y = 0. (b) Cut through the lateral
x-y plane with z = 0 (in focus). (c) Cut through a lateral x-y plane with z = 1 (out of focus).

the overall system is linear. The microscope makes use of lenses to obtain a magni-
fied view of the object. When the optical axis is properly aligned (paraxial configura-
tion), the lateral 5 translation of a point source produces a corresponding (magnified)
shift in the image plane. If, on the other hand, the point source moves axially out of
focus, one observes a progressive spreading of the light (blurring), the effect being
stationary with respect to its lateral position. This implies that the fluorescence mi-
croscope acts as a linear shift-invariant system. It can therefore be described by the
convolution equation

g (x, y, z) = (h3D ∗ s)(x, y, z) (10.25)

where h3D is the 3-D impulse response also known as the point-spread function (PSF)
of the microscope. A high-performance microscope can be assimilated to a perfect
aberration-free optical system whose only limiting factor is the finite size of the pupil
of the objective. The PSF is then given by

h3D(x, y, z) = I0

∣∣∣pλ
( x

M
,

y

M
,

z

M 2

)∣∣∣
2

(10.26)

where I0 is a constant gain, M is the magnification factor, and pλ is the coherent dif-
fraction pattern of an ideal point source with emission wavelength λ that is induced
by the pupil. The square modulus accounts for the fact that the quantity measured at
the detector is the (incoherent) light intensity which is the energy of the electric field.

5. In microscopy, lateral refers to the x-y focal plane, while axial refers to the z coordinate (depth),
which is along the optical axis.
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Also note that the re-scaling is not the same along the z dimension. The specific form
of pλ, as provided by the Fraunhofer theory of diffraction, is

pλ(x, y, z) =
∫

R2
P (ω1,ω2)exp

(
j2πz

ω2
1 +ω2

2

2λ f 2
0

)
exp

(
−j2π

xω1 + yω2

λ f0

)
dω1 dω2 (10.27)

where f0 is the focal length of the objective and P (ω1,ω2) =1‖ω‖<R0 is the pupil func-
tion. The latter is an indicator function that describes the circular aperture of radius
R0 in the so-called Fourier plane. The ratio R0/ f0 is a good predictor of the numer-
ical aperture 6 (NA): the optical parameter that is used in microscopy to specify the
resolution of an objective through Abbe’s law. The 3-D PSF given by (10.26) is shown
in Figure 10.2. We observe that h3D is circularly symmetric with respect to the ori-
gin (x, y) = (0,0) in the planes perpendicular to the optical axis z and that it exhibits
characteristic diffraction rings. It is narrowest in the focal x-y plane with z = 0. The
focal spot in Figure 10.2(b) is the Airy pattern that determines the lateral resolution
of the microscope (see (10.29) and the discussion below). By contrast, the PSF is sig-
nificantly broader in the axial direction. It also spreads out linearly along the lateral
dimension as one moves away from the focal plane. The latter represents the effect of
defocusing with the external cone-shaped envelope in Figure 10.2(a) being consist-
ent with the simplified behavior predicted by ray optics. This shows that, besides the
fundamental limit on the lateral resolution that is imposed by the pupil function, the
primary source of blur in wide-field microscopy is along the optical axis and is due
to the superposition of the light contributions coming from the neighboring planes
that are out of focus. The good news is that these effects can be partly compensated
through the use of 3-D deconvolution techniques. In practical deconvolution micro-
scopy, one typically acquires a focal series of images (called a z-stack) which are then
deconvolved in 3-D by using a PSF that is derived either experimentally, through the
imaging of fluorescent nano beads, or theoretically

(
see (10.26) and (10.27)

)
, based

on the optical parameters of the microscope (e.g., NA, λ, M). Note that there are also
optical solutions, such as confocal or light-sheet microscopy, for partially suppress-
ing the out-of-focus light, but that these require more-sophisticated instrumentation
and longer acquisition times. These modalities may also benefit from deconvolution,
but to a somewhat lesser extent.

Here, for simplicity, we shall concentrate on the simpler 2-D scenario where one
is imaging a thin horizontal specimen s whose fluorescence emitters are confined to
the focal plane z = 0. The image formation then simplifies to the purely 2-D convo-
lution

g (x, y) = (h2D ∗ s)(x, y) (10.28)

6. The precise definition is NA = n sinθ where n is the index of refraction of the operating medium
(e.g., 1.0 for air, 1.33 for pure water, and 1.51 for immersion oil) and θ is the half angle of the cone of
light entering the objective. The small-angle approximation for a normal use in air is NA ≈ R0/ f0. A finer
analysis that takes into account the curvature of the lens shows that this simple ratio formula remains
accurate even at large numerical apertures in a well-corrected optical system.
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where the PSF is now given by

h2D(x, y) = I0

∣∣∣∣2
J1(r /r0)

r /r0

∣∣∣∣
2

(10.29)

with r =
√

x2 + y2, r0 = λ f0
2πR0

, and J1(r ) is the first-order Bessel function. This charac-
teristic pattern is called the Airy disc, while J1(r )/r is the inverse Fourier transform of
a circular pupil of unit diameter (see (10.27) with z = 0).

The Fourier transform of the 2-D PSF of a microscope is called the modulation
transfer function. Because of the squaring in (10.29), it is equal to the Fourier-domain
autocorrelation function of the circular pupil function P (ω1,ω2). The calculation of
this convolution yields

ĥ2D(ω) =





2
π

(
arccos

(
‖ω‖
ω0

)
− ‖ω‖

ω0

√
1−

(
‖ω‖
ω0

)2
)

, for 0 ≤ ‖ω‖ <ω0

0, otherwise

(10.30)

where

ω0 =
2R0

λ f0
= π

r0
≈ 2NA

λ

is the Rayleigh frequency. This shows that a microscope is a radially symmetric low-
pass filter whose cutoff frequency ω0 imposes a fundamental limit on resolution. A
Shannon-type sampling argument suggests that the ultimate resolution is r0, assum-
ing that one is able to deconvolve the image. Alternatively, one can apply Rayleigh’s
space-domain criterion which stipulates that the minimum distance at which two
point sources can be separated is when the first diffraction minimum coincides with
the maximum response of the second source. Since the function (J1(r )/r )2 reaches
its first zero at r = 3.8317, this corresponds to a resolution limit of dRayleigh = 0.61λ×
( f0/R0). This is consistent with Abbe’s celebrated formula for the diffraction limit of a
microscope: dAbbe = λ/(2NA). The better objectives have a large numerical aperture
with the current manufacturing limit being NA < 1.45 (with oil immersion). This puts
the resolution limit to about one-third the wavelength λ (or, one-half the wavelength
for the more typical value of NA = 1). Sometimes in the literature, the PSF is approx-
imated by a 2-D isotropic Gaussian. The standard deviation that provides the closest
fit with the physical model (10.29) is σ0 = 0.42λ( f0/R0) = 0.84/ω0.

Discretization
From now on, we assume that ω0 ≤ π so that we can sample the data on the in-

teger grid while meeting the Nyquist criterion. The corresponding analysis functions,
which are indexed by m = (m1,m2), are therefore given by

ηm (x, y) = h2D(x −m1, y −m2).

In order to discretize the system, we select a sinc basis {sinc(x −k)}k∈Z2 with

sinc(x, y) = sinc(x)sinc(y)
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Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet
cells. (b) Nerve cells growing around fibers. (c) Artery cells.

where sinc(x) = sin(πx)/(πx). The entries of the system matrix in (10.9) are then
obtained as

[H]m,k = 〈ηm , sinc(·−k)〉
= 〈h2D(·−m),sinc(·−k)〉
= (

sinc∗h2D
)
(m −k) = h2D(m −k).

In effect, this is equivalent to constructing the system matrix from the samples of the
PSF since h2D is already band-limited as a result of the imaging physics (diffraction-
limited microscope).

An important aspect for the implementation of the signal-recovery algorithm is
that H is a discrete convolution matrix which is diagonalized by the discrete Fourier
transform. The same is true for the regularization operator L as well as for any linear
combination, product, or inverse of such convolution matrices. This allows us to
convert (10.23) to a simple Fourier-domain multiplication which yields a fast and
direct implementation of the linear step of the algorithm. The computational cost is
essentially that of two FFTs (one forward and one backward Fourier transform).

Experimental results
The reference data are provided by the three microscopic images in Figure 10.3

which display different types of cells. The input images of size (512×512) are blurred
with a Gaussian PSF of support (9 × 9) and standard deviation σ0 = 4 to simulate
the effect of wide-field microscope with a low-NA objective. The measurements are
degraded with additive white Gaussian noise so as to meet some prescribed blurred
SNR (BSNR) defined as BSNR = var(Hs)/σ2.

For deconvolution, the algorithm is run for a maximum of 500 iterations, or until
the absolute relative error between the successive iterates is less than 5×10−6. The
results are summarized in Table 10.2. The first observation is that the standard linear
deconvolution (MAP estimator based on a Gaussian prior) performs remarkably well
for the image in Figure 10.3(a), which is heavily textured. The MAP estimator based
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Table 10.2 Deconvolution performance of MAP estimators based on different prior
distributions.

Estimation performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s

Stem cells 20 14.43 13.76 11.86
30 15.92 15.77 13.15
40 18.11 18.11 13.83

Nerve cells 20 13.86 15.31 14.01
30 15.89 18.18 15.81
40 18.58 20.57 16.92

Artery cells 20 14.86 15.23 13.48
30 16.59 17.21 14.92
40 18.68 19.61 15.94

on the Laplace prior, on the other hand, yields the best performance for images hav-
ing sharp edges with a moderate amount of texture, such as those in Figures 10.3(b)-
(c). This confirms the general claim that it is possible to improve the reconstruction
performance through the promotion of sparse solutions. However, as the applica-
tion of Student’s prior to images typically encountered in microscopy demonstrates,
exaggeration in the enforcement of sparsity is a distinct risk. Finally, we note that
the Gaussian and Laplace versions of the algorithm are compatible with the meth-
ods commonly used in the field; for instance, `2-Tikhonov regularization [PMC93]
and `1/TV regularization [DBFZ+06].

10.3.3 Magnetic resonance imaging

Magnetic resonance refers to the property of atomic nuclei in a static magnetic
field to absorb and restitute electromagnetic radiation. This energy is re-emitted
at a resonance frequency that is proportional to the strength of the magnetic field.
The basic idea of magnetic resonance imaging (MRI) is to induce a space-dependent
variation of the frequency of resonance by imposing spatial magnetic gradients. The
specimen is then excited by applying pulsed radio waves that cause the nuclei (or
spins) in the specimen to produce a rotating magnetic field detectable by the receiv-
ing coil(s) of the scanner.

Here, we shall focus on 2-D MRI where the excitation is confined to a single plane.
In effect, by applying a proper sequence of magnetic gradient fields, one is able to
sample the (spatial) Fourier transform of the spin density s(r ) with r ∈ R2. Specific-
ally, the mth (noise-free) measurement is given by

ŝ(ωm) =
∫

R2
s(r )e−j〈ωm ,r 〉 dr ,

where the sampling occurs according to some predefined k-space trajectory (the
convention in MRI is to use k =ωm as the spatial frequency variable). This is to say
that the underlying basis functions are the complex exponentials ηm(r ) = e−j〈ωm ,r 〉.
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Figure 10.4 Data used in MR reconstruction experiments. (a) Cross section of a wrist. (b)
Angiography image. (c) k-space sampling pattern along 40 radial lines.

Table 10.3 MR reconstruction performance of MAP estimators based on different prior
distributions.

Radial lines Estimation performance (SNR in dB)
Gaussian Laplace Student’s

Wrist 20 8.82 11.8 5.97
40 11.30 14.69 13.81

Angiogram 20 4.30 9.01 9.40
40 6.31 14.48 14.97

The basic problem in MRI is then to reconstruct s(r ) based on the partial know-
ledge of its Fourier coefficients which are also corrupted by noise. While the recon-
struction in the case of a dense Cartesian sampling amounts to a simple inverse Four-
ier transform, it becomes more challenging for other trajectories, especially as the
sampling density decreases.

For simplicity, we discretize the forward model by using the same sinc basis func-
tions as for the deconvolution problem of Section 10.3.2. This results in the system
matrix

[H]m,n = 〈ηm , sinc(·−n)〉
= 〈e−j〈ωm ,·〉, sinc(·−n)〉 = e−j〈ωm ,n〉

under the assumption that ‖ωm‖∞ ≤ π. The clear advantage of using the sinc basis
is that H reduces to a discrete Fourier-like matrix, with the caveat that the frequency
sampling is not necessarily uniform.

A convenient feature of this imaging model is that the matrix HT H is circulant so
that the linear iteration step of the algorithm can be computed in exact form using
the FFT.
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Experimental results
To illustrate the method, we consider the reconstruction of the two MR images of

size (256×256) shown in Figure 10.4: a cross-section of a wrist and a MR angiogram.
The Fourier-domain measurements are simulated using the type of radial sampling
pattern shown in Figure 10.4(c). The reconstruction algorithm is run with the same
stopping criteria as in Section 10.3.2. The reconstruction results for two sampling
scenarios are quantified in Table 10.3.

The first observation is that the estimator based on the Laplace prior generally
outperforms the Gaussian solution, which corresponds to the traditional type of lin-
ear reconstruction. The Laplace prior is a clear winner for the wrist image, which
has sharp edges and some amount of texture. While this is similar to the microscopy
scenario, the tendency appears to be more systematic for MRI because we were un-
able to find a single MR scan in our database for which the Gaussian solution per-
forms best. Yet, the supremacy of the `1 solution is not universal, as illustrated by
the reconstruction of the angiogram for which Student’s prior yields the best results,
because this image is inherently sparse and composed of piecewise-smooth com-
ponents. Similarly to the microscopy modality, we note that the present MAP for-
mulation is compatible with the deterministic schemes used for practical MRI re-
construction; in particular, the methods that rely on total variation [BUF07] and log-
based regularization [TM09], which are in direct correspondence with the Laplace
and Student priors, respectively.

10.3.4 X-ray tomography

X-ray computed tomography (CT) aims at the reconstruction of an object (X-ray
absorption map) from its projections (or line integrals) taken along different direc-
tions. The projections are obtained by integrating the function along a set of parallel
rays. To specify the imaging geometry, we refer to Figure 10.5(a). Letting x = (x, y) ∈
R2 be the spatial coordinates of the input function, we have that

x = tθ+ rθ⊥

where θ = (cosθ, sinθ) is the vector defining the t axis and θ⊥ = (−sinθ,cosθ) is the
unit vector that points along the direction of integration (r axis). The mathematical
model of conventional CT is based on the Radon transform which is an invertible
operator from L2(R2) → L2(R× [−π,π]). It is defined as

Rθ{s(x)}(t ) =
∫

R
s(tθ+ rθ⊥)dr (10.31)

=
∫

R2
s(x)δ(t −〈x ,θ〉) dx (10.32)

with index variables t ∈ R and θ ∈ [−π,π]. An example of Radon transform corres-
ponding to a cross section of the human thorax is shown in Figure 10.5(c). The res-
ulting family of functions gθ(t ) = Rθ{s}(t ) is called the sinogram owing to the property
that the trajectory of a point (x0, y0) = (R0 cosφ0,R0 sinφ0) in Radon space is a sinus-
oidal curve given by t0(θ) = x0 cosθ+ y0 sinθ = R0 cos(θ−φ0).
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Figure 10.5 X-ray tomography and the Radon transform. (a) Imaging geometry. (b) 2-D
reconstruction of a tomogram. (c) Its Radon transform (sinogram).

In practice, the measurements correspond to the sampled values of the Radon
transform of the absorption map s(x) at a series of points (tm ,θm),m = 1, . . . , M . From
(10.32), we deduce that the analysis functions are

ηm(x) = δ(
tm −〈x ,θm〉)

which represent a series of idealized lines inR2 perpendicular toθm = (cosθm , sinθm).

Discretization
For discretization purpose, we represent the absorption distribution as the weighted

sum of separable B-spline-like basis functions

s(x) =
∑

k
s[k]β(x −k) ,

with β(x) = β(x)β(y) where β(x) is a suitable symmetric kernel (typically, a polyno-
mial B-spline of degree n). The constraint here is thatβ ought to have a short support
to reduce computations, which rules out the use of the sinc basis.

In order to determine the system matrix, we need to compute the Radon transform
of the basis functions. The properties of the Radon transform that are helpful for that
purpose are
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1) Projected translation invariance

Rθ{ϕ(·−x0)}(t ) = Rθ{ϕ}(t −〈x0,θ〉) (10.33)

2) Pseudo-distributivity with respect to convolution

Rθ{ϕ1 ∗ϕ2}(t ) = (
Rθ{ϕ1}∗Rθ{ϕ2}

)
(t ) (10.34)

3) Fourier central-slice theorem
∫

R
Rθ{ϕ}(t )e−jωt dt = ϕ̂(ω)

∣∣
ω=ωθ . (10.35)

The first result is obtained by a simple change of variable in (10.32). The second is a
direct consequence of (10.35). The Fourier central-slice theorem states that the 1-D
Fourier transform of the projection ofϕ at angle θ is equal to a corresponding central
cut of the 2-D Fourier transform of the function. The result is easy to establish for
θ = 0, in which case the t and x axes coincide. For this particular configuration, we
have hat

∫

R
R0{ϕ}(x)e−jωx dx =

∫

R

(∫

R
ϕ(x, y) dy

)
e−jωx dx

=
∫

R2
ϕ(x, y)e−jωx dx dy

= ϕ̂(ω,0) (by definition)

where the interchange of integrals in the second line requires that ϕ ∈ L1(R2) (Fu-
bini). The angle-dependent formula (10.35) is obtained by rotating the system of
coordinates and invoking the rotation property of the Fourier transform.

Next we show that the Radon transform of the basis functions can be obtained
through the convolution of two rescaled 1-D kernels.

P R O P O S I T I O N 10.1 The Radon transform of the separable function ϕ(x − x0) where
ϕ(x) =ϕ1(x)ϕ2(y) is given by

Rθ{ϕ(·−x0)}(t ) =ϕθ(t − t0)

where t0 = 〈x0,θ〉 and

ϕθ(t ) =
(

1
|cosθ|ϕ1

( ·
cosθ

)∗ 1
|sinθ|ϕ2

( ·
sinθ

))
(t ),

with the convention that

lim
a→0

1

|a|ϕ
( x

a

)= δ(x)

(∫

R
ϕ(x) dx

)
.

Proof Since ϕ is separable, its 2-D Fourier transform is given by

ϕ̂(ω) = ϕ̂1(ω1) ϕ̂2(ω2)

where ϕ̂1 and ϕ̂2 are the 1-D Fourier transforms ofϕ1 andϕ2, respectively. The Four-
ier central-slice theorem then implies that

ϕ̂θ(ω) = R̂θϕ(ω) = ϕ̂1(ωcosθ) ϕ̂2(ωsinθ).
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Next, we note that ϕ̂1(ωcosθ) and ϕ̂2(ωsinθ) are the 1-D Fourier transforms of 1
|cosθ|

ϕ1
( t

cosθ

)
and 1

|sinθ|ϕ2
( t

sinθ

)
, respectively. The final result then follows from (10.33)

and the property that the Fourier-domain product maps into a time-domain convo-
lution.

This allows us to write the entries of the system matrix as

[H]m,k = 〈
δ(tm −〈·,θm〉),β(·−k)

〉

= Rθm

{
β(·−k)

}
(tm) =βθm (tm −〈k ,θm〉)

where βθm (t ) is the projection of β(x) =β(x)β(y) along the direction θm , as specified
in Proposition 10.1.

We shall now apply the result of Proposition 10.1 to determine the Radon trans-
form of a symmetric tensor-product polynomial spline of degree n. The relevant 1-D
formula for β(x) is

βn(x) =
n+1∑

k=0
(−1)k

(
n +1

k

)(
x −k + n+1

2

)n
+

n!
,

which is the recentered version of (1.11). Next, by making use of the distributivity of
convolution and the relation

t n1
+

n1!
∗ t n2

+
n2!

= t n1+n2+1
+

(n1 +n2 +1)!
,

we find that

Rθ
{
βn(x)βn(y)

}
(t ) =

n+1∑

k=0

n+1∑

k ′=0

(−1)k+k ′
(

n +1

k

)(
n +1

k ′

)(
t + ( n+1

2 −k
)

cosθ+ ( n+1
2 −k ′)sinθ

)2n+1
+

|cosθ|n+1 |sinθ|n+1 (2n +1)!
, (10.36)

which provides an explicit formula for the Radon transform of a B-spline of any de-
gree n for θ 6= 0,±π

2 ,±π (
when the projection is along of the coordinate axes, the

Radon transform is simply βn(t )
)
. This result is a special case of the general box-

spline calculus described in [ENU12].
For the present experiments, we select n = 1. This corresponds to piecewise bi-

linear basis functions whose Radon transforms are the (nonuniform) cubic splines
specified by (10.36) for θ 6= 0,±π

2 ,±π or simple triangle functions otherwise. The
Radon profiles are stored in a lookup table to speed up computations. In essence,
the forward matrix H amounts to a “standard” projection with angle-dependent in-
terpolation weights given by βθ , while HT is the corresponding backprojection. For
a parallel geometry, their computation complexity is O

(
N × Mθ × (n + 1)

)
where N

is the number of pixels (or B-spline coefficients) of the reconstructed image, Mθ the
number of distinct angular directions, and n the degree of the B-spline.

Experimental results
We consider the two images shown in Figure 10.6. The first is the Shepp-Logan (SL)

phantom of size (256×256), while the second is a real CT reconstruction of the cross
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Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different
estimators.

Directions Estimation performance (SNR in dB)
Gaussian Laplace Student’s

SL Phantom 120 16.8 17.53 18.76
SL Phantom 180 18.13 18.75 20.34

Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37

section of the lung of size (750×750). In the simulations of the forward model, we use
a standard parallel geometry with an angular sampling that is matched to the size of
the images. Specifically, the projections are taken along Mθ = 180,360 equiangular
directions for the lung image and Mθ = 120,180 directions for the SL phantom. The
measurements are degraded with Gaussian noise with a signal-to-noise ratio of 20
dB.

For the reconstruction, we solve the quadratic minimization problem (10.21) iter-
atively by using 50 conjugate-gradient (inner) iterations. The reconstruction results
are reported in Table 10.4.

We observe that the imposition of the strong level of sparsity brought by Student’s
priors is advantageous for the SL phantom. This is not overly surprising given that
the SL phanton is an artificial construct composed of piecewise-constant regions (el-
lipses). For the realistic lung image (true CT), we find that the Gaussian solution out-
performs the others. Similarly to the deconvolution and MRI problems, the present
MAP estimators are in line with the Tikhonov-type [WLLL06] and TV [XQJ05] recon-
structions used for X-ray CT.
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10.3.5 Discussion

During our investigation of real image-reconstruction problems, we have high-
lighted the similarity between deterministic sparsity-promoting methods and MAP
estimators for sparse stochastic processes. The experiments we conducted with dif-
ferent imaging modalities confirm the importance of sparse modeling in the recon-
struction of biomedical images. We found that imposing a medium level of sparsity,
as afforded by the Laplace prior (`1-norm minimization), is beneficial in most in-
stances. Heavier-tailed priors are available too, but they are helpful only for a limited
class of images that an inherently sparse. At the other end of the palette are the “clas-
sical” linear type of reconstruction (Gaussian prior) which performs remarkably well
for images whose content is more diffuse/textured or when the inverse problem is
well conditioned. This confirms that the efficiency of a potential function depends
strongly on the type of image being considered. In our model, this is related to the
Lévy exponent of the underlying continuous-domain innovation process w which is
in direct relationship with the signal prior.

As far as the relevance of the underlying model is concerned, we like to view the
present set of techniques and continuous-domain stochastic models as a conceptual
framework for deriving and refining state-of-art algorithms in a principled fashion.
The reassuring aspect is that the approach gives support to several algorithms that
are presently used in the field.

The next step, of course, would be to determine how to best fit the model to the
data. However, the inherent difficulty with this Bayesian view of the problem is that
there is actually no guarantee that (non-Gaussian) MAP estimation performs the best
for the class of signals for which it is designed. There is even evidence that a slight
model mismatch (e.g., modification of the MAP criterion) can be beneficial in some
instances (see Section 10.4.3 for explicit illustrations of this statement).

The current challenge is to take full advantage of the statistical model and to find
a proper way of constraining the solution. One possible approach is to specify recon-
struction methods that are (sub)optimal in the minimum-mean-square-error (MMSE)
sense for particular classes of stochastic processes. While it is still not clear how this
can be achieved in full generality, Section 10.4 demonstrates how to proceed for the
simpler signal-denoising scenario where the system matrix is the identity.

10.4 The quest for the minimum-error solution

In the Bayesian framework where the prior distribution of the signal is known, the
optimal (MMSE) reconstruction is the conditional expectation of the signal given the
measurements. Unfortunately, the direct computation of the MMSE solution, which
is specified by an N -dimensional integral, is intractable numerically for the (non-
Gaussian) cases of interest to us. This is to be contrasted with the previous MAP
formulation which translates into the “Gibbs energy” minimization problem (10.12)
that can be solved numerically using standard optimization techniques. Since the
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algorithms favored by practitioners are based on similar variational principles, a key
issue is to characterize their degree of (sub-)optimality and, in the case of deficiency
of the MAP criterion, to understand how the energy functional should be modified
in order to improve the quality of the reconstruction.

In this section, we investigate the problem of the denoising of Lévy processes for
which questions regarding optimality can be answered to a large extent. Specifically,
we shall define the corresponding MMSE signal estimator, derive a computational
solution based on belief propagation, and use the latter as gold standard to assess
the performance of the primary types of MAP estimators previously considered.

10.4.1 MMSE estimators for first-order processes

We now focus on the problem of the recovery of non-Gaussian AR(1) and Lévy pro-
cesses from their noisy sampled values. The corresponding statistical measurement
model is

p(Y1:YN |X1:XN )(y|x) =
N∏

n=1
pY |X (yn |xn)

which assumes that the noise contributions are independent and characterized by
the conditional pdf pY |X . For instance, in the case of AWGN, we have that pY |X (y |x) =
gσ(y −x) where gσ is a centered Gaussian distribution with standard deviation σ.

Given the measurements y = (y1, . . . , yN ), the problem is to recover the unknown
signal vector x = (x1, . . . , xN ) based on the knowledge that the latter is a realization
of a sparse first-order process of the type characterized in Section 8.5.2. This prior
information is summarized by the stochastic difference equation

un = xn −a1xn−1

where (un) is an i.i.d. sequence with infinitely divisible pdf pU , with the implicit con-
vention that x0 = 0 (or, alternatively, x0 = xN if we are applying circular boundary
conditions). This model covers the cases of the non-Gaussian AR(1) processes (when
|a1| < 1) and of the Lévy processes for a1 = 1. The posterior distribution of the signal
is therefore given by

p(X1:XN |Y1:YN )(x|y) = 1

Z

N∏
n=1

pY |X
(
yn |xn

) N∏
n=1

pU
(

xn −a1xn−1︸ ︷︷ ︸
un

)
(10.37)

where Z is a proper normalization constant. We can then formally specify the op-
timal signal estimate as

xMMSE(y) = E{x|y} =
∫

RN
x p(X1:XN |Y1:YN )(x|y) dx. (10.38)

This is to be contrasted with the MAP estimator which is defined as

xMAP(y) = arg max
x∈RN

{
p(X1:XN |Y1:YN )(x|y)

}
. (10.39)

For completeness, we now briefly show that the conditional mean (10.38) min-
imizes the mean-square estimation error among all signal estimators. An estimator
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x̃ = x̃(y) is a specific function of the measurement vector y and its performance is
measured by the (conditional) mean-square estimation error

E{(x− x̃)2|y} =
∫

RN
(x− x̃)2p(X1:XN |Y1:YN )(x|y) dx. (10.40)

Since y is fixed, we can minimize this expression by annihilating its partial derivatives
with respect to x̃. This gives

∂E{(x− x̃)2|y}

∂x̃
=−

∫

RN
2(x− x̃)p(X1:XN |Y1:YN )(x|y) dx = 0

⇒ x̃opt =
∫

RN
x p(X1:XN |Y1:YN )(x|y) dx,

which proves that (10.38) is the MMSE solution. The implicit assumption here is that∫
RN |x|n pX |Y (x|y) dx <∞ for n = 1,2 so that (10.40) is well-defined and so that we can

safely differentiate under the integral sign (by Lebesgue’s dominated-convergence
theorem).

Finally, we note that the MMSE estimator provided by (10.38) has the following
properties:

– it is unbiased with E{xMMSE(y)} = E{x}
– it satisfies the statistical “orthogonality” principle

E

{
x̃(y)

(
x−xMMSE(y)

)T
}
= 0

for any estimator x̃(y) : RN → RN with E{‖x̃(y)‖2} <∞ that is a (nonlinear) func-
tion of the measurements

– it is typically nonlinear unless y and x are jointly Gaussian.

10.4.2 Direct solution by belief propagation

The first approach that we consider is an explicit calculation of (10.38) based on a
recursive evaluation of the required integrals. The algorithm relies on belief propaga-
tion (BP). BP is a general graph-based technique for computing the marginal dis-
tributions of a high-dimensional posterior pdf that admits a decomposition into a
product of simple low-order factors [KFL01]. It operates by passing messages along
the edges of a factor graph (see Figure 10.7). The role of these messages is twofold:
1) to perform the summation (or integration) of the factors of the pdf with respect to
a given node variable

(
e.g., xn in (10.37)

)
and 2) to progressively combine the factors

into more global entities by forming appropriate products.

Example: Estimation of a three-point Lévy process
The best way of explaining BP is to detail a simple example. To that end, we con-

sider the signal x = (x1, x2, x3) corresponding to three consecutive samples of a Lévy
process. The posterior distribution of the signal given the vector of noisy measure-
ments y = (y1, y2, y3) is obtained from (10.37) with N = 3 and a1 = 1. The complete
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X1 X2 X3

pY |X(y1|x1) pY |X(y2|x2) pY |X(y3|x3)

µ�
X2

(x) µ+
X2

(x)

1 3 5

2 64

pU (x1) pU (x2 � x1) pU (x3 � x2)

Figure 10.7 Factor-graph representation of the posterior distribution (10.41) or (10.37) in
greater generality. The boxed nodes represent the factors of the pdf and the circled nodes the
unknown variables. The presence of an edge between a factor and a variable node indicates
that the latter variable is active within the factor. The functions µ−X2

(x) and µ+X2
(x) represent

the beliefs at the variable node X2; they condense all the statistical information coming from
the left and right of the graph, respectively.

factorized expression, which is represented by the factor graph in Figure 10.7, is

p(X1:X3|Y1:Y3)(x|y) ∝ pU (x1) pY |X (y1|x1) pU (x2 −x1)×
pY |X (y2|x2) pU (x3 −x2) pY |X (y3|x3). (10.41)

The crucial step for exact Bayesian inference is to marginalize p(X1:XN |Y1:YN )(x|y) with
respect to xn . In short, we need to integrate the posterior pdf over all other variables.
For instance, in the case of x2, we get

p(X2|Y1:Y3)(x2|y) =
∫

R

∫

R
p(X1:X3|Y1:Y3)(x|y) dx1 dx3

∝
∫

R

µ−X1
(x1)

︷ ︸︸ ︷
pU (x1) pY |X (y1|x1) pU (x2 −x1) dx1

︸ ︷︷ ︸
µ−X2

(x2)

· pY |X (y2|x2) ·
∫

R
pU (x3 −x2) pY |X (y3|x3) ·

µ+X3
(x3)

︷︸︸︷
1 dx3

︸ ︷︷ ︸
µ+X2

(x2)
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To evaluate the marginal with respect to x3, we take advantage of the previous integ-
ration over x1 encoded in the “belief” function µ−

X2
(x2) and proceed as follows:

p(X3|Y1:Y3)(x3|y) =
∫

R

∫

R
p(X1:X3|Y1:Y3)(x|y) dx1 dx2

∝
∫

R
µ−

X2
(x2) pY |X (y2|x2) pU (x3 −x2) dx2

︸ ︷︷ ︸
µ−X3

(x3)

· pY |X (y3|x3) · 1︸︷︷︸
µ+X3

(x3)

.

The emerging pattern is that the marginal distribution of the variable xn can be ex-
pressed as a product of three terms

p(Xn |Y1:YN )(xn |y) =µ−
Xn

(xn) · pY |X (yn |xn) ·µ+
Xn

(xn),

where the so-called belief functions µ−
Xn

and µ+
Xn

condense the statistical informa-
tion carried by the variables with indices below n and above n, respectively. This
aggregation mechanism is summarized graphically with arrows in Figure 10.7.

BP for Lévy and non-Gaussian AR(1) processes
The fundamental idea for extending the scheme to a larger number of samples is

that the beliefs µ−
Xn

(x) and µ−
Xn

(x) can be updated recursively. The algorithm below
is a generalization that is applicable to the MMSE denoising of the broad class of
Markov-1 signals. Since the underlying factor graph has no loops, it computes exact
marginals and terminates after one forward and backward sweep of message passing.

– Initialization: Set

µ−
X1

(x) = pU (x)

µ+
XN

(x) = 1

– Forward message recursion: For n = 2 to N , compute

µ−
Xn

(x) ∝
∫

R
µ−

Xn−1
(z) pY |X

(
yn−1|z

)
pU

(
x −a1z

)
dz (10.42)

– Backward message recursion: For n = (N −1) down to 1, compute

µ+
Xn

(x) ∝
∫

R
pU

(
z −a1x

)
pY |X

(
yn+1|z

)
µ+

Xn+1
(z) dz (10.43)

– Results: For n = 1 to N , compute

p(Xn |Y1:YN )(x|y) ∝µ−
Xn

(x) ·pY |X
(
yn |x

) ·µ+
Xn

(x)

[xMMSE]n =
∫

R
x p(Xn |Y1:YN )(x|y) dx (10.44)

The symbol ∝ denotes a renormalization such that the resulting function integrates
to one. The critical part of this algorithm is the evaluation of the convolution-like
integrals (10.42) and (10.43). The scalar belief functions

(
µ−

Xn
(x),µ+

Xn
(x)

)N
n=1 that res-

ult from these calculations also need to be stored, which presupposes some form of
discretization.



282 Recovery of sparse signals

Fourier-based version of BP for Lévy processes
There are two practical reasons for transcribing the above BP estimation algorithm

into the Fourier domain. The first is that closed-form expressions are not available
for all infinitely divisible pdfs. The preferred mode of description is the characteristic
function p̂U (ω) = e fU (ω) where fU is the Lévy exponent of the innovation, as has been
made clear in Chapters 4 and 9. The second reason is that for a1 = 1 (Lévy process),
(10.42)

(
as well as (10.43)

)
may be rewritten as the convolution

µ−
Xn

(x) ∝
∫

R
g (z)pU (x − z) dz = (pU ∗ g )(x) =F−1{e fU (ω) ĝ (ω)}(x)

where g (z) = µ−
Xn−1

(z) pY |X
(
yn−1|z

)
. In order to obtain a cost-effective implement-

ation, we suggest to evaluate the various formulas by relying only on products by
switching back and forth between the “time” domain to compute g (z) and the Four-
ier domain to evaluate the convolution. The corresponding algorithm is summarized
below. For simplicity, we are assuming that the underlying pdfs are symmetric; there-
fore, the presence of complex conjugation and the differences in convention for the
Fourier transform of statisticians are inconsequential.

– Initialization: Set

µ̂−
X1

(ω) = e fU (ω)

µ̂+
XN

(ω) = δ(ω)

– Forward message recursion: For n = 2 to N , compute

ĝ (ω) =Fz

{
pY |X

(
yn−1|z

)
F−1{µ̂−

Xn−1
}(z)

}
(ω)

µ̂−
Xn

(ω) ∝ ĝ (ω) p̂U (ω)

– Backward message recursion: For n = (N −1) down to 1, compute

ĝ (ω) =Fz

{
pY |X

(
yn+1|z

)
F−1{µ̂+

Xn+1
}(z)

}
(ω)

µ̂+
Xn

(ω) ∝ p̂U (ω) ĝ (ω)

– Results: For n = 1 to N , compute

p̂(Xn |Y1:YN )(ω) ∝F
{
F−1{µ̂−

Xn
}(x) pY |X

(
yn |x

)
F−1{µ̂+

Xn
}(x)

}
(ω)

[xMMSE]n = j
dp̂(Xn |Y1:YN )(ω)

dω

∣∣∣∣
ω=0

(10.45)

The symbol ∝ denotes a renormalization such that the value of the Fourier trans-
form at the origin is one. We took advantage of the moment-generating property of
the Fourier transform to establish (10.45).

The conventional and Fourier-based versions of the BP algorithm yield the exact
MMSE estimator for our problem. However, both involve continuous mathematics
(integrals and/or Fourier transforms) and neither one can be implemented in the
given form. The simplest and most practical generic solution is to represent the belief
functions by their samples on a uniform grid with a sampling step that is sufficiently
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(a): Gaussian

(b): Laplace

(c): Poisson

(d): Cauchy

Figure 10.8 Examples of Lévy processes with increasing degree of sparsity. (a) Brownian
motion (with Gaussian increments). (b) Lévy-Laplace motion. (c) Compound Poisson
process. (d) Lévy flight with Cauchy-distributed increments.

fine and to truncate their support while maintaining the error within an acceptable
bound. Integrals are then approximated by Riemann sums and the Fourier transform
is implemented using the FFT.

10.4.3 MMSE vs. MAP denoising of Lévy processes

We now present a series of denoising experiments with the goal of comparing the
various estimation techniques introduced so far. We have considered signals associ-
ated with the four types of Lévy process displayed in Figure 10.8. These were gener-
ated by discrete integration of sequences of i.i.d. increments

(
see (8.2)

)
with statist-

ical distributions as indicated below.
Brownian motion: (un) follows the standard Gaussian distribution pU (x) = g1(x).

Laplace motion: (un) follows a Laplace distribution with dispersion parameter
1/λ= 1.

Compound Poisson process: (un) follows a compound Poisson distribution with
parameters (λ= 0.6, p A) such that p A = g1 is a standard Gaussian distribution and
Prob(un = 0) = e−λ = 0.549.

Lévy flight: (un) follows a Cauchy distribution (SαS with α = 1 or, equivalently,
Student with r = 1

2 ) with dispersion s0 = 1.
The reader can refer to Table 4.1 for the precise definition of the underlying pdfs.

Each realization x of the signal was corrupted with additive white Gaussian noise
of variance σ2 to yield the measurement vector y. Based on (10.12) with H = I and
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Figure 10.9 SNR improvement as function of the level of noise for Brownian motion. The
denoising methods by order of decreasing performance are: MMSE estimator (which is
equivalent to the LMMSE and MAP estimators), Log regularization, and TV regularization.

s = x, the relevant MAP estimators are therefore given by

xMAP(y) = arg min
x∈RN

(
1

2
‖y−x‖2

2 +τ
N∑

n=1
ΦU

(
[Lx]n

)
)

(10.46)

where τ∝ σ2 is a regularization parameter and ΦU =Φi is one of the following po-
tential functions:
ΦGauss(x) = 1

2 |x|2 (Gaussian prior) which is known to yield the MMSE solution for
Brownian motion and the best linear estimator otherwise (Wiener filter or LMMSE
solution).

ΦLaplace(x) = |x| (Laplace prior), also termed TV, because it provides the signal es-
timate whose discrete total variation is minimum. The corresponding estimator,
which involves the minimization of an `1-norm, is illustrative of the kind of recov-
ery techniques used in compressed sensing.

ΦStudent(x) = log
(|x|2 +1

)
(Student or Cauchy prior). This is an instance of a non-

convex potential function that promotes sparsity even further thanΦ1.
These MAP estimators are computed iteratively according to the generic proced-
ure described in Section 10.2.4 using the LMMSE solution as warm start. The per-
formance of an estimator x̃(y) is measured by the signal-to-noise ratio improvement,
which is given by

∆SNR(x̃,x) = 10log10

( ‖y−x‖2

‖x̃(y)−x‖2

)
.

The signal length was set to N = 100. Each data point in a graph is an average result-
ing from 500 realizations of the denoising experiment. The MMSE estimator (Fourier-
based implementation of belief propagation) relies on the correct prior signal model,
while the regularization parameter τ of each of the other three estimators is kept con-
stant for a given noise level, and adjusted to yield the lowest collective estimation
error.

We show in the graph of Figure 10.9 the signal-to-noise improvement of the vari-
ous algorithms for the denoising of Brownian motion. The first observation is that
the results of the BP MMSE estimator and the Wiener filter (LMMSE=MAP Gaussian)
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Figure 10.10 SNR improvement as function of the level of noise for a piecewise-constant
signal (compound Poisson process). The denoising methods are: MMSE estimator, Log
regularization, TV regularization, and LMMSE estimator.

are undistinguishable and that these methods perform best over the whole range of
experimentation, in agreement with the theory. The worst results are obtained for TV
regularization, while the Log penalty gives intermediate results. A possible explan-
ation of the latter finding is that the Log potential is quadratic around the origin so
that it can replicate the behavior of Φ2, but only over some limited range of input
values.

A similar scenario is repeated in Figure 10.10 for the compound Poisson process.
We note that the corresponding MAP estimate is a constant signal since the probab-
ility of its increments being zero is overwhelmingly larger (Dirac mass at the origin)
than any other acceptable value. This trivial estimator is excluded from the compar-
ison. At low noise levels where the sparsity of the source dictates the structure, the
performance of the TV estimator is very close to that of the MMSE denoiser, which
can be considered as gold standard. Yet, the relative performance of the TV estim-
ator deteriorates with increasing noise, so much so that TV ends being worst at the
other end of the scale. One can observe a reverse trend for the LMMSE estimator
which progressively converges to the MMSE solution as the variance of the noise in-
creases. Here, the explanation is that the statistics of the noisy signal is dominated
by the Gaussian constituent, which is favorable to the LMSE estimator.

The more challenging case of a Lévy flight, which is the sparsest process in the
series, is documented in Figure 10.11. Here, the MAP estimator (Log potential) per-
forms well over the whole range of experimentation. A possible explanation is that
the corrupted signal looks sparse even at large noise powers since the convolution
of a heavy-tailed pdf with a Gaussian remains heavy-tailed. The dominance of the
non-Gaussian regime also explains why the LMMSE performs so poorly. The main
limitation of the LMMSE algorithm is that it fails to preserve the sharp edges that are
characteristic of this type of signal.

The last example in Figure 10.12 is particularly telling because the results go against
our initial expectation, especially at higher noise levels. While the MAP (TV) estim-
ator performs well in the low-noise regime, it progressively falls behind all other es-
timators as the variance of the noise increases. Particularly surprising is the good be-
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Figure 10.11 SNR improvement as function of the level of noise for a Lévy flight with
Cauchy-distributed increments. The denoising methods by order of decreasing performance
are: MMSE estimator, MAP estimator (Log regularization), TV regularization, and LMMSE
estimator.
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Figure 10.12 SNR improvement as function of the level of noise for a Lévy process with
Laplace-distributed increments. The denoising methods are: MMSE estimator, LMMSE
estimator, MAP estimator (TV regularization), and Log regularization.

havior of the LMMSE algorithm which matches the MMSE solution at higher noise
levels. Apart from the MMSE denoiser, there is no single estimator that outperforms
the others over the whole range of noise. The possible reason for the poor perform-
ance of MAP is that the underlying signal is at the very low end of sparsity with its
general appearance being rather similar to Brownian motion

(
see Figure 10.8(a)-(b)

)
.

This finding suggests that one should be cautious with the Bayesian justification of
`1-norm minimization techniques based on Laplace priors since MAP-TV does not
necessarily perform so well for the model to which it is matched—in fact, often worse
than the classical Wiener solution (LMMSE).

While this series of experiments stands as a warning against a strict application
of the MAP principle, it also shows that it is possible to specify variational estimat-
ors that approximate the MMSE solution well. The caveat is that the best perform-
ing potential is not necessarily the prior log-likelihood function associated with the
probability model, which calls for further investigations.
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10.5 Bibliographical notes

Image reconstruction is a classical topic in image processing and biomedical ima-
ging [Nat84, Pra91]. In the variational formulation, the reconstruction task is cast as
an optimization problem. The idea of including a special penalty term (regulariz-
ation) to stabilize ill-posed problems can be traced back to Tikhonov [Tik63, TA77].
Classical Tikhonov regularization involves quadratic terms only; it results in a lin-
ear reconstruction (regularized least-squares solution) and is equivalent to ridge re-
gression in statistics [HK70]. An informative discussion of such techniques in the
context of image restoration and their connection with statistical modeling is given
in [KV90]. The Bayesian interpretation of this type of algorithm suggests a natural
refinement which is to combine the quadratic regularization with a (non-quadratic)
log-likelihood data term that incorporates the knowledge of the statistics of the noise
[Hun77, TH79]. Still, it remains that quadratic regularization has the tendency to
weaken signal discontinuities, which has led researchers to look for alternatives. A
significant step forward was the introduction of potential functions that have a bet-
ter ability to preserve edges [GR92, CBFAB97]. Total variation is a popular instance
of such a non-quadratic regularizer that has the important property of being con-
vex [ROF92]. The connection between (Gibbs) energy minimization and MAP es-
timation is well understood and has been exploited to make the link with discrete
Markov random fields [GG84, BS93].

Sections 10.1 and 10.2
While researchers have spent a significant effort on the discrete stochastic mod-

eling of images for defining suitable non-Gaussian priors [GG84, BS93], there is little
work on the use of continuous-domain stochastic models, except in the Gaussian
case where the MMSE solution is linear and intimately linked to smoothing splines
[KW70] and hybrid Wiener filtering [UB05b, RVDVBU08]. The primary reference for
the model-based discretization procedure of Sections 10.1-10.2 is [BKNU13]. The
generic algorithm presented in Section 10.2.4 is inspired by the work of Ramani and
Fessler who proposed an ADMM algorithm for the reconstruction of parallel MRI
[RF11]. Other relevant works on iterative reconstruction algorithms are [WYYZ08,
BT09a, BT09b, ABDF11]. See also [CP11] for the general definition and application of
proximal operators.

Section 10.3
Self-similar probability models are commonly used as prior knowledge for image

processing [PPLV02]. The property of scale invariance is supported by empirical ob-
servations of the power spectrum of natural images [Fie87, RB94, OF96b, SO01]; it
is also motivated by physics and biology [Man82, Rud97, MG01]. The non-Gaussian
character of images is well documented too [SLSZ03]. The wavelet-domain histo-
grams, in particular, are typically leptokurtotic (with a peak at the origin) and heavy
tailed [Fie87,Mal89,SLG02,PSWS03]. The same holds true for the pdfs of image deriv-
atives which are often exponential or even sub-exponential. Grenander and Srivast-
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ava have shown that this behavior can be induced by a simple generative model
that involves the random superposition of a fixed collection of templates [GS01].
Mumford and Gidas have introduced a scale-invariant adaptation of this model that
takes the form of a stochastic wavelet expansion with a random placement and scal-
ing of the atoms [MG01]. This random wavelet model has the same phenomen-
ological characteristics—infinite divisibility and wide-sense self-similarity—as the
sparse stochastic processes being considered here. However, it is does not lend it-
self as well to statistical inference because of the lack of an underlying innovation
model.

The primary areas of application of deconvolution are astronomy and fluores-
cence microscopy where the dominant source of noise is photon counting (Pois-
son statistics) [MKCC99, SPM02]. Deconvolution is particularly effective in wide-
field fluorescence microscopy because it can be deployed in full 3-D [AS83]. The
traditional deconvolution method is the Richardson-Lucy (RC) algorithm: a mul-
tiplicative gradient-based technique that maximizes a Poisson-likelihood criterion
[Ric72,Luc74]. Note that the level of smoothing of RC is controlled through the num-
ber of iterations since the cost function does not include a regularization term. While
this type of algorithm may seem primitive by modern standards, it is the workhorse of
many applications with some of its variants performing remarkably well [vKvVVvdV97].
A significant advantage of RC is that it results in a positive solution. In that respect, we
note that the iterative algorithm of Carrington et al. optimizes a quadratic Tikhonov-
type criterion subject to the positivity constraint [CLM+95]. By contrast, the use of
unconstrained penalized least-squares methods, as in Section 10.3.2, is slightly more
academic, but typical of the evaluation of deconvolution algorithms [BT09b,BDF07].
The MAP formulation can also be refined by adopting the Poisson-likelihood term of
RC and complementing it with a suitable penalty such as total variation [DBFZ+06,
FBD10].

Iterative reconstruction methods became relevant for MRI with the invention of
parallel imaging (SENSE) by Pruessmann et al. [PWSB99]. The first-generation al-
gorithms were linear with the optimization being typically performed by the con-
jugate gradient method [Pru06]. Nonlinear techniques based on TV-regularizer were
introduced later as a natural extension [BUF07] and, more significantly, as one of the
first practical demonstration of the “compressed-sensing” (CS) methodology [LDP07].

X-ray computed tomography is a classical medical imaging modality that relies on
the numerical inversion of the Radon transform [Nat84, Kal06]. Tomographic recon-
struction is also of interest in biology for the imaging of small animals using micro-
scanners [HT02] and for the determination of 3-D molecular structure from cryoelec-
tron micrographs [Fra92,LFB05]. When the number of projections is large with a uni-
form angular distribution, the tomogram is reconstructed by filtered back-projection
(FBP) [RL71, PSV09]. For less ideal acquisition conditions (e.g., noisy and/or missing
data, non-even angular distribution of the projections), better results are obtained
using iterative algorithms such as the algebraic reconstruction technique (ART) [GBH70].
ART is a basic linear reconstructor that computes the solution of a least-squares min-
imization problem [HL76]; it may also be interpreted as a Bayesian estimator with a
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simple Gaussian prior [HHLL79]. The recent trend is to consider non-quadratic reg-
ularizers imposed upon the gradient, with a marked preference for total variation
[PBE01, SP08, RBFK11]. A precursor to this type of algorithm is Bouman and Sauer’s
MAP estimator that involves a Markov random-field model with generalized Gaus-
sian priors [BS93]. The discretization of the tomography reconstruction problem us-
ing local basis functions (including square pixels and low-order B-splines) was pion-
eered by Hanson et al. [HW85]. Many iterative algorithms use isotropic band-limited
basis functions which facilitates the implementation of the forward model since the
Radon transform of a basis function does not dependent on the direction of integra-
tion [Lew90]. The spline-based discretization that is used in the present experiments
is slightly more involved but has better approximation properties [ENU12].

Section 10.4
The connection between TV denoising and the MAP estimation of Lévy processes

was pointed out in [UT11]. The direct solution for the MMSE denoising of Lévy
processes, which is based on belief propagation, was proposed by Kamilov et al.
[KPAU13]. For a general presentation of the methods of belief propagation and mes-
sage passing, we refer to the articles of Loeliger et al. [KFL01, Loe04]. The paper by
Amini et al. [AKBU13] provides the basic tools for the proper statistical formulation
of signal recovery for higher-order sparse stochastic models. It also includes the type
of experimental comparison presented in Section 10.4.3. The term “Lévy flight” was
coined by Mandelbrot [Man82]. This stochastic model induces a chaotic behavior
with random displacements interspersed with sudden jumps. It is characteristic of
the path followed by birds and other animals when searching for food [VBB+02].

Several authors have identified deficiencies of non-Gaussian MAP estimation tech-
niques [Nik07, Gri11, SDFR13]. Conversely, Gribonval has shown that, in the AWGN
scenario, there exists a penalized least-squares estimator with an appropriate pen-
alty that is equivalent to the MMSE solution and that this modified penalty may not
coincide with the prior log-likelihood function associated with the underlying stat-
istical model.
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One of the simplest and surprisingly effective approach for removing noise in im-
ages is to expand the signal in an orthogonal wavelet basis, to apply a soft-threshold
to the wavelet coefficients, and to reconstruct the “denoised” image by inverse wave-
let transformation. The classical justification for the algorithm is that i.i.d. noise is
spread out uniformly in the wavelet domain while the signal gets concentrated in
a few significant coefficients (sparsity property) so that the smaller values can be
primarily attributed to noise and easily suppressed.

In this chapter, we take advantage of our statistical framework to revisit such wave-
let-based reconstruction methods. Our first objective is to present some alternative
dictionary-based techniques for the resolution of general inverse problems based on
the same stochastic models as in Chapter 10. Our second goal is to take advantage of
the orthogonality of wavelets to get a deeper understanding of the effect of proximal
operators while investigating the possibility of optimizing shrinkage-thresholding
functions for better performance. Finally, we shall attempt to bridge the gap between
operator-based regularization, as discussed in Sections 10.2-10.3, and the imposition
of sparsity constraints in the wavelet domain. Fundamentally, this relates to the di-
chotomy between an analysis point of view of the problem (typically in the form of
the minimization of an energy functional with a regularization term) versus a syn-
thesis point of view where a signal is represented as a sum of elementary constituents
(wavelets.)

The chapter is composed of two main parts. The first is devoted to inverse prob-
lems in general. Specifically, in Section 11.1, we apply our general discretization and
modeling paradigm to the derivation of wavelet-domain MAP estimators for the res-
olution of linear inverse problems. One of the key difference with the innovation-
based formulation of Chapter 10 is the presence of scale-dependent potential func-
tions whose form is specified by the stochastic model. We then address practical
issues in Section 11.2 with the presentation of the two primary iterative thresholding
algorithms (ISTA and FISTA). These methods are illustrated with the deconvolution
of fluorescence micrographs.

The second part of the chapter focuses on the denoising problem with the aim
of improving upon simple soft-thresholding and wavelet-domain MAP estimation.
Section 11.3 presents a detailed investigation of shrinkage functions in relation to
infinitely-divisible laws with the emphasis on pointwise estimators that are optimal
in the MMSE sense. In Section 11.4, we show how the performance of wavelet denois-
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ing can be boosted even further through the use of redundant representations (tight
wavelet frames). In particular, we describe the concept of consistent cycle spinning
which provides a conceptual bridge with the optimal estimation techniques of Sec-
tion 10.4. We then close the circle in Section 11.4.4 by combining all ingredients—
tight operator-like wavelet frames, MMSE shrinkage functions, and consistent cycle
spinning—and present an iterative wavelet-based algorithm that converges empiric-
ally to the reference MMSE solution of Section 10.4.2.

11.1 Discretization of inverse problems in a wavelet basis

As alternative to the shift-invariant formulation presented in Chapter 10, we may
choose to discretize a linear inverse problem in a wavelet basis. To that end, we
consider a biorthogonal wavelet system of the type investigated in Chapter 8 that
is matched to the whitening operator L. The underlying signal representation is the
wavelet counterpart of (10.2) in Section 10.1. It is given by

s1(r ) =
∞∑

i=1

∑

k∈Zd \DZd

vi [k]ψi ,k (r ) =
∑

k∈Zd

s[k]βL(r −k) (11.1)

where the wavelet coefficients are obtained as

vi [k] = 〈s,ψ̃i ,k 〉.

The mathematical requirement is that the family of analysis/synthesis functions (ψ̃i ,k ,
ψi ,k ) forms a biorthonormal wavelet basis.

Observe that the central wavelet expansion in (11.1) excludes the finer-scale wave-
let coefficients with i < 1, so that the signal approximation s1(r ), which is the projec-
tion of s(r ) onto the reference space V0, can also be represented as a linear combin-
ation of the integer shifts of the scaling function βL.

The crucial ingredient for our formulation (see Section 6.5.3) is that the analysis
wavelets are such that

ψ̃i ,k (r ) = L∗φ̃i (r −Di−1k) (11.2)

where φ̃i ∈ L1(Rd ) is some suitable (possibly, scale-dependent) smoothing kernel and
D the dilation matrix that specifies the multiresolution decomposition. Recalling
that s = L−1w , this implies that

vi [k] = 〈s,ψ̃i ,k 〉 = 〈L−1w, L∗φ̃i (·−Di−1k)〉
= 〈w, φ̃i (·−Di−1k)〉

so that it is possible to derive any finite-dimensional joint pdf of the wavelet coeffi-
cients vi [·] by using the general white-noise analysis exposed in Chapters 8 and 9. In
particular, Proposition 8.6 tells us that pVi , the pdf of the wavelet coefficients at scale
i , is infinitely divisible with modified Lévy exponent fφ̃i

(ω) = ∫
Rd f

(
ωφ̃i (r )

)
dr .
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11.1.1 Specification of wavelet-domain MAP estimator

To obtain a practical reconstruction model, we adopt the same strategy as in Sec-
tion 10.1.2: We truncate the signal over a spatial region Ω and introduce problem-
specific boundary conditions that are enforced by suitable modifications of the basis
functions. This yields the finite-dimensional signal model

s1(r ) =
Imax∑

i=1

∑

k∈Ωi

vi [k]ψi ,k (r ) =
∑

k∈Ω
s[k]βL,k (r ) (11.3)

where Ωi denotes the wavelet-domain index set corresponding to the ROI Ω. Note
that the above expansion spans the same signal space as (10.8), provided that we
select β=βL as the scaling function of the wavelet system {ψi ,k }.

The signal in (11.3) is uniquely specified by an N -dimensional vector v of pooled
wavelet coefficients vi [k],k ∈ Ωi , i = 1, . . . , Imax. The right-hand side of (11.3) also
indicates that there is a linear, one-to-one correspondence between the sequence
of wavelet coefficients vi [·] and the discrete signal s[·]. This mapping specifies the
discrete wavelet transform which admits a fast filterbank implementation. In vector
notation, this translates into

v = W̃s ⇔ s = Wv

with W = W̃−1 where the entries of the (N ×N ) wavelet matrices W̃ and W are given
by

[W̃](i ,k),k ′ = 〈ψ̃i ,k ,βL,k ′〉
[W]k ′,(i ,k) = 〈β̃L,k ′ ,ψi ,k 〉,

respectively. Also note that the wavelet basis is orthonormal if and only if ψ̃i ,k =
ψi ,k which translates into W̃ = WT being an orthonormal matrix; this latter property
presupposes that the underlying scaling functions are orthogonal, too.

With the above convention, we write the wavelet version of the measurement equa-
tion (10.9) as

y = Hwavv+n

with wavelet-domain system matrix Hwav whose entries are given by

[Hwav]m,(i ,k) = 〈ηm ,ψi ,k 〉 (11.4)

where ηm is the analysis function corresponding to the mth measurement. The link
with (10.10) in Section 10.1.2 is Hwav = HW with the proper choice of analysis func-
tion β̃= β̃L.

For the purpose of simplification and mathematical tractability, we make now the
same kind of decoupling simplification as in Section 10.1.2, treating the wavelet com-
ponents as if they were independent 1. Using Bayes’ rule, we get the corresponding

1. While this approximation is legitimate within a given scale for sufficiently well localized wavelets, it
is less so between scales because the wavelet smoothing kernels φ̃i and φ̃i ′ typically overlap. (A more-
refined probabilistic model should take those inter-scale dependencies into consideration.)
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expression of the posterior probability distribution as

pV |Y (v|y) ∝ exp

(
−‖y−Hwavv‖2

2σ2

)
pV (v)

≈ exp

(
−‖y−Hwavv‖2

2σ2

) Imax∏

i=1

∏

k∈Ωi

pVi

(
vi [k]

)
,

where pVi is the (conjugate) inverse Fourier transform of p̂Vi (ω) = e
fφ̃i

(ω)
. By maxim-

izing pV |Y , we derive the wavelet-domain version of the MAP estimator

vMAP(y) = argmin
v

{
1

2
‖y−Hwavv‖2

2 +σ2
∑

i

∑

k∈Ωi

ΦVi

(
vi [k]

)
}

, (11.5)

which is similar to (10.12), except that it now involves the series wavelet potentials

ΦVi (x) =− log pVi (x).

The specificity of the present MAP formulation is that the potential functionsΦVi are
scale-dependent and tied to the Lévy exponent f of the continuous-domain innova-
tion w . Since the pdfs pVi of the wavelet coefficients are infinitely divisible with Lévy
exponent fφ̃i

, we can determine the exact form of the potentials as

ΦVi (x) =− log
∫

R
exp

(
fφ̃i

(ω)− jωx
) dω

2π
(11.6)

with

fφ̃i
(ω) =

∫

Rd
f
(
ωφ̃i (r )

)
dr

where φ̃i is the wavelet smoothing kernel at resolution i in (11.2). Moreover, we can
rely on the theoretical analysis of id potentials in Section 10.2.1, which remains valid
in the wavelet domain, to extract the global characteristics of ΦVi . The general trend
that emerges is that these characteristics are mostly insensitive to the exact shape of
φ̃i , and hence to the choice of a particular wavelet basis.

11.1.2 Evolution of the potential function across scales

In a conventional wavelet analysis, the basis functions are dilated versions of a
small number (N0 = det(D)−1, typically) of mother wavelets. For simplicity of nota-
tion, we consider the case of a single mother wavelet ψ̃ and a dyadic dilation matrix
D = 2I. The analysis wavelets at scale a = 2i (or resolution i ) are shifted versions of

ψ̃i (r ) = 2−i d/2ψ̃(r /2i ) = L∗φ̃i (r )

where L is scale-invariant of order γ and

φ̃i (r ) = 2i (γ−d/2)φ̃(r /2i )

in accordance with (9.19).
The assumption that the underlying signal s(r ) is (second-order) self-similar has

direct repercussions on the form of the potentials and their evolution across scale.



294 Wavelet-domain methods

Based on the analysis in Section 9.8, we find that the wavelet-domain pdfs pVi are
members of a same class. Specifically, their Lévy exponent at resolution i is given by

fφ̃i
(ω) = 2i d fφ̃

(
2i (γ−d/2)ω

)
. (11.7)

It follows that the wavelet potential at resolution i can be written as

ΦVi (x) = i logb1 +Φ
(

x

bi
1

;2i d

)
(11.8)

with b1 = 2γ−d/2 and

Φ(x,τ) =− logF
−1

{
eτ fφ̃(ω)

}
(x).

The main point is that, up to a dilation by (b1)i , the wavelet potentials are part of the
parametric family Φ(x,τ), which corresponds to the natural semigroup extension of
the wavelet pdf at scale i = 0.

Interestingly, we can also provide an iterated convolution interpretation of this res-
ult by considering the pdfs of the scale-normalized wavelet coefficients zi = vi /(b1)i .
To see this, we express the characteristic function of zi as

p̂Zi (ω) = p̂Vi (ω/bi
1) = exp

(
2i d fφ̃

(
ω

))

= (
p̂Zi−1 (ω)

)2d

= (
p̂Z0 (ω)

)2i d

which indicates that pZi is the 2i d -fold convolution of pZ0 = pV0 , which is itself the
pdf of the wavelet coefficients at resolution 0. In one dimension, this translates into
the recursive relation

pZi (x) = (
pZi−1 ∗pZi−1

)
(x), (11.9)

which we like to view as the probabilistic counterpart of the two-scale relation of the
multiresolution theory of the wavelet transform. Incidentally, this iterated convolu-
tion relation also explains why pZi spreads out and converges to a Gaussian as the
scale increases. Observe that the effect is more pronounced in higher dimensions
since the number of elementary convolution factors in the probabilistic two-scale
relation grows exponentially with d .

11.2 Wavelet-based methods for solving linear inverse problems

Having specified the statistical reconstruction problem in a wavelet basis, we now
describe numerical methods of solution. To that end, we consider the general optim-
ization problem

min
s

{
1

2
‖y−Hs‖2

2 +τΦ(WT s)

}
, (11.10)
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where Φ(v) = ∑N
n=1Φn(vn) is a separable potential function and WT = W−1 an or-

thonormal transform matrix. The qualitative effect of the second term in (11.10) is to
favor solutions that admit a sparse wavelet expansion; the strength of this “regulariz-
ation” constraint is controlled by the parameter τ ∈R+. Clearly, the solution of (11.10)
is equivalent to the MAP estimator (11.5) if we set τ=σ2 andΦ(v) =∑

i
∑

k∈Ωi
ΦVi

(
vi [k]

)
.

While a possible approach for solving (11.10) is to apply the ADMM algorithm of
Section 10.2.4 with the substitution of L by WT and a slight adjustment for scale-
dependent potentials, we shall present two alternative techniques (ISTA and FISTA)
that capitalize on the orthogonality of the matrix W. The second algorithm (FISTA) is
a modification of the first one that results in faster convergence.

11.2.1 Preliminaries

To exploit the separability of the potential function Φ, we restate the reconstruc-
tion problem in terms of the wavelet coefficients v = (v1, . . . , vN ) = WT s as the min-
imization of the cost functional

C (v) = 1

2
‖y−Hwavv‖2

2 +τ
N∑

n=1
Φn(vn), (11.11)

where Hwav = HW. In order to gain insights on the algorithmic components of ISTA,
we first investigate two extreme cases for which the solution can be written down
explicitly.

Least-squares estimation
For τ = 0, the minimization of (11.11) reduces to a classical least-squares estima-

tion problem and there is no advantage in expressing the signal in terms of wavelets.
The solution of the reconstruction problem is given by

sLS = (HT H)−1HT y

under the assumption that HT H is invertible. When the underlying matrix is too large
to be inverted numerically, the corresponding linear system of equations is solved
iteratively. The simplest iterative reconstruction method is the Landweber algorithm

sk+1 = sk +µ HT (
y−Hsk)

(11.12)

withµ ∈R+, which progressively builds up the solution by applying a steepest-descent
update. It is a first-order optimizer whose efficiency depends on the step size µ and
the conditioning of H. A classical result is that this iterative scheme will converge to
the solution provided that 0 < µ< 2/L where L = λmax(HT H) is the spectral radius of
the iteration matrix A = HT H.
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Simple denoising problem
When both s and y are expressed in the wavelet basis and H = I, (11.10) reduces to

a separable denoising problem. Specifically, by defining z = WT y, we get

ṽ = argmin
v

{
1

2
‖y−Wv‖2

2 +τΦ(v)

}
(11.13)

= argmin
v

{
1

2
‖z−v‖2

2 +τ
N∑

n=1
Φn(vn)

}
, (by Parseval)

so that

ṽ = proxΦ
(
z;τ

)=




proxΦ1
(z1;τ)

...
proxΦN

(zN ;τ)


 (11.14)

where the definition of the underlying proximal operators (vectorial and scalar) is
consistent with the formulation of Section 10.2.3. Hence, the solution ṽ can be com-
puted by applying a series of component-wise shrinkage-thresholding functions to
the wavelet coefficients of y. This is the model-based version of the standard denois-
ing algorithm mentioned in the introduction. The relation between proxΦn

and the
underlying probability model is investigated in more details in Section 11.3. The bot-
tom line is that these are scale-dependent nonlinear maps (see examples in Figure
11.5) that can be precomputed and stored in a lookup table which makes the denois-
ing procedure very efficient.

11.2.2 Iterative shrinkage-thresholding algorithm (ISTA)

The idea behind ISTA is to solve (11.10) iteratively by alternatively switching between
a simple Landweber update and a denoising step.

ISTA produces a sequence vk that converges to the minimizer v? of (11.11) whenΦ
is convex. At each step, it minimizes a simpler auxiliary cost C ′(v,vk ) that depends on
the current estimate vk . The design constraint is that C ′(v,vk ) ≥C (vk ) with equality
when v = vk . This guarantees that the cost functional decreases monotonically with
the iteration number k. The standard choice is

C ′(v,vk ) =C (v)+ L
2 ‖v−vk‖2

2 − 1
2‖Hwav(v−vk )‖2

2︸ ︷︷ ︸
≥0

(11.15)

with L such that

L‖e‖2 ≥ ‖Hwave‖2,

for all e ∈RN . The critical value of L is λmax
(
HT

wavHwav), which is the same L as in the
Landweber algorithm of Section 11.2.1 since W is unitary. The derivation of ISTA is
based on the rewriting of (11.15) as

C ′(v,vk ) = L
2 ‖v−zk‖2

2 +τΦ(v)+C0(vk ,y) (11.16)
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where C0(vk ,y) is a term that does not depend on v and where the auxiliary variable
zk is given by

zk = vk + 1
L HT

wav

(
y−Hwavvk )

= WT (
sk + 1

L HT (
y−Hsk )

)
. (11.17)

The crucial point is that the minimization of (11.16) with respect to v is equivalent to
the denoising problem (11.13). This implies that

arg min
v∈RN

C ′(v,vk ) = proxΦ
(
zk ;

τ

L

)
,

which corresponds to a shrinkage-thresholding of the wavelet coefficients of the sig-
nal. The form of the update equation (11.17) is also highly suggestive for it boils down
to a Landweber iteration

(
see (11.12)

)
followed by a wavelet transform. The resulting

ISTA is summarized in Algorithm 1.

Algorithm 1: ISTA solves s? = argmins
{ 1

2‖y−Hs‖2
2 +τΦ(WT s)

}

input: A = HT H, a = HT y, s0, τ, and L
set: k ← 0
repeat

sk+1 ← sk + 1
L

(
a−Ask

)
(Landweber step)

vk+1 ← proxΦ
(
WT sk+1; τL

)
(wavelet-domain denoising)

sk+1 ← Wvk+1 (inverse wavelet transform)
k ← k +1

until stopping criterion
return sk

The remarkable aspect is that this simple sequence of Landweber updates and
wavelet-domain thresholding operations converges to the solution of (11.10). The
only subtle point is that the strength of the thresholding (τ/L) is tied to the step size
of the gradient update.

11.2.3 Fast iterative shrinkage-thresholding algorithm (FISTA)

While ISTA converges to a (possibly local) minimum, it may do so rather slowly
since the amount of error reduction at each step is dictated by the Landweber up-
date. The latter, which is a basic first-order technique, is known to be quite inefficient
when the system matrix is poorly conditioned.

WhenΦ is convex, it is possible to characterize the convergence behavior of ISTA.
Specifically, Beck and Teboulle [BT09b, Theorem 3.1] have shown that, for any k > 1,

C (vk
ISTA)−C (v?) ≤ L

2k
‖vk

ISTA −v?‖2
2

which indicates that the cost function decreases linearly with the iteration number
k.
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In the same paper, these authors have proposed a refinement of the scheme called
“fast iterative shrinkage-thresholding algorithm” (FISTA), which improves the rate
of convergence by one order. This is achieved via a controlled over-relaxation that
utilizes the previous iterates to produce a better guess for the next update. A possible
implementation of FISTA is shown in Algorithm 2.

Algorithm 2: FISTA solves s? = argmins
{ 1

2‖y−Hs‖2
2 +τΦ(WT s)

}

input: A = HT H, a = HT y, s0, τ and L
set: k ← 0, w0 ← Ws0, t0 ← 0;
repeat

wk+1 ← proxΦ

(
WT (

sk + 1

L
(a−Ask )

)
;
τ

L

)
(ISTA step)

tk+1 ←
1

2

(
1+

√
1+4t 2

k

)

vk+1 ← wk+1 + tk −1

tk+1

(
wk+1 −wk)

sk+1 ← Wvk+1

k ← k +1
until stopping criterion
return sk

The only difference with ISTA is the update of vk+1 which is an extrapolation of the
two previous ISTA computations wk+1 and wk . The variable tk controls the strength
of the over-relaxation which increases with k up to some asymptotic limit.

The theoretical justification for FISTA (see [BT09b, Theorem 4.4]) is that the scheme
improves the convergence such that, for any k > 1,

C (vk
FISTA)−C (v?) ≤ 2L

(k +1)2 ‖vk
FISTA −v?‖2

2.

Practically, switching from a linear to a quadratic convergence rate can translate in a
spectacular speed improvement over ISTA with the advantage that this change of re-
gime essentially comes for free. FISTA therefore constitutes the method of choice
for wavelet-based regularization; it typically delivers state-of-the-art performance
for the kind of large-scale optimization problems encountered in imaging.

11.2.4 Discussion of wavelet-based image reconstruction

Iterative shrinkage-thresholding algorithms can be applied to the reconstruction
of images for a whole variety of biomedical imaging modalities in the same way as
we saw in Section 10.3. For illustration purposes, we have applied ISTA and FISTA
to the deconvolution of the fluorescence micrographs of Section 10.3.2. In order
to mimic the regularizing effect of the gradient operator, we have selected 2D Haar
wavelets which qualitatively act as (smoothed) first-order derivatives. We have also
used the same type of potential functions: ΦGauss(x) = Ai |x|2,ΦLaplace(x) = Bi |x|, and
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Figure 11.1 Comparison of the convergence properties of ISTA (dark) and FISTA (light) for
the image in 11.2(b) as a function of the iteration index.

ΦStudent(x) = Ci log(x2 + ε) where Ai , Bi , and Ci are some proper scale-dependent
constants. As in the previous experiments, the overall regularization strength τ was
tuned for best performance (maximum SNR with respect to the reference). Here, we
are presenting the results for the image of nerve cells (see Figure 10.3b) with the use
of `1 wavelet-domain regularization.

The plot in Figure 11.1 documents the evolution of the cost functional (11.11) as a
function of the iteration index for both ISTA and FISTA. It illustrates the faster con-
vergence rate of FISTA, in agreement with Beck and Teboulle’s prediction. As far as
quality is concerned, a general observation is that the output of the basic version of
the wavelet-based reconstruction algorithm is not on par with the results of Section
10.3. The main problem (see Figure 11.2f) is that the reconstructed images suffer
from artifacts (in the form of wavelet footprints) that are typically the consequence
of the lack of shift invariance of the wavelet representation. Fortunately, there is a
simple remedy to correct for this effect via a mechanism called cycle spinning 2. The
approach is to randomly shift the signal back and forth during the course of itera-
tions, which is equivalent to cycling through a family of shifted wavelet transforms,
as will be described in Section 11.4.2. Incorporating cycle spinning in ISTA does not
increase the computational cost but improves the SNR of the reconstruction signi-
ficantly, as shown in Figure 11.2e. Hence, we end up with a result that is compar-
able in quality to the output of the MAP reconstruction algorithm of Section 10.2 (see
Figure 11.2c). This trend subsists with other images and across imaging modalities.
Combining cycle spinning with FISTA is feasible as well, with the advantage that the
convergence rate of the latter is typically superior to that of the ADMM technique.

While averaging across shifts appears to be essential for making wavelets compet-
itive, we are left with the conceptual problem that the cycle-spun version of ISTA
does not rigorously fit our statistical formulation. It converges to a solution that is
not a strict minimizer of (11.10) but, rather, to some kind of average over a family
of “shifted” wavelet transforms. While this description is largely empirical, there is

2. Cycle spinning is used almost systematically for the wavelet-based reconstructions showcased in
literature. However, the method is rarely accounted for in the accompanying theory.
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Figure 11.2 Results of deconvolution experiment: (a) Blurry and noisy input of the
deconvolution algorithm (BSNR=20dB). (b) Ground truth image (nerve cells). (c) Result of
MAP deconvolution with TV regularization (SNR=15.23 dB) (d) Result of wavelet-based
deconvolution (SNR=12.73dB). (e) Result of wavelet-based deconvolution with cycle spinning
(SNR=15.18dB). (f) Zoomed comparison of results for the region marked in (b).

a theoretical explanation of the phenomenon for the simpler signal-denoising prob-
lem. Specifically, in Section 11.4, we shall demonstrate that cycle spinning necessar-
ily improves denoising performance (see Proposition 11.3) and that it can be seen as
an alternative means of computing the “exact” MAP estimators of Section 10.4.3. In
other words, cycle spinning somehow compensates for the inter-scale dependencies
of wavelet coefficients that were neglected when writing (11.5).

The most favorable aspect of wavelet-domain processing is that it offers direct
control over the reconstruction error, thanks to Parseval’s relation. In particular, it
allows for a more refined design of thresholding functions based on the minimum
mean-square-error (MMSE) principle. This is the reason why we shall now investig-
ate non-iterative strategies for improving simple wavelet-domain denoising.

11.3 Study of wavelet-domain shrinkage estimators

In the remainder of the chapter, we concentrate on the problem of signal denoising
with H = I (identity) or, equivalently, Hwav = W, under the assumption that the trans-
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form matrix W is orthonormal. The latter ensures that any reduction of the quadratic
error achieved in the wavelet domain is automatically transferred to the signal do-
main.

In this particular setting, we can address the important issue of the dependency
between the wavelet-domain thresholding functions and the prior probability model.
Our practical motivation is to improve the standard algorithm by identifying the solu-
tion that minimizes the mean-square estimation error. To specify the underlying
scalar estimation problem, we transpose the measurement equation y = s+n into
the wavelet domain as

z = WT s+WT n = v+n′

⇔ zi [k] = vi [k]+ni [k] (11.18)

where vi and ni are the wavelet coefficients of the noise-free signal s and of the
AWGN n, respectively. Since the wavelet transform is orthonormal, the transformed
noise n′ = WT n remains white, so that ni is Gaussian i.i.d. with variance σ2. Now,
when the wavelet coefficients vi are statistically independent as has been assumed so
far, the denoising can be performed in a separable fashion by considering the wave-
let coefficients individually. The estimation problem is then to recover v from the
noisy coefficient z = v +n where we have dropped the wavelet indices to simplify the
notation. Irrespective of the statistical criterion used (MAP vs. MMSE), the estimator
ṽ(z) will be a function of the (scalar) noisy input z, in agreement with the standard
wavelet-denoising procedure.

Next, we develop the theory associated with the statistical wavelet-based estim-
ators. The prior information is provided by the wavelet-domain pdfs pVi which are
known to be infinitely divisible (see Proposition 8.6). We then make use of those res-
ults to characterize and compare the shrinkage-thresholding functions associated
with the id distributions of Table 4.1.

11.3.1 Pointwise MAP estimators for AWGN

Our baseline is the MAP solution to the denoising problem given by (11.14). For
later reference, we give the scalar formulation of this estimator

vMAP(z) = argmin
v∈R

{
1

2

∣∣z − v
∣∣2 +σ2ΦVi (v)

}

= proxΦVi

(
z;σ2), (11.19)

which involves a scale-specific proximity operator of the type investigated in Section
10.2.3. Explicit formulas and graphs of vMAP(z) for the primary types of probability
models/sparsity patterns are presented in Section 11.3.3.

11.3.2 Pointwise MMSE estimators for AWGN

From a mean-square-error point of view, performing denoising in the wavelet do-
main is equivalent to signal-domain processing since the `2-error is preserved. This
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makes the use of MMSE shrinkage functions highly relevant, even when the wavelet
coefficients are only approximately independent. The MMSE estimator of vi given
the noisy coefficient z is provided by the posterior mean

vMMSE(z) = E{V |Z = z} =
∫

R
v ·pV |Z (v |z) dv (11.20)

where pV |Z (v |z) = pZ |V (z|v)·pVi (v)
pZ (z) by Bayes’ rule. In the present context of AWGN, we

have that pZ |V (z|v) = gσ(z − v) and pZ = gσ ∗ pVi where gσ is a centered Gaussian
distribution with standard deviationσ. Moreover, we can bypass the integration step
in (11.20) by taking advantage of the Miyasawa/Stein formula for the posterior mean
of a random variable corrupted by Gaussian noise [Miy61, Ste81], which states that

vMMSE(z) = z −σ2Φ′
Z (z) (11.21)

where Φ′
Z (z) = − d

dz log pZ (z) = − p ′
Z (z)

pZ (z) . This classical formula, which capitalizes on
special properties of the Gaussian distribution, is established as follows:

σ2p ′
Z (z) =σ2(g ′

σ∗pVi )(z)

=
∫

R
−(z − v)gσ(z − v)pVi (v) dv

=−z
∫

R
gσ(z − v)pVi (v) dv +pZ (z)

∫

R
v

gσ(z − v)pVi (v)

pZ (z)
dv

=−zpZ (z)+pZ (z)vMMSE(z).

This means that we can derive the explicit form of vMMSE(z) for any given pVi via
the evaluation of the Gaussian convolution integrals

pZ (z) = (gσ∗pVi )(z) =F
−1

{
e−

ω2σ2
2 p̂Vi (ω)

}
(z) (11.22)

p ′
Z (z) = (g ′

σ∗pVi )(z) =F
−1

{
jωe−

ω2σ2
2 p̂Vi (ω)

}
(z). (11.23)

These can be calculated either in the time or frequency domain. The frequency-
domain formulation offers more convenience for the majority of id distributions and
is also directly amenable to numerical computation with the help of the FFT. Like-
wise, we use formula (11.21) to infer the general asymptotic behavior of this estim-
ator.

T H E O R E M 11.1 Let z = v +n where v is infinitely divisible with symmetric pdf pV

and n is Gaussian-distributed with variance σ2. Then, the MMSE estimator of v given
z has the linear behavior around the origin given by

vMMSE(z) = z
(
1−σ2Φ′′

Z (0)
)+O(z3) (11.24)

where

Φ′′
Z (0) =

∫
Rω

2e−
ω2σ2

2 p̂Vi (ω) dω
∫
R e−

ω2σ2
2 p̂Vi (ω) dω

> 0. (11.25)
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If, in addition, pVi is unimodal and does not decay faster than an exponential, then

vMMSE(z) ∼ vMAP(z) ∼ z −σ2b′
1 as z →∞,

where b′
1 = limx→∞Φ′

Z (x) = limx→∞Φ′
V (x) ≥ 0.

Proof Since the Gaussian kernel gσ is infinitely differentiable, the same holds true
for pZ = pVi ∗ gσ even if pVi is not necessarily smooth to start with (e.g., it is a com-
pound Poisson or Laplace distribution.) This implies that the second-order Taylor
series ΦZ (z) =− log

(
pZ (z)

)=ΦZ (0)+ 1
2Φ

′′
Z (0)z2 +O(z4) is well-defined, which yields

(11.24). The expression for Φ′′
Z (0) follows from (10.20) with p̂Z (ω) = e−ω

2σ2/2p̂Vi (ω).
We also note that the Fourier-domain moments that appear in (11.25) are positive
and finite because p̂Vi (ω) = e

fφ̃i
(ω) ≥ 0 is tempered by the Gaussian window. Next,

we recall that the Gaussian is part of the family of strongly unimodal functions which
have the remarkable property of preserving the unimodality of the functions they are
convolved with [Sat94, pp. 394-399]. The second part then follows from the fact that
the convolution with gσ, which decays much faster than pVi , does not modify the
decay at the tail of the distribution.

Several remarks are in order.
First, the linear approximation (11.24) is exact in the Gaussian case. It actually

yields the classical linear (LMMSE) estimator

vLMMSE(z) =
σ2

i

σ2
i +σ2

z

where σ2
i is the variance of the signal contribution in the i th wavelet channel. In-

deed, when pVi is a Gaussian distribution, we have thatΦZ (z) = z2

2(σ2
i +σ2)

which, upon

substitution in (11.21), yields the vLMMSE estimator.
Second, by applying Parseval’s relation, we can express the slope of the MMSE es-

timator at the origin as the ratio of time-domain integrals

1−σ2Φ′′
Z (0) = 1−σ2

∫
R
σ2−x2

σ4 e−
x2

2σ2 pVi (x) dx

∫
R e−

x2

2σ2 pVi (x) dx

=
∫
R x2e−

x2

2σ2 pVi (x) dx

σ2
∫
R e−

x2

2σ2 pVi (x) dx
, (11.26)

which may be simpler to evaluate for some id distributions.

11.3.3 Comparison of shrinkage functions: MAP vs. MMSE

In order to gain practical insights and to make the connection with existing meth-
ods, we now investigate solutions that are tied to specific id distributions. We con-
sider the prior models listed in Table 4.1, which cover a broad range of sparsity beha-
viors. The common feature is that these pdfs are symmetric and unimodal with tails
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fatter than a Gaussian. Their practical relevance is that they may be used to fit the
wavelet-domain statistics of real-world signals or to derive corresponding families of
parametric algorithms. Unless stated otherwise, the graphs that follow display series
of comparable estimators with a normalized signal input (SNR0 = 1).

Laplace distribution
The Laplace distribution with parameter λ is defined as

pLaplace(x;λ) = 1

2
λe−λ|x|.

Its variance is given byσ2
0 = 2

λ2 . The Lévy exponent is fLaplace(ω;λ) = log p̂Laplace(ω;λ) =
log( λ2

λ2+ω2 ), which is p-admissible with p = 2. The Laplacian potential is

ΦLaplace(x;λ) =λ|x|− log(λ/2).

Since the second term of ΦLaplace does not depend on x, this translates into a MAP
estimator that minimizes the `1-norm in the corresponding wavelet channel. It is
well-known that the solution of this optimization problem yields the soft-threshold
estimator (see [Tib96, CDLL98, ML99])

vMAP(z;λ) =





z −λ, z >λ
0, z ∈ [−λ,λ]
z +λ, z <λ.

By applying the time-domain versions of (11.22) and (11.23), one can also derive the
analytical form of the corresponding MMSE estimator in AWGN. For reference pur-
poses, we give its normalized version with σ2 = 1 as

vMMSE(z;λ) = z −
λ

(
erf

(
z−λp

2

)
−e2λz erfc

(
λ+zp

2

)
+1

)

erf
(

z−λp
2

)
+e2λz erfc

(
λ+zp

2

)
+1

where erfc(t ) = 1−erf(t ) denotes the complementary (Gaussian) error function, which
is a result that can be traced back to [HY00, Proposition 1]. A comparison of the es-
timators for the Laplace distribution with λ = 2 and unit noise variance is given in
Figure 11.3b. While the graph of the MMSE estimator has a smoother appearance
than that of the soft-thresholding function, it does also exhibit two distinct regimes
that are well represented by first-order polynomials: behavior around the origin vs.
behavior at ±∞. However, the transition between the two regimes is much more
progressive in the MMSE case. Asymptotically, the MAP and MMSE estimators are
equivalent, as predicted by Theorem 11.1. The key difference occurs around the
origin where the MMSE estimator is linear (in accordance with Theorem 11.1) and
quite distinct from a thresholding function. This means that the MMSE estimator
will never annihilate a wavelet coefficient, which somewhat contradicts the predom-
inant paradigm for recovering sparse signal.
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Figure 11.3 Comparison of potential functionsΦ(z) and pointwise estimators v(z) for
signals with matched Laplace and sech distributions corrupted by AWGN with σ= 1: (a)
Laplace (dashed) and sech (solid line) potentials. (b) Laplace MAP estimator (dark), MMSE
(light) estimator and its first-order equivalent (dot-dashed line) for λ= 2. (c) Sech MAP (dark)
and MMSE (light) estimators for σ0 =π/4.

Hyperbolic-secant distribution
The hyperbolic secant (reciprocal of the hyperbolic cosine) is a classical example

of id distribution [Fel71]. It seems to us as interesting a candidate for regularization
as the Laplace distribution. Its generic version with standard deviationσ0 is given by

psech(x;σ0) =
sech

(
πx

2σ0

)

2σ0
= 1

σ0

(
e
− πx

2σ0 +e
πx

2σ0

) .

Remarkably, its characteristic function is part of the same class of distributions with

p̂sech(ω;σ0) = sech(ωσ0) .

The hyperbolic-secant potential function is

Φsech(x;σ0) =− log psech(x;σ0) = log(e
− πx

2σ0 +e
πx

2σ0 )+ logσ0,

which is convex and increasing for x ≥ 0. Indeed, the second derivative of the poten-
tial function is

Φ′′
sech(x) = π2

4σ0
sech2

(
πx

2σ0

)
,
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Figure 11.4 Examples of pointwise MMSE estimators vMMSE(z) for signals corrupted by
AWGN with σ= 1 and the fixed SNR = 1. (a) Student priors with r = 2,4,8,16,32,+∞ (dark to
light). (b) Compound Poisson priors with λi = 1/8,1/4,1/2,1,2,4,∞ (dark to light) and
Gaussian amplitude distribution.

which is positive. Note that, for large absolute values of x, Φsech(x) ∼ π
2σ0

|x|+ logσ0,
suggesting that it is essentially equivalent to the `1-type Laplace potential (see Fig-
ure 11.3a). However, unlike the latter, it is infinitely differentiable everywhere with a
quadratic behavior around the origin.

The corresponding MAP and MMSE estimators with a parameter value that is mat-
ched to the Laplace example are shown in Figure 11.3c. An interesting observation
is that the sech MAP thresholding functions are very similar to the MMSE Laplacian
ones over the whole range of values. This would suggest using hyperbolic-secant-
penalized least-squares regression as a practical substitute for the MMSE Laplace
solution.

Symmetric Student family
We define the symmetric Student distribution with standard deviation σ0 and al-

gebraic decay parameter r > 1 as

pStudent(x;r,σ0) = Ar,σ0

(
1

Cr,σ0 +x2

)r+ 1
2

(11.27)

with Cr,σ0 = σ2
0(2r −2) > 0 and normalizing constant Ar,σ0 = (Cr,σ0 )r

B(r, 1
2 )

where B(r, 1
2 ) is

the beta function (see Appendix C.2). Despite the widespread use of this distribution
in statistics, it took until the late 1970s to establish its infinite divisibility [SVH03].
The interest for signal processing is that the Student model offers a fine control of
the behavior of the tail, which conditions the level of sparsity of signals. The Student
potential is logarithmic

ΦStudent(x;r,σ0) = a0 +
(
r + 1

2

)
log

(
Cr,σ0 +x2) (11.28)

with a0 = log Ar,σ0 .
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The Student MAP estimator is specified by a third-order polynomial equation that
can be solved explicitly. This results in the thresholding functions shown in Figure
10.1b. We have also observed experimentally that the Student MAP and MMSE estim-
ators are rather close to each other with linear trends around the origin that become
indistinguishable as r increases; this can be verified by comparing Figure 10.1b and
Figure 11.4a. This finding is also consistent with the distributions becoming more
Gaussian-like for larger r .

Note that Definition (11.27) remains valid in the super-sparse regimes with r ∈
(0,1], provided that the normalization constant C > 0 is no longer tied to r and σ0.
The catch is that the variance of the signal is unbounded for r ≤ 1 which tends to flat-
ten the shrinkage function around the origin, but maintains continuity sinceΦStudent

is infinitely differentiable.

Compound Poisson family
We have already mentioned that the Poisson case results in pdfs that exhibit a

Dirac distribution at the origin and are therefore unsuitable for MAP estimation.
A compound Poisson variable is typically generated by integration of a random se-
quence of Dirac impulses with some amplitude distribution p A and a density para-
meter λ corresponding to the average number of impulses within the integration
window. The generic form of a compound Poisson pdf is given by (4.9). It can be
written as pPoisson(x) = e−λδ(x)+ (1− e−λ)p A,λ(x) where the pdf p A,λ describes de-
scribes the distribution of the non-zero values.

The determination of the MMSE estimator from (11.21) requires the computation
of Φ′

Z (z) =−p ′
Z (z)/pZ (z). The most convenient approach is to evaluate the required

factors using the right-hand-side expressions in (11.22) and (11.23) where p̂Vi is spe-
cified by its Poisson parameters as in Table 4.1. This leads to

p̂Vi (ω) = exp
(
λi (p̂ Ai (ω)−1)

)
,

where λi ∈ R+ and p̂ Ai : R→ C are the Poisson rate and the characteristic function
of the Poisson amplitude distribution at resolution i , respectively. Moreover, due to
the multiscale structure of the analysis, the wavelet-domain Poisson parameters are
related to each other by

λi =λ02i d

p̂ Ai (ω) = p̂ A0

(
2i (γ−d/2)ω

)
,

which follows directly from (11.7). The first formula highlights the fact that the sparse-
ness of the wavelet distributions, as measured by the proportion e−λi of zero coeffi-
cients, decreases substantially as the scale gets coarser. Also note that the strength of
this effect increases with the number of dimensions.

Some examples of MMSE thresholding functions corresponding to a sequence of
compound Poisson signals with Gaussian amplitude distributions are shown in Fig-
ure 11.4b. Not too surprisingly, the smallerλ (dark curve), the stronger the threshold-
ing behavior at the origin. In that experiment, we have considered a wavelet-like pro-
gression of the rate parameter λ, while keeping the signal-to-noise ratio constant to
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Wavelet-domain progression: Gaussian + Sym-Gamma MAP_MMSE  (SNR_0=1)Figure 11.5 Sequence of wavelet-domain estimators vi (z) for a Laplace-type Lévy process
corrupted by AWGN with σ= 1 and wavelet resolutions i = 0 (dark) to 4 (light). (a) LMMSE (or
Brownian-motion MMSE) estimators. (b) Sym-gamma MAP estimators. (c) Sym-gamma
MMSE estimators. The reference (fine-scale) parameters are σ2

0 = 1 (SNR0 = 1) and r0 = 1
(Laplace distribution). The scale progression is dyadic.

facilitate the comparison. For larger values ofλ (light), the estimator converges to the
LMSE solution (thin black line), which is consistent with the fact that the distribution
becomes more and more Gaussian-like.

Evolution of the estimators across wavelet scales
The increase ofλi in Figure 11.4b is consistent with the one predicted for a wavelet-

domain analysis. Nonetheless, this graph does only account for part of the story
because we enforced a constant signal-to-noise-ratio. In a realistic wavelet-domain
scenario, another effect that predominates as the scale gets coarser must also be ac-
counted for: the amplification of the quadratic signal-to-noise ratio that follows from
(9.23) and that results in

SNRi =
Var(Zi )

σ2 = (
22γ)i

SNR0,

where γ is the scaling order of the stochastic process. Consequently, the potential
function Φ is dilated by bi = (2γ−d/2)i . The net effect is to make the estimators more
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identity-like as i increases, both around the origin and at infinity because of the cor-
responding decrease of the magnitude of Φ′′(0) and limx→∞Φ′(x), respectively. This
progressive convergence to the identity map is easiest to describe for a Gaussian sig-
nal where the sequence of estimators is linear—this is illustrated in Figure 11.5a for
γ= 1 and d = 1 (Brownian motion) so that b1 = 21/2.

In the non-Gaussian case, the sequence of wavelet-domain estimators will be part
of some specific family that is completely determined by pV0 , the wavelet pdf at scale
0, as described in Section 11.1.2. When the variance of the signal is finite, the implic-
ation of the underlying semigroup structure and iterated convolution relations is that
the MAP and MMSE estimators both converge to the Gaussian solution (LMMSE es-
timator) as the scale gets coarser (light curves). Thus, the global picture remains very
similar to the Gaussian one, as illustrated in Figure 11.5b-c. Clearly, the most signi-
ficant nonlinearities can be found at the finer scale (dark curves) where the sparsity
effect is prominent.

The example shown (wavelet analysis of a Lévy process in a Haar basis) was setup
such that the fine-level MAP estimator is a soft-threshold. As discussed next, the
wavelet-domain estimators are all part of the sym-gamma family, which is the semig-
roup extension of the Laplace distribution. An interesting observation is that the
thresholding behavior fades with a coarsening of the scale. Again, this points to the
fact that the non-Gaussian effects (nonlinearities) are the most significant at the finer
levels of the wavelet analysis where the signal-to-noise ratio is also the least favor-
able.

Symmetric gamma and Meixner distributions
Several authors have proposed to represent wavelet statistics using Bessel K-forms

[SLG02, FB05]. The Bessel K-forms are in fact equivalent to the symmetric gamma
distributions specified by Table 4.1. Here, we would like to emphasize a further theor-
etical advantage: the semigroup structure of this family ensures compatibility across
wavelet scales, provided that one properly links the distribution parameters.

The symmetric gamma distribution with bandwidth λ and order parameter r is
best specified in terms of its characteristic function

p̂gamma(ω;λ,r ) =
(

λ2

λ2 +ω2

)r

.

The inverse Fourier transform of this expression yields a Bessel function of the second
kind (a.k.a. Bessel K-form), as discussed in Appendix C. The variance of the distribu-
tion is 2r /λ2. We also note that pgamma(x;λ,1) is equivalent to the Laplace pdf and
that pgamma(x;λ,r ) is the r -fold convolution of the former (semigroup property). In
the case of a dyadic wavelet analysis, we invoke (11.7) to show that the evolution of
the sym gamma parameters across scales is given by

λi =
λ0(

2γ−d/2
)i

ri = r0
(
2d )i
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Figure 11.6 Comparison of MAP and MMSE estimators v(z) for a series of Sym-gamma and
Meixner-distributed random variables with r = 1/4,1,4,64,+∞ (dark to light) corrupted by
white Gaussian noise of the same power as the signal (SNR=1). (a) Sym-gamma MAP
estimators. (b) Meixner MAP estimators. (c) Sym-gamma MMSE estimators. (d) Meixner
MMSE estimators.

where (λ0,r0) are the parameters at resolution i = 0. These relations underly the
generation of the graphs in Figure 11.5b-c with γ= 1, d = 1, λ0 =

p
2, and r0 = 1.

Some further examples of sym-gamma MAP and MMSE estimators over a range of
orders are shown in Figure 11.6 under constant signal-to-noise ratio to highlight the
differences in sparsity behavior. We observe that the MAP estimators have a hard-
to-soft-threshold behavior for r < 3/2, which is consistent with the discontinuity of
the potential at the origin. For larger values of r , the trend becomes more linear. By
contrast, the MMSE estimator is much closer to the LMMSE (thin black line) around
the origin. For larger signal values, both estimators result into a more-or-less pro-
gressive transition between the two extreme lines of the cone (Identity and LMMSE)
that is controlled by r —the smaller values of r correspond to the sparser scenarios
with vMMSE being closer to identity.

The Meixner family in Table 4.1 with order r > 0 and scale parameter s0 ∈ R+

provides the same type of extension for the hyperbolic secant distribution with es-
sentially the same functionality. Mathematically, it is closely linked to the gamma
function whose relevant properties are summarized in Appendix C. As shown in Table
10.1, the Meixner potential has the same asymptotic behavior as the sym-gamma po-
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Figure 11.7 Comparison of pointwise wavelet-domain estimators v(z) with
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p
2,16} (dark to light) for a Cauchy-Lévy process corrupted by AWGN with

σ= 1. (a) Cauchy MAP estimators. (b) Cauchy MMSE estimators.

tential at infinity, with the advantage of it being much smoother (infinitely differenti-
able) at the origin. This implies that the curves of the gamma and Meixner estimators
are globally quite similar. The main difference is that the Meixner MAP estimator is
guaranteed to be linear around the origin, irrespective of the value of r , and in better
agreement with the MMSE solution than its gamma counterpart.

Cauchy distribution
The prototypical example of a heavy-tail distribution is the symmetric Cauchy dis-

tribution with dispersion parameter s0, which is given by

pCauchy(x; s0) = s0

π
(
s2

0 +x2
) . (11.29)

It is a special case of a SαS distribution (with α = 1) as well as a symmetric Student
with r = 1

2 .
Since the Cauchy distribution is stable, we can invoke Proposition 9.8, which en-

sures that the wavelet coefficients of a Cauchy process are Cauchy-distributed, too.
For illustration purposes, we consider the analysis of a stable Lévy process (a.k.a.
Lévy flight) in an orthonormal Haar wavelet basis withψ= D∗φwhereφ is a triangu-
lar smoothing kernel. The corresponding wavelet-domain Cauchy parameters may
be determined from (9.27) with γ= 1, d = 1, and α= 1, which yields si = s0(2

p
2)i .

While the variance of the Cauchy distribution is unbounded, an analytical char-
acterization of the corresponding MAP estimator can be obtained by solving a cubic
equation. The MMSE solution is then described by a cumbersome formula that in-
volves exponentials and the error function erf. In particular, we can evaluate (11.24)
to linearize its behavior around the origin as

vMMSE(zi ; si ) = zi


1−σ2




√
2
πe−

s2
i
2 s

erfc
(

sip
2

) − s2
i −1





+O(z3

i ). (11.30)
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The corresponding MAP and MMSE shrinkage functions with s0 = 1
4 and resolution

levels i = 0, . . . ,4 are shown in Figure 11.7. The difference between both types of es-
timators is striking around the origin and is much more dramatic at finer scales (i = 0
(dark) and i = 1). As expected, all estimators converge to the identity map for large
input values due to the slow (algebraic) decay of the Cauchy distribution. We observe
that the effect of processing (deviation from identity) becomes less-and-less signific-
ant at coarser scales (light curves). This is consistent with the relative increase of
the signal contribution while the power of the noise remains constant across wavelet
channels.

11.3.4 Conclusion on simple wavelet-domain shrinkage estimators

The general conclusions that can be drawn from the present statistical analysis are
as follows:

The thresholding functions should be tuned to the wavelet-domain statistics, which
necessarily involve infinitely divisible distributions. In particular, this excludes the
generalized Gaussian models with 1 < p < 2 which have been invoked in the past
to justify `p -minimization algorithms. The specification of wavelet-domain es-
timators can be carried out explicitly—at least, numerically—for the primary fam-
ilies of sparse processes characterized by their Lévy exponent f (ω) and scaling
order γ.

Pointwise MAP and MMSE estimators can differ quite substantially, especially for
small input values. The MAP estimator sometimes acts as a soft-threshold, set-
ting small wavelet coefficients to zero, while the MMSE solution is always linear
around the origin where it essentially replicates the traditional Wiener solution.
On the other hand, the two estimators are indistinguishable for large input val-
ues: they exhibit a shrinkage behavior with an offset that depends on the decay
(exponential vs. algebraic) of the canonical id distribution.

Wavelet-domain shrinkage functions must be adapted to the scale. In particu-
lar, the present statistical formulation does not support the use of a single, uni-
versal denoising function—such as the fixed soft-threshold dictated by a global
`1-minimization argument—that could be applied to all coefficients in a non-
discriminative manner.

Two effects come into play as the scale gets coarser. The first is a progressive in-
crease of the signal-to-noise ratio which results in a shrinkage function that be-
comes more-and-more identity-like. This justifies the heuristic strategy to leave
the coarser-scale coefficients untouched. The second is a Gaussianization of the
wavelet-domain statistics (under the finite-variance hypothesis) due to the sum-
mation of a large number of random components (generalized version of the cent-
ral limit theorem.) Concretely, this means that the estimator ought to progress-
ively switch to a linear regime when the scale gets coarser, which is not what is
currently done in practice.

The present analysis did not take into account the statistical dependencies of wave-



11.4 Improved denoising by consistent cycle spinning 313

let coefficients across scales. While these dependencies affect neither the per-
formance of pointwise estimators nor the present conclusions, their existence clear-
ly suggests that the basic application of wavelet-domain shrinkage functions is
suboptimal. A possible refinement is to specify higher-order estimators (e.g., bivari-
ate shrinkage functions.) Such designs could benefit from a tree-like structure
where each wavelet coefficient is statistically linked to its parents. The other al-
ternative is the algorithmic solution described next, which constitutes a promising
mechanism for turning a suboptimal solution into an optimal one.

11.4 Improved denoising by consistent cycle spinning

A powerful strategy for improving the performance of the basic wavelet-based de-
noisers described in Section 11.3 is through the use of an overcomplete representa-
tion. Here, we formalize the idea of cycle spinning by expanding the signal in a wave-
let frame. In essence, this is equivalent to considering a series of “shifted” orthogonal
wavelet transforms in parallel. The denoising task thereby reduces to finding a con-
sensus solution. We show that this can be done either through simple averaging or by
constructing a solution that is globally consistent by way of an iterative refinement
procedure.

To demonstrate the concept and the virtues of an optimized design, we concen-
trate on the model-based scenario of Section 10.4. The first important ingredient is
the proper choice of basis functions which is discussed in Section 11.4.1. Then, in
Section 11.4.2, we switch to a redundant representation (tight wavelet frame) with
a demonstration of its benefits for noise reduction. In Section 11.4.3, we introduce
the idea of consistent cycle spinning which results in an iterative variant of the basic
denoising algorithm. The impact of each of these refinements, including the use of
the MMSE shrinkage functions of Section 11.3, is evaluated experimentally in Sec-
tion 11.4.4. The final outcome is an optimized wavelet-based algorithm that is able
to replicate the MMSE results of Chapter 10.

11.4.1 First-order wavelets: Design and implementation

In line with the results of Sections 8.5 and 10.4, we focus on the first-order (or
Markov) processes, which lend themselves to an analytical treatment. The under-
lying statistical model is characterized by the first-order whitening operator L = D−
α1Id withα1 ∈R and the Lévy exponent f of the innovation. We then apply the design
procedure of Section 6.5 to determine the operator-like wavelet at resolution level
i = 1, which is given byψα1,1(t ) = L∗ϕint(t −1) where L∗ =−D−α1Id. Here,ϕint is the
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(a) B-splines at fine level

(b) B-splines at coarse level (d) Operator-like wavelets

(c) Smoothing kernels
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Figure 11.8 Operator-like wavelets and exponential B-splines for the first-order operator
L = D−α1Id with α1 = 0 (light) and α1 =−1 (dark). (a) Fine-level exponential B-splines
βα1,0(t ). (b) Coarse-level exponential B-splines βα1,1(t ). (c) Wavelet smoothing kernels
ϕint(t −1). (d) Operator-like wavelets ψα1,1(t ) = L∗ϕint(t −1).

unique interpolant in the space of cardinal L∗L-spline, which is calculated as

ϕint(t ) = 1

(β∨
α1

∗βα1

)
(0)

(
β∨
α1

∗βα1

)
(t )

=





e−α1 |t |−e2α1+α1 |t |
1−e2α1

, for t ∈ [−1,1] and α1 6= 0

1−|t |, for t ∈ [−1,1] and α1 = 0
0, otherwise.

where βα1 is the first-order exponential spline defined by (6.21).
Examples of the functionsβα1 ∝βα1,0 (B-spline),ϕint =φ (wavelet smoothing ker-

nel), and ψα1,1 (operator-like wavelet) are shown in Figure 11.8. The B-spline βα1,1

in Figure 11.8(b) is an extrapolated version of βα1 ; it generates the coarser-resolution
space V1 = span{βα1,1(·−2k)}k∈Z which is such that V0 = span{βα1 (·−k)}k∈Z =V1+W1

with W1 = span{ψα1,1(·−2k)}k∈Z and W1 ⊥V1. A key property of the first-order model
is that these basis functions are orthogonal and non-overlapping, as a result of the
construction (B-spline of unit support).

The fundamental ingredient for the implementation of the wavelet transform is
that the scaling function (exponential B-splines) and wavelets at resolution i satisfy
the two-scale relation

[
βα1,i (t −2i k)
ψα1,i (t −2i k)

]
∝

[
1 e2iα1

−e2iα1 1

]
·
[
βα1,i−1(t −2i k)
βα1,i−1(t −2i k −2i−1)

]
(11.31)

which involves two filters of length 2 (row vectors of the (2 × 2) transition matrix)
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since the underlying B-splines and wavelets are non-overlapping for distinct values
of k. In particular, for i = 1 and k = 0, we get that βα1,1(t ) ∝βα1 (t )+a1βα1 (t −1) and
ψα1,1(t ) ∝−a1βα1 (t )+βα1 (t −1) with a1 = eα1 . These relations can be visualized in
Figures 11.8(b) and 11.8(d), respectively. Also, for α1 = 0, we recover the Haar system
for which the underlying filters h and g (sum and difference with e2iα1 = 1 = a1) do
not depend upon the scale i (see (6.6) and (6.7) in Section 6.1). Finally, we note that
the proportionality factor in (11.31) is set by renormalizing the basis functions on
both sides such that their norm is unity, which results in an orthonormal transform.

The corresponding fast wavelet-transform algorithm is derived by assuming that
the fine-scale expansion of the input signal is s(t ) =∑

k∈Z s[k]βα1,0(t −k). To specify
the first iteration of the algorithm, we observe that the support ofψα1,1(·−2k)

(
resp.,

βα1,1(· − 2k)
)

overlaps with the fine-scale B-splines at locations 2k and 2k + 1 only.
Due to the orthonormality of the underlying basis functions, this results into

[
s1[k]
v1[k]

]
=

[
〈s,βα1,1(·−2k)〉
〈s,ψα1,1(·−2k)〉

]

= 1√
1+|eα1 |2

[
1 eα1

−eα1 1

]
·
[

s[2k]
s[2k +1]

]
(11.32)

which is consistent with (11.31) and i = 1. The reconstruction algorithm is obtained
by straightforward matrix inversion

[
s[2k]
s[2k +1]

]
= 1√

1+|eα1 |2

[
1 −eα1

eα1 1

]
·
[

s1[k]
v1[k]

]
. (11.33)

The final key observation is that the computation of the first level of wavelet coef-
ficients is analogous to the determination of the discrete increment process u[k] =
s[k]−a1s[k−1] (see Section 8.5.1) in the sense that v1[k] ∝ u[2k+1] is a subsampled
version of the latter.

11.4.2 From wavelet bases to tight wavelet frames

From now on, we shall pool the computed wavelet and approximation coefficients
of a signal s ∈ RN in the wavelet vector v and formally represent the decomposi-
tion/reconstruction process

(
Equations (11.32) and (11.33)

)
by their vector-matrix

counterparts v = WT s and s = Wv, respectively. Moreover, since the choice of the ori-
gin of the signal is arbitrary, we shall consider a series of “m-shifted” versions of the
wavelet transform matrix Wm = Zm W where Z (resp., Zm) is the unitary matrix that
circularly shifts the samples of the vector to which is applied by one (resp., by m) to
the left. With this convention, the solution to the denoising problem (11.13) in the
orthogonal basis Wm is given by

ṽm = argmin
v

{
1

2
‖v−WT

m y‖2
2 +τΦ(v)

}

= proxΦ
(
WT

m y;τ
)
, (11.34)
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which amounts to a component-wise shrinkage of the wavelet coefficients. For ref-
erence, we also give the equivalent signal-domain (or analysis) formulation of the
algorithm

s̃m = argmin
s

{
1

2
‖s−y‖2

2 +τΦ(WT
m s)

}

= WmproxΦ
(
WT

m y,τ
)
. (11.35)

Next, instead of a single orthogonal wavelet transform, we shall consider a wavelet
frame expansion which is build from the concatenation of M shifted orthonormal
transforms. The corresponding (M N ×N ) transformation matrix is denoted by

A =




WT
1

...
WT

M


 (11.36)

while the augmented wavelet vector is

z = As =




v1
...

vM




where vm = WT
m s.

P R O P O S I T I O N 11.2 The transformation matrix A :RN →RM N , which is formed from
the concatenation of M orthonormal matrices Wm as in (11.36), defines a tight frame
of RN in the sense that

‖Ax‖2 = M‖x‖2

for all x ∈RN . Moreover, its pseudo-inverse A† :RM N →RN is given by

A† = 1
M

[
W1 · · · WM

]= 1
M AT

with the property that

arg min
x∈RN

{‖z−Ax‖2}= A†z

for all z ∈RM N and A†A = I.

Proof The frame expansion of x is z = Ax = (v1, . . . ,vM ). The energy preservation
then follows from

‖z‖2
2 =

M∑
m=1

‖vm‖2
2 =

M∑
m=1

‖WT
m x‖2

2 = M ‖x‖2
2

where the equality on the right-hand side results from the application of Parseval’s
identity for each individual basis. Next, we express the quadratic error between an
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arbitrary vector z = (z1, . . . ,zM ) ∈RM N and its approximation by Ax as

‖z−Ax‖2 =
M∑

m=1
‖zm −WT

m x‖2

=
M∑

m=1
‖Wm zm −x‖2. (by Parseval)

This error is minimized by setting its gradient with respect to x to zero; that is,

∂

∂x
‖z−Ax‖2 =−

M∑
m=1

(Wm zm −x) = 0,

which yields

xLS =
1

M

M∑
m=1

Wm zm = A†z.

Finally, we check the left-inverse property

A†A = 1

M

M∑
m=1

Wm WT
m = I,

which follows from the orthonormality of the matrices Wm .

In practice, when the wavelet expansion is performed over I resolution levels, the
number of distinct shifted wavelet transforms is at most M = 2I . In direct analogy
with (11.13), the transposition of the wavelet-denoising problem to the context of
wavelet frames is then

z̃ = argmin
z

{
1
2‖ A†z︸︷︷︸

s

−y‖2
2 + τ

MΦ(z)

}
(11.37)

= argmin
z

{ 1
2‖z−Ay‖2

2 +τΦ(z)
}

(due to the tight-frame property)

= proxΦ
(
Ay;τ

)= (ṽ1, . . . , ṽM ),

which simply amounts to performing M basic wavelet-denoising operations in par-
allel since the cost function is separable. We refer to (11.37) as the synthesis-with-
cycle-spinning formulation of the wavelet-denoising problem. The corresponding
signal reconstruction is given by

s̃ = A†z̃ = 1

M

M∑
m=1

s̃m (11.38)

which is the average of the solutions (11.34) obtained with each individual wavelet
basis.

A remarkable property is that the cycle-spun version of wavelet denoising is guar-
anteed to improve upon the non-redundant version of the algorithm.

P R O P O S I T I O N 11.3 Let y = s+n be the samples of a signal s corrupted by zero-mean
i.i.d. noise n and s̃m the corresponding signal estimates given by the wavelet-based
denoising algorithm (11.35) with m = 1, . . . , M. Then, under the assumption that the
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mean-square errors of the individual wavelet denoisers are equivalent, the averaged
signal estimate (11.38) satisfies

E{‖s̃−s‖2} ≤ E{‖s̃m −s‖2}

for any m = 1, . . . , M.

Proof The residual noise in the orthonormal wavelet basis Wm is (ṽm−E{vm}) where
ṽm = WT

m s̃m and E{vm} = WT
m E{y} = WT

m s because of the assumption of zero-mean
noise. This allows us to express the total noise power over the M wavelet bases as

‖z̃−As‖2 =
M∑

m=1
‖ṽm −E{vm}‖2.

The favorable aspect of considering a redundant representation is that the inverse
frame operator A† is an orthogonal projector onto the signal space RN with the prop-
erty that

‖A†w‖2 ≤ 1
M ‖w‖2

for all w ∈ RM N . This follows from the Pythagorean relation ‖w‖2 = ‖AA†w‖2 +‖(I−
AA†)w‖2 (projection theorem) and the tight-frame property which is equivalent to
‖AA†w‖2 = M‖A†w‖2. By applying this result to w = z̃−As, we obtain

‖A†(z̃−As)‖2 = ‖s̃−s‖2 ≤ 1

M

M∑
m=1

‖ṽm −E{vm}‖2. (11.39)

Next, we take the statistical expectation of (11.39) which yields

E{‖s̃−s‖2} ≤ 1

M

M∑
m=1

E
{‖ṽm −WT

m s‖2} . (11.40)

The final result then follows from Parseval’s relation (norm preservation of individual
wavelet transforms) and the weak stationarity hypothesis (MSE equivalence of shifted-
wavelet denoisers).

Note that this general result does not depend on the type of wavelet-domain proc-
essing—MAP vs. MMSE, or even, scalar vs. vectorial—as long as the nonlinear map-
ping ṽm = f(vm) is fixed and applied in a consistent fashion. The inequality in Propos-
ition 11.3 also suggests that one can push the denoising performance further by op-
timizing the MSE globally in the signal domain which is not the same as minimizing
the error for each individual wavelet denoiser. The only downside of the redundant
synthesis formulation (11.37) is that the underlying cost function looses its statist-
ical interpretation (e.g., MAP criterion) because of the inherent coupling that results
from considering multiple series of wavelet coefficients. The fundamental limitation
there is that it is impossible to specify a proper innovation model in an overcomplete
system.
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11.4.3 Iterative MAP denoising

The alternative way of making use of wavelet frames is the dual analysis formula-
tion of the denoising problem

s̃ = argmin
s

{ 1
2‖s−y‖2

2 + τ
MΦ(As)

}
. (11.41)

The advantage there is that the cost function is compatible with the statistical innov-
ation based formulation of Section 10.4.3 provided that the weights and components
of the potential function are properly chosen. In light of the comment at the end of
Section 11.4.1, the equivalence with MAP estimation is exact if we perform a single
level of wavelet decomposition with M = 2 and if we do not apply any penalty to
the lowpass coefficients s1. Yet, the price to pay is that we are now facing a harder
optimization problem.

The difficulty stems from the fact that we do no longer benefit from Parseval’s
norm equivalence between the signal and wavelet domains. A workaround is to re-
instate the equivalence by imposing that the wavelet-frame expansion be consistent
with the signal. This leads to the reformulation of (11.41) in synthesis form as

z̃ = argmin
z

{
1

2
‖z−Ay‖2

2 +τΦ(z)

}
s.t. AA†z = z (11.42)

which is the consistent cycle-spinning version of denoising. Rather than attempting
to solve the constrained optimization problem (11.42) directly, we shall exploit the
link with conventional wavelet shrinkage. To that end, we introduce the augmented
Lagrangian penalty function

LA (z,x,λ;µ) = 1
2‖z−Ay‖2

2 +τΦ(z)+ µ
2 ‖z−Ax‖2

2 −λT (z−Ax) (11.43)

with penalty parameter µ ∈ R+ and Lagrangian multiplier vector λ ∈ RM N . Observe
that the minimization of (11.43) over (z,x,λ) is equivalent to solving (11.42). Indeed,
the consistency condition z = Ax asserted by (11.43) is equivalent to AA†z = z, while
the auxiliary variable x = A†z is the sought-after signal.

The standard strategy in the augmented-Lagrangian method of multipliers is to
solve the problem iteratively by first minimizing LA (z,x,λ;µ) with respect to (z,x)
while keeping µ fixed and updatingλ according to the rule

λk+1 =λk −µ(zk+1 −Axk+1).

Here, the task is simplified by applying the alternating-direction method of multipli-
ers; that is, by first minimizing LA (z,x,λ;µ) with respect to z with x fixed and then
the other way around. The link with conventional wavelet denoising is obtained by
rewriting (11.43) as

LA (z,x,λ;µ) = 1+µ
2 ‖z− z̃‖2

2 +τΦ(z)+C0(x,λ;µ)

where

z̃ = 1
1+µ

(
Ay+µAx+λ)

and C0 is a term that does not depend on z. Since the underlying cost function is
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separable, the solution of the minimization of LA with respect to z is obtained by
suitable shrinkage of z̃, leading to

zk+1 = proxΦ
(
z̃k+1; τ

1+µ
)

(11.44)

and involving the same kind of pointwise nonlinearity as Algorithm (11.34). The con-
verse task of optimizing LA over x with z = zk+1 fixed is a quadratic problem. The
required partial derivatives are obtained as

∂LA (z,x,λ;µ)

∂x
=−µAT (z−Ax)−ATλ.

This leads to the closed-form solution

xk+1 = A†zk+1 − 1

µ
A†λk ,

where we have taken advantage of the tight-frame/pseudo-inverse property A†A = I
with A† = 1

M AT .

The complete CCS (consistent cycle spinning) denoising procedure is summarized
in Algorithm 3. It is an iterative variant of wavelet shrinkage where the threshold-

Algorithm 3: CCS denoising solves Problem (11.41) where A is a tight-frame mat-
rix

input: y,s0 ∈RN ,τ,µ ∈R+

set: k = 0,λ0 = 0,u = Ay;
repeat

zk+1 = proxΦ
( 1

1+µ
(
u+µAsk +λk

)
; τ

1+µ
)

sk+1 = A†
(
zk+1 − 1

µλ
k
)

λk+1 =λk −µ(
zk+1 −Ask+1

)

k = k +1
until stopping criterion
return s = sk

ing function is determined by the statistics of the signal and applied in a consensus
fashion. Its cost per iteration is O(N ×M) operations which is essentially that of the
fast wavelet transform. This makes the method very fast. Since every step is the out-
come of an exact minimization, the cost function decreases monotonically until the
algorithm reaches a fixed point. The convergence to a global optimum is guaranteed
when the potential functionΦ is convex.

One may also observe that the CCS denoising algorithm is similar to the MAP es-
timation method of Section 10.2.4 since both rely on ADMM. Besides the fact that
the latter can handle an arbitrary system matrix H, the crucial difference is in the
choice of the auxiliary variable u = Ls (discrete innovation) vs. z = As (redundant
wavelet transform). While the two representations have a significant intersection,
the tight wavelet frame has the advantage of resulting in a better conditioned prob-
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lem (because of the norm-preservation property) and hence a faster convergence to
the solution.

11.4.4 Iterative MMSE denoising

CCS denoising constitutes an attractive alternative to the more traditional iterat-
ive MAP estimators described in Chapter 10. The scheme is appealing conceptually
because it bridges the gap between finite-difference and wavelet-based schemes.

The fact that the algorithm cycles through a series of orthogonal wavelet represent-
ations facilitates the Bayesian interpretation of the procedure. Fundamentally, there
are two complementary mechanisms at play: the first is a wavelet-domain shrinkage
whose first iteration is identical to the direct wavelet-denoising methods investigated
in Section 11.3. The second is the cycling through the “shifted” transforms which res-
ults in the progressive refinement of the solution. Clearly, it is the search for a signal
that is globally consistent that constitutes the major improvement upon simple av-
eraging. The natural idea that we shall test now is to substitute the proximal operator
proxΦ by the optimal MMSE shrinkage function dictated by the theory of Section
11.3.2. This change essentially comes for free—the mere substitution in a lookup
table of proxΦ(z,τ) = vMAP(z;σ) by vMMSE(z;σ) as defined by (11.20)—but it has a
tremendous effect on performance, to the point that the algorithm reaches the best
level achievable. While there is not yet a proof that the proposed sheme converges to
the true MMSE solution, we shall document the behavior experimentally.

In order to compare the various wavelet-based denoising techniques, we have ap-
plied them to the same series of Lévy processes as in Section 10.4.3: Brownian mo-
tion, Laplace motion, compound Poisson process with a standard Gaussian distribu-
tion and λ = 0.6, and Lévy flight with Cauchy-distributed increments. Each realiza-
tion of the signal of length N = 100 is corrupted by AWGN of variance σ2. The signal
is then expanded in a Haar basis and denoised using the following algorithms:

Soft-thresholding (Φ(z) ∝ |z|) in the Haar wavelet basis with optimized τ (ortho-
ST)

Model-based shrinkage in the orthogonal wavelet basis (ortho-MAP vs. ortho-
MMSE)

Model-based shrinkage in a tight frame with M = 2 (frame-MAP vs. frame-MMSE)

Global MAP estimator implemented by consistent cycle spinning (CCS-MAP), as
described in Section 11.4.3

Model-based consistent cycle spinning with MMSE shrinkage function (CCS-MMSE)

To simplify the comparison, the depth of the transform is set to I = 1 and the lowpass
coefficients are kept untouched. The experimental conditions are exactly the same
as in Section 10.4.3 with each data point (SNR value) being the result of an average
over 500 trials.

The model-based denoisers are derived from the knowledge of the pdf of the wave-
let coefficients which is given by pV1 (x) =

p
2pU (

p
2x) where pU is the pdf of the in-

crements of the Lévy process. The rescaling by
p

2 accounts for the fact that the (re-
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Figure 11.9 SNR improvement as a function of the level of noise for Brownian motion. The
wavelet-denoising methods by reverse order of performance are: standard soft-thresholding
(ortho-ST), optimal shrinkage in a wavelet basis (ortho-MAP/MMSE), shrinkage in a
redundant system (frame-MAP/MMSE), and optimal shrinkage with consistent cycle
spinning (CCS-MAP/MMSE).

dundant) Haar wavelet coefficients are a renormalized version of the increments. For
the direct methods, we set τ = σ2 which corresponds to a standard wavelet-domain
MAP estimator, as described by (11.13). For the iterative CCS-MAP solution, the iden-
tification of (11.41) with the standard form (10.46) of the MAP estimator dictates the
choice τ=σ2 andΦ(z) =ΦU (

p
2z). Similarly, the setting of the shrinkage function for

the MMSE version of CCS relies on the property that the noise variance in the wavelet
domain is σ2 even though the components are no longer independent. By exploiting
the analogy with the orthogonal scenario, one then simply replaces the proximal step
in Algorithm 3 described in Equation (11.44) by

zk+1 = vMMSE
(
z̃k+1; σ2

1+µ
)
,

which amounts to the component-wise application of the theoretical MMSE estim-
ator that is derived from the wavelet-domain statistics

(
see (11.20) and (11.21)

)
.

In the case of Brownian motion for which the wavelet coefficients are Gaussian-
distributed, there is no distinction between the MAP and MMSE shrinkage func-
tions which are linear. The corresponding denoising results are shown in Figure
11.9. They are consistent with our expectations: the model-based approach (ortho-
MAP/MMSE) results in a (slight) improvement over basic wavelet-domain soft thres-
holding while the performance gain brought by redundancy (frame-MAP/MMSE)
is more substantial, in accordance with Proposition 11.3. The optimal denoising
(global MMSE=MAP solution) is achieved by running the CCS version of the algorithm
which produces a linear solution that is equivalent to the Wiener filter (LMMSE es-
timator).

The same performance hierarchy can also be observed for the other types of sig-
nals (see Figures 11.10-11.12), confirming the relevance of the proposed series of re-
finements. For non-Gaussian processes, ortho-MMSE is systematically better than
ortho-MAP, not to mention soft-thresholding, in agreement with the theoretical pre-
dictions of Section 11.3. Since the MAP estimator for the compound Poisson pro-
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Figure 11.10 SNR improvement as a function of the level of noise for a Lévy process with
Laplace-distributed increments. The wavelet-denoising methods by reverse order of
performance are: ortho-MAP (equivalent to soft-thresholding with fixed τ), ortho-MMSE,
frame-MMSE, frame-MAP, CCS-MAP, and CCS-MMSE. The results of CCS-MMSE are
undistinguishable from the ones of the reference MMSE estimator obtained using message
passing (see Figure 10.12).
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Figure 11.11 SNR improvement as a function of the level of noise for a compound Poisson
process (piecewise-constant signal). The wavelet-denoising methods by reverse order of
performance are: ortho-ST, ortho-MMSE, frame-MMSE, and CCS-MMSE. The results of
CCS-MMSE are undistinguishable from the ones of the reference MMSE estimator obtained
using message passing (see Figure 10.10).

cess is useless (identical to zero), the corresponding ortho-MMSE thresholding can
be compared against the optimized soft-thresholding (ortho-ST) where τ is tuned
for maximum SNR (see Figure 11.11). This is actually the scenario where this stand-
ard sparsity-promoting scheme performs best, which is not too surprizing since a
piecewise-constant signal is intrinsically sparse with a large proportion of its wave-
let coefficients being zero. Switching to a redundant system (frame) is beneficial in
all instances. The only caveat is that frame-MMSE is not necessarily the best design
because the corresponding one-step modification of wavelet coefficients typically
destroys Parseval’s relation (lack of consistency). In fact, one can observe a degrad-
ation with frame-MMSE being worse than frame-MAP in most cases. By contrast,
the full power of the Bayesian formulation is reinstated when the denoising is per-
formed iteratively according to the CCS strategy. Here, thanks to the consistency re-
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Figure 11.12 SNR improvement as a function of the level of noise for a Lévy flight with
Cauchy-distributed increments. The wavelet-denoising methods by reverse order of
performance are: ortho-MAP, ortho-MMSE, frame-MMSE, frame-MAP, CCS-MAP, and
CCS-MMSE. The results of CCS-MMSE are undistinguishable from the ones of the reference
MMSE estimator obtained using message passing (See Figure 10.11).

quirement, CCS-MMSE is always better than CCS-MAP which actually corresponds
to a wavelet-based implementation of the true MAP estimator of the signal (see Sec-
tion 10.4.3). In particular, CCS-MAP under the Laplace hypothesis is equivalent to
the standard total-variation denoiser. Finally, the most important finding is that, in
all tested scenarios, the results of CCS-MMSE are undistinguishable from those of
the belief-propagation algorithm of Section 10.4.2 which implements the reference
MMSE solution. This leads us to conjecture that the CCS-MMSE estimator is optimal
for the class of first-order processes. The practical benefit is that CCS-MMSE is much
faster than BP which necessitates the computation of two FFTs per data point.

While we are still missing a theoretical explanation of the ability of CCS-MMSE
to resolve non-Gaussian statistical interdependencies, we believe that the results
presented are important conceptually, for they demonstrate the possibility of spe-
cifying iterative signal-reconstruction algorithms that minimize the reconstruction
error. Moreover, it should be possible, by reverse engineering, to reformulate such
schemes in terms of the minimization of a pseudo-MAP cost functional that is tied
to the underlying signal model. Whether such ideas and design principles are trans-
posable to higher-order signals and/or more general types of inverse problems is an
open question that calls for further investigations.

11.5 Bibliographical notes

The earliest instance of wavelet-based denoising is a soft-thresholding algorithm
that was developed for magnetic resonance imaging [WYHJC91]. The same algorithm
was discovered independently by Donoho and Johnstone for the reconstruction of
signals from noisy samples [DJ94]. The key contribution of these authors was to es-
tablish the statistical optimality of the procedure in a minimax sense as well as its
smoothness-preservation properties [Don95, DJ95]. This series of papers triggered
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the interest of the statistical and signal-processing communities and got researchers
working on extending the technique and applying it to a variety of image reconstruc-
tion problems.

Sections 11.1 and 11.2
The discovery of the connection between soft-thresholding and `1-minimization

[Tib96, CDLL98] was a significant breakthrough. It opened the door to a variety of
novel methods for the recovery of sparse signals based on non-quadratic wavelet-
domain regularization, while also providing a link with statistical estimation tech-
niques. For instance, Figueiredo and Nowak [FN03] developed an approach for im-
age restoration based on the maximization of a likelihood criterion that is equival-
ent to (11.5) with a Laplacian prior. These authors also introduced an expectation-
maximization algorithm that is one of the earliest incarnation of ISTA. The algorithm
was brought into prominence when Daubechies et al. were able to establish its con-
vergence for general linear inverse problems [DDDM04]. This motivated researchers
to improve the convergence speed of ISTA through the use of appropriate precon-
ditioning and/or over-relaxation [BDF07, VU08, FR08, BT09b]. A favored algorithm
is FISTA because of its ease of deployment and superior convergence guarantees
[BT09b]. Biomedical-imaging applications of wavelet-based image reconstruction
include image restoration [BDF07], 3-D deconvolution microscopy [VU09], and par-
allel MRI [GKHPU11]. These works involve accelerated versions of ISTA or FISTA that
capitalize on the specificities of the underlying system matrices.

Section 11.3
The signal-processing community’s response to the publication of Donoho and

Johnstone’s work on the optimality of wavelet-domain soft-thresholding was a friend-
ly competition to improve denoising performance. The Bayesian reformulation of
the basic signal-denoising problem naturally led to the derivation of thresholding
functions that are optimal in the MMSE sense [SA96, Sil99, ASS98]. Moulin and Lui
presented a mathematical analysis of pointwise MAP estimators, establishing their
shrinkage behavior for heavy-tailed distributions [ML99]. In this statistical view of
the problem, the thresholding function is determined by the assumed prior distribu-
tion of the wavelet coefficients, the most prominent choices being the generalized
Gaussian distribution [Mal89, CYV00, PP06] or a mixture of Gaussians with a peak at
the origin [CKM97]. While infinite divisibility is not a property that has been emphas-
ized in the image-processing literature, researchers have considered a number of
wavelet-domain models that are compatible with the property and therefore part of
the general framework investigated in Section 11.3. These include the Laplace distri-
bution (see [HY00,Mar05] for pointwise MMSE estimator), SαS laws (see [ATB03] and
[ABT01, BF06] for pointwise MAP and MMSE estimators, respectively), the Cauchy
distribution [BAS07], as well as the sym gamma family [FB05]. The latter choice
(a.k.a. Bessel K-form) is supported by a constructive model of images that is remin-
iscent of generalized Poisson processes [GS01]. There is also experimental evidence
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that this class of models is able to fit the observed transform-domain histograms well
over a variety of natural images [MG01, SLG02].

The multivariate version of (11.21) can be found in [Ste81, Eq. (3.3)]. This for-
mula is also central to the derivation of Stein’s unbiased risk estimator (SURE), which
provides a powerful data-driven scheme for adjusting the free parameters of a statist-
ical estimator under the AWGN hypothesis. SURE has been applied to the automatic
adjustment of the thresholding parameters of wavelet-based denoising algorithms
such as the SURE-shrink [DJ95] and SURELET [LBU07] approaches.

The possibility of defining bivariate shrinkage functions for exploiting inter-scale
wavelet dependencies is investigated in [SS02].

Section 11.4
The concept of redundant wavelet-based denoising was introduced by Coifman

under the name of cycle spinning [CD95]. The fact that this scheme always improves
upon non-redundant wavelet-based denoising (see Proposition 11.3) was pointed
out by Raphan and Simoncelli [RS08]. A frame is an overcomplete (and stable) gen-
eralization of a basis; see for instance [Ald95, Chr03]. For the design and implement-
ation of the operator-like wavelets (including the first-order ones which are ortho-
gonal), we refer to [KU06].

The concept of consistent cycle spinning was developed by Kamilov et al. [KBU12].
The CCS Haar-denoising algorithm was then modified appropriately to provide the
MMSE estimator for Lévy processes [KKBU12].



12 Conclusion

We have presented a mathematical framework that results in the specification of
the broadest possible class of linear stochastic processes. The remarkable aspect is
that these continuous-domain processes are either Gaussian or sparse, as a direct
consequence of the theory. While the formulation relies on advanced mathemat-
ical concepts (distribution theory, functional analysis), the underlying principles are
simple and very much in line with the traditional methods of statistical signal pro-
cessing. The main point is that one can achieve a whole variety of sparsity patterns
by combining relatively simple building blocks: non-Gaussian white noise excita-
tions and suitable integral operators. This results in non-Gaussian processes whose
properties are compatible with the modern sparsity-based paradigm for signal pro-
cessing. Yet, the proposed class of models is also backward compatible with the lin-
ear theory of signal processing (LMSE = linear mean square estimation) since the
correlation structure of the processes remains the same as in the traditional Gaussian
case—the processes are ruled by the same stochastic differential equations and it is
only the driving terms (innovations) that differ in their level of sparsity. On the theor-
etical front, we have highlighted the crucial role of the generalized B-spline function
βL—in one-to-one relation with the whitening operator L—that provides the func-
tional link between the continuous-domain specification of the stochastic model and
the discrete-domain handling of the sample values. We have also shown that these
processes admit a sparse wavelet decomposition whenever the wavelet is matched
to the whitening operator.

Possible applications and directions of future research include:

The generation of sparse stochastic processes. These may be useful for testing
algorithms or for providing artificial sounds or textures.

The development of identification procedures for estimating: 1) the whitening op-
erator L and 2) the noise parameters (Lévy exponent). The former problem may
be addressed by suitable adaptation of well-established Gaussian estimation tech-
niques. The second task is less standard and potentially more challenging. One
possibility is to estimate the noise parameters in the transformed domain (gener-
alized increments or wavelet coefficients) using cumulants and higher-order stat-
istical methods.

The design of optimal denoising and restoration procedures that extend upon the
first-order techniques described in Sections 10.4 and 11.4. The challenge is to de-
velop efficient algorithms for MMSE signal estimation using the present class of
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sparse prior models. This should provide a principled approach for tackling sparse
signal recovery problems and possibly result in higher quality reconstructions.

The formulation of a model-based approach for regularization and wavelet-domain
processing with the derivation of optimal thresholding estimators.

The definition and investigation of richer classes of sparse processes—especially
in higher dimensions—by mixture of elementary ones associated with individual
operators Li .

The theory predicts that, for the proposed class of models, the transformed do-
main statistics should be infinitely divisible. This needs to be tested on real signals
and images. One also needs to design appropriate estimators for capturing the tail
behavior of the pdf which is the most important indicator of sparsity.



Appendix A Singular integrals

In this appendix, we are concerned with integrals involving functions that are sin-
gular at a finite (or at least countable) number of isolated points. Without further loss
of generality, we consider the singularities to arise at the origin.

Suppose that we are given a function f that is locally integrable in any neighbour-
hood in Rd that excludes the origin, but not if the origin is included. Then, for any
test function ϕ ∈D(Rd ) with 0 ∉ support(ϕ), the integral

〈ϕ, f 〉 =
∫

Rd
ϕ(r ) f (r ) dr

converges in the sense of Lebesgue and is continuous inϕ for sequences that exclude
a neighbourhood of the origin. It may also converge for some other, but not all,ϕ ∈D.
In general, if f grows no faster than some inverse power of |r | as r → 0, then 〈ϕ, f 〉
will converge for all ϕ whose value as well as all derivatives up to some order k do
vanish at 0. This is the situation that will be of interest to us here.

In some cases we may be able to continuously extend the bilinear form 〈ϕ, f 〉 to all
test functions in D(Rd ) (or even in S (Rd )). In other words, it may be possible to find
a generalized function f̃ such that 〈ϕ, f 〉 = 〈ϕ, f̃ 〉 for all ϕ ∈D for which the left-hand
side converges in the sense of Lebesgue. f̃ is then called a regularization of f .

Note that regularizations of f , when they exist, are not unique, as they can differ by
a generalized function that is supported at r = 0. This also implies that the difference
of any two regularizations of f can be written as a finite sum of the form

∑

|n|≤k
cnδ

(n)(r ),

where δ(n) denotes the nth derivative of Dirac’s δ distribution.

We proceed to present some of the standard ways to regularize singular integrals,
and close the appendix with a table of standard or canonical regularizations of some
common singular functions. The reader who is interested in a more complete ac-
count may refer to the books by Gelfand and Shilov [GS68], Hörmander [Hör05],
Mikhlin and Prössdorf [MP86], and Estrada and Kanwal [EK00], among others, where
(s)he may find all of the examples and explanations given below and more.
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A.1 Regularization of singular integrals by analytic continuation

The first approach to regularization we shall describe is useful for regularizing
parametric families of integrals. As illustration, consider the family of functions xλ+ =
xλ1[0,∞) in one scalar variable. For λ ∈U = {λ ∈C : Re(λ) >−1}, the integral

〈ϕ, xλ+〉 =
∫

R
ϕ(x)xλ+ dx

converges for all ϕ ∈D(R). Moreover, the function

Fϕ(λ) =
∫

R
ϕ(x)xλ+ dx

is (complex) analytic in λ over its (initial) domain U , as can be seen by differentiation
under the integral sign. 1 Additionally, as we shall see shortly, Fϕ(λ) has a (necessarily
unique) analytic continuation to a larger domain Ũ ⊃ U in the complex plane. De-
noting the analytic continuation of Fϕ by F̃ϕ, we can use it to define a regularization
of xλ+ for λ ∈ Ũ \U by the identity

〈ϕ, xλ+〉 = F̃ϕ(λ) for λ ∈ Ũ \U .

In the above example, one can show that the largest domain to which Fϕ(λ) =∫
Rϕ(x)xλ+ dx (integration in the sense of Lebesgue) can be extended analytically is

the set

Ũ =C\{−1,−2,−3, . . .}.

Over Ũ , the analytic continuation of Fϕ(λ) to −1 ≥ Re(λ) >−2, λ 6= −1, can be found
by using the formula

xλ+ = 1

λ+1

d

dx
xλ+1
+

to write

〈ϕ, xλ+〉 =
1

λ+1
〈ϕ,

d

dx
xλ+1
+ 〉 = −1

λ+1
〈 d

dx
ϕ, xλ+1

+ 〉

where the rightmost member is well defined and where we used duality to transfer
the derivative operator to the side of the test function. Similarly, we can find the
analytic continuation for −n ≥ Re(λ) >−(n+1), λ 6= −n, by successive re-application
of the same approach, which leads to

〈ϕ, xλ+〉 =
(−1)n

(λ+1) · · · (λ+n)
〈 dn

dxn ϕ, xλ+n
+ 〉.

1. We can differentiate under the integral sign with respect to λ due to the compact support of ϕ,
whereby we obtain the integral

d

dλ
Fϕ(λ) =

∫

R
ϕ(x)xλ+ log x dx,

which also converges for λ ∈U .
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Within the band −n > Re(λ) > −(n +1), we may also compute 〈ϕ, xλ+〉 using the for-
mulas

〈ϕ, xλ+〉 =
∫ ∞

0

(
ϕ(x)−

∑

k≤b−Re(λ)−1c

ϕ(k)(0)xk

k !

)
xλ dx (A.1)

=
∫ ∞

1
ϕ(x)xk dx

+
∫ 1

0

(
ϕ(x)−

∑

k≤b−Re(λ)−1c

ϕ(k)(0)xk

k !

)
xλ dx

−
∑

k≤b−Re(λ)−1c

∫ ∞

1

ϕ(k)(0)

k !
xλ+k dx

=
∫ ∞

1
ϕ(x)xk dx

+
∫ 1

0

(
ϕ(x)−

∑

k≤b−Re(λ)−1c

ϕ(k)(0)xk

k !

)
xλ dx

+
∑

k≤b−Re(λ)−1c

ϕ(k)(0)

k !(λ+k +1)
. (A.2)

The effect of subtracting the first n terms of the Taylor expansion ofϕ(x) in (A.2) is to
create a zero of sufficiently high order at 0 to make the singularity of xλ+ integrable.

We can use the above definition of xλ+ to define xλ− = (−x)λ+ for λ 6= −1,−2,−3, . . .,
as well as xλ = xλ++ xλ− and |x|λ = xλ++ xλ−. Due to the cancellation of some poles in
λ, the generalized functions xλ and |x|λ have an extended domain of definition: they
are defined for λ 6= −1,−3,−5, . . . and λ 6= −2,−4,−6, . . ., respectively.

The singular function ‖r ‖λ in d dimensions can be regularized by switching to
(hyper-)spherical coordinates and applying the definition of xλ+d−1

+ . Due to sym-
metries, the definition obtained in this way is valid for all λ ∈ C with the exception
of the individual points −d ,−(d +2),−(d +4),−(d +6), . . .. As was the case in one di-
mension, we can find formulas based on removing terms from the Taylor expansion
of ϕ for computing 〈ϕ,‖r ‖λ〉 in bands of the form −(d +2m) < Re(λ) <−(d +2m−2),
m = 0,1,2,3, . . ., which results in

〈ϕ,‖r ‖λ〉 =
∫ ∞

0

(
Sϕ(r ) −

∑

n≤b−Re(λ)−dc

r n

n!
S(n)
ϕ (0)

)
rλ+d−1dr

=
∫

Rd

(
ϕ(r ) −

∑

|k |≤b−Re(λ)−dc

r k

k !
ϕ(k)(0)

)
‖r ‖λdr .

The first equality is obtained by considering (hyper-)spherical coordinates; Sϕ(r )
therein denotes the integral of ϕ(r ) over the (hyper-)sphere of radius r . The second
equality is obtained by rewriting the first in Cartesian coordinates. In the second
formula we use standard multi-index notation r k = xk1

1 · · ·xkd
d , k ! = k1! · · ·kd !, and

ϕ(k) = ∂k1
1 · · ·∂kd

d ϕ.



332 Singular integrals

By normalizing ‖r ‖λ as

ρλ(r ) = ‖r ‖λ

2
λ
2 Γ

(
λ+d

2

) ,

where the Gamma functionΓ
(
λ+d

2

)
has poles inλover the same set of points−d ,−(d+

2),−(d +4),−(d +6), . . ., we obtain a generalized function that is well-defined for all
λ ∈C. Moreover, it is possible to show that for λ=−(d+2m), m = 0,1,2,3, . . ., we have

ρλ(r ) ≡ (−∆)mδ(r ), (A.3)

where ∆m is the mth iteration of the Laplacian operator. For m = 0, we can find the
result (A.3) directly by taking the limit λ → −d of 〈ϕ,ρλ〉. From there, the general
result can be obtained by iterating the relation

(−∆)ρλ =λρλ−2

which is true for all λ.

A.2 Fourier transform of homogeneous distributions

The definition of the one-dimensional generalized functions of Section A.1 ex-
tends to Schwartz’ space, S (R), and to S (Rd ) in multiple dimensions. We can there-
fore consider these families of generalized functions as members of the space S ′ of
tempered distributions. In particular, this implies that the Fourier transform of any
of these generalized functions will belong to (the complex version of) S ′ as well. We
recall from Section 3.3.3 that, in general, the (generalized) Fourier transform ĝ of a
tempered distribution g is defined as the tempered distribution that makes the fol-
lowing identity hold true for all ϕ ∈S :

〈g ,ϕ̂〉 = 〈ĝ ,ϕ〉. (A.4)

The distributions we considered above are all homogeneous, in the sense that, us-
ing g to denote any one of them, g (a·) for some a > 0 is equal to aλg . It then follows
from the properties of the Fourier transform that ĝ is also homogeneous, albeit of or-
der −(d +λ). By invoking additional symmetry properties of these distributions one
then finds that the Fourier transform of members of each of these families belongs to
the same family, with some normalization factor that can be computed, for instance,
by plugging a Gaussian function ϕ (which is its own Fourier transform) in (A.4). We
summarize the Fourier transforms found in this way in Table A.1. The interested
reader may refer to Gelfand and Shilov [GS68] for the details of their calculations.

A.3 Hadamard’s finite part

A second approach to normalizing singular integrals is known as Hadamard’s finite
part, and can be considered a generalization of Cauchy’s principal value. We recall
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Table A.1 Table of canonical regularizations of some singular functions, and their Fourier
transforms. The one-sided power function is rλ+ = 1

2

(
|r |λ+ sign(r )|r |λ

)
and Γ denotes the

gamma function. Derivatives of δ are also included for completeness.

Singular function Canonical regularization Fourier transform

rλ+ ,
−n −1 < Re(λ) <−n

〈ϕ, r̃λ+〉
= ∫ ∞

0 rλ
(
ϕ(r )−∑

0≤i≤n−1
r iϕ(i )(0)

i !

)
dr

Γ(λ+1)
(jω)λ+1

r−n+ ,
n = 1,2,3, . . .

〈ϕ, r̃−n+ 〉
= ∫ ∞

0 r−n
(
ϕ(r ) − (∑

0≤i≤n−2
r iϕ(i )(0)

i !

)

− r n−1ϕ(n−1)(0)
i ! u(1− r )

)
dr

(non-canonical)

computable but not needed

r n+ ,
n = 0,1,2, . . .

N/A jnπδ(n)(ω)+ j(−1)n n!
ωn+1

|r |λ,
−2m − 2 < Re(λ) <
−2m

〈ϕ, |r̃ |λ〉
= ∫ ∞

0 rλ
(
ϕ(r )+ϕ(−r )−

2
∑

0≤i≤m−1
r 2iϕ(2i )(0)

(2i )!

)
dr

−2sin(π2 λ) Γ(λ+1)
|ω|λ+1

|r |λsign(r ),
−2m − 1 < Re(λ) <
−2m +1

〈ϕ, |r̃ |λsign(r )〉
= ∫ ∞

0 rλ
(
ϕ(r )−ϕ(−r )−

2
∑

0≤i≤m−1
r 2i+1ϕ(2i+1)(0)

(2i+1)!

)
dr

−2jcos(π2 λ) Γ(λ+1)
|ω|λ+1 sign(ω)

r n ,
n = 0,1,2, . . .

N/A jn 2πδ(n)(ω)

1/r ,
∫ +∞
−∞

ϕ(r )−ϕ(0)
r dr −jπsign(ω)

that for the singular integral
∫ ∞
−∞

ϕ(x)
x dx, the principal value is defined as

p.v.
∫ ∞

−∞
ϕ(x)

x
dx = lim

ε→0

∫ ∞

ε

ϕ(x)

x
dx +

∫ −ε

−∞
ϕ(x)

x
dx

= lim
ε→0

∫ ∞

ε

ϕ(x)−ϕ(−x)

x
dx

=
∫ ∞

0

ϕ(x)−ϕ(−x)

x
dx

=
∫ ∞

−∞
ϕ(x)−ϕ(0)

x
dx,

where the last two integrals converge in the sense of Lebesgue.

In essence, Cauchy’s definition of principal value relies on the “infinite parts” of
the integrals

∫ ∞
0 and

∫ 0
−∞ cancelling out one another. To generalize this idea, con-

sider the integral

∫ ∞

0
ϕ(x) f (x) dx,
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where the function f is assumed to be singular at 0. Let

Φ(ε) =
∫ ∞

ε
ϕ(x) f (x) dx

and suppose that, for some pre-chosen family of functions Hk (ε) approaching infin-
ity at 0, we can find an n ∈Z+ and coefficients ak , 1 ≤ k ≤ n, such that

lim
ε→0+

Φ(ε)−
n∑

k=1
an Hk (ε) = A <∞.

A is then called the finite part of the integral
∫ ∞

0 ϕ(x) f (x) dx and is denoted as [EK00]

p.f.
∫ ∞

0
ϕ(x) f (x) dx.

In cases of interest to us, the family Hk (ε) consists of inverse integer powers of
ε and logarithms. With this choice, the finite part regularization of the singular in-
tegrals considered in Section A.1 can be obtained. It is found to coincide with their
regularization by analytic continuation (note that all of Hk s are analytic in ε). But,
in addition, we can use the finite part to regularize xλ+ and related functions in cases
where the previous method fails (namely, for λ=−1,−2,−3, . . .). Indeed, for λ=−n,
n ∈Z+, we may write

∫ ∞

ε

ϕ(x)

xn dx =
n−1∑

k=0

∫ 1

ε

ϕ(k)(0)xk−n

k !
dx

+
∫ 1

ε

ϕ(x)−∑n−1
k=0

ϕ(k)(0)xk

k !

xn dx +
∫ ∞

1

ϕ(x)

xn dx

=−ϕ
(n−1)(0)

(n −1)!
logε+

n−2∑

k=0

ϕ(k)(0)

k !
· ε

−n+k+1 −1

n −k −1

+
∫ 1

ε

ϕ(x)−∑n−1
k=0

ϕ(k)(0)xk

k !

xn dx +
∫ ∞

1

ϕ(x)

xn dx.

From there, by discarding the logarithm and inverse powers of ε and taking the limit
ε→ 0 of what remains, we find

p.f.
∫ ∞

0

ϕ(x)

xn dx =
∫ ∞

1

ϕ(x)

xn dx +
∫ 1

0

ϕ(x)−∑n−1
k=0

ϕ(k)(0)xk

k !

xn dx −
n−2∑

k=0

ϕ(k)(0)

k !(n −k −1)
,

where the two integrals of the right-hand side converge in the sense of Lebesgue.
Using similar calculations, for 〈ϕ, xλ+〉 with λ 6= −1,−2,−3, . . ., we find the same reg-

ularization as the one given by (A.2).
In general, a singular function f does not define a distribution in a unique way.

However, in many of the cases that are of interest to us there exists a particular reg-
ularization of f that is considered standard or canonical. For the parametric fam-
ilies discussed so far, these essentially correspond to the regularization obtained by
analytic continuation. In Table A.1, we have summarized some of the formulas for
canonical regularization as well as the Fourier transforms of those related singular
distributions that are of interest to us.
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Finally, we point out that the approaches presented in this appendix to regularize
singularities at the origin generalize in an obvious way to isolated singularities at any
other point and also to a finite (or even countable) number of isolated singularities.

A.4 Some convolution integrals with singular kernels

As we noted earlier, the scaling property of the Fourier transform demands that
the Fourier transform of a homogeneous distribution of order λ be homogeneous of
order −(λ+d). Thus, for Re(λ) ≤ −d where the original distribution is singular at 0,
its Fourier transform is locally integrable everywhere and vice-versa. Consequently,
convolutions with homogeneous singular kernels are often easier to evaluate in the
Fourier domain by employing the convolution-multiplication rule. Important ex-
amples of such convolutions are the Hilbert and the Riesz transforms.

The Hilbert transform of a test functionϕ ∈S (R) can thus be defined either by the
convolution with the singular kernel h(x) = 1/(πx) as

Hϕ(x) = p.v.
∫ +∞

−∞
ϕ(y)h(x − y) dy,

which involves a principal-value limit, or by the Fourier-domain formula

Hϕ(x) =F−1{ϕ̂ĥ},

with ĥ(ω) = −j sign(ω). These definitions extend beyond S (R) to ϕ ∈ Lp (R) for 1 <
p <∞ (the standard reference here is Stein and Weiss [SW71]).

Similarly, the i th component of the Riesz transform of a test function ϕ ∈ S (Rd )
is defined in the spatial domain by the convolution with the kernel hi (r ) = Γ(d/2+
1/2)ri /(πd/2+1/2|r |d+1) as

Riϕ(r ) = p.v.
∫

Rd
ϕ(t )hi (r − t ) dt ,

which is equivalent to the Fourier integral

Riϕ(r ) =F−1{ϕ̂R̂i }

with R̂i (ω) =−j ωi
|ω| . Once again, these definitions extend to ϕ ∈ Lp (Rd ) for 1 < p <∞

(see Mikhlin’s Theorem 3.6).



Appendix B Positive definiteness

Positive-definite functions play a central role in statistics, approximation theory
[Mic86,Wen05], and machine learning [HSS08]. They allow for a convenient Fourier-
domain specification of characteristic functions, autocorrelation functions, and in-
terpolation/approximation kernels (e.g., radial basis functions) with the guarantee
that the underlying approximation problems are well-posed, irrespective of the loc-
ation of the data points. In this appendix, we provide the basic definitions of pos-
itive definiteness and conditional positive definiteness in the multidimensional set-
ting, together with a review of corresponding mathematical results. We distinguish
between continuous functions on the one hand, and generalized functions on the
other. We also give a self-contained derivation of Gelfand and Vilenkin’s characteriz-
ation of conditionally-positive definite generalized functions in one dimension and
discuss its connection with the celebrated Lévy-Khintchine formula of statisticians.
For a historical account of the rich topic of positive definiteness, we refer to [Ste76].

B.1 Positive definiteness and Bochner’s Theorem

D E FI N I T I O N B.1 A continuous, complex-valued function f of the vector variable
ω ∈Rd is said to be positive semi-definite iff.

N∑
m=1

N∑
n=1

ξmξn f (ωm −ωn) ≥ 0

for every choice of ω1, . . . ,ωN ∈ Rd , ξ1, . . . ,ξN ∈ C and N ∈ N. Such a function is
called positive definite in the strict sense if the quadratic form is greater than 0 for
all ξ1, . . . ,ξN ∈C\{0}.

In the sequel, we shall abbreviate “positive semi-definite” by positive-definite. This
property is equivalent to the requirement that the N×N matrix F whose elements are
given by [F]m,n = f (ωm −ωn) is positive semi-definite (or, equivalently, nonnegative
definite), for all N , no matter how theωn are chosen.

The prototypical example of a positive-definite function is the Gaussian kernel
e−ω

2/2. To establish the property, we express this Gaussian as the Fourier transform
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of g (x) = 1p
2π

e−
x2
2 :

N∑
m=1

N∑
n=1

ξmξne−
(ωm−ωn )2

2 =
N∑

m=1

N∑
n=1

ξmξn

∫

R
e−j(ωm−ωn )x g (x) dx

=
∫

R

N∑
m=1

N∑
n=1

ξmξne−j(ωm−ωn )x g (x) dx

=
∫

R

∣∣∣∣∣
N∑

m=1
ξme−jωm x

∣∣∣∣∣

2

︸ ︷︷ ︸
≥0

g (x)︸︷︷︸
>0

dx ≥ 0

where we made use of the fact that g (x), the (inverse) Fourier transform of e−ω
2/2, is

positive. It is not hard to see that above the argument remains valid for any (multidi-
mensional) function f (ω) that is the Fourier transform of some nonnegative kernel
g (x) ≥ 0. The more impressive result is that the converse implication is also true.

T H E O R E M B.1 (Bochner’s Theorem) Let f be a bounded continuous function on Rd .
Then, f is positive definite if and only if it is the (conjugate) Fourier transform of a
nonnegative and finite Borel measure µ

f (ω) =
∫

Rd
ej〈ω,x〉µ(d x).

In particular, Bochner’s theorem implies that f is a valid characteristic function—
that is, f (ω) = E{ej〈ω,x〉} = ∫

Rd ej〈ω,x〉PX ( dx) where PX is some probability measure
on Rd —if and only if f is continuous, positive definite with f (0) = 1 (cf. Section 3.4.3
and Theorem 3.7).

Bochner’s theorem is also fundamental to the theory of scattered data interpol-
ation, although it requires a very slight restriction on the Fourier transform of f to
ensure positive definiteness in the strict sense [Wen05].

T H E O R E M B.2 A function f :Rd →C that is the (inverse) Fourier transform of a non-
negative, finite Borel measure µ is positive definite in the strict sense if there exists an
open set E ⊆Rd such that µ(E) 6= 0.

Proof Let g (x) ≥ 0 be the (generalized) density associated with µ such that µ(E) =∫
E g (x) dx for any Borel set E . We then write f (ω) = ∫

Rd e−j〈ω,x〉g (x) dx and perform
the same manipulation as for the Gaussian example above, which yields

N∑
m=1

N∑
n=1

ξmξn f (ωm −ωn)) =
∫

Rd

∣∣∣∣∣
N∑

m=1
ξme−j〈ωm ,x〉

∣∣∣∣∣

2

︸ ︷︷ ︸
≥0

g (x)︸︷︷︸
≥0

dx > 0

The key observation is that the zero set of the sum of exponentials
∑N

m=1 ξme−j〈ωm ,x〉

(which is an entire function) has measure zero. Since the above integral involves
positive terms only, the only possibility for it to be vanishing is that g be identically
zero outside this zero set, which contradicts the assumption on the existence of E .
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In particular, the latter constraint is verified whenever f (ω) = F {g }(ω) where g
is a continuous, nonnegative function with a bounded Lebesgue integral; i.e., 0 <∫
Rd g (x) dx <+∞. This kind of result is highly relevant to approximation and learn-

ing theory: Indeed, the choice of a strictly positive-definite interpolation kernel (or
radial basis function) ensures that the solution of the generic scattered data inter-
polation problem is well defined and unique, no matter how the data centers are dis-
tributed [Mic86]. Here too, the prototypical example of a valid kernel is the Gaussian,
which is (strictly) positive definite.

There is also an extension of Bochner’s theorem for generalized functions that
is due to Laurent Schwartz. In a nutshell, the idea is to replace each finite sum∑N

n=1 ξn f (ω−ωn) by an infinite one (integral)
∫
Rd ϕ(ω′) f (ω−ω′) dω′ = ∫

Rd ϕ(ω−
ω′) f (ω′) dω′ = 〈 f ,ϕ(·−ω)〉, which amounts to considering appropriate linear func-
tionals of f over Schwartz’ class of test functions S (Rd ). In doing so, the double sum
in Definition B.1 collapses into a scalar product between f and the autocorrelation
function of the test function ϕ ∈S (Rd ), the latter being written as

(ϕ∗ϕ∨)(ω) =
∫

Rd
ϕ(ω′)ϕ(ω′−ω) dω′.

D E FI N I T I O N B.2 A generalized function f ∈S ′(Rd ) is said to be positive-definite if
and only if, for all ϕ ∈S (Rd ),

〈 f , (ϕ∗ϕ∨)〉 ≥ 0.

It can be shown that this is equivalent to Definition B.1 in the case where f (ω) is
continuous.

T H E O R E M B.3 (Schwartz-Bochner Theorem) A generalized function f ∈ S ′(Rd ) is
positive-definite if and only if it is the generalized Fourier transform of a nonnegative
tempered measure µ; that is,

〈 f ,ϕ̂〉 = 〈 f̂ ,ϕ〉 =
∫

Rd
ϕ(x)µ(dx).

The term “tempered measure” refers to a generic type of mildly-singular gener-
alized function that can be defined by the Lebesgue integral

∫
Rd ϕ(x)µ(d x) <∞ for

all ϕ ∈ S (Rd ). Such measures are allowed to exhibit polynomial growth at infinity
subject to the restriction that they remain finite on any compact set.

The fact that the above form implies positive definiteness can be verified by direct
substitution and application of Parseval’s relation, by which we obtain

〈 f , (ϕ∗ϕ∨)〉 = 〈 f̂ , |ϕ̂|2〉 =
∫

Rd
|ϕ̂(x)|2µ(dx) ≥ 0,

where the measurability property against S (Rd ) ensures that the integral is conver-
gent (since |ϕ̂(x)|2 is rapidly decreasing).

The improvement over Theorem B.1 is that µ(Rd ) is no longer constrained to be
finite. While this extension is of no direct help for the specification of characteristic
functions, it happens to be quite useful for the definition of spline-like interpolation
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kernels that result in well-posed data fitting/approximation problems. We also note
that the above definitions and results generalize to the infinite-dimensional setting
(e.g., the Minlos-Bochner theorem which involves measures over topological vector
spaces).

B.2 Conditionally positive-definite functions

D E FI N I T I O N B.3 A continuous, complex-valued function f of the vector variable
ω ∈Rd is said to be conditionally positive-definite of (integer) order k ≥ 0 iff.

N∑
m=1

N∑
n=1

ξmξn f (ωm −ωn) ≥ 0

under the condition

N∑
n=1

ξn p(ωn) = 0, for all p ∈Πk−1(Rd )

for all possible choices of ω1, . . . ,ωN ∈ Rd , ξ1, . . . ,ξN ∈ C, and N ∈N, where Πk−1(Rd )
denotes the space of multidimensional polynomials of degree (k −1).

This definition is also extendable for generalized functions using the line of thought
that leads to Definition B.2. To keep the presentation reasonably simple and to make
the link with the definition of the Lévy exponents in Section 4.2, we now focus on the
one-dimensional case (d = 1). Specifically, we consider the polynomial constraint∑N

n=1 ξnω
m
n = 0,m ∈ {0, . . . ,k−1} and derive the generic form of conditionally positive-

definite generalized functions of order k, including the continuous ones which are of
greatest interest to us.

The distributional counterpart of the kth-order constraint for d = 1 is the ortho-
gonality condition

∫
Rϕ(ω)ωm dω= 0 for m ∈ {0, . . . ,k −1}. It is enforced by restricting

the analysis to the class of test functions whose moments up to order (k −1) are van-
ishing. Without loss of generality, this is equivalent to considering some alternative
test function Dkϕ=ϕ(k) where Dk is the kth derivative operator.

D E FI N I T I O N B.4 A generalized function f ∈S ′(R) is said to be conditionally positive-
definite of order k iff. for all ϕ ∈S (R)

〈
f , (ϕ(k) ∗ϕ(k)

∨
)
〉
=

〈
f , (−1)k D2k (ϕ∗ϕ∨)

〉
≥ 0.

This extended definition allows for the derivation of the corresponding version of
Bochner’s theorem which provides an explicit characterization of the family of condi-
tionally positive-definite generalized functions, together with their generalized Four-
ier transform.

T H E O R E M B.4 (Gelfand-Villenkin) A generalized function f ∈S ′(R) is conditionally
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positive-definite of order k if and only if it admits the following representation over
S (R):

〈 f ,ϕ̂〉 = 〈 f̂ ,ϕ〉 =
∫

R\{0}

(
ϕ(x)− r (x)

2k−1∑
n=0

ϕ(n)(0)

n!
xn

)
µ(dx)+

2k∑
n=0

an
ϕ(n)(0)

n!
, (B.1)

where µ is a positive tempered Borel measure on R\{0} satisfying
∫

|x|<1
|x|2kµ(dx) <∞.

Here, r (x) is a function in S (R) such that (r (x)−1) has a zero of order (2k+1) at x = 0,
while the an are appropriate real-valued constants with the constraint that a2k ≥ 0.

Below, we provide a slightly adapted version of Gelfand and Vilenkin’s proof which
is remarkably concise and quite illuminating [GV64, Theorem 1, pp. 178], at least if
one compares it with the standard derivation of the Lévy-Khintchine formula, which
has a much more technical flavor (cf. [Sat94]), and is ultimately less general.

Proof Since
〈

f , (−1)k D2k (ϕ∗ϕ∨)
〉 = 〈

(−1)k D2k f , (ϕ∗ϕ∨)
〉

, we interpret Definition
B.4 as the property that (−1)k D2k f is positive-definite. By the Schwartz-Bochner the-
orem, this is equivalent to the existence of a tempered measure ν such that

〈
(−1)k D2k f ,ϕ̂

〉
=

〈
f , (−1)k D2k ϕ̂

〉
= 〈 f̂ , x2kϕ〉 =

∫

R
ϕ(x)ν(dx).

By defining φ(x) = x2kϕ(x), this can be rewritten as

〈 f̂ ,φ〉 =
∫

R

φ(x)

x2k
ν(dx) = 〈 f , φ̂〉,

where φ is a test function that has a zero of order 2k at the origin. In particular,

this implies that limε↓0
∫
|x|<ε

φ(x)
x2k ν(dx) = φ(2k)(0)

(2k)! a2k where a2k ≥ 0 is the ν-measure at

point x = 0. Introducing the new measure µ(dx) = ν(dx)/x2k , we then decompose
the Lebesgue integral as

〈 f̂ ,φ〉 =
∫

R\{0}
φ(x)µ(dx)+a2k

φ(2k)(0)

(2k)!
, (B.2)

which specifies f on the subset of test functions that have a 2kth-order zero at the
origin. To extend the representation to the whole space S (R), we associate to every
ϕ ∈S (R) the corrected function

φc(x) =ϕ(x)− r (x)
2k−1∑
n=0

ϕ(n)(0)

n!
xn (B.3)

with r (x) as specified in the statement of the theorem. By construction, φc ∈ S (R)
and has the 2kth-order zero that is required for (B.2) to be applicable. By combining
(B.2) and (B.3), we find that

〈 f̂ ,ϕ〉 =
∫

R\{0}
φc(x)µ(dx)+a2k

φ(2k
c (0)

(2k)!
+

2k−1∑
n=0

ϕ(n)(0)

n!
〈 f̂ ,r (x)xn〉.
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Next, we identify the constants an = 〈 f̂ ,r (x)xn〉 and note that φ(2k)
c (0) =ϕ(2k)(0). The

final step is to substitute these together with the expression (B.3) of φc in the above
formula, which yields the desired result.

To prove the sufficiency of the representation, we apply (B.1) to evaluate the func-
tional

〈 f , (ϕ̂(k) ∗ ϕ̂(k)
∨

)〉 = 〈 f̂ , x2k |ϕ(x)|2〉 =
∫

R
x2k |ϕ(x)|2µ(dx)+a2k |ϕ(0)|2 ≥ 0,

where we have used the property that the derivatives of x2k |ϕ(x)|2 are all vanishing
at the origin, except the one of order 2k, which equals (2k)! |ϕ̂(0)|2 for x = 0.

It is important to note that the choice of the function r is arbitrary as long as it
fulfills the boundary condition r (x) = 1+O(|x|2k+1) as x → 0, so as to regularize the
potential kth-order singularity of µ at the origin, and that it decays sufficiently fast
to temper the Taylor-series correction in (B.3) at infinity. If we compare the effect
of using two different tempering functions r1 and r2, the modification is only in the
value of the constants an , with an,2 − an,1 = 〈 f̂ ,

(
r2(x)− r1(x)

)
xn〉. Another way of

putting it is that the corresponding distributions f̂1 and f̂2 specified by the leading
integral in (B.1) will only differ by a (2k −1)th-order point distribution that is entirely
localized at x = 0; that is, f̂2(x)− f̂1(x) =∑2k−1

n=0
an,2−an,1

n! δ(n)(x), owing to the property
that a2k is common to both scenarios, or, equivalently, that the difference of their
inverse Fourier transforms f1 and f2 is a polynomial of degree (2k −1).

Thanks to Theorem B.4, it is also possible to derive an integral representation that
is the kth-order generalization of the Lévy-Khintchine formula. For a detailed treat-
ment of the multidimensional version of the problem, we refer to the works of Madych,
Nelson, and Sun [MN90a, Sun93].

C O R O L L A RY B.5 Let f (ω) be a continuous function ofω ∈R. Then, f is conditionally
positive-definite of order k if and only if it can be represented as

f (ω) = 1

2π

∫

R\{0}

(
ejωx − r (x)

2k−1∑
n=0

(jωx)n

n!

)
µ(dx)+

2k∑
n=0

an
(jω)n

n!

where µ is a positive Borel measure on R\{0} satisfying

∫

R
min(|x|2k ,1)µ(dx) <∞,

where r (x) and an are as in Theorem B.4.

The result is obtained by plugging ϕ(x) = 1
2πe jωx ←→ ϕ̂(·) = δ(· −ω) into (B.1),

which is justifiable using a continuity argument. The key is that the corresponding
integral is bounded when µ satisfies the admissibility condition, which ensures the
continuity of f (ω) (by Lebesgue’s dominated-convergence theorem), and vice versa.
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B.3 Lévy-Khintchine formula from the point of view of
generalized functions

We now make the link with the Lévy-Khintchine theorem of statisticians (cf. Sec-
tion 4.2.1) which is equivalent to characterizing the functions that are conditionally
positive-definite of order one. To that end, we rewrite the formula in Corollary B.5 for
k = 1 under the additional constraint that f1(0) = 0 (which fixes the value of a0) as

f1(ω) = a0 +a1jω− a2

2
ω2 + 1

2π

∫

R\{0}

(
ejωx − r (x)− r (x)jωx

)
µ(dx)

= a1jω− a2

2
ω2 +

∫

R\{0}

(
ejωx −1− r (x)jωx

)
v(x) dx

where v(x) dx = 1
2πµ(dx), r (x) = 1+O(|x|3) as x → 0 and limx→±∞ r (x) = 0. Clearly,

the new form is equivalent to the Lévy-Khintchine formula (4.3) with the slight dif-
ference that the bias compensation is achieved by using a bell-shaped, infinitely-
differentiable function r instead of the rectangular window 1|x|<1(x).

Likewise, we are able to transcribe the generalized Fourier-transform-pair relation
(B.1) for the Lévy Khintchine representation (4.3), which yields

〈 f̂L−K,ϕ〉 = 〈 fL−K,ϕ̂〉

=
∫

R\{0}

(
ϕ(x)−ϕ(0)−x 1|x|<1(x)ϕ(1)(0)

)
v(x) dx +b′

1ϕ
(1)(0)+ b2

2
ϕ(2)(0).

(B.4)

The interest of (B.4) is that it uniquely specifies the generalized Fourier transform of
a Lévy exponent fL−K as a linear functional of ϕ. We can also give a “time-domain”
(or pointwise) interpretation of this result by distinguishing between three cases.

1) Lebesgue-integrable Lévy density v ∈ L1(R)
Here, we are able to split the leading integral in (B.4) into its subparts, which results

in

f̂L−K(x) = v(x)−δ(x)

(∫

R
v(a)d a

)
+δ′(x)

(
b′

1 −
∫

|a|<1
av(a) da

)
+δ′′(x)

b2

2
.

The underlying principle is that the so-defined generalized function will result in the
same measurements as (B.4) when applied to the test function ϕ. In particular, the
values of ϕ(n) at the origin are sampled using the Dirac distribution and its derivat-
ives.

2) Non-integrable Lévy density (v ∉ L1(R)) with finite absolute moment∫
R |a|v(a) da <∞

To ensure that the integral in (B.4) is convergent, we need to retain the zero-order
correction. Yet, we can still pull out the third term which results in the interpretation

f̂L−K(x) = p.f.
(
v
)+δ′(x)

(
b′

1 −
∫

|a|<1
av(a) da

)
+δ′′(x)

b2

2
,
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where p.f. stands for the finite part operator that implicitly implements the Taylor-
series adjustment that stabilizes the scalar-product integral 〈v,ϕ〉 (see Appendix A).

3) Non-integrable Lévy density and unbounded absolute moment∫
|R |a|v(a) da =∞

Here, we cannot split the integral anymore. In the particular case where
∫
|a|>1 |a|v(a) da <

∞, we can stabilize the integral by applying a full first-order Taylor-series correction.
This leads to the finite-part interpretation

f̂L−K(x) = p.f.
(
v
)+b1δ

′(x)+ b2

2
δ′′(x),

which is the direct counterpart of (4.5). For
∫
|a|>1 |a|v(a) da =∞, the proper point-

wise interpretation becomes more delicate and it is safer to stick to the distributional
definition (B.4).

The relevance of those results is that they properly characterize the impulse re-
sponse of the infinitesimal semigroup generator G investigated in Section 9.7. In-
deed, we have that g (x) = G{δ}(x) =F { f }(x), which is the generalized Fourier trans-
form of the Lévy exponent f .



Appendix C Special functions

C.1 Modified Bessel functions

The modified Bessel function of the second kind with order parameter α ∈ R ad-
mits the Fourier-based representation [AS72]

Kα(ω) =
∫

R

e−jωx

(1+x2)|α|
dx.

It has the property that Kα(x) = K−α(x). A special case of interest is K 1
2

(x) = (
π

2x

) 1
2 e−x .

The small scale behavior of Kα(x) is Kα(x) ∼ Γ(α)
2

( 2
x

)α
as x → 0. In order to determine

the form of the variance-gamma distribution around the origin, we can rely on the
following expansion which includes a few more terms:

Kα(x) =x−α
(
2α−1Γ(α)− 2α−3Γ(α)x2

α−1
+O

(
x4)

)

+xα
(
2−α−1Γ(−α)+ 2−α−3Γ(−α)x2

α+1
+O

(
x4)

)
.

At the other end of the scale, its asymptotic behavior is

Kα(x) ∼
√

π

2x
e−x as x →+∞.

C.2 Gamma function

Euler’s gamma function constitutes an analytic extension of the factorial function
n! = Γ(n +1) to the complex plane. It is defined by the integral

Γ(z) =
∫ +∞

0
t z−1e−t dt ,

which is convergent for Re(z) > 0. Specific values are Γ(1) = 1 and Γ(1/2) =p
π. The

gamma function satisfies the functional equation

Γ(z +1) = zΓ(z) (C.1)
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which is compatible with the recursive definition of the factorial n! = n(n −1)!. An-
other useful result is Euler’s reflection formula

Γ(1− z)Γ(z) = π

sin(πz)
,

By combining the above with (C.1), we obtain

sinc(z) = sin(πz)

πz
= 1

Γ(1− z) Γ(1+ z)
, (C.2)

which makes an intriguing connection with the sinus cardinalis function. There is a
similar link with Euler’s beta function

B(z1, z2) =
∫ 1

0
t z1−1(1− t )z2−1 dt (C.3)

= Γ(z1)Γ(z2)

Γ(z1 + z2)

with Re(z1),Re(z2) > 0.
Γ(z) also admits the well-known product decomposition

Γ(z) = e−γ0z

z

∞∏
n=1

(
1+ z

n

)−1
ez/n (C.4)

where γ0 is the Euler-Mascheroni constant. The above allows us to derive the expan-
sion

− log |Γ(z)|2 = 2γ0Re(z)+ log |z|2 +
∞∑

n=1

(
log

∣∣∣1+ z

n

∣∣∣
2
−2

Re(z)

n

)
,

which is directly applicable to the likelihood function associated with the Meixner
distribution. Also relevant to that context is the integral relation

∫

R

∣∣∣Γ(
r

2
+ jx)

∣∣∣
2

ejzx dx = 2πΓ(r )

(
1

2cosh z
2

)r

for r > 0 and z ∈C, which can be interpreted as a Fourier transform by setting z =−jω.
Euler’s digamma function is defined as

ψ(z) = d

dz
logΓ(z) = Γ′(z)

Γ(z)
, (C.5)

while its mth order derivative

ψ(m)(z) = dm+1

dzm+1 logΓ(z) (C.6)

is called the polygamma function of order m.

C.3 Symmetric-alpha-stable distributions

The SαS pdf of degree α ∈ (0,2] and scale parameter s0 is best defined via its char-
acteristic function

p(x;α, s0) =
∫

R
e−|s0ω|αejωx dω

2π
.
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Alpha-stable distributions do not admit closed-form expressions, except for the spe-
cial cases α = 1 (Cauchy) and 2 (Gauss distribution). Moreover, their absolute mo-
ments of order p, E{|X |p }, are unbounded for p >α, which is characteristic of heavy-
tailed distributions. We can relate the (symmetric) γth-order moments of their char-
acteristic function to the gamma function by performing the change of variable t =
(s0ω)α, which leads to

∫

R
|ω|γe−|s0ω|α dω= 2

∫ ∞

0

s−γ−1
0

α
t
γ−α+1
α e−t dt = 2

s−γ−1
0 Γ

(
γ+1
α

)

α
. (C.7)

By using the correspondence between Fourier-domain moments and time-domain
derivatives, we use this result to write the Taylor series of p(x;α, s0) around x = 0 as

p(x;α, s0) =
∞∑

k=0

s−2k−1
0

πα
Γ

(
2k +1

α

)
(−1)k |x|2k

(2k)!
, (C.8)

which involves even terms only (because of symmetry). The moment formula (C.7)
also yields a simple expression for the slope of the score at the origin, which is given
by

Φ′′
X (0) =−

p ′′
X (0)

pX (0)
=

Γ
( 3
α

)

s2
0Γ

( 1
α

) .

Similar techniques are applicable to obtain the asymptotic form of p(x;α, s0) as x
tends to infinity [Ber52, TN95]. To characterize the tail behavior, it is sufficient to
consider the first term of the asymptotic expansion

p(x;α, s0) ∼ 1

π
Γ(α+1)sin

(πα
2

)
sα0

1

|x|α+1 as x →±∞, (C.9)

which emphasizes the algebraic decay of order (α+1) at infinity.
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adjoint operator, 21, 32, 36, 37, 51, 52, 54, 91, 94,
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alternating direction method of multipliers
(ADMM), 262, 263, 319

analysis window
arbitrary function in Lp , 80, 191, 195, 223
rectangular, 12, 59, 79

analytic continuation, 330
augmented Lagrangian method, 262, 319
autocorrelation function, 12, 51, 54, 152, 153, 159,

161, 163, 167, 169

B-spline factorization, 136–137
B-splines, 21, 127

exponential, 125–126, 138–139, 150
fractional, 139–141, 203
generalized, 127–142, 160, 197–198
minimum-support property, 21, 132–134, 138
polyharmonic, 141
polynomial, 8, 137

basis functions, see B-splines, wavelets
Faber-Schauder, 13
Haar wavelets, 13

Bayes’ rule, 254
belief propagation, 279–283
beta function, 345
BIBO stability, 93, 94
binomial expansion (generalized), 204
biomedical image reconstruction, 2, 24, 263, 277,

298
deconvolution microscopy, 265–270, 298–299
MRI, 270–272
X-ray CT, 272–276

biorthogonality, 145, 250, 253
Blu, Thierry, 204
boundary conditions, 10, 92, 102–103, 167
bounded operator, 41

convolution on Lp (Rd ), 40–43
Riesz-Thorin theorem, 41, 94

Brownian motion, 4, 11, 163, 173, 220

cardinal interpolation problem, 5
Cauchy’s principal value, 62, 333, 335

causal, 6, 90, 95, 98, 104
central-limit theorem, 245, 246, 312
characteristic function, 46, 192, 206, 224, 239, 251,

337
SαS, 233

characteristic functional, 46, 47, 85, 154, 156, 158,
164, 188, 194, 225

domain extension, 195–197
of Gaussian white noise, 75
of innovation process, 53, 73
of sparse stochastic process, 153

compound Poisson process, 11, 174, 185
compressed sensing, 2, 256, 284, 288
conditional positive definiteness, 62, 339

of generalized functions, 339
Schoenberg’s correspondence, 69

continuity, 27, 33, 46
of functional, 85

convex optimization, 2, 263
convolution, 39, 40–43, 89, 92–94, 158–159, 161,

335
semigroup, 239–242

correlation functional, 11, 51, 81, 153, 155, 188
covariance matrix, 214, 216, 258
cumulants, 208, 213, 237–239

cumulant-generating function, 237, 238
cycle spinning, 299

iterative, see denoising
through averaging, 317–318

Döblin, Wolfgang, 17
decay, 132, 234

algebraic, 132–133, 234
compact support, 12, 125, 132, 133
exponential, 132, 234
supra-exponential, 234

decorrelation, 202, 216
decoupling of sparse processes, 23, 191

generalized increments, 20, 170–172, 197–205,
210, 251

increments, 11, 191, 193
increments vs. wavelets, 191–194
wavelet analysis, 21, 205–206
wavelets vs. KLT, 219
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denoising, 1, 24, 278, 290
consistent cycle spinning, 319–321
iterative MAP, 319–321
MAP vs. MMSE, 283
MMSE (gold standard), 281
wavelet-domain

shrinkage-thresholding, 296
soft-threshold, 290

differential entropy, 214
differential equation, 5, 89

stable, 95–97
unstable, 19, 97–103

dilation matrix, 142, 205
Dirac impulse, 7, 9, 34, 36, 82, 121
discrete AR(1) process, 211, 219, 278
discrete convolution, 110

inverse, 110
discrete cosine transform (DCT), 1, 14, 210, 217,

219
discrete whitening filter, 202
discretization, 194–195

deconvolution, 268
MRI, 271
X-ray CT, 273

dual extension principle, 36
dual space

algebraic, 32
continuous, 33, 36, 46
of topological vector space, 33

duality product, 33–35

estimators
comparison of, 283–286, 303, 321
LMMSE, 258, 259
MAP, 255
MMSE (or conditional mean), 278
pointwise MAP, 301
pointwise MMSE, 301–312
wavelet-domain MAP, 290, 292–293

expected value, 44

filtered white noise, 19, 54, 91, 159
finite difference, 7, 192, 201
finite part, see Hadamard’s finite part
finite rate of innovation, 2, 10, 78, 173
fluorescence microscopy, 265
forward model, 249, 264, 271
Fourier central-slice theorem, 274
Fourier multiplier, 41, 93, 119

Lp characterization theorem, 41
Mikhlin’s theorem, 43

Fourier transform, 1, 34
basic properties, 37
of generalized functions, 37
of homogeneous distributions, 332
of singular functions, 333

fractals, see Mandelbrot, Benoit B.
fractional derivative, 104, 120, 176, 203

fractional integrator, 185
fractional Laplacian, 107, 108, 135, 176, 185
frequency response, 5, 8

factorization, 95
of a microscope, see modulation transfer

function
rational, 39, 95, 162

function, 25
notion, 28

function spaces, 25–32
complete-normed, 28–30
finite-energy (L2), 34
generalized functions (S ′), 34
Lebesgue (Lp ), 29–30
nuclear, 30–32
rapidly decaying (R), 29
smooth, rapidly decaying (S ), 30–31
topological, 28

functional, 32

gamma function, 344
properties, 344–345

Gaussian hypothesis, 1, 54, 258–259
Gaussian stationary process, 1, 161–162
generalized compound process, 78, 185–187
generalized functions, 35–40
generalized increment process, 160–161, 195,

198–199
generalized increments, 199–205

probability law of, 199–200
generalized random field, 48
generalized stochastic process, 47–54, 84–87

existence of, 86
isotropic, 154
linear transform of, 51–53, 57, 84
self-similar, 154–155
stationary, 154–155

Gibbs energy minimization, 287
Green’s function, 7, 93, 95, 119–120

reproduction, 129–130

Hölder smoothness, 9, 135
Haar wavelets, 13, 114–116

analysis of Lévy process, 12–16, 193
synthesis of Brownian motion, 16

Haar, Alfréd, 147
Hadamard’s finite part, 106, 332–335, 343
Hilbert transform, 43, 105, 335
Hurst exponent, 154, 156, 177, 178, 244

id, see infinite divisibility
impulse response, 5, 38, 41, 158–160, 162

first-order system, 90, 150
impulsive Poisson noise, 75–78
increments, 11, 165, 178, 192
independence at every point, 79, 164
independent component analysis (ICA), 217–220
infinite divisibility, 24, 60, 79

heavy-tail behavior, 59, 234
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Lévy-Khintchine representation, 61
link with sparsity, 58, 68
semigroup property, 239

infinitesimal generator, 239
inner product, 34, 194
innovation model, 11–12, 19–22, 48, 57

finite-dimensional, 71–72
generalized, 84–87

innovation process, 4, 10, 53–54, 73–75
integrator, 10, 91

shift-invariant, 91
stabilized adjoint, 92, 165
stabilized, scale-invariant, 92

interpolator, 3, 126, 144, 152, 159
inverse operator, 19, 89, 91

left vs. right inverse, 84, 86, 100
shift-invariant, 92–97
stabilized, 98–102
stabilized, scale-invariant, 108–109

iterative MAP reconstruction, 261–263
iterative solver

conjugate gradient (CG), 259
Landweber algorithm, 295
steepest descent, 295

iterative thresholding, 24, 290, 295, 298
FISTA, 297–298
ISTA, 296–297

joint characteristic function, 50, 200, 207, 209, 213
Joint Photographic Experts Group

JPEG 2000, 1
JPEG compression standard, 1, 210

Karhunen-Loève transform (KLT), 3, 14, 216, 220
kernel theorem, see Schwartz, Laurent, kernel

theorem
kriging, 18

L-spline, 120–121
`1-norm minimization, 2, 248, 256, 265, 277, 284
Lévy density, 60

modified, 223, 225
Lévy exponent, 23, 59, 60–64, 293

p-admissible, 63, 152, 196
Gaussian, 66
Lévy triplet, 62
Lévy-Schwartz admissible, 74, 152, 195
modified, 223, 256, 291
Poisson family, 64
SαS family, 64

Lévy process, 4, 11, 163–166, 278, 283
alpha-stable, 11, 174, 219
classical definition of, 163–164
higher-order extensions, 166–167

Lévy, Paul Pierre, 4, 16–18
continuity theorem, 46
synthesis of Brownian motion, 16

Lévy-Khintchine formula, 61, 64–67, 70–71, 225,
227, 342–343

Gaussian term, 66
Poisson atoms, 66

left inverse, 92, 98, 99, 101, 102, 105, 108, 109
linear inverse problem, 248

Bayesian formulation, 252
discretization, 249–254
wavelet-based formulation, 291
wavelet-based solution, 294–298

linear least-squares, 295
linear measurements, 194, 253
linear methods, 1, 2, 259, 263
linear predictive coding (LPC), 211
linear shift-invariant (LSI), see operator,

convolution
linear transform, 212

decoupling ability, 217, 219, 221
transform-domain statistics, 212–215

localization, 21, 125, 129, 132–135, 202, 203
Loève, Michel, 17

M-term approximation
wavelets vs. KLT, 14

magnetic resonance, 270
magnetic resonance imaging (MRI), see

biomedical image reconstruction, MRI
Mandelbrot, Benoit B., 17

fractional Brownian motion, 178, 180–184
marginal distribution, 213
Matheron, Georges, 17
maximum a posteriori (MAP), 24, 255–256, 293
Minlos-Bochner theorem, 47, 74, 86
modified Bessel functions, 344
modulation transfer function, 268
moments, 50, 234, 235, 237

generalized, 234, 235
moment-generating function, see characteristic

function
Mondrian process, 187
multi-index notation, 30, 208
multiresolution analysis, 113, 142–144
mutual information, 217–219

non-Gaussian stationary process, 158–159
non-Gaussian white noise, see innovation process,

white Lévy noise
norm, 28
null space, 118–119

operator, 20, 89
continuous, 27
derivative, 7, 111, 164
differential, 19, 96, 124, 166, 191
discrete, 20, 197
factorization, 96, 97, 101–102, 162, 166
fractional, 89, 104, 107
linear, 27
linear shift-invariant, 90, 92, 156, see

convolution
partial differential, 120
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rotation-invariant, 90, 107
scale-invariant, 90, 103–109, 143, 156
spline-admissible, 118–120

operator-like wavelets, 124, 142
fast algorithm, 315
first-order, 126–127, 220, 313
general construction, 144–146
generalized, 142–147

Ornstein-Uhlenbeck process, 150

Paley-Wiener theorem, 133
Parseval’s identity, 35, 161, 300, 316, 318
partial differential equation, 240

diffusion, 240
fractional diffusion, 240

partial differential operator, see operator
elliptic, 120

partition of unity, 114, 132
point-spread function (PSF), 266

Airy pattern, 267
diffraction-limited model, 266
resolution limit, 267, 268

Poisson summation formula, 132
poles and zeros, 95, 141, 162, 166
polynomial reproduction, 130–132

Strang-Fix conditions, 131
positive definiteness, 45, 46, 336

Bochner’s theorem, 45, 337–338
of functional, 85
of generalized function, 338

positive semidefinite, see positive definiteness
potential function, 256–258, 298

wavelet-domain, 293–294
power spectrum, 81, 152, 159, 163
principal component analysis (PCA), 216
probability density function (pdf), 44, see

probability law
probability distribution, see probability law
probability law, 65

Cauchy, 59, 311
compound Poisson, 59, 64, 67, 307
Gaussian, 59
hyperbolic secant, 305
Laplace, 59, 304
Meixner, 310
Poisson, 66
Student, 306
symmetric gamma, 309
symmetric-alpha-stable (SαS), 64, 233, 346

probability measure
finite-dimensional, 43–45
infinite-dimensional, 46, 47

proximal operator, 259, 263, 296
as MAP estimator, 301

Radon transform, 272
of polynomial B-spline, 275

random field, 19, see generalized stochastic
process

reconstruction subspace, 249
regularization, 2, 249, 255, 257, 287

parameter, 264, 284
quadratic, 287
total-variation, 284, 287
wavelet-domain, 295, 298–299

regularizing singular integrals, 107, 330–332
ridge regression, 287
Riesz basis, 9, 114, 121, 122, 129, 250
Riesz transform, 335
right inverse, 99, 101, 103, 105, 109

sampling, 3
constant-rate, 3
generalized, 249
in Fourier domain, 270, 271

sampling step, 249
SαS, see probability law, symmetric-alpha-stable
scaling function, 114
Schoenberg, Isaac Jacob, 9, 147

B-spline formula, 9
correspondence theorem, 69

Schwartz, Laurent
kernel theorem, 38–39
Schwartz-Bochner theorem, 338
space of test functions (S ), 30
tempered distributions (S ′), 34

self-decomposable distribution, 232
self-similar process, 154, 176–180

wide-sense, 155, 176
seminorm, 28
sequence spaces (`p ), 110
Shepp-Logan phantom, 275
shrinkage function, 259, 290, 300–313

asymptotic behavior, 261, 302
for Cauchy distribution, 311
for compound Poisson, 307
for hyperbolic secant, 306
for Laplace distribution, 260, 304
for Meixner family, 310
for Student distribution, 306
for symmetric gamma, 310
linear, 260, 303
MAP vs. MMSE, 302
soft-threshold, 260

signal
as element of a function space, 28
continuous-domain, 3
discrete (or sampled), 7, 194

singular integral, 20, 61, 62, 100, 108, 329–335
sinogram, 272
Sobolev smoothness, 135–136
sparse representations, 191, see decoupling of

sparse processes
sparse signal recovery, 248, 256
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sparse stochastic process, 3, 23, 150–187
bandpass, 174
CARMA, 162–163, 200
Lévy and extension, 163–175
lowpass, 173
mixed, 175
non-Gaussian AR(1), 150–152, 210
self-similar, 23, 176–187

sparsity, 1, 68
spectral mixing, 224, 228
spline knots, 7, 121
splines, 23, 113

cardinal, 5, 120
definition of, 120–121
nonuniform, 7, 121
piecewise-constant, 5–8, 113

stable distribution, 233, 245
stationary process, 79, 154, 158–160, 163

wide-sense (WSS), 155
stochastic difference equation, 201–202, 211
stochastic differential equation (SDE), 4, 19, 84,

164
N th-order, 162, 166
first-order, 91, 150, 166, 210
fractional, 176

stochastic integral, 4, 163
stochastic modeling of images, 264
stochastic process, see generalized stochastic

process
structure

algebraic, 27
topological, 27

submultiplicative function, 235
system matrix, 253, 259, 263, 292

Taylor series, 208, 237, 238
Tikhonov regularization, 248, 255, 287
topological vector space, 28
total variation, 42, 284, 287, 288
transfer function, see frequency response
transform-domain statistics, 223

cumulants, 238
infinite divisibility, 224
rate of decay, 234
self-decomposibility, 232
stability, 233
unimodality, 230

two-scale relation, 114, 143–144, 314

unimodal, 229, 230–232, 257, 303

vanishing moments, 147
variogram, 179
vector-matrix notation, 71, 211
Vetterli, Martin, 10

wavelet frame, 1, 315–318
improved denoising, 317
pseudo-inverse, 316

union of ortho bases, 316
wavelet-domain statistics, 206

correlations, 207
cumulants, 208–210, 244, 245
evolution across scale, 242–246
probability laws, 206–207

wavelets, 1, 113, 290
admissible, 124
Haar, 12, 114–116, 219
Haar 2D, 298
orthogonal transform, 13, 116, 301
semi-orthogonal transform, 146

white Lévy noise, 4, 11, 73–84
as limit of random impulses, 82–83
canonical id distribution, 79
definition, 73
infinite divisibility, 79–81

whitening operator, 19, 23, 113, 152
Wiener, Norbert

Wiener filter, 3, 258
Wiener process, see Brownian motion
Wiener’s lemma, 111
Wiener-Khintchine theorem, 88, 152

X-ray computed tomography, see biomedical
image reconstruction, X-ray CT

Young’s inequality, 40, 94, 110
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