

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 15

Midterm exam

Information Theory and Coding

Oct. 31, 2017

3 problems, 85 points

165 minutes

1 sheet (2 pages) of notes allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. (25 points) Suppose X, Y and Z are random variables.

- (a) (5 pts) Show that $H(X) + H(Y) + H(Z) \geq \frac{1}{2}[H(XY) + H(YZ) + H(ZX)]$.
- (b) (5 pts) Show that $H(XY) + H(YZ) \geq H(XYZ) + H(Y)$.
- (c) (5 pts) Show that

$$2[H(XY) + H(YZ) + H(ZX)] \geq 3H(XYZ) + H(X) + H(Y) + H(Z).$$

- (d) (5 pts) Show that $H(XY) + H(YZ) + H(ZX) \geq 2H(XYZ)$.
- (e) (5 pts) Suppose n points in three dimensions are arranged so that their projections to the xy , yz and zx planes give n_{xy} , n_{yz} and n_{zx} points. Clearly $n_{xy} \leq n$, $n_{yz} \leq n$, $n_{zx} \leq n$. Use part (d) show that

$$n_{xy}n_{yz}n_{zx} \geq n^2.$$

PROBLEM 2. (30 points) Consider the distribution Q on the positive integers $\{1, 2, \dots\}$ with

$$Q(u) = (1 - 2p)p^{\lfloor \log_2(u) \rfloor}, \quad u = 1, 2, \dots,$$

i.e.,

$$\begin{aligned} Q(1) &= (1 - 2p), \\ Q(2) &= Q(3) = (1 - 2p)p, \\ Q(4) &= Q(5) = Q(6) = Q(7) = (1 - 2p)p^2, \\ &\dots\dots \\ Q(2^j) &= \dots = Q(2^{j+1} - 1) = (1 - 2p)p^j, \quad (j = 0, 1, \dots). \end{aligned}$$

Suppose the random variable V has distribution Q .

(a) (5 pts) Find $H(V)$. [Hint: $\sum_{j=0}^{\infty} x^j = 1/(1-x)$, $\sum_{j=1}^{\infty} jx^j = x/(1-x)^2$.]

(b) (5 pts) Find $L(V) := E[\lfloor \log_2 V \rfloor]$.

(c) (5 pts) Show that

$$H(V) = L(V) + L(V) \log_2(1 + 1/L(V)) + \log_2(1 + L(V)) \quad (c1)$$

$$\leq L(V) + \log_2(1 + L(V)) + \log_2 e. \quad (c2)$$

(d) (5 pts) With V as above, show that if U is a random variable taking values in $\{1, 2, \dots\}$ for which $L(U) = L(V)$, then

$$H(U) \leq \sum_i \Pr(U = i) \log_2 \frac{1}{Q(i)} \quad (d1)$$

$$= \sum_i \Pr(V = i) \log_2 \frac{1}{Q(i)} \quad (d2)$$

$$= H(V).$$

Order the set of binary strings in increasing length $(\lambda, 0, 1, 00, 01, \dots)$, with λ denoting the null string. Note that $\lfloor \log_2 i \rfloor$ is the length of the i 'th string in this list.

(e) (5 pts) Suppose U is a random variable taking values in $\{1, 2, \dots\}$ with distribution P , and suppose $P(1) \geq P(2) \geq \dots$. Find the non-singular code \mathcal{C} with smallest possible $E[\text{length}(\mathcal{C}(U))]$, and express $\text{length}(\mathcal{C}(u))$ in terms of $\log_2 u$.

(f) (5 pts) For any random variable U taking values in $\{1, 2, \dots\}$, let

$$L^* = \min_{\mathcal{C}: \text{non-singular}} E[\text{length}(\mathcal{C}(U))].$$

Show that $H(U) \leq L^* + \log(1 + L^*) + \log_2 e$.

PROBLEM 3. (30 points) Consider the following variation on the Lempel-Ziv algorithm to encode an infinite sequence $u_1 u_2 \dots$ from an alphabet \mathcal{U} .

1. Set the dictionary $\mathcal{D} = \mathcal{U}$. Denote the dictionary entries as $d(0), \dots, d(s-1)$, with $s = |\mathcal{U}|$ being the size of the dictionary. Set $i = 0$ (the number of input letters read so far).
2. Find the largest l such that $w = u_{i+1} \dots u_{i+l}$ is in \mathcal{D} .
3. With $0 \leq j < s$ denoting the index of w in \mathcal{D} , output the $\lceil \log_2 s \rceil$ bit binary representation of j .
4. Add the word wu_{i+l+1} to \mathcal{D} , i.e., set $d(s) = wu_{i+l+1}$, and increment s by 1. Increment i by l . Goto step 2.

For example, with $\mathcal{U} = \{a, b\}$, the input string `abbbbbaaab...` will lead to the execution steps

\mathcal{D} at 2	w	output at 3	added-word at 4
a b	a	0	ab
a b ab	b	01	bb
a b ab bb	bb	11	bbb
a b ab bb bbb	b	001	ba
a b ab bb bbb ba	a	000	aa
a b ab bb bbb ba aa	aa	110	aab

- (a) (5 pts) Can the decoder reconstruct the input sequence $u_1 u_2 \dots$ from the output of the algorithm? If so, how? (The crucial difficulty is that the description of w in step 3 does not determine the word added to the dictionary in step 4.)
- (b) (5 pts) The algorithm parses the sequence $u_1 u_2 \dots$ into a sequence of words $w_1 w_2 \dots$, (the w 's found in step 2). Show that a word w can appear at most $|\mathcal{U}|$ times in the parsing.
- (c) (5 pts) Suppose $u^n = u_1 \dots u_n$ is parsed into $m(u^n)$ words $w_1 \dots w_m$ by the algorithm. Show that for any $k \geq 1$

$$n \geq k[m(u^n) - F(k)],$$
where $F(k) = |\mathcal{U}| \sum_{i=1}^{k-1} |\mathcal{U}|^i$.
- (d) (5 pts) Show that $\lim_{n \rightarrow \infty} m(u^n)/n = 0$.
- (e) (5 pts) Show that after reading u^n the algorithm outputs fewer than $m(u^n) \lceil \log_2 [|\mathcal{U}| + m(u^n)] \rceil$ bits.

Let $L(m, k)$ denote the minimum possible total length of a collection of m binary strings where no string appears more than k times.

- (f) (5 pts) Show that if u^n is fed to an information lossless finite state machine with s states, then the machine outputs at least $L(m(u^n), s^2 |\mathcal{U}|)$ bits.