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Introduction

• Pumped Storage Hydropower (PSH) is a type of hydropower that stores and generates 
electricity by using gravitational potential energy of the water

• At times of low demand and low electricity prices, the water is pumped to the higher 
reservoir

• At times of high demand and higher prices, the water is then released to drive a turbine 
in a powerhouse and supply electricity to the grid

• The energy storage capacity of a pumped hydro facility depends on the size of its two 
reservoirs, while the amount of power generated is linked to the size of the turbine.
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PSH operating principle

Pump operation Turbine operation

• Power from the grid is used to operate the electric 
motor

• The electric motor powers the pump turbine

• The water is pumped from the lower basin to the 
upper basin

• Water flows from the upper basin through a 
penstock to the turbine

• The turbine powers the generator, producing 
electricity for the grid

• The water is discharged into the lower basin.
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The role of PSHs in enhancing grid 
flexibility

• PSHs can help mitigate the variability of renewable energy sources by providing 
regulating capacity to match power consumption

• Additionally, they balance the load in the system, absorbing energy during off-peak 
hours and meeting demand in peak times. 

Source: [1] Pumped Storage Systems reliable & economical, afry.com
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Global pumped storage installed 
capacity

• In 2024, PSH accounted for over 90% of installed 
global energy storage capacity and over 92% of 
energy stored in grid scale applications.

• The total installed capacity is around 179 GW

• PSH storage capacity is expected to increase by 50% 
to about 240 GW by 2030

• Locations and data for existing and planned PSH 
projects: here

179 
GW

Source: [2] International Hydropower Association, hydropower.org/statusreport

https://www.hydropower.org/hydropower-pumped-storage-tool
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Installed pumped storage capacity in Europe 2023, by country

Source: [3] International Hydropower Association; ID 690032
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• The EU hosts 46 GW of PHS 
capacity, which is a quarter 
of the global installed 
capacity

• The 1.8 GW Grand’ Maison 
PSH in the French alps is 
the largest PSH in Europe

• Switzerland is a leader in 
PSH with several high-
capacity plants, including 
the 900 MW Nant de Drance

http://www.statista.com/statistics/690032/pumped-storage-capacity-europe


Haute Ecole d’Ingénierie   |  8

Types of pumped-hydro

There are two main types of 
pumped-hydro:

• Open-loop: with either an 
upper or lower reservoir that is 
continuously connected to a 
naturally flowing water source 
such as a river.

• Closed-loop: an ‘off-river’ site 
that produces power from water 
pumped to an upper reservoir 
without a significant natural 
inflow

Source: [4] Enabling new pumped storage hydropower: A guidance note for key decision makers to de-risk pumped storage investments, hydropower.org/pubblications 
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Components of a PSH

The main components of a PSH are:

• Dam: a barrier that stops or restricts the flow of 
surface

• Reservoir: an enlarged lake behind a dam built 
to store water

• Penstock: open or closed channel to flow the 
water from the reservoir to the turbine

• Surge tank: cylindrical tank open at the top to 
control the pressure in penstock

• Pump/Turbine: convert the hydraulic energy of 
the water into the mechanical energy or pump 
the water upstream

• Power house: building provided to protect the 
hydraulic and electrical equipment such as the 
generator
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Hydraulic and mechanical quantities

ℎ

𝑄, 𝑣

𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐

𝑃𝑜𝑢𝑡

𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐

𝑃𝑖𝑛

𝑄, 𝑣

ℎ

Pump operationTurbine operation

𝑧1

𝑧2

𝜌, 𝑔, 𝑝

where:
• 𝑣 is the fluid flow speed [m/s]
• 𝑔 is the gravity acceleration [m/s2]
• 𝑧 is the elevation of the point above a reference plane [m]
• 𝑝 is the pressure at the chosen point [Pa]
• 𝜌 is the density of the fluid at all points in the fluid [kg/m3]
• 𝑄 is the flow rate = fluid flow speed x section of the tube [m3/s]

• 𝑇 is the mechanical torque [Nm]
• 𝜔 angular speed [rpm]

𝑇, 𝜔

𝑇, 𝜔
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Energy conversion

Energy balance

𝐸𝑡𝑜𝑡 = 𝐸𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐

In terms of Head, 𝒉 (energy per unit weight = Τ𝐸 𝑚𝑔) in meters:

ℎ =
𝐸𝑡𝑜𝑡
𝑚𝑔

=
𝑝

𝜌𝑔
+ 𝑧 +

𝑣2

2𝑔

Pressure energy = work done to 
lift a fluid column due to pressure

𝐸𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝑝 ∙ 𝑉

where 𝑉 is the volume

Potential energy = energy held 
by a mass because its elevation

𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑚𝑔𝑧

Kinetic energy = energy held by 
a mass due to its motion

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
1

2
𝑚𝑣2

Pressure head Elevation head Velocity head



Haute Ecole d’Ingénierie   |  12

Power in turbine and pump modes

Hydraulic power = Energy / time

𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 =
𝐸𝑡𝑜𝑡
𝑡

=
𝑚

𝑡
𝑔ℎ = 𝜌𝑔𝑄ℎ

where 
𝑚

𝑡
= 𝜌𝑄

𝑘𝑔

𝑚3 ∙
𝑚3

𝑡

Power balance in turbine mode:

𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 = 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 + 𝑃𝑝𝑒𝑛𝑠𝑡𝑜𝑐𝑘,𝑙𝑜𝑠𝑠+ 𝑃𝑡𝑢𝑟𝑏𝑖𝑛𝑒,𝑙𝑜𝑠𝑠+ 𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟,𝑙𝑜𝑠𝑠

Power balance in pump mode:

𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 = 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 + 𝑃𝑝𝑒𝑛𝑠𝑡𝑜𝑐𝑘,𝑙𝑜𝑠𝑠+ 𝑃𝑝𝑢𝑚𝑝,𝑙𝑜𝑠𝑠+ 𝑃𝑚𝑜𝑡𝑜𝑟,𝑙𝑜𝑠𝑠
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Efficiency in turbine and pump modes

Turbine efficiency, 
𝜼𝒕𝒖𝒓𝒃𝒊𝒏𝒆 :

𝜂𝑡 =
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

=
𝑃𝑚𝑒𝑐ℎ

𝜌𝑔𝑄h
=
𝑇 ∙ 𝜔

𝜌𝑔𝑄h

Overall efficiency in turbine mode, 𝜼:

𝜂 =
𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐

= 1−
𝑃𝑙𝑜𝑠𝑠𝑒𝑠
𝜌𝑔𝑄h

= 𝜂𝑝𝑒𝑛𝑠𝑡𝑜𝑐𝑘 ∙ 𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒 ∙ 𝜂𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

Overall efficiency in pump mode, 𝜼:

𝜂 =
𝑃𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐
𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

= 1−
𝜌𝑔𝑄h

𝑃𝑙𝑜𝑠𝑠𝑒𝑠
= 𝜂𝑝𝑒𝑛𝑠𝑡𝑜𝑐𝑘 ∙ 𝜂𝑝𝑢𝑚𝑝 ∙ 𝜂𝑚𝑜𝑡𝑜𝑟

Pump efficiency, 
𝜼𝒑𝒖𝒎𝒑 :

𝜂𝑝 =
𝜌𝑔𝑄ℎ

𝑃𝑚𝑒𝑐ℎ
=
𝜌𝑔𝑄ℎ

𝑇 ∙ 𝜔

Penstock efficiency, 
𝜼𝒑𝒆𝒏𝒔𝒕𝒐𝒄𝒌 :

𝜂𝑝𝑒𝑛𝑠𝑡𝑜𝑐𝑘 =
𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐,𝑜𝑢𝑡
𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐
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Penstock losses

Head loss 𝒉𝒇 due to friction (Darcy-Weisbach equation)

ℎ𝑓 = 𝑓 ∙
𝐿

𝐷
∙
𝑣2

2𝑔
where:
• 𝑓 is the Darcy friction factor
• 𝐷 is the penstock’s diameter
• 𝐿 is the penstock’s length

Penstock efficiency, 𝜼𝒑𝒆𝒏𝒔𝒕𝒐𝒄𝒌:

𝜂𝑝𝑒𝑛𝑠𝑡𝑜𝑐𝑘 =
𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐,𝑜𝑢𝑡
𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐

=
𝜌𝑔𝑄(ℎ − ℎ𝑓)

𝜌𝑔𝑄ℎ
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Types of hydraulic machines (1/2)

ℎ =
𝑝

𝜌𝑔
+ 𝑧 +

𝑣2

2𝑔

Impulse turbines:

Fluid’s kinetic energy converted to 
mechanical work at the atmospheric 
pressure

- Change in velocity → Change in head

Reaction turbines:

Both fluid’s kinetic and potential energy is 
converted to mechanical work

- Change in pressure → Change in head
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Types of hydraulic machines (2/2)

The most common hydraulic machines used in hydropower plants are:

• Pelton turbine (impulse turbine)
- very high head
- nozzle 

• Francis pump-turbine (reaction turbine)
- medium head
- reversible machines

• Kaplan turbine (reaction turbine)
- low head
- double control system
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1-D Modelling of hydraulic circuits (1/2)

with state variables

The governing equations are the continuity of 
mass and momentum:

parameters and constant

friction losses
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i i+1

Δx

where:

x

Spatial discretization

1-D Modelling of hydraulic circuits (2/2)

Electrical equivalent circuit



Haute Ecole d’Ingénierie   |  19

1-D Modelling of hydraulic machines (1/2)

• Quasi-static model: The transient behavior of the hydraulic machines can be simulated as a 
succession of different steady-state operating points

• Characteristic curves: capture the relation between the machine state variables (e.g., 
specific energy (𝑔ℎ), torque, rotational speed, flow, guide vane opening)
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1-D Modelling of hydraulic machines (2/2)

Volumetric flow (left) and torque (right) characteristic 

curves of a Francis pump/turbine 

To display the characteristic curves it is convenient to eliminate one of the state by means of the 
hydraulic machine similitude laws:

The S-shape between the 1st and 
4th quadrant leads to numerical 
troubles for the numerical tractability

Polar representation

Source: [5] C. Nicolet, “Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems”
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Polar representation of a Francis machine

The pressure source H of the model is directly driven from 
the turbine characteristic 𝑊𝐻(𝑦, 𝜃(𝑄,𝑁)):

The mechanical torque T of the pump-turbine is obtained 
from the torque characteristic𝑊𝐵(𝑦, 𝜃(𝑄,𝑁)):

The turbine rotational speed 𝝎 is according to the 
momentum equation applied to the rotational inertias:

P
o
la

r re
p
re

se
n
tatio

n

Best 
Efficiency 
Point
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Equivalent circuit model of hydropower 
plants

Equivalent circuit model (ECM) of the complete plant obtained by combining the penstock 
model, turbine model, and reservoirs

Upstream and downstream reservoirs

Sources: [6] S. Cassano and F. Sossan, “Stress-informed control of medium- and high-head hydropower plants to reduce penstock fatigue”  
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State-space representation

Sources: [5] S. Cassano and F. Sossan, “Stress-informed control of medium- and high-head hydropower plants to reduce penstock fatigue”  

               [6] C. Nicolet, “Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems”

State-Space representation

ሶ𝑋 = 𝐴 ∙ 𝑋 + 𝐵 ∙ 𝑢

ሶ𝑋 =

−𝑅

𝐿

0
1

𝐶

0

0
−𝑅

𝐿
−1

𝐶

0

−1

𝐿
1

𝐿

0
0

0
0
0
0

𝑄1
𝑄2
𝐻𝑐
𝜔

+

1

𝐿

0
0
0

0
−1

𝐿

0
0

0
0
0
1

𝐽

𝐻𝑢
𝐻𝑡 −𝐻𝑑
𝑇𝑡 + 𝑇𝑒𝑙

Numerical integration: Runge-Kutta 4th

order

Equivalent circuit model 

𝐻𝑡 and 𝑇𝑡 are obtained from 
𝑊𝐻 and 𝑊𝐵 from the polar 
representation
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Pumped storage technologies

The pumped storage technologies can be grouped into three categories:

1. Conventional PSH

2. Tertiary set PSH

3. Variable-speed PSH

Sources: [7] Z. Dong et al., “Modeling and Simulation of Ternary Pumped Storage Hydropower for Power System Studies”  
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Conventional PSH

Sources: [8] A. Harby et al., “Pumped Storage Hydropower”  

Typical layout consists in:

1. install two separate aggregates, 
one pump and one turbine, or

2. use a machine that runs both 
ways (reversible pump turbines 
(RPTs))

PSH are characterized by:

• long lifetime expectancy (typically 
between 50 and 100 years)

• a round-trip efficiency of 70–80%

• fast response time in the order of 
seconds or minutes.
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Tertiary set PSH

Typical layout consists in:

1. vertical shaft and the motor-generator 
located between the turbine and the 
pumps

2. motor-generator located at the top, 
above both the turbine and the pump

A clutch is inserted on the shaft above the 
pump to disconnect the pump during 
turbine operation to avoid ventilation 
losses in the pump

Tertiary set consist of a motor-generator, a separate turbine (e.g., Francis or Pelton) and a 
pump set

Source: [9] Modeling Ternary Pumped Storage Units, ceeesa.es.anl.gov/projects
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Operating modes of tertiary units

• Generating mode: the guide vanes to the pump are 
closed and the clutch is not engaged. The amount of 
generation is controlled by the position of the turbine 
guide vanes.

• Pumping mode: the guide vanes to the turbine are 
closed and the clutch is enabled. The pump guide vanes 
are wide open and there is no regulation capability. 

• Pumping/generating mode: the clutch is enabled 
and both the pump and the turbine operate

Source: [9] Modeling Ternary Pumped Storage Units, ceeesa.es.anl.gov/projects

This is referred to as a “hydraulic short circuit”
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Hydraulic short circuit

Example of operation in pumping mode with regulation capability using the 
Hydraulic Short-Circuit concept

• The  power applied to the shaft from the pump is 150 MW drawn from the power system
• The turbine guide vanes are adjusted so that the turbine supplies 100 MW to the power system 
• The net result is that 50 MW is drawn from the power system, and the flow pumped up to the 

reservoir is equivalent to 50 MW

Source: [9] Modeling Ternary Pumped Storage Units, ceeesa.es.anl.gov/projects
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Advantages of tertiary units

Main advantages:

• Ternary plant can simultaneously operate both the pump and turbine

• The shaft rotates in the same direction in both operational mode reducing hydraulic 
transients and increasing the time to switch from turbine to pump mode

• Round-trip efficiency of up to 82%
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Variable-speed pump turbines

The variable-speed technology allows to decouple the grid and generator frequency 

AC/DC/AC

converter

Main Advantage: the recovery of efficiency of the hydraulic turbine (almost to its 
rated efficiency) when working at a head lower than the design head.

The main procedures adopted to obtain variable speed are:

• Synchronous Generator with back-to-back frequency converter

• Double-Fed Induction Generator (DFIG)
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DFIG working principle

• The rotor of the machine is connected to the machine’s terminal through a power 
converter

• The power converter can control the voltage, current and frequency in the rotor circuit

• The DFIG rotor must be excited with a complement frequency to achieve the rated 
frequency in the stator generated voltage

Source: [10] Modeling Adjustable Speed Pumped Storage Hydro Units Employing Double-Fed Induction Machines, ceeesa.es.anl.gov/projects
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Grand’ Maison PSH, France 

• Nominal power: 1.8 GW with 4x 
158.5 MW multi-jet Pelton turbines 
and 8x 154MW Francis pump-
turbines

• Energy capacity: 1420 GWh

• Storage capacity: 137 millions of 
m3 of water in the upper reservoir

• Gross head: 918 m

• Technologies tested: Hydraulic 
short circuit 

Source: [11] XFLEX HYDRO, xflexhydro.com/test-sites/grand-maison
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Nant de Derance PSH, Switzerland

• Nominal power: 900 MW with 
6x150 MW Francis pump-turbines

• Energy capacity: 200 GWh

• Storage capacity: 25 millions of 
m3 of water in the upper reservoir

• Turbine to pump switching 
time: less than 5 minutes

• Net head: 71.1 m

Source: [12] https://www.nant-de-drance.ch



Haute Ecole d’Ingénierie   |  34

References

[1] Pumped Storage Systems reliable & economical, afry.com

[2] International Hydropower Association (IHA), hydropower.org/statusreport

[3] International Hydropower Association; ID 690032

[4] Enabling new pumped storage hydropower: A guidance note for key decision makers to de-risk pumped storage
investments, hydropower.org/pubblications

[5] C. Nicolet, “Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems”

[6] S. Cassano and F. Sossan, “Stress-informed control of medium- and high-head hydropower plants to reduce penstock
fatigue”

[7] Z. Dong et al., “Modeling and Simulation of Ternary Pumped Storage Hydropower for Power System Studies”

[8] A. Harby et al., “Pumped Storage Hydropower”  

[9] Modeling Ternary Pumped Storage Units, ceeesa.es.anl.gov/projects

[10] Modeling Adjustable Speed Pumped Storage Hydro Units Employing Double-Fed Induction Machines,
ceeesa.es.anl.gov/projects

[11] XFLEX HYDRO, xflexhydro.com/test-sites/grand-maison

[12] Nant de Derance website: https://www.nant-de-drance.ch

https://www.nant-de-drance.ch/


Haute Ecole d’Ingénierie   |  35

To do

1 cluch disaccoppiamento

2 turbine 

3 set up grand maison

4 tutte le tecnologie disponibili

5 esercizio in matlab: didattico per spiegare bene le basi metodologiche: trovare la Potenza a partire dalla discharge etc 
(come il mio modello) 

6 definizione di energia

7 efficienza? numeri
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